WO2014192839A1 - 光半導体封止用硬化性組成物 - Google Patents

光半導体封止用硬化性組成物 Download PDF

Info

Publication number
WO2014192839A1
WO2014192839A1 PCT/JP2014/064201 JP2014064201W WO2014192839A1 WO 2014192839 A1 WO2014192839 A1 WO 2014192839A1 JP 2014064201 W JP2014064201 W JP 2014064201W WO 2014192839 A1 WO2014192839 A1 WO 2014192839A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
compound
curable composition
optical semiconductor
Prior art date
Application number
PCT/JP2014/064201
Other languages
English (en)
French (fr)
Inventor
賢範 丸川
智哉 江川
明弘 芝本
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to JP2015519916A priority Critical patent/JP5926458B2/ja
Priority to US14/894,438 priority patent/US9685597B2/en
Priority to EP14804282.3A priority patent/EP3006481A4/en
Priority to CN201480029261.4A priority patent/CN105246940B/zh
Priority to KR1020157033601A priority patent/KR101763058B1/ko
Publication of WO2014192839A1 publication Critical patent/WO2014192839A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • C08G59/60Amines together with other curing agents with amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/16Cyclic ethers having four or more ring atoms
    • C08G65/18Oxetanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Definitions

  • the present invention relates to a curable composition used for sealing an optical semiconductor element such as an LED element or an organic EL element, a cured product thereof, and an optical semiconductor and an optical semiconductor device using the same.
  • Optical semiconductor elements such as LED elements and organic EL elements are characterized in that light emission with high luminance can be obtained with small electric power, and application development to various uses such as lighting devices and display devices has been attempted.
  • Patent Document 1 discloses a sealing agent for an organic electroluminescence device containing 20 to 80 parts by weight of an epoxy compound having an aliphatic cyclic skeleton and 80 to 20 parts by weight of an epoxy compound having an aromatic ring. Yes. However, there is no description regarding countermeasures against outgas derived from the resin composition.
  • Patent Document 2 (A) an epoxy resin having at least two or more glycidyl groups in one molecule and a molecular weight of 200 to 7000, and (B) having at least one or more glycidyl groups in one molecule.
  • An epoxy resin having a molecular weight of 20000 to 100,000, (C) a latent photoacid catalyst that is activated by energy ray irradiation to generate an acid, and (D) a silane coupling agent containing a glycidyl group in the molecule Comprising 30 to 150 parts by weight of the component (B) with respect to 100 parts by weight of the component (A) and 100 parts by weight of the total of the components (A) and (B).
  • a curable resin composition for sealing an organic EL element containing 0.1 to 10 parts by weight of the component (C) and 0.1 to 10 parts by weight of the component (D) is disclosed.
  • the outgas suppression level is not sufficient.
  • Patent Document 3 discloses a resin composition containing (A) an epoxy compound, (B) a novolac resin, (C) a cationic photopolymerization initiator, and (D) a filler as an adhesive for an element package such as an organic EL. It is disclosed. However, there is no description about measures against outgas.
  • Patent Document 4 discloses that a compound (A) having two or more reactive functional groups (a) in one molecule, one reactive functional group (b) in one molecule, and a molecular weight of 50 ⁇
  • a low moisture-permeable resin composition for electronic devices requiring low moisture permeability comprising a compound (B) of 1000 and a polymerization initiator (C) is disclosed.
  • a compound (B) of 1000 and a polymerization initiator (C) is disclosed.
  • the curability of the resin composition and measures against outgas.
  • the curable resin of Patent Document 5 contains an epoxy resin having an oxirane ring at the terminal, and an aliphatic cyclic epoxy resin and / or a compound having an octacene ring, a large amount of outgas is generated. Moreover, since the epoxy resin composition of patent document 4 and patent document 6 has a biphenyl structure, outgas, such as acrolein, is generated with a catalyst.
  • conductive fine particles are used for connecting fine electrodes in optical semiconductor elements such as LED elements and organic EL elements.
  • conductive fine particles as disclosed in Patent Document 5, conductive fine particles obtained by coating a metal on the surface of resin fine particles are known.
  • the conductive fine particles described above have a problem that the cost of raw materials is high because many metal materials are used because the surface of resin fine particles is coated with metal. Moreover, since it is necessary to manufacture by special methods, such as an electroplating method and an alternate adsorption method, it was necessary to use a special apparatus or to pass through many processes, and also had the problem that manufacturing cost was high.
  • the metal-coated resin particles are colored because the entire surface is coated with metal, and in addition, in order to impart conductivity to the cured resin, it is necessary to bring the conductive fine particles into contact with each other in the cured resin. Because there is, mix in large quantities. For this reason, it has been difficult to obtain a cured product having both transparency and conductivity at low cost.
  • An object of the present invention is to contribute to stabilizing the performance and extending the life of an optical semiconductor element and an optical semiconductor device by suppressing the intrusion or generation of moisture and gas that deteriorate the optical semiconductor element, and is highly transparent.
  • An object of the present invention is to provide a curable composition for encapsulating an optical semiconductor element having good properties and excellent productivity, and a cured product thereof.
  • the objective of this invention provides the curable composition for optical semiconductor element sealing which is excellent in electroconductivity (especially electroconductivity to thickness direction), and its hardened
  • Another object of the present invention is to provide an optical semiconductor and an optical semiconductor device that have stable performance and a long lifetime.
  • the present inventors have found that a cured product of a curable composition for optical semiconductors containing a curable compound having a specific functional group and a curing catalyst deteriorates an optical semiconductor element.
  • the present inventors have found that the invasion or generation of excessive moisture and gas is suppressed.
  • a curable composition for sealing an optical semiconductor comprising the following components (A), (B), and (C).
  • Component (A) Compound component having one or more functional groups selected from the group consisting of epoxy group, oxetanyl group, vinyl ether group and (meth) acryloyl group
  • B) alicyclic epoxy compound component
  • C) aromatic ring Curing catalyst component (D) which has an cation component and an anion component whose central element is boron or phosphorus and generates an acid by light or heat: a particulate material and a fibrous material covering the particulate material
  • the component (A) has an aromatic ring, and two or more selected from the group consisting of an epoxy group, an oxetanyl group, a vinyl ether group, and a (meth) acryloyl group
  • the component (A) has an aromatic ring, has a molecular weight of 100 to 1,000, and one function selected from the group consisting of an epoxy group, an oxetanyl group, a vinyl ether group, and a (meth) acryloyl group.
  • the component (A) is a compound having one or more functional groups selected from the group consisting of an epoxy group, an oxetanyl group, a vinyl ether group, and a (meth) acryloyl group, and having an aromatic ring.
  • X represents a single bond or a linking group
  • the content of component (B) is 30 to 95% by weight relative to the total amount of curable composition (100% by weight), and the content of component (C) is the total amount of curable composition ( The curable composition for sealing an optical semiconductor according to any one of the above [1] to [10], which is 0.01 to 8% by weight relative to 100% by weight).
  • the curable composition of the present invention Since the curable composition of the present invention has the above-described configuration, it becomes possible to suppress the intrusion or generation of moisture or gas that deteriorates the optical semiconductor element, and stabilizes the performance of the optical semiconductor element or the optical semiconductor device. Can be achieved. Moreover, the curable composition for optical semiconductor element sealing which has high transparency and outstanding productivity and its hardened
  • the organic EL device of the present invention sealed with the curable composition or the sealing sheet or film made of the curable composition is excellent in light extraction efficiency (that is, excellent in light emission efficiency), excellent. Have high brightness.
  • conductive fiber-coated particles when conductive fiber-coated particles are used, it is possible to obtain a curable composition for sealing an optical semiconductor element that is excellent in conductivity (particularly, conductivity in the thickness direction) and a cured product thereof.
