WO2014196509A1 - レジスト下層膜形成用組成物 - Google Patents

レジスト下層膜形成用組成物 Download PDF

Info

Publication number
WO2014196509A1
WO2014196509A1 PCT/JP2014/064675 JP2014064675W WO2014196509A1 WO 2014196509 A1 WO2014196509 A1 WO 2014196509A1 JP 2014064675 W JP2014064675 W JP 2014064675W WO 2014196509 A1 WO2014196509 A1 WO 2014196509A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
parts
composition
dendrimer compound
group
Prior art date
Application number
PCT/JP2014/064675
Other languages
English (en)
French (fr)
Inventor
茂正 中杉
貴史 絹田
晋 李
浩志 柳田
理人 鈴木
泰明 井手
暁偉 王
Original Assignee
アーゼット・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アーゼット・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ filed Critical アーゼット・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ
Priority to KR1020157037251A priority Critical patent/KR102161960B1/ko
Priority to JP2015521442A priority patent/JP6495167B2/ja
Publication of WO2014196509A1 publication Critical patent/WO2014196509A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • C08G83/003Dendrimers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • C08G65/3322Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • C08G65/3324Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof cyclic
    • C08G65/3326Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof cyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/337Polymers modified by chemical after-treatment with organic compounds containing other elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/005Dendritic macromolecules
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement

