TW202033736A - 用於增強藍光吸收之薄殼量子點 - Google Patents

用於增強藍光吸收之薄殼量子點 Download PDF

Info

Publication number
TW202033736A
TW202033736A TW109102193A TW109102193A TW202033736A TW 202033736 A TW202033736 A TW 202033736A TW 109102193 A TW109102193 A TW 109102193A TW 109102193 A TW109102193 A TW 109102193A TW 202033736 A TW202033736 A TW 202033736A
Authority
TW
Taiwan
Prior art keywords
shell
nanostructure
thickness
thin
acrylate
Prior art date
Application number
TW109102193A
Other languages
English (en)
Inventor
克里斯托弗 桑德蘭
拉 普朗泰 伊蘭 珍
鎮梆 徐
春明 王
文卓 郭
Original Assignee
美商納諾西斯有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商納諾西斯有限公司 filed Critical 美商納諾西斯有限公司
Publication of TW202033736A publication Critical patent/TW202033736A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Luminescent Compositions (AREA)

Abstract

本發明係在奈米結構合成之領域中。提供高度發光奈米結構,特定而言高度發光量子點,其包含奈米晶核及至少兩種薄殼層。該等奈米結構可具有額外的殼層。亦提供製備該等奈米結構的方法、包含該等奈米結構之膜及包含該等奈米結構之裝置。