  • the conductive fiber-coated particles of the present invention particularly, the conductive fiber-coated particles having flexibility, when the curable composition containing the particles is formed into a shape having fine irregularities, the conductive fiber-coated particles have the irregular structure. Therefore, it is possible to prevent the occurrence of a portion having poor conductivity and to obtain a cured product having excellent conductive performance.
  • FIG. 2 is an example of a scanning electron microscope image (SEM image) of the conductive fiber-coated particles (conductive fiber-coated particles of the present invention) obtained in Production Example 1.
  • SEM image scanning electron microscope image
  • the curable composition for optical semiconductor sealing of this invention is characterized by including the following component (A), (B), and (C).
  • the curable composition for optical semiconductor sealing of this invention is characterized by including the following component (A), (B), (C) and (D).
  • Component (A) may be a compound having one or more functional groups selected from the group consisting of epoxy groups, oxetanyl groups, vinyl ether groups, and (meth) acryloyl groups (excluding compounds corresponding to component (B)).
  • Component (A) is a compound having one or more functional groups selected from the group consisting of epoxy groups, oxetanyl groups, vinyl ether groups, and (meth) acryloyl groups, and having an aromatic ring.
  • the curable compound of the present invention is a compound that is cured by light or heat, and is not particularly limited as long as it includes the component (A) and the component (B). In the range which does not impair the effect of this application, curable compounds other than the said component (A) and component (B) can also be included.
  • the component (A) is not particularly limited as long as it is a compound having one or more functional groups selected from the group consisting of an epoxy group, an oxetane group, a vinyl ether group, and a (meth) acryloyl group.
  • the number of functional groups that the compound of component (A) has is not particularly limited, but as described in WO2012 / 020688 (Patent Document 4), generally from an epoxy group, an oxetanyl group, a vinyl ether group, and a (meth) acryloyl group. It is preferable to use a compound having two or more functional groups selected from the group consisting of the following groups (hereinafter sometimes referred to as “compound (A1)”).
  • the molecular weight is 100 to 1000, and one functional group selected from the group consisting of epoxy groups, oxetanyl groups, vinyl ether groups, and (meth) acryloyl groups is included. It is more preferable to blend a compound (hereinafter sometimes referred to as “compound (A2)”) together with the compound (A1).
  • compound (A2) a compound that is more preferable to blend a compound (hereinafter sometimes referred to as “compound (A2)”) together with the compound (A1).
  • Component (A) is not particularly limited, but preferably has a cyclic skeleton such as an alicyclic cyclic skeleton or an aromatic cyclic skeleton. Each cyclic skeleton may be the same or different. When one molecule of component (A) has two or more cyclic skeletons, the plurality of cyclic skeletons may be the same or different.
  • cyclic skeleton examples include monocyclic or condensed polycyclic aromatic rings such as a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, and fluorene ring; cyclopentane ring, cyclohexane ring, decahydronaphthalene ring, norbornane Examples thereof include monocyclic or polycyclic aliphatic rings such as a ring and an adamantane ring.
  • the number of polycyclic cyclic skeletons in which n rings are condensed is n.
  • the number of cyclic skeletons in one molecule of component (A) is, for example, 1 to 30, preferably 1 to 10, more preferably 1 to 6, and further preferably 1 to 5.
  • the content of the compound (A) is based on the total amount (100% by weight) of the curable compound of the present invention from the viewpoint of low moisture permeability, high gas barrier property, applicability of the curable composition, hardness of the cured product, and the like. 5 to 80% by weight is preferable, 10 to 70% by weight is more preferable, and 20 to 60% by weight is further preferable. In particular, from the viewpoint of outgas suppression, it is preferably 10 to 70% by weight, more preferably 20 to 60% by weight.
  • the compound (A1) has two or more functional groups selected from the group consisting of an epoxy group, an oxetanyl group, a vinyl ether group (above, cationic polymerizable functional group), and a (meth) acryloyl group (radical polymerizable functional group).
  • the functional group is preferably an epoxy group (particularly preferably a glycidyl group).
  • the number of functional groups in one molecule of the compound (A1) is, for example, 2 to 30, preferably 2 to 10, more preferably 2 to 6, and further preferably 2 to 3.
  • the plurality of functional groups may be the same or different.
  • the molecular weight of the compound (A1) is not particularly limited, but is preferably 100 to 10,000, more preferably 150 to 5,000, and still more preferably 200 to 1,000.
  • a compound (A1) can be used individually by 1 type or in combination of 2 or more types.
  • Examples of the compound (A1) include a compound (A1-1) having two or more cationically polymerizable functional groups and an aromatic ring in one molecule; two or more radically polymerizable functional groups in one molecule. And a compound (A1-2) having an aromatic ring.
  • Examples of the compound (A1-1) having two or more cationically polymerizable functional groups and an aromatic ring in one molecule include biphenol diglycidyl ether, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, and bisphenol.
  • Compounds having a benzene ring and two epoxy groups such as S diglycidyl ether and tetramethylbiphenol diglycidyl ether; naphthalenediol diglycidyl ether, bisphenol fluorenediglycidyl ether, biscresol fluorenediglycidyl ether, bisphenoxyethanol fluorenediglycidyl ether, etc.
  • a compound having a condensed ring and two epoxy groups a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, a biphenyl skeleton-containing novolat A compound having a benzene ring and / or a condensed ring and two or more epoxy groups, such as polyphenylglycidyl ethers having a repeating unit such as an epoxy resin and a novolak epoxy resin containing a naphthalene skeleton; bisphenol F bis (3-ethyl) Compounds having an aromatic ring and two oxetanyl groups such as oxetane-3-ylmethyl) ether; biphenol divinyl ether, bisphenol A divinyl ether, bisphenol F divinyl ether, bisphenol F bis (2-vinyloxyethyl) ether, bisphenol S di Compounds having a benzene ring and two vinyl ether groups, such as vinyl ether and tetramethylbiphenol
  • Examples of the C 1-9 alkyl substituent in the C 1-9 alkyl substituent include methyl, ethyl, propyl, and t-butyl groups.
  • Examples of the halogen in the halide include F, Cl, Br and the like.
  • biphenol di (meth) acrylate bisphenol A di (meth) acrylate, bisphenol F di (meta) ) Acrylate, bisphenol S di (meth) acrylate, tetramethylbiphenol di (meth) acrylate and other benzene rings and two (meth) acryloyl group compounds
  • naphthalenediol di (meth) acrylate, biphenol full orange (meth) acrylate , Biscresol full orange (meth) acrylate, bisphenoxyethanol full orange (meth) acrylate, and other condensed rings and two (meth) acryloyl groups and halides thereof, or C 1-9 alkyl substituents thereof Etc.
  • Examples of the C 1-9 alkyl substituent in the C 1-9 alkyl substituent include methyl, ethyl, propyl, and t-butyl groups.
  • Examples of the halogen in the halide include F, Cl, Br and the like.
  • Z 1 represents a group obtained by removing m OH groups from an m-valent polyvalent hydroxy compound (Z 1 (OH) m), and R 1 has a glycidyl group and a substituent. Or a good oxetanyl group, vinyl group, or (meth) acryloyl group.
  • m is an integer of 2 or more.
  • Z 1 is preferably a group having a cyclic skeleton. Examples of the cyclic skeleton include those exemplified above.
  • m-valent polyvalent hydroxy compound Z 1 (OH) m compounds having two benzene rings such as biphenol, bisphenol A, bisphenol F, bisphenol S and the like, halides thereof, or C 1-9 alkyls thereof
  • Substituted compounds compounds having a condensed ring such as naphthalenediol, bisphenol fluorene, biscresol fluorene, bisphenoxyethanol fluorene, and halides thereof, or C 1-9 alkyl substituents thereof; hydrogenated bisphenol A, hydrogenated bisphenol F , Compounds having three or more aromatic rings such as benzene rings such as hydrogenated bisphenol S and dicyclohexyl, and halides thereof, or C 1-9 alkyl substituted products thereof.