Definitions

  • the present invention is a composition for forming a resist underlayer film for electron beam or EUV lithography, which is used in a device manufacturing process using EUV lithography and reduces the adverse effects exerted by electron beam or EUV, and is effective for obtaining a good resist pattern.
  • the present invention also relates to a resist pattern forming method using the composition for forming a resist underlayer film for lithography.
  • This microfabrication means forming a photoresist thin film on a semiconductor substrate such as a silicon wafer, irradiating it with an actinic ray such as ultraviolet rays through a mask pattern on which a device pattern is drawn, and developing it.
  • This is a processing method in which fine irregularities corresponding to the pattern are formed on the substrate surface by etching the substrate using the photoresist pattern thus formed as a protective film.
  • a method of providing a bottom anti-reflective coating between the photoresist and the substrate has been widely studied.
  • Such a lower antireflection film is required to have various characteristics. Specifically, it has a large absorbance with respect to the radiation used for the exposure of the photoresist, less diffuse reflection, etc., and the cross section of the photoresist after exposure and development is perpendicular to the substrate surface. It is preferable to have properties such as being hardly soluble in the solvent contained in the composition (intermixing is unlikely to occur). In particular, intermixing tends to affect the interface between the photoresist layer and the lower antireflection film, which may make it difficult to control the shape of the photoresist.
  • lower antireflection films are often formed using a thermally crosslinkable composition in order to prevent intermixing with the photoresist applied thereon.
  • the formed lower antireflection film is often insoluble in a developer used in a general photoresist developing process. Therefore, it is generally necessary to remove the lower antireflection film prior to processing the semiconductor substrate by dry etching (see, for example, Patent Document 1).
  • the resist pattern becomes a skirt shape or undercut shape due to the adverse effect exerted by the base substrate, electron beam, or EUV, and a favorable rectangular resist pattern is formed.
  • pattern shape is poor, pattern sidewall roughness (line edge roughness) is increased, CD uniformity is degraded, adhesion between resist pattern and substrate is not sufficient, pattern collapse is caused, and focus depth margin is small Problems such as low sensitivity and low etching rate may occur. Therefore, in the electron beam or EUV lithography process, instead of the conventional resist underlayer film (antireflection film) having antireflection ability, these adverse effects are reduced and an electron that makes it possible to form a good resist pattern. A resist underlayer film for line or EUV lithography is required.
  • the resist underlayer film for conventional electron beam or EUV lithography mainly uses a polymer having a molecular weight distribution, the density variation in the underlayer film is large. Conceivable. Therefore, it cannot be said that the adverse effects exerted by the base substrate, electron beam, and EUV are sufficiently improved.
  • the present invention has been made in view of the above circumstances, and compounds that can improve the critical dimension uniformity, the depth of focus margin, the sensitivity, and the etching rate when used in a lower antireflection film, and those
  • An object of the present invention is to provide a composition capable of forming a lower antireflection film with improved properties.
  • the dendrimer compound according to the present invention has the following formula (1): C (-Z) m (-LA 1 ) 4-m (1)
  • m is 0, 1, or 2; Z is a hydrocarbon group or a carboxyl group, and when m is 2, each Z may be the same or different, L is a hydrocarbon chain containing an ether bond or a thioether bond, and each L may be the same or different;
  • a 1 is, ⁇ In formula (1a), R 1 is hydrogen or a methyl group;
  • Y 1 is oxygen or sulfur;
  • B is (In the formula (1b), Y 2 is oxygen or sulfur;
  • Ar is an aromatic group substituted with a halogenated alkyl group)
  • Each B may be the same or different, and two or more of all B in formula (1) are OH, p is an integer of 1 or more, and each p may be the same or different ⁇
  • At least two or more of A 1 include a group represented by the formula (1a)] It is characterized by being represented
  • the underlayer film forming composition according to the present invention comprises the dendrimer compound, a crosslinking agent, a thermal acid generator, and a solvent.
  • the underlayer film according to the present invention is characterized in that it is formed by applying the underlayer film forming composition onto a substrate and heating.
  • the pattern forming method according to the present invention includes: Applying the composition for forming a lower layer film on a semiconductor substrate and firing to form a lower layer film; Forming a photoresist layer on the lower layer film; It comprises a step of exposing the semiconductor substrate covered with the lower layer film and the photoresist layer, and a step of developing with a developer after the exposure.
  • a novel dendrimer compound capable of realizing excellent characteristics when used in a composition for forming an underlayer film.
  • the composition for forming an underlayer film according to an embodiment of the present invention hardly causes intermixing between the underlayer film and the photoresist composition layer during pattern formation, and the cross section of the formed resist pattern is perpendicular to the substrate surface.
  • the dendrimer compound according to the present invention has the following formula (1): C (-Z) m (-LA 1 ) 4-m (1)
  • m is 0, 1, or 2; Z is a hydrocarbon group or a carboxyl group, and when m is 2, each Z may be the same or different, L is a hydrocarbon chain containing an ether bond or a thioether bond, and each L may be the same or different and
  • a 1 is ⁇ In formula (1a), R 1 is hydrogen or a methyl group; Y 1 is oxygen or sulfur; B is (In the formula (1b), Y 2 is oxygen or sulfur; Ar is an aromatic group substituted with a halogenated alkyl group)
  • Each B may be the same or different, and two or more of all B in formula (1) are OH; p is an integer of 1 or more, and each p may be the same or different ⁇ And At least two or more of A 1 include a group represented by the formula (1a)] It is represented by.
  • -LA 1 and -Z are bonded to the central carbon, but at least two -LA 1 are required.
  • m can be 0, 1, or 2, but when m is 2, the two Zs may be the same or different.
  • m is 0, and it is preferable that four —LA— 1 bonds to the central carbon.
  • Z is either a hydrocarbon or a carboxyl group, and if it is a hydrocarbon, it preferably has 1 to 6 carbon atoms in order to keep the shape of the resist pattern formed, methyl group or carboxyl More preferably, it is a group.
  • L is a hydrocarbon chain containing an ether bond (—O—) or a thioether bond (—S—).
  • the methylene group —CH 2 — is a hydrocarbon group substituted by an ether bond or a thioether bond.
  • the ether bond and thioether bond contained in L may be arranged randomly or regularly in the hydrocarbon chain. Also, ether bonds tend to improve the aging stability of the composition compared to thioether bonds. For this reason, it is preferable that many ether bonds are included with respect to the thioether bond contained in L, and it is more preferable that L does not contain a thioether bond but contains only an ether bond.
  • L is typically an alkylene oxide chain.
  • an ethylene oxide chain or a propylene oxide chain is preferably used from the viewpoint of ease of production.
  • the number of carbons contained in one L is not particularly limited, for example, one having 2 to 6 carbons is used.
  • A is a terminal group B described later, or the following formula (1a): (In Formula (1a), Y 1 is oxygen or sulfur, and R 1 is hydrogen or a methyl group.) And a group having B bonded to the terminal.
  • the group represented by the formula (1a) includes a repeating unit, and A can form a branched chain structure because it is branched on the terminal side. Therefore, the compound of the formula (1) has a dendrimer structure.
  • the terminal group B may be directly bonded to the linking group L.
  • the compound represented by the formula (1) in order to produce an excellent effect when the compound represented by the formula (1) is used in the composition for forming an underlayer film in the present invention, it has a group represented by the formula (1a) and has a branched chain shape. It is necessary to have a structure. For this reason, it is preferable that at least two of the four Ls in the formula (1) include the repeating unit included in the formula (1a), that is, p is 1 or more. At this time, p is preferably 2 or more in order to make the film forming property of the composition sufficient. On the other hand, if the number of repetitions p is excessively large, the critical dimension uniformity and the depth of focus margin tend to deteriorate. Therefore, p is preferably 10 or less, and more preferably 5 or less.
  • Formula (1) includes a plurality of p, but each p may be the same or different.
  • Y 1 is either an oxygen or sulfur, each of Y 1 contained in the formula (1) may or may not be the same. However, oxygen is preferable from the viewpoint of easy availability of raw materials and safety, and it is preferable that all of Y 1 included in the formula (1) are oxygen. It R 1 is either hydrogen or a methyl group, each of R 1 included in the formula (1) may be different even in the same, but all of R 1 is a methyl group Is preferred.
  • the terminal group B is a hydroxy group OH or a thiol group SH, or the following formula (1b): (In formula (1b), Y 2 is oxygen or sulfur, and Ar is an aromatic group substituted with a halogenated alkyl group.) It is group shown by these.
  • Ar contains an aromatic skeleton containing one or more benzene rings.
  • the aromatic skeleton include benzene, naphthalene, anthracene, biphenyl, and benzimidazole.
  • these aromatic skeletons are substituted with a halogenated alkyl group.
  • the halogen constituting the halogenated alkyl group fluorine, chlorine, bromine and iodine are preferable, and fluorine is particularly preferable from the viewpoint of the temporal stability of the composition.
  • the number of carbon atoms contained in the halogenated alkyl group is not particularly limited, but is preferably 3 or less.
  • Ar may have a substituent other than the halogenated alkyl group.
  • substituents include alkyl groups, hydroxyalkyl groups, aryl groups, halogen atoms, alkoxy groups, nitro groups, aldehyde groups, cyano groups, amino groups, alkylamino groups, dialkylamino groups, sulfonamido groups, Examples include a substituent selected from the group consisting of a carboxy group, a carboxylic acid ester group, a sulfo group, a sulfonic acid ester group, and an arylamino group.
  • one of the benzene rings contained in the aromatic may be substituted with a quinone ring, or a non-aromatic ring may be condensed.
  • the dendrimer compound according to the present invention generally has a function of reacting with a cross-linking agent and the like to cure the composition in the same manner as a polymer used in a composition for forming an underlayer film.
  • the dendrimer compound according to the present invention contains at least two hydroxyl groups or thiol groups as reactive groups. That is, in formula (1), at least two of all B are OH or SH, preferably two or more are OH.
  • the ratio of B contained in Formula (1) is OH or SH because the number of bonds due to the crosslinking reaction increases.
  • the proportion of OH is preferably large, and it is more preferable that SH is not included.
  • dendrimer compound represented by the general formula (1) examples include the following. (In the formula, 50% of all B are hydrogen and 50% are 4- (trifluoromethyl) benzoyl groups)
  • the compound represented by the general formula (1) can be produced by any method.
  • a 2 is ⁇ Where, R 1 is hydrogen or a methyl group; Y 1 is oxygen or sulfur; Each Z is independently oxygen or sulfur
  • Specific examples of the general formula (2) include 4- (trifluoromethyl) benzoyl chloride, 4- (trichloromethyl) benzoyl chloride, 4- (tribromomethyl) benzoyl chloride, 4- (triiodomethyl) benzoyl chloride. 4- (trifluoromethyl) -1-naphthoyl chloride, 4- (trifluoromethyl) anthracene-9-carbonyl chloride, and the like.
  • Specific examples of the general formula (3) include Hyperbranched bis-MPA polyester-16-hydroxyl generation 2 (trade name, manufactured by Sigma Aldrich), Hyperbranched bis-MPApoly, commercially available from Sigma Aldrich Japan LLC. 32-hydroxy generation 3 (trade name, manufactured by Sigma-Aldrich), Polyester-16-hydroxyl-acetylene bis-MPA dendron generation 4 (trade name, manufactured by Sigma-Aldrich), Polyester-32-hydridelineMP 5 (quotient Name, manufactured by Sigma-Aldrich), Polyester-16-hydroxyl-carboxyl bis-MPA dendron generation 4 (product name, manufactured by Sigma-Aldrich Co., Ltd.).
  • the total amount of the compound represented by the general formula (2) is usually 3 to 27 equivalents, preferably 6 to 12 equivalents, relative to the number of moles of the general formula (3).
  • Examples of basic compounds include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide; alkali metal oxides such as sodium oxide and potassium oxide; beryllium hydroxide, hydroxide Alkaline earth metal hydroxides such as magnesium, calcium hydroxide, barium hydroxide or strontium hydroxide; alkaline earth metal oxides such as beryllium oxide, magnesium oxide, calcium oxide, strontium oxide or barium oxide; methyllithium, ethyl Organic alkali metals such as lithium, n-butyllithium, s-butyllithium, t-butyllithium, phenyllithium, lithium diisopropylamide or lithium hexamethyldisilazide; dimethylmagnesium, diethyl Organic alkaline earth metal compounds such as gnesium, methylmagnesium chloride, methylmagnesium bromide, ethylmagnesium bro
  • the reaction temperature at the time of reacting each of the above components is preferably a certain level or more in order to obtain a sufficient reaction rate, and is preferably the following in order to suppress the formation of undesirable by-products. From such a viewpoint, the reaction temperature is usually ⁇ 50 to 150 ° C., preferably 20 to 100 ° C.
