WO2014194709A1 - 锂铝合金及其生产方法和用途 - Google Patents

锂铝合金及其生产方法和用途 Download PDF

Info

Publication number
WO2014194709A1
WO2014194709A1 PCT/CN2014/074187 CN2014074187W WO2014194709A1 WO 2014194709 A1 WO2014194709 A1 WO 2014194709A1 CN 2014074187 W CN2014074187 W CN 2014074187W WO 2014194709 A1 WO2014194709 A1 WO 2014194709A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
aluminum alloy
lithium aluminum
temperature
alloy according
Prior art date
Application number
PCT/CN2014/074187
Other languages
English (en)
French (fr)
Inventor
金鹏
曹乃珍
关成
涂明江
赵本常
左永建
陈绍林
熊仁利
罗玉萍
李仕红
Original Assignee
四川天齐锂业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川天齐锂业股份有限公司 filed Critical 四川天齐锂业股份有限公司
Publication of WO2014194709A1 publication Critical patent/WO2014194709A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C24/00Alloys based on an alkali or an alkaline earth metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Lithium aluminum alloy and its production method and use
  • the invention relates to a lithium aluminum alloy and a production method and application thereof, and belongs to the technical field of secondary battery negative electrode materials.
  • Lithium is a silver-white metal, which has a light texture, a good ductility, a high electrical conductivity, a relatively high electrochemical property, a very high reductive property, and a small electrochemical equivalent of 0. 259 g/Ah.
  • the theoretical specific capacity is 3860Ah/kg, far exceeding the 820Ah/kg of zinc and 260Ah/kg of lead and 481Ah/kg of cadmium.
  • the exchange current density of the lithium electrode is large, and only a small polarization is generated in the electrode reaction.
  • the metal lithium electrode is used as the negative electrode of the secondary lithium battery, and there are great defects.
  • the main defects are as follows:
  • the metal lithium battery composed of the metal lithium negative electrode and the common organic electrolyte has problems such as low cycle efficiency and poor safety. Especially for safety problems, the battery may be out of control or even explode due to short circuit, overheating, overcharging or overdischarging. This brings many insurmountable problems to the commercialization of lithium metal batteries.
  • metal lithium is used as a negative electrode for secondary batteries.
  • the main problems are: (1) the lower charge-discharge cycle efficiency and the interfacial impedance caused by complex interfacial reactions; (2) "dendrites The safety problems caused by "and "dead lithium” and the loss of electrode active substances.
  • lithium alloys instead of lithium metal anodes.
  • a rechargeable electrochemical device which uses an alloy of lithium with other metals to inhibit the formation of lithium dendrites is disclosed in the patent JP-A-60-167280.
  • the interface between lithium alloy and electrolyte is relatively stable. Therefore, the use of lithium alloy instead of lithium as the negative electrode has improved the safety performance of the battery.
  • the replacement of metallic lithium with lithium alloy is a research hotspot, such as lithium aluminum alloy and lithium tin alloy.
  • the existing experimental research proves that the addition of the alloy composition can make the lithium metal have superior superior stability in the electrolyte, greatly reduce the illegal pull reaction with the electrolyte, and at the same time make the SEI film more uniform.
  • the stability of the metal lithium electrode is improved.
  • a patent application with the application number CN94104418 discloses a lithium aluminum alloy for a battery anode material and a method for manufacturing the same, which is a ⁇ phase LiAl alloy prepared by placing a raw material in a smelting apparatus and pumping The vacuum is filled with argon, heated to continue vacuuming, heated to 400-450 ° C to stop vacuuming, charged with 0. 05 - 0. 5Pa argon, heated to 710-800 ° C, 1-5 hours, cold to room temperature Made of lithium aluminum alloy ingot. It is characterized by being a ⁇ -phase LiAl alloy containing 18-24% by weight (weight percent, the same below), containing 82-76% of aluminum and having a melting point of 688 °C.
  • the lithium aluminum alloy obtained by the above method contains 18-24% by weight of lithium, and the content of the non-lithium alloy component is high, which increases the electrode reaction potential of the lithium metal anode, and reduces the electrode potential.
  • the mass ratio energy of the lithium negative electrode Moreover, the anode material inevitably undergoes a phase change during charge and discharge of the battery, resulting in a large change in volume, resulting in rapid powdering of the material and greatly reducing cycle life.
  • the charge and discharge mechanism of the alloy material is no longer the dissolution-deposition mechanism of metallic lithium on the negative electrode, but becomes the insertion-extraction mechanism of lithium ion in the lithium alloy.
  • the lithium aluminum alloy of the present invention is composed of the following components by weight: aluminum 0. l ⁇ 4. 0wt%, the balance being lithium and unavoidable impurities.
  • the lithium aluminum alloy of the present invention is composed of the following components by weight: aluminum 0. l ⁇ lwt%, the balance being lithium and unavoidable impurities.
  • the present invention also provides a method of producing a lithium aluminum alloy.
