WO2014196319A1 - 光学材料、光学フィルム及び発光デバイス - Google Patents

光学材料、光学フィルム及び発光デバイス Download PDF

Info

Publication number
WO2014196319A1
WO2014196319A1 PCT/JP2014/062690 JP2014062690W WO2014196319A1 WO 2014196319 A1 WO2014196319 A1 WO 2014196319A1 JP 2014062690 W JP2014062690 W JP 2014062690W WO 2014196319 A1 WO2014196319 A1 WO 2014196319A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor nanoparticles
semiconductor
optical film
polysilazane
semiconductor nanoparticle
Prior art date
Application number
PCT/JP2014/062690
Other languages
English (en)
French (fr)
Inventor
秀敏 江連
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to US14/895,383 priority Critical patent/US20160115378A1/en
Priority to JP2015521357A priority patent/JPWO2014196319A1/ja
Priority to CN201480032097.2A priority patent/CN105264042A/zh
Publication of WO2014196319A1 publication Critical patent/WO2014196319A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • C09K11/701Chalcogenides
    • C09K11/703Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • the present invention relates to an optical material, an optical film, and a light emitting device.
  • the present invention relates to an optical material, an optical film, and an optical device including the optical film, which have durability capable of suppressing deterioration of semiconductor nanoparticles due to oxygen or the like over a long period of time and are excellent in transparency.
  • semiconductor nanoparticles quantum dots
  • solar power generation catalysis
  • bioimaging light emitting diodes
  • LEDs light emitting diodes
  • electroluminescent displays Is expected.
  • the amount of light incident on a liquid crystal display is increased by irradiating the semiconductor nanoparticles with LED light to emit light.
  • a technique for improving luminance has been proposed (for example, see Patent Document 1).
  • the method of covering the semiconductor nanoparticles with silica or glass in the above prior art can obtain oxygen blocking performance, but the silica aggregates of the semiconductor nanoparticles are formed and the particle size is increased to increase the particle size in the resin.
  • the dispersibility of the toner is lowered and the transparency is lowered, the oxygen blocking performance is lowered due to the influence of the external environment, and the luminance is lowered.
  • JP 2011-202148 A International Publication No. 2007/034877 Special table 2013-505347 gazette
  • the present invention has been made in view of the above-mentioned problems and situations, and the solution is an optical material having durability that can suppress deterioration of semiconductor nanoparticles due to oxygen or the like over a long period of time, and excellent transparency, An optical film and an optical device including the optical film are provided.
  • An optical material comprising at least one compound of polysilazane and a modified polysilazane and semiconductor nanoparticles.
  • a substrate An optical film comprising a semiconductor nanoparticle layer provided on the base material and containing at least one compound of polysilazane and a modified polysilazane and semiconductor nanoparticles.
  • Item 5 The optical film according to Item 3 or 4, wherein the semiconductor nanoparticles are coated with at least one compound of the polysilazane and the modified polysilazane.
  • modified polysilazane is a compound containing at least one selected from silicon oxide, silicon nitride, and silicon oxynitride, which is obtained by irradiating the polysilazane with vacuum ultraviolet rays.
  • the optical film as described in any one of.
  • Two to three semiconductor nanoparticle layers are provided, and the two semiconductor nanoparticle layers contain semiconductor nanoparticles having emission wavelengths different from each other.
  • a light emitting device comprising the optical film according to any one of items 3 to 8.
  • an optical material, an optical film, and an optical device including the optical film which have durability capable of suppressing deterioration of semiconductor nanoparticles due to oxygen or the like over a long period of time and excellent in transparency. it can.
  • the expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows. Polysilazane and modified polysilazane have not only oxygen-blocking properties but also oxygen-absorbing performance, so it can be assumed that oxygen that contacts semiconductor nanoparticles can be effectively reduced and sufficient durability can be secured. Yes.
  • Polysilazane and modified polysilazane can further improve oxygen barrier properties by light irradiation such as vacuum ultraviolet irradiation, but in any case, aggregates are not formed and dispersibility in the resin is good. Therefore, it is estimated that transparency can be maintained.
  • the optical material of the present invention contains at least one compound of polysilazane and a modified polysilazane, and semiconductor nanoparticles (hereinafter also referred to as “quantum dots”).
  • semiconductor nanoparticles hereinafter also referred to as “quantum dots”.
  • the semiconductor nanoparticles preferably have a core-shell structure. Thereby, aggregation of semiconductor nanoparticles can be suppressed and dispersibility can be further increased, and luminance efficiency can be improved.
  • the present invention also includes a substrate, and a semiconductor nanoparticle layer provided on the substrate and containing semiconductor nanoparticles and at least one compound of polysilazane and a polysilazane modified product. It is good also as an optical film.
  • the semiconductor nanoparticles are preferably coated with at least one compound of the polysilazane and the modified polysilazane. Thereby, the transparency and durability of the optical film can be further improved.
  • the semiconductor nanoparticle layer preferably contains an ultraviolet curable resin. Thereby, manufacture of an optical film can be performed easily.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the optical film of the present invention comprises a substrate and a semiconductor nanoparticle layer provided on the substrate and containing at least one compound of polysilazane and a polysilazane modified product, and semiconductor nanoparticles. Has been. Each layer and the material constituting the optical film of the present invention will be described below.
  • the base material that can be used in the optical film of the present invention is not particularly limited, such as glass and plastic, but those having translucency are used.
  • Examples of the material that is preferably used as the light-transmitting substrate include glass, quartz, and a resin film. Particularly preferred is a resin film capable of giving flexibility to the optical film.
  • the thickness of the substrate is not particularly limited, and may be any thickness.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by J
  • a gas barrier film made of an inorganic material, an organic material, or both may be formed on the surface of the resin film.
  • a water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method according to JIS K 7129-1992 is 0.01 g. / (M 2 ⁇ 24 h) or less is preferable, and the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 ⁇ 10 ⁇ 3 ml / (m 2
  • any material may be used as long as it has a function of suppressing intrusion of the semiconductor nanoparticles of the element such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like is used. be able to.
  • the method for forming the gas barrier film is not particularly limited.
  • the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the semiconductor nanoparticle layer includes at least one compound of polysilazane and a polysilazane modified product and semiconductor nanoparticles.
  • the optical material of the present invention is configured to contain at least one kind of compound, semiconductor nanoparticles, and the like among these polysilazane and polysilazane modified products.
  • two or more semiconductor nanoparticle layers may be provided.
  • semiconductor nanoparticles having different emission wavelengths are contained in each of the two or more semiconductor nanoparticle layers.
  • the semiconductor nanoparticle layer can be formed by applying a semiconductor nanoparticle layer forming coating solution containing polysilazane and semiconductor nanoparticles on a substrate, followed by drying treatment. Any appropriate method can be adopted as a coating method. Specific examples include a spin coating method, a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method. Moreover, as a solvent for preparing a coating solution for forming a semiconductor nanoparticle layer, any solvent can be used as long as it does not react with semiconductor nanoparticles, polysilazane, and polysilazane modifier, such as toluene. it can.
  • the polysilazane is partially or entirely modified by the method described later.
  • the semiconductor nanoparticle layer preferably further contains a resin material, and more preferably contains an ultraviolet curable resin. If the semiconductor nanoparticle layer contains an ultraviolet curable resin, that is, if the semiconductor nanoparticle layer forming coating solution contains an ultraviolet curable resin, apply the semiconductor nanoparticle layer forming coating solution.
  • the applied layer is subjected to ultraviolet irradiation treatment.
  • the ultraviolet irradiation treatment may also serve as a modification treatment for modifying the polysilazane described above.
  • the layer thickness of the semiconductor nanoparticle layer is not particularly limited, and can be appropriately set according to the use of the optical film.
  • the semiconductor nanoparticle layer constituting the optical film of the present invention contains semiconductor nanoparticles. That is, the semiconductor nanoparticles are contained in the coating solution for forming the semiconductor nanoparticle layer.
  • the semiconductor nanoparticle according to the present invention refers to a particle having a predetermined size that is composed of a crystal of a semiconductor material and has a quantum confinement effect, and is a fine particle having a particle diameter of about several nanometers to several tens of nanometers. The quantum dot effect shown is obtained.
  • the particle diameter of the semiconductor nanoparticles according to the present invention is preferably in the range of 1 to 20 nm, more preferably in the range of 1 to 10 nm.
  • the energy level E of such semiconductor nanoparticles is generally expressed by the following formula (1) when the Planck constant is “h”, the effective mass of electrons is “m”, and the radius of the semiconductor nanoparticles is “R”. ).
  • the band gap of the semiconductor nanoparticles increases in proportion to “R ⁇ 2 ”, and a so-called quantum dot effect is obtained.
  • the band gap value of the semiconductor nanoparticles can be controlled by controlling and defining the particle diameter of the semiconductor nanoparticles. That is, by controlling and defining the particle diameter of the fine particles, it is possible to provide diversity that is not found in ordinary atoms. Therefore, it can be excited by light, or converted into light having a desired wavelength and emitted.
  • such a light-emitting semiconductor nanoparticle material is defined as a semiconductor nanoparticle.
  • the average particle size of the semiconductor nanoparticles is about several nm to several tens of nm, but is set to an average particle size corresponding to the target emission color.
  • the average particle diameter of the semiconductor nanoparticles is preferably set within a range of 3.0 to 20 nm.
  • the average particle size of the semiconductor nanoparticles is set.
  • the diameter is preferably set in the range of 1.5 to 10 nm.
  • the average particle diameter of the semiconductor nanoparticles is preferably set in the range of 1.0 to 3.0 nm. .
  • a known method can be used. For example, a method of observing semiconductor nanoparticles using a transmission electron microscope (TEM) and obtaining the number average particle size of the particle size distribution therefrom, or a method of obtaining an average particle size using an atomic force microscope (AFM)
  • the particle size can be measured using a particle size measuring apparatus using a dynamic light scattering method, for example, “ZETASIZER Nano Series Nano-ZS” manufactured by Malvern.
  • an atomic force microscope A method of obtaining an average particle size using AFM is preferred.
  • the aspect ratio (major axis diameter / minor axis diameter) value is preferably in the range of 1.0 to 2.0, more preferably 1.1 to 2.0. The range is 1.7.
  • the aspect ratio (major axis diameter / minor axis diameter) of the semiconductor nanoparticles according to the present invention can also be determined by measuring the major axis diameter and the minor axis diameter using, for example, an atomic force microscope (AFM). it can.
  • the number of individuals to be measured is preferably 300 or more.
  • the addition amount of the semiconductor nanoparticles is preferably in the range of 0.01 to 50% by mass, and in the range of 0.5 to 30% by mass, where 100% by mass of all the constituent materials of the semiconductor nanoparticle layer is taken. Is more preferable, and most preferably in the range of 2.0 to 25% by mass. If the addition amount is 0.01% by mass or more, sufficient luminance efficiency can be obtained, and if it is 50% by mass or less, an appropriate inter-particle distance of the semiconductor nanoparticles can be maintained, and the quantum size effect can be sufficiently obtained. It can be demonstrated.
  • Constituent material of semiconductor nanoparticles for example, a simple substance of Group 14 element of periodic table such as carbon, silicon, germanium, tin, etc., Group 15 of periodic table such as phosphorus (black phosphorus), etc.
  • Elemental element simple substance, periodic table group 16 element such as selenium, tellurium, etc., compound consisting of a plurality of periodic table group 14 elements such as silicon carbide (SiC), tin (IV) (SnO 2 ), tin sulfide ( II, IV) (Sn (II) Sn (IV) S 3 ), tin sulfide (IV) (SnS 2 ), tin sulfide (II) (SnS), tin selenide (II) (SnSe), tin telluride ( II) (SnTe), lead sulfide (II) (PbS), lead selenide (II) (PbSe), lead telluride (II) (PbTe) periodic table group 14 elements and periodic table group 16 elements , Boron nitride (BN), boron phosphide (BP), boron arsenide ( BAs), aluminum nitride (AlN
  • periodic table group 2 element and period Front It is preferably a compound of Group 6 elements, among them, Si, Ge, GaN, GaP , InN, InP, Ga 2 O 3, Ga 2 S 3, In 2 O 3, In 2 S 3, ZnO, ZnS, CdO, CdS Is more preferable. Since these substances do not contain highly toxic negative elements, they are excellent in environmental pollution resistance and safety to living organisms, and because a pure spectrum can be stably obtained in the visible light region, light emitting devices Is advantageous for the formation of Of these materials, CdSe, ZnSe, and CdS are preferable in terms of light emission stability. From the viewpoints of luminous efficiency, high refractive index, safety and economy, ZnO and ZnS semiconductor nanoparticles are preferred. Moreover, said material may be used by 1 type and may be used in combination of 2 or more type.
  • the semiconductor nanoparticles described above can be doped with trace amounts of various elements as impurities as necessary. By adding such a doping substance, the emission characteristics can be greatly improved.
  • the band gap (eV) of the semiconductor nanoparticles can be measured using a Tauc plot.
  • the Tauc plot which is one of the optical scientific measurement methods of the band gap (eV), will be described.
  • the maximum wavelength of the emission spectrum can be simply used as an index of the band gap.
  • the surface of the semiconductor nanoparticles is preferably coated with an inorganic coating layer or a coating composed of an organic ligand. That is, the surface of the semiconductor nanoparticle has a core-shell structure having a core region composed of a semiconductor nanoparticle material and a shell region composed of an inorganic coating layer or an organic ligand. preferable.
  • This core / shell structure is preferably formed of at least two kinds of compounds, and may form a gradient structure (gradient structure) with two or more kinds of compounds.
  • gradient structure gradient structure
  • aggregation of the semiconductor nanoparticles in the coating liquid can be effectively prevented, the dispersibility of the semiconductor nanoparticles can be improved, the luminance efficiency is improved, and the optical film of the present invention is used.
  • Generation of color misregistration can be suppressed when the light emitting device is continuously driven. Further, the light emission characteristics can be stably obtained due to the presence of the coating layer.
  • a surface modifier as described later can be reliably supported in the vicinity of the surface of the semiconductor nanoparticles.
  • the thickness of the coating (shell part) is not particularly limited, but is preferably in the range of 0.1 to 10 nm, and more preferably in the range of 0.1 to 5 nm.
  • the emission color can be controlled by the average particle diameter of the semiconductor nanoparticles, and if the thickness of the coating is within the above range, the thickness of the coating can be reduced from the thickness corresponding to several atoms.
  • the thickness is less than one particle, the semiconductor nanoparticles can be filled with high density, and a sufficient amount of light emission can be obtained.
  • the presence of the coating can suppress non-luminous electron energy transfer due to defects existing on the particle surfaces of the core particles and electron traps on the dangling bonds, thereby suppressing a decrease in quantum efficiency.
  • the coating for forming a semiconductor nanoparticle layer of the present invention In the liquid, it is preferable that a surface modifier is attached in the vicinity of the surface of the semiconductor nanoparticles. Thereby, the dispersion stability of the semiconductor nanoparticles in the coating solution for forming the semiconductor nanoparticle layer can be made particularly excellent.
  • the surface of the semiconductor nanoparticles is attached to the surface of the semiconductor nanoparticles, so that the shape of the formed semiconductor nanoparticles becomes high in sphericity, and the particle size distribution of the semiconductor nanoparticles Can be kept narrow, and therefore can be made particularly excellent.
  • Functional surface modifiers applicable in the present invention may be those directly attached to the surface of the semiconductor nanoparticles, or those attached via a shell (the surface modifier is directly attached to the shell)
  • the semiconductor nanoparticle core portion may not be in contact with the core portion.
  • the surface modifier examples include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, and polyoxyethylene oleyl ether; tripropylphosphine, tributylphosphine, trihexylphosphine, trioctylphosphine, and the like.
  • Trialkylphosphines polyoxyethylene alkylphenyl ethers such as polyoxyethylene n-octylphenyl ether and polyoxyethylene n-nonylphenyl ether; tri (n-hexyl) amine, tri (n-octyl) amine, tri ( tertiary amines such as n-decyl) amine; tripropylphosphine oxide, tributylphosphine oxide, trihexylphosphine oxide, trioctylphosphine oxide
  • Organic phosphorus compounds such as tridecylphosphine oxide; polyethylene glycol diesters such as polyethylene glycol dilaurate and polyethylene glycol distearate; organic nitrogen compounds such as nitrogen-containing aromatic compounds such as pyridine, lutidine, collidine and quinolines; hexylamine and octyl Aminoalkanes such as amine, decylamine, dode
  • the surface modifier may be a semiconductor nanoparticle in a high-temperature liquid phase. It is preferable that the substance be coordinated to the fine particles of the above and stabilized, specifically, trialkylphosphines, organic phosphorus compounds, aminoalkanes, tertiary amines, organic nitrogen compounds, dialkyl sulfides, Dialkyl sulfoxides, organic sulfur compounds, higher fatty acids and alcohols are preferred.
  • trialkylphosphines organic phosphorus compounds
  • aminoalkanes tertiary amines
  • organic nitrogen compounds e.g., dialkyl sulfides, Dialkyl sulfoxides, organic sulfur compounds, higher fatty acids and alcohols are preferred.
  • the shape of the semiconductor nanoparticles formed during the production of the semiconductor nanoparticles can be made higher in sphericity, and the particle size distribution of the semiconductor nanoparticles can be made sharper.
  • polysilazane can also be used as a surface modifier as described below.
  • the size (average particle diameter) of the semiconductor nanoparticles is preferably in the range of 1 to 20 nm.
  • the size of a semiconductor nanoparticle is composed of a core region composed of a semiconductor nanoparticle material, a shell region composed of an inert inorganic coating layer or an organic ligand, and a surface modifier. Represents the total size. If the surface modifier or shell is not included, the size does not include it.
  • an aqueous raw material is used, for example, alkanes such as n-heptane, n-octane, isooctane, or benzene, toluene.
  • Inverted micelles which exist as reverse micelles in non-polar organic solvents such as aromatic hydrocarbons such as xylene, and crystal growth in this reverse micelle phase, inject a thermally decomposable raw material into a high-temperature liquid-phase organic medium
  • examples thereof include a hot soap method for crystal growth and a solution reaction method involving crystal growth at a relatively low temperature using an acid-base reaction as a driving force, as in the hot soap method. Any method can be used from these production methods, and among these, the liquid phase production method is preferred.
  • the organic surface modifier present on the surface when the semiconductor nanoparticles are synthesized is referred to as an initial surface modifier.
  • the initial surface modifier in the hot soap method include trialkylphosphines, trialkylphosphine oxides, alkylamines, dialkyl sulfoxides, alkanephosphonic acid and the like. These initial surface modifiers are preferably exchanged for the above-described functional surface modifiers by an exchange reaction.
  • the initial surface modifier such as trioctyl phosphine oxide obtained by the hot soap method described above is obtained by performing the functional surface modification described above by an exchange reaction performed in a liquid phase containing the functional surface modifier. It is possible to replace it with an agent.
  • the semiconductor nanoparticle layer constituting the optical film of the present invention contains at least one compound among polysilazane and a modified polysilazane.
  • the modified polysilazane is a compound containing at least one selected from silicon oxide, silicon nitride, and silicon oxynitride, which is produced by modifying polysilazane.
  • the polysilazane may be dispersed together with the semiconductor nanoparticles in the coating solution for forming the semiconductor nanoparticle layer, or the semiconductor nanoparticles are coated with polysilazane in advance, and the particles are in the coating solution for forming the semiconductor nanoparticle layer. May be dispersed.
  • the coating means covering the surface of the semiconductor nanoparticles, but may not cover all of the surfaces of the semiconductor nanoparticles, but covers a part thereof. It may be.
  • the semiconductor nanoparticle layer is provided with durability capable of suppressing contact of the semiconductor nanoparticles with oxygen or the like over a long period of time. Furthermore, it can be set as a highly transparent layer.
  • Polysilazane is a polymer having a silicon-nitrogen bond, and is composed of Si—N, Si—H, N—H, etc., SiO 2 , Si 3 N 4 and both intermediate solid solutions SiOxNy, etc.
  • the ceramic precursor inorganic polymer The polysilazane and the polysilazane derivative are represented by the following general formula (I).
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group or an alkoxy group. .
  • Perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms, is particularly preferred from the viewpoint of the denseness of the resulting layer.
  • the organopolysilazane in which the hydrogen part bonded to Si is partially substituted with an alkyl group or the like has an alkyl group such as a methyl group, so that the adhesion to the base substrate is improved and the polysilazane is hard and brittle.
  • the ceramic film can be provided with toughness, and there is an advantage that generation of cracks can be suppressed even when the (average) film thickness is increased.
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. Its molecular weight is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), is a liquid or solid substance, and varies depending on the molecular weight. These are commercially available in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as a polysilazane-containing liquid.
  • polysilazane which is ceramicized at a low temperature silicon alkoxide-added polysilazane obtained by reacting silicon alkoxide with polysilazane represented by the above general formula (I) (Japanese Patent Laid-Open No. 5-23827), glycidol is reacted.
  • Glycidol-added polysilazane Japanese Patent Laid-Open No. 6-122852
  • alcohol-added polysilazane obtained by reacting alcohol
  • metal carboxylate obtained by reacting metal carboxylate Addition polysilazane (JP-A-6-299118), acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), metal obtained by adding metal fine particles Polysilaza added with fine particles (JP-A-7-196986 publication), and the like.
  • an amine or metal catalyst can be added to the semiconductor nanoparticle layer in order to promote the conversion of polysilazane to a silicon oxide compound.
  • Specific examples include Aquamica NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials Co., Ltd.
  • Modification treatment is preferably performed on the polysilazane contained in the semiconductor nanoparticle layer, whereby a part or all of the polysilazane contained in the semiconductor nanoparticle layer is modified by polysilazane modification. Become a body.
  • the modification treatment is performed on the coating layer formed by coating the coating solution for forming a semiconductor nanoparticle layer.
  • the modification treatment may be performed in advance on the semiconductor nanoparticles coated with the polysilazane, or may be coated with the polysilazane. It may be performed on the coating layer formed by coating the semiconductor nanoparticles, or may be performed on both.
  • a known method based on the conversion reaction of polysilazane can be selected.
  • Production of a silicon oxide film or a silicon oxynitride film by a substitution reaction of a silazane compound requires a heat treatment at 450 ° C. or more, and is difficult to apply to a flexible substrate such as plastic.