  • Examples of the C 1-9 alkyl substituent in the C 1-9 alkyl substituent include methyl, ethyl, propyl, and t-butyl groups.
  • Examples of the halogen in the halide include F, Cl, Br and the like.
  • Compound (A1) is preferably a compound having two each of an epoxy group, an oxetane group, a vinyl ether group and a (meth) acryloyl group, and a benzene ring or a cyclohexane ring.
  • the compound (A1) include diglycidyl ether having 2 to 4 benzene rings such as bisphenol F diglycidyl ether, tetramethylbiphenol diglycidyl ether, or bisphenoxyethanol fluorenediglycidyl ether; bisphenol F bis ( Dioxetanyl ether having 2 to 4 benzene rings such as 3-ethyloxetane-3-ylmethyl) ether; divinyl ether having 2 to 4 benzene rings such as bisphenol F divinyl ether; or bisphenol F di (meth) acrylate (Meth) acrylate having 2 to 4 benzene rings can be preferably used.
  • the compound (A1) a compound having two glycidyl groups and two benzene rings is particularly preferable.
  • the compound (A1) is a compound (A1 ′) having an aromatic ring and having two or more functional groups selected from the group consisting of an epoxy group, an oxetanyl group, a vinyl ether group, and a (meth) acryloyl group. Preferably there is.
  • the molecular weight of the compound (A1) (including the compound (A1 ′)) is preferably from 100 to 10,000, more preferably from 200 to 1,000, from the viewpoints of low humidity, high gas barrier properties, and applicability of the curable composition. 300 to 500 are more preferable.
  • the content of the compound (A1) is the total amount (100% by weight) of the curable compound of the present invention from the viewpoint of low moisture permeability, high gas barrier property, applicability of the curable composition, hardness of the cured product, and the like.
  • it is preferably 5 to 80% by weight, more preferably 7 to 60% by weight, and further preferably 10 to 50% by weight.
  • 5 to 60% by weight is preferable, 7 to 50% by weight is more preferable, and 10 to 45% by weight is further preferable.
  • Compound (A2) is a compound having one functional group selected from the group consisting of one epoxy group, oxetane group, vinyl ether group and (meth) acryloyl group in one molecule, and a molecular weight of 100 to 1,000. is there.
  • the molecular weight of the compound (A2) is 100 to 1000
  • the curable composition is cured, the free volume in the cured product is packed as a side chain of the polymer to be produced, thereby reducing the moisture permeability and the high gas barrier. The effect which contributes to property is acquired.
  • Examples of the cyclic skeleton in compound (A2) include those exemplified above for compound (A1). Among these, a benzene ring and a cyclohexane ring are preferable.
  • a compound (A2) can be used individually by 1 type or in combination of 2 or more types.
  • both the compound (A1) and the compound (A2) are used as the component (A), when the compound (A1) has a cationic polymerizable functional group, the compound (A2) also has a cationic polymerizable functional group, When the compound (A1) has a radical polymerizable functional group, the compound (A2) also preferably has a radical polymerizable functional group.
  • both the compound (A1) and the compound (A2) are preferably epoxy groups (particularly preferably a glycidyl group).
  • Examples of the compound (A2) include a compound (A2-1) having an aromatic ring and a cationic polymerizable functional group; a compound (A2-2) having an aromatic ring and a radical polymerizable functional group; an aliphatic ring. And a compound having a cation polymerizable functional group (A2-3); a compound having an aliphatic ring and a radical polymerizable functional group (A2-4); a compound having an alkyl group and a cation polymerizable functional group (A2- 5); a compound (A2-6) having an alkyl group and a radical polymerizable functional group.
  • Examples of the compound (A2-1) having an aromatic ring and a cationic polymerizable functional group include glycidyl phenyl ether, o-, m-, or p-phenylphenol glycidyl ether, 2,3-, 2,4- 2,5-, 2,6-, 3,4-, or 3,5-diphenylphenol glycidyl ether, 2-phenyl-4-benzylphenylphenol glycidyl ether, 2-phenyl-5-benzylphenylphenol glycidyl ether, 2-phenyl-6-benzylphenylphenol glycidyl ether, 3-phenyl-5-benzylphenylphenol glycidyl ether, 3-phenyl-6-benzylphenylphenol glycidyl ether, 4-phenyl-2-benzylphenylphenol glycidyl ether, triphenyl Feno Compounds having a phenol skeleton and an epoxy group
  • Examples of the compound (A2-2) having an aromatic ring and a radical polymerizable functional group include phenyl (meth) acrylate, phenylphenol (meth) acrylate, phenoxymethyl (meth) acrylate, (phenylphenoxy) methyl (meta ) Acrylate, (2-phenoxy) ethyl (meth) acrylate, (2-phenylphenoxy) ethyl (meth) acrylate and other compounds having one or two benzene rings and a (meth) acryloyl group; and halides thereof; Or these C1-9 alkyl substitution products etc. are mentioned.
  • Examples of the C 1-9 alkyl substituent in the C 1-9 alkyl substituent include methyl, ethyl, propyl, and t-butyl groups.
  • Examples of the halogen in the halide include F, Cl, Br and the like.
  • Examples of the compound (A2-3) having an aliphatic ring and a cationically polymerizable functional group include C 5-20 cycloalkyl glycidyl ether compounds such as cyclohexyl glycidyl ether, dicyclohexyl glycidyl ether, tricyclohexyl glycidyl ether, and the like; C 5-20 cycloalkyl octenyl ether compounds such as ruether, dicyclohexyl octacenyl ether and tricyclohexyl octacenyl ether; C 5-20 cycloalkyl vinyl ether compounds such as cyclohexyl vinyl ether, dicyclohexyl vinyl ether and tricyclohexyl vinyl ether.
  • the compound (A2-4) having an aliphatic ring and a radical polymerizable functional group for example, C 5-20 cycloalkyl (such as cyclohexyl (meth) acrylate, dicyclohexyl (meth) acrylate, tricyclohexyl (meth) acrylate) ( And a (meth) acrylate compound.
  • C 5-20 cycloalkyl such as cyclohexyl (meth) acrylate, dicyclohexyl (meth) acrylate, tricyclohexyl (meth) acrylate
  • a (meth) acrylate compound for example, C 5-20 cycloalkyl (such as cyclohexyl (meth) acrylate, dicyclohexyl (meth) acrylate, tricyclohexyl (meth) acrylate) ( And a (meth) acrylate compound.
  • Examples of the compound (A2-5) having an alkyl group and a cationically polymerizable functional group include C 1-9 alkyl such as glycidyl methyl ether, glycidyl ethyl ether, propyl glycidyl ether, butyl glycidyl ether, and 2-ethylhexyl glycidyl ether.
  • glycidyl ether compounds methyloxetane Se Tani ether, ethyl Oki Se Tani ether, propyl Oki Se Tani ether, C 1-9 alkyl Oki Se Tani ether compounds such as butyl Oki Se Tani ether; methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, C 1-9 alkyl vinyl ether compounds such as butyl vinyl ether Etc.
  • the compound having an alkyl group and a radical polymerizable functional group (A2-6), for example, such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate C 1- 9 alkyl (meth) acrylate compounds and the like.
  • Z 2 represents a group obtained by removing an OH group from a monovalent hydroxy compound (Z 2 OH), and R 2 is the same as R 1 described above.
  • the compound represented by these is mentioned.
  • Z 2 is preferably a group having a cyclic skeleton. Examples of the cyclic skeleton include those exemplified above.
  • Examples of the hydroxy compound Z 2 OH include phenols having 1 to 3 benzene rings such as phenol, phenylphenol, diphenylphenol, and triphenylphenol; methylphenol, ethylphenol, propylphenol, n-butylphenol, and t-butylphenol.
