EP3004754B1 - Pompe à chaleur pour utilisation des réfrigérants écologiques - Google Patents

Pompe à chaleur pour utilisation des réfrigérants écologiques Download PDF

Info

Publication number
EP3004754B1
EP3004754B1 EP14727748.7A EP14727748A EP3004754B1 EP 3004754 B1 EP3004754 B1 EP 3004754B1 EP 14727748 A EP14727748 A EP 14727748A EP 3004754 B1 EP3004754 B1 EP 3004754B1
Authority
EP
European Patent Office
Prior art keywords
temperature
compressor
working fluid
heat pump
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14727748.7A
Other languages
German (de)
English (en)
Other versions
EP3004754A1 (fr
Inventor
Florian REISSNER
Bernd Gromoll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL14727748T priority Critical patent/PL3004754T3/pl
Publication of EP3004754A1 publication Critical patent/EP3004754A1/fr
Application granted granted Critical
Publication of EP3004754B1 publication Critical patent/EP3004754B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/027Compressor control by controlling pressure
    • F25B2600/0272Compressor control by controlling pressure the suction pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/19Refrigerant outlet condenser temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to heat pumps and the use of refrigerant therein.
  • the use of a refrigerant in a heat pump is characterized by the so-called temperature lift.
  • the temperature lift is the difference between condensation and evaporation temperature.
  • the temperature lift thus means how much the heat source is raised in the temperature level to be used at the heat sink.
  • the phase boundary line of a suitable environmentally friendly refrigerant is shown, which is characterized by a strongly overhanging dew line.
  • a heat pump process is shown for a temperature elevation of 50 Kelvin from 75 ° C evaporation temperature to 125 ° C condensation temperature.
  • the compression endpoint In order to operate a heat pump with such a refrigerant, the compression endpoint must maintain a minimum distance from the dew line to still be in the gas phase region.
  • the distance from state 4 to state 5 and the distance from state 7 to state 1 is the same enthalpy difference, as can be seen from the pressure-enthalpy diagrams 1 to 4. How out FIG. 3
  • the approach with the internal heat exchanger is not suitable for every temperature lift. At a temperature lift of, for example, 20 Kelvin, the amount of heat which the internal heat exchanger can supply for overheating the suction gas is insufficient, and the compression end point is problematically again within the phase boundary line.
  • Fluids heretofore used in heat pumps and chillers, such as R134a (1,1,1,2-tetrafluoroethane) have the problem that the compression end point in the two-phase region does not exist at all and can therefore be used with heat pumps and chillers known from the prior art operate.
  • the US 2010/0192607 A1 describes an air conditioning system and a heat pump with an injection circuit and an automatic control of the injection circuit.
  • the injection circuit is used to cool a portion of a working fluid of the heat pump by means of an expansion valve and then to use in a heat exchanger to cool the working fluid at a location in the cycle of the working fluid before the branch of the injection circuit.
  • document US2010 / 0192607 A1 discloses a heat pump according to the preamble of claim 1.
  • the EP 2 752 627 A1 describes a refrigerator in which a working fluid of the refrigerator is superheated at the input side of a compressor in a liquid / gas heat exchanger, wherein the overheating takes place by means of a portion of the working fluid provided by a liquid / gas separator disposed at an outlet of a steam condenser becomes.
  • the heat pump according to the invention comprises a compressor, a condenser, an internal heat exchanger, an expansion valve, an evaporator and a control device which is designed to bring the temperature of the working fluid at the outlet of the compressor to a predeterminable minimum distance, above the dew point.
  • the minimum temperature distance refers to the working fluid at constant pressure and is in particular at least one Kelvin, preferably at least 5 Kelvin.
  • the control device is a temperature control device which is designed to increase the temperature of the working fluid at the inlet of the compressor.
  • the temperature control device is designed such that it regulates the pipeline heating via the temperature of the working fluid at the compressor outlet.
  • the pipeline heating is switched on or off or varies in temperature.
  • the pipeline heating can thus start briefly, for example, in fluctuating heat sources or réellesenketemperaturen or be in continuous operation. This has the advantage of compensating for a too low temperature lift.
  • the temperature limit for the temperature lift depends on the refrigerant used, or working fluid.
  • the temperature lift depends on various properties and parameters of the heat pump.
  • the temperature control device comprises a bypass line with a valve which connects the high-pressure region at the outlet of the compressor to the low-pressure region at the inlet of the compressor such that the working fluid flowing from the internal heat exchanger to the compressor can be overheated by means of the hot gas which can be returned via the bypass line.