Description

用於增強藍光吸收之薄殼量子點
本發明在奈米結構合成之領域中。提供高度發光奈米結構,特定而言高度發光量子點,其包含奈米晶核及至少兩種薄殼層。該等奈米結構可具有額外的殼層。亦提供製備該等奈米結構的方法、包含該等奈米結構之膜及包含該等奈米結構之裝置。
針對高濃度色彩轉換應用調諧量子點(quantum dot;QD)之吸收率及發射特性對其效能至關重要。對於色彩轉換應用,藉由藍色發光二極體(LED)背光發射的激發波長之有效吸收率對於實現高光轉換效率(PCE)及高色域涵蓋率至關重要。此外,由於色彩轉換層之高光密度,控制包括發射波長(PWL)、發射線寬(FWHM)、斯托克位移(Stokes shift)及光致發光量子產率(PLQY)之其他量子點光學特性對於PCE及膜發射波長同樣重至關要。
為了利用諸如膜及顯示器之應用中的奈米結構之全部潛能,奈米結構需要同時符合五個準則:窄及對稱的發射光譜、高光致發光(PL)量子產率(QY)、高光學穩定性、環境友好材料以及用於大批量生產之低成本方法。大部分對高度發光及色彩可調的量子點之先前研究集中於含有鎘、汞或鉛之材料。Wang, A.等人,Nanoscale 7 :2951-2959 (2015)。舉例而言,已知由CdSe或CsPbBr3 構成之量子點在450 nm及可調的PWL處具有較高每質量吸收係數;然而,愈來愈擔心諸如鎘、汞或鉛之毒性材料將對人類健康及環境造成嚴重威脅,且歐盟的有害物質限制令(European Union's Restriction of Hazardous Substances rules)禁止含有超過痕量之此等材料的任何消費型電子裝置。因此,需要生產不含鎘、汞及鉛之材料以用於色彩轉換應用。
需要製備用於色彩轉換應用中之奈米結構及奈米結構組合物,其具有高藍光吸收效率、可控的發射波長、高光致發光量子產率及窄FWHM。
本發明提供一種奈米結構,其包含奈米晶核及至少兩種薄殼,其中至少一種薄殼之厚度在約0.01 nm與約1.0 nm之間,且其中該奈米結構展現在450 nm處以每質量計在約0.30 cm2 /mg與約0.50 cm2 /mg之間的光密度。
在一些實施例中,該奈米結構中之該奈米晶核選自由以下組成之群:Si、Ge、Sn、Se、Te、B、C、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si3 N4 、Ge3 N4 、Al2 O3 、Al2 CO及其組合。在一些實施例中,該奈米晶核包含InP。
在一些實施例中,該奈米結構中之至少一種薄殼選自由以下組成之群:CdS、CdSe、CdO、CdTe、ZnS、ZnO、ZnSe、ZnTe、MgTe、GaAs、GaSb、GaN、HgO、HgS、HgSe、HgTe、InAs、InSb、InN、AlAs、AlN、AlSb、AlS、PbS、PbO、PbSe、PbTe、MgO、MgS、MgSe、MgTe、CuCl、Ge、Si及其合金。
在一些實施例中,該奈米結構中之至少一種薄殼之厚度在約0.01 nm與約0.8 nm之間。在一些實施例中,該奈米結構中之至少一種薄殼之厚度在約0.01 nm與約0.3 nm之間。
在一些實施例中,該奈米結構中之至少一種薄殼包含ZnSe。
在一些實施例中,該奈米結構中之至少一種薄殼包含ZnS。
在一些實施例中,該奈米結構中之至少一種薄殼包含ZnSe且至少一種薄殼包含ZnS。
在一些實施例中,該奈米結構包含第一薄殼及第二薄殼,其中該第一薄殼之厚度在約0.01 nm與約2.5 nm之間。
在一些實施例中,該奈米結構之該第一薄殼之厚度在約0.25 nm與約0.8 nm之間。
在一些實施例中,該奈米結構包含第一薄殼及第二薄殼,其中該第二薄殼之厚度在約0.01 nm與約1.0 nm之間。
在一些實施例中,該奈米結構之該第二薄殼之厚度在約0.09 nm與約0.3 nm之間。
在一些實施例中,該奈米結構展現在450 nm處以每質量計在約0.30 cm2 /mg與約0.40 cm2 /mg之間的光密度。
在一些實施例中,該奈米結構展現在約50%與約99%之間的光致發光量子產率。
在一些實施例中,該奈米結構包含第一薄殼及第二薄殼,其中該第一薄殼包含ZnSe且具有在約0.25 nm與約0.8 nm之間的厚度,且其中該第二薄殼包含ZnS且具有在約0.09 nm與約0.3 nm之間的厚度。
本發明亦提供一種製備該奈米結構之方法,其包含: (a)混合奈米結構核心及第一殼前驅體; (b)添加第二殼前驅體; (c)將溫度升高、降低或保持在約200℃與約350℃之間;以及 (d)添加第三殼前驅體,其中(d)中之該第三殼前驅體不同於(b)中之該第二殼前驅體; 以提供包含具有至少兩種殼之核心的奈米結構。
在一些實施例中,(a)中之該混合進一步包含溶劑。
在一些實施例中,該溶劑選自由以下組成之群:1-十八烯、1-十六烯、1-二十烯、二十烷、十八烷、十六烷、十四烷、角鯊烯、角鯊烷、三辛基氧化膦、三辛基胺、三辛基膦、二辛基醚及其組合。
在一些實施例中,該溶劑包含1-十八烯。
在一些實施例中,(a)中之該混合係在約20℃與約250℃之間的溫度下進行。
在一些實施例中,該奈米晶核選自由以下組成之群:Si、Ge、Sn、Se、Te、B、C、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si3 N4 、Ge3 N4 、Al2 O3 、Al2 CO及其組合。
在一些實施例中,該奈米晶核包含InP。
在一些實施例中,該第一殼前驅體選自由以下組成之群:鎘源、鋅源、鋁源、鎵源或銦源。
在一些實施例中,該第一殼前驅體包含鋅源。
在一些實施例中,該第二殼前驅體選自由以下組成之群:磷源、氮源、砷源、硫源、硒源或碲源。
在一些實施例中,該第二殼前驅體包含硒源。
在一些實施例中,該第三殼前驅體選自由以下組成之群:磷源、氮源、砷源、硫源、硒源或碲源。
在一些實施例中,該第三殼前驅體包含硫源。
在一些實施例中,在(c)中將該溫度升高、降低或保持在約200℃與約310℃之間的溫度。
在一些實施例中,在(c)中將該溫度升高、降低或保持在約280℃與約310℃之間的溫度。
在一些實施例中,製備奈米結構之方法進一步包含分離該奈米結構。
本發明亦提供一種奈米結構組合物,其包含: (a)至少一種奈米結構群體,該等奈米結構包含奈米晶核及至少兩種薄殼,其中至少一種薄殼之厚度在約0.01 nm與約1.0 nm之間,且其中該奈米結構展現在450 nm處以每質量計在約0.30 cm2 /mg與約0.50 cm2 /mg之間的光密度;以及 (b)至少一種有機樹脂。
在一些實施例中,該奈米結構組合物中之該奈米晶核選自由以下組成之群:Si、Ge、Sn、Se、Te、B、C、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si3 N4 、Ge3 N4 、Al2 O3 、Al2 CO及其組合。
在一些實施例中,該奈米結構中之該奈米晶核包含InP。
在一些實施例中,該奈米結構中之至少一種薄殼選自由以下組成之群:CdS、CdSe、CdO、CdTe、ZnS、ZnO、ZnSe、ZnTe、MgTe、GaAs、GaSb、GaN、HgO、HgS、HgSe、HgTe、InAs、InSb、InN、AlAs、AlN、AlSb、AlS、PbS、PbO、PbSe、PbTe、MgO、MgS、MgSe、MgTe、CuCl、Ge、Si及其合金。
在一些實施例中,該奈米結構中之至少一種薄殼之厚度在約0.01 nm與約0.8 nm之間。
在一些實施例中,該奈米結構中之至少一種薄殼之厚度在約0.01 nm與約0.3 nm之間。
在一些實施例中,該奈米結構中之至少一種薄殼包含ZnSe。
在一些實施例中,該奈米結構中之至少一種薄殼包含ZnS。
在一些實施例中,該奈米結構中之至少一種薄殼包含ZnSe且至少一種薄殼包含ZnS。
在一些實施例中,該奈米結構組合物中之該奈米結構包含第一薄殼及第二薄殼,其中該第一薄殼之厚度在約0.01 nm與約2.5 nm之間。
在一些實施例中,該奈米結構中之該第一薄殼之厚度在約0.25 nm與約0.8 nm之間。
在一些實施例中,該奈米結構組合物中之該奈米結構包含第一薄殼及第二薄殼,其中該第二薄殼之厚度在約0.01 nm與約1.0 nm之間。
在一些實施例中,該奈米結構之該第二薄殼之厚度在約0.09 nm與約0.3 nm之間。
在一些實施例中,該奈米結構組合物中之該奈米結構展現在450 nm處以每質量計在約0.30 cm2 /mg與約0.40 cm2 /mg之間的光密度。
在一些實施例中,該奈米結構組合物中之該奈米結構展現在約50%與約99%之間的光致發光量子產率。
在一些實施例中,該奈米結構組合物中之該奈米結構包含第一薄殼及第二薄殼,其中該第一薄殼包含ZnSe且具有在約0.25 nm與約0.8 nm之間的厚度,且其中該第二薄殼包含ZnS且具有在約0.09 nm與約0.3 nm之間的厚度。
在一些實施例中,該奈米結構組合物包含一種與五種之間的有機樹脂。
在一些實施例中,該奈米結構組合物中之至少一種有機樹脂為熱固性樹脂或UV可固化樹脂。
在一些實施例中,該奈米結構組合物中之至少一種有機樹脂選自由以下組成之群:丙烯酸異冰片酯、丙烯酸四氫呋喃甲酯、乙氧基化丙烯酸苯酯、丙烯酸月桂酯、丙烯酸硬脂酯、丙烯酸辛酯、丙烯酸異癸酯、丙烯酸十三酯、丙烯酸己內酯、壬基苯酚丙烯酸酯、環狀三羥甲基丙烷縮甲醛丙烯酸酯、甲氧基聚乙二醇丙烯酸酯、甲氧基聚丙二醇丙烯酸酯、丙烯酸羥乙酯、丙烯酸羥丙酯及丙烯酸縮水甘油酯。
在一些實施例中,模製品包含該奈米結構組合物。
在一些實施例中,該模製品為膜、用於顯示器之基板或發光二極體。
在一些實施例中,該模製品為膜。
本發明亦提供一種奈米結構膜層,其包含: (a)至少一種奈米結構群體,該等奈米結構包含奈米晶核及至少兩種薄殼,其中至少一種薄殼之厚度在約0.01 nm與約1.0 nm之間;以及 (b)至少一種有機樹脂; 其中該奈米結構膜層展現在約25%與約40%之間的光轉換效率。
在一些實施例中,該奈米結構中之該奈米晶核選自由以下組成之群:Si、Ge、Sn、Se、Te、B、C、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si3 N4 、Ge3 N4 、Al2 O3 、Al2 CO及其組合。
在一些實施例中,該奈米結構中之該奈米晶核包含InP。
在一些實施例中,該奈米結構中之至少一種薄殼選自由以下組成之群:CdS、CdSe、CdO、CdTe、ZnS、ZnO、ZnSe、ZnTe、MgTe、GaAs、GaSb、GaN、HgO、HgS、HgSe、HgTe、InAs、InSb、InN、AlAs、AlN、AlSb、AlS、PbS、PbO、PbSe、PbTe、MgO、MgS、MgSe、MgTe、CuCl、Ge、Si及其合金。
在一些實施例中,該奈米結構中之至少一種薄殼之厚度在約0.01 nm與約0.8 nm之間。
在一些實施例中,該奈米結構中之至少一種薄殼之厚度在約0.01 nm與約0.3 nm之間。
在一些實施例中,該奈米結構中之至少一種薄殼包含ZnSe。
在一些實施例中,該奈米結構中之至少一種薄殼包含ZnS。
在一些實施例中,該奈米結構中之至少一種薄殼包含ZnSe且至少一種薄殼包含ZnS。
在一些實施例中,該奈米結構組合物中之該奈米結構包含第一薄殼及第二薄殼,其中該第一薄殼之厚度在約0.01 nm與約2.5 nm之間。
在一些實施例中,該奈米結構中之該第一薄殼之厚度在約0.25 nm與約0.8 nm之間。
在一些實施例中,該奈米結構組合物中之該奈米結構包含第一薄殼及第二薄殼,其中該第二薄殼之厚度在約0.01 nm與約1.0 nm之間。
在一些實施例中,該奈米結構之該第二薄殼之厚度在約0.09 nm與約0.3 nm之間。
在一些實施例中,該奈米結構膜層展現在約28%與約35%之間的光轉換效率。
在一些實施例中,該奈米結構膜層展現在約28%與約30%之間的光轉換效率。
在一些實施例中,奈米結構膜層展現在450 nm處在約0.80與0.95之間的光密度。
在一些實施例中,該奈米結構膜層中之該奈米結構包含第一薄殼及第二薄殼,其中該第一薄殼包含ZnSe且具有在約0.25 nm與約0.8 nm之間的厚度,且其中該第二薄殼包含ZnS且具有在約0.09 nm與約0.3 nm之間的厚度。
在一些實施例中,該奈米結構膜層包含一種與五種之間的有機樹脂。
在一些實施例中,該奈米結構膜層中之該至少一種有機樹脂為熱固性樹脂或UV可固化樹脂。
在一些實施例中,該奈米結構膜層中之至少一種有機樹脂選自由以下組成之群:丙烯酸異冰片酯、丙烯酸四氫呋喃甲酯、乙氧基化丙烯酸苯酯、丙烯酸月桂酯、丙烯酸硬脂酯、丙烯酸辛酯、丙烯酸異癸酯、丙烯酸十三酯、丙烯酸己內酯、壬基苯酚丙烯酸酯、環狀三羥甲基丙烷縮甲醛丙烯酸酯、甲氧基聚乙二醇丙烯酸酯、甲氧基聚丙二醇丙烯酸酯、丙烯酸羥乙酯、丙烯酸羥丙酯及丙烯酸縮水甘油酯。
在一些實施例中,該奈米結構膜層為顯示裝置中之色彩轉換層。
除非另外定義,否則本文中所使用之所有技術及科學術語均具有與由本發明所屬之一般熟習技術者通常所理解相同的含義。以下定義對此項技術中之彼等定義進行補充並係關於本申請案,且不推論為任何相關或不相關案例,例如任何共同擁有的專利或申請案。儘管與本文中所描述之彼等類似或等效的任何方法及材料可在實踐中用於測試,但在本文中描述較佳方法及材料。因此,本文中所使用之術語僅出於描述特定實施例之目的且並不意欲為限制性的。
除非上下文另外明確指示,否則如本說明書及隨附申請專利範圍中所使用,單數形式「一(a/an)」及「該(the)」包括複數個指示物。因此,舉例而言,對「奈米結構」之提及包括複數個此等奈米結構及類似者。
如本文中所使用,術語「約」指示給定數量之值變化了值之±10%。舉例而言,「約100 nm」涵蓋90 nm至110 nm之大小範圍(包括端點)。
「奈米結構」為具有尺寸小於約500 nm之至少一個區域或特徵尺寸的結構。在一些實施例中,奈米結構具有小於約200 nm、小於約100 nm、小於約50 nm、小於約20 nm或小於約10 nm之尺寸。通常,區域或特徵尺寸將沿著結構之最小軸線。此類等構之實例包括奈米線、奈米棒、奈米管、分支奈米結構、奈米四角錐、三角錐、二角錐、奈米晶、奈米點、量子點、奈米粒子及類似者。奈米結構可為例如實質上結晶、實質上單晶、多晶、非晶形或其組合。在一些實施例中,奈米結構之三個尺寸中之每一者具有小於約500 nm、小於約200 nm、小於約100 nm、小於約50 nm、小於約20 nm或小於約10 nm之尺寸。
當與參考奈米結構一起使用時,術語「異質結構」係指藉由至少兩種不同及/或可區分材料類型表徵之奈米結構。通常,奈米結構之一個區域包含第一材料類型,而奈米結構之第二區域包含第二材料類型。在某些實施例中,奈米結構包含第一材料之核心及第二(或第三等)材料之至少一種殼,其中不同材料類型圍繞例如奈米線之長軸、分支奈米線之臂之長軸或奈米晶之中心徑向分佈。殼可能(但無需)完全覆蓋視為殼之相鄰材料或視為異質結構之奈米結構;舉例而言,藉由覆蓋有第二材料之小島狀物的一種材料之核心表徵之奈米晶為異質結構。在其他實施例中,不同材料類型分佈於奈米結構內之不同位置處;例如沿著奈米線之主要(長)軸線或沿著分支奈米線之臂之長軸。異質結構內之不同區域可包含全部不同的材料,或不同區域可包含具有不同摻雜物或不同濃度之相同摻雜物的基底材料(例如,矽)。
如本文中所使用,奈米結構之「直徑」係指垂直於奈米結構之第一軸之橫截面直徑,其中第一軸相對於第二及第三軸之最大長度差值(第二軸及第三軸為長度大部分幾乎彼此相等之兩個軸)。第一軸並非必需為奈米結構之最長軸;例如對於盤形奈米結構,橫截面將為垂直於盤之短縱軸的實質上環形橫截面。在橫截面不為環形時,直徑為橫截面之長軸及短軸之平均值。對於細長或高縱橫比奈米結構(諸如奈米線),在垂直於奈米線之最長軸之整個橫截面中量測直徑。對於球形奈米結構,自一側至另一側經由球體中心量測直徑。
當相對於奈米結構使用時,術語「結晶」或「實質上結晶」係指奈米結構通常在結構之一或多個尺寸上展現長程排序的事實。熟習此項技術者應理解,術語「長程排序(long range ordering)」將視特定奈米結構之絕對大小而定,因為單晶體之排序不可延伸超出晶體邊界。在此情況下,「長程排序」將意謂在奈米結構之至少大部分尺寸上之實質順序。在一些情況下,奈米結構可攜有氧化物或其他塗料,或可由核心及至少一種殼構成。在此等情況下,將瞭解,氧化物、殼或其他塗料可能但不必展現此排序(例如,其可為非晶形、多晶或其他)。在此等情況下,片語「結晶」、「實質上結晶」、「實質上單晶」或「單晶」係指奈米結構之中央核心(排除塗層或殼)。如本文中所使用,術語「結晶」或「實質上結晶」意欲亦涵蓋包含各種缺陷、堆疊疵點、原子取代及類似者之結構,只要結構展現實質上長程排序即可(例如,超過奈米結構或其核心之至少一個軸之長度之至少約80%的排序)。此外,應瞭解,核心與奈米結構外部之間或核心與相鄰殼之間或殼與第二相鄰殼之間的界面可含有非結晶區域且可甚至為非晶形。此不會阻止奈米結構為如本文所定義之結晶或實質上結晶的。
當相對於奈米結構使用時,術語「單晶」指示奈米結構為實質上結晶的且包含實質上單晶體。當相對於包含核心及一或多種殼之奈米結構異質結構使用時,「單晶」指示核心為實質上結晶的且包含實質上單晶體。
「奈米晶」為實質上單晶之奈米結構。奈米晶因此具有尺寸小於約500 nm之至少一種區域或特徵尺寸。在一些實施例中,奈米晶具有小於約200 nm、小於約100 nm、小於約50 nm、小於約20 nm或小於約10 nm之尺寸。術語「奈米晶」意欲涵蓋包含各種缺陷、堆疊疵點、原子取代及類似者之實質上單晶奈米結構,以及不具有此等缺陷、疵點或取代之實質上單晶奈米結構。在包含核心及一或多種殼之奈米晶異質結構之情況下,奈米晶之核心通常為實質上單晶的,但殼無需為單晶的。在一些實施例中,奈米晶之三個尺寸中之每一者具有小於約500 nm、小於約200 nm、小於約100 nm、小於約50 nm、小於約20 nm或小於約10 nm之尺寸。
術語「量子點」(或「點」)係指展現量子侷限或激子侷限之奈米晶。量子點可在材料特性方面為實質上均勻的,或在某些實施例中,可為異質的,例如包括核心及至少一種殼。量子點之光學特性可受其粒子大小、化學組合物及/或表面組合物影響,且可藉由此項技術中可用的適合光學測試來測定。調整奈米晶大小(例如在約1 nm與約15 nm之間的範圍內)之能力使得在整個光譜中之光發射覆蓋度能夠在顯色性方面提供極大的通用性。
「配位體」為能夠例如經由共價、離子性、凡得瓦爾力(van der Waals)或與奈米結構之表面的其他分子交互作用而與奈米結構之一或多個面交互作用(無論較弱或較強)的分子。
「光致發光量子產率」(PLQY)為例如藉由奈米結構或奈米結構群體發射之光子與吸收之光子的比率。如此項技術中已知,量子產率通常藉由比較方法,使用具有已知量子產率值之充分表徵標準樣品來測定。
「峰值發射波長」(PWL)為光源之輻射量測發射光譜達成其最大值時的波長。
如本文中所使用,術語「殼」係指沈積於核心上或相同或不同組合物之先前沈積的殼且由殼材料沈積之單次作用產生的材料。準確的殼厚度視材料以及前驅體輸入及轉化而定且可以奈米或單層報導。如本文中所使用,「目標殼厚度」係指用於計算所需前驅體量之預期殼厚度。如本文中所使用,「實際殼厚度」係指在合成之後殼材料之實際沈積量且可藉由此項技術中已知之方法量測。藉助於實例,可藉由比較自殼合成之前及之後奈米晶之穿透式電子顯微鏡(TEM)影像測定的粒子直徑來量測實際殼厚度。
如本文中所使用,術語「半高全寬(full width at half-maximum)」(FWHM)為奈米粒子之大小分佈之量度。奈米粒子之發射光譜一般具有高斯曲線(Gaussian curve)形狀。將高斯曲線之寬度定義為FWHM且給出粒子之大小分佈之想法。較小FWHM對應於較窄量子點奈米晶大小分佈。FWHM亦視峰值發射波長最大值而定。
如本文中所使用,術語光轉換效率(PCE)為所發射(正向澆鑄)之綠色光子與總入射藍色光子之比率的量測。 奈米結構
在一些實施例中,本發明提供一種奈米結構,其包含奈米晶核及至少兩種薄殼,其中至少一種薄殼之厚度在約0.01 nm與約1.0 nm之間,且其中該奈米結構展現在450 nm處以每質量計在約0.30 cm2 /mg與約0.50 cm2 /mg之間的光密度。
在一些實施例中,本發明提供一種奈米結構,其包含奈米晶核及至少兩種薄殼,其中至少一種薄殼之厚度在約0.01 nm與約1.0 nm之間,其中至少一種薄殼之厚度在約0.01 nm與約2.5 nm之間,且其中該奈米結構展現在450 nm處以每質量計在約0.30 cm2 /mg與約0.50 cm2 /mg之間的光密度。
在一些實施例中,奈米結構為量子點。 奈米結構組合物
在一些實施例中,本發明提供一種奈米結構組合物,其包含: (a)至少一種奈米結構群體,該等奈米結構包含奈米晶核及至少兩種薄殼,其中至少一種薄殼之厚度在約0.01 nm與約1.0 nm之間,且其中該奈米結構展現在450 nm處以每質量計在約0.30 cm2 /mg與約0.50 cm2 /mg之間的光密度;以及 (b)至少一種有機樹脂。
在一些實施例中,本發明提供一種奈米結構組合物,其包含: (a)至少一種奈米結構群體,該等奈米結構包含奈米晶核及至少兩種薄殼,其中至少一種薄殼之厚度在約0.01 nm與約1.0 nm之間,其中至少一種薄殼之厚度在約0.01 nm與約2.5 nm之間,且其中該奈米結構展現在450 nm處以每質量計在約0.30 cm2 /mg與約0.50 cm2 /mg之間的光密度;以及 (b)至少一種有機樹脂。
在一些實施例中,奈米結構為量子點。 奈米結構膜層
在一些實施例中,本發明提供一種奈米結構膜層,其包含: (a)至少一種奈米結構群體,該等奈米結構包含奈米晶核及至少兩種薄殼,其中至少一種薄殼之厚度在約0.01 nm與約1.0 nm之間;以及 (b)至少一種有機樹脂; 其中該奈米結構膜層展現在約25%與約40%之間的光轉換效率。
在一些實施例中,本發明提供一種奈米結構膜層,其包含: (a)至少一種奈米結構群體,該等奈米結構包含奈米晶核及至少兩種薄殼,其中至少一種薄殼之厚度在約0.01 nm與約1.0 nm之間,其中至少一種薄殼之厚度在約0.01 nm與約2.5 nm之間;以及 (b)至少一種有機樹脂; 其中該奈米結構膜層展現在約25%與約40%之間的光轉換效率。
在一些實施例中,奈米結構為量子點。
在一些實施例中,奈米結構膜層為色彩轉換層。 奈米結構模製品
在一些實施例中,本發明提供一種奈米結構模製品,其包含: (a)第一障壁層; (b)第二障壁層;以及 (c)奈米結構層,其在第一障壁層與第二障壁層之間,其中該奈米結構層包含:奈米結構群體,其包含奈米晶核及至少兩種薄殼,其中至少一種薄殼之厚度在約0.01 nm與約1.0 nm之間;及至少一種有機樹脂;以及 其中該奈米結構膜層展現在約25%與約40%之間的光轉換效率。
在一些實施例中,本發明提供一種奈米結構模製品,其包含: (a)第一障壁層; (b)第二障壁層;以及 (c)奈米結構層,其在第一障壁層與第二障壁層之間,其中該奈米結構層包含:奈米結構群體,其包含奈米晶核及至少兩種薄殼,其中至少一種薄殼之厚度在約0.01 nm與約1.0 nm之間;及至少一種有機樹脂;以及 其中該奈米結構膜層展現在約25%與約40%之間的光轉換效率。
在一些實施例中,奈米結構為量子點。
在一些實施例中,模製品為用於顯示器之膜或基板。在一些實施例中,模製品為液晶顯示器。在一些實施例中,模製品為奈米結構膜。 奈米結構核心
用於本發明中之奈米結構可由任何適合材料產生,適合地為無機材料且更適合地為無機導體或半導體材料。
在一些實施例中,奈米結構包含半導體核心。
適合的半導體核心材料包括任何類型之半導體,包括第II-VI族、第III-V族、第IV-VI族及第IV族半導體。適合的半導體核心材料包括(但不限於) Si、Ge、Sn、Se、Te、B、C (包括金剛石)、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si3 N4 、Ge3 N4 、Al2 O3 、Al2 CO及其組合。
第II-VI族奈米結構之合成已描述於美國專利第6,225,198號、第6,322,901號、第6,207,229號、第6,607,829號、第7,060,243號、第7,374,824號、第6,861,155號、第7,125,605號、第7,566,476號、第8,158,193號及第8,101,234號以及美國專利申請公開案第2011/0262752號及第2011/0263062號中。在一些實施例中,核心為選自由以下組成之群的第II-VI族奈米晶:ZnO、ZnSe、ZnS、ZnTe、CdO、CdSe、CdS、CdTe、HgO、HgSe、HgS及HgTe。在一些實施例中,核心為選自由以下組成之群的奈米晶:ZnSe、ZnS、CdSe或CdS。
儘管諸如CdSe及CdS量子點之第II-VI族奈米結構可展現所需發光行為,但諸如鎘毒性之問題限制了可使用此等奈米結構之應用。因此,具有有利發光特性之較少毒性替代物為高度合乎需要的。歸因於其可相容發射範圍,通常第III-V族奈米結構且尤其基於InP之奈米結構提供基於鎘之材料之最佳已知替代物。
在一些實施例中,奈米結構不含鎘。如本文中所使用,術語「不含鎘」預期奈米結構含有小於100 ppm重量比之鎘。有害物質限制令(The Restriction of Hazardous Substances;RoHS)順應性定義要求在原始均勻前驅體材料中必須存在不超過0.01% (100 ppm)重量比之鎘。本發明之無Cd奈米結構中之鎘含量受前驅體材料中之痕量金屬濃度限制。無Cd奈米結構之前驅體材料中之痕量金屬(包括鎘)濃度可藉由感應耦合電漿質譜法(inductively coupled plasma mass spectroscopy;ICP-MS)分析量測,且處於十億分率(ppb)水準。在一些實施例中,「不含鎘」之奈米結構含有小於約50 ppm、小於約20 ppm、小於約10 ppm或小於約1 ppm之鎘。