  • the method for producing a lithium aluminum alloy according to the present invention comprises the steps of: mixing lithium metal and aluminum in a weight ratio of 24 to 1000:1, followed by melting at 190 to 300 ° C in an inert atmosphere, and cooling to obtain a lithium aluminum alloy.
  • the method of the invention uses the low temperature smelting at 190 ⁇ 300 °C to produce lithium aluminum alloy, which not only reduces the energy consumption, but also greatly improves the product qualification rate.
  • the inert atmosphere in the above method serves to prevent oxidation of lithium or aluminum or nitriding
  • the inert atmosphere is preferably a ruthenium, osmium, argon or helium atmosphere, and the total amount of oxygen and nitrogen in the atmosphere is preferably 15 ppm.
  • the inert atmosphere is most preferably an argon atmosphere.
  • the heating rate is too high, which is easy to cause safety problems. If the heating rate is too low, the production efficiency is lowered. In order to ensure the safety of the production process and maintain the production efficiency within an acceptable range, the heating rate of the above method is preferably controlled to 200 ⁇ 300 °. C / h.
  • the general smelting time is controlled to be l ⁇ 8h, and the smelting is completed.
  • the temperature is lowered to 190 to 230 ° C, and casting is performed. After the casting is completed, the mixture is cooled to room temperature and released from the mold to obtain a lithium aluminum alloy.
  • the invention also provides the use of the above lithium aluminum alloy in preparing a battery anode material.
  • the lithium aluminum alloy of the invention has the performance of pure lithium metal by adding a specific content of aluminum, which not only maintains the advantages of lithium capacity, but also improves the dendritic inhibition effect, and is a single phase in charge and discharge, and no phase occurs. Change, improve the charge and discharge cycle life of lithium aluminum alloy.
  • the lithium aluminum alloy of the present invention is composed of the following components by weight: aluminum 0. l ⁇ 4. 0wt%, the balance being lithium and unavoidable impurities.
  • the lithium aluminum alloy of the present invention is composed of the following components by weight: aluminum
  • the present invention also provides a method of producing a lithium aluminum alloy.
  • the method for producing a lithium aluminum alloy according to the present invention comprises the steps of: mixing lithium metal and aluminum in a weight ratio of 24 to 1000:1, followed by melting at 190 to 300 ° C in an inert atmosphere, and cooling to obtain a lithium aluminum alloy.
  • the method of the invention uses the low temperature smelting at 190 ⁇ 300 °C to produce lithium aluminum alloy, which not only reduces the energy consumption, but also greatly improves the product qualification rate.
  • the inert atmosphere in the above method serves to prevent oxidation of lithium or aluminum or nitriding
  • the inert atmosphere is preferably a ruthenium, osmium, argon or helium atmosphere, and the total amount of oxygen and nitrogen in the atmosphere is preferably 15 ppm.
  • the inert atmosphere is most preferably an argon atmosphere.
  • the heating rate is too high, which is easy to cause safety problems. If the heating rate is too low, the production efficiency is lowered. In order to ensure the safety of the production process and maintain the production efficiency within an acceptable range, the heating rate of the above method is preferably controlled to 200 ⁇ 300 °. c A .
  • the general smelting time is controlled to be l ⁇ 8h, and the smelting is completed.
  • the temperature is lowered to 190 to 230 ° C, and casting is performed. After the casting is completed, the mixture is cooled to room temperature and released from the mold to obtain a lithium aluminum alloy.
  • the invention also provides the use of the above lithium aluminum alloy in preparing a battery anode material.
  • the prepared metal lithium and metal aluminum are placed in a crucible according to 99.80:0.15 (the ratio of lithium to aluminum in the embodiment of the present invention is a weight ratio), and a vacuum (0. lPa) is passed, and argon gas is passed through (9).
  • X 10 4 Pa) Replace twice to ensure that the total amount of oxygen and nitrogen in the tank is not more than 15 ppm.
  • the temperature is lowered to 210 ° C and cast.
  • the can is opened for sampling release. The removed samples were quickly vacuum packed, weighed, and recorded.
  • Table 1 The composition of the obtained lithium aluminum alloy is shown in Table 1 below.
  • the lithium aluminum alloys prepared in Examples 1, 2, 3, and 4 were used as a negative electrode material for charge and discharge experiments, and the properties of the lithium aluminum alloy of the present invention were measured.
  • the positive electrode material adopts lithium iron phosphate produced by Sichuan Tianqi Lithium Industry Co., Ltd., and the binder in the positive electrode sheet is 5%; the separator adopts three layers of PP/PE/PP; and the lAh flexible packaging battery is fabricated.
  • the cycle performance of the battery was evaluated by 1 C charge and discharge (charge cutoff voltage 3.8 V, discharge cutoff voltage 2.0 V).
  • a lithium aluminum alloy was prepared by the method of CN94104418, and a charge and discharge experiment was carried out under the same conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种用于二次电池负极材料的锂铝合金及其生产方法和用途,所述锂铝合金的组成为:铝0.1〜4.0wt%,余量为锂和不可避免的杂质。该锂铝合金通过加入特定含量的铝,既保持了锂容量优点,又改善了枝晶抑制效果,其充放电中为单一相,不会发生相变,提高了锂铝合金的充放电循环寿命。