  • the temperature control device is in particular designed such that it regulates the passage through the valve of the bypass line via the temperature of the working fluid at the compressor outlet. Also, this embodiment has the advantage in a temperature lift, which would land without additional intervention in the heat pump process with the compression end point in the two-phase region, so to regulate that the heat pump can be operated stable with the working fluid used in a steady state.
  • the bypass valve used may be, for example, a thermostatic or an electronically controlled valve.
  • the control device is a pressure control device which is configured is to lower the pressure of the working fluid at the inlet of the compressor.
  • the pressure control device may in particular comprise an automatic expansion valve, which is arranged as an expansion valve in the heat pump cycle between the internal heat exchanger and the evaporator.
  • An automatic expansion valve is a pure evaporator pressure control valve by means of which it is possible to set the evaporation temperature and therefore the evaporation pressure.
  • is the isentropic exponent
  • T 2 and T 1 are the temperatures before and after the compressor
  • P ratio is the pressure ratio of the gas pressures upstream and downstream of the compressor.
  • an automatic expansion valve in the heat pump has the additional advantage of a control option represent for the application that the temperature lift is not below a threshold temperature but well above the limit temperature. If the temperature lift is just too far above it, the pressure gas temperature T 2 after the compressor would also be very far above the minimum distance to the dew point to be maintained. This may be another problem when, for example, the compressor has an upper service temperature limit. Such an upper temperature limit of use of a compressor may be due, for example, to the thermal stability of the lubricants or to excessive expansion for close fits in the compressor. By the automatic expansion valve, however, the pressure in the evaporator can be increased so far that the working fluid only slightly overheated or even partially evaporated.
  • the embodiment with the automatic expansion valve at a temperature elevation above the threshold temperature has the added advantage of increasing the overall efficiency of the heat pump due to the pressure increase because decreasing the temperature difference in the evaporator decreases the pressure ratio and demands less compressor power. At the same time, the density of the fluid increases, thus increasing the power density in the compressor. In addition, an increased service life of the compressor can be ensured by the lower pressure gas temperature.
  • the heat pump preferably comprises a working fluid which, in the temperature-entropy diagram, has a pitch of the dew line below 1000 (kg K 2 ) / kJ.
  • a working fluid which, in the temperature-entropy diagram, has a pitch of the dew line below 1000 (kg K 2 ) / kJ.
  • working fluids from the family of fluoroketones can be used.
  • Particularly advantageous therefrom are the working fluids Novec649 (dodecafluoro-2-methylpentan-3-one) and Novec524 (decafluoro-3-methylbutan-2-one).
  • Novec649 has a dew line slope of 601 (kgK 2 ) / kJ
  • Novec524 has a dewline slope of 630 (kgK 2 ) / kJ
  • a Another suitable example is R245fa (1,1,1,3,3-pentafluoropropane), which has a slope in the TS diagram of 1653 (kgK 2 ) / kJ, the slope being indicated in each case for a saturation temperature of 75 ° C.
  • a working fluid is used in a heat pump, which has a slope in the tau line in the temperature-entropy diagram of less than 1000 (kg K 2 ) / kJ.
  • the temperature of a working fluid after compression is brought to a predeterminable minimum distance, in particular of one Kelvin, above the dew point.
  • FIGS. 1 to 4 show pressure-enthalpy diagrams in which the pressure p is plotted on a logarithmic scale.
  • the isotherms IT and dotted the isentropes IE are shown in dashed lines.
  • the temperatures for the isotherms IT in degrees Celsius, the entropy values for the isentropes IE in kJ / (kg ⁇ K) are given.
  • the consistently drawn curve is in each case the phase boundary line PG of a new working medium, for example the fluid Novec649. This has a critical point at 169 ° C.
  • the dew line would be inclined by 601 (kgK 2 ) / kJ in the temperature-entropy diagram.
  • Another suitable example of a working medium is Novec524 with a critical point at 148 ° C.
  • a heat pump process WP is shown in dashed lines. Beginning from the state point 1, a compression leads to the state point 2 or 3, which coincide in purely theoretical considerations and will be referred to below only as the state point 2. By means of a condensation process, the state point 4 is reached. From the state point 4 to the state point 5 there is a subcooling. From the state point 5 to the state point 6, one arrives via an expansion process and from the state point 6 to the state point 7 via an evaporation process. The path from state point 7 back to the starting point 1 is an overheating of the working medium.
  • the heat pump process WP shown has an evaporation temperature at 75 ° C and a condensation temperature at 125 ° C, so a temperature of 50 Kelvin.
  • supercooling will reduce enthalpy by the same amount as overheating.
  • the distance of state 2 from the tau line TL in the heat pump process WP, ie the temperature difference of state 2 to its dew point at the same pressure is 10 Kelvin. This minimum distance is sufficient to ensure a stable operation of the heat pump 10 without endangering the compressor 11 by liquid hammer.