在一些實施例中,核心為第III-V族奈米結構。在一些實施例中,核心為選自由以下組成之群的第III-V族奈米晶:BN、BP、BAs、BSb、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs及InSb。在一些實施例中,核心為InP奈米晶。
第III-V族奈米結構之合成已描述於美國專利第5,505,928號、第6,306,736號、第6,576,291號、第6,788,453號、第6,821,337號、第7,138,098號、第7,557,028號、第8,062,967號、第7,645,397號及第8,282,412號以及美國專利申請公開案第2015/236195號中。第III-V族奈米結構之合成亦描述於Wells, R.L.等人, 「The use of tris(trimethylsilyl)arsine to prepare gallium arsenide and indium arsenide」,Chem. Mater. 1 :4-6 (1989)及Guzelian, A.A.等人, 「Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots」,Appl. Phys. Lett. 69 : 1432-1434 (1996)中。
基於InP之奈米結構之合成已描述於例如Xie, R.等人, 「Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared」,J. Am. Chem. Soc. 129 :15432-15433 (2007);Micic, O.I.等人, 「Core-shell quantum dots of lattice-matched ZnCdSe2 shells on InP cores: Experiment and theory」,J. Phys. Chem. B 104 :12149-12156 (2000);Liu, Z.等人, 「Coreduction colloidal synthesis of III-V nanocrystals: The case of InP」,Angew. Chem. Int. Ed. Engl. 47 :3540-3542 (2008);Li, L.等人, 「Economic synthesis of high quality InP nanocrystals using calcium phosphide as the phosphorus precursor」,Chem. Mater. 20 :2621-2623(2008);D. Battaglia及X. Peng, 「Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent」,Nano Letters 2 :1027-1030(2002);Kim, S.等人,「Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes」,J. Am. Chem. Soc. 134 :3804-3809(2012);Nann, T.等人, 「Water splitting by visible light: A nanophotocathode for hydrogen production」,Angew. Chem. Int. Ed. 49 :1574-1577 (2010);Borchert, H.等人, 「Investigation of ZnS passivated InP nanocrystals by XPS」,Nano Letters 2 :151-154(2002);L. Li及P. Reiss, 「One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection」,J. Am. Chem. Soc. 130 :11588-11589(2008);Hussain, S.等人, 「One-pot fabrication of high-quality InP/ZnS(core / shell)quantum dots and their application to cellular imaging」,Chemphyschem. 10 :1466-1470(2009);Xu, S.等人, 「Rapid synthesis of high-quality InP nanocrystals」,J. Am. Chem. Soc. 128 :1054-1055(2006);Micic, O. I.等人, 「Size-dependent spectroscopy of InP quantum dots」,J. Phys. Chem. B 101 :4904-4912(1997);Haubold, S.等人, 「Strongly luminescent InP/ZnS core-shell nanoparticles」,Chemphyschem. 5 :331-334(2001);CrosGagneux, A.等人, 「Surface chemistry of InP quantum dots: A comprehensive study」,J. Am. Chem. Soc. 132 :18147-18157(2010);Micic, O. I.等人, 「Synthesis and characterization of InP, GaP, and GaInP2 quantum dots」,J. Phys. Chem. 99 :7754-7759(1995);Guzelian, A.A.等人, 「Synthesis of size-selected, surface-passivated InP nanocrystals」,J. Phys. Chem. 100 :7212-7219(1996);Lucey, D.W.等人, 「Monodispersed InP quantum dots prepared by colloidal chemistry in a non-coordinating solvent」,Chem. Mater. 17 :3754-3762(2005);Lim, J.等人, 「InP@ZnSeS, core@composition gradient shell quantum dots with enhanced stability」,Chem. Mater. 23 :4459-4463(2011);以及Zan, F.等人, 「Experimental studies on blinking behavior of single InP/ZnS quantum dots: Effects of synthetic conditions and UV irradiation」,J. Phys. Chem. C 116 :394-3950(2012)。然而,此等努力在製備具有高量子產率之InP奈米結構方面僅取得了有限的成果。
在一些實施例中,核心包含InP。
最低能量吸收峰在約420 nm與約470 nm之間的InP核心之合成已描述於美國專利申請案第2010/276638號及第2014/001405號中,其以全文引用之方式併入本文中。
在一些實施例中,核心包含吸收峰在420 nm與470 nm之間的InP。在一些實施例中,核心包含吸收峰為約440 nm的InP。在一些實施例中,核心包含吸收峰為約450 nm的InP。
在一些實施例中,核心經摻雜。在一些實施例中,奈米晶核之摻雜物包含金屬,包括一或多種過渡金屬。在一些實施例中,摻雜物為選自由以下組成之群的過渡金屬:Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Tc、Re、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au及其組合。在一些實施例中,摻雜物包含非金屬。在一些實施例中,摻雜物為ZnS、ZnSe、ZnTe、CdSe、CdS、CdTe、HgS、HgSe、HgTe、CuInS2 、CuInSe2 、AlN、AlP、AlAs、GaN、GaP或GaAs。
在一些實施例中,核心在殼沈積之前純化。在一些實施例中,過濾核心以自核心溶液移除沈澱物。
在一些實施例中,使用量子侷限來測定核心之直徑。零維奈米晶中之量子侷限(諸如量子點)起因於微晶邊界內電子之空間侷限。當材料直徑具有與波函數之德布羅意波長(de Broglie wavelength)相同的量值時,可觀測到量子侷限。奈米粒子之電子及光學特性實質上偏離主體材料之彼等特性。當限制尺寸與粒子波長相比較大時,粒子表現如同游離。在此狀態期間,歸因於連續能態,帶隙保持其初始能量。然而,隨著限制尺寸減小且達到一定界限(通常奈米級),能量光譜變得離散。因此,帶隙變為大小依賴性的。 薄殼
在一些實施例中,本發明之奈米結構包含核心及至少兩種薄殼。在一些實施例中,至少兩種薄殼包含第一薄殼及第二薄殼。
在一些實施例中,第一薄殼及第二薄殼包含不同的材料。在一些實施例中,核心、第一薄殼及第二薄殼包含不同的材料。
在一些實施例中,奈米結構包含1、2、3或4個殼層。
在一些實施例中,奈米結構包含1、2或3個薄殼層。
在一些實施例中,薄殼之厚度在約0.01 nm與約1.5 nm之間、約0.01 nm與約1.0 nm之間、約0.01 nm與約0.8 nm之間、約0.01 nm與約0.35 nm之間、約0.01 nm與約0.3 nm之間、約0.01 nm與約0.25 nm之間、約0.01 nm與約0.2 nm之間、約0.01 nm與約0.1 nm之間、約0.01 nm與約0.05 nm之間、約0.01 nm與約0.03 nm之間、約0.03 nm與約1.5 nm之間、約0.03 nm與約1.0 nm之間、約0.03 nm與約0.8 nm之間、約0.03 nm與約0.35 nm之間、約0.03 nm與約0.3 nm之間、約0.03 nm與約0.25 nm之間、約0.03 nm與約0.2 nm之間、約0.03 nm與約0.1 nm之間、約0.03 nm與約0.05 nm之間、約0.05 nm與約1.5 nm之間、約0.05 nm與約1.0 nm之間、約0.05 nm與約0.8 nm之間、約0.05 nm與約0.35 nm之間、約0.05 nm與約0.3 nm之間、約0.05 nm與約0.25 nm之間、約0.05 nm與約0.2 nm之間、約0.05 nm與約0.1 nm之間、約0.1 nm與約0.35 nm之間、約0.1 nm與約1.0 nm之間、約0.1 nm與約1.5 nm之間、約0.1 nm與約0.8 nm之間、約0.1 nm與約0.3 nm之間、約0.1 nm與約0.25 nm之間、約0.1 nm與約0.2 nm之間、約0.2 nm與約1.5 nm之間、約0.2 nm與約1.0 nm之間、約0.2 nm與約0.8 nm之間、約0.2 nm與約0.35 nm之間、約0.2 nm與約0.3 nm之間、約0.2 nm與約0.25 nm之間、約0.25 nm與約1.5 nm之間、約0.25 nm與約1.0 nm之間、約0.25 nm與約0.8 nm之間、約0.25 nm與約0.35 nm之間、約0.25 nm與約0.3 nm之間、約0.3 nm與約1.5 nm之間、約0.3 nm與約1.0 nm之間、約0.3 nm與約0.8 nm之間、約0.3 nm與約0.35 nm之間、約0.35 nm與約1.5 nm之間、約0.35與約1.0 nm之間、約0.35 nm與約0.8 nm之間、約0.8 nm與約1.5 nm之間、約0.8 nm與約1.0 nm之間或約1.0 nm與約1.5 nm之間。 第一薄殼
在一些實施例中,第一薄殼沈積於包含第II族及第VI族元素之混合物的核心上。在一些實施例中,第一薄殼沈積於核心上,該核心包含選自以下之奈米晶:ZnSe、ZnS、CdSe及CdS。
在一些實施例中,第一薄殼沈積於包含第III族及第V族元素之混合物的核心上。在一些實施例中,第一薄殼沈積於核心上,該核心包含選自以下之奈米晶:BN、BP、BAs、BSb、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs及InSb。在一些實施例中,第一薄殼沈積於包含InP之核心上。
在一些實施例中,第一薄殼包含鋅、硒、硫、碲及鎘中之至少兩者之混合物。在一些實施例中,第一薄殼包含鋅、硒、硫、碲及鎘中之兩者之混合物。在一些實施例中,第一薄殼包含鋅、硒、硫、碲及鎘中之三者之混合物。在一些實施例中,第一薄殼包含以下之混合物:鋅及硫;鋅及硒;鋅、硫及硒;鋅及碲;鋅、碲及硫;鋅、碲及硒;鋅、鎘及硫;鋅、鎘及硒;鎘及硫;鎘及硒;鎘、硒及硫;鎘及鋅;鎘、鋅及硫;鎘、鋅及硒;或鎘、鋅、硫及硒。
可藉由改變所提供之前驅體之量來控制第一薄殼之厚度。對於給定薄殼厚度,視情況以一定量提供前驅體中之至少一者,藉此當實質上完成生長反應時,獲得預定厚度之薄殼。若提供超過一種不同的前驅體,則各前驅體之量可能受限制或前驅體中之一者可以有限量提供,而其他以過量提供。
在一些實施例中,核心包含第II族元素且第一薄殼包含第VI族元素。在一些實施例中,第II族元素為鋅或鎘。在一些實施例中,第VI族元素為硫、硒或碲。在一些實施例中,第II族元素源與第VI族元素源之莫耳比在約0.01:1與約1:1.5之間、約0.01:1與約1:1.25之間、約0.01:1與約1:1之間、約0.01:1與約1:0.75之間、約0.01:1與約1:0.5之間、約0.01:1與約1:0.25之間、約0.01:1與約1:0.05之間、約0.05:1與約1:1.5之間、約0.05:1與約1:1.25之間、約0.05:1與約1:1之間、約0.05:1與約1:0.75之間、約0.05:1與約1:0.5之間、約0.05:1與約1:0.25之間、約0.25:1與約1:1.5之間、約0.25:1與約1:1.25之間、約0.25:1與約1:1之間、約0.25:1與約1:0.75之間、約0.25:1與約1:0.5之間、約0.5:1與約1:1.5之間、約0.5:1與約1:1.25之間、約0.5:1與約1:1之間、約0.5:1與約1:0.75之間、約0.75:1與約1:1.5之間、約0.75:1與約1:1.25之間、約0.75:1與約1:1之間、約1:1與約1:1.5之間、約1:1與約1:1.25之間或約1:1.25與約1:1.5之間。
在一些實施例中,核心包含第III族元素且第一薄殼包含第VI族元素。在一些實施例中,第III族元素為鎵或銦。在一些實施例中,第VI族元素為硫、硒或碲。在一些實施例中,第III族元素源與第VI族元素源之莫耳比在約0.01:1與約1:1.5之間、約0.01:1與約1:1.25之間、約0.01:1與約1:1之間、約0.01:1與約1:0.75之間、約0.01:1與約1:0.5之間、約0.01:1與約1:0.25之間、約0.01:1與約1:0.05之間、約0.05:1與約1:1.5之間、約0.05:1與約1:1.25之間、約0.05:1與約1:1之間、約0.05:1與約1:0.75之間、約0.05:1與約1:0.5之間、約0.05:1與約1:0.25之間、約0.25:1與約1:1.5之間、約0.25:1與約1:1.25之間、約0.25:1與約1:1之間、約0.25:1與約1:0.75之間、約0.25:1與約1:0.5之間、約0.5:1與約1:1.5之間、約0.5:1與約1:1.25之間、約0.5:1與約1:1之間、約0.5:1與約1:0.75之間、約0.75:1與約1:1.5之間、約0.75:1與約1:1.25之間、約0.75:1與約1:1之間、約1:1與約1:1.5之間、約1:1與約1:1.25之間或約1:1.25與約1:1.5之間。
在一些實施例中,當核心包含銦且第一薄殼包含硫時,藉由改變硫源與銦源之莫耳比來控制第一薄殼之厚度。在一些實施例中,硫源與銦源之莫耳比在約0.01:1與約1:1.5之間、約0.01:1與約1:1.25之間、約0.01:1與約1:1之間、約0.01:1與約1:0.75之間、約0.01:1與約1:0.5之間、約0.01:1與約1:0.25之間、約0.01:1與約1:0.05之間、約0.05:1與約1:1.5之間、約0.05:1與約1:1.25之間、約0.05:1與約1:1之間、約0.05:1與約1:0.75之間、約0.05:1與約1:0.5之間、約0.05:1與約1:0.25之間、約0.25:1與約1:1.5之間、約0.25:1與約1:1.25之間、約0.25:1與約1:1之間、約0.25:1與約1:0.75之間、約0.25:1與約1:0.5之間、約0.5:1與約1:1.5之間、約0.5:1與約1:1.25之間、約0.5:1與約1:1之間、約0.5:1與約1:0.75之間、約0.75:1與約1:1.5之間、約0.75:1與約1:1.25之間、約0.75:1與約1:1之間、約1:1與約1:1.5之間、約1:1與約1:1.25之間或約1:1.25與約1:1.5之間。
在一些實施例中,第一薄殼包含超過一個殼材料之單層。單層之數目為所有奈米結構之平均值;因此,第一薄殼中之單層之數目可為分數。在一些實施例中,第一薄殼中之單層之數目在0.1與3.0之間、0.1與2.5之間、0.1與2.0之間、0.1與1.5之間、0.1與1.0之間、0.1與0.5之間、0.1與0.3之間、0.3與3.0之間、0.3與2.5之間、0.3與2.0之間、0.3與1.5之間、0.3與1.0之間、0.3與0.5之間、0.5與3.0之間、0.5與2.5之間、0.5與2.0之間、0.5與1.5之間、0.5與1.0之間、1.0與3.0之間、1.0與2.5之間、1.0與2.0之間、1.0與1.5之間、1.5與3.0之間、1.5與2.5之間、1.5與2.0之間、2.0與3.0之間、2.0與2.5之間或2.5與3.0之間。在一些實施例中,第一薄殼包含0.8個與2.5個之間的單層。
可使用熟習此項技術者已知之技術來測定第一薄殼之厚度。在一些實施例中,藉由比較添加薄殼之前及之後奈米結構之平均直徑來測定薄殼之厚度。在一些實施例中,藉由TEM來測定添加薄殼之前及之後奈米結構之平均直徑。
在一些實施例中,第一薄殼之厚度在約0.01 nm與約1.5 nm之間、約0.01 nm與約1.0 nm之間、約0.01 nm與約0.8 nm之間、約0.01 nm與約0.35 nm之間、約0.01 nm與約0.3 nm之間、約0.01 nm與約0.25 nm之間、約0.01 nm與約0.2 nm之間、約0.01 nm與約0.1 nm之間、約0.01 nm與約0.05 nm之間、約0.01 nm與約0.03 nm之間、約0.03 nm與約1.5 nm之間、約0.03 nm與約1.0 nm之間、約0.03 nm與約0.8 nm之間、約0.03 nm與約0.35 nm之間、約0.03 nm與約0.3 nm之間、約0.03 nm與約0.25 nm之間、約0.03 nm與約0.2 nm之間、約0.03 nm與約0.1 nm之間、約0.03 nm與約0.05 nm之間、約0.05 nm與約1.5 nm之間、約0.05 nm與約1.0 nm之間、約0.05 nm與約0.8 nm之間、約0.05 nm與約0.35 nm之間、約0.05 nm與約0.3 nm之間、約0.05 nm與約0.25 nm之間、約0.05 nm與約0.2 nm之間、約0.05 nm與約0.1 nm之間、約0.1 nm與約0.35 nm之間、約0.1 nm與約1.0 nm之間、約0.1 nm與約1.5 nm之間、約0.1 nm與約0.8 nm之間、約0.1 nm與約0.3 nm之間、約0.1 nm與約0.25 nm之間、約0.1 nm與約0.2 nm之間、約0.2 nm與約1.5 nm之間、約0.2 nm與約1.0 nm之間、約0.2 nm與約0.8 nm之間、約0.2 nm與約0.35 nm之間、約0.2 nm與約0.3 nm之間、約0.2 nm與約0.25 nm之間、約0.25 nm與約1.5 nm之間、約0.25 nm與約1.0 nm之間、約0.25 nm與約0.8 nm之間、約0.25 nm與約0.35 nm之間、約0.25 nm與約0.3 nm之間、約0.3 nm與約1.5 nm之間、約0.3 nm與約1.0 nm之間、約0.3 nm與約0.8 nm之間、約0.3 nm與約0.35 nm之間、約0.35 nm與約1.5 nm之間、約0.35與約1.0 nm之間、約0.35 nm與約0.8 nm之間、約0.8 nm與約1.5 nm之間、約0.8 nm與約1.0 nm之間或約1.0 nm與約1.5 nm之間。
在一些實施例中,第一薄殼包含ZnSe殼。ZnSe單層之厚度為約0.328 nm。
在一些實施例中,當第一薄殼包含ZnSe時,第一薄殼之厚度在約0.01 nm與約1.0 nm之間、約0.01 nm與約0.8 nm之間、約0.01 nm與約0.35 nm之間、約0.01 nm與約0.3 nm之間、約0.01 nm與約0.25 nm之間、約0.01 nm與約0.2 nm之間、約0.01 nm與約0.1 nm之間、約0.01 nm與約0.05 nm之間、約0.05 nm與約1.0 nm之間、約0.05 nm與約0.8 nm之間、約0.05 nm與約0.35 nm之間、約0.05 nm與約0.3 nm之間、約0.05 nm與約0.25 nm之間、約0.05 nm與約0.2 nm之間、約0.05 nm與約0.1 nm之間、約0.1 nm與約0.35 nm之間、約0.1 nm與約1.0 nm之間、約0.1 nm與約0.8 nm之間、約0.1 nm與約0.3 nm之間、約0.1 nm與約0.25 nm之間、約0.1 nm與約0.2 nm之間、約0.2 nm與約1.0 nm之間、約0.2 nm與約0.8 nm之間、約0.2 nm與約0.35 nm之間、約0.2 nm與約0.3 nm之間、約0.2 nm與約0.25 nm之間、約0.25 nm與約0.35 nm之間、約0.25 nm與約0.3 nm之間、約0.3 nm與約1.0 nm之間、約0.3 nm與約0.8 nm之間、約0.3 nm與約0.35 nm之間、約0.35與約1.0 nm之間、約0.35 nm與約0.8 nm之間或約0.8 nm與約1.0 nm之間。在一些實施例中,當第一薄殼包含ZnSe時,第一薄殼之厚度在約0.25與約0.8 nm之間。
在一些實施例中,第一薄殼包含ZnS殼。ZnS殼單層之厚度為約0.31 nm。
在一些實施例中,當第一薄殼包含ZnS時,第一薄殼之厚度在約0.01 nm與約1.0 nm之間、約0.01 nm與約0.8 nm之間、約0.01 nm與約0.35 nm之間、約0.01 nm與約0.3 nm之間、約0.01 nm與約0.25 nm之間、約0.01 nm與約0.2 nm之間、約0.01 nm與約0.1 nm之間、約0.01 nm與約0.05 nm之間、約0.05 nm與約1.0 nm之間、約0.05 nm與約0.8 nm之間、約0.05 nm與約0.35 nm之間、約0.05 nm與約0.3 nm之間、約0.05 nm與約0.25 nm之間、約0.05 nm與約0.2 nm之間、約0.05 nm與約0.1 nm之間、約0.1 nm與約0.35 nm之間、約0.1 nm與約1.0 nm之間、約0.1 nm與約0.8 nm之間、約0.1 nm與約0.3 nm之間、約0.1 nm與約0.25 nm之間、約0.1 nm與約0.2 nm之間、約0.2 nm與約1.0 nm之間、約0.2 nm與約0.8 nm之間、約0.2 nm與約0.35 nm之間、約0.2 nm與約0.3 nm之間、約0.2 nm與約0.25 nm之間、約0.25 nm與約0.35 nm之間、約0.25 nm與約0.3 nm之間、約0.3 nm與約1.0 nm之間、約0.3 nm與約0.8 nm之間、約0.3 nm與約0.35 nm之間、約0.35與約1.0 nm之間、約0.35 nm與約0.8 nm之間或約0.8 nm與約1.0 nm之間。在一些實施例中,當第一薄殼包含ZnS時,第一薄殼之厚度在約0.09與約0.3 nm之間。
在一些實施例中,第一薄殼包含ZnS。在一些實施例中,用於製備ZnS殼之殼前驅體包含鋅源及硫源。
在一些實施例中,第一薄殼包含ZnSe。在一些實施例中,用於製備ZnSe殼之殼前驅體包含鋅源及硒源。
在一些實施例中,鋅源為二烷基鋅化合物。在一些實施例中,鋅源為羧酸鋅。在一些實施例中,鋅源為二乙基鋅、二甲基鋅、乙酸鋅、乙醯基丙酮酸鋅、碘化鋅、溴化鋅、氯化鋅、氟化鋅、碳酸鋅、氰化鋅、硝酸鋅、油酸鋅、氧化鋅、過氧化鋅、過氯酸鋅、硫酸鋅、己酸鋅、辛酸鋅、月桂酸鋅、肉豆蔻酸鋅、棕櫚酸鋅、硬脂酸鋅、二硫代胺基甲酸鋅或其混合物。在一些實施例中,鋅源為油酸鋅、己酸鋅、辛酸鋅、月桂酸鋅、肉豆蔻酸鋅、棕櫚酸鋅、硬脂酸鋅、二硫代胺基甲酸鋅或其混合物。在一些實施例中,鋅源為油酸鋅。
在一些實施例中,硫源選自元素硫、辛硫醇、十二烷硫醇、十八硫醇、三丁基膦硫化物、異硫氰酸環己酯、α-硫甲酚、三硫代碳酸伸乙酯、烯丙基硫醇、雙(三甲基矽烷基)硫化物、三烷基硫脲、三辛基膦硫化物、二乙二硫胺甲酸鋅及其混合物。在一些實施例中,硫源為經烷基取代之二硫代胺基甲酸鋅。在一些實施例中,硫源為二乙基硫代胺基甲酸鋅。在一些實施例中,硫源為十二烷硫醇。