  • the reaction of each component may be performed in the presence of a solvent or without a solvent, but it is preferably performed in the presence of a solvent from the viewpoint of improving reaction yield and ease of subsequent purification.
  • any solvent can be used as long as it does not adversely affect the reaction.
  • diethyl ether, tert-butyl methyl ether, tetrahydrofuran and 1,4-dioxane are preferable, and tetrahydrofuran is particularly preferable.
  • the amount used thereof is usually 0.5 to 20 times, preferably 1 to 10 times in terms of volume ratio with respect to the compound of the general formula (3) from the viewpoint of reaction rate and reaction yield. More preferably, it is 1.5 to 5 times.
  • the target product can be separated and purified from the reaction solution by a method usually used in organic synthesis. For example, water can be added to remove the basic compound, and the mixture can be stirred well. After drying the separated organic layer with a drying agent such as anhydrous magnesium sulfate, the desired product can be obtained by distillation under reduced pressure. . Further, the reaction product can be purified by column chromatography as necessary.
  • composition for lower layer film formation comprises a crosslinking agent, a thermal acid generator and a solvent in addition to the dendrimer compound.
  • the composition contains other additives such as a photoacid generator and a surfactant as required.
  • Crosslinking agent The composition for lower layer film formation by this invention contains a crosslinking agent.
  • a cross-linking agent is used to prevent the lower layer film to be formed from being mixed by an upper layer film such as a resist.
  • the crosslinking agent any compound can be used as long as it is a compound that acts on the terminal hydroxy group of the dendrimer compound to form a crosslinked structure when exposed.
  • crosslinking agent examples include hexamethylmelamine, hexamethoxymethylmelamine, 1,2-dihydroxy-N, N′-methoxymethylsuccinimide, 1,2-dimethoxy-N, N′-methoxymethylsuccinimide, 1 , 3,4,6-tetrakis (methoxymethyl) glycoluril, teramethoxymethylglycoluril, N, N′-methoxymethylurea.
  • Thermal acid generator The composition for lower layer film formation by this invention contains a thermal acid generator. It is an auxiliary agent that promotes crosslinking of the lower layer film to be formed.
  • Specific examples of the thermal acid generator used in the composition for forming an underlayer film of the present invention include various aliphatic sulfonic acids and salts thereof, various aliphatic carboxylic acids such as citric acid, acetic acid and maleic acid and salts thereof, Various aromatic carboxylic acids such as benzoic acid and phthalic acid and their salts, aromatic sulfonic acids and their ammonium salts, various amine salts, aromatic diazonium salts, phosphonic acids and their salts, salts and esters that generate organic acids, etc. Can be mentioned.
  • thermal acid generators used in the present invention a salt composed of an organic acid and an organic base is preferable, and a salt composed of a sulfonic acid and an organic base is more preferable.
  • Preferred thermal acid generators containing sulfonic acid include p-toluenesulfonic acid, benzenesulfonic acid, p-dodecylbenzenesulfonic acid, 1,4-naphthalenedisulfonic acid, methanesulfonic acid, and the like. These acid generators can be used alone or in combination.
  • solvent used in the composition for forming an underlayer film of the present invention, any solvent can be selected and used as long as it can dissolve each of the above components.
  • the solvent include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene Glycolpropyl ether acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxy acetate, ethyl hydroxyacetate, 2-hydroxy-3-methylbutane Methyl acetate
  • Photoacid generator The composition for forming an antireflection film according to the present invention contains a photoacid generator, if necessary. Often used to remove resist scum or footing, which is the upper layer film.
  • Such a photoacid generator can be arbitrarily selected from those conventionally known.
  • Specific examples of the photoacid generator include onium salt compounds, crosslinkable onium salt compounds, sulfomaleimide derivatives, and disulfonyldiazomethane compounds.
  • the onium salt compound include, for example, diphenyliodonium hexafluorophosphate, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-normal butanesulfonate, diphenyliodonium perfluoro-normaloctanesulfonate, diphenyliodonium camphorsulfonate, bis (4- iodonium salt compounds such as tert-butylphenyl) iodonium camphorsulfonate and bis (4-tert-butylphenyl) iodonium trifluoromethanesulfonate, and triphenylsulfonium hexafluoroantimonate, triphenylsulfonium nonafluoro-normal butanesulfonate, triphenylsulfonium Camphorsulfo And sulfonium salt compounds such as triphenyl
  • sulfomaleimide derivatives include, for example, N- (trifluoromethanesulfonyloxy) succinimide, N- (nonafluoro-normalbutanesulfonyloxy) succinimide, N- (camphorsulfonyloxy) succinimide and N- (trifluoromethanesulfonyloxy). And naphthalimide.
  • disulfonyldiazomethane compound examples include, for example, bis (trifluoromethylsulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (phenylsulfonyl) diazomethane, bis (p-toluenesulfonyl) diazomethane, bis (2,4- Dimethylbenzenesulfonyl) diazomethane, and methylsulfonyl-p-toluenesulfonyldiazomethane.
  • these photoacid generators can be used in combination of two or more.
  • composition for forming a lower antireflection film according to the present invention can contain other components as necessary.
  • a surfactant, a smoothing agent and the like can be mentioned. These components should be used without impairing the effects of the present invention.
  • Example 1 Hyperbranched bis-MPA polyester-16-hydroxygenation 2 (trade name, manufactured by Sigma-Aldrich) (500 parts) , Triethylamine (231 parts) and dehydrated tetrahydrofuran (2000 parts) were added and stirred. After the reaction mixture was heated to reflux, 4- (trifluoromethyl) benzoyl chloride (477 parts) was added slowly. After completion of the addition, heating under reflux was maintained for 2 hours.
  • MTBE methyl-tert-butyl ether
  • pure water 30000 parts
  • saturated sodium bicarbonate water 30000 parts
  • magnesium sulfate 200 parts was added to the MTBE solution and stirred.
  • the target dendrimer compound was obtained with a yield of 74% by filtering and concentrating the MTBE solution by distillation under reduced pressure.
  • the modification rate with 4- (trifluoromethyl) benzoyl chloride was 49.9%.
  • Example 2 Hyperbranched bis-MPA polyester-16-hydroxygenation 2 (trade name, manufactured by Sigma-Aldrich) (500 parts) , Triethylamine (231 parts) and dehydrated tetrahydrofuran (2000 parts) were added and stirred. After the reaction mixture was heated to reflux, 4- (trichloromethyl) benzoyl chloride (590 parts) was added slowly. After completion of the addition, heating under reflux was maintained for 2 hours.
  • Example 3 Hyperbranched bis-MPA polyester-16-hydroxygenation 2 (trade name, manufactured by Sigma-Aldrich) (500 parts) , Triethylamine (231 parts) and dehydrated tetrahydrofuran (2000 parts) were added and stirred. After the reaction mixture was heated to reflux, 4- (tribromomethyl) benzoyl chloride (894 parts) was added slowly. After completion of the addition, heating under reflux was maintained for 2 hours.
  • Example 4 Hyperbranched bis-MPA polyester-16-hydroxygenation 2 (trade name, manufactured by Sigma-Aldrich) (500 parts) , Triethylamine (231 parts) and dehydrated tetrahydrofuran (2000 parts) were added and stirred. After the reaction mixture was heated to reflux, 4- (triiodomethyl) benzoyl chloride (1217 parts) was added slowly. After completion of the addition, heating under reflux was maintained for 2 hours.
  • Example 5 Hyperbranched bis-MPA polyester-16-hydroxygenation 2 (trade name, manufactured by Sigma-Aldrich) (500 parts) , Triethylamine (231 parts) and dehydrated tetrahydrofuran (2000 parts) were added and stirred. After the reaction mixture was heated to reflux, 4- (trifluoromethyl) -1-naphthoyl chloride (591 parts) was added slowly. After completion of the addition, heating under reflux was maintained for 2 hours.
  • Example 6 Hyperbranched bis-MPA polyester-16-hydroxygenation 2 (trade name, manufactured by Sigma-Aldrich) (500 parts) , Triethylamine (231 parts) and dehydrated tetrahydrofuran (2000 parts) were added and stirred. After the reaction mixture was heated to reflux, 4- (trifluoromethyl) anthracene-9-carbonyl chloride (706 parts) was added slowly. After completion of the addition, heating under reflux was maintained for 2 hours.
  • Example 7 Hyperbranched bis-MPA polymer-32-hydroxygenation 3 (trade name, manufactured by Sigma-Aldrich) (1031 parts) , Triethylamine (231 parts) and dehydrated tetrahydrofuran (2000 parts) were added and stirred. After the reaction mixture was heated to reflux, 4- (trifluoromethyl) benzoyl chloride (477 parts) was added slowly. After completion of the addition, heating under reflux was maintained for 2 hours.
  • Example 8 Hyperbranched bis-MPA polyester-16-hydroxygenation 2 (trade name, manufactured by Sigma-Aldrich) (500 parts) , Triethylamine (231 parts) and dehydrated tetrahydrofuran (2000 parts) were added and stirred. After the reaction mixture was heated to reflux, 4- (trifluoromethyl) benzoyl chloride (119 parts) was added slowly. After completion of the addition, heating under reflux was maintained for 2 hours.
  • Example 9 Hyperbranched bis-MPA polyester-16-hydroxygenation 2 (trade name, manufactured by Sigma-Aldrich) (500 parts) , Triethylamine (231 parts) and dehydrated tetrahydrofuran (2000 parts) were added and stirred. After the reaction mixture was heated to reflux, 4- (trifluoromethyl) benzoyl chloride (834 parts) was added slowly. After completion of the addition, heating under reflux was maintained for 2 hours.
  • the reaction solution was poured into pure water (6000 parts), and the precipitate was filtered.
  • the precipitate was dissolved in 150 g of acetone and poured into pure water (3000 parts), and the precipitate was filtered.
  • the precipitate was vacuum dried at 50 ° C. to obtain a polymer with a yield of 39%.
  • the molecular weight was measured by GPC (THF)
  • the weight average molecular weight Mw 3046 Da
  • the number average molecular weight Mn 1263 Da
  • the polydispersity index PDI 2.41.
  • Fluorine-containing ether dendrimer of Example 1 (1.26 parts), 1,3,4,6-tetrakis (methoxymethyl) glycoluril (1.26 parts) as a cross-linking agent (MX-270, manufactured by Sanwa Chemical Co., Ltd.) (Trade name)), 10-camphor-sulfonic acid (0.0173 parts) as a thermal acid generator, triethylamine (0.008 parts) as a thermal acid generator, and triphenylsulfonium salt (hereinafter TPS) as a photoacid generator. (0.0252 parts) and propylene glycol monomethyl ether acetate (136.162 parts) as a solvent were mixed and stirred at room temperature for 30 minutes to prepare an underlayer film forming composition.
  • MX-270 1,3,4,6-tetrakis (methoxymethyl) glycoluril
  • TPS triphenylsulfonium salt
  • the prepared underlayer film forming composition was applied onto a silicon microchip wafer by spin coating, and heated on a vacuum hot plate at 200 ° C. for 60 seconds to cause a crosslinking reaction, thereby obtaining an underlayer film.
  • Application Examples 2-10 and Application Comparison Examples 1-2 Compositions of Application Examples 2 to 10 and Application Comparative Examples 1 and 2 were prepared in the same manner as Application Example 1 except that the components of the lower layer film composition were changed as shown in Table 1. The prepared composition was evaluated as follows.
  • the lower layer film was measured with a spectroscopic ellipsometer VUV-302 (trade name, manufactured by JA Woollam).
  • VUV-302 trade name, manufactured by JA Woollam
  • the attenuation coefficient (k value) at a wavelength of 193 nm was 0.3504, and the attenuation coefficient (k value) at 248 nm was 0.0204.
  • Solvent resistance evaluation The film thickness reduction test of the lower layer film was performed with ethyl lactate, propylene glycol monomethyl ether acetate and propylene glycol monomethyl ether. The evaluation criteria were as follows. A: The lower layer film is practically superior because it is insoluble in any of ethyl lactate, propylene glycol monomethyl ether acetate, and propylene glycol monomethyl ether. B: The lower layer film is ethyl lactate, propylene glycol monomethyl ether acetate, or propylene glycol monomethyl. Although some dissolution is observed in any of the ethers, there is no practical problem. Level C: The lower layer film is in any or all of ethyl lactate, propylene glycol monomethyl ether acetate, and propylene glycol monomethyl ether. Dissolved and impractical level
  • a resist underlayer film was formed by spin-coating the resist underlayer film forming composition solution prepared in Application Example 1 of the present invention on a silicon wafer and heating at 200 ° C. for 1 minute.
  • a resist soot solution manufactured by Sumitomo Chemical Co., Ltd., trade name: SEVR-162
  • SEVR-162 Sumitomo Chemical Co., Ltd., trade name: SEVR-162
  • an EUV exposure apparatus Alban MET
  • EB exposure test A resist underlayer film was formed by spin-coating the resist underlayer film forming composition solution prepared in Application Example 1 of the present invention on a silicon wafer and heating at 200 ° C. for 1 minute.
  • the resist underlayer film was spin-coated with an EB resist solution, heated, and exposed using an EB exposure apparatus. After the exposure, the film was heated after the exposure, cooled to room temperature on the cooling plate, developed and rinsed, and a resist pattern was formed on the silicon wafer. Similar to the EUV exposure test, sensitivity, depth of focus, and critical dimension uniformity (CDU) were evaluated.
  • CDU critical dimension uniformity
  • A Rectangular shape with the photoresist side face perpendicular to the substrate surface
  • B The photoresist side face is not perpendicular to the substrate surface and is slightly inclined but has no practical problem
  • Level C The photoresist side face is on the substrate surface For footing shape
  • Depth of focus (DOF) evaluation (unit: ⁇ m): Depth of focus (DOF) was defined as the focus fluctuation width when the pattern size resolved with the mask pattern of 30 nm one-to-one contact holes at the optimum exposure dose was within ⁇ 10% of the mask design dimension.
  • CDU critical dimension uniformity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Materials For Photolithography (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Polyethers (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

