WO2014194648A1 - 一种超高塑性双尺度分布的超细晶/微米晶块体铁材料及其制备方法 - Google Patents

一种超高塑性双尺度分布的超细晶/微米晶块体铁材料及其制备方法 Download PDF

Info

Publication number
WO2014194648A1
WO2014194648A1 PCT/CN2013/090063 CN2013090063W WO2014194648A1 WO 2014194648 A1 WO2014194648 A1 WO 2014194648A1 CN 2013090063 W CN2013090063 W CN 2013090063W WO 2014194648 A1 WO2014194648 A1 WO 2014194648A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintering
crystal
ultrafine
double
iron material
Prior art date
Application number
PCT/CN2013/090063
Other languages
English (en)
French (fr)
Inventor
杨超
魏田
郭浩
陈维平
张卫文
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2014194648A1 publication Critical patent/WO2014194648A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy

Definitions

  • the invention relates to an ultrafine crystal/microcrystalline metal material, in particular to an ultrafine plastic double-scale distribution ultrafine crystal/microcrystalline bulk iron material and a preparation method thereof.
  • Iron and iron alloys are characterized by low price, abundant resources, excellent performance and easy to achieve large-scale production, thus becoming the most widely used material.
  • the rapid development of modern industry puts higher and higher requirements on the comprehensive mechanical properties of iron and ferroalloys. It has become an important research topic for material workers to obtain high comprehensive mechanical properties by suitable preparation methods.
  • Fine grain strengthening is an important method to improve the strength and plasticity. Micron crystals, ultrafine crystals and nanocrystals can be obtained by refining the crystal grains, so that the strength of the material is doubled compared with the conventional cast coarse crystal materials.
  • ultrafine crystalline iron materials there are mainly the following methods for preparing ultrafine crystalline iron materials: (1) using a method of equal channel angular pressing to refine grains by large plastic deformation to obtain ultra-fine grained bulk iron materials with low strength and high plasticity, Grain size is 200 ⁇ 400 Nm, compressive rupture strength is 800 MPa and plastic strain is 30% under true stress and strain conditions (Gertsman V.Y., Birringer R., Valiev R. Z., Et al., Scripta Metall ⁇ rgica et Materialia, 1994, 30(2): 229-234); (2) High-strength and low-plasticity ultrafine or nanocrystalline bulk iron materials obtained by cold pressing and hot pressing at low temperature (683 K ⁇ 863 K).
  • the sintering temperature is 863 K, obtaining an ultrafine crystalline bulk iron material with a grain size of 268 nm, a compressive fracture strength of 1600 MPa under true stress and strain conditions, a plastic strain of 12%; when the sintering temperature is 683 At K, a nanocrystalline bulk iron material was obtained with a grain size of 138 nm, a compressive fracture strength of 2500 MPa under true stress and strain, and a plastic strain of 6% (Jia D., Ramesh K. T., Ma E..
  • the ultra-fine grained iron material prepared by various methods has a maximum plasticity of up to 40% (Scripta Mater., 2008, 58: 759–762), but the experimental sintering temperature used by Srinivasarao B. et al. is the isomeric transition temperature of iron (1185). K) The following, and the stepwise pressurization method adopted is complicated, and it is not easy to densify the finished product.
  • the object of the present invention is to provide a method for preparing an ultra-fine plastic/micro-crystalline bulk iron material with ultra-high plasticity and double-scale distribution, and preparing an ultrafine crystal/microcrystalline crystal block.
  • the iron material realizes the advantages of uniform grain size, near full density, super high plasticity and double scale distribution.
  • Another object of the present invention is to provide a highly plastic bi-scale distribution of ultrafine grain/microcrystalline bulk iron material obtained by the above preparation method.
  • a method for preparing an ultra-high plasticity double-scale distribution ultrafine/microcrystalline ingot iron material comprising the following steps:
  • Sintering equipment discharge plasma sintering system
  • Sintering current type pulse current
  • the heating rate is 54 to 235 K/min, and the holding time is controlled at 0 to 10. Min.
  • the sintering pressure is 40 to 50 when the graphite mold is used.
  • MPa when using a tungsten carbide mold, the sintering pressure is 50 to 500 MPa.
  • the high-plasticity double-scale distribution of ultrafine-grain/micron ingot bulk iron material obtained by the above preparation method has a microscopic structure of a bulk microcrystalline ⁇ -Fe as a matrix phase, and an ultrafine crystal equiaxed ⁇ -Fe and ultrafine
  • the crystal needle-like ⁇ -Fe is a reinforcing phase.
  • the present invention has the following advantages and benefits:
  • the double-scale distributed ultrafine/micron ingot iron material prepared by the invention has the advantages of uniform microstructure, near-total compactness and ultra-high plasticity, excellent comprehensive mechanical properties, and room temperature compressive fracture strength and fracture.
  • the strain reached 734 respectively MPa and more than 58%, especially in terms of plasticity, far superior to other structural bulk iron materials.
  • the preparation method of the double-scale distributed ultrafine crystal/microcrystalline ingot iron material of the invention has the advantages of simple processing, convenient operation, high yield, saving raw materials and near-final forming;
  • the internal interface of the material is clean and its grain size is controllable.
  • the method for preparing the double-scale distributed ultrafine crystal/microcrystalline bulk iron material of the present invention can prepare a larger size and a diameter larger than 20
  • the material of mm can meet the application requirements of the new structural parts and has broad application prospects.
  • Example 1 is a scanning electron micrograph of an ultra-high plasticity bi-scale distribution of ultrafine/microcrystalline bulk iron material prepared in Example 1.
  • FIG. 2 is a room temperature compression true stress-strain curve of an ultra-high plasticity double-scale distribution ultrafine/microcrystalline bulk iron material prepared in Example 1.
  • the method for preparing the ultra-high plasticity double-scale distribution ultrafine crystal/microcrystalline bulk iron material of the embodiment comprises the following steps:
  • the initial powder was high-purity electrolytic iron powder (99.5 wt.%, particle size 38 um), and the initial iron powder and stainless steel grinding balls were placed together in a stainless steel ball-milling jar (the O-ring seal was sealed between the ball mill tank and the lid, The diameter of the grinding balls is 15 mm, 10 mm and 6 mm, respectively, and the weight ratio is 1:3: 1, and the weight ratio of the grinding balls to the powder is 10:1).