  • a method such as plasma treatment, ozone treatment, or ultraviolet irradiation treatment that allows the conversion reaction to proceed at a low temperature.
  • ultraviolet irradiation As the modification treatment of the present invention, ultraviolet irradiation, vacuum ultraviolet irradiation, and plasma irradiation are desirable, and vacuum ultraviolet irradiation is particularly preferable in terms of the modification effect of polysilazane.
  • UV irradiation treatment As the modification treatment method, treatment by ultraviolet irradiation is also preferred. Ozone and active oxygen atoms generated by ultraviolet light (synonymous with ultraviolet light) have high oxidation ability, and it is possible to produce silicon oxide or silicon oxynitride having high density and insulation at low temperature. .
  • the base material is heated, and O 2 and H 2 O contributing to ceramicization (silica conversion) and polysilazane itself are excited and activated, so that polysilazane is excited and promotes the ceramicization of polysilazane.
  • the resulting ceramic film becomes denser.
  • the ultraviolet irradiation may be performed at the time of preparing the coating solution for forming the semiconductor nanoparticle layer, or may be performed after coating the coating solution for forming the semiconductor nanoparticle layer.
  • any commonly used ultraviolet ray generator can be used.
  • ultraviolet rays generally refers to electromagnetic waves having a wavelength of 10 to 400 nm, but in the case of ultraviolet irradiation treatment other than the vacuum ultraviolet ray (10 to 200 nm) treatment described later, preferably 210 to An ultraviolet ray of 350 nm is used.
  • UV irradiation For UV irradiation, set the irradiation intensity and irradiation time within a range where the substrate carrying the coating film to be irradiated is not damaged.
  • a lamp of 2 kW (80 W / cm ⁇ 25 cm) is used, and the strength of the base material surface is 20 to 300 mW / cm 2 , preferably 50 to 200 mW / cm 2.
  • the distance between the substrate and the lamp can be set so that the irradiation becomes 0.1 seconds to 10 minutes.
  • the base material temperature during the ultraviolet irradiation treatment is 150 ° C. or higher
  • a plastic film or the like is used as the base material
  • the base material is deformed or the strength of the base material is reduced.
  • a highly heat-resistant film such as polyimide or a base material such as metal
  • processing at a higher temperature is possible. Therefore, there is no general upper limit to the substrate temperature at the time of ultraviolet irradiation, and a person skilled in the art can appropriately set it depending on the type of the substrate.
  • ultraviolet ray generation methods include metal halide lamps, high-pressure mercury lamps, low-pressure mercury lamps, xenon arc lamps, carbon arc lamps, and excimer lamps (single wavelengths of 172 nm, 222 nm, and 308 nm, for example, USHIO INC. )), UV light laser and the like, and are not particularly limited.
  • metal halide lamps high-pressure mercury lamps, low-pressure mercury lamps, xenon arc lamps, carbon arc lamps, and excimer lamps (single wavelengths of 172 nm, 222 nm, and 308 nm, for example, USHIO INC. )
  • UV light laser and the like are not particularly limited.
  • UV irradiation is applicable to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate to be coated.
  • a base material for example, a silicon wafer
  • the ultraviolet baking furnace itself is generally known, and for example, it is possible to use those manufactured by I-Graphics Co., Ltd.
  • the substrate having the coating layer on the surface is in the form of a long film, it is converted into ceramics by continuously irradiating ultraviolet rays in the drying zone equipped with the ultraviolet ray generation source as described above while being conveyed. can do.
  • the time required for the ultraviolet irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the substrate to be coated and the composition and concentration of the coating solution.
  • a more preferable modification treatment method is a treatment by vacuum ultraviolet irradiation.
  • the treatment by vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy with a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the silazane compound, and only bonds photons called photon processes to bond atoms.
  • This is a method of forming a silicon oxide film at a relatively low temperature by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly by the action of.
  • a rare gas excimer lamp is preferably used as a vacuum ultraviolet light source required for this.
  • noble gas atoms such as Xe, Kr, Ar, Ne and the like are chemically bonded to form a molecule, it is called an inert gas.
  • rare gas atoms excited atoms
  • the rare gas is xenon, e + Xe ⁇ e + Xe * Xe * + Xe + Xe ⁇ Xe 2 * + Xe
  • excimer light of 172 nm is emitted.
  • a feature of the excimer lamp is that the radiation is concentrated on one wavelength, and since only the necessary light is not emitted, the efficiency is high. Further, since no extra light is emitted, the temperature of the object can be kept low. Furthermore, since no time is required for starting and restarting, instantaneous lighting and blinking are possible.
  • Dielectric gas barrier discharge is generated in a gas space by arranging a gas space between both electrodes via a dielectric (transparent quartz in the case of an excimer lamp) and applying a high frequency high voltage of several tens of kHz to the electrode. It is a very thin discharge called micro discharge similar to lightning.
  • the micro discharge streamer reaches the tube wall (dielectric)
  • the electric charge accumulates on the dielectric surface, and the micro discharge disappears.
  • the dielectric gas barrier discharge is a discharge in which micro discharges are spread over the entire tube wall and are repeatedly generated and extinguished. For this reason, flickering of light that can be seen with the naked eye occurs.
  • a very high temperature streamer reaches a pipe wall directly locally, there is a possibility that deterioration of the pipe wall may be accelerated.
  • Electrodeless electric field discharge can be obtained by electrodeless electric field discharge as well as dielectric gas barrier discharge.
  • Electrodeless electric field discharge by capacitive coupling also called RF discharge.
  • the lamp and electrodes and their arrangement may be basically the same as for dielectric gas barrier discharge, but the high frequency applied between the two electrodes is lit at several MHz. Since the electrodeless field discharge can provide a spatially and temporally uniform discharge, a long-life lamp without flickering can be obtained.
  • the outer electrode covers the entire outer surface and allows light to pass through to extract light to the outside in order to discharge the entire discharge space.
  • an electrode in which a fine metal wire is formed in a net shape is used. Since this electrode uses as thin a line as possible so as not to block light, it is easily damaged by ozone generated by vacuum ultraviolet light in an oxygen atmosphere.
  • Synthetic quartz windows are not only expensive consumables, but also cause light loss.
  • the outer diameter of the double-cylindrical lamp is about 25 mm, the difference in distance to the irradiation surface cannot be ignored directly below the lamp axis and on the side of the lamp, resulting in a large difference in illumination. Therefore, even if the lamps are closely arranged, a uniform illuminance distribution cannot be obtained. If the irradiation device is provided with a synthetic quartz window, the distance in the oxygen atmosphere can be made uniform, and a uniform illuminance distribution can be obtained.
  • the biggest feature of the capillary excimer lamp is its simple structure.
  • the quartz tube is closed at both ends, and only gas for excimer light emission is sealed inside. Therefore, a very inexpensive light source can be provided.
  • ⁇ Dual cylindrical lamps are processed by connecting both ends of the inner and outer tubes and closing them, so they are more likely to be damaged by use and transportation than thin tube lamps. Further, the outer diameter of the tube of the thin tube lamp is about 6 to 12 mm, and if it is too thick, a high voltage is required for starting.
  • the discharge mode can be either dielectric gas barrier discharge or electrodeless field discharge.
  • the electrode may have a flat surface in contact with the lamp, but if the shape is matched to the curved surface of the lamp, the lamp can be firmly fixed and the discharge is more stable when the electrode is in close contact with the lamp. Also, if the curved surface is made into a mirror surface with aluminum, it also becomes a light reflector.
  • the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen. In addition, it is known that the energy of light having a short wavelength of 172 nm for dissociating the bonds of organic substances has high ability. Due to the high energy of the active oxygen, ozone and ultraviolet radiation, the coating film containing polysilazane can be modified in a short time.
  • Excimer lamps can be lit with low power input because of their high light generation efficiency.
  • light having a long wavelength that causes a temperature increase due to light is not emitted, and energy is irradiated at a single wavelength in the ultraviolet region, so that an increase in the surface temperature of the irradiation object is suppressed.
  • it is suitable for flexible film materials such as PET that are easily affected by heat.
  • the semiconductor nanoparticle layer of the optical film of the present invention preferably contains a resin material, and more preferably contains an ultraviolet curable resin.
  • an ultraviolet curable urethane acrylate resin for example, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, or an ultraviolet curable epoxy resin is preferable. Used. Of these, ultraviolet curable acrylate resins are preferred.
  • the UV curable urethane acrylate resin generally includes 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate (hereinafter referred to as acrylate) in addition to a product obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer. It is easily obtained by reacting an acrylate monomer having a hydroxy group such as 2-hydroxypropyl acrylate.
  • acrylate monomer having a hydroxy group such as 2-hydroxypropyl acrylate.
  • those described in JP-A-59-151110 can be used.
  • a mixture of 100 parts Unidic 17-806 (manufactured by DIC Corporation) and 1 part of Coronate L (manufactured by Nippon Polyurethane Corporation) is preferably used.
  • UV curable polyester acrylate resins include those that are easily formed by reacting polyester polyols with 2-hydroxyethyl acrylate and 2-hydroxy acrylate monomers, generally as disclosed in JP-A-59-151112. Those described in the publication can be used.
  • ultraviolet curable epoxy acrylate resin examples include those produced by reacting epoxy acrylate with an oligomer, a reactive diluent and a photopolymerization initiator added thereto. Those described in Japanese Patent No. 105738 can be used.
  • UV curable polyol acrylate resins include trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, alkyl-modified dipentaerythritol pentaacrylate, etc. Can be mentioned.
  • photopolymerization initiators for these ultraviolet curable resins include benzoin and its derivatives, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, ⁇ -amyloxime ester, thioxanthone, and derivatives thereof. You may use with a photosensitizer.
  • the photopolymerization initiator can also be used as a photosensitizer.
  • a sensitizer such as n-butylamine, triethylamine, tri-n-butylphosphine can be used.
  • the photopolymerization initiator or photosensitizer used in the ultraviolet curable resin composition is 0.1 to 15 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the composition.
  • the resin monomer may include general monomers such as methyl acrylate, ethyl acrylate, butyl acrylate, benzyl acrylate, cyclohexyl acrylate, vinyl acetate, and styrene as monomers having one unsaturated double bond.
  • monomers having two or more unsaturated double bonds ethylene glycol diacrylate, propylene glycol diacrylate, divinyl benzene, 1,4-cyclohexane diacrylate, 1,4-cyclohexyl dimethyl adiacrylate, trimethylolpropane triacrylate. Examples include pentaerythritol tetraacrylic ester.
  • Adekaoptomer KR / BY series KR-400, KR-410, KR-550, KR-566, KR-567, BY-320B (manufactured by ADEKA Corporation); Koei Hard A-101-KK A-101-WS, C-302, C-401-N, C-501, M-101, M-102, T-102, D-102, NS-101, FT-102Q8, MAG-1-P20 , AG-106, M-101-C (manufactured by Guangei Chemical Co., Ltd.); Seika Beam PHC2210 (S), PHCX-9 (K-3), PHC2213, DP-10, DP-20, DP-30, P1000, P1100 , P1200, P1300, P1400, P1500, P1600, SCR900 (manufactured by Dainichi Seika Kogyo Co., Ltd.); KRM7033, KRM703 , KRM7130
  • Specific examples of compounds include trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, dioxane glycol acrylate, ethoxylated acrylate, alkyl-modified dipentaerythritol.
  • a pentaacrylate etc. can be mentioned.
  • the semiconductor nanoparticle layer containing the resin material as described above is applied for forming a semiconductor nanoparticle layer using a known method such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, or an inkjet method. It can be formed by applying a liquid, heating and drying, and UV curing.
  • the coating amount is suitably 0.1 to 40 ⁇ m as wet film thickness, and preferably 0.5 to 30 ⁇ m.
  • the dry film thickness is an average film thickness of 0.1 to 30 ⁇ m, preferably 1 to 20 ⁇ m.
  • any light source that generates ultraviolet rays can be used without limitation.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • the irradiation conditions vary depending on individual lamps, the dose of ultraviolet radiation is typically 5 ⁇ 500mJ / cm 2, preferably 5 ⁇ 150mJ / cm 2.
  • tensile_strength when irradiating an ultraviolet-ray, it is preferable to carry out, applying tension
  • the tension to be applied is preferably 30 to 300 N / m.
  • the method for applying the tension is not particularly limited, and the tension may be applied in the conveying direction on the back roll, or the tension may be applied in the width direction or the biaxial direction by a tenter. This makes it possible to obtain a film having further excellent flatness.
  • the semiconductor nanoparticle layer forming coating solution for forming the semiconductor nanoparticle layer may contain a solvent.
  • the organic solvent contained in the coating solution include hydrocarbons (toluene, xylene), alcohols (methanol, ethanol, isopropanol, butanol, cyclohexanol), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone), These may be appropriately selected from esters (methyl acetate, ethyl acetate, methyl lactate), glycol ethers, and other organic solvents, or may be used by mixing them.
  • the resin material contained in the semiconductor nanoparticle layer is not limited to the ultraviolet curable resin, and is, for example, a thermoplastic resin such as polymethyl methacrylate resin (PMMA; Poly (methyl methacrylate)).
  • a thermosetting resin such as a thermosetting urethane resin, a phenol resin, a urea melamine resin, an epoxy resin, an unsaturated polyester resin, or a silicone resin composed of an acrylic polyol and an isocyanate prepolymer may be used.
  • the optical film of the present invention configured as described above can be applied to various light emitting devices.
  • it can be used as a high brightness film disposed between a light source and a polarizing plate in an LCD.
  • the InP / ZnS semiconductor fine particle phosphor synthesized by this synthesis method has a core part particle size of 2.1 to 3.8 nm and a core part particle size distribution of 6 to 40%. confirmed.
  • a JEM-2100 transmission electron microscope manufactured by JEOL Ltd. was used for the observation.
  • the optical characteristics of the InP / ZnS semiconductor fine particle phosphor were measured. It was confirmed that the emission peak wavelength was 430 to 720 nm and the emission half width was 35 to 90 nm. The luminous efficiency reached a maximum of 70.9%.
  • a fluorescence spectrophotometer FluoroMax-4 manufactured by JOBIN YVON was used to measure the emission characteristics of the InP / ZnS semiconductor fine particle phosphor, and Hitachi Co., Ltd. was used to measure the absorption spectrum of the InP / ZnS semiconductor fine particle phosphor.
  • a spectrophotometer U-4100 manufactured by High Technologies was used.
  • TOPO trioctylphosphine oxide
  • HDA 1-heptadecyl-octadecylamine
  • the particle A As in the case of the particle A, by directly observing the particle B with a transmission electron microscope, CdSe / ZnS semiconductor nanoparticles having a core-shell structure in which the surface of the CdSe core part is covered with a ZnS shell are confirmed. I was able to. Further, it was confirmed that the CdSe / ZnS semiconductor fine particle phosphor had a core part particle diameter of 2.0 to 4.0 nm and a core part particle size distribution of 6 to 40%. As for the optical characteristics, it was confirmed that the emission peak wavelength was 410 to 700 nm and the emission half width was 35 to 90 nm. The luminous efficiency reached a maximum of 73.9%.
  • the semiconductor nanoparticles A were encapsulated in silica particles having a particle diameter of 70 to 100 nm. Further, it was confirmed that the emission peak wavelength was 390 to 700 nm and the emission half width was 35 to 90 nm. The luminous efficiency reached a maximum of 70.1%.
  • the mixture was stirred for 15 minutes before injecting 0.1 mL of 4% NH 4 OH to initiate the reaction.
  • the reaction was stopped the next day by centrifugation and the solid phase was collected.
  • the obtained particles were washed twice with 20 mL of cyclohexane and then dried under vacuum to obtain semiconductor nanoparticles D covered with perhydropolysilazane.
  • the semiconductor nanoparticles A were encapsulated in silica particles having a particle diameter of 70 to 100 nm. Further, it was confirmed that the emission peak wavelength was 390 to 700 nm and the emission half width was 30 to 70 nm. The luminous efficiency reached a maximum of 73.5%.
  • the emission peak wavelength was 390 to 700 nm and the emission half width was 30 to 70 nm.
  • the luminous efficiency reached a maximum of 75.5%.
  • the emission peak wavelength was 390 to 700 nm and the emission half width was 30 to 60 nm.
  • the luminous efficiency reached a maximum of 76.5%.
  • optical films 1 to 16 were produced by the following method.
  • Preparation of optical film 1 The particle size is adjusted so that the semiconductor nanoparticles B emit red and green, and the red is dispersed in 0.75 mg and the green is 4.12 mg in a toluene solvent, and a PMMA resin solution is further added, and the weight content of the semiconductor nanoparticles A coating solution for forming a semiconductor nanoparticle layer having a concentration of 1% was prepared.
  • the above semiconductor nanoparticle layer forming coating solution is applied to a 125 ⁇ m thick polyester film (KDL86WA, manufactured by Teijin DuPont Films, Ltd.) with easy adhesion processing on both sides, and a dry film thickness of 100 ⁇ m is applied, and then at 60 ° C. for 3 minutes. It dried and produced the optical film 1 of the comparative example.
  • KDL86WA manufactured by Teijin DuPont Films, Ltd.
  • optical film 2 An optical film 2 of a comparative example was prepared in the same manner except that the semiconductor nanoparticle B was changed to the semiconductor nanoparticle A in the production of the optical film 1.
  • Preparation of optical film 4 The particle size of the semiconductor nanoparticle A component encapsulated in the semiconductor nanoparticle C is adjusted so as to emit light in red and green, and the red and green components of the encapsulated semiconductor nanoparticle A become 0.75 mg and 4.12 mg.
  • the photopolymerization initiator Irgacure 184 (manufactured by BASF Japan) is added to the UV curable resin Unidic V-4025 manufactured by DIC Corporation, and the resin / initiator at a solid content ratio (mass%).
  • a UV curable resin solution adjusted to 95/5 was added to prepare a coating solution for forming a semiconductor nanoparticle layer in which the weight content of the semiconductor nanoparticles was 1%.
  • the above semiconductor nanoparticle layer forming coating solution is applied to a 125 ⁇ m thick polyester film (KDL86WA, manufactured by Teijin DuPont Films, Ltd.) with easy adhesion processing on both sides, and a dry film thickness of 100 ⁇ m is applied, and then at 60 ° C. for 3 minutes. dried and cured condition; 0.5 J / cm 2 under air, subjected to curing at high pressure mercury lamp used to produce an optical film 4 of the comparative example.
  • KDL86WA manufactured by Teijin DuPont Films, Ltd.
  • a coating solution for forming a semiconductor nanoparticle layer was produced in the same manner as in the production of the optical film 4.
  • the above semiconductor nanoparticle layer forming coating solution is applied to a 125 ⁇ m thick polyester film (KDL86WA, manufactured by Teijin DuPont Films, Ltd.) with easy adhesion processing on both sides, and a dry film thickness of 100 ⁇ m is applied, and then at 60 ° C. for 3 minutes. It dried and hardened
  • Preparation of optical film 6 The particle size is adjusted so that the semiconductor nanoparticles B emit red and green light, and 0.75 mg of red and 4.12 mg of green are dispersed in a toluene solvent. Further, perhydropolysilazane (Aquamica NN120-10, non-catalytic type) AZ Electronic Materials Co., Ltd.) was added to prepare a coating solution for forming a semiconductor nanoparticle layer with a semiconductor nanoparticle weight content of 1%.
  • the above semiconductor nanoparticle layer forming coating solution is applied to a 125 ⁇ m thick polyester film (KDL86WA, manufactured by Teijin DuPont Films, Ltd.) with easy adhesion processing on both sides, and a dry film thickness of 100 ⁇ m is applied, and then at 60 ° C. for 3 minutes. It dried and produced the optical film 6 of this invention.
  • KDL86WA manufactured by Teijin DuPont Films, Ltd.
  • optical film 7 In the production of the optical film 6, the optical film 7 of the present invention was produced in the same manner except that the semiconductor nanoparticles B were changed to the semiconductor nanoparticles A.
  • optical film 8 In the production of the optical film 7, after the semiconductor nanoparticle layer forming coating solution was dried at 60 ° C. for 3 minutes, the optical film 8 of the present invention was prepared in the same manner except that the excimer was irradiated with an excimer apparatus. Produced.
  • optical film 9 In the production of the optical film 1, the optical film 9 of the present invention was produced in the same manner except that the semiconductor nanoparticles B were changed to the semiconductor nanoparticles F.
  • the optical film 10 of the present invention was produced in the same manner except that the semiconductor nanoparticles C were changed to the semiconductor nanoparticles F.
  • the optical film 11 of the present invention was produced in the same manner as in the production of the optical film 4 except that the semiconductor nanoparticles C were changed to the semiconductor nanoparticles D.
  • the optical film 12 of the present invention was produced in the same manner except that the semiconductor nanoparticles C were changed to the semiconductor nanoparticles E.
  • the optical film 13 of the present invention was produced in the same manner except that the semiconductor nanoparticles C were changed to the semiconductor nanoparticles E.
  • An optical film 14 of the present invention was prepared in the same manner as in the production of the optical film 5 except that the semiconductor nanoparticles C were changed to the semiconductor nanoparticles F.
  • Preparation of optical film 17 The particle size of the semiconductor nanoparticles F was adjusted so as to emit red and green light. Disperse in a toluene solvent so that the red component is 0.75 mg, and further, a photopolymerization initiator Irgacure 184 (manufactured by BASF Japan) is added to a UV curable resin Unidic V-4025 manufactured by DIC Corporation. Resin / initiator (mass%): UV curable resin solution adjusted to 95/5 was added to prepare a coating solution for forming a red semiconductor nanoparticle layer in which the semiconductor nanoparticle weight content was 1%. . Similarly, a green component was dispersed in a toluene solvent so as to be 4.12 mg to prepare a coating solution for forming a green semiconductor nanoparticle layer.
  • a red semiconductor nanoparticle layer forming coating solution is applied to a 125 ⁇ m thick polyester film (KDL86WA, manufactured by Teijin DuPont Films, Ltd.) that has been easily bonded on both sides so that the dry film thickness is 50 ⁇ m. Dry for 3 minutes, curing conditions: 0.5 J / cm 2 Air is cured using a high-pressure mercury lamp, and a green semiconductor nanoparticle layer forming coating solution is applied on the red semiconductor nanoparticle layer.
  • the optical film 17 of the present invention having a red / green two-layered semiconductor nanoparticle layer was prepared in the same manner as red.
  • the total light transmittance of the optical films 1 to 17 was measured using a HAZE METER NDH5000 manufactured by Tokyo Denshoku Co., Ltd., and evaluated according to the following criteria. It is preferable that the optical film of this invention is less than 1.5% from the point used for a light-emitting device. ⁇ : Less than 0.5% ⁇ : 0.5% to 1% ⁇ ⁇ : 1% ⁇ 1.5% ⁇ : 1.5% to less than 3% ⁇ : 3% or more
  • the optical films 6 to 17 of the present invention containing at least one of polysilazane and polysilazane and semiconductor nanoparticles in the semiconductor nanoparticle layer are all transparent, luminous efficiency and durability. Good results have been obtained in terms of properties.
  • an optical material and an optical film excellent in transparency and durability can be obtained.
  • the polysilazane was coated with the semiconductor nanoparticle in advance with the semiconductor nanoparticle rather than being dispersed in the coating solution for forming the semiconductor nanoparticle layer. It is shown that an optical film excellent in transparency and durability can be obtained by applying as a particle layer forming coating solution.
  • the present invention provides an optical material, an optical film, and an optical device including the optical film, which are durable and capable of suppressing deterioration of semiconductor nanoparticles due to oxygen or the like over a long period of time. Suitable for doing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明の解決課題は、酸素等による半導体ナノ粒子の劣化を長期に亘って抑制できる耐久性を備え、透明性に優れた光学材料を提供することである。当該光学材料は、ポリシラザン及びポリシラザン改質体のうち少なくとも一種の化合物と、半導体ナノ粒子とを含有することを特徴とする。