[課題]限界寸法均一性や焦点深度マージンを改善することのできるデンドリマー化合物、および下層反射防止膜を形成することができる組成物の提供。 [解決手段]エーテル結合またはチオエーテル結合とを有する骨格の末端に、ハロゲン化アルキル基置換された芳香族基および2以上のOH基を有するデンドリマー化合物、およびそれを含む下層反射防止膜形成用組成物。

Description

レジスト下層膜形成用組成物
 本発明は、EUVリソグラフィーを用いたデバイス作製工程に用いられ電子線又はEUVによって及ぼされる悪影響を低減し、良好なレジストパターンを得るのに有効な電子線又はEUVリソグラフィー用レジスト下層膜形成用組成物、並びに該リソグラフィー用レジスト下層膜形成用組成物を用いるレジストパターン形成方法に関するものである。
 半導体装置の製造過程において、フォトレジストを用いたリソグラフィーによる微細加工が一般的に行われている。この微細加工とは、シリコンウェハー等の半導体基板上にフォトレジストの薄膜を形成し、その上にデバイスのパターンが描かれたマスクパターンを介して紫外線等の活性光線を照射し、現像し、得られたフォトレジストパターンを保護膜として基板をエッチング処理することにより、基板表面に、前記パターンに対応する微細凹凸を形成する加工法である。このような技術分野においては、近年、デバイスの高集積度化が進み、KrFエキシマレーザー(波長248nm)、ArFエキシマレーザー(波長193nm)、極紫外線(EUV、波長13.5nm)、または電子線(EB)のような非常に波長の短い光が露光に使用される傾向にある。しかしながら、これらのフォトリソグラフィー工程では基板からの光の反射による定在波の影響や、基板の段差による露光光の乱反射の影響によりフォトレジストパターンの寸法精度が低下するという問題が生ずることがある。また、極紫外線のような非常に波長の短い光を露光に使用する場合には、下地となる基板から発生するガスがレジスト層に悪影響を及ぼすこともある。そこで、この問題を解決すべく、フォトレジストと基板の間に下層反射防止膜(bottom anti-reflective coating)を設ける方法が広く検討されている。このような下層反射防止膜には種々の特性が求められる。具体的には、フォトレジストの露光に用いられる放射線に対して、大きな吸光度を有すること、乱反射等が少なく、露光および現像後のフォトレジストの断面が基板表面に対して垂直になること、フォトレジスト組成物に含まれる溶媒に対して難溶性であること(インターミキシングが起こりにくいこと)などの特性を有することが好ましい。特にインターミキシングは、フォトレジスト層と下層反射防止膜との界面に影響を及ぼしやすく、それによってフォトレジストの形状が制御しにくくなることがある。
 これらの下層反射防止膜は、その上に塗布されるフォトレジストとのインターミキシングを防ぐため、熱架橋性組成物を使用して形成されることが多い。その結果、形成された下層反射防止膜は一般的なフォトレジスト現像工程に使用される現像液に不溶となることが多い。そのため、半導体基板加工に先立つ下層反射防止膜の除去は、ドライエッチングによって行なうことが必要となることが一般的である(例えば、特許文献1参照。)。
 近年では、ArFエキシマレーザー(193nm)を用いたフォトリソグラフィー技術の後を担う次世代のフォトリソグラフィー技術として、水を介して露光するArF液浸リソグラフィー技術が盛んに検討されている。しかし、光を用いるフォトリソグラフィー技術は限界を迎えつつあり、ArF液浸リソグラフィー技術以降の新しいリソグラフィー技術として、電子線やEUV(波長13.5nm)を用いるリソグラフィー技術が注目されている。
 電子線又はEUVリソグラフィーを用いたデバイス作製工程では、下地基板、電子線、又はEUVによって及ぼされる悪影響によって、レジストパターンが裾引き形状やアンダーカット形状になり、良好な矩形形状のレジストパターンを形成することができない、パターン形状が悪いためパターン側壁ラフネス(ラインエッジラフネス)が大きくなる、CD均一性が悪くなる、レジストパターンと基板の密着性が十分でなく、パターン倒れを引き起こす、焦点深度マージンが小さい、感度が低い、エッチング速度が低いなどの問題が生じることがある。そのため、電子線又はEUVリソグラフィー工程では、従来の反射防止能を有するレジスト下層膜(反射防止膜)の代わりに、これらの悪影響を低減して、良好なレジストパターンを形成することを可能にする電子線又はEUVリソグラフィー用レジスト下層膜が必要となってくる。
 さらに、特許文献2、3、4に記載のように従来の電子線又はEUVリソグラフィー用レジスト下層膜は分子量分布のあるポリマーがメインに使用されているため、下層膜内の密度のばらつきが大きいと考えられる。そのため、下地基板や電子線、EUVによって及ぼされる悪影響を十分に改善しているとは言えない。
米国特許第6156479号明細書 特表2008-501985号公報 国際公開第2011/074494号公報 国際公開第2012/017790号公報
 本発明は上記事情に鑑みてなされたものであって、下層反射防止膜に用いられた場合に、限界寸法均一性、焦点深度マージン、感度、およびエッチング速度を改善することのできる化合物、およびそれらの特性が改善された下層反射防止膜を形成することができる組成物を提供することを目的とするものである。
 本発明によるデンドリマー化合物は下記式(1):
C(-Z)(-L-A4-m  (1)
[式(1)中、
mは0、1、または2であり、
Zは、炭化水素基またはカルボキシル基であり、mが2であるとき、それぞれのZは同一であっても異なっていてもよく、
Lは、エーテル結合またはチオエーテル結合を含む炭化水素鎖であり、それぞれのLは同一であっても異なっていてもよく、
は、
Figure JPOXMLDOC01-appb-C000003
{式(1a)中、
は水素又はメチル基であり、
は、酸素又は硫黄であり、
Bは、
Figure JPOXMLDOC01-appb-C000004
(式(1b)中、
は酸素又は硫黄であり、
Arは、ハロゲン化アルキル基で置換された芳香族基である)
であり、それぞれのBは同一であっても異なっていてもよく、式(1)中のすべてのBのうち2個以上がOHであり、
pは1以上の整数であり、それぞれのpは同一であっても異なっていてもよい}
であり、
のうち少なくとも2つ以上は式(1a)で表される基を含む]
で表わされることを特徴とするものである。
 また、本発明による下層膜形成用組成物は、前記デンドリマー化合物、架橋剤、熱酸発生剤、および溶媒を含んでなることを特徴とするものである。
 さらに本発明による下層膜は、前記下層膜形成用組成物を基板上に塗布し、加熱することによって形成されたことを特徴とするものである。
 さらに、本発明によるパターン形成方法は、
 前記下層膜形成用組成物を半導体基板上に塗布し、焼成して下層膜を形成させる工程、
 前記下層膜上にフォトレジスト層を形成させる工程、
 前記下層膜と前記フォトレジスト層で被覆された前記半導体基板を露光する工程、および
 前記露光後に現像液で現像する工程
を含んでなることを特徴とするものである。
 本発明によれば下層膜形成用組成物に用いた場合に優れた特性を実現できる新規なデンドリマー化合物が提供される。また本発明の実施態様による下層膜形成用組成物は、パターン形成時に下層膜とフォトレジスト組成物層との間でインターミキシングが起こりにくく、形成されるレジストパターンの断面が基板表面に対して垂直であるレジストパターンを得ることができ、さらに、限界寸法均一性、焦点深度マージン、感度、およびエッチング耐性の改善が可能となる。
本発明の実施例1に係るデンドリマー化合物のNMRスペクトル。
 以下、本発明の実施の形態について、詳細に説明すると以下の通りである。
<デンドリマー化合物>
 本発明によるデンドリマー化合物は、下記式(1):
C(-Z)(-L-A4-m  (1)
[式(1)中、
mは0、1、または2であり、
Zは、炭化水素基またはカルボキシル基であり、mが2であるとき、それぞれのZは同一であっても異なっていてもよく、
Lは、エーテル結合またはチオエーテル結合を含む炭化水素鎖であり、それぞれのLは同一であっても異なっていてもよく
は、
Figure JPOXMLDOC01-appb-C000005
{式(1a)中、
は水素又はメチル基であり、
は、酸素又は硫黄であり、
Bは、
Figure JPOXMLDOC01-appb-C000006
(式(1b)中、
は酸素又は硫黄であり、
Arは、ハロゲン化アルキル基で置換された芳香族基である)
であり、それぞれのBは同一であっても異なっていてもよく、式(1)中のすべてのBのうち2個以上がOHであり、
pは1以上の整数であり、それぞれのpは同一であっても異なっていてもよい}
であり、
のうち少なくとも2つ以上は式(1a)で表される基を含む]
で表わされることを特徴とする。
 なお、式(1)においてmが0でない場合には、一般的にはデンドロン化合物と呼ばれるが、本発明においてはこれらを含めてデンドリマー化合物と呼ぶ。
 式(1)において、中心炭素に対して、-L-Aと-Zとが結合するが、-L-Aは2つ以上必要である。したがって、mは0、1、または2となり得るが、mが2であるとき、二つのZは同一であっても異なっていてもよい。また、好ましくはmは0であり、中心炭素に対して4つの-L-Aが結合することが好ましい。
 Zは炭化水素、またはカルボキシル基のいずれかであり、炭化水素である場合には形成されるレジストパターンの形状を良好に保つために炭素数が1~6であることが好ましく、メチル基またはカルボキシル基であることがより好ましい。
 式(1)において、Lはエーテル結合(-O-)またはチオエーテル結合(-S-)を含む炭化水素鎖である。言い換えればメチレン基-CH-がエーテル結合またはチオエーテル結合によって置換された炭化水素基である。このようにエーテル結合またはチオエーテル結合を含むことによって、形成される下層膜のエッチングレートが改善される。エーテル結合またはチオエーテル結合を含まない、炭素および水素のみからなる炭化水素鎖を用いると、十分なエッチングレートを実現することが困難である。
 Lに含まれるエーテル結合やチオエーテル結合は、炭化水素鎖中にランダムに配置されていても、規則的に配置されていてもよい。また、チオエーテル結合に比較してエーテル結合は組成物の経時安定性を改良する傾向がある。このため、Lに含まれるチオエーテル結合に対してエーテル結合を多く含むことが好ましく、Lがチオエーテル結合を含まず、エーテル結合だけを含むことがより好ましい。
 Lは典型的にはアルキレンオキサイド鎖である。特に、製造の容易性などの観点からエチレンオキサイド鎖やプロピレンオキサイド鎖が好ましく用いられる。ひとつのLに含まれる炭素数は特に限定されないが、例えば炭素数2~6のものが用いられる。また、式(1)に含まれるすべてのLがアルキレンオキサイド鎖であることが好ましい。
 式(1)において、Aは、後述する末端基Bであるか、下記式(1a):
Figure JPOXMLDOC01-appb-C000007
(式(1a)中、Yは酸素又は硫黄であり、Rは水素又はメチル基である。)