  • the ball mill tank is filled with high purity argon gas for protection (99.99%, 0.5 MPa).
  • an argon-protected ball mill jar was placed on a QM-2SP20 planetary ball mill for high-energy ball milling (3.8 s -1 rpm). After ball milling for 5 h and cooling to room temperature, a certain amount of powder (about 5 g) was taken out for various characterization tests of the powder until a nanocrystalline iron powder having a grain size of about 10 nm was obtained.
  • the scanning electron micrograph shown in Fig. 1 shows that the iron material (if the diameter of the sintering mold is large, the size of the iron material is also large).
  • the scanning electron micrograph shown in Fig. 1 shows that the microstructure is composed of massive microcrystalline ⁇ -Fe (Fig. A) as the matrix, ultrafine crystal equiaxed ⁇ -Fe (B in the figure) and ultrafine crystal Acicular ⁇ -Fe (C in the figure) is a reinforcing phase.
  • the method for preparing an ultra-high plasticity double-scale distribution ultrafine crystal/microcrystalline bulk iron material of the embodiment comprises the following steps:
  • Nanocrystalline iron powder of nm (1) Preparation of nanocrystalline iron powder by high energy ball milling: placing pure iron powder in a stainless steel ball milling medium for high energy ball milling until a grain size of about 8-12 is obtained.
  • Nanocrystalline iron powder of nm (1) Preparation of nanocrystalline iron powder by high energy ball milling: placing pure iron powder in a stainless steel ball milling medium for high energy ball milling until a grain size of about 8-12 is obtained.
  • the initial powder was high-purity electrolytic iron powder (99.5 wt.%, particle size 38 um), and the initial iron powder and stainless steel grinding balls were placed together in a stainless steel ball-milling jar (the O-ring seal was sealed between the ball mill tank and the lid, The diameter of the grinding balls is 15 mm, 10 mm and 6 mm, respectively, and the weight ratio is 1:3: 1, and the weight ratio of the grinding balls to the powder is 10:1).
  • the ball mill tank is filled with high purity argon gas for protection (99.99%, 0.5 MPa).
  • an argon-protected ball mill jar was placed on a QM-2SP20 planetary ball mill for high-energy ball milling (3.8 s -1 rpm). After ball milling for 5 h and cooling to room temperature, a certain amount of powder (about 5 g) was taken out for various characterization tests of the powder until a nanocrystalline iron powder having a grain size of about 10 nm was obtained.
  • the corresponding room temperature compression true stress-strain curves show that the room temperature compressive fracture strength and fracture strain of the bulk iron materials are 955 MPa and 58%, respectively.
  • the initial powder was high-purity electrolytic iron powder (99.5 wt.%, particle size 38 um), and the initial iron powder and stainless steel grinding balls were placed together in a stainless steel ball-milling jar (the O-ring seal was sealed between the ball mill tank and the lid, The diameter of the grinding balls is 15 mm, 10 mm and 6 mm, respectively, and the weight ratio is 1:3: 1, and the weight ratio of the grinding balls to the powder is 10:1).
  • the ball mill tank is filled with high purity argon gas for protection (99.99%, 0.5 MPa).
  • an argon-protected ball mill jar was placed on a QM-2SP20 planetary ball mill for high-energy ball milling (3.8 s -1 rpm). After ball milling for 5 h and cooling to room temperature, a certain amount of powder (about 5 g) was taken out for various characterization tests of the powder until a nanocrystalline iron powder having a grain size of about 10 nm was obtained.
  • step (2) Preparation of ultra-high plasticity double-scale distribution of bulk iron materials by spark plasma sintering: 8g of nanocrystalline iron powder obtained in step (1) is loaded into a tungsten carbide sintered sintered mold with a diameter of ⁇ 10 mm, and is passed through positive and negative tungsten carbide. The electrode is pre-pressed with nanocrystalline iron powder to 200 MPa, vacuumed to 10 -3 Pa, and subjected to spark plasma sintering under argon gas protection to obtain ultra-high plasticity double-scale distribution of ultrafine/microcrystalline bulk iron material.
  • the rapid sintering process conditions are as follows:
  • the method for preparing the ultra-high plasticity double-scale distribution ultrafine crystal/microcrystalline bulk iron material of the embodiment comprises the following steps:
  • Nanocrystalline iron powder of nm (1) Preparation of nanocrystalline iron powder by high energy ball milling: placing pure iron powder in a stainless steel ball milling medium for high energy ball milling until a grain size of about 8-12 is obtained.
  • Nanocrystalline iron powder of nm (1) Preparation of nanocrystalline iron powder by high energy ball milling: placing pure iron powder in a stainless steel ball milling medium for high energy ball milling until a grain size of about 8-12 is obtained.
  • the initial powder was high-purity electrolytic iron powder (99.5 wt.%, particle size 38 um), and the initial iron powder and stainless steel grinding balls were placed together in a stainless steel ball-milling jar (the O-ring seal was sealed between the ball mill tank and the lid, The diameter of the grinding balls is 15 mm, 10 mm and 6 mm, respectively, and the weight ratio is 1:3: 1, and the weight ratio of the grinding balls to the powder is 10:1).
  • the ball mill tank is filled with high purity argon gas for protection (99.99%, 0.5 MPa).
  • an argon-protected ball mill jar was placed on a QM-2SP20 planetary ball mill for high-energy ball milling (3.8 s -1 rpm). After ball milling for 5 h and cooling to room temperature, a certain amount of powder (about 5 g) was taken out for various characterization tests of the powder until a nanocrystalline iron powder having a grain size of about 10 nm was obtained.
  • step (2) Preparation of ultra-high plasticity double-scale distribution of bulk iron materials by spark plasma sintering: 35g of nanocrystalline iron powder obtained in step (1) is loaded into a graphite sintering mold with a diameter of ⁇ 20 mm, and pre-precipitated by positive and negative graphite electrodes. Pressing nanocrystalline iron powder to 500 MPa, evacuating to 10 -3 Pa, and using spark plasma sintering under argon gas protection conditions, obtaining ultra-high plasticity double-scale distribution of ultrafine/microcrystalline bulk iron materials, among which fast The sintering process conditions are as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种超高塑性双尺度分布的超细晶/微米晶块体铁材料,其微观结构以块状微米晶α-Fe为基体相,以超细晶等轴状α-Fe和超细晶针状α-Fe为增强相,综合力学性能好,塑性变形能力强。一种超高塑性双尺度分布的超细晶/微米晶块体铁材料的制备方法,先将高纯铁粉经高能球磨至纳米晶粉末,然后采用放电等离子烧结系统快速烧结,烧结温度Ts:1253K≤Ts≤1335K、烧结时间:14〜26min、烧结压力:40〜500MPa。制备方法简单、操作方便,晶粒尺寸可控,成材率高、节约原材料和近终成形。