Description

光学材料、光学フィルム及び発光デバイス
 本発明は、光学材料、光学フィルム及び発光デバイスに関する。特に、酸素等による半導体ナノ粒子の劣化を長期に亘って抑制できる耐久性を備え、透明性に優れた光学材料、光学フィルム及び当該光学フィルムを備えた光学デバイスに関する。
 近年、半導体ナノ粒子(量子ドット)は、そのサイズ可変な(size-tunable)電子特性から商業的関心が持たれている。半導体ナノ粒子は、例えば、生体標識、太陽光発電、触媒作用、生体撮像、発光ダイオード(Light Emitting Diode;LED)、一般的な空間照明、及び電子発光ディスプレイ等、非常に多岐の分野での利用が期待されている。
 例えば、半導体ナノ粒子を利用した光学デバイスでは、LED光を半導体ナノ粒子に照射して発光させることで、液晶表示装置(Liquid Crystal Display;LCD)に入射する光の光量を増大させ、当該LCDの輝度を向上させる技術が提案されている(例えば、特許文献1参照。)。
 ここで、半導体ナノ粒子は酸素に接触すると劣化することが知られており、半導体ナノ粒子が酸素に接触することを防止する手段が種々採用されている。そのような手段としては、例えば、半導体ナノ粒子をバリアー性フィルムや封止材で封止する方法が挙げられるが、酸素遮断性能は確保できるものの、N雰囲気下で封止作業を行う必要がある等、製造設備が高価、高度なものになり、汎用性に劣る。
 これに対し、半導体ナノ粒子自体をシリカやガラスで被覆することによって、半導体ナノ粒子が酸素に接触することを防止する方法が提案されている(例えば、特許文献2及び特許文献3参照。)。
 しかしながら、上記従来の技術における、半導体ナノ粒子をシリカやガラスで覆う方法は、酸素遮断性能を得ることはできるが、半導体ナノ粒子のシリカ凝集体が形成されて粒径が大きくなることで樹脂中における分散性が低下して透明性が低下したり、外部環境の影響により酸素遮断性能が低下して輝度が低下したりする等、透明性及び耐久性の点で不十分である。
特開2011-202148号公報 国際公開第2007/034877号 特表2013-505347号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、酸素等による半導体ナノ粒子の劣化を長期に亘って抑制できる耐久性を備え、透明性に優れた光学材料、光学フィルム及び当該光学フィルムを備えた光学デバイスを提供することである。
 本発明に係る上記課題を解決すべく、上記問題の原因等について検討した結果、ポリシラザン及びポリシラザン改質体のうち少なくとも一種の化合物と、半導体ナノ粒子とを含有させることで、酸素等による半導体ナノ粒子の劣化を長期に亘って抑制できる耐久性を備え、更に透明性に優れた光学材料が得られることを見出した。
 すなわち、本発明に係る課題は、以下の手段により解決される。
 1.ポリシラザン及びポリシラザン改質体のうち少なくとも一種の化合物と、半導体ナノ粒子とを含有することを特徴とする光学材料。
 2.前記半導体ナノ粒子が、コア・シェル構造を有することを特徴とする第1項に記載の光学材料。
 3.基材と、
 前記基材上に設けられ、ポリシラザン及びポリシラザン改質体のうち少なくとも一種の化合物と、半導体ナノ粒子とを含有する半導体ナノ粒子層と、を備えることを特徴とする光学フィルム。
 4.前記半導体ナノ粒子が、コア・シェル構造を有することを特徴とする第3項に記載の光学フィルム。
 5.前記半導体ナノ粒子が、前記ポリシラザン及びポリシラザン改質体のうち少なくとも一種の化合物で被覆されていることを特徴とする第3項又は第4項に記載の光学フィルム。
 6.前記ポリシラザン改質体が、前記ポリシラザンに真空紫外線が照射されてなる、酸化ケイ素、窒化ケイ素及び酸窒化ケイ素から選ばれる少なくとも一種を含む化合物であることを特徴とする第3項から第5項までのいずれか一項に記載の光学フィルム。
 7.前記半導体ナノ粒子層が、紫外線硬化性樹脂を含有することを特徴とする第3項から第6項までのいずれか一項に記載の光学フィルム。
 8.前記半導体ナノ粒子層が、2層設けられ、当該2層の前記半導体ナノ粒子層には、それぞれ互いに異なる発光波長を有する半導体ナノ粒子が含有されていることを特徴とする第3項から第7項までのいずれか一項に記載の光学フィルム。
 9.第3項から第8項までのいずれか一項に記載の光学フィルムを備えることを特徴とする発光デバイス。
 本発明によれば、酸素等による半導体ナノ粒子の劣化を長期に亘って抑制できる耐久性を備え、透明性に優れた光学材料、光学フィルム及び当該光学フィルムを備えた光学デバイスを提供することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
 ポリシラザンやポリシラザン改質体は、酸素遮断性だけでなく、酸素吸収性能も有するため、半導体ナノ粒子に接触する酸素を効果的に低減でき、十分な耐久性が確保できているものと推察している。また、ポリシラザンやポリシラザン改質体は、真空紫外線照射等の光照射によって酸素遮断性を更に向上させることができるが、いずれにしても凝集体を形成することはなく、樹脂中における分散性が良好であるため、透明性を維持できるものと推定している。
 本発明の光学材料は、ポリシラザン及びポリシラザン改質体のうち少なくとも一種の化合物と、半導体ナノ粒子(以下、「量子ドット」ともいう。)と、を含有することを特徴とする。この特徴は、請求項1から請求項9までの各請求項に共通する又は対応する技術的特徴である。
 本発明は、前記半導体ナノ粒子が、コア・シェル構造を有することが好ましい。これにより、半導体ナノ粒子の凝集を抑制して更に分散性を高めることができ、また、輝度効率を向上させることができる。
 また、本発明は、基材と、前記基材上に設けられ、半導体ナノ粒子と、ポリシラザン及びポリシラザン改質体のうち少なくとも一種の化合物とを含有する半導体ナノ粒子層と、を備えることを特徴とする光学フィルムとしても良い。
 また、本発明は、前記半導体ナノ粒子が、前記ポリシラザン及び前記ポリシラザン改質体のうち少なくとも一種の化合物で被覆されていることが好ましい。これにより、光学フィルムの透明性及び耐久性を更に向上させることができる。
 また、本発明は、前記半導体ナノ粒子層が、紫外線硬化性樹脂を含有することが好ましい。これにより、光学フィルムの製造を容易に行うことができる。
 また、本発明は、前記半導体ナノ粒子層が、2層設けられ、当該2層の前記半導体ナノ粒子層には、それぞれ互いに異なる発光波長を有する半導体ナノ粒子が含有されていることが好ましい。これにより、光学フィルムの透明性及び耐久性を更に向上させることができる。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
《光学フィルムの構成》
 本発明の光学フィルムは、基材と、当該基材上に設けられ、ポリシラザン及びポリシラザン改質体のうち少なくとも一種の化合物と、半導体ナノ粒子とを含有する半導体ナノ粒子層と、を備えて構成されている。本発明の光学フィルムを構成する各層及びその材料について以下に説明する。
《基材》
 本発明の光学フィルムに用いることのできる基材としては、ガラス、プラスチック等、特に限定はないが、透光性を有するものが用いられる。透光性を有する基材として好ましく用いられる材料は、例えば、ガラス、石英、樹脂フィルム等を挙げることができる。特に好ましくは、光学フィルムにフレキシブル性を与えることが可能な樹脂フィルムである。
 基材の厚さとしては、特に制限されるものではなく、いずれの厚さであっても良い。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
 樹脂フィルムの表面には、無機物若しくは有機物又はその両者からなるガスバリアー膜が形成されていても良い。そのようなガスバリアー膜としては、例えば、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のガスバリアー性膜であることが好ましく、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/(m・24h・atm)以下、水蒸気透過度が、1×10-5g/(m・24h)以下の高ガスバリアー性膜であることが好ましい。
 ガスバリアー膜を形成する材料としては、水分や酸素等素子の半導体ナノ粒子に劣化をもたらすものの浸入を抑制する機能を有する材料であれば良く、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。更に、該膜の脆弱性を改良するために、これら無機層と有機材料からなる層との積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 ガスバリアー膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
《半導体ナノ粒子層》
 半導体ナノ粒子層は、ポリシラザン及びポリシラザン改質体のうち少なくとも一種の化合物と、半導体ナノ粒子とを含有して構成されている。本発明の光学材料は、これらポリシラザン及びポリシラザン改質体のうち少なくとも一種の化合物、半導体ナノ粒子等を含有して構成されている。
 また、半導体ナノ粒子層は、2層以上設けられているものとしても良い。この場合には、2層以上の各半導体ナノ粒子層に、それぞれ異なる発光波長の半導体ナノ粒子が含有されていることが好ましい。
 半導体ナノ粒子層の形成方法としては、基材上に、ポリシラザン及び半導体ナノ粒子を含有する半導体ナノ粒子層形成用塗布液を塗布後、乾燥処理することにより形成することができる。
 塗布方法としては、任意の適切な方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
 また、半導体ナノ粒子層形成用塗布液を調製する溶媒としては、例えば、トルエン等、半導体ナノ粒子やポリシラザン及びポリシラザン改質体と反応しないものであればいずれの溶媒であっても使用することができる。
 半導体ナノ粒子層形成用塗布液を塗布した塗布層を乾燥処理した後、後述する方法によりポリシラザンの一部又は全部をポリシラザン改質体とする改質処理を行うことが好ましい。
 また、半導体ナノ粒子層には、更に樹脂材料が含有されていることが好ましく、特に、紫外線硬化性樹脂が含有されていることがより好ましい。半導体ナノ粒子層に紫外線硬化性樹脂が含有されている場合、すなわち、半導体ナノ粒子層形成用塗布液に紫外線硬化性樹脂が含有されている場合には、半導体ナノ粒子層形成用塗布液を塗布してなる塗布層に対し、紫外線照射処理を行う。なお、当該紫外線照射処理は、上記したポリシラザンを改質する改質処理を兼ねていても良い。
 半導体ナノ粒子層の層厚としては、特に限定されるものではなく、光学フィルムの用途に応じて適宜設定可能である。
《半導体ナノ粒子》
 本発明の光学フィルムを構成する半導体ナノ粒子層には、半導体ナノ粒子が含有されている。すなわち、半導体ナノ粒子は、半導体ナノ粒子層形成用塗布液に含有されているものである。
 本発明に係る半導体ナノ粒子とは、半導体材料の結晶で構成され、量子閉じ込め効果を有する所定の大きさの粒子をいい、その粒子径が数nm~数十nm程度の微粒子であり、下記に示す量子ドット効果が得られるものをいう。
 本発明に係る半導体ナノ粒子の粒子径としては、具体的には1~20nmの範囲内であることが好ましく、更に好ましくは1~10nmの範囲内である。
 このような半導体ナノ粒子のエネルギー準位Eは、一般に、プランク定数を「h」と、電子の有効質量を「m」と、半導体ナノ粒子の半径を「R」としたとき、下式(1)で表される。
 式(1)
   E∝h/mR
 式(1)で示されるように、半導体ナノ粒子のバンドギャップは、「R-2」に比例して大きくなり、いわゆる、量子ドット効果が得られる。このように、半導体ナノ粒子の粒子径を制御、規定することによって、半導体ナノ粒子のバンドギャップ値を制御することができる。すなわち、微粒子の粒子径を制御、規定することにより、通常の原子にはない多様性を持たせることができる。そのため、光によって励起させたり、光を所望の波長の光に変換して出射させたりすることができる。本発明では、このような発光性の半導体ナノ粒子材料を半導体ナノ粒子と定義する。
 半導体ナノ粒子の平均粒子径は、上述したように、数nm~数十nm程度であるが、目的とする発光色に対応する平均粒子径に設定する。例えば、赤発光を得たい場合には、半導体ナノ粒子の平均粒子径としては3.0~20nmの範囲内に設定することが好ましく、緑発光を得たい場合には、半導体ナノ粒子の平均粒子径を1.5~10nmの範囲内に設定することが好ましく、青色発光を得たい場合には、半導体ナノ粒子の平均粒子径を1.0~3.0nmの範囲内に設定することが好ましい。
 平均粒子径の測定方法としては、公知の方法を用いることができる。例えば、透過型電子顕微鏡(TEM)により半導体ナノ粒子の粒子観察を行い、そこから粒子径分布の数平均粒子径として求める方法や、原子間力顕微鏡(AFM)を用いて平均粒子径を求める方法、動的光散乱法による粒径測定装置、例えば、Malvern社製、「ZETASIZERNano Series Nano-ZS」を用いて測定することができる。その他にも、X線小角散乱法により得られたスペクトルから半導体ナノ粒子の粒子径分布シミュレーション計算を用いて粒子径分布を導出する方法などが挙げられるが、本発明においては、原子間力顕微鏡(AFM)を用いて平均粒子径を求める方法が好ましい。
 また、本発明に係る半導体ナノ粒子においては、アスペクト比(長軸径/短軸径)の値が、1.0~2.0の範囲内であることが好ましく、より好ましくは1.1~1.7の範囲である。本発明に係る半導体ナノ粒子に係るアスペクト比(長軸径/短軸径)についても、例えば、原子間力顕微鏡(AFM)を用いて、長軸径及び短軸径を測定して求めることができる。なお、測定する個体数としては、300個以上であることが好ましい。
 半導体ナノ粒子の添加量は、半導体ナノ粒子層の全構成物質を100質量部%としたとき、0.01~50質量%の範囲内であることが好ましく、0.5~30質量%の範囲内であることがより好ましく、2.0~25質量%の範囲内であることが最も好ましい。添加量が0.01質量%以上であれば、十分な輝度効率を得ることができ、50質量%以下であれば、適度な半導体ナノ粒子の粒子間距離を維持でき、量子サイズ効果を十分に発揮させることができる。
(1)半導体ナノ粒子の構成材料
 半導体ナノ粒子の構成材料としては、例えば、炭素、ケイ素、ゲルマニウム、スズ等の周期表第14族元素の単体、リン(黒リン)等の周期表第15族元素の単体、セレン、テルル等の周期表第16族元素の単体、炭化ケイ素(SiC)等の複数の周期表第14族元素からなる化合物、酸化スズ(IV)(SnO)、硫化スズ(II、IV)(Sn(II)Sn(IV)S)、硫化スズ(IV)(SnS)、硫化スズ(II)(SnS)、セレン化スズ(II)(SnSe)、テルル化スズ(II)(SnTe)、硫化鉛(II)(PbS)、セレン化鉛(II)(PbSe)、テルル化鉛(II)(PbTe)等の周期表第14族元素と周期表第16族元素との化合物、窒化ホウ素(BN)、リン化ホウ素(BP)、ヒ化ホウ素(BAs)、窒化アルミニウム(AlN)、リン化アルミニウム(AlP)、ヒ化アルミニウム(AlAs)、アンチモン化アルミニウム(AlSb)、窒化ガリウム(GaN)、リン化ガリウム(GaP)、ヒ化ガリウム(GaAs)、アンチモン化ガリウム(GaSb)、窒化インジウム(InN)、リン化インジウム(InP)、ヒ化インジウム(InAs)、アンチモン化インジウム(InSb)等の周期表第13族元素と周期表第15族元素との化合物(あるいはIII-V族化合物半導体)、硫化アルミニウム(Al)、セレン化アルミニウム(AlSe)、硫化ガリウム(Ga)、セレン化ガリウム(GaSe)、テルル化ガリウム(GaTe)、酸化インジウム(In)、硫化インジウム(In)、セレン化インジウム(InSe)、テルル化インジウム(InTe)等の周期表第13族元素と周期表第16族元素との化合物、塩化タリウム(I)(TlCl)、臭化タリウム(I)(TlBr)、ヨウ化タリウム(I)(TlI)等の周期表第13族元素と周期表第17族元素との化合物、酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)、テルル化亜鉛(ZnTe)、酸化カドミウム(CdO)、硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、テルル化カドミウム(CdTe)、硫化水銀(HgS)、セレン化水銀(HgSe)、テルル化水銀(HgTe)等の周期表第12族元素と周期表第16族元素との化合物(あるいはII-VI族化合物半導体)、硫化ヒ素(III)(As)、セレン化ヒ素(III)(AsSe)、テルル化ヒ素(III)(AsTe)、硫化アンチモン(III)(Sb)、セレン化アンチモン(III)(SbSe)、テルル化アンチモン(III)(SbTe)、硫化ビスマス(III)(Bi)、セレン化ビスマス(III)(BiSe)、テルル化ビスマス(III)(BiTe)等の周期表第15族元素と周期表第16族元素との化合物、酸化銅(I)(CuO)、セレン化銅(I)(CuSe)等の周期表第11族元素と周期表第16族元素との化合物、塩化銅(I)(CuCl)、臭化銅(I)(CuBr)、ヨウ化銅(I)(CuI)、塩化銀(AgCl)、臭化銀(AgBr)等の周期表第11族元素と周期表第17族元素との化合物、酸化ニッケル(II)(NiO)等の周期表第10族元素と周期表第16族元素との化合物、酸化コバルト(II)(CoO)、硫化コバルト(II)(CoS)等の周期表第9族元素と周期表第16族元素との化合物、四酸化三鉄(Fe)、硫化鉄(II)(FeS)等の周期表第8族元素と周期表第16族元素との化合物、酸化マンガン(II)(MnO)等の周期表第7族元素と周期表第16族元素との化合物、硫化モリブデン(IV)(MoS)、酸化タングステン(IV)(WO)等の周期表第6族元素と周期表第16族元素との化合物、酸化バナジウム(II)(VO)、酸化バナジウム(IV)(VO)、酸化タンタル(V)(Ta)等の周期表第5族元素と周期表第16族元素との化合物、酸化チタン(TiO、Ti、Ti、Ti等)等の周期表第4族元素と周期表第16族元素との化合物、硫化マグネシウム(MgS)、セレン化マグネシウム(MgSe)等の周期表第2族元素と周期表第16族元素との化合物、酸化カドミウム(II)クロム(III)(CdCr)、セレン化カドミウム(II)クロム(III)(CdCrSe)、硫化銅(II)クロム(III)(CuCr)、セレン化水銀(II)クロム(III)(HgCrSe)等のカルコゲンスピネル類、バリウムチタネート(BaTiO)等が挙げられるが、SnS、SnS、SnSe、SnTe、PbS、PbSe、PbTe等の周期表第14族元素と周期表第16族元素との化合物、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb等のIII-V族化合物半導体、Ga、Ga、GaSe、GaTe、In、In、InSe、InTe等の周期表第13族元素と周期表第16族元素との化合物、ZnO、ZnS、ZnSe、ZnTe、CdO、CdS、CdSe、CdTe、HgO、HgS、HgSe、HgTe等のII-VI族化合物半導体、As、As、AsSe、AsTe、Sb、Sb、SbSe、SbTe、Bi、Bi、BiSe、BiTe等の周期表第15族元素と周期表第16族元素との化合物、MgS、MgSe等の周期表第2族元素と周期表第16族元素との化合物が好ましく、中でも、Si、Ge、GaN、GaP、InN、InP、Ga、Ga、In、In、ZnO、ZnS、CdO、CdSがより好ましい。