  • alkyl-substituted phenols and the like for example, C 1-9 alkyl-substituted phenols
  • methylphenyl phenol, ethyl phenyl phenol, propyl phenylphenol, n- butyl phenylphenol, t- butyl phenyl phenol and the like alkyl-substituted phenyl phenols for example, C 1-9 alkyl-substituted phenyl phenol
  • Compound (A2) is preferably a compound having an epoxy group, an oxetane group, a vinyl ether group, or a (meth) acryloyl group, and a benzene ring or a cyclohexane ring.
  • glycidyl ether having 1 to 2 benzene rings such as glycidyl phenyl ether or o-phenylphenol glycidyl ether; benzene such as 2- (phenylphenoxy) ethyl (meth) acrylate (Meth) acrylate having 1 to 2 rings is preferred.
  • the compound (A2) one functional group selected from the group consisting of an epoxy group, an oxetanyl group, a vinyl ether group and a (meth) acryloyl group having an aromatic ring and a molecular weight of 100 to 1000 is used. It is preferable that it is a compound (A2 ') which has.
  • the molecular weight of the compound (A2) is preferably from 100 to 1,000, more preferably from 150 to 800, still more preferably from 170 to 600, from the viewpoints of low moisture permeability, high gas barrier properties, and applicability of the curable composition. 200 to 400 is particularly preferable.
  • the content of the compound (A2) is 0 to 1400 weights with respect to the total amount (100 parts by weight) of the compound (A1) from the viewpoints of low moisture permeability, high gas barrier properties, and applicability of the curable composition.
  • Parts preferably 70 to 850 parts by weight, more preferably 100 to 500 parts by weight.
  • the content of the compound (A2) is preferably 0 to 70% by weight, more preferably 5 to 60% by weight, more preferably 10 to 50% by weight based on the total amount (100% by weight) of the curable compound of the present invention. More preferred is weight percent.
  • the compound (A1) has two cyclic skeletons, and the compound (A2) has a cyclic skeleton.
  • the compound (A1) has 2 cyclic skeletons
  • compound (A2) has 2 cyclic skeletons
  • compound (A1) has 5 cyclic skeletons
  • a combination in which the compound (A2) has one cyclic skeleton can be given.
  • Preferable combinations of the compound (A1) and the compound (A2) are specifically combinations of bisphenol F diglycidyl ether and glycidyl phenyl ether, bisphenol F diglycidyl ether and o-, m-, or p-phenylphenol.
  • a combination with glycidyl ether and the like can be mentioned.
  • the content of glycidyl phenyl ether as compound (A2) is 1 to 100 with respect to 100 parts by weight of bisphenol F diglycidyl ether as compound (A1). Part by weight is particularly preferred.
  • the content of o-, m-, or p-phenylphenol glycidyl ether as compound (A2) is The amount is preferably 1 to 1000 parts by weight based on 100 parts by weight of bisphenol F diglycidyl ether as the compound (A1).
  • the total content of the compound (A1) and the compound (A2) is preferably 5 to 80% by weight with respect to the total amount (100% by weight) of the curable compound of the present invention. % Is more preferable, and 20 to 60% by weight is more preferable.
  • Component (B) is an alicyclic epoxy compound, that is, a compound having at least an alicyclic (aliphatic hydrocarbon ring) structure and an epoxy group in the molecule (in one molecule).
  • a component (B) can be used individually by 1 type or in combination of 2 or more types.
  • component (B) for example, a compound (B-1) having two or more cationically polymerizable functional groups and an aliphatic ring in one molecule; two or more radically polymerizable functional groups in one molecule; And a compound (B-2) having an aliphatic ring.
  • Examples of the compound (B-1) include hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, dicyclohexyl diglycidyl ether, and bis (3,4-epoxycyclohexyl) methyl.
  • Examples of the compound (B-2) include cyclohexane such as hydrogenated bisphenol A di (meth) acrylate, hydrogenated bisphenol F di (meth) acrylate, hydrogenated bisphenol S di (meth) acrylate, and dicyclohexyl di (meth) acrylate. And compounds having a ring and two (meth) acryloyl groups.
  • the compound (B-1) (i) a compound having an epoxy group (alicyclic epoxy group) composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring, (ii) ) A compound in which an epoxy group is directly bonded to the alicyclic ring by a single bond, and (iii) a compound having an alicyclic ring and a glycidyl group.
  • the compound having an epoxy group (alicyclic epoxy group) composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring (i) is arbitrarily selected from known or commonly used compounds. can do.
  • alicyclic epoxy group a cyclohexene oxide group is preferable.
  • a compound having a cyclohexene oxide group is preferable from the viewpoint of transparency and heat resistance.
  • a compound represented by the following formula (3) (an alicyclic epoxy compound) is preferable.
  • X represents a single bond or a linking group (a divalent group having one or more atoms).
  • the linking group include a divalent hydrocarbon group, a carbonyl group, an ether bond, an ester bond, a carbonate group, an amide group, and a group in which a plurality of these are linked.
  • Examples of the compound in which X in the formula (3) is a single bond include (2,3,2 ′, 3′-diepoxy) bicyclohexyl, (2,3,3 ′, 4′-diepoxy) bicyclohexyl, (3 , 4,3 ′, 4′-diepoxy) bicyclohexyl and the like, among which (3,4,3 ′, 4′-diepoxy) bicyclohexyl is preferred.
  • Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms and a divalent alicyclic hydrocarbon group.
  • Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group.
  • divalent alicyclic hydrocarbon group examples include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group, 1,3-cyclopentylene group, And divalent cycloalkylene groups (including cycloalkylene groups) such as cyclohexylene group, 1,4-cyclohexylene group and cyclohexylene group.
  • linking group X examples include a linking group containing an oxygen atom, specifically, —CO—, —O—CO—O—, —COO—, —O—, —CONH—; A group in which one or more of these groups are linked to one or more of divalent hydrocarbon groups, and the like.
  • divalent hydrocarbon group examples include those exemplified above.
  • Representative examples of the alicyclic epoxy compound represented by the formula (3) include compounds represented by the following formulas (3-1) to (3-10).
  • the compound represented by the formula (3-1) [3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate] (for example, trade name “Celoxide 2021P” manufactured by Daicel Corporation) is particularly preferable. preferable.
  • p and q each represents an integer of 1 to 30.
  • R 3 in the following formula (3-5) is an alkylene group having 1 to 8 carbon atoms, and includes a methylene group, an ethylene group, a propylene group, an isopropylene group, a butylene group, an isobutylene group, an s-butylene group, a pentylene group, Examples thereof include linear or branched alkylene groups such as a hexylene group, a heptylene group, and an octylene group. Among these, linear or branched alkylene groups having 1 to 3 carbon atoms such as a methylene group, an ethylene group, a propylene group, and an isopropylene group are preferable.
  • N1 to n6 in the following formulas (3-9) and (3-10) each represents an integer of 1 to 30.
  • examples of the alicyclic epoxy compound represented by the formula (3) include bis (3,4-epoxycyclohexylmethyl) ether. 2,2-bis (3,4-epoxycyclohexyl) propane, 1,2-bis (3,4-epoxycyclohexyl) ethane and the like.
  • Examples of the compound (ii) in which an epoxy group is directly bonded to the alicyclic ring with a single bond include compounds represented by the following formula (4).
  • R 4 is a group obtained by dividing s -OH from an s-valent alcohol, and s and r each represent a natural number.
  • s-valent alcohol -
  • the [R 4 (OH) s] 2,2- bis (hydroxymethyl) -1-polyhydric alcohols such as butanol (such as an alcohol of 1 to 15 carbon atoms).
  • s is preferably 1 to 6, and r is preferably 1 to 30.
  • each r in the group in () (in parentheses) may be the same or different.
  • 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol for example, , Manufactured by Daicel Corporation, trade name “EHPE3150”, etc.