Description

一种超高塑性双尺度分布的超细晶/微米晶块体铁材料及其制备方法
技术领域
本发明涉及超细晶/微米晶金属材料,特别涉及一种超高塑性双尺度分布的超细晶/微米晶块体铁材料及其制备方法。 
背景技术
铁及铁合金具有价格便宜、资源丰富、性能优异及易实现规模化生产等特点,因而成为目前应用最为广泛的材料。然而,现代工业的高速发展对铁及铁合金的综合力学性能提出了越来越高的要求,采用合适的制备方法获得高的综合力学性能已成为材料工作者的重要研究课题。细晶强化是提高强度和塑性的重要方法,通过细化晶粒手段可以获得微米晶、超细晶以及纳米晶,使材料的强度相比传统的铸造粗晶材料成倍地提高。目前,制备超细晶铁材料主要有以下几种方法:(1)利用等通道转角挤压的方法,通过大塑性变形细化晶粒得到低强度高塑性的超细晶块体铁材料,其晶粒尺寸为200~400 nm,真应力应变条件下压缩断裂强度为800 MPa、塑性应变达30%(Gertsman V.Y., Birringer R., Valiev R. Z., et al., Scripta Metallμrgica et Materialia, 1994, 30(2): 229-234);(2)利用冷压和热压方法低温(683 K~863 K)得到高强度低塑性的超细晶或纳米晶块体铁材料。当烧结温度为863 K,获得超细晶块体铁材料,晶粒尺寸为268 nm,真应力应变条件下压缩断裂强度为1600 MPa,塑性应变为12 %;当烧结温度为683 K时,获得纳米晶块体铁材料,晶粒尺寸为138 nm,真应力应变条件下压缩断裂强度为2500 MPa,塑性应变为6%(Jia D., Ramesh K. T., Ma E.. Acta Materialia, 2003, 51(12): 3495-3509);(3)利用放电等离子烧结技术,采用分步加压的方式在烧结温度为993 K的条件下,制备得到了高强度和高塑性的双尺度纳米晶α-Fe/微米晶α-Fe块体铁材料(其中,微米晶α-Fe含量很少),真应力应变条件下压缩断裂强度高达2249 MPa,塑性应变为40%(Srinivasarao B., Oh-ishi K., Ohkμbo T., et al. Scripta Mater., 2008, 58:759–762)。
但是,当金属晶粒尺寸细化至纳米级时,尽管材料的强度成倍地提高,但是塑性却显著下降。正如Jia D.等在实验里获得的纳米晶铁性能所示,虽然纳米晶铁具有高达2500 MPa的强度,但塑性应变只有6%。除了细化晶粒增韧的方法外,依照结构决定性能的经典理论,制备不同尺度和形态的复合材料有望提高材料的塑性,获得良好的综合力学性能。Srinivasarao B.等获得的纳米晶和微米晶双尺度分布的铁材料不仅具有高达2249 MPa的断裂强度,塑性应变也达到了40%。由此可见,探索制备双尺度或者多尺度分布的超细晶材料的制备方法对于提高金属材料的综合力学性能具有十分重要的意义。
综上所述,利用各种方法制备的超细晶铁材料最高塑性可达40%(Scripta Mater., 2008, 58:759–762),但Srinivasarao B.等所用实验烧结温度是在铁的同素异构转变温度(1185 K)以下,且采用的分步加压方式工艺繁杂,不易于成品的致密化。
发明内容
为了克服现有技术的上述缺点与不足,本发明的目的在于提供一种超高塑性双尺度分布的超细晶/微米晶块体铁材料的制备方法,制备的超细晶/微米晶块体铁材料实现微观组织晶粒均匀、近全致密、超高塑性以及双尺度分布的优点。
本发明的另一目的在于提供上述制备方法得到的高塑性双尺度分布的超细晶/微米晶块体铁材料。
本发明的目的通过以下技术方案实现:
一种超高塑性双尺度分布的超细晶/微米晶块体铁材料的制备方法,包括以下步骤:
(1)高能球磨制备纳米晶铁粉:在氩气保护条件下,将纯铁粉末置于不锈钢球磨介质中进行高能球磨,直至获得晶粒尺寸为8~12 nm的纳米晶铁粉;
(2)放电等离子烧结制备超高塑性双尺度分布的块体铁材料:将步骤(1)得到的纳米晶铁粉装入模具内,在氩气保护条件下,采用放电等离子烧结,得到超高塑性双尺度分布的超细晶/微米晶块体铁材料,其中快速烧结工艺条件如下:
烧结设备:放电等离子烧结系统;
烧结电流类型:脉冲电流;
烧结温度Ts:1253K≤Ts≤1335K;
烧结时间:14~26min;
烧结压力:40~500MPa。
步骤(2)所述放电等离子烧结中,升温速率为54~235 K/min,保温时间控制在0~10 min。
步骤(2)所述放电等离子烧结中,当采用石墨模具时烧结压力为40~50 MPa,当采用碳化钨模具时烧结压力为50~500 MPa。
上述制备方法得到的高塑性双尺度分布的超细晶/微米晶块体铁材料,其微观结构以块状微米晶α-Fe为基体相,以超细晶等轴状α-Fe和超细晶针状α-Fe为增强相。
与现有技术相比,本发明具有以下优点和有益效果:
(1)本发明制备的双尺度分布的超细晶/微米晶块体铁材料具有微观组织晶粒均匀、近全致密、超高塑性的优点,综合力学性能优异,其室温压缩断裂强度和断裂应变分别达到734 MPa和58 %以上,尤其在塑性方面远远优于其他结构的块体铁材料。