これらの物質は、毒性の高い陰性元素を含まないので耐環境汚染性や生物への安全性に優れており、また、可視光領域で純粋なスペクトルを安定して得ることができるので、発光デバイスの形成に有利である。これらの材料のうち、CdSe、ZnSe、CdSは、発光の安定性の点で好ましい。発光効率、高屈折率、安全性、経済性の観点から、ZnO、ZnSの半導体ナノ粒子が好ましい。また、上記の材料は、1種で用いるものであっても良いし、2種以上を組み合わせて用いても良い。
 なお、上述した半導体ナノ粒子には、必要に応じて微量の各種元素を不純物としてドープすることができる。このようなドープ物質を添加することにより発光特性を大きく向上させることができる。
 本発明でいう発光波長(バンドギャップ)とは、無機物である半導体ナノ粒子の場合は、価電子帯と伝導帯のエネルギー差を半導体ナノ粒子におけるバンドギャップ(eV)であり、発光波長(nm)=1240/バンドギャップ(eV)で表される。
 半導体ナノ粒子のバンドギャップ(eV)は、Taucプロットを用いて測定することができる。
 バンドギャップ(eV)の光科学的測定手法の一つであるTaucプロットについて説明する。
 Taucプロットを用いたバンドギャップ(E)の測定原理を以下に示す。
 半導体材料の長波長側の光学吸収端近傍の比較的吸収の大きい領域において、光吸収係数αと光エネルギーhν(ただし、hはプランク常数、νは振動数)、及びバンドキャップエネルギーEの間には次式(A)、が成り立つと考えられている。
 式(A)
   αhν=B(hν-E
 したがって、吸収スペクトルを測定し、そこから(αhν)の0.5乗に対してhνをプロット(いわゆる、Taucプロット)し、直線区間を外挿したα=0におけるhνの値が求めようとする半導体ナノ粒子のバンドギャップエネルギーEとなる。
 なお、半導体ナノ粒子の場合は、吸収と発光のスペクトルの差異(ストークスシフト)が小さく、また波形もシャープであるため、簡便には発光スペクトルの極大波長をバンドギャップの指標として用いることもできる。
 また、他の方法として、これら有機及び無機機能材料のエネルギー準位を見積もる方法としては、走査型トンネル分光法、紫外線光電子分光法、X線光電子分光法、オージェ電子分光法により求められるエネルギー準位から求める方法及び光学的にバンドギャップを見積もる方法が挙げられる。
 半導体ナノ粒子の表面は、無機物の被覆層又は有機配位子で構成された被膜で被覆されたものであるのが好ましい。すなわち、半導体ナノ粒子の表面は、半導体ナノ粒子材料で構成されたコア領域と、無機物の被覆層又は有機配位子で構成されたシェル領域とを有するコア・シェル構造を有するものであるのが好ましい。
 このコア・シェル構造は、少なくとも2種類の化合物で形成されていることが好ましく、2種類以上の化合物でグラジエント構造(傾斜構造)を形成していても良い。これにより、塗布液中における半導体ナノ粒子の凝集を効果的に防止することができ、半導体ナノ粒子の分散性を向上させることができるとともに、輝度効率が向上し、本発明の光学フィルムを用いた発光デバイスを連続駆動させた場合に色ズレの発生を抑制することができる。また、被覆層の存在により、安定的に発光特性が得られる。
 また、半導体ナノ粒子の表面が被膜(シェル部)で被覆されていると、後述するような表面修飾剤を半導体ナノ粒子の表面付近に確実に担持させることができる。
 被膜(シェル部)の厚さは、特に限定されないが、0.1~10nmの範囲内であることが好ましく、0.1~5nmの範囲内であることがより好ましい。
 一般に、半導体ナノ粒子の平均粒子径により発光色を制御することができ、被膜の厚さが上記範囲内の値であれば、被膜の厚さが原子数個分に相当する厚さから半導体ナノ粒子1個に満たない厚さであり、半導体ナノ粒子を高密度で充填することができ、十分な発光量が得られる。また、被膜の存在により、お互いのコア粒子の粒子表面に存在する欠陥、ダングリングボンドへの電子トラップによる非発光の電子エネルギーの転移を抑制でき、量子効率の低下を抑えることができる。
(2)機能性の表面修飾剤
 半導体ナノ粒子を含有している本発明の半導体ナノ粒子層形成用塗布液を用いて半導体ナノ粒子層を形成する際、本発明の半導体ナノ粒子層形成用塗布液においては、半導体ナノ粒子の表面近傍に、表面修飾剤が付着していることが好ましい。これにより、半導体ナノ粒子層形成用塗布液中における半導体ナノ粒子の分散安定性を特に優れたものとすることができる。また、半導体ナノ粒子の製造時において、半導体ナノ粒子表面に表面修飾剤を付着させることにより、形成される半導体ナノ粒子の形状が真球度の高いものとなり、また、半導体ナノ粒子の粒子径分布を狭く抑えられるため、特に優れたものとすることができる。
 本発明で適用可能な機能性の表面修飾剤としては、半導体ナノ粒子の表面に直接付着したものであっても良いし、シェルを介して付着したもの(表面修飾剤が直接付着するのはシェルで、半導体ナノ粒子のコア部には接触していないもの)であっても良い。
 表面修飾剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類;トリプロピルホスフィン、トリブチルホスフィン、トリヘキシルホスフィン、トリオクチルホスフィン等のトリアルキルホスフィン類;ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル類;トリ(n-ヘキシル)アミン、トリ(n-オクチル)アミン、トリ(n-デシル)アミン等の第3級アミン類;トリプロピルホスフィンオキシド、トリブチルホスフィンオキシド、トリヘキシルホスフィンオキシド、トリオクチルホスフィンオキシド、トリデシルホスフィンオキシド等の有機リン化合物;ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のポリエチレングリコールジエステル類;ピリジン、ルチジン、コリジン、キノリン類の含窒素芳香族化合物等の有機窒素化合物;ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オクタデシルアミン等のアミノアルカン類;ジブチルスルフィド等のジアルキルスルフィド類;ジメチルスルホキシドやジブチルスルホキシド等のジアルキルスルホキシド類;チオフェン等の含硫黄芳香族化合物等の有機硫黄化合物;パルミチン酸、ステアリン酸、オレイン酸等の高級脂肪酸;アルコール類;ソルビタン脂肪酸エステル類;脂肪酸変性ポリエステル類;3級アミン変性ポリウレタン類;ポリエチレンイミン類等が挙げられるが、半導体ナノ粒子が後述するような方法で調製されるものである場合、表面修飾剤としては、高温液相において半導体ナノ粒子の微粒子に配位して、安定化する物質であるのが好ましく、具体的には、トリアルキルホスフィン類、有機リン化合物、アミノアルカン類、第3級アミン類、有機窒素化合物、ジアルキルスルフィド類、ジアルキルスルホキシド類、有機硫黄化合物、高級脂肪酸、アルコール類が好ましい。このような表面修飾剤を用いることにより、塗布液中における半導体ナノ粒子の分散性を特に優れたものとすることができる。また、半導体ナノ粒子の製造時において形成される半導体ナノ粒子の形状をより真球度の高いものとし、半導体ナノ粒子の粒度分布をよりシャープなものとすることができる。
 また、本発明においては、ポリシラザンを下述のように表面修飾剤として用いることもできる。
 本発明において、前述のように、半導体ナノ粒子のサイズ(平均粒子径)としては、1~20nmの範囲内であることが好ましい。本発明において、半導体ナノ粒子のサイズとは、半導体ナノ粒子材料で構成されたコア領域と、不活性な無機物の被覆層又は有機配位子で構成されたシェル領域及び表面修飾剤で構成されるトータルのサイズを表す。表面修飾剤やシェルが含まれない場合は、それを含まないサイズを表す。
(3)半導体ナノ粒子の製造方法
 半導体ナノ粒子の製造方法としては、従来行われている公知の任意の方法を用いることができる。また、Aldrich社、CrystalPlex社、NNLab社等から市販品として購入することもできる。
 例えば、高真空下のプロセスとしては、分子ビームエピタキシー法、CVD法等;液相製造方法としては、原料水溶液を、例えば、n-ヘプタン、n-オクタン、イソオクタン等のアルカン類、又はベンゼン、トルエン、キシレン等の芳香族炭化水素等の非極性有機溶媒中の逆ミセルとして存在させ、この逆ミセル相中にて結晶成長させる逆ミセル法、熱分解性原料を高温の液相有機媒体に注入して結晶成長させるホットソープ法、更に、ホットソープ法と同様に、酸塩基反応を駆動力として比較的低い温度で結晶成長を伴う溶液反応法等が挙げられる。これらの製造方法から任意の方法を使用することができるが、中でも、液相製造方法が好ましい。
 なお、液相製造方法において、半導体ナノ粒子の合成に際して、表面に存在する有機表面修飾剤を初期表面修飾剤という。例えば、ホットソープ法における初期表面修飾剤の例としては、トリアルキルホスフィン類、トリアルキルホスフィンオキシド類、アルキルアミン類、ジアルキルスルホキシド類、アルカンホスホン酸等が挙げられる。これらの初期表面修飾剤は、交換反応により上述の機能性表面修飾剤に交換することが好ましい。
 具体的には、例えば、前述したホットソープ法により得られるトリオクチルホスフィンオキシド等の初期表面修飾剤は、機能性表面修飾剤を含有する液相中で行う交換反応により、上述の機能性表面修飾剤と交換することが可能である。
《ポリシラザン及びポリシラザン改質体》
 本発明の光学フィルムを構成する半導体ナノ粒子層には、ポリシラザン及びポリシラザン改質体のうち少なくとも一種の化合物が含有されている。ポリシラザン改質体は、ポリシラザンが改質処理されることによって生成される、酸化ケイ素、窒化ケイ素及び酸窒化ケイ素から選ばれる少なくとも一種を含む化合物である。
 ここで、ポリシラザンは、半導体ナノ粒子層形成用塗布液中に半導体ナノ粒子とともに分散されていても良いし、あらかじめ半導体ナノ粒子をポリシラザンで被覆し、当該粒子が半導体ナノ粒子層形成用塗布液中に分散されていても良い。なお、本発明において、被覆とは、半導体ナノ粒子の表面を覆っていることをいうが、半導体ナノ粒子の表面のうちの全部を覆っているものでなくとも良く、一部を覆っているものであっても良い。
 半導体ナノ粒子層中に、ポリシラザン及びポリシラザン改質体のうち少なくとも一種の化合物が含有されていることにより、半導体ナノ粒子が酸素等に接触することを長期に亘って抑制できる耐久性を付与することができ、更に、透明性の高い層とすることができる。
(1)ポリシラザンの構成材料
 「ポリシラザン」とは、ケイ素-窒素結合を持つポリマーで、Si-N、Si-H、N-H等からなるSiO、Si及び両方の中間固溶体SiOxNy等のセラミック前駆体無機ポリマーである。ポリシラザン及びポリシラザン誘導体は下記一般式(I)で表される。
Figure JPOXMLDOC01-appb-C000001
 フィルム基材を損なわないように塗布するためには、特開平8-112879号公報に記載されているように比較的低温でセラミック化してシリカに変性するものが良い。
 一般式(I)中、R、R及びRは、それぞれ独立に、水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基又はアルコキシ基等を表す。
 得られる層の緻密性の観点からは、R、R及びRの全てが水素原子であるパーヒドロポリシラザンが特に好ましい。
 一方、そのSiと結合する水素部分が一部アルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択して良く、混合して使用することもできる。
 パーヒドロポリシラザンは直鎖構造と6及び8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)であり、液体又は固体の物質であり、分子量により異なる。これらは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン含有液として使用することができる。
 低温でセラミック化するポリシラザンの別の例としては、上記一般式(I)で示されるポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5-238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6-122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6-240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6-299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6-306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7-196986号公報)等が挙げられる。
 また、半導体ナノ粒子層には、ポリシラザンの酸化ケイ素化合物への転化を促進するために、アミンや金属の触媒を添加することもできる。具体的には、AZエレクトロニックマテリアルズ(株)製 アクアミカ NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL150A、NP110、NP140、SP140等が挙げられる。
(2)改質処理
 改質処理は、半導体ナノ粒子層に含有されるポリシラザンに対して行われることが好ましく、これにより、半導体ナノ粒子層中に含有されるポリシラザンの一部又は全部がポリシラザン改質体となる。
 ポリシラザンが半導体ナノ粒子層形成用塗布液中に半導体ナノ粒子とともに分散されている場合には、改質処理は、当該半導体ナノ粒子層形成用塗布液を塗布してなる塗布層に対して行われる。
 また、あらかじめ半導体ナノ粒子をポリシラザンで被覆している場合には、改質処理は、当該ポリシラザンで被覆された半導体ナノ粒子に対してあらかじめ行われるものであっても良いし、当該ポリシラザンで被覆された半導体ナノ粒子を塗布してなる塗布層に対して行われるものであっても良いし、その両方で行われるものであっても良い。
 具体的には、改質処理は、ポリシラザンの転化反応に基づく公知の方法を選ぶことができる。シラザン化合物の置換反応による酸化ケイ素膜又は酸窒化ケイ素膜の作製には、450℃以上の加熱処理が必要であり、プラスチック等のフレキシブル基板においては適用が難しい。プラスチック基板へ適用するためには、低温で転化反応を進行させることが可能なプラズマ処理やオゾン処理、紫外線照射処理等の方法を用いることが好ましい。
 なお、ポリシラザンを含有する塗布層に対して改質処理を行う場合には、当該改質処理の前に、水分が除去されていることが好ましい。
 本発明の改質処理としては、紫外線照射、真空紫外線照射、プラズマ照射が望ましく、特にポリシラザンの改質効果の点で真空紫外線照射が好ましい。
(2-1)紫外線照射処理