在一些實施例中,硒源為經烷基取代之硒脲。在一些實施例中,硒源為硒化膦。在一些實施例中,硒源選自硒化三辛基膦、硒化三(正丁基)膦、硒化三(第二丁基)膦、硒化三(第三丁基)膦、硒化三甲基膦、硒化三苯基膦、硒化二苯基膦、硒化苯基膦、硒化三環己基膦、硒化環己基膦、1-辛烷硒醇、1-十二烷硒醇、苯硒酚、元素硒、硒化氫、硒化雙(三甲基矽烷基)、硒脲及其混合物。在一些實施例中,硒源為硒化三(正丁基)膦、硒化三(第二丁基)膦或硒化三(第三丁基)膦。在一些實施例中,硒源為硒化三辛基膦。
在一些實施例中,在存在至少一種奈米結構配位體之情況下合成第一薄殼。配位體可例如增強溶劑或聚合物中之奈米結構之互溶性(使得奈米結構分佈在整個組合物中以使得奈米結構不會聚集在一起),提昇奈米結構之量子產率,及/或保持奈米結構發光(例如當將奈米結構併入基質中時)。在一些實施例中,用於核心合成及用於第一殼合成之配位體相同。在一些實施例中,用於核心合成及用於第一殼合成之配位體不同。在合成之後,奈米結構表面上之任何配位體可交換為具有其他所需特性之不同配位體。配位體之實例揭示於美國專利第7,572,395號、第8,143,703號、第8,425,803號、第8,563,133號、第8,916,064號、第9,005,480號、第9,139,770號及第9,169,435號以及美國專利申請公開案第2008/0118755號中。
適用於合成殼之配位體為熟習此項技術者已知。在一些實施例中,配位體為選自由以下組成之群的脂肪酸:月桂酸、己酸、肉豆蔻酸、棕櫚酸、硬脂酸及油酸。在一些實施例中,配位體為選自以下之有機膦或有機膦氧化物:三辛基氧化膦(TOPO)、三辛基膦(TOP)、二苯基膦(DPP)、三苯基氧化膦及三丁基氧化膦。在一些實施例中,配位體為選自由以下組成之群的胺:十二基胺、油胺、十六基胺、二辛基胺及十八基胺。 第二薄殼層
在一些實施例中,第二薄殼沈積於第一薄殼上。在一些實施例中,第二薄殼沈積於包含ZnSe之第一薄殼上。
在一些實施例中,第二薄殼包含鋅、硒、硫、碲及鎘中之至少兩者之混合物。在一些實施例中,第二薄殼包含鋅、硒、硫、碲及鎘中之兩者之混合物。在一些實施例中,第二薄殼包含鋅、硒、硫、碲及鎘中之三者之混合物。在一些實施例中,第二薄殼包含以下之混合物:鋅及硫;鋅及硒;鋅、硫及硒;鋅及碲;鋅、碲及硫;鋅、碲及硒;鋅、鎘及硫;鋅、鎘及硒;鎘及硫;鎘及硒;鎘、硒及硫;鎘及鋅;鎘、鋅及硫;鎘、鋅及硒;或鎘、鋅、硫及硒。
可藉由改變所提供之前驅體之量來控制第二薄殼之厚度。對於給定第二薄殼厚度,視情況以一定量提供前驅體中之至少一者,藉此當實質上完成生長反應時,獲得預定厚度之薄殼。若提供超過一種不同的前驅體,則各前驅體之量可能受限制或前驅體中之一者可以有限量提供,而其他以過量提供。
在一些實施例中,核心包含第II族元素且第二薄殼包含第VI族元素。在一些實施例中,第II族元素為鋅或鎘。在一些實施例中,第VI族元素為硫、硒或碲。在一些實施例中,第II族元素源與第VI族元素源之莫耳比在約0.01:1與約1:1.5之間、約0.01:1與約1:1.25之間、約0.01:1與約1:1之間、約0.01:1與約1:0.75之間、約0.01:1與約1:0.5之間、約0.01:1與約1:0.25之間、約0.01:1與約1:0.05之間、約0.05:1與約1:1.5之間、約0.05:1與約1:1.25之間、約0.05:1與約1:1之間、約0.05:1與約1:0.75之間、約0.05:1與約1:0.5之間、約0.05:1與約1:0.25之間、約0.25:1與約1:1.5之間、約0.25:1與約1:1.25之間、約0.25:1與約1:1之間、約0.25:1與約1:0.75之間、約0.25:1與約1:0.5之間、約0.5:1與約1:1.5之間、約0.5:1與約1:1.25之間、約0.5:1與約1:1之間、約0.5:1與約1:0.75之間、約0.75:1與約1:1.5之間、約0.75:1與約1:1.25之間、約0.75:1與約1:1之間、約1:1與約1:1.5之間、約1:1與約1:1.25之間或約1:1.25與約1:1.5之間。
在一些實施例中,核心包含第III族元素且第二薄殼包含第VI族元素。在一些實施例中,第III族元素為鎵或銦。在一些實施例中,第VI族元素為硫、硒或碲。在一些實施例中,第III族元素源與第VI族元素源之莫耳比在約0.01:1與約1:1.5之間、約0.01:1與約1:1.25之間、約0.01:1與約1:1之間、約0.01:1與約1:0.75之間、約0.01:1與約1:0.5之間、約0.01:1與約1:0.25之間、約0.01:1與約1:0.05之間、約0.05:1與約1:1.5之間、約0.05:1與約1:1.25之間、約0.05:1與約1:1之間、約0.05:1與約1:0.75之間、約0.05:1與約1:0.5之間、約0.05:1與約1:0.25之間、約0.25:1與約1:1.5之間、約0.25:1與約1:1.25之間、約0.25:1與約1:1之間、約0.25:1與約1:0.75之間、約0.25:1與約1:0.5之間、約0.5:1與約1:1.5之間、約0.5:1與約1:1.25之間、約0.5:1與約1:1之間、約0.5:1與約1:0.75之間、約0.75:1與約1:1.5之間、約0.75:1與約1:1.25之間、約0.75:1與約1:1之間、約1:1與約1:1.5之間、約1:1與約1:1.25之間或約1:1.25與約1:1.5之間。
在一些實施例中,當核心包含銦且第二薄殼包含硫時,藉由改變硫源與銦源之莫耳比來控制薄殼之厚度。在一些實施例中,硫源與銦源之莫耳比在約0.01:1與約1:1.5之間、約0.01:1與約1:1.25之間、約0.01:1與約1:1之間、約0.01:1與約1:0.75之間、約0.01:1與約1:0.5之間、約0.01:1與約1:0.25之間、約0.01:1與約1:0.05之間、約0.05:1與約1:1.5之間、約0.05:1與約1:1.25之間、約0.05:1與約1:1之間、約0.05:1與約1:0.75之間、約0.05:1與約1:0.5之間、約0.05:1與約1:0.25之間、約0.25:1與約1:1.5之間、約0.25:1與約1:1.25之間、約0.25:1與約1:1之間、約0.25:1與約1:0.75之間、約0.25:1與約1:0.5之間、約0.5:1與約1:1.5之間、約0.5:1與約1:1.25之間、約0.5:1與約1:1之間、約0.5:1與約1:0.75之間、約0.75:1與約1:1.5之間、約0.75:1與約1:1.25之間、約0.75:1與約1:1之間、約1:1與約1:1.5之間、約1:1與約1:1.25之間或約1:1.25與約1:1.5之間。
在一些實施例中,當核心包含銦且第二薄殼包含硫時,藉由改變硫源與銦源之莫耳比來控制薄殼之厚度。在一些實施例中,硫源與銦源之莫耳比在約0.01:1與約1:1.5之間、約0.01:1與約1:1.25之間、約0.01:1與約1:1之間、約0.01:1與約1:0.75之間、約0.01:1與約1:0.5之間、約0.01:1與約1:0.25之間、約0.01:1與約1:0.05之間、約0.05:1與約1:1.5之間、約0.05:1與約1:1.25之間、約0.05:1與約1:1之間、約0.05:1與約1:0.75之間、約0.05:1與約1:0.5之間、約0.05:1與約1:0.25之間、約0.25:1與約1:1.5之間、約0.25:1與約1:1.25之間、約0.25:1與約1:1之間、約0.25:1與約1:0.75之間、約0.25:1與約1:0.5之間、約0.5:1與約1:1.5之間、約0.5:1與約1:1.25之間、約0.5:1與約1:1之間、約0.5:1與約1:0.75之間、約0.75:1與約1:1.5之間、約0.75:1與約1:1.25之間、約0.75:1與約1:1之間、約1:1與約1:1.5之間、約1:1與約1:1.25之間或約1:1.25與約1:1.5之間。
可使用熟習此項技術者已知之技術來測定第二薄殼之厚度。在一些實施例中,藉由比較添加第二薄殼之前及之後奈米結構之平均直徑來測定第二薄殼之厚度。在一些實施例中,藉由TEM來測定添加第二薄殼之前及之後奈米結構之平均直徑。
在一些實施例中,第二薄殼包含超過一個殼材料之單層。單層之數目為所有奈米結構之平均值;因此,第二薄殼中之單層之數目可為分數。在一些實施例中,第二薄殼中之單層之數目在0.1與3.0之間、0.1與2.5之間、0.1與2.0之間、0.1與1.5之間、0.1與1.0之間、0.1與0.5之間、0.1與0.3之間、0.3與3.0之間、0.3與2.5之間、0.3與2.0之間、0.3與1.5之間、0.3與1.0之間、0.3與0.5之間、0.5與3.0之間、0.5與2.5之間、0.5與2.0之間、0.5與1.5之間、0.5與1.0之間、1.0與3.0之間、1.0與2.5之間、1.0與2.0之間、1.0與1.5之間、1.5與3.0之間、1.5與2.5之間、1.5與2.0之間、2.0與3.0之間、2.0與2.5之間或2.5與3.0之間。在一些實施例中,第二薄殼包含0.3個與1.0個之間的單層。
可使用熟習此項技術者已知之技術來測定第二薄殼之厚度。在一些實施例中,藉由比較添加薄殼之前及之後奈米結構之平均直徑來測定第二薄殼之厚度。在一些實施例中,藉由TEM來測定添加薄殼之前及之後奈米結構之平均直徑。
在一些實施例中,第二薄殼之厚度在約0.01 nm與約1.5 nm之間、約0.01 nm與約1.0 nm之間、約0.01 nm與約0.8 nm之間、約0.01 nm與約0.35 nm之間、約0.01 nm與約0.3 nm之間、約0.01 nm與約0.25 nm之間、約0.01 nm與約0.2 nm之間、約0.01 nm與約0.1 nm之間、約0.01 nm與約0.05 nm之間、約0.01 nm與約0.03 nm之間、約0.03 nm與約1.5 nm之間、約0.03 nm與約1.0 nm之間、約0.03 nm與約0.8 nm之間、約0.03 nm與約0.35 nm之間、約0.03 nm與約0.3 nm之間、約0.03 nm與約0.25 nm之間、約0.03 nm與約0.2 nm之間、約0.03 nm與約0.1 nm之間、約0.03 nm與約0.05 nm之間、約0.05 nm與約1.5 nm之間、約0.05 nm與約1.0 nm之間、約0.05 nm與約0.8 nm之間、約0.05 nm與約0.35 nm之間、約0.05 nm與約0.3 nm之間、約0.05 nm與約0.25 nm之間、約0.05 nm與約0.2 nm之間、約0.05 nm與約0.1 nm之間、約0.1 nm與約0.35 nm之間、約0.1 nm與約1.0 nm之間、約0.1 nm與約1.5 nm之間、約0.1 nm與約0.8 nm之間、約0.1 nm與約0.3 nm之間、約0.1 nm與約0.25 nm之間、約0.1 nm與約0.2 nm之間、約0.2 nm與約1.5 nm之間、約0.2 nm與約1.0 nm之間、約0.2 nm與約0.8 nm之間、約0.2 nm與約0.35 nm之間、約0.2 nm與約0.3 nm之間、約0.2 nm與約0.25 nm之間、約0.25 nm與約1.5 nm之間、約0.25 nm與約1.0 nm之間、約0.25 nm與約0.8 nm之間、約0.25 nm與約0.35 nm之間、約0.25 nm與約0.3 nm之間、約0.3 nm與約1.5 nm之間、約0.3 nm與約1.0 nm之間、約0.3 nm與約0.8 nm之間、約0.3 nm與約0.35 nm之間、約0.35 nm與約1.5 nm之間、約0.35與約1.0 nm之間、約0.35 nm與約0.8 nm之間、約0.8 nm與約1.5 nm之間、約0.8 nm與約1.0 nm之間或約1.0 nm與約1.5 nm之間。
在一些實施例中,第二薄殼包含ZnSe。ZnSe單層之厚度為約0.328 nm。
在一些實施例中,當第二薄殼包含ZnSe時,第二薄殼之厚度在約0.01 nm與約1.0 nm之間、約0.01 nm與約0.8 nm之間、約0.01 nm與約0.35 nm之間、約0.01 nm與約0.3 nm之間、約0.01 nm與約0.25 nm之間、約0.01 nm與約0.2 nm之間、約0.01 nm與約0.1 nm之間、約0.01 nm與約0.05 nm之間、約0.05 nm與約1.0 nm之間、約0.05 nm與約0.8 nm之間、約0.05 nm與約0.35 nm之間、約0.05 nm與約0.3 nm之間、約0.05 nm與約0.25 nm之間、約0.05 nm與約0.2 nm之間、約0.05 nm與約0.1 nm之間、約0.1 nm與約0.35 nm之間、約0.1 nm與約1.0 nm之間、約0.1 nm與約0.8 nm之間、約0.1 nm與約0.3 nm之間、約0.1 nm與約0.25 nm之間、約0.1 nm與約0.2 nm之間、約0.2 nm與約1.0 nm之間、約0.2 nm與約0.8 nm之間、約0.2 nm與約0.35 nm之間、約0.2 nm與約0.3 nm之間、約0.2 nm與約0.25 nm之間、約0.25 nm與約0.35 nm之間、約0.25 nm與約0.3 nm之間、約0.3 nm與約1.0 nm之間、約0.3 nm與約0.8 nm之間、約0.3 nm與約0.35 nm之間、約0.35與約1.0 nm之間、約0.35 nm與約0.8 nm之間或約0.8 nm與約1.0 nm之間。在一些實施例中,當第二薄殼包含ZnSe時,第二薄殼之厚度在約0.25與約0.8 nm之間。
在一些實施例中,第二薄殼包含ZnS殼。ZnS殼單層之厚度為約0.31 nm。
在一些實施例中,當第二薄殼包含ZnS時,第二薄殼之厚度在約0.01 nm與約1.0 nm之間、約0.01 nm與約0.8 nm之間、約0.01 nm與約0.35 nm之間、約0.01 nm與約0.3 nm之間、約0.01 nm與約0.25 nm之間、約0.01 nm與約0.2 nm之間、約0.01 nm與約0.1 nm之間、約0.01 nm與約0.05 nm之間、約0.05 nm與約1.0 nm之間、約0.05 nm與約0.8 nm之間、約0.05 nm與約0.35 nm之間、約0.05 nm與約0.3 nm之間、約0.05 nm與約0.25 nm之間、約0.05 nm與約0.2 nm之間、約0.05 nm與約0.1 nm之間、約0.1 nm與約0.35 nm之間、約0.1 nm與約1.0 nm之間、約0.1 nm與約0.8 nm之間、約0.1 nm與約0.3 nm之間、約0.1 nm與約0.25 nm之間、約0.1 nm與約0.2 nm之間、約0.2 nm與約1.0 nm之間、約0.2 nm與約0.8 nm之間、約0.2 nm與約0.35 nm之間、約0.2 nm與約0.3 nm之間、約0.2 nm與約0.25 nm之間、約0.25 nm與約0.35 nm之間、約0.25 nm與約0.3 nm之間、約0.3 nm與約1.0 nm之間、約0.3 nm與約0.8 nm之間、約0.3 nm與約0.35 nm之間、約0.35與約1.0 nm之間、約0.35 nm與約0.8 nm之間或約0.8 nm與約1.0 nm之間。在一些實施例中,當第二薄殼包含ZnS時,第二薄殼之厚度在約0.09與約0.3 nm之間。
在一些實施例中,第二薄殼包含ZnS殼。在一些實施例中,用於製備ZnS殼之殼前驅體包含鋅源及硫源。
在一些實施例中,第二薄殼包含ZnSe殼。在一些實施例中,用於製備ZnSe殼之殼前驅體包含鋅源及硒源。
在一些實施例中,鋅源為二烷基鋅化合物。在一些實施例中,鋅源為羧酸鋅。在一些實施例中,鋅源為二乙基鋅、二甲基鋅、乙酸鋅、乙醯基丙酮酸鋅、碘化鋅、溴化鋅、氯化鋅、氟化鋅、碳酸鋅、氰化鋅、硝酸鋅、油酸鋅、氧化鋅、過氧化鋅、過氯酸鋅、硫酸鋅、己酸鋅、辛酸鋅、月桂酸鋅、肉豆蔻酸鋅、棕櫚酸鋅、硬脂酸鋅、二硫代胺基甲酸鋅或其混合物。在一些實施例中,鋅源為油酸鋅、己酸鋅、辛酸鋅、月桂酸鋅、肉豆蔻酸鋅、棕櫚酸鋅、硬脂酸鋅、二硫代胺基甲酸鋅或其混合物。在一些實施例中,鋅源為油酸鋅。
在一些實施例中,硫源選自元素硫、辛硫醇、十二烷硫醇、十八硫醇、三丁基膦硫化物、異硫氰酸環己酯、α-硫甲酚、三硫代碳酸伸乙酯、烯丙基硫醇、雙(三甲基矽烷基)硫化物、三烷基硫脲、三辛基膦硫化物、二乙二硫胺甲酸鋅及其混合物。在一些實施例中,硫源為經烷基取代之二硫代胺基甲酸鋅。在一些實施例中,硫源為二乙基硫代胺基甲酸鋅。在一些實施例中,硫源為十二烷硫醇。
在一些實施例中,硒源為經烷基取代之硒脲。在一些實施例中,硒源為硒化膦。在一些實施例中,硒源選自硒化三辛基膦、硒化三(正丁基)膦、硒化三(第二丁基)膦、硒化三(第三丁基)膦、硒化三甲基膦、硒化三苯基膦、硒化二苯基膦、硒化苯基膦、硒化三環己基膦、硒化環己基膦、1-辛烷硒醇、1-十二烷硒醇、苯硒酚、元素硒、硒化氫、硒化雙(三甲基矽烷基)、硒脲及其混合物。在一些實施例中,硒源為硒化三(正丁基)膦、硒化三(第二丁基)膦或硒化三(第三丁基)膦。在一些實施例中,硒源為硒化三辛基膦。
在一些實施例中,在存在至少一種奈米結構配位體之情況下合成第二薄殼。配位體可例如增強溶劑或聚合物中之奈米結構之互溶性(使得奈米結構分佈在整個組合物中以使得奈米結構不會聚集在一起),提昇奈米結構之量子產率,及/或保持奈米結構發光(例如當將奈米結構併入基質中時)。在一些實施例中,用於核心合成及用於第二殼合成之配位體相同。在一些實施例中,用於核心合成及用於第二殼合成之配位體不同。在合成之後,奈米結構表面上之任何配位體可交換為具有其他所需特性之不同配位體。配位體之實例揭示於美國專利第7,572,395號、第8,143,703號、第8,425,803號、第8,563,133號、第8,916,064號、第9,005,480號、第9,139,770號及第9,169,435號以及美國專利申請公開案第2008/0118755號中。
適用於合成殼之配位體為熟習此項技術者已知。在一些實施例中,配位體為選自由以下組成之群的脂肪酸:月桂酸、己酸、肉豆蔻酸、棕櫚酸、硬脂酸及油酸。在一些實施例中,配位體為選自以下之有機膦或有機膦氧化物:三辛基氧化膦(TOPO)、三辛基膦(TOP)、二苯基膦(DPP)、三苯基氧化膦及三丁基氧化膦。在一些實施例中,配位體為選自由以下組成之群的胺:十二基胺、油胺、十六基胺、二辛基胺及十八基胺。 生產具有兩種薄殼之核心
在一些實施例中,本發明係關於一種生產包含核心及至少兩種薄殼之奈米結構的方法,該方法包含: (a)混合奈米結構核心及第一殼前驅體; (b)添加第二殼前驅體; (c)將溫度升高、降低或保持在約200℃與約350℃之間; (d)添加第三殼前驅體,其中(d)中之該第三殼前驅體不同於(b)中之該第二殼前驅體; 以提供包含具有至少兩種薄殼之核心的奈米結構。
在一些實施例中,(a)中之混合在溶劑之存在下進行。在一些實施例中,溶劑選自由以下組成之群:1-十八烯、1-十六烯、1-二十烯、二十烷、十八烷、十六烷、十四烷、角鯊烯、角鯊烷、三辛基氧化膦、三辛基胺、三辛基膦及二辛基醚。在一些實施例中,溶劑為1-十八烯。
在一些實施例中,(a)中之混合係在約20℃與約250℃之間、約20℃與約200℃之間、約20℃與約150℃之間、約20℃與100℃之間、約20℃與約50℃之間、約50℃與約250℃之間、約50℃與200℃之間、約50℃與約150℃之間、約50℃與約100℃之間、約100℃與約250℃之間、約100℃與約200℃之間、約100℃與約150℃之間、約150℃與250℃之間、約150℃與約200℃之間或約200℃與約250℃之間的溫度下進行。在一些實施例中,(a)中之混合係在約85℃與約200℃之間的溫度下進行。
在一些實施例中,(a)中之奈米結構核心包含選自以下之奈米晶:BN、BP、Bas、BSb、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs及InSb。在一些實施例中,(a)中之奈米結構核心包含InP。
在一些實施例中,(a)中之第一殼前驅體為第II族前驅體。在一些實施例中,第一殼前驅體為鋅源或鎘源。在一些實施例中,第一殼前驅體為鋅源。
在一些實施例中,(a)中之混合進一步包含至少一種奈米結構配位體。配位體可例如增強溶劑或聚合物中之奈米結構之互溶性(使得奈米結構分佈在整個組合物中以使得奈米結構不會聚集在一起),提昇奈米結構之量子產率,及/或保持奈米結構發光(例如當將奈米結構併入基質中時)。在一些實施例中,用於核心合成及殼合成之配位體相同。在一些實施例中,用於核心合成及殼合成之配位體不同。在合成之後,奈米結構表面上之任何配位體可交換為具有其他所需特性之不同配位體。配位體之實例揭示於美國專利第7,572,395號、第8,143,703號、第8,425,803號、第8,563,133號、第8,916,064號、第9,005,480號、第9,139,770號及第9,169,435號以及美國專利申請公開案第2008/0118755號中。
在一些實施例中,於(a)中與核心及第一殼前驅體混合之配位體係選自由以下組成之群的脂肪酸:月桂酸、己酸、肉豆蔻酸、棕櫚酸、硬脂酸及油酸。在一些實施例中,配位體為選自以下之有機膦或有機膦氧化物:三辛基氧化膦(TOPO)、三辛基膦(TOP)、二苯基膦(DPP)、三苯基氧化膦及三丁基氧化膦。在一些實施例中,配位體為選自由以下組成之群的胺:十二基胺、油胺、十六基胺、二辛基胺及十八基胺。在一些實施例中,配位體為月桂酸。
在一些實施例中,在(b)中添加之第二殼前驅體為第VI族殼前驅體。在一些實施例中,第二殼前驅體為硫、硒或碲。在一些實施例中,第二殼前驅體為硒源。在一些實施例中,硒源為硒化三辛基膦。在一些實施例中,第二殼前驅體為硫源。在一些實施例中,硫源為十二烷硫醇。
在一些實施例中,在(b)中添加第二前驅體之後,在(c)中將混合物之溫度升高、降低或保持在約50℃與約350℃之間、約50℃與約300℃之間、50℃與約250℃之間、約50℃與200℃之間、約50℃與約150℃之間、約50℃與約100℃之間、約100℃與約350℃之間、約100℃與約300℃之間、約100℃與約250℃之間、約100℃與約200℃之間、約100℃與約150℃之間、約150℃與約350℃之間、約150℃與約300℃之間、約150℃與250℃之間、約150℃與約200℃之間、約200℃與約350℃之間、約200℃與約300℃之間、約200℃與約250℃之間、約250℃與約350℃之間、約250℃與約300℃之間或約300℃與約350℃之間的溫度。在一些實施例中,在(c)中將混合物之溫度升高、降低或保持在約200℃與約310℃之間的溫度。
在一些實施例中,使(c)中之溫度保持約2分鐘至約240分鐘、約2分鐘至約200分鐘、約2分鐘至約100分鐘、約2分鐘至約60分鐘、約2分鐘至約40分鐘、約5分鐘至約240分鐘、約5分鐘至約200分鐘、約5分鐘至約100分鐘、約5分鐘至約60分鐘、約5分鐘至約40分鐘、約10分鐘至約240分鐘、約10分鐘至約200分鐘、約10分鐘至約100分鐘、約10分鐘至約60分鐘、約10分鐘至約40分鐘、約40分鐘至約240分鐘、約40分鐘至約200分鐘、約40分鐘至約100分鐘、約40分鐘至約60分鐘、約60分鐘至約240分鐘、約60分鐘至約200分鐘、約60分鐘至約100分鐘、約100分鐘至約240分鐘、約100分鐘至約200分鐘或約200分鐘至約240分鐘。
在一些實施例中,在(d)中添加之第三殼前驅體為第VI族殼前驅體。在一些實施例中,第三殼前驅體為硫、硒或碲。在一些實施例中,第三殼前驅體為硫源。在一些實施例中,硫源為十二烷硫醇。在一些實施例中,第二殼前驅體為硒源。在一些實施例中,硒源為硒化三辛基膦。
在一些實施例中,在(d)中將混合物之溫度升高、降低或保持在約50℃與約350℃之間、約50℃與約300℃之間、約50℃與約250℃之間、約50℃與約200℃之間、約50℃與約150℃之間、約50℃與約100℃之間、約100℃與約350℃之間、約100℃與約300℃之間、約100℃與約250℃之間、約100℃與約200℃之間、約100℃與約150℃之間、約150℃與約350℃之間、約150℃與約300℃之間、約150℃與約200℃之間、約200℃與約350℃之間、約200℃與約300℃之間、約200℃與約250℃之間、約250℃與約350℃之間、約250℃與約300℃之間或約300℃與約350℃之間的溫度下。在一些實施例中,在(d)中將混合物之溫度升高、降低或保持在約250℃與約310℃之間的溫度。
在一些實施例中,使(d)中之溫度保持約2分鐘至約240分鐘、約2分鐘至約200分鐘、約2分鐘至約100分鐘、約2分鐘至約60分鐘、約2分鐘至約40分鐘、約5分鐘至約240分鐘、約5分鐘至約200分鐘、約5分鐘至約100分鐘、約5分鐘至約60分鐘、約5分鐘至約40分鐘、約10分鐘至約240分鐘、約10分鐘至約200分鐘、約10分鐘至約100分鐘、約10分鐘至約60分鐘、約10分鐘至約40分鐘、約40分鐘至約240分鐘、約40分鐘至約200分鐘、約40分鐘至約100分鐘、約40分鐘至約60分鐘、約60分鐘至約240分鐘、約60分鐘至約200分鐘、約60分鐘至約100分鐘、約100分鐘至約240分鐘、約100分鐘至約200分鐘或約200分鐘至約240分鐘的時間。
在一些實施例中,藉由進一步添加殼前驅體(其添加至反應混合物中),隨後保持處於高溫來產生額外的殼。通常,在先前殼之反應實質上完成(例如當先前前驅體中之至少一者耗盡或自反應移除時或當額外生長不可偵測時)之後提供額外的殼前驅體。進一步添加前驅體產生額外的殼。
在一些實施例中,在添加額外的殼前驅體之前冷卻奈米結構以得到其他殼。在一些實施例中,在添加殼前驅體以得到其他殼之前將奈米結構保持處於高溫。
在已為奈米結構添加足夠層的殼以達到所需厚度及直徑之後,可冷卻奈米結構。在一些實施例中,使奈米結構冷卻至室溫。在一些實施例中,添加有機溶劑以稀釋包含奈米結構之反應混合物。