(2)本发明的双尺度分布的超细晶/微米晶块体铁材料的制备方法,加工过程简单、操作方便,成材率高、节约原材料和近终成形;同时,成形材料尺寸较大,材料内部界面清洁且其晶粒尺寸可控。
(3)本发明的双尺度分布的超细晶/微米晶块体铁材料的制备方法,当升温速率介于54~235 K/min,且保温时间控制在0~10 min内时,保温时间和升温速率的变化都对塑性没有明显影响,产品的一致性好。
(4)本发明的双尺度分布的超细晶/微米晶块体铁材料的制备方法,本发明可制备较大尺寸的、直径大于20 mm的材料,能基本满足作为新型结构件材料的应用要求,具有广泛的应用前景。
附图说明
图1为实施例1制备的超高塑性双尺度分布的超细晶/微米晶块体铁材料的扫描电镜图。
图2为实施例1制备的超高塑性双尺度分布的超细晶/微米晶块体铁材料的室温压缩真应力应变曲线。
具体实施方式
下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1
本实施例的超高塑性双尺度分布的超细晶/微米晶块体铁材料的制备方法,包括以下步骤:
(1)高能球磨制备纳米晶铁粉:将纯铁粉末置于不锈钢球磨介质中进行高能球磨,直至获得晶粒尺寸约8~12nm的纳米晶铁粉:
初始粉末为高纯电解铁粉(99.5wt.%,粒度为38um),将初始铁粉末以及不锈钢磨球一起放入不锈钢球磨罐中(球磨罐与盖子之间使用“O”型密封环密封,磨球直径分别为15 mm、10 mm和6 mm,其重量比为1: 3: 1,磨球和粉体重量比为10:1)。为了防止氧化,球磨罐内充入高纯氩气进行保护(99.99 %,0.5 MPa)。最后,将充有氩气保护的球磨罐放置在型号为QM-2SP20行星球磨机上进行高能球磨(转速为3.8 s-1)。球磨过程中每球磨5 h停机冷却至室温后,取出一定量的粉(大约5 g),用于粉末的各种表征测试,直至获得晶粒尺寸约为10 nm的纳米晶铁粉。
(2)放电等离子烧结制备超高塑性双尺度分布的块体铁材料:将步骤(1)得到的8g纳米晶铁粉装入直径为Φ10 mm的石墨烧结模具中,通过正负石墨电极先预压纳米晶铁粉到50 MPa,抽真空到10-3 Pa,在氩气保护的条件下采用放电等离子烧结,得到超高塑性双尺度分布的超细晶/微米晶块体铁材料,其中快速烧结工艺条件如下:
烧结设备:Dr. Sintering SPS-825放电等离子烧结系统
烧结电流类型:脉冲电流
脉冲电流的占空比:12:2
烧结温度Ts:1253 K
烧结时间:4 min升温到373 K、然后9 min升温到1233 K(升温速率为97 K/min)、接着1min加热到1253 K并保温10 min;
烧结压力:50 MPa;
对粉末进行快速烧结,在通电烧结和冷却过程中,压力始终保持在50 MPa,即可获得直径为Φ10 mm的超高塑性双尺度分布的超细晶/微米晶块体铁材料。如图1所示的扫描电镜图表明,铁材料(如果烧结模具直径大,铁材料尺寸也就大)。如图1所示的扫描电镜图表明,其微观结构为以块状微米晶α-Fe(图中A)为基体,以超细晶等轴状α-Fe(图中B)和超细晶针状α-Fe(图中C)为增强相。进一步的透射电镜分析表明,块状α-Fe的晶粒尺寸为2~3 μm,等轴状α-Fe的晶粒尺寸为700~900 nm,针状α-Fe的宽度为150~160 nm。如图2所示的室温压缩真应力应变曲线表明,真实断裂强度和断裂应变分别为743 MPa和59 %。
实施例2
本实施例的一种超高塑性双尺度分布的超细晶/微米晶块体铁材料的制备方法,包括以下步骤:
(1)高能球磨制备纳米晶铁粉:将纯铁粉末置于不锈钢球磨介质中进行高能球磨,直至获得晶粒尺寸约8~12 nm的纳米晶铁粉:
初始粉末为高纯电解铁粉(99.5wt.%,粒度为38um),将初始铁粉末以及不锈钢磨球一起放入不锈钢球磨罐中(球磨罐与盖子之间使用“O”型密封环密封,磨球直径分别为15 mm、10 mm和6 mm,其重量比为1: 3: 1,磨球和粉体重量比为10:1)。为了防止氧化,球磨罐内充入高纯氩气进行保护(99.99 %,0.5 MPa)。最后,将充有氩气保护的球磨罐放置在型号为QM-2SP20行星球磨机上进行高能球磨(转速为3.8 s-1)。球磨过程中每球磨5 h停机冷却至室温后,取出一定量的粉(大约5 g),用于粉末的各种表征测试,直至获得晶粒尺寸约为10 nm的纳米晶铁粉。
(2)放电等离子烧结制备超高塑性双尺度分布的块体铁材料:将步骤(1)得到的8g纳米晶铁粉装入直径为Φ10 mm的石墨烧结模具中,通过正负石墨电极先预压纳米晶铁粉到40 MPa,抽真空到10-3 Pa,在氩气保护的条件下采用放电等离子烧结,得到超高塑性双尺度分布的超细晶/微米晶块体铁材料,其中快速烧结工艺条件如下:
烧结设备:Dr. Sintering SPS-825放电等离子烧结系统
烧结电流类型:脉冲电流
脉冲电流的占空比:12:2
烧结温度Ts:1283 K
烧结时间:4 min升温到373 K、然后9 min升温到1263 K(升温速率为97 K/min)、接着1min加热到1283 K