  • a minimum distance should be maintained, which must be set for each system of working fluid and heat pump 10 depending on possible fluctuation parameters.
  • a minimum distance of one Kelvin advantageously a minimum distance of 5 Kelvin should be maintained.
  • the temperature lift of the heat pump process WP changes whether the exchanged heat quantity Q IHX through the internal heat exchangers IHX for overheating the suction gas before the compressor 11 is sufficient to place the compression end point 2 in the gas phase region g.
  • FIG. 3 is, for example, again a heat pump process WP with the working medium Novec649 as in the FIG. 1 which, however, has a condensation temperature of only 95 ° C. This temperature lift of 20 Kelvin is thus below the limit for this system.
  • the internal heat exchanger IHX would operate in this example with a power of 0.64 kW.
  • the in FIG. 4 shown heat pump process WP has a very high temperature lift of 60 Kelvin up to a condensation temperature of 135 ° C.
  • the internal heat exchanger IHX for example, operates with a power of 5.9 kW.
  • the compression end point 2 is very far away from the tau line TL, the temperature lift thus clearly exceeds the limit value of the temperature lift for this system of heat pump 10 and work equipment.
  • the example values for the transferred heat output Q IHX through the internal heat exchanger IHX refer to a capacitor output of 10 kW. In these examples, therefore, not enough heat can be transferred at a small temperature lift of 20 Kelvin to maintain a minimum distance of, for example, 5 Kelvin for this system. At a temperature lift of 60 Kelvin, however, the transferred heat Q IHX of the internal heat exchanger IHX is sufficient for the minimum distance. The temperature lift of 60 Kelvin is therefore above the limit temperature lift for this system. For the system of heat pump 10 with Novec649 and 10 kW capacitor capacity described here by way of example at an evaporation temperature of 70 ° C., the limit temperature lift is 37 Kelvin. If, for example, Novec524 were used as the working fluid with otherwise identical parameters, the limit temperature lift would be 31 Kelvin.
  • a limit temperature lift can be determined correspondingly for each heat pump working fluid system, above which an internal heat exchanger IHX can maintain the necessary heat for maintaining the minimum distance of the compression end point 2 from the tau line TL. If the temperature lift is below the limit temperature lift, work must be done with a system as described in this application to ensure the compression end point 2 at the minimum distance to the tau line TL. Only in this way can a stable stationary operation be realized with low taulin control fluids in heat pumps 10.
  • FIGS. 5 to 7 show embodiments of heat pump 10 with different control options for the use of new work equipment.
  • heat pump processes WP with too low a temperature lift below the limit temperature lift can nevertheless be operated stably stable.
  • the starting point is in each case an evaporation temperature at 70 ° C and a Condensation temperature at 100 ° C, so a temperature of 30 Kelvin, which would be in both cases for the working fluid Novec649 as well as for Novec524 below the temperature limit lift.
  • the capacitor power for example, is 10 kW.
  • the heat pump 10 is operated with a conventional expansion valve 14, which may be, for example, a thermostatic or an electronically controlled expansion valve 14.
  • This expansion valve 14 regulates the flow of the working fluid and the superheat after the evaporator 15.
  • a piping heater 20 is then arranged around the pipe section between the internal heat exchanger 13 and the compressor 11 around.
  • the working medium flowing therein can be heated. How much the pipe heater 20, the working fluid in the state 1 is heated over the temperature T 2 at state 2, that is regulated at the output of the compressor 11.
  • the temperature T 2 is measured there and, via an adjustment to a minimum distance of the temperature T 1, the heating is switched on or off or its heating power is lowered or increased.
  • temperature control device 30 includes a hot gas bypass 31, the compressed gas from the pressure side 2 of the compressor 11 back to the suction side 1 of the compressor 11 and thus further heated by the hot pressurized gas, the suction gas.
  • the increase in the temperature T 1 of the suction gas is limited by a bypass valve 31, which in turn is controlled by the temperature T 2 in state 2.
  • the valve 31 may be a thermostatically or electronically controlled valve 31.
  • the additional power required for this temperature control 30 is, for example, 0.58 kW, which is an additional compressor output in an isentropic pressure and temperature increase.
  • FIG. 7 an alternative embodiment for temperature control 30 is shown, namely a control over the suction gas pressure:
  • an automatic expansion valve 40 so a pure evaporator pressure control valve, it is possible to adjust the evaporation pressure and thus the evaporation temperature.
  • the pressure ratio that the compressor 11 has to implement increases and thus the pressure gas temperature T 2 in state 2.
  • the pressure of 1.96 bar are lowered to 1.35 bar so as to maintain the minimum distance of 5 Kelvin.
  • an additional compressor power at isentropic pressure and temperature increase by the compressor 11 of 0.45 kW is necessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Compressor (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Claims (5)