 改質処理の方法としては、紫外線照射による処理も好ましい。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性を有する酸化ケイ素又は酸窒化ケイ素を作製することが可能である。
 この紫外線照射により、基材が加熱され、セラミックス化(シリカ転化)に寄与するOとHOや、ポリシラザン自身が励起、活性化されるため、ポリシラザンが励起し、ポリシラザンのセラミックス化が促進され、また得られるセラミックス膜が一層緻密になる。紫外線照射は、半導体ナノ粒子層形成用塗布液の調製時に行われるものであっても良いし、半導体ナノ粒子層形成用塗布液を塗布後に行われるものであっても良い。
 本発明では、常用されているいずれの紫外線発生装置でも使用することが可能である。
 なお、本例において、「紫外線」とは、一般には、10~400nmの波長を有する電磁波をいうが、後述する真空紫外線(10~200nm)処理以外の紫外線照射処理の場合は、好ましくは210~350nmの紫外線を用いる。
 紫外線の照射は、照射される塗布膜を担持している基材がダメージを受けない範囲に、照射強度や照射時間を設定する。
 基材としてプラスチックフィルムを用いた場合を例にとると、例えば2kW(80W/cm×25cm)のランプを用い、基材表面の強度が20~300mW/cm、好ましくは50~200mW/cmになるように基材-ランプ間距離を設定し、0.1秒~10分間の照射を行うことができる。
 一般に、紫外線照射処理時の基材温度が150℃以上になると、基材としてプラスチックフィルム等が用いられる場合には、当該基材の変形や基材の強度の低下等が生じる。しかしながら、ポリイミド等の耐熱性の高いフィルムや、金属等の基材の場合には、より高温での処理が可能である。したがって、この紫外線照射時の基材温度に一般的な上限はなく、基材の種類によって当業者が適宜設定することができる。また、紫外線照射雰囲気に特に制限はなく、空気中で実施すれば良い。
 このような紫外線の発生方法としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ(172nm、222nm、308nmの単一波長、例えば、ウシオ電機(株)製)、UV光レーザー等が挙げられ、特に限定されるものではない。また、発生させた紫外線を、塗布層に照射する際には、均一な照射を達成して効率を向上させるため、発生源からの紫外線を反射板で反射させてから塗布層に当てることが望ましい。
 紫外線照射は、バッチ処理にも連続処理にも適合可能であり、被塗布基材の形状によって適宜選定することができる。例えば、バッチ処理の場合には、塗布層を表面に有する基材(例えば、シリコンウェハー等)を、上記のような紫外線発生源を具備した紫外線焼成炉で処理することができる。紫外線焼成炉自体は一般に知られており、例えば、アイグラフィクス(株)製を使用することができる。また、塗布層を表面に有する基材が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することによりセラミックス化することができる。紫外線照射に要する時間は、塗布される基材や塗布液の組成、濃度にもよるが、一般に0.1秒~10分、好ましくは0.5秒~3分である。
(2-2)真空紫外線照射処理;エキシマ照射処理
 本発明において、更に好ましい改質処理の方法として、真空紫外線照射による処理が挙げられる。真空紫外線照射による処理は、シラザン化合物内の原子間結合力より大きい100~200nmの光エネルギーを用い、好ましくは100~180nmの波長の光のエネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみによる作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温で、酸化シリコン膜の形成を行う方法である。
 これに必要な真空紫外光源としては、希ガスエキシマランプが好ましく用いられる。
 ここで、Xe,Kr,Ar,Ne等の希ガスの原子は化学的に結合して分子を作らないため、不活性ガスと呼ばれる。しかし、放電等によりエネルギーを得た希ガスの原子(励起原子)は他の原子と結合して分子を作ることができる。希ガスがキセノンの場合には、
 e+Xe→e+Xe
 Xe+Xe+Xe→Xe2*+Xe
となり、励起されたエキシマ分子であるXe2*が基底状態に遷移するときに172nmのエキシマ光を発光する。エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。
 また、余分な光が放射されないので、対象物の温度を低く保つことができる。更には始動・再始動に時間を要さないので、瞬時の点灯点滅が可能である。
 エキシマ発光を得るには誘電体ガスバリアー放電を用いる方法が知られている。誘電体ガスバリアー放電とは、両電極間に誘電体(エキシマランプの場合は透明石英)を介してガス空間を配し、電極に数10kHzの高周波高電圧を印加することによりガス空間に生じる、雷に似た非常に細いmicro dischargeと呼ばれる放電である。micro dischargeのストリーマが管壁(誘電体)に達すると誘電体表面に電荷が溜まるため、micro dischargeは消滅する。このように、誘電体ガスバリアー放電とは、micro dischargeが管壁全体に広がり、生成・消滅を繰り返している放電である。このため肉眼でも分かる光のチラツキを生じる。また、非常に温度の高いストリーマが局所的に直接管壁に達するため、管壁の劣化を早める可能性もある。
 効率良くエキシマ発光を得る方法としては、誘電体ガスバリアー放電以外に無電極電界放電でも可能である。容量性結合による無電極電界放電で、別名RF放電とも呼ばれる。ランプと電極及びその配置は基本的には誘電体ガスバリアー放電と同じで良いが、両極間に印加される高周波は数MHzで点灯される。無電極電界放電はこのように空間的・時間的に一様な放電が得られるため、チラツキがない長寿命のランプが得られる。
 誘電体ガスバリアー放電の場合はmicro dischargeが電極間のみで生じるため、放電空間全体で放電を行わせるには外側の電極は外表面全体を覆い、かつ外部に光を取り出すために光を透過するものでなければならない。このため細い金属線を網状にした電極が用いられる。この電極は光を遮らないようにできるだけ細い線が用いられるため、酸素雰囲気中では真空紫外光により発生するオゾン等により損傷しやすい。
 これを防ぐためにはランプの周囲、すなわち照射装置内を窒素等の不活性ガスの雰囲気にし、合成石英の窓を設けて照射光を取り出す必要が生じる。合成石英の窓は高価な消耗品であるばかりでなく、光の損失も生じる。
 二重円筒型ランプは外径が25mm程度であるため、ランプ軸の直下とランプ側面では照射面までの距離の差が無視できず、照度に大きな差を生じる。したがって、仮にランプを密着して並べても、一様な照度分布が得られない。合成石英の窓を設けた照射装置にすれば酸素雰囲気中の距離を一様にすることができ、一様な照度分布が得られる。
 無電極電界放電を用いた場合には外部電極を網状にする必要はない。ランプ外面の一部に外部電極を設けるだけでグロー放電は放電空間全体に広がる。外部電極には通常アルミのブロックで作られた光の反射板を兼ねた電極がランプ背面に使用される。しかし、ランプの外径は誘電体ガスバリアー放電の場合と同様に大きいため一様な照度分布にするためには合成石英が必要となる。
 細管エキシマランプの最大の特徴は構造がシンプルなことである。石英管の両端を閉じ、内部にエキシマ発光を行うためのガスを封入しているだけである。したがって、非常に安価な光源を提供できる。
 二重円筒型ランプは内外管の両端を接続して閉じる加工をしているため、細管ランプに比べ使用や輸送により破損しやすい。また、細管ランプの管の外径は6~12mm程度で、あまり太いと始動に高い電圧が必要になる。
 放電の形態は誘電体ガスバリアー放電でも無電極電界放電のいずれでも使用できる。電極の形状はランプに接する面が平面であっても良いが、ランプの曲面に合わせた形状にすればランプをしっかり固定できるとともに、電極がランプに密着することにより放電がより安定する。また、アルミで曲面を鏡面にすれば光の反射板にもなる。
 Xeエキシマランプは波長の短い172nmの紫外線を単一波長で放射することから発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。また、有機物の結合を解離させる波長の短い172nmの光のエネルギーは能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間で、ポリシラザンを含有する塗布膜の改質を実現できる。したがって、波長185nm、254nmの発する低圧水銀ランプやプラズマ洗浄と比べて高スループットに伴うプロセス時間の短縮や設備面積の縮小、熱によるダメージを受けやすい有機材料やプラスチック基板等への照射を可能としている。
 エキシマランプは光の発生効率が高いため低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域において単一波長でエネルギーを照射するため、照射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。
《樹脂材料》
 上記したとおり、本発明の光学フィルムの半導体ナノ粒子層には、樹脂材料が含有されていることが好ましく、紫外線硬化性樹脂が含有されていることがより好ましい。
 紫外線硬化性樹脂としては、例えば、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、又は紫外線硬化型エポキシ樹脂等が好ましく用いられる。中でも紫外線硬化型アクリレート系樹脂が好ましい。
 紫外線硬化型ウレタンアクリレート系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、又はプレポリマーを反応させて得られた生成物にさらに2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2-ヒドロキシプロピルアクリレート等のヒドロキシ基を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。例えば、特開昭59-151110号公報に記載のものを用いることができる。例えば、ユニディック17-806(DIC株式会社製)100部とコロネートL(日本ポリウレタン株式会社製)1部との混合物等が好ましく用いられる。
 紫外線硬化型ポリエステルアクリレート系樹脂としては、一般にポリエステルポリオールに2-ヒドロキシエチルアクリレート、2-ヒドロキシアクリレート系のモノマーを反応させると容易に形成されるものを挙げることができ、特開昭59-151112号公報に記載のものを用いることができる。
 紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光重合開始剤を添加し、反応させて生成するものを挙げることができ、特開平1-105738号公報に記載のものを用いることができる。
 紫外線硬化型ポリオールアクリレート系樹脂の具体例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。
 これら紫外線硬化性樹脂の光重合開始剤としては、具体的には、ベンゾイン及びその誘導体、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α-アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができる。光増感剤と共に使用しても良い。上記光重合開始剤も光増感剤として使用できる。また、エポキシアクリレート系の光重合開始剤の使用の際、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン等の増感剤を用いることができる。紫外線硬化樹脂組成物に用いられる光重合開始剤また光増感剤は該組成物100質量部に対して0.1~15質量部であり、好ましくは1~10質量部である。
 樹脂モノマーとしては、例えば、不飽和二重結合が一つのモノマーとして、メチルアクリレート、エチルアクリレート、ブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、酢酸ビニル、スチレン等の一般的なモノマーを挙げることができる。また不飽和二重結合を二つ以上持つモノマーとして、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジビニルベンゼン、1,4-シクロヘキサンジアクリレート、1,4-シクロヘキシルジメチルアジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリルエステル等を挙げることができる。市販品としては、アデカオプトマーKR・BYシリーズ:KR-400、KR-410、KR-550、KR-566、KR-567、BY-320B(ADEKA株式会社製);コーエイハードA-101-KK、A-101-WS、C-302、C-401-N、C-501、M-101、M-102、T-102、D-102、NS-101、FT-102Q8、MAG-1-P20、AG-106、M-101-C(広栄化学株式会社製);セイカビームPHC2210(S)、PHCX-9(K-3)、PHC2213、DP-10、DP-20、DP-30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(大日精化工業株式会社製);KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(ダイセル・ユーシービー株式会社製);RC-5015、RC-5016、RC-5020、RC-5031、RC-5100、RC-5102、RC-5120、RC-5122、RC-5152、RC-5171、RC-5180、RC-5181(DIC株式会社製);オーレックスNo.340クリヤ(中国塗料株式会社製);サンラッドH-601、RC-750、RC-700、RC-600、RC-500、RC-611、RC-612(三洋化成工業株式会社製);SP-1509、SP-1507(昭和高分子株式会社製);RCC-15C(グレース・ジャパン株式会社製)、アロニックスM-6100、M-8030、M-8060(東亞合成株式会社製)、NKハードB-420、NKエステルA-DOG、NKエステルA-IBD-2E(新中村化学工業株式会社製)等を適宜選択して利用できる。また、具体的化合物例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、ジオキサングリコールアクリレート、エトキシ化アクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。
 また、上記のような樹脂材料を含有する半導体ナノ粒子層は、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法を用いて、半導体ナノ粒子層形成用塗布液を塗布して、加熱乾燥し、UV硬化処理することで形成できる。塗布量はウェット膜厚として0.1~40μmが適当で、好ましくは、0.5~30μmである。また、ドライ膜厚としては平均膜厚0.1~30μm、好ましくは1~20μmである。
 UV硬化処理の光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。照射条件はそれぞれのランプによって異なるが、紫外線の照射量は、通常5~500mJ/cm、好ましくは5~150mJ/cmである。また、紫外線を照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、さらに好ましくは幅方向にも張力を付与しながら行うことである。付与する張力は30~300N/mが好ましい。張力を付与する方法は特に限定されず、バックロール上で搬送方向に張力を付与しても良く、テンターにて幅方向、又は2軸方向に張力を付与しても良い。これによってさらに平面性優れたフィルムを得ることができる。
 半導体ナノ粒子層を形成する半導体ナノ粒子層形成用塗布液には溶媒が含まれていても良い。当該塗布液に含有される有機溶媒としては、例えば、炭化水素類(トルエン、キシレン)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)、エステル類(酢酸メチル、酢酸エチル、乳酸メチル)、グリコールエーテル類、その他の有機溶媒からも適宜選択し、又はこれらを混合し利用できる。
 なお、半導体ナノ粒子層に含有される樹脂材料としては、紫外線硬化性樹脂に限られるものではなく、例えば、ポリメタクリル酸メチル樹脂(PMMA;Poly(methyl methacrylate))等の熱可塑性樹脂であっても良いし、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等の熱硬化性樹脂であっても良い。
 以上のようにして構成される本発明の光学フィルムは、各種発光デバイスに適用可能であり、例えば、LCDにおいて光源と偏光板との間に配置される高輝度フィルムとして用いることが可能である。
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