で表される、末端にBが結合した基である。式(1a)で表される基は、繰り返し単位を含み、末端側で枝分かれするためにAは分岐鎖状構造を形成することができ、このために式(1)の化合物はデンドリマー構造を有する。式(1)において、末端基Bは連結基Lに直接結合していてもよい。しかし、本発明において式(1)に示される化合物が下層膜形成用組成物に用いたときに優れた効果を奏するためには、式(1a)で表される基を有し、分岐鎖状構造を有していることが必要である。このため、式(1)における4つのLのうち、少なくとも二つ以上が式(1a)に含まれる繰り返し単位を含む、すなわちpは1以上であることが好ましい。このとき、組成物の成膜性を十分なものとするために、pは2以上であることが好ましい。一方で、繰り返し数pが過度に大きいと、限界寸法均一性や焦点深度マージンなどが劣化する傾向にあるので、pは10以下であることが好ましく、5以下であることがより好ましい。
 式(1)には、複数のpが含まれるが、それぞれのpは同一であっても異なっていてもよい。
 また、Yは酸素又は硫黄のいずれかであるが、式(1)に含まれるそれぞれのYは同一であっても異なっていてもよい。しかし、原料入手の容易さと安全性の観点から酸素であることが好ましく、式(1)に含まれるそれぞれのYのすべてが酸素であることが好ましい。また、Rは水素又はメチル基のいずれかであるが、式(1)に含まれるそれぞれのRは同一であっても異なっていてもよいが、すべてのRがメチル基であることが好ましい。
 末端基Bは、ヒドロキシ基OH、またはチオール基SHであるか、あるいは下記式(1b):
Figure JPOXMLDOC01-appb-C000008
(式(1b)中、Yは、酸素又は硫黄であり、Arはハロゲン化アルキル基で置換された芳香族基である。)
で示される基である。
 ここでArは1個以上のベンゼン環を含む、芳香族性骨格を含むものである。ここで芳香族性骨格としては、ベンゼン、ナフタレン、アントラセン、ビフェニル、ベンズイミダゾールなどが挙げられる。本発明によるデンドリマー化合物においてはこれらの芳香族性骨格は、ハロゲン化アルキル基で置換されている。ハロゲン化アルキル基を構成するハロゲンとしては、フッ素、塩素、臭素、およびヨウ素が好ましく、組成物の経時安定性の観点からフッ素が特に好ましい。ハロゲン化アルキル基に含まれる炭素数は特に限定されないが、炭素数が3以下であることが好ましい。
 Arは、ハロゲン化アルキル基以外の置換基を有していてもよい。このような置換基としては、例えば、アルキル基、ヒドロキシアルキル基、アリール基、ハロゲン原子、アルコキシ基、ニトロ基、アルデヒド基、シアノ基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、スルホンアミド基、カルボキシ基、カルボン酸エステル基、スルホ基、スルホン酸エステル基、およびアリールアミノ基からなる群から選択される置換基が挙げられる。また、前記芳香族に含まれるベンゼン環のひとつがキノン環に置換されていてもよく、芳香族ではない環が縮合していてもよい。
 本発明によるデンドリマー化合物は、一般的に下層膜形成用組成物に用いられているポリマーと同様に、架橋剤などと反応し、組成物を硬化させる作用を有している。本発明によるデンドリマー化合物は、反応性基として、少なくとも二つ以上のヒドロキシル基もしくはチオール基を含んでいる。すなわち、式(1)において、すべてのBのうち少なくとも二つ以上がOHまたはSH、好ましくは二つ以上がOHである。ここで、式(1)に含まれるBがOHまたはSHである割合が高いほうが、架橋反応による結合が多くなるので好ましい。また、SHに比較してOHが多いほうが組成物の経時安定性などが改良されるので、OHの割合が多いことが好ましく、SHを含まないことがより好ましい。
 また、式(1)において、すべてのBのうち、式(1b)で表される芳香族基含有基の割合が多いほうが、下層膜形成時の成膜性が改善される傾向にある。このため、式(1)に含まれるBにおける、OH、SH、および式(1b)により表される基の割合は目的などに応じて適切に調整されるべきである。
 一般式(1)で表されるデンドリマー化合物の具体例としては、以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-C000009
(式中、すべてのBのうち、50%が水素、50%が4-(トリフルオロメチル)ベンゾイル基である)
 前記一般式(1)で表される化合物は、任意の方法により製造することができる。例えば、下記一般式(2):
Figure JPOXMLDOC01-appb-C000010
[式中、
Xは塩素および臭素およびヨウ素からなる群から選択され、
は酸素又は硫黄であり、
Arは、ハロゲン化アルキル基で置換された芳香族基である]
で表される化合物と、
 下記一般式(3): 
C(-Z)(-L-A4-m  (3)
[式(1)中、
mは0、1、または2であり、
Zは、炭化水素基またはカルボキシル基であり、mが2であるとき、それぞれのZは同一であっても異なっていてもよく、
[式(3)中、
mは0、1、または2であり、
Zは、炭化水素基またはカルボキシル基であり、mが2であるとき、それぞれのZは同一であっても異なっていてもよく、
Lは、エーテル結合またはチオエーテル結合を含む炭化水素鎖であり、それぞれのLは同一であっても異なっていてもよく
は、
Figure JPOXMLDOC01-appb-C000011
{式中、
は水素又はメチル基であり、
は、酸素又は硫黄であり、
Zはそれぞれ独立に酸素又は硫黄である}
であり、
pはそれぞれ独立に1以上の整数から選択される。]
で表される化合物と、
 塩基性化合物と
を反応させることにより得られる。
 前記一般式(2)の具体例としては、4-(トリフルオロメチル)ベンゾイルクロリド、4-(トリクロロメチル)ベンゾイルクロリド、4-(トリブロモメチル)ベンゾイルクロリド、4-(トリヨードメチル)ベンゾイルクロリド、4-(トリフルオロメチル)-1-ナフトイルクロリド、4-(トリフルオロメチル)アントラセン-9-カルボニルクロリドなどが挙げられる。
 前記一般式(3)の具体例としては、シグマアルドリッチジャパン合同会社より市販されている、Hyperbranched bis-MPA polyester-16-hydroxyl generation 2(商品名、シグマアルドリッチ社製)、Hyperbranched bis-MPA polyester-32-hydroxyl generation 3(商品名、シグマアルドリッチ社製)、Polyester-16-hydroxyl-acetylene bis-MPA dendron generation 4(商品名、シグマアルドリッチ社製)、Polyester-32-hydroxyl-acetylene bis-MPA dendron generation 5(商品名、シグマアルドリッチ社製)、Polyester-16-hydroxyl-carboxyl bis-MPA dendron generation 4(商品名、シグマアルドリッチ社製)などが挙げられる。
 前記一般式(2)で表される化合物の合計使用量は前記一般式(3)のモル数に対して通常3~27当量、好ましくは6~12当量である。
 塩基性化合物としては水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウムまたは水酸化セシウムなどのアルカリ金属水酸化物;酸化ナトリウムまたは酸化カリウムなどのアルカリ金属酸化物;水酸化ベリリウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウムまたは水酸化ストロンチウムなどのアルカリ土類金属水酸化物;酸化ベリリウム、酸化マグネシウム、酸化カルシウム、酸化ストロンチウムまたは酸化バリウムなどのアルカリ土類金属酸化物;メチルリチウム、エチルリチウム、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、フェニルリチウム、リチウムジイソプロピルアミドまたはリチウムヘキサメチルジシラジドなどの有機アルカリ金属;ジメチルマグネシウム、ジエチルマグネシウム、メチルマグネシウムクロリド、メチルマグネシウムブロミド、エチルマグネシウムブロミドまたはフェニルマグネシウムブロミドなどの有機アルカリ土類金属化合物;ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムプロポキシドまたはカリウムt-ブトキシドなどのアルコキシ化合物;水素化ナトリウム、水素化カリウムまたは水素化カルシウムなどの金属水素化物;テトラメチルアンモニウムハイドロキシドまたはテトラブチルアンモニウムハイドロキシドなどの水酸化テトラアルキルアンモニウム;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸カルシウムなどのアルカリ金属炭酸化合物、アンモニアまたはエチルアミン、ジエチルアミンまたはトリエチルアミンなどのアミン化合物が挙げられるが、これらの中でも反応性の観点からエチルアミン、ジエチルアミンまたはトリエチルアミンなどのアミン化合物が好ましく、トリエチルアミンが特に好ましい。なお、トリエチルアミンは市販のものを入手して用いることができる。塩基性化合物の使用量は前記一般式(2)で表される化合物のモル数に対して通常、3~27当量、好ましくは10~21当量である。
 前記各成分を反応させる時の反応温度は、十分な反応速度を得るために一定以上であることが好ましく、また望ましくない副生成物の生成を抑制するために言って以下であることが好ましい。このような観点から、反応温度は、通常-50~150℃であり、好ましくは20~100℃である。
 前記各成分の反応は、溶媒の存在下で行っても、無溶媒で行ってもよいが、反応収率向上とその後の精製のしやすさの観点から溶媒の存在下に行うことが好ましい。
 溶媒を用いる場合は、反応に悪影響を及ぼさない限り、任意の溶媒を用いることができる。具体的には、ジエチルエーテル、tert-ブチルメチルエーテル、テトラヒドロフラン、1,4-ジオキサンが好ましく、テトラヒドロフランが特に好ましい。また、その使用量は、反応速度及び反応収率の観点から、前記一般式(3)の化合物に対して、体積比で通常0.5~20倍であり、好ましくは1~10倍であり、より好ましくは1.5~5倍である。
 反応終了後、有機合成において通常使用されている手法により、反応溶液から目的物を分離、精製することができる。例えば、塩基性化合物を取り除くために水を加えてよく撹拌して、分取した有機層に無水硫酸マグネシウム等の乾燥剤で乾燥した後、減圧下で蒸留することにより目的物を得ることができる。また、必要に応じてカラムクロマトグラフィーにより反応生成物を精製することもできる。
<下層膜形成用組成物>
 本発明による下層膜形成用組成物は、前記のデンドリマー化合物に加えて、架橋剤、熱酸発生剤および溶媒を含んでなるものである。また、この組成物は必要に応じて、その他の添加剤、例えば光酸発生剤および界面活性剤を含んでなる。これらの各成分について説明すると以下の通りである。
架橋剤