  1. Pompe (10) à chaleur, comprenant un compresseur (11), un condenseur (12), un échangeur de chaleur (13) interne, un détendeur (14), un évaporateur (15) et un dispositif (21, 30) de régulation, un côté primaire de l'échangeur de chaleur (13) interne communiquant fluidiquement avec l'évaporateur (15) et avec le compresseur (11) et un côté secondaire de l'échangeur de chaleur (13) interne communiquant fluidiquement avec le condenseur (12) et le détendeur (14), le dispositif (21, 30) de régulation étant conformé pour mettre la température du fluide de travail à la sortie du compresseur (11) à une distance minimum pouvant être donnée à l'avance du point de rosée;
    dans laquelle le dispositif de régulation est un dispositif (21, 30) de régulation de la température conformé pour élever la température du fluide de travail à l'entrée du compresseur (11);
    caractérisée en ce que
    le dispositif (30) de régulation de la température comprend un conduit de dérivation à robinet (31), qui met la partie (2) de haute pression à la sortie du compresseur (11) en communication avec la partie (1) de basse pression à l'entrée du compresseur (11), de manière à pouvoir surchauffer, au moyen du gaz chaud pouvant être retourné par le conduit (31) de dérivation, du fluide de travail allant de l'échangeur de chaleur (13) interne au compresseur (11).
  2. Pompe (10) à chaleur suivant la revendication 1, dans laquelle le dispositif (21, 30, 40') de régulation est conformé pour porter la température du fluide de travail à la sortie du compresseur (11) à une distance minimum pouvant être donnée à l'avance d'au moins 1 kelvin au dessus du point de rosée.
  3. Pompe (10) à chaleur suivant l'une des revendications précédentes, comprenant un fluide de travail, qui, dans le diagramme température-entropie a une pente de la ligne (TL) de rosée inférieure à 1000 (kgK2)/Kj.
  4. Utilisation d'un fluide de travail dans une pompe (10) à chaleur suivant l'une des revendications précédentes, le fluide de travail ayant, dans le diagramme température-entropie, une pente de la ligne (TL) de rosée inférieure à 1000 (kgK2)/Kj.
  5. Procédé pour faire fonctionner une pompe (10) à chaleur, comprenant les stades :
    mise à disposition d'un condenseur (12), d'un échangeur de chaleur (13) interne, d'un détendeur (14), d'un évaporateur (15) et d'un dispositif (21, 30) de régulation, dans lequel on véhicule du fluide de travail de l'évaporateur (15) au compresseur (11), en passant par un côté primaire de l'échangeur de chaleur (13) interne, dans lequel on véhicule du fluide de travail du détendeur (14) au condenseur (12), en passant par un côté secondaire de l'échangeur de chaleur (13) interne,
    dans lequel on porte la température d'un fluide de travail après la compression à une distance minimum pouvant être donnée l'avance, notamment de 1 kelvin, au-dessus du point de rosée;
    dans lequel on élève la température du fluide de travail à l'entrée du compresseur (11) et
    on surchauffe au moyen d'un conduit de dérivation ayant un robinet (31), qui met la partie (2) de haute pression à la sortie d'un compresseur (11) en communication avec une partie (1) de basse pression à l'entrée du compresseur (11).
EP14727748.7A 2013-05-31 2014-05-16 Pompe à chaleur pour utilisation des réfrigérants écologiques Active EP3004754B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL14727748T PL3004754T3 (pl) 2013-05-31 2014-05-16 Pompa ciepła do stosowania z przyjaznymi dla środowiska czynnikami chłodniczymi