烧结压力:40 MPa
对粉末进行快速烧结,在通电烧结和冷却过程中,压力始终保持在40 MPa,即可获得直径为Φ10 mm的超高塑性双尺度分布的超细晶/微米晶块体铁材料,其微观结构以块状微米晶α-Fe为基体相,以超细晶等轴状α-Fe和超细晶针状α-Fe为增强相,其中块状α-Fe的晶粒尺寸为2~4 μm,等轴状α-Fe的晶粒尺寸为500~700 nm,针状α-Fe的宽度为120~130 nm。对应的室温压缩真应力应变曲线表明,块体铁材料的室温压缩断裂强度和断裂应变分别为955 MPa和58%。 
实施例3
(1)高能球磨制备纳米晶铁粉:将纯铁粉末置于不锈钢球磨介质中进行高能球磨,直至获得晶粒尺寸约8~12nm的纳米晶铁粉:
初始粉末为高纯电解铁粉(99.5wt.%,粒度为38um),将初始铁粉末以及不锈钢磨球一起放入不锈钢球磨罐中(球磨罐与盖子之间使用“O”型密封环密封,磨球直径分别为15 mm、10 mm和6 mm,其重量比为1: 3: 1,磨球和粉体重量比为10:1)。为了防止氧化,球磨罐内充入高纯氩气进行保护(99.99 %,0.5 MPa)。最后,将充有氩气保护的球磨罐放置在型号为QM-2SP20行星球磨机上进行高能球磨(转速为3.8 s-1)。球磨过程中每球磨5 h停机冷却至室温后,取出一定量的粉(大约5 g),用于粉末的各种表征测试,直至获得晶粒尺寸约为10 nm的纳米晶铁粉。
(2)放电等离子烧结制备超高塑性双尺度分布的块体铁材料:将步骤(1)得到的8g纳米晶铁粉装入直径为Φ10 mm的碳化钨烧烧结模具中,通过正负碳化钨电极先预压纳米晶铁粉到200 MPa,抽真空到10-3 Pa,在氩气保护的条件下采用放电等离子烧结,得到超高塑性双尺度分布的超细晶/微米晶块体铁材料,其中快速烧结工艺条件如下:
烧结设备:Dr. Sintering SPS-825放电等离子烧结系统
烧结电流类型:脉冲电流
脉冲电流的占空比:12:2
烧结温度Ts:1253 K
烧结时间:4 min升温到373 K、然后16 min升温到1233 K(升温速率为54 K/min)、接着1 min加热到1253 K并保温5 min
烧结压力:200 MPa
对粉末进行快速烧结,在通电烧结和冷却过程中,压力始终保持在200 MPa,即可获得直径为Φ10 mm的超高塑性双尺度分布的超细晶/微米晶块体铁,其微观结构以块状微米晶α-Fe为基体相,以超细晶等轴状α-Fe和超细晶针状α-Fe为增强相,其中块状α-Fe的晶粒尺寸为1~3 μm,等轴状α-Fe的晶粒尺寸为600~800 nm,针状α-Fe的宽度为140~150 nm。对应的室温压缩真应力应变曲线表明,块体试样的室温压缩断裂强度和断裂应变分别为769 MPa和58%。 
实施例4
本实施例的超高塑性双尺度分布的超细晶/微米晶块体铁材料的制备方法,包括以下步骤:
(1)高能球磨制备纳米晶铁粉:将纯铁粉末置于不锈钢球磨介质中进行高能球磨,直至获得晶粒尺寸约8~12 nm的纳米晶铁粉:
初始粉末为高纯电解铁粉(99.5wt.%,粒度为38um),将初始铁粉末以及不锈钢磨球一起放入不锈钢球磨罐中(球磨罐与盖子之间使用“O”型密封环密封,磨球直径分别为15 mm、10 mm和6 mm,其重量比为1: 3: 1,磨球和粉体重量比为10:1)。为了防止氧化,球磨罐内充入高纯氩气进行保护(99.99 %,0.5 MPa)。最后,将充有氩气保护的球磨罐放置在型号为QM-2SP20行星球磨机上进行高能球磨(转速为3.8 s-1)。球磨过程中每球磨5 h停机冷却至室温后,取出一定量的粉(大约5 g),用于粉末的各种表征测试,直至获得晶粒尺寸约为10 nm的纳米晶铁粉。
(2)放电等离子烧结制备超高塑性双尺度分布的块体铁材料:将步骤(1)得到的35g纳米晶铁粉装入直径为Φ20 mm的石墨烧结模具中,通过正负石墨电极先预压纳米晶铁粉到500 MPa,抽真空到10-3 Pa,在氩气保护的条件下采用放电等离子烧结,得到超高塑性双尺度分布的超细晶/微米晶块体铁材料,其中快速烧结工艺条件如下:
烧结设备:Dr. Sintering SPS-825放电等离子烧结系统
烧结电流类型:脉冲电流
脉冲电流的占空比:12:2
烧结温度Ts:1335 K
烧结时间:4 min升温到373 K、然后4 min升温到1315 K(升温速率为235 K/min)、接着1 min加热到1335 K并保温10 min
烧结压力:500 MPa
对粉末进行快速烧结,在通电烧结和冷却过程中,压力始终保持在500 MPa,即可获得直径为Φ20 mm的超高塑性双尺度分布的超细晶/微米晶块体铁,其微观结构以块状微米晶α-Fe为基体相,以超细晶等轴状α-Fe和超细晶针状α-Fe为增强相。块状α-Fe的晶粒尺寸为3~5 μm,等轴状α-Fe的晶粒尺寸为400~600 nm,针状α-Fe的宽度为100~120 nm。对应的室温压缩真应力应变曲线表明,室温断裂强度和断裂应变分别为1025 MPa和60%。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (4)