在一些實施例中,用於稀釋包含奈米結構之反應混合物的有機溶劑為乙醇、己烷、戊烷、甲苯、苯、二乙基醚、丙酮、乙酸乙酯、二氯甲烷(dichloromethane/methylene chloride)、氯仿、二甲基甲醯胺、N-甲基吡咯啶酮或其組合。在一些實施例中,有機溶劑為甲苯。
在一些實施例中,分離奈米結構。在一些實施例中,藉由使用有機溶劑進行沈澱來分離奈米結構。在一些實施例中,藉由用乙醇進行絮凝來分離奈米結構。
殼之數目將決定奈米結構之大小。可使用熟習此項技術者已知的技術來測定奈米結構之大小。在一些實施例中,使用TEM來測定奈米結構之大小。在一些實施例中,奈米結構之平均直徑在1 nm與15 nm之間、在1 nm與10 nm之間、在1 nm與9 nm之間、在1 nm與8 nm之間、在1 nm與7 nm之間、在1 nm與6 nm之間、在1 nm與5 nm之間、在5 nm與15 nm之間、在5 nm與10 nm之間、在5 nm與9 nm之間、在5 nm與8 nm之間、在5 nm與7 nm之間、在5 nm與6 nm之間、在6 nm與15 nm之間、在6 nm與10 nm之間、在6 nm與9 nm之間、在6 nm與8 nm之間、在6 nm與7 nm之間、在7 nm與15 nm之間、在7 nm與10 nm之間、在7 nm與9 nm之間、在7 nm與8 nm之間、在8 nm與15 nm之間、在8 nm與10 nm之間、在8 nm與9 nm之間、在9 nm與15 nm之間、咋9 nm與10 nm之間或在10 nm與15 nm之間。在一些實施例中,奈米結構之平均直徑在6 nm與7 nm之間。 配位體交換
在一些實施例中,奈米結構中之第一配位體與親水性配位體交換以確保奈米結構與有機樹脂之相容性。在一些實施例中,第一配位體包含長烷基鏈。在一些實施例中,奈米結構上之第一配位體與低分子量親水性配位體交換。
在一些實施例中,在約0℃與約200℃之間、約0℃與約150℃之間、約0℃與約100℃之間、約0℃與約80℃之間、約20℃與約200℃之間、約20℃與約150℃之間、約20℃與約100℃之間、約20℃與約80℃之間、約50℃與約200℃之間、約50℃與約150℃之間、約50℃與約100℃之間、約50℃與約80℃之間、約80℃與約200℃之間、約80℃與約150℃之間、約80℃與約100℃之間、約100℃與約200℃之間、約100℃與約150℃之間或約150℃與約200℃之間的溫度下執行配位體交換。
在一些實施例中,歷經約1分鐘至約6小時、約1分鐘至約2小時、約1分鐘至約1小時、約1分鐘至約40分鐘、約1分鐘至約30分鐘、約1分鐘至約20分鐘、約1分鐘至約10分鐘、約10分鐘至約6小時、約10分鐘至約2小時、約10分鐘至約1小時、約10分鐘至約40分鐘、約10分鐘至約30分鐘、約10分鐘至約20分鐘、約20分鐘至約6小時、約20分鐘至約2小時、約20分鐘至約1小時、約20分鐘至約40分鐘、約20分鐘至約30分鐘、約30分鐘至約6小時、約30分鐘至約2小時、約30分鐘至約1小時、約30分鐘至約40分鐘、約40分鐘至約6小時、約40分鐘至約2小時、約40分鐘至約1小時、約1小時至約6小時、約1小時至約2小時或約2小時至約6小時之時間段執行配位體交換。
在一些實施例中,配位體交換進一步包含溶劑。在一些實施例中,溶劑選自由以下組成之群:氯仿、丙酮、丁酮、乙二醇單乙基醚、乙二醇單丙基醚、1,4-丁二醇二乙酸酯、二乙二醇單丁基醚乙酸酯、乙二醇單丁基醚乙酸酯、三乙酸甘油酯、乙酸庚酯、乙酸己酯、乙酸戊酯、乙酸丁酯、乙酸乙酯、二乙二醇丁基甲基醚、二乙二醇單丁基醚、二(丙二醇)二甲基醚、二乙二醇乙基甲基醚、乙二醇單丁基醚、二乙二醇二乙基醚、甲基乙基酮、甲基異丁基酮、單甲基醚乙二醇酯、γ-丁內酯、甲基乙酸-3-乙基醚、丁基卡必醇、丁基卡必醇乙酸酯、丙二醇單甲基醚、丙二醇單甲基醚乙酸酯、環己烷、甲苯、二甲苯、異丙醇及其組合。
在一些實施例中,監測有機配位體之相對含量且保持呈相對於總(無機及有機)質量之20-30重量百分比的值。
可藉由1 H NMR來量測由親水性配位體取代之第一配位體之百分比。在一些實施例中,由親水性配位體取代之第一配位體之百分比在約10%與約100%之間、約10%與約80%之間、約10%與約60%之間、約10%與約40%之間、約10%與約30%之間、約10%與約20%之間、約20%與約100%之間、約20%與約80%之間、約20%與約60%之間、約20%與約40%之間、約20%與約30%之間、約30%與約100%之間、約30%與約80%之間、約30%與約60%之間、約30%與約40%之間、約40%與約100%之間、約40%與約80%之間、約40%與約60%之間、約60%與約100%之間、約60%與約80%之間或約80%與約100%之間。 奈米結構特性
在一些實施例中,奈米結構為核/薄殼/薄殼奈米結構。在一些實施例中,奈米結構為InP/ZnSe/ZnS或InP/ZnS/ZnSe奈米結構。
在一些實施例中,奈米結構顯示高光致發光量子產率。在一些實施例中,奈米結構顯示在約50%與約99%之間、約50%與約95%之間、約50%與約90%之間、約50%與約85%之間、約50%與約80%之間、約50%與約70%之間、約50%與約60%之間、60%與約99%之間、約60%與約95%之間、約60%與約90%之間、約60%與約85%之間、約60%與約80%之間、約60%與約70%之間、約70%與約99%之間、約70%與約95%之間、約70%與約90%之間、約70%與約85%之間、約70%與約80%之間、約80%與約99%之間、約80%與約95%之間、約80%與約90%之間、約80%與約85%之間、約85%與約99%之間、約85%與約95%之間、約80%與約85%之間、約85%與約99%之間、約85%與約90%之間、約90%與約99%之間、約90%與約95%之間或約95%與約99%之間的光致發光量子產率。在一些實施例中,奈米結構顯示在約93%與約94%之間的光致發光量子產率。
奈米結構之光致發光光譜可基本上覆蓋光譜之任何所需部分。在一些實施例中,奈米結構之光致發光光譜之發射最大值在300 nm與750 nm之間、300 nm與650 nm之間、300 nm與550 nm之間、300 nm與450 nm之間、450 nm與750 nm之間、450 nm與650 nm之間、450 nm與550 nm之間、550 nm與750 nm之間、550 nm與650 nm之間或650 nm與750 nm之間。在一些實施例中,奈米結構之光致發光光譜的發射最大值在450 nm與550 nm之間。
奈米結構之大小分佈可能相對較窄。在一些實施例中,奈米結構群體之光致發光光譜可具有在10 nm與60 nm之間、10 nm與40 nm之間、10 nm與30 nm之間、10 nm與20 nm之間、20 nm與60 nm之間、20 nm與40 nm之間、20 nm與30 nm之間、30 nm與60 nm之間、30 nm與40 nm之間或40 nm與60 nm之間的半高全寬。在一些實施例中,奈米結構群體之光致發光光譜可具有在35 nm與50 nm之間的半高全寬。
在一些實施例中,奈米結構發射峰值發射波長(PWL)在約400 nm與約650 nm之間、約400 nm與約600 nm之間、約400 nm與約550 nm之間、約400 nm與約500 nm之間、約400 nm與約450 nm之間、約450 nm與約650 nm之間、約450 nm與約600 nm之間、約450 nm與約550 nm之間、約450 nm與約500 nm之間、約500 nm與約650 nm之間、約500 nm與約600 nm之間、約500 nm與約550 nm之間、約550 nm與約650 nm、約550 nm與約600 nm之間或約600 nm與約650 nm之間的光。在一些實施例中,奈米結構發射PWL在約500 nm與約550 nm之間的光。
作為藍光吸收效率之預測值,可藉由量測1 cm路徑長度光析管中之奈米結構溶液之光密度且除以在真空(< 200毫托)下移除所有揮發物後每毫升相同溶液之乾質量來計算在450 nm處以每質量計之光密度(OD450 /質量)。在一些實施例中,奈米結構在450 nm處以每質量計之光密度(OD450 /質量)在約0.28 cm2 /mg與約0.5 cm2 /mg之間、約0.28 cm2 /mg與約0.4 cm2 /mg之間、約0.28 cm2 /mg與約0.35 cm2 /mg之間、約0.28 cm2 /mg與約0.32 cm2 /mg之間、約0.32 cm2 /mg與約0.5 cm2 /mg之間、約0.32 cm2 /mg與約0.4 cm2 /mg之間、約0.32 cm2 /mg與約0.35 cm2 /mg之間、約0.35 cm2 /mg與約0.5 cm2 /mg之間、約0.35 cm2 /mg與約0.4 cm2 /mg之間或約0.4 cm2 /mg與約0.5 cm2 /mg之間。 奈米結構組合物
在一些實施例中,本發明提供一種奈米結構組合物,其包含: (a)至少一種奈米結構群體,該等奈米結構包含奈米晶核及至少兩種薄殼,其中至少一種薄殼之厚度在約0.01 nm與約1.0 nm之間,其中至少一種薄殼之厚度在約0.01 nm與約2.5 nm之間,且其中該奈米結構展現在450 nm處以每質量計在約0.30 cm2 /mg與約0.50 cm2 /mg之間的光密度;以及 (b)至少一種有機樹脂。
在一些實施例中,奈米結構群體發射紅光、綠光或藍光。在一些實施例中,可控制紅光、綠光及藍光之各別部分以獲得由併入奈米結構膜之顯示裝置發射之白光的所需白點。
在一些實施例中,奈米結構組合物包含至少一種奈米結構材料群體。在一些實施例中,奈米結構組合物包含在1種與5種之間、1種與4種之間、1種與3種之間、1種與2種之間、2種與5種之間、2種與4種之間、2種與3種之間、3種與5種之間、3種與4種之間或4種與5種之間的奈米結構群體。可合併任何適合比率之奈米結構群體以產生所需奈米結構組合物特徵。在一些實施例中,奈米結構為量子點。
本發明提供一種製備奈米結構組合物之方法,該方法包含: (a)提供至少一種奈米結構群體,該等奈米結構包含奈米晶核及至少兩種薄殼,其中至少一種薄殼之厚度在約0.01 nm與約1.0 nm之間,且其中奈米結構展現在450 nm處以每質量計在約0.30 cm2 /mg與約0.50 cm2 /mg之間的光密度;以及 (b)使至少一種有機樹脂與(a)之該組合物混合。
在一些實施例中,在約100 rpm與約10,000 rpm之間、約100 rpm與約5,000 rpm之間、約100 rpm與約3,000 rpm之間、約100 rpm與約1,000 rpm之間、約100 rpm與約500 rpm之間、約500 rpm與約10,000 rpm之間、約500 rpm與約5,000 rpm之間、約500 rpm與約3,000 rpm之間、約500 rpm與約1,000 rpm之間、約1,000 rpm與約10,000 rpm之間、約1,000 rpm與約5,000 rpm之間、約1,000 rpm與約3,000 rpm之間、約3,000 rpm與約10,000 rpm之間、約3,000 rpm與約10,000 rpm之間或約5,000 rpm與約10,000 rpm之間的攪動速率下使至少一種奈米結構群體與至少一種有機樹脂混合。
在一些實施例中,使至少一種奈米結構群體與至少一種有機樹脂混合約10分鐘至約24小時、約10分鐘至約20小時、約10分鐘至約15小時、約10分鐘至約10小時、約10分鐘至約5小時、約10分鐘至約1小時、約10分鐘至約30分鐘、約30分鐘至約24小時、約30分鐘至約20小時、約30分鐘至約15小時、約30分鐘至約10小時、約30分鐘至約5小時、約30分鐘至約1小時、約1小時至約24小時、約1小時至約20小時、約1小時至約15小時、約1小時至約10小時、約1小時至約5小時、約5小時至約24小時、約5小時至約20小時、約5小時至約15小時、約5小時至約10小時、約10小時至約24小時、約10小時至約20小時、約10小時至約15小時、約15小時至約24小時、約15小時至約20小時或約20小時至約24小時的時間。
在一些實施例中,在約-5℃與約100℃之間、約-5℃與約75℃之間、約-5℃與約50℃之間、約-5℃與約23℃之間、約23℃與約100℃之間、約23℃與約75℃之間、約23℃與約50℃之間、約50℃與約100℃之間、約50℃與約75℃之間或約75℃與約100℃之間的溫度下使至少一種奈米結構群體與至少一種有機樹脂混合。在一些實施例中,在約23℃與約50℃之間的溫度下使至少一種有機樹脂與至少一種奈米結構群體混合。
在一些實施例中,若使用超過一種有機樹脂,則同時添加有機樹脂且混合。在一些實施例中,在約100 rpm與約10,000 rpm之間、約100 rpm與約5,000 rpm之間、約100 rpm與約3,000 rpm之間、約100 rpm與約1,000 rpm之間、約100 rpm與約500 rpm之間、約500 rpm與約10,000 rpm之間、約500 rpm與約5,000 rpm之間、約500 rpm與約3,000 rpm之間、約500 rpm與約1,000 rpm之間、約1,000 rpm與約10,000 rpm之間、約1,000 rpm與約5,000 rpm之間、約1,000 rpm與約3,000 rpm之間、約3,000 rpm與約10,000 rpm之間、約3,000 rpm與約10,000 rpm之間或約5,000 rpm與約10,000 rpm之間的攪動速率下使第一有機樹脂與第二有機樹脂混合。
在一些實施例中,將第一有機樹脂與第二有機樹脂混合約10分鐘至約24小時、約10分鐘至約20小時、約10分鐘至約15小時、約10分鐘至約10小時、約10分鐘至約5小時、約10分鐘至約1小時、約10分鐘至約30分鐘、約30分鐘至約24小時、約30分鐘至約20小時、約30分鐘至約15小時、約30分鐘至約10小時、約30分鐘至約5小時、約30分鐘至約1小時、約1小時至約24小時、約1小時至約20小時、約1小時至約15小時、約1小時至約10小時、約1小時至約5小時、約5小時至約24小時、約5小時至約20小時、約5小時至約15小時、約5小時至約10小時、約10小時至約24小時、約10小時至約20小時、約10小時至約15小時、約15小時至約24小時、約15小時至約20小時或約20小時至約24小時的時間。 有機樹脂
在一些實施例中,有機樹脂為熱固性樹脂或紫外輻射(UV)固化樹脂。在一些實施例中,藉由有助於輥對輥處理之方法來固化有機樹脂。
熱固性樹脂需要固化,其中該等樹脂經歷使得樹脂不熔的不可逆分子交聯製程。在一些實施例中,熱固性樹脂為環氧樹脂、酚醛樹脂、乙烯基樹脂、三聚氰胺樹脂、脲樹脂、不飽和聚酯樹脂、聚胺基甲酸酯樹脂、烯丙基樹脂、丙烯酸類樹脂、聚醯胺樹脂、聚醯胺-醯亞胺樹脂、酚醛胺縮聚樹脂、脲三聚氰胺縮聚樹脂或其組合。
在一些實施例中,熱固性樹脂為環氧樹脂。環氧樹脂易於固化,而不會因各種化學物質而析出揮發物或副產物。環氧樹脂亦與大部分基板相容且往往容易潤濕表面。參見Boyle, M.A.等人,「Epoxy Resins」, Composites, 第21卷, ASM Handbook, 第78-89頁(2001)。
在一些實施例中,有機樹脂為矽酮熱固性樹脂。在一些實施例中,矽酮熱固性樹脂為OE6630A或OE6630B (Dow Corning Corporation, Auburn, MI)。
在一些實施例中,使用熱引發劑。在一些實施例中,熱引發劑為AIBN [2,2'-偶氮雙(2-甲基丙腈)]或過氧化苯甲醯。
UV可固化樹脂為當暴露於特定光波長時固化且快速硬化之聚合物。在一些實施例中,UV可固化樹脂為具有作為官能基之以下基團的樹脂:自由基聚合基團,諸如(甲基)丙烯醯氧基、乙烯氧基、苯乙烯基或乙烯基;陽離子可聚合基團,諸如環氧基、硫代環氧基、乙烯氧基或氧雜環丁烷基。在一些實施例中,UV可固化樹脂為聚酯樹脂、聚醚樹脂、(甲基)丙烯酸樹脂、環氧樹脂、胺基甲酸酯樹脂、醇酸樹脂、螺縮醛樹脂、聚丁二烯樹脂或聚硫醚樹脂。
在一些實施例中,UV可固化樹脂選自由以下組成之群:丙烯酸胺基甲酸酯、烯丙氧基化二丙烯酸環己酯、異氰尿酸雙(丙烯醯氧基乙基)羥酯、雙(丙烯醯氧基新戊二醇)己二酸酯、雙酚A二丙烯酸酯、雙酚A二甲基丙烯酸酯、1,4-丁二醇二丙烯酸酯、1,4-丁二醇二甲基丙烯酸酯、1,3-丁二醇二丙烯酸酯、1,3-丁二醇二甲基丙烯酸酯、二丙烯酸二環戊酯、二乙二醇二丙烯酸酯、二乙二醇二甲基丙烯酸酯、二異戊四醇六丙烯酸酯、二異戊四醇單羥基五丙烯酸酯、二(三羥甲基丙烷)四丙烯酸酯、乙二醇二甲基丙烯酸酯、丙三醇甲基丙烯酸脂、1,6-己二醇二丙烯酸酯、新戊二醇二甲基丙烯酸酯、新戊二醇羥基特戊酸酯二丙烯酸酯、異戊四醇三丙烯酸酯、異戊四醇四丙烯酸酯、磷酸二甲基丙烯酸酯、聚乙二醇二丙烯酸酯、聚丙二醇二丙烯酸酯、四乙二醇二丙烯酸酯、四溴雙酚A二丙烯酸酯、三乙二醇二乙烯醚、三甘油二丙烯酸酯、三羥甲基丙烷三丙烯酸酯、三丙二醇二丙烯酸酯、參(丙烯醯氧基乙基)異氰尿酸酯、磷酸三丙烯酸酯、磷酸二丙烯酸酯、丙烯酸丙炔基酯、乙烯基封端之聚二甲基矽氧烷、乙烯基封端之二苯基矽氧烷-二甲基矽氧烷共聚物、乙烯基封端之聚苯基甲基矽氧烷、乙烯基封端之三氟甲基矽氧基-二甲基矽氧烷共聚物、乙烯基封端之二乙基矽氧烷-二甲基矽氧烷共聚物、乙烯基甲基矽氧烷、單甲基丙烯醯氧基封端之聚二甲基矽氧烷、單乙烯基封端之聚二甲基矽氧烷、單丙烯基-單三甲基矽烷氧基封端之聚氧化乙烯及其組合。
在一些實施例中,UV可固化樹脂為巰基官能化合物,其可在UV固化條件下與異氰酸酯、環氧基或不飽和化合物交聯。在一些實施例中,聚硫醇為異戊四醇肆(3-巰基-丙酸酯) (PETMP);三羥甲基-丙烷三(3-巰基-丙酸酯) (TMPMP);乙二醇二(3-巰基-丙酸酯) (GDMP);參[25-(3-巰基-丙醯氧基)乙基]異氰尿酸酯(TEMPIC);二異戊四醇己(3-巰基-丙酸酯) (Di-PETMP);乙氧基化三羥甲基丙烷三(3-巰基-丙酸酯) (ETTMP 1300及ETTMP 700);聚己內酯肆(3-巰基-丙酸酯) (PCL4MP 1350);異戊四醇四巰基乙酸酯(PETMA);三羥甲基-丙烷三巰基乙酸酯(TMPMA);或乙二醇二巰基乙酸酯(GDMA)。此等化合物由Bruno Bock, Marschacht, Germany以商標名THIOCURE® 出售。
在一些實施例中,UV可固化樹脂為聚硫醇。在一些實施例中,UV可固化樹脂為選自由以下組成之群的聚硫醇:乙二醇雙(硫乙醇酸酯)、乙二醇雙(3-巰基丙酸酯)、三羥甲基丙烷參(硫乙醇酸酯)、三羥甲基丙烷參(3-巰基丙酸酯)、異戊四醇肆(硫乙醇酸酯)、異戊四醇肆(3-巰基丙酸酯) (PETMP)及其組合。在一些實施例中,UV可固化樹脂為PETMP。
在一些實施例中,UV可固化樹脂為包含聚硫醇及1,3,5-三烯丙基-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮(TTT)之硫醇-烯調配物。在一些實施例中,UV可固化樹脂為包含PETMP及TTT之硫醇-烯調配物。
在一些實施例中,UV可固化樹脂進一步包含光引發劑。光引發劑在暴露於光期間引發光敏材料之交聯及/或固化反應。在一些實施例中,光引發劑係基於苯乙酮、基於安息香或基於硫雜噻吩酮的。
在一些實施例中,光引發劑為基於丙烯酸乙烯酯之樹脂。在一些實施例中,光引發劑為MINS-311RM (Minuta Technology Co., Ltd, Korea)。
在一些實施例中,光引發劑為IRGACURE® 127、IRGACURE® 184、IRGACURE® 184D、IRGACURE® 2022、IRGACURE® 2100、IRGACURE® 250、IRGACURE® 270、IRGACURE® 2959、IRGACURE® 369、IRGACURE® 369 EG、IRGACURE® 379、IRGACURE® 500、IRGACURE® 651、IRGACURE® 754、IRGACURE® 784、IRGACURE® 819、IRGACURE® 819Dw、IRGACURE® 907、IRGACURE® 907 FF、IRGACURE® Oxe01、IRGACURE® TPO-L、IRGACURE® 1173、IRGACURE® 1173D、IRGACURE® 4265、IRGACURE® BP或IRGACURE® MBF (BASF Corporation, Wyandotte, MI)。在一些實施例中,光引發劑為TPO (2,4,6-三甲基苯甲醯基-二苯基-膦氧化物)或MBF (苯甲醯基甲酸甲酯)。
在一些實施例中,奈米結構組合物中至少一種有機樹脂之重量百分比在約5%與約99%之間、約5%與約95%之間、約5%與約90%之間、約5%與約80%之間、約5%與約70%之間、約5%與約60%之間、約5%與約50%之間、約5%與約40%之間、約5%與約30%之間、約5%與約20%之間、約5%與約10%之間、約10%與約99%之間、約10%與約95%之間、約10%與約90%之間、約10%與約80%之間、約10%與約70%之間、約10%與約60%之間、約10%與約50%之間、約10%與約40%之間、約10%與約30%之間、約10%與約20%之間、約20%與約99%之間、約20%與約95%之間、約20%與約90%之間、約20%與約80%之間、約20%與約70%之間、約20%與約60%、約20%與約50%之間、約20%與約40%之間、約20%與約30%之間、約30%與約99%之間、約30%與約95%之間、約30%與約90%之間、約30%與約80%之間、約30%與約70%之間、約30%與約60%之間、約30%與約50%之間、約30%與約40%之間、約40%與約99%之間、約40%與約95%之間、約40%與約90%之間、約40%與約80%之間、約40%與約70%之間、約40%與約60%之間、約40%與約50%之間、約50%與約99%之間、約50%與約95%之間、約50%與約90%之間、約50%與約80%之間、約50%與約70%之間、約50%與約60%之間、約60%與約99%之間、約60%與約95%之間、約60%與約90%之間、約60%與約80%之間、約60%與約70%之間、約70%與約99%之間、約70%與約95%之間、約70%與約90%之間、約70%與約80%之間、約80%與約99%之間、約80%與約95%之間、約80%與約90%之間、約90%與約99%之間、約90%與約95%之間或約95%與約99%之間。 奈米結構層
本發明中所使用之奈米結構可使用任何適合方法嵌入於聚合基質中。如本文中所使用,術語「嵌入」用於指示量子點群體經構成基質之大部分組分的聚合物圍封或包覆。在一些實施例中,至少一種奈米結構群體適當地均勻分佈於整個基質中。在一些實施例中,根據特殊應用分佈來分佈至少一種奈米結構群體。在一些實施例中,將奈米結構在聚合物中混合且施加至基板表面。
在一些實施例中,本發明提供一種奈米結構膜層,其包含: (a)至少一種奈米結構群體,該等奈米結構包含奈米晶核及至少兩種薄殼,其中至少一種薄殼之厚度在約0.01 nm與約1.0 nm之間;以及 (b)至少一種有機樹脂; 其中該奈米結構膜層展現在約25%與約40%之間的光轉換效率。
在一些實施例中,本發明提供一種奈米結構膜層,其包含: (a)至少一種奈米結構群體,該等奈米結構包含奈米晶核及至少兩種薄殼,其中至少一種薄殼之厚度在約0.01 nm與約1.0 nm之間,其中至少一種薄殼之厚度在約0.01 nm與約2.5 nm之間;以及 (b)至少一種有機樹脂; 其中該奈米結構膜層展現在約25%與約40%之間的光轉換效率。
在一些實施例中,奈米結構膜層為色彩轉換層。
可藉由此項技術中已知之任何適合方法來沈積奈米結構組合物,該方法包括(但不限於)塗刷、噴塗、溶劑噴塗、濕式塗佈、黏合塗佈、旋塗、膠帶塗佈、滾塗、流動塗佈、噴墨蒸氣噴射、滴鑄、刮塗、霧狀沈積或其組合。較佳地,量子點組合物在沈積之後固化。適合固化方法包括光固化,諸如UV固化及熱固化。傳統的層壓膜處理方法、膠帶塗佈方法及/或輥對輥製造方法可用於形成本發明之量子點膜。可將量子點組合物直接塗佈於基板之所需層上。替代地,量子點組合物可形成為作為獨立元素之固體層且隨後施加至基板。在一些實施例中,奈米結構組合物可沈積於一或多個障壁層上。 旋塗
在一些實施例中,使用旋塗將奈米結構組合物沈積於基板上。在旋塗中,少量材料通常沈積於基板之中心上,該基板裝載藉由真空固定的稱作旋轉器之機械。經由旋轉器向基板上施加高速旋轉,其產生向心力以使材料自中心擴散至基板邊緣。儘管大部分材料旋乾,但一定量保留在基板上,從而隨著旋轉繼續而在表面上形成材料之薄膜。除了針對旋轉過程所選之參數,諸如旋轉速度、加速及旋轉時間之外,藉由所沈積的材料及基板之性質來測定膜之最終厚度。對於典型的膜,1500至6000 rpm之旋轉速度使用10-60秒之旋轉時間。 霧狀沈積
在一些實施例中,使用霧狀沈積將奈米結構組合物沈積於基板上。霧狀沈積在室溫及大氣壓下發生且允許藉由改變處理條件來精確控制膜厚度。在霧狀沈積期間,液源材料變成極細霧狀物且藉由氮氣攜載至沈積腔室中。接著藉由電場網板與晶圓固持器之間的高電壓電位將霧狀物抽取至晶圓表面。當液滴在晶圓表面上聚結時,自腔室移除晶圓且熱固化以使得溶劑蒸發。液態前驅體為溶劑與待沈積之材料之混合物。其藉由加壓氮氣攜載至霧化器。Price, S.C.等人,「Formation of Ultra-Thin Quantum Dot Films by Mist Deposition」,ESC Transactions 11 :89-94 (2007)。 噴塗
在一些實施例中,使用噴塗將奈米結構組合物沈積於基板上。用於噴塗之典型設備包含噴射嘴、霧化器、前驅體溶液及載氣。在噴霧沈積過程中,藉助於載氣或藉由霧化(例如超音波、鼓風或靜電)將前驅體溶液粉碎成微尺寸化液滴。自霧化器脫出之液滴藉由基板表面,經由噴嘴,藉助於按需要控制及調節之載氣加速。藉由設計來限定噴射嘴與基板之間的相對運動出於完全覆蓋於基板上之目的。