 本発明による下層膜形成用組成物は架橋剤を含む。形成しようとする下層膜をレジストなどの上層膜によるミキシングを防ぐために架橋剤が用いられる。架橋剤としては、露光された際に、デンドリマー化合物の末端ヒドロキシ基に作用して架橋構造を形成させる化合物であれば、いずれも使用することができる。このような架橋剤の具体例としてはヘキサメチルメラミン、ヘキサメトキシメチルメラミン、1,2-ジヒドロキシ-N,N’-メトキシメチルスクシンイミド、1,2-ジメトキシ-N,N’-メトキシメチルスクシンイミド、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、テロラメトキシメチルグリコールウリル、N,N’-メトキシメチルウレアが挙げられる。
熱酸発生剤
 本発明による下層膜形成用組成物は熱酸発生剤を含む。形成しようとする下層膜の架橋を促進する補助剤である。本発明の下層膜形成用組成物に使用される熱酸発生剤の具体例としては、各種脂肪族スルホン酸とその塩、クエン酸、酢酸、マレイン酸等の各種脂肪族カルボン酸とその塩、安息香酸、フタル酸等の各種芳香族カルボン酸とその塩、芳香族スルホン酸とそのアンモニウム塩、各種アミン塩、芳香族ジアゾニウム塩及びホスホン酸とその塩など、有機酸を発生させる塩やエステル等を挙げることができる。本発明で用いられる熱酸発生剤の中でも特に、有機酸と有機塩基からなる塩であることが好ましく、スルホン酸と有機塩基からなる塩が更に好ましい。
 好ましいスルホン酸を含む熱酸発生剤としては、p-トルエンスルホン酸、ベンゼンスルホン酸、p-ドデシルベンゼンスルホン酸、1,4-ナフタレンジスルホン酸、メタンスルホン酸、などが挙げられる。これら酸発生剤は、単独又は混合して使用することが可能である。
溶剤
 本発明の下層膜形成用組成物に使用される溶剤としては、前記の各成分を溶解できる溶剤であれば、任意のものから選択して使用することができる。溶剤の具体例としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、及びN-メチルピロリドン等を用いることができる。これらの溶剤は単独または二種以上の組合せで使用することができる。さらに、プロピレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテルアセテート等の高沸点溶剤を混合して使用することができる。
光酸発生剤
 本発明による反射防止膜形成用組成物は必要に応じて光酸発生剤を含む。上層膜であるレジストのスカムやフッティングを除去するために用いられることが多い。
 このような光酸発生剤は従来知られているものから任意に選択することができる。光酸発生剤の具体例としては、オニウム塩化合物、架橋性オニウム塩化合物、スルホンマレイミド誘導体、及びジスルホニルジアゾメタン化合物等が挙げられる。
 オニウム塩化合物の具体例としては、例えば、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ-ノルマルブタンスルホネート、ジフェニルヨードニウムパーフルオロ-ノルマルオクタンスルホネート、ジフェニルヨードニウムカンファースルホネート、ビス(4-tert-ブチルフェニル)ヨードニウムカンファースルホネート及びビス(4-tert-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート等のヨードニウム塩化合物、及びトリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムノナフルオロ-ノルマルブタンスルホネート、トリフェニルスルホニウムカンファースルホネート及びトリフェニルスルホニウムトリフルオロメタンスルホネート等のスルホニウム塩化合物、及びビス(4-ヒドロキシフェニル)(フェニル)スルホニウムトリフルオロメタンスルホネート、ビス(4-ヒドロキシフェニル)(フェニル)スルホニウム-1,1,2,2,3,3,4,4,4-ノナフルオロブタン-1-スルホネート、フェニルビス(4-(2-(ビニロキシ)エトキシ)フェニル)スルホニウム-1,1,2,2,3,3,4,4-オクタフルオロブタン-1,4-ジスルホネート、トリス(4-(2-(ビニロキシ)エトキシ)フェニル)スルホニウム-1,1,2,2,3,3,4,4-オクタフルオロブタン-1,4-ジスルホネート等の架橋性オニウム塩化合物が挙げられるが、それらに限定されない。
 スルホンマレイミド誘導体の具体例としては、例えば、N-(トリフルオロメタンスルホニルオキシ)スクシンイミド、N-(ノナフルオロ-ノルマルブタンスルホニルオキシ)スクシンイミド、N-(カンファースルホニルオキシ)スクシンイミド及びN-(トリフルオロメタンスルホニルオキシ)ナフタルイミド等が挙げられる。
 ジスルホニルジアゾメタン化合物の具体例としては、例えば、ビス(トリフルオロメチルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(フェニルスルホニル)ジアゾメタン、ビス(p-トルエンスルホニル)ジアゾメタン、ビス(2,4-ジメチルベンゼンスルホニル)ジアゾメタン、及びメチルスルホニル-p-トルエンスルホニルジアゾメタンが挙げられる。本発明の下層反射防止膜形成用組成物において、これらの光酸発生剤は2種類以上を組み合わせて使用することもできる。
その他の成分
 本発明による下層反射防止膜形成用組成物は、必要に応じてその他の成分を含むことができる。例えば、界面活性剤、平滑剤などが挙げられる。これらの成分は本発明の効果を損なわないものが用いられるべきである。
 以下の実施例は、本発明をさらに具体的に説明するためのものである。本発明はこれらの実施例に限定されるものではない。なお、本明細書においては、特に断りが無い限り、実施例中の「部」は「重量部」を、「%」は「重量%」を意味するものとする。
実施例1
 撹拌器、凝縮器、加熱装置、窒素導入管および温度制御装置を取り付けた反応器に窒素雰囲気化においてHyperbranched bis-MPA polyester-16-hydroxyl genaration 2(商品名、シグマアルドリッチ社製)(500部)、トリエチルアミン(231部)、脱水テトラヒドロフラン(2000部)を加えて攪拌した。反応混合物が加熱還流された後、4-(トリフルオロメチル)ベンゾイルクロリド(477部)がゆっくりと加えられた。添加終了後、加熱還流を2時間保持した。
 室温に冷却した後、メチル-tert-ブチルエーテル(以下、MTBEということがある)(30000部)、純水(30000部)を加えて、MTBE溶液を抽出した。さらに、飽和重曹水(30000部)をMTBE溶液に加えて、MTBE溶液を抽出した。次に、MTBE溶液に硫酸マグネシウム(200部)加えて、攪拌した。その後、ろ過をしてMTBE溶液を減圧蒸留により濃縮することで目的のデンドリマー化合物が収率74%で得られた。4-(トリフルオロメチル)ベンゾイルクロリドによる修飾率は49.9%であった。
 得られたデンドリマーのH-NMRスペクトル(溶媒:ジメチルスルホキシド)は図1に示す通りであった。
実施例2
 撹拌器、凝縮器、加熱装置、窒素導入管および温度制御装置を取り付けた反応器に窒素雰囲気化においてHyperbranched bis-MPA polyester-16-hydroxyl genaration 2(商品名、シグマアルドリッチ社製)(500部)、トリエチルアミン(231部)、脱水テトラヒドロフラン(2000部)を加えて攪拌した。反応混合物が加熱還流された後、4-(トリクロロメチル)ベンゾイルクロリド(590部)がゆっくりと加えられた。添加終了後、加熱還流を2時間保持した。
 室温に冷却した後、MTBE(30000部)、純水(30000部)を加えて、MTBE溶液を抽出した。さらに、飽和重曹水(30000部)をMTBE溶液に加えて、MTBE溶液を抽出した。次に、MTBE溶液に硫酸マグネシウム(200部)加えて、攪拌した。その後、ろ過をしてMTBE溶液を減圧蒸留により濃縮することで目的のデンドリマー化合物が収率72%で得られた。4-(トリクロロメチル)ベンゾイルクロリドによる修飾率は49.7%であった。
実施例3
 撹拌器、凝縮器、加熱装置、窒素導入管および温度制御装置を取り付けた反応器に窒素雰囲気化においてHyperbranched bis-MPA polyester-16-hydroxyl genaration 2(商品名、シグマアルドリッチ社製)(500部)、トリエチルアミン(231部)、脱水テトラヒドロフラン(2000部)を加えて攪拌した。反応混合物が加熱還流された後、4-(トリブロモメチル)ベンゾイルクロリド(894部)がゆっくりと加えられた。添加終了後、加熱還流を2時間保持した。
 室温に冷却した後、MTBE(30000部)、純水(30000部)を加えて、MTBE溶液を抽出した。さらに、飽和重曹水(30000部)をMTBE溶液に加えて、MTBE溶液を抽出した。次に、MTBE溶液に硫酸マグネシウム(200部)加えて、攪拌した。その後、ろ過をしてMTBE溶液を減圧蒸留により濃縮することで目的のデンドリマー化合物が収率69%で得られた。4-(トリブロモメチル)ベンゾイルクロリドの修飾率は50.5%であった。
実施例4
 撹拌器、凝縮器、加熱装置、窒素導入管および温度制御装置を取り付けた反応器に窒素雰囲気化においてHyperbranched bis-MPA polyester-16-hydroxyl genaration 2(商品名、シグマアルドリッチ社製)(500部)、トリエチルアミン(231部)、脱水テトラヒドロフラン(2000部)を加えて攪拌した。反応混合物が加熱還流された後、4-(トリヨードメチル)ベンゾイルクロリド(1217部)がゆっくりと加えられた。添加終了後、加熱還流を2時間保持した。
 室温に冷却した後、MTBE(30000部)、純水(30000部)を加えて、MTBE溶液を抽出した。さらに、飽和重曹水(30000部)をMTBE溶液に加えて、MTBE溶液を抽出した。次に、MTBE溶液に硫酸マグネシウム(200部)加えて、攪拌した。その後、ろ過をしてMTBE溶液を減圧蒸留により濃縮することで目的のデンドリマー化合物が収率65%で得られた。4-(トリヨードメチル)ベンゾイルクロリドの修飾率は49.6%であった。
実施例5
 撹拌器、凝縮器、加熱装置、窒素導入管および温度制御装置を取り付けた反応器に窒素雰囲気化においてHyperbranched bis-MPA polyester-16-hydroxyl genaration 2(商品名、シグマアルドリッチ社製)(500部)、トリエチルアミン(231部)、脱水テトラヒドロフラン(2000部)を加えて攪拌した。反応混合物が加熱還流された後、4-(トリフルオロメチル)-1-ナフトイルクロリド(591部)がゆっくりと加えられた。添加終了後、加熱還流を2時間保持した。
 室温に冷却した後、MTBE(30000部)、純水(30000部)を加えて、MTBE溶液を抽出した。さらに、飽和重曹水(30000部)をMTBE溶液に加えて、MTBE溶液を抽出した。次に、MTBE溶液に硫酸マグネシウム(200部)加えて、攪拌した。その後、ろ過をしてMTBE溶液を減圧蒸留により濃縮することで目的のデンドリマー化合物が収率74%で得られた。4-(トリフルオロメチル)-1-ナフトイルクロリドの修飾率は49.9%であった。
実施例6