  • Examples of the compound (iii) having an alicyclic ring and a glycidyl group include 2,2-bis [4- (2,3-epoxypropoxy) cyclohexyl] propane, 2,2-bis [3,5-dimethyl- Compound obtained by hydrogenating bisphenol A type epoxy compound such as 4- (2,3-epoxypropoxy) cyclohexyl] propane (hydrogenated bisphenol A type epoxy compound); bis [o, o- (2,3-epoxypropoxy) cyclohexyl ] Methane, bis [o, p- (2,3-epoxypropoxy) cyclohexyl] methane, bis [p, p- (2,3-epoxypropoxy) cyclohexyl] methane, bis [3,5-dimethyl-4- ( 2,3-epoxypropoxy) cyclohexyl] compounds obtained by hydrogenating bisphenol F-type epoxy compounds such as methane (Hydrogenated bisphenol F type
  • the molecular weight is preferably 100 to 500, more preferably 150 to 400, from the viewpoint of the curing rate of the curable composition, the applicability of the curable composition, the outgas suppression, and the like. 180 to 300 are more preferable.
  • the component (B) is most preferably a compound having two or more alicyclic epoxy groups in one molecule and having a molecular weight of 100 to 500.
  • the component (B) is a compound having an ester group and / or a carbonate group, and the total amount of the curable compound (100 % By weight) is preferably 30% by weight or less, more preferably a compound having no ester group and / or carbonate group.
  • the content of the component (B) is based on the total amount (100% by weight) of the curable compound of the present invention. 20 to 95% by weight is preferable, 30 to 90% by weight is more preferable, and 40 to 80% by weight is further preferable. Moreover, content of a component (B) is the whole quantity (100 weight%) of the curable composition of this invention from viewpoints of the cure rate of a curable composition, the applicability
  • the component (C) in the present invention may be a curing catalyst that has a cation component having an aromatic ring and has an anion component whose central element is boron or phosphorus and generates an acid by light or heat.
  • a curing catalyst that has a cationic component having the above aromatic ring and has an anionic component in which the central element is boron or phosphorus and generates an acid by light or heat may be used.
  • aromatic ring examples include a monovalent or divalent phenyl group, naphthyl group, anthracenyl group, and the like.
  • the aromatic ring includes a linear or branched C 1-12 alkyl group, linear or You may have substituents, such as a branched C1-12 alkoxyl group, a halogen atom, -OH group, -COOH group, or a linear or branched C1-12 alkylester group.
  • the cation component examples include aromatic diazonium salts, aromatic iodonium salts, aromatic sulfonium salts, aromatic phosphonium salts, aromatic selenium salts, aromatic oxonium salts, aromatic ammonium salts, and the like.
  • aromatic diazonium salts aromatic iodonium salts
  • aromatic sulfonium salts aromatic phosphonium salts
  • aromatic selenium salts aromatic oxonium salts
  • aromatic ammonium salts and the like.
  • an aromatic sulfonium salt is preferable because a cured product having excellent curability can be formed.
  • the anion component is not particularly limited, but from the viewpoint of the catalytic activity of the curing catalyst, it preferably has 3 or more aromatics, more preferably 4 or more aromatics, and 5 or more aromatics. More preferably, it has.
  • the aromatic ring include an aromatic group having 6 to 30 carbon atoms and having a halogen substituent.
  • the aromatic ring include a phenyl group, a naphthyl group, and an anthracenyl group.
  • the halogen substituent include chlorine and fluorine.
  • aromatic ring examples include a pentafluorophenyl group, a 2- (trifluoromethyl) phenyl group, a 3- (trifluoromethyl) phenyl group, a 4- (trifluoromethyl) phenyl group, and 2,3-di ( Trifluoromethyl) phenyl group, 2,4-di (trifluoromethyl) phenyl group, 2,5-di (trifluoromethyl) phenyl group, 2,6-di (trifluoromethyl) phenyl group, 3,4- A di (trifluoromethyl) phenyl group, a 3,5-di (trifluoromethyl) phenyl group and the like can be mentioned.
  • the anion component is not particularly limited, but from the viewpoint of the catalytic activity of the curing catalyst, the central element is preferably boron or phosphorus.
  • the central element is preferably boron or phosphorus.
  • the component (C) preferably has a cation component having three or more aromatic rings and an anion component whose central element is boron or phosphorus.
  • the component (C) contained in the curable composition of the present invention is not particularly limited, but a photocationic polymerization initiator or a thermal cationic polymerization initiator is preferable.
  • a component (C) can be used individually by 1 type or in combination of 2 or more types.
  • the cationic photopolymerization initiator is a cationic photopolymerization initiator that generates a cationic species by light irradiation and initiates a curing reaction of the cationically curable compound.
  • the cationic photopolymerization initiator is composed of a cation moiety that absorbs light and an anion moiety that is a source of acid generation.
  • a photocationic polymerization initiator can be used individually by 1 type or in combination of 2 or more types.
  • photocationic polymerization initiator of the present invention examples include diazonium salt compounds, iodonium salt compounds, sulfonium salt compounds, phosphonium salt compounds, selenium salt compounds, oxonium salt compounds, ammonium salt compounds, bromine salts. System compounds and the like.
  • a sulfonium salt compound is preferable in that a cured product having excellent curability can be formed.
  • the cation moiety of the sulfonium salt compound include arylsulfonium ions (particularly, triarylsulfonium ions) such as triphenylsulfonium ions, diphenyl [4- (phenylthio) phenyl] sulfonium ions, and tri-p-trisulfonium ions. Is mentioned.
  • a photocationic polymerization initiator for example, BF 4 ⁇ , B (C 6 F 5 ) 4 ⁇ , PF 6 ⁇ , [(Rf) n PF 6-n ] ⁇ (Rf: 80% of hydrogen atoms)
  • n an integer of 1 to 5
  • AsF 6 ⁇ , SbF 6 ⁇ pentafluorohydroxyantimonate and the like.
  • Examples of the cationic photopolymerization initiator include diphenyl [4- (phenylthio) phenyl] sulfonium tetrakis (pentafluorophenyl) borate, diphenyl [4- (phenylthio) phenyl] sulfonium hexafluorophosphate, and diphenyl [4- (phenylthio) phenyl.
  • thermal cationic polymerization initiator examples include diazonium salt compounds, iodonium salt compounds, sulfonium salt compounds, phosphonium salt compounds, selenium salt compounds, oxonium salt compounds, ammonium salt compounds, bromine salt compounds, and the like. Is mentioned.
  • a thermal cationic polymerization initiator can be used individually by 1 type or in combination of 2 or more types.
  • thermal cationic polymerization initiator examples include a compound of a metal such as aluminum or titanium and a silanol such as triphenylsilanol of acetoacetic acid or diketones and a chelate compound, or a metal such as aluminum or titanium and acetoacetic acid or diketone.
  • a compound of a chelate compound with a phenol and a phenol such as bisphenol S may be used.
  • commercially available products include “Sun Aid SI-45”, “Sun Aid SI-47”, “Sun Aid SI-60”, “Sun Aid SI-60L”, “Sun Aid SI-80”, and “Sun Aid SI-80L”.
  • the content of the component (C) is not particularly limited, but is preferably 0.01 to 8 parts by weight, preferably 0.1 to 5 parts by weight with respect to the total amount (100 parts by weight) of the curable compound of the present invention. Part is more preferable, 0.2 to 4 parts by weight is further preferable, and 0.5 to 3 parts by weight is particularly preferable.
  • it is 0.01 part by weight or more, the curing rate of the curable composition can be increased, curing failure can be prevented, and low permeability, high gas barrier property, heat resistance, etc. can be contributed. Further, if it is 8% by weight or less, it is advantageous in terms of cost and can contribute to suppression of non-uniformity of reaction and suppression of outgas.