在一些實施例中,施加奈米結構組合物進一步包含溶劑。在一些實施例中,用於施加量子點組合物之溶劑為水、有機溶劑、無機溶劑、鹵化有機溶劑或其混合物。說明性溶劑包括(但不限於)水、D2 O、丙酮、乙醇、二噁烷、乙酸乙酯、甲基乙基酮、異丙醇、苯甲醚、γ-丁內酯、二甲基甲醯胺、N-甲基吡咯啶酮、二甲基乙醯胺、六甲基磷醯胺、甲苯、二甲亞碸、環戊酮、四亞甲亞碸、二甲苯、ε-己內酯、四氫呋喃、四氯乙烯、氯仿、氯苯、二氯甲烷、1,2-二氯乙烷、1,1,2,2-四氯乙烷或其混合物。
在一些實施例中,將組合物熱固化以形成奈米結構層。在一些實施例中,使用UV光固化組合物。在一些實施例中,將量子點組合物直接塗佈於量子點膜之障壁層上,且隨後將額外的障壁層沈積於量子點層上以產生量子點膜。在障壁膜下方採用支撐基板以增強強度、穩定性及塗層均一性且防止材料不一致性、空氣氣泡形成及障壁層材料或其他材料之褶皺或摺疊。此外,一或多個障壁層較佳沈積於量子點層上方以密封頂部與底部障壁層之間的材料。適當地,障壁層可沈積為層壓膜且視情況密封或進一步經處理,隨後使奈米結構膜併入特定照明裝置中。如一般熟習此項技術者將理解,奈米結構組合物沈積過程可包括額外或不同的組分。此等實施例將允許對奈米結構發射特徵進行在線過程調節,該等特徵諸如亮度及顏色(例如以調節量子點膜白點)以及奈米結構膜厚度及其他特徵。此外,此等實施例將允許在製備期間對量子點膜特徵進行週期性測試以及任何所需撥動以實現精確的奈米結構膜特徵。亦可在不改變作業線之機械組態之情況下實現此等測試及調節,因為可採用電腦程式來以電子方式改變用於形成奈米結構膜的混合物之各別量。 奈米結構膜特徵及實施例
在一些實施例中,本發明之奈米結構膜用於形成顯示裝置。如本文中所使用,顯示裝置係指具有照明顯示器之任何系統。此等裝置包括(但不限於)涵蓋以下的裝置:液晶顯示器(LCD)、電視、電腦、移動電話、智慧型電話、個人數位助理(PDA)、博弈裝置、電子閱讀裝置、數位相機及類似者。
在一些實施例中,含有奈米結構組合物之光學膜實質上不含鎘。如本文中所使用,術語「實質上不含鎘」預期奈米結構組合物含有小於100 ppm重量比鎘。RoHS順應性定義需要在原始均勻前驅體材料中必須不超過0.01% (100 ppm)重量比鎘。鎘濃度可藉由感應耦合電漿質譜法(ICP-MS)分析量測且處於十億分率(ppb)水準。在一些實施例中,「實質上不含鎘」之光學膜含有10至90 ppm鎘。在其他實施例中,實質上不含鎘之光學膜含有小於約50 ppm、小於約20 ppm、小於約10 ppm或小於約1 ppm之鎘。 奈米結構模製品
在一些實施例中,本發明提供一種奈米結構模製品,其包含: (a)第一障壁層; (b)第二障壁層;以及 (c)奈米結構層,其在第一障壁層與第二障壁層之間,其中該奈米結構層包含:奈米結構群體,其包含奈米晶核及至少兩種薄殼,其中至少一種薄殼之厚度在約0.01 nm與約1.0 nm之間;及至少一種有機樹脂;以及 其中該奈米結構模製品展現在約25%與約40%之間的光轉換效率。 障壁層
在一些實施例中,量子點模製品包含安置於量子點層之一側或兩側上的一或多個障壁層。適合之障壁層保護量子點層及量子點模製品免受環境條件(諸如高溫、氧氣及水分)的影響。適合障壁材料包括不變黃、透明的光學材料,其為疏水性的,以化學及機械方式與量子點模製品相容,展現光及化學穩定性且可耐受高溫。較佳地,一或多個障壁層與量子點模製品折射率匹配。在較佳實施例中,量子點模製品之基質材料及一或多個相鄰障壁層折射率匹配以具有類似折射率,使得朝向量子點模製品透射穿過障壁層之大部分光自障壁層透射至量子點層中。此折射率匹配減少障壁與基質材料之間的界面處之光學損失。
障壁層適當地為固體材料,且可為固化液體、凝膠或聚合物。障壁層可包含可撓性或非可撓性材料,視特定應用而定。障壁層較佳為平面層,且可包括任何適合的形狀及表面區域組態,視特定照明應用而定。在較佳實施例中,一或多個障壁層將與層壓膜處理技術相容,藉此將量子點層安置於至少第一障壁層上,且將至少第二障壁層安置於與量子點層相對之側面上的量子點層上,以形成根據本發明之一個實施例之量子點模製品。適合障壁材料包括此項技術中已知之任何適合障壁材料。舉例而言,適合之障壁材料包括玻璃、聚合物及氧化物。適合障壁層材料包括(但不限於):聚合物,諸如聚對苯二甲酸伸乙酯(PET);氧化物,諸如氧化矽、氧化鈦或氧化鋁(例如,SiO2 、Si2 O3 、TiO2 或Al2 O3 );及適合之其組合物。較佳地,量子點模製品之各障壁層包含至少2個包含不同材料或組合物之層,使得多層障壁消除或減少障壁層中之氣孔缺陷配向,從而為氧氣及水分穿透至量子點層中提供有效障壁。量子點層可在量子點層之任一個或兩個側面上包括任何適合的材料或材料之組合及任何適合數量的障壁層。障壁層之材料、厚度及數目將視特定應用而定,且將適當地選擇以使量子點層之障壁保護及亮度最大化,同時使量子點模製品之厚度最小化。在較佳實施例中,各障壁層包含層壓膜,較佳雙重層壓膜,其中各障壁層之厚度足夠厚以消除輥對輥或層壓製造製程中之褶皺。在量子點包含重金屬或其他有毒材料之實施例中,障壁層之數目或厚度可進一步視法定毒性準則而定,該準則可能需要更多或更厚的障壁層。障壁之額外考慮因素包括成本、可用性及機械強度。
在一些實施例中,鄰近於量子點層之各側,量子點膜包含兩個或更多個障壁層,例如量子點層之各側上之兩個或三個層或各側上之兩個障壁層。在一些實施例中,各障壁層包含薄玻璃片,例如厚度為約100 µm、100 µm或更小或50 µm或更小之玻璃片。
如一般熟習此項技術者將理解,本發明之量子點膜之各障壁層可具有任何適合的厚度,其將視照明裝置及應用之特定需求及特徵以及個別膜組分(諸如障壁層及量子點層)而定。在一些實施例中,各障壁層可具有50 µm或更小、40 µm或更小、30 µm或更小、25 µm或更小、20 µm或更小或15 µm或更小之厚度。在某些實施例中,障壁層包含氧化物塗層,其可包含諸如氧化矽、氧化鈦及氧化鋁(例如,SiO2 、Si2 O3 、TiO2 或Al2 O3 )之材料。氧化物塗層可具有約10 µm或更小、5 µm或更小、1 µm或更小或100 nm或更小之厚度。在某些實施例中,障壁包含較薄氧化物塗層,其具有約100 nm或更小、10 nm或更小、5 nm或更小或3 nm或更小之厚度。頂部及/或底部障壁可由較薄氧化物塗層組成或可包含較薄氧化物塗層及一或多種額外材料層。 奈米結構模製品特性
在一些實施例中,奈米結構為核/薄殼/薄殼奈米結構。在一些實施例中,奈米結構為InP/ZnSe/ZnS或InP/ZnS/ZnSe奈米結構。
在一些實施例中,奈米結構模製品為奈米結構膜。
奈米結構模製品之光致發光光譜可基本上覆蓋光譜之任何所需部分。在一些實施例中,奈米結構模製品之光致發光光譜之發射最大值在300 nm與750 nm之間、300 nm與650 nm之間、300 nm與550 nm之間、300 nm與450 nm之間、450 nm與750 nm之間、450 nm與650 nm之間、450 nm與550 nm之間、550 nm與750 nm之間、550 nm與650 nm之間或650 nm與750 nm之間。在一些實施例中,奈米結構模製品之光致發光光譜之發射最大值在450 nm與550 nm之間。
奈米結構模製品之大小分佈可能相對較窄。在一些實施例中,奈米結構模製品之光致發光光譜之半高全寬在10 nm與60 nm之間、10 nm與40 nm之間、10 nm與30 nm之間、10 nm與20 nm之間、20 nm與60 nm之間、20 nm與40 nm之間、20 nm與30 nm之間、30 nm與60 nm之間、30 nm與40 nm之間或40 nm與60 nm之間。在一些實施例中,奈米結構群體之光致發光光譜可具有在33 nm與34 nm之間的半高全寬。
在一些實施例中,奈米結構模製品發射峰值發射波長(PWL)在約400 nm與約650 nm之間、約400 nm與約600 nm之間、約400 nm與約550 nm之間、約400 nm與約500 nm之間、約400 nm與約450 nm之間、約450 nm與約650 nm之間、約450 nm與約600 nm之間、約450 nm與約550 nm之間、約450 nm與約500 nm之間、約500 nm與約650 nm之間、約500 nm與約600 nm之間、約500 nm與約550 nm之間、約550 nm與約650 nm之間、約550 nm與約600 nm之間或約600 nm與約650 nm之間的光。在一些實施例中,奈米結構發射PWL在約500 nm與約550 nm之間的光。
在一些實施例中,奈米結構模製品顯示高光轉換效率(PCE)。在一些實施例中,奈米結構模製品顯示在約25%與約40%之間、約25%與約35%之間、約25%與約30%之間、約25%與約28%之間、約28%與約40%之間、約28%與約35%之間、約28%與約30%之間、約30%與約40%之間、約30%與約35%之間或約35%與約40%之間的PCE。在一些實施例中,奈米結構模製品顯示在約28%與約30%之間的PCE。
在一些實施例中,奈米結構模製品顯示在450 nm處在約0.80與約0.99之間、約0.80與約0.95之間、約0.80與約0.90之間、約0.80與約0.85之間、約0.85與約0.99之間、約0.85與約0.95之間、約0.85與約0.90之間、約0.90與約0.99之間、約0.90與約0.95之間或約0.95與約0.99之間的光密度。在一些實施例中,奈米結構模製品顯示在450 nm處在約0.80與約0.95之間的光密度。在一些實施例中,奈米結構模製品顯示在450 nm處在約0.85與約0.95之間的光密度。 具有奈米結構色彩轉換層之顯示裝置
在一些實施例中,本發明提供一種顯示裝置,其包含: (a)顯示面板,其發射第一光; (b)背光單元,其經組態以向顯示面板提供第一光;以及 (c)濾色器,其包含至少一個包含色彩轉換層之像素區。
在一些實施例中,濾色器包含至少1、2、3、4、5、6、7、8、9或10個像素區。在一些實施例中,當藍光入射於濾色器上時,紅光、白光、綠光及/或藍光可分別經由像素區發射。在一些實施例中,濾色器描述於美國專利申請公開案第2017/153366號中,其以全文引用之方式併入本文中。
在一些實施例中,各像素區包括色彩轉換層。在一些實施例中,色彩轉換層包含經組態以將入射光轉換為第一色彩之光的本文中所描述之奈米結構。在一些實施例中,色彩轉換層包含經組態以將入射光轉換為藍光的本文中所描述之奈米結構。
在一些實施例中,顯示裝置包含1、2、3、4、5、6、7、8、9或10個色彩轉換層。在一些實施例中,顯示裝置包含1個色彩轉換層,其包含本文中所描述之奈米結構。在一些實施例中,顯示裝置包含2個色彩轉換層,其包含本文中所描述之奈米結構。在一些實施例中,顯示裝置包含3個色彩轉換層,其包含本文中所描述之奈米結構。在一些實施例中,顯示器件包含4個色彩轉換層,其包含本文中所描述之奈米結構。在一些實施例中,顯示裝置包含至少一個紅色轉換層、至少一個綠色轉換層及至少一個藍色轉換層。
在一些實施例中,色彩轉換層之厚度在約3 μm與約10 μm之間、約3 μm與約8 μm之間、約3 μm與約6 μm之間、約6 μm與約10 μm之間、約6 μm與約8 μm之間或約8 μm與約10 μm之間。在一些實施例中,色彩轉換層之厚度在約3 μm與約10 μm之間。
可藉由此項技術中已知的任何適合方法來沈積奈米結構色彩轉換層,該方法包含(但不限於)塗刷、噴塗、溶劑噴塗、濕式塗佈、黏合塗佈、旋塗、膠帶塗佈、滾塗、流塗、噴墨列印、光阻劑圖案化、滴鑄、刮塗、霧狀沈積或其組合。在一些實施例中,藉由光阻劑圖案化來沈積奈米結構色彩轉換層。在一些實施例中,藉由噴墨列印來沈積奈米結構色彩轉換層。 噴墨列印
使用奈米結構於有機溶劑中之分散液形成薄膜通常藉由塗佈技術(諸如旋塗)實現。然而,此等塗佈技術通常不適用於在大面積上形成薄膜,且不提供圖案化沈積層之手段且因此用途有限。噴墨列印允許以低成本大規模地精確圖案化薄膜之置放。噴墨列印亦允許精確地圖案化量子點層,允許列印顯示器之像素且消除光圖案化。因此,噴墨列印對於工業應用,尤其在顯示應用中非常具有吸引力。
常用於噴墨列印之溶劑為二丙二醇單甲基醚乙酸酯(DPMA)、聚甲基丙烯酸縮水甘油酯(PGMA)、二乙二醇單乙基醚乙酸酯(EDGAC)及丙二醇甲基醚乙酸酯(PGMEA)。揮發性溶劑亦常常用於噴墨列印中,此係因為其允許快速乾燥。揮發性溶劑包括乙醇、甲醇、1-丙醇、2-丙醇、丙酮、甲基乙基酮、甲基異丁基酮、乙酸乙酯及四氫呋喃。習知的量子點通常不可溶解於此等溶劑中。然而,包含聚(環氧烷)配位體的量子點之親水性增加使得此等溶劑之溶解度增加。
在一些實施例中,用於噴墨列印的本文中所描述之奈米結構分散於選自以下之溶劑中:DPMA、PGMA、EDGAC、PGMEA、乙醇、甲醇、1-丙醇、2-丙醇、丙酮、甲基乙基酮、甲基異丁基酮、乙酸乙酯、四氫呋喃、氯仿、氯苯、環己烷、己烷、庚烷、辛烷、十六烷、十一烷、癸烷、十二烷、二甲苯、甲苯、苯、十八烷、十四烷、丁基醚或其組合。在一些實施例中,將用於噴墨列印的本文中所描述之包含聚(環氧烷)配位體之奈米結構分散於選自以下之溶劑中:DPMA、PGMA、EDGAC、PGMEA、乙醇、甲醇、1-丙醇、2-丙醇、丙酮、甲基乙基酮、甲基異丁基酮、乙酸乙酯、四氫呋喃或其組合。
為藉由噴墨列印或微分散進行塗覆,應將包含奈米結構之噴墨組合物溶解於適合溶劑中。溶劑必須能夠分散奈米結構組合物且必須對所選擇之列印頭不具有任何不利影響。
在一些實施例中,噴墨組合物進一步包含一或多種額外組分,諸如界面活性化合物、潤滑劑、濕潤劑、分散劑、疏水劑、黏著劑、流動改良劑、消泡劑、除氣劑、稀釋劑、助劑、著色劑、染料、顏料、敏化劑、穩定劑及抑制劑。
在一些實施例中,本文中所描述之奈米結構組合物包含按重量計約0.01%與約20%之間的噴墨組合物。在一些實施例中,包含聚(環氧烷)配位體之奈米結構包含按重量計在約0.01%與約20%之間、約0.01%與約15%之間、約0.01%與約10%之間、約0.01%與約5%之間、約0.01%與約2%之間、約0.01%與約1%之間、約0.01%與約0.1%之間、約0.01%與約0.05%之間、約0.05%與約20%之間、約0.05%與約15%之間、約0.05%與約10%之間、約0.05%與約5%之間、約0.05%與約2%之間、約0.05%與約1%之間、約0.05%與約0.1%之間、約0.1%與約20%之間、約0.1%與約15%之間、約0.1%與約10%之間、約0.1%與約5%之間、約0.1%與約2%之間、約0.1%與約1%之間、約0.5%與約20%之間、約0.5%與約15%之間、約0.5%與約10%之間、約0.5%與約5%之間、約0.5%與約2%之間、約0.5%與約1%之間、約1%與約20%之間、約1%與約15%之間、約1%與約10%之間、約1%與約5%之間、約1%與約2%之間、約2%與約20%之間、約2%與約15%之間、約2%與約10%之間、約2%與約5%之間、約5%與約20%之間、約5%與約15%之間、約5%與約10%之間、約10%與約20%之間、約10%與約15%或約15%與20%之間的噴墨組合物。
在一些實施例中,包含本文中所描述之奈米結構或奈米結構組合物的噴墨組合物用於電子裝置之配製中。在一些實施例中,包含本文中所描述之奈米結構或奈米結構組合物的噴墨組合物用於選自由以下組成之群的電子裝置之配製中:奈米結構膜、顯示裝置、照明裝置、背光單元、濾色器、表面發光裝置、電極、磁性記憶體裝置或電池。在一些實施例中,包含本文中所描述之奈米結構或奈米結構組合物的噴墨組合物用於發光裝置之配製中。 實例
以下實例為本文中所描述之產物及方法之說明性及非限制性實例。領域中通常遇到多種條件、調配物及其他參數之適合修改及調適且其為熟習此項技術者鑒於本發明在本發明之精神及範疇內顯而易見的。 實例1
經由使羧酸銦鹽與參(三甲基矽烷基)膦反應來產生InP核心。經分離之InP核心以10-100 mg/mL/己烷之濃度使用且具有位於420-470 nm處之吸收峰。綠色InP核心之合成已先前揭示於US 2014/0001405及US 2010/0276638中。
基於所需殼厚度,使用幾何考量且假設均一、球形InP核心形狀及InP、ZnSe及ZnS之容積密度來計算用於ZnSe及ZnS殼生長之前驅體輸入。
在不含空氣及水之條件下使用標準施蘭克技術(Schlenk technique)進行反應。 實例2 薄殼-440 nm核心
在85-200℃之間的溫度下將已知量的吸收峰以440 nm為中心的綠色InP核心(10 mg-3.0 g InP)添加至含有鋅鹽、羧酸及十八烯作為無配價溶劑之反應混合物中。此後藉由注入足夠的硒化三烷基膦(R3 P-Se,其中R為三烷基)立即形成第一ZnSe殼層,以產生0.5-1.5個ZnSe單層。接著將溶液進一步加熱至在200-310℃之間的溫度,且藉由逐滴添加足夠的R3 P-Se (其中R為三烷基)產生第二ZnSe殼層,以產生額外的0.3-1.0個ZnSe單層。藉由對取自反應瓶之等分試樣(50 μL)進行UV-vis光譜分析來監測ZnSe殼生長。在完成ZnSe殼後,藉由在250-310℃之間的溫度下逐滴添加足以產生0.3-1.0個ZnS單層之烷基硫醇來產生ZnS殼。亦可藉由分析穿透電子顯微鏡影像來監測殼生長。在完成所有殼層後,將反應溶液冷卻至室溫,用己烷/三烷基膦混合物稀釋且用乙醇自溶液沈澱。可重複此分離程序以自反應減少殘餘有機副產物之存在。
關於分散於己烷中之最終材料量測吸收峰位置(abs)、發射峰波長(PWL)、半高全寬(FWHM)、光致發光量子產率(PLQY)及450 nm處之吸收率與峰處之吸收率的比率(OD450 /峰)。作為藍光吸收效率之預測值,可藉由量測1 cm路徑長度光析管中之量子點溶液之光密度且除以在真空(< 200毫托)下移除所有揮發物後每毫升相同溶液之乾質量來計算在450 nm處以每質量計之光密度(OD450 /質量)。 實例3 薄殼-450 nm核心
在85-200℃之間的溫度下將已知量的吸收峰以450 nm為中心的綠色InP核心(10 mg-3.0 g InP)添加至含有鋅鹽、羧酸及十八烯作為無配價溶劑之反應混合物中。此後藉由注入足夠的硒化三烷基膦(R3 P-Se,其中R為三烷基)立即形成第一ZnSe殼層,以產生0.5-1.5個ZnSe單層。接著將溶液進一步加熱至在200-310℃之間的溫度,且藉由逐滴添加足夠的R3 P-Se (其中R為三烷基)產生第二ZnSe殼層,以產生額外的0.3-1.0個ZnSe單層。藉由對取自反應瓶之等分試樣(50 μL)進行UV-vis光譜分析來監測ZnSe殼生長。在完成ZnSe殼後,藉由在250-310℃之間的溫度下逐滴添加足以產生0.3-1.0個ZnS單層之烷基硫醇來產生ZnS殼。亦可藉由分析穿透電子顯微鏡影像來監測殼生長。在完成所有殼層後,將反應溶液冷卻至室溫,用己烷/三烷基膦混合物稀釋且用乙醇自溶液沈澱。可重複此分離程序以自反應減少殘餘有機副產物之存在。
關於分散於己烷中之最終材料量測吸收峰位置(abs)、發射峰波長(PWL)、半高全寬(FWHM)、光致發光量子產率(PLQY)及450 nm處之吸收率與峰處之吸收率的比率(OD450 /峰)。作為藍光吸收效率之預測值,可藉由量測1 cm路徑長度光析管中之量子點溶液之光密度且除以在真空(< 200毫托)下移除所有揮發物後每毫升相同溶液之乾質量來計算在450 nm處以每質量計之光密度(OD450 /質量)。 實例4 厚殼-440 nm核心
在85-200℃之間的溫度下將已知量的吸收峰以440 nm為中心的綠色InP核心(10 mg-3.0 g InP)添加至含有鋅鹽、羧酸及十八烯作為無配價溶劑之反應混合物中。此後藉由注入足夠的R3 P-Se (其中R為三烷基)立即形成第一ZnSe殼層,以產生1.0-2.0個ZnSe單層。接著將溶液進一步加熱至在200-310℃之間的溫度,且藉由逐滴添加足夠的R3 P-Se (其中R為三烷基)產生第二ZnSe殼層,以產生額外的1.0-2.0個ZnSe單層。在完成ZnSe殼後,藉由在250-310℃之間的溫度下逐滴添加足以產生1.0-3.0個ZnS單層之烷基硫醇來產生ZnS殼。在完成所有殼層後,將反應溶液冷卻至室溫,用己烷/三烷基膦混合物稀釋且用乙醇自溶液沈澱。 實例5 厚殼-450 nm核心
在85-200℃之間的溫度下將已知量的吸收峰以450 nm為中心的綠色InP核心(10 mg-3.0 g InP)添加至含有鋅鹽、羧酸及十八烯作為無配價溶劑之反應混合物中。此後藉由注入足夠的R3 P-Se (其中R為三烷基)立即形成第一ZnSe殼層,以產生1.0-2.0個ZnSe單層。接著將溶液進一步加熱至在200-310℃之間的溫度,且藉由逐滴添加足夠的R3 P-Se (其中R為三烷基)產生第二ZnSe殼層,以產生額外的1.0-2.0個ZnSe單層。在完成ZnSe殼後,藉由在250-310℃之間的溫度下逐滴添加足以產生1.0-3.0個ZnS單層之烷基硫醇來產生ZnS殼。在完成所有殼層後,將反應溶液冷卻至室溫,用己烷/三烷基膦混合物稀釋且用乙醇自溶液沈澱。 實例6 比較用薄殼及厚殼製備之量子點結構
在表1中比較具有薄殼層及厚殼層之InP/ZnSe/ZnS量子點之光學特性。 表1
量子點 核心大小(nm) 殼類型 Abs (nm) PWL (nm) FWHM (nm) PLQY (%) OD450 /峰 OD450 /質量(cm2 /mg)
薄殼-440 nm核心 440 502 525 35 93 0.59 0.33
厚殼-440 nm核心 440 497 522 36 92 0.65 0.21
薄殼-450 nm核心 450 506 529 37 94 0.69 0.32
厚殼-450 nm核心 450 502 526 38 92 0.73 0.24
用薄殼層製備之量子點材料(實例2及3)合併PWL < 530 nm及FWHM < 38 nm之高藍色吸收效率,從而在色彩轉換膜中產生優良效能。
殼結構可藉由350 nm處之吸收率與最低能量激子特徵處之吸收率的比率(OD350 /峰)來表徵。如圖2中所展示,薄殼InP/ZnSe/ZnS量子點展示6.0-7.5之OD350 /峰比率,然而生長在具有類似核心尺寸之核心上的較厚殼展示> 8.0之OD350 /峰比率。 實例7 膜澆鑄及量測
如以上實例中製備之核/殼量子點藉由用低分子量親水性聚合物置換天然疏水性脂肪酸配位體進行配位體交換,以確保與聚合物樹脂基質之相容性。對於所有樣品,監測有機配位體之相對含量且保持處於相對於總無機加上有機質量之20-30 wt%之值。調配物中之量子點負載量以重量百分比計進行控制且在所有經證實膜樣品中保持恆定。藉由旋塗量子點/聚合物樹脂調配物來澆鑄不同厚度之膜樣品且使用標準方法進行固化。
藉由偵測來自以450 nm為中心之藍色發光二極體(LED)的藍色光子之整體透射率來量測澆鑄量子點膜之光密度。將光轉換效率(PCE)量測為所發射(正向澆鑄)之綠色光子與總入射藍色光子的比率。藉由記錄量子點膜之發射光譜來量測膜之發射波長及半高全寬。 實例8 比較用具有薄殼及厚殼之量子點製備之膜
在表2中比較用具有薄殼層及厚殼層之InP/ZnSe/ZnS量子點製備之膜之光學特性。 表2
量子點 核心大小(nm) 殼類型 配位體類型 OD450 膜厚度(μm) 總PCE (%) PWL (nm) FWHM (nm)
薄殼- 440 nm 440 A 0.91 6.0 28.5 539 33
厚殼- 440 nm 440 A 0.78 6.0    22.6 532 34
薄殼-450 nm 450 A 0.89 6.0 29.3 543 34
薄殼-450 nm 450 B 0.80 6.0 30.0 543 34
厚殼- 450 nm 450 A 0.78 6.0 24.0 538 36
由於提高之OD450 /質量(值0.33表示相比於在相同PWL下發射之較厚殼量子點之吸收效率增加37%)及高PLQY(值93-94%表示相比於較厚殼量子點增加1-2%)之組合而產生使用薄殼量子點製備之膜之高PCE值。
雖然各種實施例已描述於上文中,但應瞭解,其已僅藉助於實例來呈現,而並非限制性的。對於熟習相關技術者而言將顯而易見的是,在不脫離本發明之精神及範疇之情況下,可在本文中進行形式及細節之各種改變。因此,廣度及範疇不應受上述例示性實施例中之任一者限制,而應僅根據以下申請專利範圍及其等效者來界定。
本說明書中所提及之所有公開案、專利及專利申請案指示熟習本發明所屬之此項技術者之技能水準,且以引用之方式併入本文中,其程度與各個別公開案、專利或專利申請案特定且單獨地指示以引用的方式併入之程度相同。
併入本文中且形成本說明書之部分的隨附圖式說明本發明,且連同實施方式一起進一步用以解釋本發明之原理且使熟習相關技術者能夠製造且使用本發明。
1A 為使用吸收峰以450 nm為中心的InP核心及ZnSe及ZnS之薄殼所製備之InP/ZnSe/ZnS量子點之穿透式電子顯微鏡(transmission electron microscopy;TEM)影像。
1B 為使用吸收峰以450 nm為中心的InP核心及ZnSe及ZnS之厚殼所製備之InP/ZnSe/ZnS量子點之TEM影像。如圖1B中所展示,較厚殼產生較大粒子直徑。
2 為針對使用吸收峰以440 nm為中心的具有ZnSe及ZnS之薄殼的InP核心製備的InP/ZnSe/ZnS量子點及使用吸收峰以450 nm為中心的具有ZnSe及ZnS之厚殼的InP核心製備的InP/ZnSe/ZnS量子點展示在350 nm處之吸收率相比於在最低能量激子特徵(OD350 /峰)處之吸收率的曲線圖。如圖2中所展示,薄殼InP/ZnSe/ZnS量子點產生6.0-7.5之OD350 /峰比,而厚殼InP/ZnSe/ZnS量子點產生大於8.0之OD350 /峰比。