Description

锂铝合金及其生产方法和用途 技术领域
本发明涉及锂铝合金及其生产方法和用途, 属于二次电池负极材料技术领域。
背景技术 锂是一种银白色的金属, 质地很轻, 延展性好, 导电性强, 电化学性质相当活泼, 还原 性极强, 其电化学当量很小, 为 0. 259g/Ah, 锂电极的理论比容量达 3860Ah/kg, 远远超过 了锌的 820Ah/kg和铅的 260Ah/kg以及镉的 481Ah/kg。 同时, 锂电极的交换电流密度较大, 在电极反应中仅有很小的极化产生。
可是金属锂电极作为二次锂电池的负极使用, 会有很大的缺陷, 主要缺陷如下: 利用金 属锂负极与普通有机电解液组成的金属锂电池存在着循环效率低、安全性不良等问题, 尤其 是安全性问题, 电池在短路、 过热、 过充电或过放电的情况下, 均可能发生体系的热失控, 甚至导致爆炸。 这为锂金属电池的商品化带来了许多难以克服的问题。 但从根本上来说, 金 属锂作为二次电池负极使用, 主要的问题在于: (1 )复杂的界面反应所导致的较低的充放电 循环效率和界面阻抗的不断增加; (2 ) "枝晶"和 "死锂" 的产生, 所带来的安全性问题和 电极活性物质损失。
为了抑制锂枝晶的形成, 人们进行了用锂合金代替锂金属负极的许多研究工作。如专利 JP-A-60-167280 公开了一种可充电的电化学装置, 它使用锂与其它金属的合金来抑制锂枝 晶的形成。 与纯金属锂相比, 锂合金与电解质的界面比较稳定。 所以用锂合金代替锂作负极 使电池的安全性能得到了提高。 其中以锂合金取代金属锂是一项研究热点, 如锂铝合金、 锂 锡合金等。 已有的实验研究证明:合金成分的加入可以使金属锂在电解液中具有明显优越的 稳定性, 很大程度上减少了和电解液之间的非法拉第反应, 同时使 SEI膜更为均匀, 提高了 金属锂电极的稳定性。
又如: 申请号为 CN94104418的专利申请公开了一种用于电池负极材料的锂铝合金及其 制造方法, 其为一种 β相 LiAl合金, 其制法是将原料置于熔炼设备中, 抽真空充入氩气, 加 热继续抽真空, 加热至 400— 450 °C停止抽真空, 充入 0. 05— 0. 5Pa氩, 加热至 710— 800 °C, 保温 1-5小时, 冷至室温制成锂铝合金锭。其特征是, 为 β相 LiAl合金, 含锂 18— 24 % (重 量百分数, 下同), 含铝 82— 76 %, 熔点 688 °C。 但是, 上述方法制得的锂铝合金含锂 18— 24 % (重量百分数), 非锂的合金成分含量很高, 增加了锂金属负极的电极反应电位, 降低了 锂负极的质量比能量。 并且, 在电池充放电过程中该负极材料会不可避免地产生相变, 从而 导致体积的巨大变化, 导致材料快速粉化, 大大降低循环寿命。 合金材料的充放电机理已经 不再是金属锂在负极上的溶解一沉积机理, 而变成了锂离子在锂合金中的插入一脱出机理。 发明内容 本发明所要解决的技术问题是提供一种充放电循环寿命更高的锂铝合金。
本发明锂铝合金由如下重量百分比的组分组成: 铝 0. l〜4. 0wt%, 余量为锂和不可避免 的杂质。
进一步的, 作为优选的技术方案, 本发明锂铝合金由如下重量百分比的组分组成: 铝 0. l〜lwt%, 余量为锂和不可避免的杂质。
进一步的, 本发明还提供了一种生产锂铝合金的方法。
本发明生产锂铝合金的方法包括如下步骤: 将金属锂和铝按重量比 24〜1000 : 1混匀, 然 后在惰性气氛下于 190〜300 °C熔炼, 冷却, 制得锂铝合金。本发明方法采用 190〜300 °C的低 温熔炼生产锂铝合金, 不仅使能耗降低, 还使产品合格率大大提高。
其中, 上述方法中的惰性气氛的作用是防止锂、 铝被氧化或氮化, 所述的惰性气氛优选 为氦、 氖、 氩或氪气氛, 气氛中的氧、 氮总量优选 15ppm 。 进一步的, 所述的惰性气氛最 优选为氩气氛 。