《半導体ナノ粒子Aの合成》
 ミリスチン酸インジウム0.1mmol、ステアリン酸0.1mmol、トリメチルシリルホスフィン0.1mmol、ドデカンチオール0.1mmol、ウンデシレン酸亜鉛0.1mmolを、オクタデセン8mlとともに三口フラスコに入れ、窒素雰囲気下で還流を行いながら300℃で1時間加熱し、InP/ZnS(半導体ナノ粒子A)を得た。なお、本明細書中シェルを有する量子ドットの表記法として、コアがInP、シェルがZnSの場合、InP/ZnSと表記する。
 粒子Aを透過型電子顕微鏡により直接観察することで、InPコア部の表面をZnSシェルが覆った構造をした、コア・シェル構造のInP/ZnS半導体ナノ粒子を確認することができた。また、当該観察により、本合成方法で合成したInP/ZnS半導体微粒子蛍光体は、コア部の粒子径が2.1~3.8nm、コア部の粒子径分布が6~40%であることを確認した。ここで、当該観察には、日本電子株式会社製の透過型電子顕微鏡JEM-2100を用いた。
 また、脱水トルエン溶液Hを測定することで、InP/ZnS半導体微粒子蛍光体の光学特性を測定した。発光ピーク波長は、430~720nmであり、発光半値幅は、35~90nmであることを確認した。発光効率は、最大で70.9%に達した。ここで、InP/ZnS半導体微粒子蛍光体の発光特性測定には、JOBIN YVON社製の蛍光分光光度計FluoroMax-4を使用し、InP/ZnS半導体微粒子蛍光体の吸収スペクトル測定には、株式会社日立ハイテクノロジーズ社製の分光光度計U-4100を用いた。
《半導体ナノ粒子Bの合成》
 Se粉末0.7896gを、トリオクチルホスフィン(TOP)7.4gへ添加し、混合物を150℃まで加熱して(窒素気流下)、TOP-Seストック溶液を調製した。別途、酸化カドミウム(CdO)0.450g及びステアリン酸8gをアルゴン雰囲気下、三口フラスコ中で150℃まで加熱した。CdOが溶解した後、このCdO溶液を室温まで冷却した。このCdO溶液に、トリオクチルホスフィンオキサイド(TOPO)8g及び1-ヘプタデシル-オクタデシルアミン(HDA)12gを添加し、混合物を再び150℃まで加熱し、ここで、TOP-Seストック溶液を素早く添加した。その後、チャンバーの温度を220℃まで加熱し、さらに一定の速度で120分かけて250℃まで上昇させた(0.25℃/分)。その後、温度を100℃まで下げ、酢酸亜鉛二水和物を添加撹拌し溶解させた後、ヘキサメチルジシリルチアンのトリオクチルホスフィン溶液を滴下し、数時間撹拌を続けて反応を終了させ、CdSe/ZnS(半導体ナノ粒子B)を得た。
 粒子Aと同様に、粒子Bを透過型電子顕微鏡により直接観察することで、CdSeコア部の表面をZnSシェルが覆った構造をした、コア・シェル構造のCdSe/ZnS半導体ナノ粒子を確認することができた。また、CdSe/ZnS半導体微粒子蛍光体は、コア部の粒子径が2.0~4.0nm、コア部の粒子径分布が6~40%であることを確認した。光学特性は、発光ピーク波長が、410~700nmであり、発光半値幅は、35~90nmであることを確認した。発光効率は、最大で73.9%に達した。
《半導体ナノ粒子Cの合成》
 半導体ナノ粒子Aの0.4mL(約70mgが無機である)を真空下で乾燥させた。その後、0.6mLのオルトケイ酸トリエチル(TEOS)を注入して半導体ナノ粒子Aを溶解し、澄明な溶液を形成し、N下一晩のインキュベーションのために保持した。その後、混合物を、50mLフラスコ中10mLの逆マイクロエマルション(シクロヘキサン/CO-520、18ml/1.35g)に、600rpmの撹拌下で注入した。混合物を15分間撹拌し、その後0.1mLの4%NHOHを注入し、反応を開始させた。次の日に遠心分離して反応を停止させ、固相を収集した。得られた粒子を、20mLのシクロヘキサンで2度洗浄し、その後真空下で乾燥させ、シリカで覆われた半導体ナノ粒子Cを得た。
 半導体ナノ粒子Aと同様に分析したところ、粒径70~100nmのシリカ粒子の中に半導体ナノ粒子Aが内包していることを確認することができた。また、発光ピーク波長が、390~700nmであり、発光半値幅は、35~90nmであることを確認した。発光効率は、最大で70.1%に達した。
《半導体ナノ粒子Dの合成》
 半導体ナノ粒子Aの0.4mL(約70mgが無機である)を真空下で乾燥させた。その後、0.6mLのパーヒドロポリシラザン(アクアミカ NN120-10、無触媒タイプ、AZエレクトロニックマテリアルズ(株)製)を注入して半導体ナノ粒子Aを溶解し、澄明な溶液を形成し、N下一晩のインキュベーションのために保持した。その後、混合物を、50mLフラスコ中10mLの逆マイクロエマルション(シクロヘキサン/CO-520、18ml/1.35g)に、600rpmの撹拌下で注入した。混合物を15分間撹拌し、その後0.1mLの4%NHOHを注入し、反応を開始させた。次の日に遠心分離して反応を停止させ、固相を収集した。得られた粒子を、20mLのシクロヘキサンで2度洗浄し、その後真空下で乾燥させ、パーヒドロポリシラザンで覆われた半導体ナノ粒子Dを得た。
 半導体ナノ粒子Aと同様に分析したところ、粒径70~100nmのシリカ粒子の中に半導体ナノ粒子Aが内包していることを確認することができた。また、発光ピーク波長が、390~700nmであり、発光半値幅は、30~70nmであることを確認した。発光効率は、最大で73.5%に達した。
《半導体ナノ粒子Eの合成》
 半導体ナノ粒子Aの0.4mL(約70mgが無機である)を真空下で乾燥させた。その後、トルエンに分散してその分散液5mlを40℃に調整し、撹拌した状態で、0.5mlのパーヒドロポリシラザン(アクアミカ NN120-10、無触媒タイプ、AZエレクトロニックマテリアルズ(株)製)を添加し、約40℃で1時間撹拌した。得られた粒子を真空下で乾燥させ、パーヒドロポリシラザンで覆われた半導体ナノ粒子Eを得た。
 半導体ナノ粒子Aと同様に分析したところ、発光ピーク波長が、390~700nmであり、発光半値幅は、30~70nmであることを確認した。発光効率は、最大で75.5%に達した。
《半導体ナノ粒子Fの合成》
 半導体ナノ粒子Aの0.4mL(約70mgが無機である)を真空下で乾燥させた。その後、トルエンに分散してその分散液5mlを40℃に調整し、撹拌した状態で、0.5mlのパーヒドロポリシラザン(アクアミカ NN120-10、無触媒タイプ、AZエレクトロニックマテリアルズ(株)製)を添加し、約40℃で1時間撹拌した。得られた粒子を真空下で乾燥させ、更に下記エキシマ装置にてエキシマ照射を行い、一部ポリシラザンをシリカ改質した半導体ナノ粒子Fを得た。
 半導体ナノ粒子Aと同様に分析したところ、発光ピーク波長が、390~700nmであり、発光半値幅は、30~60nmであることを確認した。発光効率は、最大で76.5%に達した。
〈エキシマ照射装置〉
 装置:株式会社 エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200
 照射波長:172nm
 ランプ封入ガス:Xe
〈改質処理条件〉
 稼動ステージ上に固定した半導体ナノ粒子に対し、以下の条件で改質処理を行った。
 エキシマランプ光強度:130mW/cm(172nm)
 試料と光源の距離:1mm
 ステージ加熱温度:70℃
 照射装置内の酸素濃度:0.01%
 エキシマランプ照射時間:5秒。
 以上のようにして調製した各半導体ナノ粒子A~Fを用いて、以下に示す方法で光学フィルム1~16を作製した。
《光学フィルム1の作製》
 半導体ナノ粒子Bを赤色と緑色に発光するように粒径を調整し、赤色を0.75mg、緑色を4.12mgトルエン溶媒に分散させ、更にPMMA樹脂溶液を加え、半導体ナノ粒子の重量含有率が1%になる半導体ナノ粒子層形成用塗布液を調製した。
 上記半導体ナノ粒子層形成用塗布液を、両面に易接着加工された厚さ125μmのポリエステルフィルム(帝人デュポンフィルム株式会社製、KDL86WA)に乾燥膜厚100μmになるように塗布し、60℃3分乾燥し、比較例の光学フィルム1を作製した。
《光学フィルム2の作製》
 光学フィルム1の作製において、半導体ナノ粒子Bを半導体ナノ粒子Aに変更した以外は同様にして、比較例の光学フィルム2を作製した。
《光学フィルム3の作製》
 光学フィルム1の作製において、半導体ナノ粒子Bを半導体ナノ粒子Cに変更し、半導体ナノ粒子Cに内包する半導体ナノ粒子Aの赤色、緑色成分が0.75mg、4.12mgになるように調整した以外は同様にして、比較例の光学フィルム3を作製した。
《光学フィルム4の作製》
 半導体ナノ粒子Cに内包する半導体ナノ粒子A成分の粒径を赤色と緑色に発光するように調整し、更にその内包する半導体ナノ粒子Aの赤色、緑色成分が0.75mg、4.12mgになるようにトルエン溶媒に分散させ、更にDIC(株)製UV硬化型樹脂ユニディックV-4025に、光重合開始剤イルガキュア184(BASFジャパン製)を、固形分比(質量%)で樹脂/開始剤:95/5になるように調整したUV硬化樹脂溶液を加え、半導体ナノ粒子の重量含有率が1%になる半導体ナノ粒子層形成用塗布液を作製した。
 上記半導体ナノ粒子層形成用塗布液を、両面に易接着加工された厚さ125μmのポリエステルフィルム(帝人デュポンフィルム株式会社製、KDL86WA)に乾燥膜厚100μmになるように塗布し、60℃3分乾燥し、硬化条件;0.5J/cm空気下、高圧水銀ランプ使用で硬化を行い、比較例の光学フィルム4を作製した。
《光学フィルム5の作製》
 光学フィルム4の作製と同様にして半導体ナノ粒子層形成用塗布液を作製した。
 上記半導体ナノ粒子層形成用塗布液を、両面に易接着加工された厚さ125μmのポリエステルフィルム(帝人デュポンフィルム株式会社製、KDL86WA)に乾燥膜厚100μmになるように塗布し、60℃3分乾燥し、硬化条件;0.5J/cm空気下、高圧水銀ランプ使用で硬化を行い、更に下記エキシマ装置にてエキシマ照射を行い、比較例の光学フィルム5を作製した。
〈エキシマ照射装置〉
 装置:株式会社 エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200
 照射波長:172nm ランプ封入ガス:Xe
〈改質処理条件〉
 稼動ステージ上に固定した半導体ナノ粒子層形成用塗布液を塗布したフィルムに対し、以下の条件で改質処理を行った。
 エキシマランプ光強度:130mW/cm(172nm)
 試料と光源の距離:1mm
 ステージ加熱温度:70℃
 照射装置内の酸素濃度:0.01%
 エキシマランプ照射時間:5秒。
《光学フィルム6の作製》
 半導体ナノ粒子Bを赤色と緑色に発光するように粒径を調整し、赤色を0.75mg、緑色を4.12mgをトルエン溶媒に分散させ、更にパーヒドロポリシラザン(アクアミカ NN120-10、無触媒タイプ、AZエレクトロニックマテリアルズ(株)製)を添加し、半導体ナノ粒子の重量含有率が1%になる半導体ナノ粒子層形成用塗布液を作製した。
 上記半導体ナノ粒子層形成用塗布液を、両面に易接着加工された厚さ125μmのポリエステルフィルム(帝人デュポンフィルム株式会社製、KDL86WA)に乾燥膜厚100μmになるように塗布し、60℃3分乾燥し、本発明の光学フィルム6を作製した。
《光学フィルム7の作製》
 光学フィルム6の作製において、半導体ナノ粒子Bを半導体ナノ粒子Aに変更した以外は同様にして、本発明の光学フィルム7を作製した。
《光学フィルム8の作製》
 光学フィルム7の作製において、半導体ナノ粒子層形成用塗布液を、60℃3分乾燥した後に、加えて、エキシマ装置にてエキシマ照射を行った以外は同様にして、本発明の光学フィルム8を作製した。
《光学フィルム9の作製》
 光学フィルム1の作製において、半導体ナノ粒子Bを半導体ナノ粒子Fに変更した以外は同様にして、本発明の光学フィルム9を作製した。
《光学フィルム10の作製》
 光学フィルム4の作製において、半導体ナノ粒子Cを半導体ナノ粒子Fに変更した以外は同様にして、本発明の光学フィルム10を作製した。
《光学フィルム11の作製》
 光学フィルム4の作製において、半導体ナノ粒子Cを半導体ナノ粒子Dに変更した以外は同様にして、本発明の光学フィルム11を作製した。
《光学フィルム12の作製》
 光学フィルム4の作製において、半導体ナノ粒子Cを半導体ナノ粒子Eに変更した以外は同様にして、本発明の光学フィルム12を作製した。
《光学フィルム13の作製》
 光学フィルム5の作製において、半導体ナノ粒子Cを半導体ナノ粒子Eに変更した以外は同様にして、本発明の光学フィルム13を作製した。
《光学フィルム14の作製》
 光学フィルム5の作製において、半導体ナノ粒子Cを半導体ナノ粒子Fに変更した以外は同様にして、本発明の光学フィルム14を作製した。
《光学フィルム15の作製》
 光学フィルム4の作製において、半導体ナノ粒子Cを半導体ナノ粒子Fに変更し、更に基材を、厚さ100μmのポリカーボネートフィルム(帝人化成株式会社製、ピュアエースWR-S5)に変更した以外は同様にして、本発明の光学フィルム15を作製した。
《光学フィルム16の作製》
 光学フィルム4の作製において、半導体ナノ粒子Cを半導体ナノ粒子Fに変更し、更に基材を、厚さ100μmのトリアセテートフィルム(コニカミノルタ社製)に変更した以外は同様にして、本発明の光学フィルム16を作製した。
《光学フィルム17の作製》
 半導体ナノ粒子Fの粒径を赤色と緑色に発光するように調整した。赤色成分が0.75mgになるようにトルエン溶媒に分散させ、更にDIC(株)製UV硬化型樹脂ユニディックV-4025に、光重合開始剤イルガキュア184(BASFジャパン製)を、固形分比(質量%)で樹脂/開始剤:95/5になるように調整したUV硬化樹脂溶液を加え、半導体ナノ粒子の重量含有率が1%になる赤色の半導体ナノ粒子層形成用塗布液を調製した。同様にして緑色成分が4.12mgになるようにトルエン溶媒に分散させ、緑色の半導体ナノ粒子層形成用塗布液を作製した。
 まずは赤色の半導体ナノ粒子層形成用塗布液を、両面に易接着加工された厚さ125μmのポリエステルフィルム(帝人デュポンフィルム株式会社製、KDL86WA)に乾燥膜厚50μmになるように塗布し、60℃3分乾燥し、硬化条件;0.5J/cm空気下、高圧水銀ランプ使用で硬化を行い、更に赤色の半導体ナノ粒子層の上に、緑色の半導体ナノ粒子層形成用塗布液を塗布し、赤色同様にして硬化まで行い、赤色/緑色の2層構成の半導体ナノ粒子層を有する本発明の光学フィルム17を作製した。
《光学フィルムの評価》
 上記のようにして作製した光学フィルム1~17について下記の評価を行った。評価結果を表1に示す。
(透明性の評価:HAZEの測定)
 東京電色社製 HAZE METER NDH5000を用いて、光学フィルム1~17の全光線透過率を測定し、下記基準で評価した。本発明の光学フィルムは、発光デバイスに用いられる点から、1.5%未満であることが好ましい。
  ◎:0.5%未満
  ○:0.5%~1%
 ○△:1%~1.5%
  △:1.5%~3%未満
  ×:3%以上
(発光効率の評価)
 光学フィルム1~17を405nmの青紫光で励起したときに、色温度が7000Kの白色発光の発光効率を測定した。測定には、大塚電子株式会社製の発光測定システムMCPD-7000を用いた。比較例の光学フィルム1を100とした時の発光効率を下記の基準で評価した。
  ◎:125以上
  ○:115~125
 ○△:105~115
  △:95~105
 △×:85~95
  ×:85未満
(耐久性の評価)
 上記作製した各光学フィルム1~17に対し、85℃、85%RHの環境下で3000時間の加速劣化処理を施した後、上記発光効率を測定し、加速劣化処理前の発光効率に対する加速劣化処理後の発光効率の比を求め、下記の基準で評価した。
  ○:比が0.95以上
 ○△:比が0.90以上~0.95未満
  △:比が0.80以上~0.90未満
 △×:比が0.50以上~0.80未満
  ×:比が0.50未満
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、半導体ナノ粒子層に、ポリシラザン及びポリシラザンのうち少なくとも一つと、半導体ナノ粒子とを含有している本発明の光学フィルム6~17は、いずれも透明性、発光効率及び耐久性において良好な結果が得られている。このように、本発明によれば、透明性及び耐久性に優れた光学材料及び光学フィルムを得ることができる。
 また、光学フィルム6~8と光学フィルム9~16との結果から、ポリシラザンは半導体ナノ粒子層形成用塗布液に分散させて塗布するよりも、あらかじめ半導体ナノ粒子をポリシラザンで被覆したものを半導体ナノ粒子層形成用塗布液として塗布する方が、透明性及び耐久性に優れた光学フィルムが得られることが示されている。
 また、光学フィルム7と光学フィルム8との結果、光学フィルム13と光学フィルム14との結果から、ポリシラザンに真空紫外線を照射して改質処理を行うことで、耐久性が更に向上することが確認された。
 また、光学フィルム10と光学フィルム17との結果から、半導体ナノ粒子層を2層構成とすることで、透明性及び耐久性が更に向上することが確認された。
 以上のように、本発明は、酸素等による半導体ナノ粒子の劣化を長期に亘って抑制できる耐久性を備え、透明性に優れた光学材料、光学フィルム及び当該光学フィルムを備えた光学デバイスを提供することに適している。