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013210175.9A DE102013210175A1 (de) 2013-05-31 2013-05-31 Wärmepumpe zur Verwendung von umweltverträglichen Kältemitteln
PCT/EP2014/060081 WO2014191237A1 (fr) 2013-05-31 2014-05-16 Pompe à chaleur pour l'utilisation de fluides frigorigènes compatibles avec l'environnement

Publications (2)

Publication Number Publication Date
EP3004754A1 EP3004754A1 (fr) 2016-04-13
EP3004754B1 true EP3004754B1 (fr) 2018-10-24

Family

ID=50884354

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14727748.7A Active EP3004754B1 (fr) 2013-05-31 2014-05-16 Pompe à chaleur pour utilisation des réfrigérants écologiques

Country Status (10)

Country Link
US (1) US11473819B2 (fr)
EP (1) EP3004754B1 (fr)
JP (1) JP6328230B2 (fr)
KR (1) KR101907978B1 (fr)
CN (1) CN105358920B (fr)
CA (1) CA2913947C (fr)
DE (1) DE102013210175A1 (fr)
DK (1) DK3004754T3 (fr)
PL (1) PL3004754T3 (fr)
WO (1) WO2014191237A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013210175A1 (de) 2013-05-31 2014-12-18 Siemens Aktiengesellschaft Wärmepumpe zur Verwendung von umweltverträglichen Kältemitteln
AT514476A1 (de) * 2013-06-17 2015-01-15 Lenzing Akiengesellschaft Polysaccharidfaser und Verfahren zu ihrer Herstellung
DE102014200820A1 (de) 2014-01-17 2015-07-23 Siemens Aktiengesellschaft Verfahren zur Herstellung eines wenigstens eine Wärmeübertragungsfläche aufweisenden Wärmetauschers
US10662583B2 (en) * 2014-07-29 2020-05-26 Siemens Aktiengesellschaft Industrial plant, paper mill, control device, apparatus and method for drying drying-stock
EP3239626A1 (fr) 2016-04-27 2017-11-01 PLUM spólka z ograniczona odpowiedzialnoscia Procédé de commande de fonctionnement de pompe à chaleur
DE102017204222A1 (de) * 2017-03-14 2018-09-20 Siemens Aktiengesellschaft Wärmepumpe und Verfahren zum Betreiben einer Wärmepumpe
DE102017205484A1 (de) * 2017-03-31 2018-10-04 Siemens Aktiengesellschaft Wärmepumpe und Verfahren zum Betreiben einer Wärmepumpe
DE102017216361A1 (de) * 2017-09-14 2019-03-14 Weiss Umwelttechnik Gmbh Verfahren zur Konditionierung von Luft
DE102018125411A1 (de) * 2018-10-15 2020-04-16 Vaillant Gmbh COP-optimale Leistungsregelung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160832A1 (fr) * 2011-05-26 2012-11-29 パナソニック株式会社 Dispositif à cycle de réfrigération