其中, 升温速度过高易产生安全问题, 升温速度过低则生产效率下降, 为了保证生产过 程安全, 同时将生产效率维持在可接受范围内, 上述方法熔炼的升温速度优选控制为 200〜 300 °C /h 。
其中, 上述方法中, 一般熔炼的时间控制为 l〜8h即可熔炼完毕。
进一步的, 根据具体需要, 上述方法中, 熔炼完毕后还降温至 190〜230 °C, 进行浇铸, 浇铸完成后, 冷却至室温, 脱模, 制得锂铝合金。
本发明还提供了上述锂铝合金在制备电池负极材料中的用途。
本发明锂铝合金, 通过加入特定含量的铝, 对纯金属锂的性能作了修饰, 既保持了锂容 量优点, 又改善了枝晶抑制效果, 其充放电中为单一相, 不会发生相变, 提高了锂铝合金的 充放电循环寿命。
具体实施方式
本发明锂铝合金由如下重量百分比的组分组成: 铝 0. l〜4. 0wt%, 余量为锂和不可避免 的杂质。
进一步的, 作为优选的技术方案, 本发明锂铝合金由如下重量百分比的组分组成: 铝
0. l〜lwt%, 余量为锂和不可避免的杂质。 进一步的, 本发明还提供了一种生产锂铝合金的方法。
本发明生产锂铝合金的方法包括如下步骤: 将金属锂和铝按重量比 24〜1000 : 1混匀, 然 后在惰性气氛下于 190〜300 °C熔炼, 冷却, 制得锂铝合金。本发明方法采用 190〜300 °C的低 温熔炼生产锂铝合金, 不仅使能耗降低, 还使产品合格率大大提高。
其中, 上述方法中的惰性气氛的作用是防止锂、 铝被氧化或氮化, 所述的惰性气氛优选 为氦、 氖、 氩或氪气氛, 气氛中的氧、 氮总量优选 15ppm 。 进一步的, 所述的惰性气氛最 优选为氩气氛 。
其中, 升温速度过高易产生安全问题, 升温速度过低则生产效率下降, 为了保证生产过 程安全, 同时将生产效率维持在可接受范围内, 上述方法熔炼的升温速度优选控制为 200〜 300 °c A 。
其中, 上述方法中, 一般熔炼的时间控制为 l〜8h即可熔炼完毕。
进一步的, 根据具体需要, 上述方法中, 熔炼完毕后还降温至 190〜230 °C, 进行浇铸, 浇铸完成后, 冷却至室温, 脱模, 制得锂铝合金。
本发明还提供了上述锂铝合金在制备电池负极材料中的用途。
下面结合实施例对本发明的具体实施方式做进一步的描述, 并不因此将本发明限制在所 述的实施例范围之中。
实施例 1 本发明锂铝合金的制备
将准备好的金属锂、 金属铝按 99. 80 : 0. 15 (本发明实施例中的锂铝比例均为重量比)放 入坩埚内,抽真空(0. lPa) ,通氩气(9 X 104Pa)置换两次,确保罐内氧、氮总量不大于 15ppm。 开始升温 (300 °C /h), 温度升至 220 °C, 熔炼时间 2 h。 在合金化完成后, 降温至 210 °C, 进 行浇铸。 浇铸完成后, 合金锭的温度达到环境温度后, 打开罐体进行脱模取样。 取出的样品 迅速抽真空包装、 称重、 记录。 所得锂铝合金成分见下表 1。
表 1
Figure imgf000004_0001
实施例 2 本发明锂铝合金的制备
将准备好的金属锂、金属铝按 99. 85 : 0. 1放入坩埚内,抽真空(0. lPa),通氩气(9 X 104Pa) 置换两次, 确保罐内氧、 氮总量不大于 15ppm。 开始升温(300°C/h), 温度升至 190°C, 熔炼 时间 8 h。 在合金化完成后, 降温至 190°C, 进行浇铸。 浇铸完成后, 合金锭的温度达到环 境温度后, 打开罐体进行脱模取样。 取出的样品迅速抽真空包装、 称重、 记录。 所得锂铝合 金成分见下表 2。
表 2
Figure imgf000005_0001
实施例 3 本发明锂铝合金的制备
将准备好的金属锂、 金属铝按 96 : 4放入坩埚内, 抽真空 (0. lPa), 通氩气 (9 X 104Pa) 置换两次, 确保罐内氧、 氮总量不大于 15ppm。 开始升温(300°C/h), 温度升至 300°C, 熔炼 时间 lh。 在合金化完成后, 降温至 210°C, 进行浇铸。 浇铸完成后, 合金锭的温度达到环境 温度后, 打开罐体进行脱模取样。 取出的样品迅速抽真空包装、 称重、 记录。 所得锂铝合金 成分见下表 3。