Claims (75)

  1. 一種奈米結構,其包含奈米晶核及至少兩種薄殼,其中至少一種薄殼之厚度在約0.01 nm與約1.0 nm之間,且其中該奈米結構展現在450 nm處以每質量計在約0.30 cm2 /mg與約0.50 cm2 /mg之間的光密度。
  2. 如請求項1之奈米結構,其中該奈米晶核選自由以下組成之群:Si、Ge、Sn、Se、Te、B、C、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si3 N4 、Ge3 N4 、Al2 O3 、Al2 CO及其組合。
  3. 如請求項1或2之奈米結構,其中該奈米晶核包含InP。
  4. 如請求項1至3中任一項之奈米結構,其中至少一種薄殼選自由以下組成之群:CdS、CdSe、CdO、CdTe、ZnS、ZnO、ZnSe、ZnTe、MgTe、GaAs、GaSb、GaN、HgO、HgS、HgSe、HgTe、InAs、InSb、InN、AlAs、AlN、AlSb、AlS、PbS、PbO、PbSe、PbTe、MgO、MgS、MgSe、MgTe、CuCl、Ge、Si及其合金。
  5. 如請求項1至4中任一項之奈米結構,其中至少一種薄殼之厚度在約0.01 nm與約0.8 nm之間。
  6. 如請求項1至5中任一項之奈米結構,其中至少一種薄殼之厚度在約0.01 nm與約0.3 nm之間。
  7. 如請求項1至6中任一項之奈米結構,其中至少一種薄殼包含ZnSe。
  8. 如請求項1至7中任一項之奈米結構,其中至少一種薄殼包含ZnS。
  9. 如請求項1至8中任一項之奈米結構,其中至少一種薄殼包含ZnSe且至少一種薄殼包含ZnS。
  10. 如請求項1至9中任一項之奈米結構,其包含第一薄殼及第二薄殼,其中該第一薄殼之厚度在約0.01 nm與約2.5 nm之間。
  11. 如請求項10之奈米結構,其中該第一薄殼之厚度在約0.25 nm與約0.8 nm之間。
  12. 如請求項1至11中任一項之奈米結構,其包含第一薄殼及第二薄殼,其中該第二薄殼之厚度在約0.01 nm與約1.0 nm之間。
  13. 如請求項12之奈米結構,其中該第二薄殼之厚度在約0.09 nm與約0.3 nm之間。
  14. 如請求項1至13中任一項之奈米結構,其中該奈米結構展現在450 nm處以每質量計在約0.30 cm2 /mg與約0.40 cm2 /mg之間的光密度。
  15. 如請求項1至14中任一項之奈米結構,其中該奈米結構展現在約50%與約99%之間的光致發光量子產率。
  16. 如請求項1至15中任一項之奈米結構,其包含第一薄殼及第二薄殼,其中該第一薄殼包含ZnSe且具有在約0.25 nm與約0.8 nm之間的厚度,且其中該第二薄殼包含ZnS且具有在約0.09 nm與約0.3 nm之間的厚度。
  17. 一種製備如請求項1至16中任一項之奈米結構之方法,其包含: (a)混合奈米結構核心及第一殼前驅體;  (b)添加第二殼前驅體;  (c)將溫度升高、降低或保持在約200℃與約350℃之間;以及  (d)添加第三殼前驅體,其中(d)中之該第三殼前驅體不同於(b)中之該第二殼前驅體;  以提供包含具有至少兩種殼之核心的奈米結構。
  18. 如請求項17之方法,其中(a)中之該混合進一步包含溶劑。
  19. 如請求項18之方法,其中該溶劑選自由以下組成之群:1-十八烯、1-十六烯、1-二十烯、二十烷、十八烷、十六烷、十四烷、角鯊烯、角鯊烷、三辛基氧化膦、三辛基胺、三辛基膦、二辛基醚及其組合。
  20. 如請求項18或19之方法,其中該溶劑包含1-十八烯。
  21. 如請求項17至20中任一項之方法,其中(a)中之該混合係在約20℃與約250℃之間的溫度下進行。
  22. 如請求項17至21中任一項之方法,其中該奈米晶核選自由以下組成之群:Si、Ge、Sn、Se、Te、B、C、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si3 N4 、Ge3 N4 、Al2 O3 、Al2 CO及其組合。
  23. 如請求項17至22中任一項之方法,其中該奈米晶核包含InP。
  24. 如請求項17至23中任一項之方法,其中該第一殼前驅體選自由以下組成之群:鎘源、鋅源、鋁源、鎵源或銦源。
  25. 如請求項17至24中任一項之方法,其中該第一殼前驅體包含鋅源。
  26. 如請求項17至25中任一項之方法,其中該第二殼前驅體選自由以下組成之群:磷源、氮源、砷源、硫源、硒源或碲源。
  27. 如請求項17至26中任一項之方法,其中該第二殼前驅體包含硒源。
  28. 如請求項17至27中任一項之方法,其中該第三殼前驅體選自由以下組成之群:磷源、氮源、砷源、硫源、硒源或碲源。
  29. 如請求項17至28中任一項之方法,其中該第三殼前驅體包含硫源。
  30. 如請求項17至29中任一項之方法,其中在(c)中將該溫度升高、降低或保持在約200℃與約310℃之間的溫度。
  31. 如請求項17至30中任一項之方法,其中在(c)中將該溫度升高、降低或保持在約280℃與約310℃之間的溫度。
  32. 如請求項17至31中任一項之方法,其進一步包含分離該奈米結構。
  33. 一種奈米結構組合物,其包含: (a)至少一種奈米結構群體,該等奈米結構包含奈米晶核及至少兩種薄殼,其中至少一種薄殼之厚度在約0.01 nm與約1.0 nm之間,且其中該奈米結構展現在450 nm處以每質量計在約0.30 cm2 /mg與約0.50 cm2 /mg之間的光密度;以及  (b)至少一種有機樹脂。
  34. 如請求項33之奈米結構組合物,其中該奈米晶核選自由以下組成之群:Si、Ge、Sn、Se、Te、B、C、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si3 N4 、Ge3 N4 、Al2 O3 、Al2 CO及其組合。
  35. 如請求項33或34之奈米結構組合物,其中該奈米晶核包含InP。
  36. 如請求項33至35中任一項之奈米結構組合物,其中至少一種薄殼選自由以下組成之群:CdS、CdSe、CdO、CdTe、ZnS、ZnO、ZnSe、ZnTe、MgTe、GaAs、GaSb、GaN、HgO、HgS、HgSe、HgTe、InAs、InSb、InN、AlAs、AlN、AlSb、AlS、PbS、PbO、PbSe、PbTe、MgO、MgS、MgSe、MgTe、CuCl、Ge、Si及其合金。
  37. 如請求項33至36中任一項之奈米結構組合物,其中至少一種薄殼之厚度在約0.01 nm與約0.8 nm之間。
  38. 如請求項33至37中任一項之奈米結構組合物,其中至少一種薄殼之厚度在約0.01 nm與約0.3 nm之間。
  39. 如請求項33至38中任一項之奈米結構組合物,其中至少一種薄殼包含ZnSe。
  40. 如請求項33至39中任一項之奈米結構組合物,其中至少一種薄殼包含ZnS。
  41. 如請求項33至40中任一項之奈米結構組合物,其中至少一種薄殼包含ZnSe且至少一種薄殼包含ZnS。
  42. 如請求項33至41中任一項之奈米結構組合物,其包含第一薄殼及第二薄殼,其中該第一薄殼之厚度在約0.01 nm與約2.5 nm之間。
  43. 如請求項42之奈米結構組合物,其中該第一薄殼之厚度在約0.25 nm與約0.8 nm之間。
  44. 如請求項33至43中任一項之奈米結構組合物,其包含第一薄殼及第二薄殼,其中該第二薄殼之厚度在約0.01 nm與約1.0 nm之間。
  45. 如請求項44之奈米結構組合物,其中該第二薄殼之厚度在約0.09 nm與約0.3 nm之間。
  46. 如請求項33至45中任一項之奈米結構組合物,其中該奈米結構展現在450 nm處以每質量計在約0.30 cm2 /mg與約0.40 cm2 /mg之間的光密度。
  47. 如請求項33至46中任一項之奈米結構組合物,其中該奈米結構展現在約50%與約99%之間的光致發光量子產率。
  48. 如請求項33至47中任一項之奈米結構組合物,其包含第一薄殼及第二薄殼,其中該第一薄殼包含ZnSe且具有在約0.25 nm與約0.8 nm之間的厚度,且其中該第二薄殼包含ZnS且具有在約0.09 nm與約0.3 nm之間的厚度。
  49. 如請求項33至48中任一項之奈米結構組合物,其包含一種與五種之間的有機樹脂。
  50. 如請求項33至49中任一項之奈米結構組合物,其中該至少一種有機樹脂為熱固性樹脂或UV可固化樹脂。
  51. 如請求項33至50中任一項之奈米結構組合物,其中至少一種有機樹脂選自由以下組成之群:丙烯酸異冰片酯、丙烯酸四氫呋喃甲酯、乙氧基化丙烯酸苯酯、丙烯酸月桂酯、丙烯酸硬脂酯、丙烯酸辛酯、丙烯酸異癸酯、丙烯酸十三酯、丙烯酸己內酯、壬基苯酚丙烯酸酯、環狀三羥甲基丙烷縮甲醛丙烯酸酯、甲氧基聚乙二醇丙烯酸酯、甲氧基聚丙二醇丙烯酸酯、丙烯酸羥乙酯、丙烯酸羥丙酯及丙烯酸縮水甘油酯。
  52. 一種模製品,其包含如請求項33至51中任一項之奈米結構組合物。
  53. 如請求項52之模製品,其中該模製品為膜、用於顯示器之基板或發光二極體。
  54. 如請求項52或53之模製品,其中該模製品為膜。
  55. 一種奈米結構膜層,其包含: (a)至少一種奈米結構群體,該等奈米結構包含奈米晶核及至少兩種薄殼,其中至少一種薄殼之厚度在約0.01 nm與約1.0 nm之間;以及  (b)至少一種有機樹脂;  其中該奈米結構膜層展現在約25%與約40%之間的光轉換效率。
  56. 如請求項55之奈米結構膜層,其中該奈米晶核選自由以下組成之群:Si、Ge、Sn、Se、Te、B、C、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si3 N4 、Ge3 N4 、Al2 O3 、Al2 CO及其組合。
  57. 如請求項55或56之奈米結構膜層,其中該奈米晶核包含InP。
  58. 如請求項55至57中任一項之奈米結構膜層,其中至少一種薄殼選自由以下組成之群:CdS、CdSe、CdO、CdTe、ZnS、ZnO、ZnSe、ZnTe、MgTe、GaAs、GaSb、GaN、HgO、HgS、HgSe、HgTe、InAs、InSb、InN、AlAs、AlN、AlSb、AlS、PbS、PbO、PbSe、PbTe、MgO、MgS、MgSe、MgTe、CuCl、Ge、Si及其合金。
  59. 如請求項55至58中任一項之奈米結構膜層,其中至少一種薄殼之厚度在約0.01 nm與約0.8 nm之間。
  60. 如請求項55至59中任一項之奈米結構膜層,其中至少一種薄殼之厚度在約0.01 nm與約0.3 nm之間。
  61. 如請求項55至60中任一項之奈米結構膜層,其中至少一種薄殼包含ZnSe。
  62. 如請求項55至61中任一項之奈米結構膜層,其中至少一種薄殼包含ZnS。
  63. 如請求項55至62中任一項之奈米結構膜層,其中至少一種薄殼包含ZnSe且至少一種薄殼包含ZnS。
  64. 如請求項55至63中任一項之奈米結構膜層,其包含第一薄殼及第二薄殼,其中該第一薄殼之厚度在約0.01 nm與約2.5 nm之間。
  65. 如請求項64之奈米結構膜層,其中該第一薄殼之厚度在約0.25 nm與約0.8 nm之間。
  66. 如請求項55至65中任一項之奈米結構膜層,其包含第一薄殼及第二薄殼,其中該第二薄殼之厚度在約0.01 nm與約1.0 nm之間。
  67. 如請求項66之奈米結構膜層,其中該第二薄殼之厚度在約0.09 nm與約0.3 nm之間。
  68. 如請求項55至67中任一項之奈米結構膜層,其中該奈米結構膜層展現在約28%與約35%之間的光轉換效率。
  69. 如請求項55至67中任一項之奈米結構膜層,其中該奈米結構膜層展現在約28%與約30%之間的光轉換效率。
  70. 如請求項55至69中任一項之奈米結構膜層,其中該奈米結構膜層展現在450 nm處在約0.80與0.95之間的光密度。
  71. 如請求項55至70中任一項之奈米結構膜層,其包含第一薄殼及第二薄殼,其中該第一薄殼包含ZnSe且具有在約0.25 nm與約0.8 nm之間的厚度,且其中該第二薄殼包含ZnS且具有在約0.09 nm與約0.3 nm之間的厚度。
  72. 如請求項55至71中任一項之奈米結構膜層,其包含一種與五種之間的有機樹脂。
  73. 如請求項55至72中任一項之奈米結構膜層,其中該至少一種有機樹脂為熱固性樹脂或UV可固化樹脂。
  74. 如請求項55至73中任一項之奈米結構膜層,其中至少一種有機樹脂選自由以下組成之群:丙烯酸異冰片酯、丙烯酸四氫呋喃甲酯、乙氧基化丙烯酸苯酯、丙烯酸月桂酯、丙烯酸硬脂酯、丙烯酸辛酯、丙烯酸異癸酯、丙烯酸十三酯、丙烯酸己內酯、壬基苯酚丙烯酸酯、環狀三羥甲基丙烷縮甲醛丙烯酸酯、甲氧基聚乙二醇丙烯酸酯、甲氧基聚丙二醇丙烯酸酯、丙烯酸羥乙酯、丙烯酸羥丙酯及丙烯酸縮水甘油酯。
  75. 如請求項57至74中任一項之奈米結構膜層,其中該奈米結構膜層為顯示裝置中之顏色轉換層。
TW109102193A 2019-01-24 2020-01-21 用於增強藍光吸收之薄殼量子點 TW202033736A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962796278P 2019-01-24 2019-01-24
US62/796,278 2019-01-24