  1. 一种超高塑性双尺度分布的超细晶/微米晶块体铁材料的制备方法,其特征在于,包括以下步骤:
    (1)高能球磨制备纳米晶铁粉:在氩气保护条件下,将纯铁粉末置于不锈钢球磨介质中进行高能球磨,直至获得晶粒尺寸为8~12 nm的纳米晶铁粉;
    (2)放电等离子烧结制备超高塑性双尺度分布的块体铁材料:将步骤(1)得到的纳米晶铁粉装入模具内,在氩气保护条件下,采用放电等离子烧结,得到超高塑性双尺度分布的超细晶/微米晶块体铁材料,其中快速烧结工艺条件如下:
    烧结设备:放电等离子烧结系统;
    烧结电流类型:脉冲电流;
    烧结温度Ts:1253K≤Ts≤1335K;
    烧结时间:14~26min;
    烧结压力:40~500MPa。
  2. 根据权利要求1所述的超高塑性双尺度分布的超细晶/微米晶块体铁材料的制备方法,其特征在于,步骤(2)所述放电等离子烧结中,升温速率为54~235 K/min,保温时间控制在0~10 min。
  3. 根据权利要求1所述的超高塑性双尺度分布的超细晶/微米晶块体铁材料的制备方法,其特征在于,步骤(2)所述放电等离子烧结中,当采用石墨模具时烧结压力为40~50 MPa,当采用碳化钨模具时烧结压力为50~500 MPa。
  4. 权利要求1~3任一项所述制备方法得到的高塑性双尺度分布的超细晶/微米晶块体铁材料,其特征在于,其微观结构以块状微米晶α-Fe为基体相,以超细晶等轴状α-Fe和超细晶针状α-Fe为增强相。
PCT/CN2013/090063 2013-06-05 2013-12-20 一种超高塑性双尺度分布的超细晶/微米晶块体铁材料及其制备方法 WO2014194648A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310221710.2 2013-06-05
CN201310221710.2A CN103331449B (zh) 2013-06-05 2013-06-05 一种超高塑性双尺度分布的超细晶/微米晶块体铁材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2014194648A1 true WO2014194648A1 (zh) 2014-12-11