表 3
Figure imgf000005_0002
实施例 4 本发明锂铝合金的制备
将准备好的金属锂、金属铝按表 4所示放入坩埚内,抽真空(0. lPa),通氩气(9 X 104Pa) 置换两次, 确保罐内氧、 氮总量不大于 15ppm。 开始升温 (200〜300°C/h), 温度升至 190〜 300 °C , 熔炼时间 l〜8h。 在合金化完成后, 降温至 190〜230°C, 进行浇铸。 浇铸完成后, 合金锭的温度达到环境温度后, 打开罐体进行脱模取样。取出的样品迅速抽真空包装、称重、 记录。 所得锂铝合金成分见表 5。 εοο Ό WO Ό εοο Ό 200 Ό εοο Ό ΖΖΟ Ό TO Ό TO Ό TO Ό L ·ε Ι Ζ ·96 εοο Ό ^ΟΟ Ό εοο Ό 200 Ό S00 Ό 920 Ό TO Ό TO Ό TO Ό 8Ζ ·ε Τ 9 ·96 6-f εοο Ό ^ΟΟ Ό εοο Ό 200 Ό ^00 Ό fZO Ό TO Ό TO Ό TO Ό 6 'ζ SO 'Ζ6 S-f εοο Ό ^ΟΟ Ό εοο Ό 200 Ό εοο Ό 920 Ό TO Ό TO Ό TO Ό 9 'Ζ ε 'Ζ6 L-f εοο Ό ^ΟΟ Ό εοο Ό 200 Ό S00 Ό SCO Ό TO Ό TO Ό TO Ό τ 'ζ Τ8 'Ζ6 9-f εοο Ό ^ΟΟ Ό εοο Ό 200 Ό ^00 Ό SCO Ό TO Ό TO Ό TO Ό Τ ·86 -f εοο Ό ^ΟΟ Ό εοο Ό 200 Ό S00 Ό Ι ΖΟ Ό TO Ό TO Ό TO Ό 9f 'Τ S ·86 f-f εοο Ό ^ΟΟ Ό εοο Ό 200 Ό S00 Ό 820 Ό TO Ό TO Ό TO Ό 8Ζ Ό ST ·66 £-f εοο Ό ^ΟΟ Ό εοο Ό 200 Ό ^00 Ό ΖΖΟ Ό TO Ό TO Ό TO Ό 8S Ό 6C ·66 Z-f εοο Ό ^ΟΟ Ό εοο Ό 200 Ό S00 Ό SCO Ό TO Ό TO Ό TO Ό τε Ό 89 ·66 l-f
TO ΐΝ TS ¾ ΒΝ Ν TV ΐΊ
(%晷 )
Figure imgf000006_0001
60 ^6I/ 0Z OAV 试验例 1
将实施例 1、 2、 3、 4制备的锂铝合金用作负极材料进行充放电实验, 测定本发明锂铝合 金的性能。正极材料采用四川天齐锂业股份有限公司生产的磷酸铁锂,正极片中粘合剂为 5%; 隔膜采用三层 PP/PE/PP;制作 lAh软包装电池。采用 1C充放(充电截止电压 3.8V, 放电截止 电压 2.0V) 电评估电池的循环性能。
另外, 用 CN94104418的方法制备锂铝合金, 同等条件下进行充放电实验。
测定结果如下表 6所示。 实施例 4中生产的锂铝合金编号与表 6相对应。
表 6
编号 满电电压 V 循环次数 容量保持 循环次数 容量保持 实施例 1 3. 80 50 93% 150 85% 实施例 2 3. 80 50 90% 150 84% 实施例 3 3. 80 50 91% 150 85%
4-1 3. 80 50 90% 150 83%
4-2 3. 80 50 90% 150 82%
4-3 3. 78 50 89% 150 80%
4-4 3. 75 50 88% 150 77%
4-5 3. 75 50 85% 150 75%
4-6 3. 75 50 85% 150 70%
4-7 3. 73 50 83% 150 70%
4-8 3. 7 50 83% 150 70%
4-9 3. 7 50 80% 150 68%
4-10 3. 7 50 80% 150 65%
CN94104418 3. 5 50 75% 150 50%