  • the content of the component (B) is 30 to 95% by weight relative to the total amount (100% by weight) of the curable composition, and the content of the component (C) is the total amount (100% of the curable composition).
  • % By weight) is preferably 0.01 to 8% by weight.
  • the curable composition By selecting from the above range for the type and content of the component (C), an effect of increasing the curing rate of the curable composition can be obtained. On the other hand, for outgas, an effect of promoting the generation thereof is obtained. is there. On the other hand, by selecting the type, molecular weight, content, and the like of the component (B) from the above range, the curable composition is suppressed while outgassing is reduced by reducing the content of the component (C). Therefore, an excellent cured product having low moisture permeability, high gas barrier properties, heat resistance, curability, cost, and outgas suppression can be obtained.
  • the curable composition of the present invention may contain a curing accelerator that accelerates the curing rate.
  • a curing accelerator that accelerates the curing rate.
  • the curing accelerator well-known and commonly used curing accelerators can be used.
  • DBU 1,8-diazabicyclo [5.4.0] undecene-7
  • salts thereof for example, phenol salts, octyls) Acid salt, p-toluenesulfonate, tetraphenylborate salt
  • tertiary amine such as benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, N, N-dimethylcyclohexylamine; 2-ethyl-4-methylimidazole,
  • U-CAT SA 506, U-CAT SA 102, U-CAT 5003, U-CAT 18X (above, manufactured by San Apro Co., Ltd.), TPP-K, TPP-MK (above, Hokuko Chemical) are used as curing accelerators.
  • Commercial products such as Kogyo Co., Ltd.) PX-4ET (Nihon Kagaku Kogyo Co., Ltd.) can also be used.
  • the content of the curing accelerator is from 0.05 to the total amount (100% by weight) of the curable composition of the present invention from the viewpoints of the curing acceleration effect of the curable composition, prevention of coloring of the cured product, and the like. 5 wt% is preferable, 0.1 to 3 wt% is more preferable, 0.2 to 3 wt% is further preferable, and 0.25 to 2.5 wt% is particularly preferable.
  • the curable composition of the present invention may contain a radical photopolymerization initiator.
  • the photo radical polymerization initiator include benzophenone, acetophenone benzyl, dibenzyl methyl ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, dimethoxyacetophenone, dimethoxyphenylacetophenone, diethoxyacetophenone, diphenylyl disulfate.
  • radical photopolymerization initiators can be used alone or in combination of two or more. Moreover, a photosensitizer can be added as needed.
  • radical photopolymerization initiators from the viewpoint of sensitivity and chemical resistance, a combination of an imidazole compound and an aminobenzene derivative, 2-amino-2-benzoyl-1-phenylalkane compound, halomethylated triazine compound, halomethyloxadi An azole compound or the like is preferable.
  • the curable composition of the present invention may contain a thermal radical polymerization initiator.
  • the thermal radical polymerization initiator include organic peroxides.
  • organic peroxides dialkyl peroxides, acyl peroxides, hydroperoxides, ketone peroxides, peroxy esters and the like can be used.
  • organic peroxides include benzoyl peroxide, t-butylperoxy-2-ethylhexanate, 2,5-dimethyl-2,5-di (2-ethylhexanoyl) peroxyhexane, t -Butyl peroxybenzoate, t-butyl peroxide, cumene hydroperoxide, dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-dibutylperoxyhexane, 2,4-dichloro Benzoyl peroxide, di-t-butyl peroxide di-isopropylbenzene, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, methyl ethyl ketone peroxide, 1,1,3,3- Examples include tetramethylbutyl peroxy-2-ethylhexanoate.
  • naphthenic acid such as cobalt naphthenate, manganese naphthenate, zinc naphthenate, cobalt octenoate and the like
  • metal salts such as cobalt octenoic acid, manganese, lead, zinc, vanadium, etc.
  • tertiary amines such as dimethylaniline can be used.
  • the content of the photo radical polymerization initiator or the thermal radical polymerization initiator is preferably 0.1 to 5% by weight, preferably 0.5 to 4%, based on the total amount (100% by weight) of the curable composition of the present invention. Weight percent is more preferred.
  • the radical photopolymerization initiator or the thermal radical polymerization initiator can be used alone or in combination of two or more.
  • the curable composition of the present invention may contain a curing retardant.
  • the curing retarder include azole compounds such as pyrrole, pyrazole, 3,5-dimethylpyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole; ethylene glycol, propylene glycol, polyethylene glycol And (poly) alkylene glycols such as polypropylene glycol and butylene glycol, polyol compounds such as glycerin, polyglycerin, pentaerythritol, polycaprolactone polyol, and crown ether (particularly, aliphatic polyol compounds).
  • the pot life and curing start time after irradiating the curable composition of the present invention with light can be controlled. More specifically, the curing retarder can trap the cations generated from the photocationic polymerization initiator by UV irradiation to suppress the cationic polymerization of the curable compound, and release the cations when heat-treated. And has the effect of advancing cationic polymerization of the curable compound.
  • azole compounds are preferable in that they do not cause outgassing, and by adding to the curable composition, the pot life of the curable composition can be freely controlled, and the curable By irradiating the coating film of the composition with UV, and then applying the heat treatment to the organic EL element, the organic EL element can be sealed without being directly exposed to UV, and low outgassing and moisture resistance
  • the organic EL element can be sealed with a cured product having the above.
  • the used amount (blending amount) of the curing retarder is, for example, about 5 to 25% by weight, preferably 10 to 25% by weight, based on the used amount of the cationic photopolymerization initiator (the total amount when containing two or more kinds). .
  • the component (D) in the present invention is a conductive fiber-coated particle containing a particulate material and a fibrous conductive material (sometimes referred to as “conductive fiber”) that covers the particulate material.
  • “cover” means a state in which the conductive fibers cover part or all of the surface of the particulate matter.
  • the conductive fiber-coated particles of the present invention it is only necessary that the conductive fibers cover at least a part of the surface of the particulate matter. For example, there are more uncovered portions than covered portions. You may do it.
  • the particulate matter and the conductive fiber are not necessarily in contact with each other, but usually a part of the conductive fiber is in contact with the surface of the particulate matter. Yes.
  • FIG. 1 is an example of a scanning electron microscope image of the conductive fiber-coated particles of the present invention.
  • the conductive fiber-coated particles of the present invention at least a part of the particulate material (the true spherical material in FIG. 1) is coated with the conductive fiber (the fibrous material in FIG. 1). It has a configuration.
  • the particulate matter constituting the conductive fiber-coated particles of the present invention is a particulate structure.
  • the material (raw material) constituting the particulate matter is not particularly limited, and examples thereof include known or commonly used materials such as metal, plastic, rubber, ceramic, glass, and silica.
  • a transparent material such as transparent plastic, glass, and silica
  • a transparent plastic in terms of flexibility.
  • the transparent plastic includes a thermosetting resin and a thermoplastic resin.
  • the thermosetting resin include poly (meth) acrylate resin; polystyrene resin; polycarbonate resin; polyester resin; polyurethane resin; epoxy resin; polysulfone resin; amorphous polyolefin resin; divinylbenzene, hexatriene, divinyl ether, Divinyl sulfone, diallyl carbinol, alkylene diacrylate, oligo or polyalkylene glycol diacrylate, oligo or polyalkylene glycol dimethacrylate, alkylene triacrylate, alkylene tetraacrylate, alkylene trimethacrylate, alkylene tetramethacrylate, alkylene bisacrylamide, alkylene bismethacryl Multifunctional monomers such as amide and polybutadiene oligomer modified with both ends Germany or polymerized with other monomers obtained network polymer; phenol formaldehyde resins, melamine formalde
  • thermoplastic resin examples include ethylene / vinyl acetate copolymer, ethylene / vinyl acetate / unsaturated carboxylic acid copolymer, ethylene / ethyl acrylate copolymer, ethylene / methyl methacrylate copolymer, and ethylene / acrylic acid.