Family

ID=49239690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090063 WO2014194648A1 (zh) 2013-06-05 2013-12-20 一种超高塑性双尺度分布的超细晶/微米晶块体铁材料及其制备方法

Country Status (2)

Country Link
CN (1) CN103331449B (zh)
WO (1) WO2014194648A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112723891A (zh) * 2021-01-27 2021-04-30 合肥工业大学 一种镧钙复合六硼化物多晶阴极材料及其制备方法
CN114075631A (zh) * 2020-08-11 2022-02-22 上海交通大学 一种具有双尺度晶粒结构的生物钛铋合金植入物制备方法
CN115561053A (zh) * 2022-10-12 2023-01-03 中国地质大学(武汉) 块状赤铁矿铁同位素组成标准样品的制备方法
CN115673327A (zh) * 2022-10-18 2023-02-03 北京工业大学 一种高强韧钨合金及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103331449B (zh) * 2013-06-05 2015-09-02 华南理工大学 一种超高塑性双尺度分布的超细晶/微米晶块体铁材料及其制备方法
CN104445428A (zh) * 2014-11-04 2015-03-25 华文蔚 一种放电等离子烧结块状α-氧化铁合成方法
CN105238954A (zh) * 2015-10-28 2016-01-13 华南理工大学 一种基于共晶转变的多尺度双态结构钛合金及制备与应用
CN106513683A (zh) * 2016-11-04 2017-03-22 天津大学 制备细晶高致密的氧化钇弥散强化钨基合金的方法
CN111020347B (zh) * 2019-12-30 2021-08-17 广州航海学院 一种高致密复相合金材料及其制备方法
CN111411248B (zh) * 2020-03-24 2021-07-27 广州铁路职业技术学院(广州铁路机械学校) 一种多尺度结构合金材料、制备方法及其用途
CN111519073B (zh) * 2020-06-03 2021-07-09 上海鑫烯复合材料工程技术中心有限公司 一种具有三峰特征的纳米碳增强金属基复合材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998035364A1 (fr) * 1997-02-06 1998-08-13 Sumitomo Special Metals Co., Ltd. Procede de fabrication d'un aimant a plaque mince possedant une structure microcristalline
US20030201031A1 (en) * 2002-04-29 2003-10-30 Electron Energy Corporation Method of improving toughness of sintered RE-Fe-B-type, rare earth permanent magnets
CN101323917B (zh) * 2008-06-25 2010-06-02 华南理工大学 一种四场耦合烧结制备纳米晶块体铁基合金材料的方法
CN102260839B (zh) * 2011-07-20 2012-11-14 浙江大学 高致密度纳米晶铜块体材料的制备方法
CN103331449A (zh) * 2013-06-05 2013-10-02 华南理工大学 一种超高塑性双尺度分布的超细晶/微米晶块体铁材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060153728A1 (en) * 2005-01-10 2006-07-13 Schoenung Julie M Synthesis of bulk, fully dense nanostructured metals and metal matrix composites
CN1786229A (zh) * 2005-11-04 2006-06-14 北京工业大学 纳米/微米复合晶粒结构的CoSb3热电材料制备方法
CN101423912B (zh) * 2008-12-03 2010-12-01 华南理工大学 一种纳米晶钨基合金块体材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998035364A1 (fr) * 1997-02-06 1998-08-13 Sumitomo Special Metals Co., Ltd. Procede de fabrication d'un aimant a plaque mince possedant une structure microcristalline
US20030201031A1 (en) * 2002-04-29 2003-10-30 Electron Energy Corporation Method of improving toughness of sintered RE-Fe-B-type, rare earth permanent magnets
CN101323917B (zh) * 2008-06-25 2010-06-02 华南理工大学 一种四场耦合烧结制备纳米晶块体铁基合金材料的方法
CN102260839B (zh) * 2011-07-20 2012-11-14 浙江大学 高致密度纳米晶铜块体材料的制备方法
CN103331449A (zh) * 2013-06-05 2013-10-02 华南理工大学 一种超高塑性双尺度分布的超细晶/微米晶块体铁材料及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114075631A (zh) * 2020-08-11 2022-02-22 上海交通大学 一种具有双尺度晶粒结构的生物钛铋合金植入物制备方法
CN114075631B (zh) * 2020-08-11 2023-02-28 上海交通大学 一种具有双尺度晶粒结构的生物钛铋合金植入物制备方法
CN112723891A (zh) * 2021-01-27 2021-04-30 合肥工业大学 一种镧钙复合六硼化物多晶阴极材料及其制备方法
CN112723891B (zh) * 2021-01-27 2023-07-25 合肥工业大学 一种镧钙复合六硼化物多晶阴极材料及其制备方法
CN115561053A (zh) * 2022-10-12 2023-01-03 中国地质大学(武汉) 块状赤铁矿铁同位素组成标准样品的制备方法
CN115673327A (zh) * 2022-10-18 2023-02-03 北京工业大学 一种高强韧钨合金及其制备方法
CN115673327B (zh) * 2022-10-18 2024-04-30 北京工业大学 一种高强韧钨合金及其制备方法