Claims

权利要求书
1、 锂铝合金, 其特征在于由如下重量百分比的组分组成: 铝 0. l〜4. 0wt%, 余量为锂和 不可避免的杂质。
2、根据权利要求 1所述的锂铝合金,其特征在于由如下重量百分比的组分组成:铝 0. 1〜 lwt%, 余量为锂和不可避免的杂质。
3、生产锂铝合金的方法,其特征在于包括如下步骤: 将金属锂和铝按重量比 24〜1000 : 1 混匀, 然后在惰性气氛下于 190〜300°C熔炼, 冷却, 制得锂铝合金。
4、根据权利要求 3所述的生产锂铝合金的方法,其特征在于:所述的惰性气氛为氦、氖、 氩或氪气氛, 气氛中的氧、 氮总量 15ppm 。
5、 根据权利要求 3或 4所述的生产锂铝合金的方法, 其特征在于: 熔炼的升温速度为
200〜300°C/h 。
6、 根据权利要求 3〜5任一项所述的生产锂铝合金的方法, 其特征在于: 熔炼的时间为 l〜8h 。
7、 根据权利要求 3〜5任一项所述的生产锂铝合金的方法, 其特征在于: 熔炼完毕后还 降温至 190〜230°C, 进行浇铸, 浇铸完成后, 冷却至室温, 脱模, 制得锂铝合金。
8、 权利要求 1或 2所述的锂铝合金在制备电池负极材料中的用途。
PCT/CN2014/074187 2013-06-05 2014-03-27 锂铝合金及其生产方法和用途 WO2014194709A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310220464.9A CN103290293B (zh) 2013-06-05 2013-06-05 锂铝合金及其生产方法和用途
CN201310220464.9 2013-06-05