  • Copolymer ethylene / methacrylic acid copolymer, ethylene / maleic anhydride copolymer, ethylene / aminoalkyl methacrylate copolymer, ethylene / vinyl silane copolymer, ethylene / glycidyl methacrylate copolymer, ethylene / hydroxyethyl methacrylate
  • Examples include copolymers, methyl (meth) acrylate / styrene copolymers, acrylonitrile / styrene copolymers, and the like.
  • the shape of the particulate material is not particularly limited.
  • it is spherical (true sphere, approximately true sphere, elliptical sphere, etc.), polyhedron, rod (column, prism, etc.), flat plate, flake shape, indefinite Examples include shape.
  • the conductive fiber-coated particles can be produced with high productivity, easily dispersed uniformly with the curable compound, and easy to impart conductivity to the entire resin.
  • the shape is preferably spherical or rod-like, and particularly preferably spherical (particularly true spherical).
  • the average aspect ratio of the particulate material is not particularly limited, but is preferably less than 20 (for example, 1 or more and less than 20), particularly preferably 1 to 10. When the average aspect ratio exceeds the above range, it may be difficult to develop excellent conductivity in the curable compound by blending a small amount of conductive fiber-coated particles.
  • the average aspect ratio of the particulate matter is, for example, a sufficient number of particles (for example, 100 or more, preferably 300 or more; in particular, 100 or 300) using an electron microscope (SEM, TEM). It can be measured by taking an electron microscope image of the particulate matter, measuring the aspect ratio of these particulate matter, and arithmetically averaging them.
  • the configuration of the particulate matter is not particularly limited, and may be a single-layer configuration or a multilayer (multi-layer) configuration.
  • the particulate matter may be any of solid particles, hollow particles, porous particles, and the like.
  • the average particle diameter of the particulate matter is not particularly limited, but is preferably 0.1 to 100 ⁇ m, more preferably 1 to 50 ⁇ m, and further preferably 5 to 30 ⁇ m.
  • the average particle diameter is below the above range, it may be difficult to develop excellent conductivity by blending a small amount of conductive fiber-coated particles.
  • the average particle diameter exceeds the above range, the average particle diameter becomes larger than the thickness of the sealing layer of the organic EL element, and it tends to be difficult to form a coating film having a uniform thickness.
  • the average particle diameter in the long axis (longest long axis) direction is controlled within the above range.
  • the average particle diameter of the particulate matter is a median diameter (d50) by a laser diffraction / scattering method.
  • the particulate matter is preferably transparent.
  • the total light transmittance in the visible light wavelength region of the particulate matter is not particularly limited, but is preferably 70% or more, and particularly preferably 75% or more. When the total light transmittance is below the above range, the transparency of the cured product (including the conductive fiber-coated particles) may be lowered.
  • the total light transmittance in the visible light wavelength region of the particulate matter is determined by polymerizing the monomer that is the raw material of the particulate matter in a temperature range of 80 to 150 ° C. between glasses to form a flat plate having a thickness of 1 mm. It is obtained by measuring the total light transmittance of the flat plate in the visible light wavelength region according to JIS K7361-1.
  • the particulate material preferably has flexibility.
  • The% compressive strength is, for example, 10 kgf / mm 2 or less, preferably 5 kgf / mm 2 or less, particularly preferably 3 kgf / mm 2 or less.
  • the conductive fiber-coated particles containing particulate matter having a 10% compressive strength in the above range can be deformed following a fine concavo-convex structure by applying pressure.
  • the curable composition containing the conductive fiber-coated particles is cured into a shape having a fine concavo-convex structure, the particulate matter can be spread to the details, and the portion where the conductivity becomes poor This is because generation can be prevented.
  • the refractive index of the particulate matter is not particularly limited, but is preferably 1.4 to 2.7, particularly preferably 1.5 to 1.8.
  • the refractive index of the particulate matter is such that when the particulate matter is a plastic particle, a raw material of the particulate matter is polymerized at 80 to 150 ° C. to prepare a test piece of 20 mm in length ⁇ 6 mm in width. Using monobromonaphthalene as a liquid, the prism and the test piece are in close contact with each other, using a multi-wavelength Abbe refractometer (trade name “DR-M2”, manufactured by Atago Co., Ltd.), 20 ° C., sodium It can be determined by measuring the refractive index at the D line.
  • DR-M2 multi-wavelength Abbe refractometer
  • the said particulate matter has a small refractive index difference with the hardened
  • the absolute value of the refractive index difference (at 25 ° C., wavelength 589.3 nm) between the particulate material and the cured product of the curable compound of the present invention is 0.1 or less (preferably 0.5 or less, particularly Preferably it is 0.02 or less. That is, it is preferable that the conductive fiber-coated particles and the curable compound contained in the curable composition of the present invention satisfy the following formula.
  • Refractive index of particulate matter constituting conductive fiber-coated particles at 25 ° C., wavelength 589.3 nm
  • -refractive index of cured product of curable compound at 25 ° C., wavelength 589.3 nm
  • the coefficient of variation in the volume-based particle size distribution of the particulate matter is calculated from the following equation.
  • the particle size distribution can be measured using a particle size distribution measuring device (trade name “Coulter Multisizer”, manufactured by Beckman Coulter, Inc.).
  • Coefficient of variation (CV value) (%) (S2 / Dn) ⁇ 100 (Wherein, S2 represents the standard deviation in the volume-based particle size distribution, and Dn represents the median diameter (D50) based on the volume)
  • the particulate matter can be produced by a known or common method, and the production method is not particularly limited.
  • metal particles it can be produced by a vapor phase method such as a CVD method or a spray pyrolysis method, or a wet method using a chemical reduction reaction.
  • plastic particles for example, a method of polymerizing monomers constituting the resin (polymer) exemplified above by a known polymerization method such as a suspension polymerization method, an emulsion polymerization method, a seed polymerization method, or a dispersion polymerization method. Etc. can be manufactured.
  • thermosetting resin examples include, for example, trade names “Techpolymer MBX series”, “Techpolymer BMX series”, “Techpolymer ABX series”, “Techpolymer ARX series”, and “Techpolymer AFX series”.
  • the conductive fiber constituting the conductive fiber-coated particle of the present invention is a fibrous structure (linear structure) having conductivity.
  • the shape of the conductive fiber is not particularly limited as long as it is fibrous (fibrous), but the average aspect ratio is preferably 10 or more (for example, 20 to 5000), more preferably 50 to 3000, and more preferably 100 to 1000 is more preferable. When the average aspect ratio is less than the above range, it may be difficult to develop excellent conductivity by blending a small amount of conductive fiber-coated particles.
  • the average aspect ratio of the conductive fibers can be measured by the same procedure as the average aspect ratio of the particulate matter.
  • the concept of “fibrous” in the conductive fiber includes shapes of various linear structures such as “wire” and “rod”. In the present specification, fibers having an average thickness of 1000 nm or less may be referred to as “nanowires”.
  • the average thickness (average diameter) of the conductive fibers is not particularly limited, but is preferably 1 to 400 nm, more preferably 10 to 200 nm, and further preferably 50 to 150 nm. When the average thickness is less than the above range, the conductive fibers are likely to aggregate and it may be difficult to produce the conductive fiber-coated particles. On the other hand, if the average thickness exceeds the above range, it may be difficult to coat the particulate matter, and it may not be possible to obtain conductive fiber-coated particles efficiently.
  • the average thickness of the conductive fibers is an electron with respect to a sufficient number of conductive fibers (for example, 100 or more, preferably 300 or more; in particular, 100 or 300) using an electron microscope (SEM, TEM). It can be measured by taking a microscopic image, measuring the thickness (diameter) of these conductive fibers, and arithmetically averaging them.