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2320501A1 (fr) * 1975-08-05 1977-03-04 Commissariat Energie Atomique Dispositif pour le chauffage de batiments
DE2737059C3 (de) * 1977-08-17 1981-02-19 Georg Prof. Dr. 8000 Muenchen Alefeld Kreisprozeß mit einem Mehrstoffarbeitsmittel
JPS57175858A (en) * 1981-04-23 1982-10-28 Mitsubishi Electric Corp Air conditionor
JPS58158460A (ja) * 1982-03-17 1983-09-20 株式会社荏原製作所 スクリユ−冷凍機
DE3442169A1 (de) * 1984-11-17 1986-05-28 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart Verfahren zum regeln eines kaeltekreisprozesses fuer eine waermepumpe oder eine kaeltemaschine und eine waermepumpe oder kaeltemaschine hierzu
US5241829A (en) * 1989-11-02 1993-09-07 Osaka Prefecture Government Method of operating heat pump
JPH08335847A (ja) * 1995-06-08 1996-12-17 Murata Mfg Co Ltd 厚みすべり振動型2重モードフィルタ
JPH10205894A (ja) * 1997-01-16 1998-08-04 Mitsubishi Electric Corp 冷凍装置
JP2000234811A (ja) * 1999-02-17 2000-08-29 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
ATE380987T1 (de) * 1999-10-18 2007-12-15 Daikin Ind Ltd Kältevorrichtung
JP3758074B2 (ja) * 1999-12-08 2006-03-22 富士電機リテイルシステムズ株式会社 電子機器の冷却装置
CN1144989C (zh) * 2000-11-03 2004-04-07 Lg电子株式会社 热泵制冷循环的冷却剂分配器
FR2820052B1 (fr) * 2001-01-30 2003-11-28 Armines Ass Pour La Rech Et Le Procede d'extraction du dioxyde de carbone par anti-sublimation en vue de son stockage
JP2002350004A (ja) * 2001-05-23 2002-12-04 Daikin Ind Ltd 空気調和機の冷媒回路
US7076964B2 (en) * 2001-10-03 2006-07-18 Denso Corporation Super-critical refrigerant cycle system and water heater using the same
JP2004184022A (ja) * 2002-12-05 2004-07-02 Sanyo Electric Co Ltd 冷媒サイクル装置
US7228693B2 (en) * 2004-01-12 2007-06-12 American Standard International Inc. Controlling airflow in an air conditioning system for control of system discharge temperature and humidity
US7100380B2 (en) * 2004-02-03 2006-09-05 United Technologies Corporation Organic rankine cycle fluid
US20060005571A1 (en) * 2004-07-07 2006-01-12 Alexander Lifson Refrigerant system with reheat function provided by auxiliary heat exchanger
JP2006077998A (ja) * 2004-09-07 2006-03-23 Matsushita Electric Ind Co Ltd 冷凍サイクル装置および制御方法
US7272948B2 (en) * 2004-09-16 2007-09-25 Carrier Corporation Heat pump with reheat and economizer functions
US20100192607A1 (en) * 2004-10-14 2010-08-05 Mitsubishi Electric Corporation Air conditioner/heat pump with injection circuit and automatic control thereof
US7726151B2 (en) * 2005-04-05 2010-06-01 Tecumseh Products Company Variable cooling load refrigeration cycle
DE102007011024A1 (de) 2007-03-07 2008-09-18 Daimler Ag Klimaanlage für Kraftfahrzeuge
JP4948374B2 (ja) * 2007-11-30 2012-06-06 三菱電機株式会社 冷凍サイクル装置
JP2009222348A (ja) * 2008-03-18 2009-10-01 Daikin Ind Ltd 冷凍装置
KR100929192B1 (ko) * 2008-03-18 2009-12-02 엘지전자 주식회사 공기 조화기
JP2009281631A (ja) * 2008-05-21 2009-12-03 Panasonic Corp ヒートポンプユニット
EP2149767A1 (fr) * 2008-07-28 2010-02-03 IMAT S.p.A. Dispositif de pompe à chaleur
US8535559B2 (en) * 2010-03-26 2013-09-17 3M Innovative Properties Company Nitrogen-containing fluoroketones for high temperature heat transfer
JP5845590B2 (ja) 2011-02-14 2016-01-20 富士電機株式会社 ヒートポンプ式蒸気生成装置
JP2012202672A (ja) * 2011-03-28 2012-10-22 Mitsubishi Heavy Ind Ltd 膨張弁制御装置、熱源機、及び膨張弁制御方法
US9316424B2 (en) * 2011-04-19 2016-04-19 Liebert Corporation Multi-stage cooling system with tandem compressors and optimized control of sensible cooling and dehumidification
JP5824628B2 (ja) * 2011-06-29 2015-11-25 パナソニックIpマネジメント株式会社 冷凍サイクル装置およびそれを備えた温水生成装置
JP5240332B2 (ja) * 2011-09-01 2013-07-17 ダイキン工業株式会社 冷凍装置
DE102013203243A1 (de) 2013-02-27 2014-08-28 Siemens Aktiengesellschaft Wärmepumpe und Verfahren zum Betreiben einer Wärmepumpe
DE102013210175A1 (de) 2013-05-31 2014-12-18 Siemens Aktiengesellschaft Wärmepumpe zur Verwendung von umweltverträglichen Kältemitteln

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160832A1 (fr) * 2011-05-26 2012-11-29 パナソニック株式会社 Dispositif à cycle de réfrigération