Publications (1)

Publication Number Publication Date
WO2014194709A1 true WO2014194709A1 (zh) 2014-12-11

Family

ID=49091811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074187 WO2014194709A1 (zh) 2013-06-05 2014-03-27 锂铝合金及其生产方法和用途

Country Status (2)

Country Link
CN (1) CN103290293B (zh)
WO (1) WO2014194709A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020214691A1 (en) * 2019-04-16 2020-10-22 Board Of Trustees Of Northern Illinois University Doped lithium anode, battery having a doped lithium anode, and methods of use thereof
WO2021021510A1 (en) * 2019-07-26 2021-02-04 Fmc Lithium Usa Corp. Process of preparing a lithium aluminum alloy

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290293B (zh) * 2013-06-05 2016-02-24 四川天齐锂业股份有限公司 锂铝合金及其生产方法和用途
CN104060141B (zh) * 2014-07-14 2017-01-11 天齐锂业股份有限公司 锂铝合金的真空合成方法
CN105552348B (zh) * 2015-11-23 2018-03-30 天津赫维科技有限公司 一种3v可充扣式锂电池锂铝合金负极的制作方法
CN106816578A (zh) * 2016-12-12 2017-06-09 佛山市尚好门窗有限责任公司 一种锂镧铝合金
CN107068964A (zh) * 2016-12-29 2017-08-18 中国电子科技集团公司第十八研究所 锂铝合金表面修饰的锂负极及其固态电池
CN110120502B (zh) * 2018-02-05 2022-02-18 中国科学院物理研究所 一种锂金属合金负极材料及其制备方法和应用
CN108376764B (zh) * 2018-03-23 2020-07-28 西北工业大学 锂二次电池负极表面改性方法、使用该方法制得的Ag改性锂电极及应用
CN111048744B (zh) * 2018-10-11 2021-07-06 中国科学技术大学 一种金属锂合金电极材料、其制备方法和金属锂二次电池
CN109728242B (zh) * 2019-01-02 2021-06-01 重庆天齐锂业有限责任公司 三维合金锂负极、其制备方法及锂二次电池
CN109830646A (zh) * 2019-01-12 2019-05-31 哈尔滨工业大学 一种复合金属负极及包含该负极的电池
CN111916815B (zh) * 2019-05-08 2022-01-07 宁德时代新能源科技股份有限公司 锂金属电池
EP3985756A4 (en) * 2020-05-08 2022-08-24 LG Energy Solution, Ltd. BATTERY WITHOUT LITHIUM AND METHOD OF MANUFACTURING IT
CN114050253A (zh) * 2021-10-21 2022-02-15 中山大学 一种纳米锂合金的制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3957532A (en) * 1974-06-20 1976-05-18 The United States Of America As Represented By The United States Energy Research And Development Administration Method of preparing an electrode material of lithium-aluminum alloy
JPS59130070A (ja) * 1983-01-18 1984-07-26 Sanyo Electric Co Ltd 非水電解液二次電池
US5278005A (en) * 1992-04-06 1994-01-11 Advanced Energy Technologies Inc. Electrochemical cell comprising dispersion alloy anode
CN101280434A (zh) * 2007-04-05 2008-10-08 陆泰阳 在大气环境下制备铝-锂化合物的方法
CN103290293A (zh) * 2013-06-05 2013-09-11 四川天齐锂业股份有限公司 锂铝合金及其生产方法和用途

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105612B2 (ja) * 1988-03-11 1994-12-21 三洋電機株式会社 非水電解液一次電池
CN1110721A (zh) * 1994-04-25 1995-10-25 北京有色金属研究总院 用于电池负极材料的锂铝合金及其制造方法
CN100334756C (zh) * 2004-09-03 2007-08-29 松下电器产业株式会社 锂原电池
CN201336331Y (zh) * 2008-11-10 2009-10-28 中银(宁波)电池有限公司 一次电池用负极锂合金带