Also Published As

Publication number Publication date
CN103331449A (zh) 2013-10-02
CN103331449B (zh) 2015-09-02

Similar Documents

Publication Publication Date Title
WO2014194648A1 (zh) 一种超高塑性双尺度分布的超细晶/微米晶块体铁材料及其制备方法
WO2022041693A1 (zh) 一种TiC强化CoCrNi中熵合金复合材料及其制备方法
CN109023013B (zh) 一种耐腐蚀高强度AlCoCrFeNi-Cu高熵合金的制备方法
WO2021114940A1 (zh) 一种原位纳米TiB晶须增强钛基复合材料的制备方法
CN110666175B (zh) 一种镍基高温合金粉末的热等静压成型方法
Sheng et al. Microstructure and mechanical properties of Hf and Ho doped NiAl–Cr (Mo) near eutectic alloy prepared by suction casting
Zhao et al. Thermal shock behavior of W-0.5 wt% Y2O3 alloy prepared via a novel chemical method
CN113652568B (zh) 一种稀土氧化物颗粒增强钨钼固溶合金的制备方法
CN114988917B (zh) 一种纳米复合高硬度陶瓷刀具材料及其制备方法
Bao et al. Optimized strength and conductivity of multi-scale copper alloy/metallic glass composites tuned by a one-step spark plasma sintering (SPS) process
CN110079722A (zh) 一种含B的难熔高熵合金TiZrNbMoTa及其粉末冶金制备方法
CN113652593A (zh) 一种MoxNbTayTiV高熵合金及其制备方法
CN108546863A (zh) 一种多主元高温合金及其制备方法
Wei et al. Introducing equiaxed grains and texture into Ni-Mn-Ga alloys by hot extrusion for superplasticity
Liu et al. Microstructures and interfacial quality of diffusion bonded TC21 titanium alloy joints
CN103459631A (zh) 钼材料
Liang et al. Improvement in compressive creep resistance of Ti-43.5 Al–4Nb–1Mo-0.1 B alloy via micro-alloying with C and Si
CN114226730B (zh) 放电等离子烧结制备多区域析出异构铝合金材料的方法
Yong et al. Hot deformation behavior and related microstructure evolution in Au− Sn eutectic multilayers
CN114990403B (zh) 一种钨钽铌合金材料及其制备方法
KR100875303B1 (ko) 방전플라즈마 소결법을 이용한 강화백금의 제조방법
Li et al. In-situ preparation of high oxygen content titanium via wire arc additive manufacturing with tunable mechanical properties
CN116445763B (zh) 一种室温塑性钛铝铌系合金及其制备方法
CN113737038B (zh) 一种高强韧富Ti纳米颗粒增强CuAl基复合材料及其制备方法与应用
CN117230337B (zh) 一种高性能石墨烯增强铝基复合材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13886458

Country of ref document: EP

Kind code of ref document: A1