Publications (1)

Publication Number Publication Date
TW202033736A true TW202033736A (zh) 2020-09-16

Family

ID=69650740

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109102193A TW202033736A (zh) 2019-01-24 2020-01-21 用於增強藍光吸收之薄殼量子點

Country Status (6)

Country Link
US (1) US20200243713A1 (zh)
EP (1) EP3898886B1 (zh)
KR (1) KR20210116634A (zh)
CN (1) CN113330095A (zh)
TW (1) TW202033736A (zh)
WO (1) WO2020154323A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190085886A (ko) * 2018-01-11 2019-07-19 삼성전자주식회사 양자점 집단과 이를 포함하는 조성물
CN113213766B (zh) * 2021-06-02 2022-09-16 哈尔滨工程大学 一种钙钛矿量子点闪烁微晶玻璃及制备方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505928A (en) 1991-11-22 1996-04-09 The Regents Of University Of California Preparation of III-V semiconductor nanocrystals
US6322901B1 (en) 1997-11-13 2001-11-27 Massachusetts Institute Of Technology Highly luminescent color-selective nano-crystalline materials
US6607829B1 (en) 1997-11-13 2003-08-19 Massachusetts Institute Of Technology Tellurium-containing nanocrystalline materials
US6225198B1 (en) 2000-02-04 2001-05-01 The Regents Of The University Of California Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process
US6306736B1 (en) 2000-02-04 2001-10-23 The Regents Of The University Of California Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process
US6576291B2 (en) 2000-12-08 2003-06-10 Massachusetts Institute Of Technology Preparation of nanocrystallites
US6788453B2 (en) 2002-05-15 2004-09-07 Yissum Research Development Company Of The Hebrew Univeristy Of Jerusalem Method for producing inorganic semiconductor nanocrystalline rods and their use
EP1537187B1 (en) 2002-09-05 2012-08-15 Nanosys, Inc. Organic species that facilitate charge transfer to or from nanostructures
US7645397B2 (en) 2004-01-15 2010-01-12 Nanosys, Inc. Nanocrystal doped matrixes
AU2005253604B2 (en) 2004-06-08 2011-09-08 Scandisk Corporation Methods and devices for forming nanostructure monolayers and devices including such monolayers
US8563133B2 (en) 2004-06-08 2013-10-22 Sandisk Corporation Compositions and methods for modulation of nanostructure energy levels
US7557028B1 (en) 2004-07-28 2009-07-07 Nanosys, Inc. Process for group III-V semiconductor nanostructure synthesis and compositions made using same
JP5474352B2 (ja) * 2005-11-21 2014-04-16 ナノシス・インク. 炭素を含むナノワイヤ構造
KR101783487B1 (ko) 2009-05-01 2017-10-23 나노시스, 인크. 나노구조의 분산을 위한 기능화된 매트릭스
KR20200039806A (ko) * 2010-11-10 2020-04-16 나노시스, 인크. 양자 도트 필름들, 조명 디바이스들, 및 조명 방법들
JP2012234634A (ja) 2011-04-28 2012-11-29 Hitachi Cable Ltd フラットケーブル、及びフラットケーブルとプリント配線板との接続構造
US9139770B2 (en) 2012-06-22 2015-09-22 Nanosys, Inc. Silicone ligands for stabilizing quantum dot films
TWI596188B (zh) 2012-07-02 2017-08-21 奈米系統股份有限公司 高度發光奈米結構及其製造方法
WO2014159927A2 (en) 2013-03-14 2014-10-02 Nanosys, Inc. Method for solventless quantum dot exchange
KR102474201B1 (ko) 2015-11-26 2022-12-06 삼성디스플레이 주식회사 양자점 컬러 필터 및 이를 구비하는 표시 장치
WO2017096229A1 (en) * 2015-12-02 2017-06-08 Nanosys, Inc. Quantum dot encapsulation techniques
KR20180104010A (ko) * 2016-01-19 2018-09-19 나노시스, 인크. GaP 및 AlP 쉘을 갖는 InP 양자점 및 이의 제조 방법
US20170306227A1 (en) * 2016-04-26 2017-10-26 Nanosys, Inc. Stable inp quantum dots with thick shell coating and method of producing the same
US20180119007A1 (en) * 2016-04-26 2018-05-03 Nanosys, Inc. Stable inp quantum dots with thick shell coating and method of producing the same
AU2017278340B2 (en) * 2016-06-06 2021-12-09 Shoei Chemical Inc. Method for synthesizing core shell nanocrystals at high temperatures
CA3044503A1 (en) * 2016-12-23 2018-06-28 Universiteit Gent Quantum dots with a iii-v core and an alloyed ii-vi external shell

Also Published As

Publication number Publication date
CN113330095A (zh) 2021-08-31
US20200243713A1 (en) 2020-07-30
KR20210116634A (ko) 2021-09-27
EP3898886A1 (en) 2021-10-27
EP3898886B1 (en) 2024-03-13
WO2020154323A1 (en) 2020-07-30

Similar Documents

Publication Publication Date Title
KR102348540B1 (ko) 광택 은 기재 4 차 나노 구조
JP7357185B2 (ja) 青色発光ZnSe1-xTex合金ナノ結晶の合成方法
TWI827791B (zh) 以熔融鹽化學合成無機奈米結構之方法、奈米結構及包含該奈米結構之顯示裝置
US11104847B2 (en) Cadmium free blue absorbing II-VI quantum dots for thin film applications
TW202111081A (zh) 改善包含奈米結構之裝置性能的方法
TW202045684A (zh) 用於提升量子產率之量子點的小分子鈍化作用
JP2022529108A (ja) リン化インジウム量子ドットの量子収率改善方法
TW202033736A (zh) 用於增強藍光吸收之薄殼量子點
KR20220044989A (ko) 반치전폭이 낮은 청색 방출 ZnSe1-xTex 합금 나노결정의 합성
US20220077354A1 (en) Method of improving performance of devices with qds comprising thin metal oxide coatings
WO2022067222A1 (en) Thermally stable polythiol ligands with pendant solubilizing moieties
WO2023183619A1 (en) Silica composite microparticles comprising nanostructures