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3957532A (en) * 1974-06-20 1976-05-18 The United States Of America As Represented By The United States Energy Research And Development Administration Method of preparing an electrode material of lithium-aluminum alloy
JPS59130070A (ja) * 1983-01-18 1984-07-26 Sanyo Electric Co Ltd 非水電解液二次電池
US5278005A (en) * 1992-04-06 1994-01-11 Advanced Energy Technologies Inc. Electrochemical cell comprising dispersion alloy anode
CN101280434A (zh) * 2007-04-05 2008-10-08 陆泰阳 在大气环境下制备铝-锂化合物的方法
CN103290293A (zh) * 2013-06-05 2013-09-11 四川天齐锂业股份有限公司 锂铝合金及其生产方法和用途

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020214691A1 (en) * 2019-04-16 2020-10-22 Board Of Trustees Of Northern Illinois University Doped lithium anode, battery having a doped lithium anode, and methods of use thereof
US11217788B2 (en) 2019-04-16 2022-01-04 Board Of Trustees Of Northern Illinois University Doped lithium anode, battery having a doped lithium anode, and methods of use thereof
US11677072B2 (en) 2019-04-16 2023-06-13 Board Of Trustees Of Northern Illinois University Doped lithium anode, battery having a doped lithium anode, and methods of use thereof
WO2021021510A1 (en) * 2019-07-26 2021-02-04 Fmc Lithium Usa Corp. Process of preparing a lithium aluminum alloy
US11168384B2 (en) 2019-07-26 2021-11-09 Fmc Lithium Usa Corp. Process of preparing a lithium aluminum alloy

Also Published As

Publication number Publication date
CN103290293A (zh) 2013-09-11
CN103290293B (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
WO2014194709A1 (zh) 锂铝合金及其生产方法和用途
JP5466015B2 (ja) ニッケル水素蓄電池および水素吸蔵合金の製造方法
CN104060141B (zh) 锂铝合金的真空合成方法
CN110714139A (zh) 一种稀土-镍基储氢合金材料及其制备方法
TWI639268B (zh) Si-based alloy for negative electrode material of power storage device, negative electrode material of power storage device, negative electrode of power storage device, power storage device, and method for manufacturing negative electrode material of power storage device
JP6608558B1 (ja) 表面処理を必要としないニッケル水素二次電池負極活物質及びニッケル水素二次電池
CN110317974B (zh) 一种钇-镍稀土系储氢合金
CN111471895A (zh) 含钆和镍的储氢合金、负极、电池及制备方法
JPWO2006085542A1 (ja) 低Co水素吸蔵合金
CN103280565A (zh) 一种铝合金阳极材料及其制备方法
CN111471913A (zh) Ab3型稀土-钐-镍储氢合金、负极、电池及制备方法
JPWO2005014871A1 (ja) 低Co水素吸蔵合金
CN110492086B (zh) 一种储氢合金复合材料的制备方法
CN102383011A (zh) 一种低成本长寿命稀土镁基贮氢合金及其应用
JP2017532455A (ja) 希土類系水素吸蔵合金およびその用途
JP5825671B2 (ja) 水素吸蔵合金及びこの水素吸蔵合金を用いたニッケル水素二次電池
US9225016B2 (en) Hydrogen absorbing alloy, negative pole, and nickel—hydrogen secondary battery
JP6934097B1 (ja) 水素吸蔵合金
JP5850493B2 (ja) 水素吸蔵合金及びこの水素吸蔵合金を用いたニッケル水素二次電池
CN108011093A (zh) 锂吸留释放材料、电极、锂离子二次电池以及锂吸留释放材料的制造方法
CN111411262B (zh) A5b19型含钆储氢合金、负极及制备方法
JP3944237B2 (ja) 低Co水素吸蔵合金
WO2014067253A1 (zh) 锂离子二次电池负极活性材料及其制备方法、锂离子二次电池负极极片和锂离子二次电池
JP2016039098A (ja) 蓄電デバイス用Si系合金負極材料およびそれを用いた電極
JP2015090847A (ja) 蓄電デバイスの負極用粉末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14806880

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14806880

Country of ref document: EP

Kind code of ref document: A1