Claims (9)

  1.  ポリシラザン及びポリシラザン改質体のうち少なくとも一種の化合物と、半導体ナノ粒子とを含有することを特徴とする光学材料。
  2.  前記半導体ナノ粒子が、コア・シェル構造を有することを特徴とする請求項1に記載の光学材料。
  3.  基材と、
     前記基材上に設けられ、ポリシラザン及びポリシラザン改質体のうち少なくとも一種の化合物と、半導体ナノ粒子とを含有する半導体ナノ粒子層と、を備えることを特徴とする光学フィルム。
  4.  前記半導体ナノ粒子が、コア・シェル構造を有することを特徴とする請求項3に記載の光学フィルム。
  5.  前記半導体ナノ粒子が、前記ポリシラザン及びポリシラザン改質体のうち少なくとも一種の化合物で被覆されていることを特徴とする請求項3又は請求項4に記載の光学フィルム。
  6.  前記ポリシラザン改質体が、前記ポリシラザンに真空紫外線が照射されてなる、酸化ケイ素、窒化ケイ素及び酸窒化ケイ素から選ばれる少なくとも一種を含む化合物であることを特徴とする請求項3から請求項5までのいずれか一項に記載の光学フィルム。
  7.  前記半導体ナノ粒子層が、紫外線硬化性樹脂を含有することを特徴とする請求項3から請求項6までのいずれか一項に記載の光学フィルム。
  8.  前記半導体ナノ粒子層が、2層設けられ、当該2層の前記半導体ナノ粒子層には、それぞれ互いに異なる発光波長を有する半導体ナノ粒子が含有されていることを特徴とする請求項3から請求項7までのいずれか一項に記載の光学フィルム。
  9.  請求項3から請求項8までのいずれか一項に記載の光学フィルムを備えることを特徴とする発光デバイス。
PCT/JP2014/062690 2013-06-05 2014-05-13 光学材料、光学フィルム及び発光デバイス WO2014196319A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/895,383 US20160115378A1 (en) 2013-06-05 2014-05-13 Optical material, optical film, and light-emitting device
JP2015521357A JPWO2014196319A1 (ja) 2013-06-05 2014-05-13 光学材料、光学フィルム及び発光デバイス
CN201480032097.2A CN105264042A (zh) 2013-06-05 2014-05-13 光学材料、光学膜及发光器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013118552 2013-06-05
JP2013-118552 2013-06-05