 撹拌器、凝縮器、加熱装置、窒素導入管および温度制御装置を取り付けた反応器に窒素雰囲気化においてHyperbranched bis-MPA polyester-16-hydroxyl genaration 2(商品名、シグマアルドリッチ社製)(500部)、トリエチルアミン(231部)、脱水テトラヒドロフラン(2000部)を加えて攪拌した。反応混合物が加熱還流された後、4-(トリフルオロメチル)アントラセン-9-カルボニルクロリド(706部)がゆっくりと加えられた。添加終了後、加熱還流を2時間保持した。
 室温に冷却した後、MTBE(30000部)、純水(30000部)を加えて、MTBE溶液を抽出した。さらに、飽和重曹水(30000部)をMTBE溶液に加えて、MTBE溶液を抽出した。次に、MTBE溶液に硫酸マグネシウム(200部)加えて、攪拌した。その後、ろ過をしてMTBE溶液を減圧蒸留により濃縮することで目的のデンドリマー化合物が収率77%で得られた。4-(トリフルオロメチル)アントラセン-9-カルボニルクロリドの修飾率は48.9%であった。
実施例7
 撹拌器、凝縮器、加熱装置、窒素導入管および温度制御装置を取り付けた反応器に窒素雰囲気化においてHyperbranched bis-MPA polyester-32-hydroxyl genaration 3(商品名、シグマアルドリッチ社製)(1031部)、トリエチルアミン(231部)、脱水テトラヒドロフラン(2000部)を加えて攪拌した。反応混合物が加熱還流された後、4-(トリフルオロメチル)ベンゾイルクロリド(477部)がゆっくりと加えられた。添加終了後、加熱還流を2時間保持した。
 室温に冷却した後、MTBE(30000部)、純水(30000部)を加えて、MTBE溶液を抽出した。さらに、飽和重曹水(30000部)をMTBE溶液に加えて、MTBE溶液を抽出した。次に、MTBE溶液に硫酸マグネシウム(200部)加えて、攪拌した。その後、ろ過をしてMTBE溶液を減圧蒸留により濃縮することで目的のデンドリマー化合物が収率79%で得られた。4-(トリフルオロメチル)ベンゾイルクロリドの修飾率は50.0%であった。
実施例8
 撹拌器、凝縮器、加熱装置、窒素導入管および温度制御装置を取り付けた反応器に窒素雰囲気化においてHyperbranched bis-MPA polyester-16-hydroxyl genaration 2(商品名、シグマアルドリッチ社製)(500部)、トリエチルアミン(231部)、脱水テトラヒドロフラン(2000部)を加えて攪拌した。反応混合物が加熱還流された後、4-(トリフルオロメチル)ベンゾイルクロリド(119部)がゆっくりと加えられた。添加終了後、加熱還流を2時間保持した。
 室温に冷却した後、MTBE(30000部)、純水(30000部)を加えて、MTBE溶液を抽出した。さらに、飽和重曹水(30000部)をMTBE溶液に加えて、MTBE溶液を抽出した。次に、MTBE溶液に硫酸マグネシウム(200部)加えて、攪拌した。その後、ろ過をしてMTBE溶液を減圧蒸留により濃縮することで目的のデンドリマーが収率43%で得られた。4-(トリフルオロメチル)ベンゾイルクロリドの修飾率は12.5%であった。
実施例9
 撹拌器、凝縮器、加熱装置、窒素導入管および温度制御装置を取り付けた反応器に窒素雰囲気化においてHyperbranched bis-MPA polyester-16-hydroxyl genaration 2(商品名、シグマアルドリッチ社製)(500部)、トリエチルアミン(231部)、脱水テトラヒドロフラン(2000部)を加えて攪拌した。反応混合物が加熱還流された後、4-(トリフルオロメチル)ベンゾイルクロリド(834部)がゆっくりと加えられた。添加終了後、加熱還流を2時間保持した。
 室温に冷却した後、MTBE(30000部)、純水(30000部)を加えて、MTBE溶液を抽出した。さらに、飽和重曹水(30000部)をMTBE溶液に加えて、MTBE溶液を抽出した。次に、MTBE溶液に硫酸マグネシウム(200部)加えて、攪拌した。その後、ろ過をしてMTBE溶液を減圧蒸留により濃縮することで目的のデンドリマーが収率94%で得られた。4-(トリフルオロメチル)ベンゾイルクロリドの修飾率は87.5%であった。
比較例1
 撹拌器、凝縮器、加熱装置および温度制御装置を取り付けた反応器に1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(株式会社三和ケミカル製、MX-270(商品名))(84.20部)、2,5-ジメチルフェノール(8.42部)、3-ヨードフェノール(29.19部)が加えられ、この溶液を80℃に加熱した。溶液温度が80℃に到達したら、p-トルエンスルホン酸一水和物(0.8420部)を加えた。供給終了後、反応混合物を80℃で5時間保持した。
 室温に冷却した後、反応溶液を純水(6000部)に投入し、沈殿物をろ過した。次に、沈殿物をアセトン150gに溶解させて、純水(3000部)に投入し、沈殿物をろ過した。沈殿物を50℃で真空乾燥することでポリマーが収率39%で得られた。GPC(THF)により分子量を測定したところ、重量平均分子量Mw=3046Da、数平均分子量Mn=1263Da、多分散性指数PDI=2.41であった。
応用実施例1
 実施例1の含フッ素エーテルデンドリマー(1.26部)、架橋剤として1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(1.26部)(式会社三和ケミカル製、MX-270(商品名))、熱酸発生剤として10-カンファ―スルホン酸(0.0173部)、熱酸発生剤としてトリエチルアミン(0.008部)、光酸発生剤としてトリフェニルスルホニウム塩(以下、TPSという)(0.0252部)、溶媒としてプロピレングリコールモノメチルエーテルアセテート(136.162部)を混合し、室温で30分間撹拌して、下層膜形成用組成物を調製した。
 調製した下層膜形成用組成物をシリコンマイクロチップウェハ上にスピンコートにより塗布し、200℃で60秒間真空ホットプレート上にて加熱して架橋反応させ、下層膜を得た。
応用実施例2~10および応用比較例1~2
 下層膜組成物の各成分を、表1に示す通りに変更したほかは応用実施例1と同様にして、応用実施例2~10および応用比較例1~2の組成物を調製した。
 準備した組成物について、以下の通りの評価を行った。
光学特性評価:
 分光エリプソメーターVUV-302(商品名、ジェー・エー・ウーラム社製)で下層膜を測定した。例えば応用実施例1においては、波長193nmでの減衰係数(k値)は0.3504、248nmでの減衰係数(k値)は0.0204であった。
耐溶剤性評価:
 乳酸エチル、プロピレングリコールモノメチルエーテルアセテートおよびプロピレングリコールモノメチルエーテルで下層膜の膜減り試験を行った。評価基準は以下の通りとした。
A: 下層膜が、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートおよびプロピレングリコールモノメチルエーテルのいずれにも不溶で実用上優れているレベル
B: 下層膜が、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、またはプロピレングリコールモノメチルエーテルのいずれかに対して、若干の溶解が認められるものの、実用上問題の無いレベル
C: 下層膜が、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、またはプロピレングリコールモノメチルエーテルのいずれか若しくはすべてに対して溶解し、実用性がないレベル
密度ばらつきの評価:
 ATX-G型X線回折装置(商品名、株式会社リガク製)により、X線反射率測定法で下層膜の密度を測定深度を変えて測定し、そのばらつきを評価した。例えば応用実施例1では、表面近傍の密度は1.52g/cm、中間部分の密度は1.44g/cm、底面近傍の密度は1.47g/cmであり、その測定値のシグマ値(ばらつき)は0.04であった。
ドライエッチング速度比の評価:
 RIEシステムES401(商品名、日本サイエンティフィック株式会社製)を用い、ドライエッチングガスとして酸素を使用した条件下で下層膜のドライエッチング速度を測定した。また、レジス卜溶液(住友化学株式会社製、商品名:SEVR-162)を、スピナーを用いてシリコンウエハー上に塗布し、レジス卜膜を形成した。そしてRIEシステムES401(商品名、日本サイエンティフィック株式会社製)を用い、ドライエッチングガスとして酸素を使用した条件下でドライエッチング速度を測定した。下層膜と、前記住友化学株式会社製レジス卜溶液から得られたレジス卜膜のドライエッチング速度との比較を行った。例えば応用実施例1の場合、前記レジス卜膜のドライエッチング速度に対する前記レジス卜下層膜のドライエッチング速度の比を計算したところ、1.81であった。
EUV露光試験
 シリコンウエハー上に、本発明の応用実施例1で調製したレジスト下層膜形成用組成物溶液をスピンコートし、200℃で1分間加熱することにより、レジスト下層膜を形成した。そのレジスト下層膜上に、レジス卜溶液(住友化学株式会社製、商品名:SEVR-162)をスピンコートし加熱を行い、EUV露光装置(Albany MET)を用い、NA=0.36、σ=0.93の条件で露光した。露光後、露光後加熱を行い、クーリングプレート上で室温まで冷却し、現像及びリンス処理を行い、シリコンウエハー上にレジストパターンを形成した。
EB露光試験
 シリコンウエハー上に、本発明の応用実施例1で調製したレジスト下層膜形成用組成物溶液をスピンコートし、200℃で1分間加熱することにより、レジスト下層膜を形成した。そのレジスト下層膜上に、EB用レジスト溶液をスピンコートし加熱を行い、EB露光装置を用い、露光した。露光後、露光後加熱を行い、クーリングプレート上で室温まで冷却し、現像及びリンス処理を行い、シリコンウエハー上にレジストパターンを形成した。前記EUV露光試験と同様に感度、焦点深度、限界寸法均一性(CDU)を評価した。
パターン断面形状の評価
 電子顕微鏡により観察し、以下の基準で評価した。
A: フォトレジスト側面が基板表面に対して垂直な矩形形状
B: フォトレジスト側面が基板表面に対して垂直ではなく、若干傾斜があるが実用上問題が無いレベル
C: フォトレジスト側面が基板表面に対してフッティング形状
感度の評価(単位:mJ/cm ):
 寸法30nmの1対1コンタクトホールのマスクを介して形成した幅が、幅30nmの1対1コンタクトホールに形成される露光量(mJ/cm)を最適露光量とし、この露光量(mJ/cm)を「感度」とした。
焦点深度(DOF)の評価(単位:μm):
 最適露光量にて30nmの1対1コンタクトホールのマスクパターンで解像されるパターン寸法が、マスクの設計寸法の±10%以内となる場合のフォーカスの振れ幅を焦点深度(DOF)とした。
限界寸法均一性(CDU)の評価(単位:nm):
 最適露光量にて解像した30nmの1対1コンタクトホールをパターン上部から観察する際に、パターン幅を任意のポイントで100点測定し、その測定値の3シグマ値(ばらつき)を限界寸法均一性(CDU)とした。
 得られた結果は表1および2に示す通りであった。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013