Also Published As

Publication number Publication date
DE102013210175A1 (de) 2014-12-18
DK3004754T3 (en) 2019-01-28
US20160102902A1 (en) 2016-04-14
EP3004754A1 (fr) 2016-04-13
WO2014191237A1 (fr) 2014-12-04
KR101907978B1 (ko) 2018-10-15
JP6328230B2 (ja) 2018-05-23
CN105358920A (zh) 2016-02-24
CN105358920B (zh) 2018-05-04
US11473819B2 (en) 2022-10-18
JP2016520187A (ja) 2016-07-11
CA2913947C (fr) 2018-03-13
CA2913947A1 (fr) 2014-12-04
KR20160014033A (ko) 2016-02-05
PL3004754T3 (pl) 2019-06-28

Similar Documents

Publication Publication Date Title
EP3004754B1 (fr) Pompe à chaleur pour utilisation des réfrigérants écologiques
DE102008046620B4 (de) Hochtemperaturwärmepumpe und Verfahren zu deren Regelung
DE2545606C2 (de) Verfahren zum Betrieb eines Kühlsystems sowie Kühlsystem zur Durchführung des Verfahrens
EP3097370B1 (fr) Pompe à chaleur comprenant un réservoir de stockage
WO2014072276A1 (fr) Système de pompe à vide pour faire le vide dans une chambre ainsi que procédé de commande d'un système de pompe à vide
DE102011086476A1 (de) Hochtemperaturwärmepumpe und Verfahren zur Verwendung eines Arbeitsmediums in einer Hochtemperaturwärmepumpe
EP3730873A2 (fr) Procédé de fonctionnement d'une pompe à chaleur dotée d'un système de compression de vapeur
WO2017037026A1 (fr) Dispositif accumulateur et procédé d'accumulation provisoire d'énergie électrique sous forme d'énergie thermique
DE102013113221B4 (de) Innerer Wärmetauscher mit variablem Wärmeübergang
EP1965154B1 (fr) Dispositif de pompes à chaleur
DE10258524A1 (de) Kältemittelkreislauf für eine Kfz-Klimaanlage
DE19829335C2 (de) Kälteanlage
DE102013203240A1 (de) Kältemaschine und Verfahren zum Betreiben einer Kältemaschine
DE112017005948T5 (de) Klimatisierungsvorrichtung
DE102017208225A1 (de) Verfahren zur Regelung eines Kältemittelparameters auf der Hochdruckseite eines einen Kältemittelkreislauf durchströmenden Kältemittels, Kälteanlage für ein Fahrzeug sowie beheizbarer Niederdruck-Sammler für die Kälteanlage
WO2014131591A1 (fr) Pompe à chaleur et procédé de fonctionnement d'une pompe à chaleur
DE10338388B3 (de) Verfahren zur Regelung einer Klimaanlage
EP3922930B1 (fr) Procédé de fonctionnement d'une installation de réfrigération à compression et installation de réfrigération à compression associée
EP3922931B1 (fr) Installation de réfrigération à compression et procédé de fonctionnement de celle-ci
EP3488152B1 (fr) Chauffage par pompe à chaleur et procédé permettant de faire fonctionner un chauffage par pompe à chaleur de ce type
EP4317841A1 (fr) Chambre d'essai et procédé de commande
AT513855B1 (de) Verfahren zum Steuern einer Klimaanlage
EP3922924B1 (fr) Procédé de fonctionnement d'une installation de réfrigération à compression et installation de réfrigération à compression
DE112021007291T5 (de) Wärmequellenmaschine einer Kühlvorrichtung und Kühlvorrichtung einschließlich derselben
EP3922933A1 (fr) Procédé de régulation d'une installation de réfrigération à compression et installation de réfrigération à compression

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180312

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 40/00 20060101ALI20180605BHEP

Ipc: F25B 41/04 20060101ALI20180605BHEP

Ipc: F25B 49/02 20060101ALI20180605BHEP

Ipc: F25B 30/02 20060101AFI20180605BHEP

INTG Intention to grant announced

Effective date: 20180625

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1057166

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014009866

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190123

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190224

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190124

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190124

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190125

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014009866

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014009866

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220908 AND 20220914

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 1057166

Country of ref document: AT

Kind code of ref document: T

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Effective date: 20221018

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20221220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230525

Year of fee payment: 10

Ref country code: DK

Payment date: 20230524

Year of fee payment: 10

Ref country code: DE

Payment date: 20220617

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230524

Year of fee payment: 10

Ref country code: PL

Payment date: 20230419

Year of fee payment: 10

Ref country code: AT

Payment date: 20230519

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230523

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20231228

Year of fee payment: 11