Publications (1)

Publication Number Publication Date
WO2014196319A1 true WO2014196319A1 (ja) 2014-12-11

Family

ID=52007972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062690 WO2014196319A1 (ja) 2013-06-05 2014-05-13 光学材料、光学フィルム及び発光デバイス

Country Status (5)

Country Link
US (1) US20160115378A1 (ja)
JP (1) JPWO2014196319A1 (ja)
CN (1) CN105264042A (ja)
TW (1) TWI565651B (ja)
WO (1) WO2014196319A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087792A1 (ja) * 2013-12-09 2015-06-18 コニカミノルタ株式会社 光学フィルム及び光学フィルムの製造方法
WO2016117561A1 (ja) * 2015-01-20 2016-07-28 デンカ株式会社 蛍光体及び発光装置
JP2017167320A (ja) * 2016-03-16 2017-09-21 大日本印刷株式会社 光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置
WO2017167779A1 (en) 2016-03-31 2017-10-05 Merck Patent Gmbh A color conversion sheet and an optical device
WO2018050526A1 (en) 2016-09-13 2018-03-22 Merck Patent Gmbh Light luminescent particle
WO2018114761A1 (en) 2016-12-20 2018-06-28 Merck Patent Gmbh Optical medium and an optical device
JP2018522959A (ja) * 2015-05-14 2018-08-16 北京理工大学 ペロブスカイト/ポリマー複合発光材料、製造方法及び用途
JP2018128590A (ja) * 2017-02-09 2018-08-16 大日本印刷株式会社 光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置
WO2018212268A1 (ja) 2017-05-17 2018-11-22 住友化学株式会社 フィルム、組成物の製造方法、硬化物の製造方法、及びフィルムの製造方法
WO2020246297A1 (ja) * 2019-06-04 2020-12-10 株式会社村田製作所 発光体、発光体の製造方法、及び生体物質標識剤

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150098443A (ko) * 2014-02-20 2015-08-28 한국과학기술연구원 폴리실라잔 및 파장변환제를 포함하는 코팅 조성물, 및 이를 이용하여 제조된 파장변환 시트
KR101497500B1 (ko) * 2014-06-16 2015-03-03 한국과학기술연구원 파장변환층을 구비하는 태양전지 및 그의 제조 방법
WO2018173707A1 (ja) 2017-03-21 2018-09-27 富士フイルム株式会社 半導体粒子、分散物、フィルム、光学フィルタ、建築用部材、及び、放射冷却装置
CN107158968B (zh) * 2017-06-16 2019-11-08 上海海事大学 一种用于光蒸发水的含半导体硫属化合物复合半透膜、其制备方法及用途
CN111819267B (zh) * 2018-02-15 2023-06-30 国立大学法人大阪大学 核壳型半导体纳米粒子、其制造方法和发光器件
CN109346920A (zh) * 2018-10-15 2019-02-15 南京邮电大学 内含硫化银量子点的分布反馈激光器及其制备方法
CN109149360A (zh) * 2018-10-15 2019-01-04 南京邮电大学 内含硒化银量子点的分布反馈激光器及其制备方法
CN109286130A (zh) * 2018-10-15 2019-01-29 南京邮电大学 内含硫化银量子点的微盘腔激光器及其制备方法
CN109167252A (zh) * 2018-10-15 2019-01-08 南京邮电大学 内含硫化银/硫化银锌核壳量子点的微盘腔激光器及其制备方法
CN109301692A (zh) * 2018-10-15 2019-02-01 南京邮电大学 内含碲化银量子点的微盘腔激光器及其制备方法
CN109217107A (zh) * 2018-10-15 2019-01-15 南京邮电大学 内含硫化银/硫化银锌核壳量子点的分布反馈激光器及其制备方法
CN109273984A (zh) * 2018-10-15 2019-01-25 南京邮电大学 内含碲化银/碲化银锌核壳量子点的咖啡环激光器及其制备方法
CN109286132A (zh) * 2018-10-15 2019-01-29 南京邮电大学 内含碲化银量子点的分布反馈激光器及其制备方法
DE112019006269T5 (de) * 2018-12-18 2021-10-14 Panasonic Intellectual Property Management Co., Ltd. Wellenlängenumwandlungselement, optische Vorrichtung, Projektor und Herstellungsverfahren für ein Wellenlängenumwandlungselement
WO2020233859A1 (en) * 2019-05-23 2020-11-26 Sony Corporation Nanocrystal emissive materials, light emitting element, and projector light source based on these materials
KR102395487B1 (ko) * 2019-08-21 2022-05-06 삼성에스디아이 주식회사 실리카 막 형성용 조성물 및 실리카 막
CN113025317A (zh) * 2019-12-25 2021-06-25 Tcl集团股份有限公司 量子点复合材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303037A (ja) * 2000-04-24 2001-10-31 Daiden Co Ltd カラープラズマディスプレイパネル用青色蛍光体
JP2003261869A (ja) * 2002-03-11 2003-09-19 Showa Denko Kk 発光体粒子及びその製造方法並びにその用途
JP2010103335A (ja) * 2008-10-24 2010-05-06 Seiko Epson Corp 光電変換装置の製造方法、電子機器の製造方法、光電変換装置および電子機器
JP2011195727A (ja) * 2010-03-19 2011-10-06 Panasonic Electric Works Co Ltd 波長変換粒子、波長変換部材及び発光装置
WO2011155614A1 (ja) * 2010-06-11 2011-12-15 旭硝子株式会社 透光性積層体およびそれを用いた太陽電池モジュール
JP2012229373A (ja) * 2011-04-27 2012-11-22 Panasonic Corp 被覆蛍光体及び発光装置
WO2013008361A1 (ja) * 2011-07-12 2013-01-17 パナソニック株式会社 光学素子及びそれを用いた半導体発光装置
JP2013069728A (ja) * 2011-09-20 2013-04-18 Konica Minolta Advanced Layers Inc 太陽電池用波長変換フィルム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933535B2 (en) * 2003-10-31 2005-08-23 Lumileds Lighting U.S., Llc Light emitting devices with enhanced luminous efficiency
US7102152B2 (en) * 2004-10-14 2006-09-05 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Device and method for emitting output light using quantum dots and non-quantum fluorescent material
DE102005034817A1 (de) * 2005-07-26 2007-02-01 Clariant International Limited Verfahren zur Herstellung einer dünnen glasartigen Beschichtung auf Substraten zur Verringerung der Gaspermeation
WO2011081037A1 (ja) * 2009-12-28 2011-07-07 独立行政法人産業技術総合研究所 ゾル-ゲル法によって作製した半導体ナノ粒子分散蛍光性微粒子
KR101695005B1 (ko) * 2010-04-01 2017-01-11 삼성전자 주식회사 나노결정/수지 조성물, 나노결정-수지 복합체 및 나노결정-수지 복합체의 제조방법
KR101238738B1 (ko) * 2010-12-27 2013-03-06 한국세라믹기술원 자기 발광 소자용 봉지재 및 봉지재 제조 방법, 그 봉지재를 이용한 자기 발광 소자 및 그의 제조 방법
KR101739576B1 (ko) * 2011-10-28 2017-05-25 삼성전자주식회사 반도체 나노결정-고분자 미분 복합체, 이의 제조방법 및 이를 포함하는 광전자 소자
KR101712033B1 (ko) * 2011-12-29 2017-03-06 삼성전자 주식회사 백라이트 유닛 및 이를 포함하는 액정 디스플레이 장치
KR20150098443A (ko) * 2014-02-20 2015-08-28 한국과학기술연구원 폴리실라잔 및 파장변환제를 포함하는 코팅 조성물, 및 이를 이용하여 제조된 파장변환 시트

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303037A (ja) * 2000-04-24 2001-10-31 Daiden Co Ltd カラープラズマディスプレイパネル用青色蛍光体
JP2003261869A (ja) * 2002-03-11 2003-09-19 Showa Denko Kk 発光体粒子及びその製造方法並びにその用途
JP2010103335A (ja) * 2008-10-24 2010-05-06 Seiko Epson Corp 光電変換装置の製造方法、電子機器の製造方法、光電変換装置および電子機器
JP2011195727A (ja) * 2010-03-19 2011-10-06 Panasonic Electric Works Co Ltd 波長変換粒子、波長変換部材及び発光装置
WO2011155614A1 (ja) * 2010-06-11 2011-12-15 旭硝子株式会社 透光性積層体およびそれを用いた太陽電池モジュール
JP2012229373A (ja) * 2011-04-27 2012-11-22 Panasonic Corp 被覆蛍光体及び発光装置
WO2013008361A1 (ja) * 2011-07-12 2013-01-17 パナソニック株式会社 光学素子及びそれを用いた半導体発光装置
JP2013069728A (ja) * 2011-09-20 2013-04-18 Konica Minolta Advanced Layers Inc 太陽電池用波長変換フィルム

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015087792A1 (ja) * 2013-12-09 2017-03-16 コニカミノルタ株式会社 光学フィルム及び光学フィルムの製造方法
WO2015087792A1 (ja) * 2013-12-09 2015-06-18 コニカミノルタ株式会社 光学フィルム及び光学フィルムの製造方法
JPWO2016117561A1 (ja) * 2015-01-20 2017-10-26 デンカ株式会社 蛍光体及び発光装置
KR20170105592A (ko) * 2015-01-20 2017-09-19 덴카 주식회사 형광체 및 발광 장치
WO2016117561A1 (ja) * 2015-01-20 2016-07-28 デンカ株式会社 蛍光体及び発光装置
KR102639166B1 (ko) * 2015-01-20 2024-02-22 덴카 주식회사 형광체 및 발광 장치
JP2020029559A (ja) * 2015-05-14 2020-02-27 北京理工大学 ペロブスカイト/ポリマー複合発光材料、製造方法及び用途
JP2018522959A (ja) * 2015-05-14 2018-08-16 北京理工大学 ペロブスカイト/ポリマー複合発光材料、製造方法及び用途
US10822542B2 (en) 2015-05-14 2020-11-03 Zhijing Nanotech (Beijing) Co. Ltd. Perovskite/polymer composite luminescent material, preparation method and use
JP2017167320A (ja) * 2016-03-16 2017-09-21 大日本印刷株式会社 光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置
WO2017167779A1 (en) 2016-03-31 2017-10-05 Merck Patent Gmbh A color conversion sheet and an optical device
WO2018050526A1 (en) 2016-09-13 2018-03-22 Merck Patent Gmbh Light luminescent particle
WO2018114761A1 (en) 2016-12-20 2018-06-28 Merck Patent Gmbh Optical medium and an optical device
JP2018128590A (ja) * 2017-02-09 2018-08-16 大日本印刷株式会社 光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置
KR20200010226A (ko) 2017-05-17 2020-01-30 수미토모 케미칼 컴퍼니 리미티드 필름, 조성물의 제조 방법, 경화물의 제조 방법, 및 필름의 제조 방법
KR102547846B1 (ko) * 2017-05-17 2023-06-27 수미토모 케미칼 컴퍼니 리미티드 필름, 조성물의 제조 방법, 경화물의 제조 방법, 및 필름의 제조 방법
WO2018212268A1 (ja) 2017-05-17 2018-11-22 住友化学株式会社 フィルム、組成物の製造方法、硬化物の製造方法、及びフィルムの製造方法
WO2020246297A1 (ja) * 2019-06-04 2020-12-10 株式会社村田製作所 発光体、発光体の製造方法、及び生体物質標識剤
JPWO2020246297A1 (ja) * 2019-06-04 2021-12-23 株式会社村田製作所 発光体、発光体の製造方法、及び生体物質標識剤
JP7201083B2 (ja) 2019-06-04 2023-01-10 株式会社村田製作所 発光体、発光体の製造方法、及び生体物質標識剤

Also Published As

Publication number Publication date
JPWO2014196319A1 (ja) 2017-02-23
CN105264042A (zh) 2016-01-20
TW201505960A (zh) 2015-02-16
TWI565651B (zh) 2017-01-11
US20160115378A1 (en) 2016-04-28

Similar Documents

Publication Publication Date Title
WO2014196319A1 (ja) 光学材料、光学フィルム及び発光デバイス
JP6314981B2 (ja) 光学材料、光学フィルム及び発光デバイス
WO2014208356A1 (ja) 光学フィルム及び発光デバイス
US10056533B2 (en) Quantum dot encapsulation techniques
CN107810250B (zh) 核-壳纳米片膜和使用其的显示装置
WO2014208478A1 (ja) 発光体材料、その製造方法、光学フィルム及び発光デバイス
JP5452218B2 (ja) 半導体ナノクリスタルを含む発光デバイス
KR101880596B1 (ko) 양자점 또는 염료를 함유하는 대면적 필름 및 이의 제조 방법
JP6652053B2 (ja) 半導体ナノ粒子集積体およびその製造方法
TW201340380A (zh) 半導體奈米晶體、其製造方法、組合物及產物
JP2016172829A (ja) 被覆半導体ナノ粒子およびその製造方法。
WO2015190335A1 (ja) 光治療装置
JP2015113360A (ja) 光学層形成用組成物および光学フィルム
JP2023183420A (ja) 成形物品およびナノ構造成形物品
JPWO2019230328A1 (ja) 表示装置及び表示装置の製造方法
Wang et al. Quantum dot color-converting solids operating efficiently in the kW/cm2 regime
JP6414075B2 (ja) 光学フィルム及び光学フィルムの製造方法
JP2015113361A (ja) 光学層形成用組成物および光学フィルム
CN115362238A (zh) 量子点的制造方法
WO2016076219A1 (ja) 光学フィルム及び光学フィルムの製造方法
TW202033736A (zh) 用於增強藍光吸收之薄殼量子點
JP2015151456A (ja) 発光体粒子、発光体粒子の製造方法、光学部材、光学部材の製造方法および光学デバイス
WO2016140340A1 (ja) 光学フィルムおよびこれを用いた光学デバイス
JP2015104691A (ja) 光学フィルムの製造方法および光学フィルム
JP2015099636A (ja) 有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480032097.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807847

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015521357

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14895383

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14807847

Country of ref document: EP

Kind code of ref document: A1