Claims (12)

  1.  下記式(1):
    C(-Z)(-L-A4-m  (1)
    [式(1)中、
    mは0、1、または2であり、
    Zは、炭化水素基またはカルボキシル基であり、mが2であるとき、それぞれのZは同一であっても異なっていてもよく、
    Lは、エーテル結合またはチオエーテル結合を含む炭化水素鎖であり、それぞれのLは同一であっても異なっていてもよく
    は、
    Figure JPOXMLDOC01-appb-C000001
    {式(1a)中、
    は水素又はメチル基であり、
    は、酸素又は硫黄であり、
    Bは、
    Figure JPOXMLDOC01-appb-C000002
    (式(1b)中、
    は酸素又は硫黄であり、
    Arは、ハロゲン化アルキル基で置換された芳香族基である)
    であり、それぞれのBは同一であっても異なっていてもよく、式(1)中のすべてのBのうち2個以上がOHであり、
    pは1以上の整数であり、それぞれのpは同一であっても異なっていてもよい}
    であり、
    のうち少なくとも2つ以上は式(1a)で表される基を含む]
    で表わされることを特徴とするデンドリマー化合物。
  2.  前記mが0である、請求項1に記載のデンドリマー化合物。
  3.  前記式(1)中のすべてのLがアルキレンオキサイド鎖である、請求項1または2に記載のデンドリマー化合物。
  4.  前記式(1)中のすべてのRがメチル基である、請求項1~3のいずれか1項に記載のデンドリマー化合物。
  5.  前記ハロゲン化アルキル基に含まれる炭素数が3以下である、請求項1~4のいずれか1項に記載のデンドリマー化合物。
  6.  前記BがSHではない、請求項1~5のいずれか1項に記載のデンドリマー化合物。
  7.  前記式(1)中のすべてのYが酸素である、請求項1~6のいずれか1項に記載のデンドリマー化合物。
  8.  請求項1~7のいずれか1項に記載のデンドリマー化合物、架橋剤、熱酸発生剤、および溶媒を含んでなることを特徴とする下層膜形成用組成物。
  9.  光酸発生剤をさらに含む、請求項8に記載の下層膜形成用組成物。
  10.  請求項8または9に記載の下層膜形成用組成物を基板上に塗布し、加熱することによって形成されたことを特徴とする、下層膜。
  11.  請求項8または9に記載の下層膜形成用組成物を半導体基板上に塗布し、焼成して下層膜を形成する工程、
     前記下層膜上にフォトレジスト層を形成する工程、
     前記下層膜と前記フォトレジスト層で被覆された前記半導体基板を露光する工程、および
     前記露光後に現像液で現像する工程
    を含んでなることを特徴とするパターンの形成方法。
  12.  前記露光が電子線からKrFエキシマレーザーの波長の光により行われる請求項11に記載のパターン形成方法。
PCT/JP2014/064675 2013-06-03 2014-06-03 レジスト下層膜形成用組成物 WO2014196509A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157037251A KR102161960B1 (ko) 2013-06-03 2014-06-03 레지스트 하층막 형성용 조성물
JP2015521442A JP6495167B2 (ja) 2013-06-03 2014-06-03 レジスト下層膜形成用組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013116731 2013-06-03
JP2013-116731 2013-06-03

Publications (1)

Publication Number Publication Date
WO2014196509A1 true WO2014196509A1 (ja) 2014-12-11

Family

ID=52008150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064675 WO2014196509A1 (ja) 2013-06-03 2014-06-03 レジスト下層膜形成用組成物

Country Status (4)

Country Link
JP (1) JP6495167B2 (ja)
KR (1) KR102161960B1 (ja)
TW (1) TWI620765B (ja)
WO (1) WO2014196509A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102348675B1 (ko) 2019-03-06 2022-01-06 삼성에스디아이 주식회사 레지스트 하층막용 조성물 및 이를 이용한 패턴 형성 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056894A (ja) * 2006-08-03 2008-03-13 Mie Univ 高分岐ポリマー及びその製造方法、並びに、高分岐ポリマー合成用モノマー及びその前駆体
JP2008257188A (ja) * 2007-03-13 2008-10-23 Shin Etsu Chem Co Ltd レジスト下層膜材料およびこれを用いたパターン形成方法
JP2010126569A (ja) * 2008-11-26 2010-06-10 Hakuto Co Ltd 感光性樹脂組成物
JP2012083594A (ja) * 2010-10-13 2012-04-26 Jsr Corp 感光性組成物、カラーフィルタ及び樹状分岐化合物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6156479A (en) 1997-09-30 2000-12-05 Brewer Science, Inc. Thermosetting anti-refective coatings
US20050214674A1 (en) 2004-03-25 2005-09-29 Yu Sui Positive-working photoimageable bottom antireflective coating
KR20120101534A (ko) 2009-12-14 2012-09-13 닛산 가가쿠 고교 가부시키 가이샤 레지스트 하층막 형성 조성물
WO2011088343A2 (en) * 2010-01-17 2011-07-21 Polyera Corporation Dielectric materials and methods of preparation and use thereof
WO2012017790A1 (ja) 2010-08-02 2012-02-09 日産化学工業株式会社 レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056894A (ja) * 2006-08-03 2008-03-13 Mie Univ 高分岐ポリマー及びその製造方法、並びに、高分岐ポリマー合成用モノマー及びその前駆体
JP2008257188A (ja) * 2007-03-13 2008-10-23 Shin Etsu Chem Co Ltd レジスト下層膜材料およびこれを用いたパターン形成方法
JP2010126569A (ja) * 2008-11-26 2010-06-10 Hakuto Co Ltd 感光性樹脂組成物
JP2012083594A (ja) * 2010-10-13 2012-04-26 Jsr Corp 感光性組成物、カラーフィルタ及び樹状分岐化合物

Also Published As

Publication number Publication date
JPWO2014196509A1 (ja) 2017-02-23
KR102161960B1 (ko) 2020-10-07
JP6495167B2 (ja) 2019-04-03
TW201502159A (zh) 2015-01-16
KR20160014724A (ko) 2016-02-11
TWI620765B (zh) 2018-04-11

Similar Documents

Publication Publication Date Title
JP5794359B2 (ja) 電子線用又はeuv用化学増幅ネガ型レジスト組成物及びパターン形成方法
JP4950252B2 (ja) ポジ型レジスト組成物およびパターン形成方法
KR101465488B1 (ko) 근적외광 흡수층 형성 조성물 및 근적외광 흡수층을 포함하는 다층막
JP5445488B2 (ja) 化学増幅ネガ型レジスト組成物及びパターン形成方法
JP5439030B2 (ja) ネガ型レジスト組成物の検査方法及び調製方法
JP5054089B2 (ja) ネガ型レジスト組成物及びパターン形成方法
JP5794360B2 (ja) 化学増幅ポジ型レジスト組成物及びパターン形成方法
JP2012111753A (ja) ラクトン光酸発生剤、これを含む樹脂およびフォトレジスト
KR101906788B1 (ko) 레지스트 하층막 형성 조성물
JP2010276910A (ja) ネガ型レジスト組成物及びこれを用いたパターン形成方法
JP5796237B2 (ja) フェノール系分子性ガラス、およびフェノール系分子ガラスを含むフォトレジスト組成物、および基板上にレジスト像を発生させるための方法
JP5584573B2 (ja) ネガ型レジスト組成物及びパターン形成方法
TWI454849B (zh) 與上塗光阻合用之塗覆組成物
JP5728822B2 (ja) 近赤外光吸収膜形成材料及び積層膜
JP6495167B2 (ja) レジスト下層膜形成用組成物
JP3735945B2 (ja) 感放射線性樹脂組成物
JP2015200796A (ja) 下層膜形成用組成物
KR20090067767A (ko) 현상액에 용해 가능한 근자외선 바닥 반사방지막 조성물 및이를 이용한 패턴화된 재료 형성 방법
JP4134759B2 (ja) 反射防止膜形成組成物および反射防止膜
TW202330663A (zh) 正型超厚光阻組合物
TWI432906B (zh) Method for forming composition and pattern of photoresist underlayer film formation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807667

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015521442

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157037251

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14807667

Country of ref document: EP

Kind code of ref document: A1