  • the average length of the conductive fibers is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 5 to 80 ⁇ m, and still more preferably 10 to 50 ⁇ m. If the average length is less than the above range, it may be difficult to coat the particulate matter, and it may not be possible to obtain conductive fiber-coated particles efficiently. On the other hand, if the average length exceeds the above range, the conductive fibers may adhere to or be adsorbed on a plurality of particles, which may cause aggregation (deterioration of dispersibility) of the conductive fiber-coated particles.
  • the average length of the conductive fibers is an electron for a sufficient number of conductive fibers (for example, 100 or more, preferably 300 or more; in particular, 100 or 300) using an electron microscope (SEM, TEM). It can be measured by taking a microscopic image, measuring the length of these conductive fibers, and arithmetically averaging them. Note that the length of the conductive fiber should be measured in a linearly stretched state, but in reality it is often bent, so the conductive fiber can be measured using an image analyzer from an electron microscope image.
  • the material (material) constituting the conductive fiber may be any material having conductivity, and examples thereof include metals, semiconductors, carbon materials, and conductive polymers.
  • the metal examples include known and commonly used metals such as gold, silver, copper, iron, nickel, cobalt, tin, and alloys thereof. In the present invention, among them, silver is preferable because of its excellent conductivity.
  • Examples of the semiconductor include known or commonly used semiconductors such as cadmium sulfide and cadmium selenide.
  • Examples of the carbon material include known or commonly used carbon materials such as carbon fibers and carbon nanotubes.
  • the conductive polymer examples include polyacetylene, polyacene, polyparaphenylene, polyparaphenylene vinylene, polypyrrole, polyaniline, polythiophene, and derivatives thereof (for example, an alkyl group, a hydroxyl group, a carboxyl group, a common polymer skeleton, Those having a substituent such as ethylenedioxy group; specifically, polyethylenedioxythiophene and the like).
  • polyacetylene, polyaniline and derivatives thereof, polypyrrole and derivatives thereof, and polythiophene and derivatives thereof are preferable.
  • the conductive polymer may contain a known or commonly used dopant (for example, an acceptor such as a halogen, a halide, or a Lewis acid; a donor such as an alkali metal or an alkaline earth metal).
  • the conductive fiber of the present invention is preferably a conductive nanowire, in particular, at least one conductive nanowire selected from the group consisting of metal nanowires, semiconductor nanowires, carbon fibers, carbon nanotubes, and conductive polymer nanowires, In particular, silver nanowires are most preferable in terms of excellent conductivity.
  • the conductive fiber can be produced by a known or conventional production method.
  • the metal nanowire can be manufactured by a liquid phase method, a gas phase method, or the like. More specifically, silver nanowires are described in, for example, Mater. Chem. Phys. 2009, 114, 333-338, Adv. Mater. 2002, 14, P833-837, Chem. Mater. 2002, 14, P4736-4745, and JP-T 2009-505358.
  • the gold nanowire can be manufactured, for example, by the method described in JP-A-2006-233252.
  • a copper nanowire can be manufactured by the method as described in Unexamined-Japanese-Patent No. 2002-266007, for example.
  • cobalt nanowire can be manufactured by the method as described in Unexamined-Japanese-Patent No. 2004-148771, for example.
  • a semiconductor nanowire can be manufactured by the method as described in Unexamined-Japanese-Patent No. 2010-208925, for example.
  • the carbon fiber can be produced, for example, by the method described in JP-A-06-081223.
  • the carbon nanotube can be produced, for example, by the method described in JP-A-06-157016.
  • the said conductive polymer nanowire can be manufactured by the method of Unexamined-Japanese-Patent No. 2006-241334, Unexamined-Japanese-Patent No. 2010-76044, for example.
  • a commercial item can also be used as the conductive fiber.
  • the conductive fiber-coated particles of the present invention can be produced by mixing the particulate matter and conductive fibers in a solvent.
  • examples of the method for producing conductive fiber-coated particles of the present invention include the following methods (1) to (4).
  • (1) Mixing a dispersion in which the particulate matter is dispersed in a solvent (referred to as “particle dispersion”) and a dispersion in which the conductive fibers are dispersed in a solvent (referred to as “fiber dispersion”). Then, if necessary, the solvent is removed to obtain the conductive fiber-coated particles of the present invention (or a dispersion of the conductive fiber-coated particles).
  • the solvent is removed if necessary, and the conductive fiber-coated particles of the present invention (or a dispersion of the conductive fiber-coated particles).
  • the solvent is removed if necessary, and the conductive fiber-coated particles of the present invention (or a dispersion of the conductive fiber-coated particles).
  • the solvent is removed as necessary to disperse the conductive fiber-coated particles of the present invention (or dispersion of the conductive fiber-coated particles). Liquid).
  • the above method (1) is preferable because homogeneous conductive fiber-coated particles can be obtained.
  • Examples of the solvent used in producing the conductive fiber-coated particles of the present invention include water; alcohols such as methanol, ethanol, propanol, isopropanol, and butanol; acetone, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK).
  • alcohols such as methanol, ethanol, propanol, isopropanol, and butanol
  • MEK methyl ethyl ketone
  • MIBK methyl isobutyl ketone
  • Ketones such as benzene, toluene, xylene and ethylbenzene; ethers such as diethyl ether, dimethoxyethane, tetrahydrofuran and dioxane; esters such as methyl acetate, ethyl acetate, isopropyl acetate and butyl acetate; N, N- Amides such as dimethylformamide and N, N-dimethylacetamide; nitriles such as acetonitrile, propionitrile, and benzonitrile. These can be used individually by 1 type or in combination of 2 or more types (that is, as a mixed solvent). In the present invention, alcohol and ketone are particularly preferable.
  • the curable compound of the present invention for example, epoxy compound
  • the curable compound of the present invention can be used as long as it is liquid.
  • a curable composition containing the curable compound and the conductive fiber-coated particles of the present invention can be obtained without going through the step of removing the solvent.
  • the viscosity of the solvent is not particularly limited, but from the viewpoint of efficiently producing conductive fiber-coated particles, the viscosity at 25 ° C. is preferably 10 cP or less (for example, 0.1 to 10 cP), and 0.5 to 5 cP. Is particularly preferred.
  • the viscosity of the solvent at 25 ° C. can be measured using, for example, an E-type viscometer (trade name “VISCONIC”, manufactured by Tokimec Co., Ltd.) (rotor: 1 ° 34 ′ ⁇ R24, rotation speed: 0.5 rpm, measurement temperature: 25 ° C.).
  • the boiling point at 1 atm of the solvent is preferably 200 ° C. or lower, more preferably 150 ° C. or lower, and further preferably 120 ° C. or lower in that the conductive fiber-coated particles can be efficiently produced.
  • the content of the particulate matter when mixing the particulate matter and the conductive fiber in the solvent is, for example, about 0.1 to 50 parts by weight, preferably 1 to 30 parts by weight with respect to 100 parts by weight of the solvent. It is. By controlling the content of the particulate matter within the above range, the conductive fiber-coated particles can be generated more efficiently.
  • the content of the conductive fiber when mixing the particulate matter and the conductive fiber in the solvent is, for example, about 0.1 to 50 parts by weight, preferably 1 to 30 parts by weight with respect to 100 parts by weight of the solvent. It is. By controlling the content of the conductive fiber within the above range, the conductive fiber-coated particles can be generated more efficiently.
  • the ratio of the particulate matter and the conductive fiber when mixing the particulate matter and the conductive fiber in the solvent is the ratio of the surface area of the particulate matter to the projected area of the conductive fiber [surface area / projected area]. However, the ratio is preferably about 100/1 to 100/100, or 100/10 to 100/50. By controlling the ratio within the above range, the conductive fiber-coated particles can be generated more efficiently.
  • the surface area of the particulate matter can be measured by a method of multiplying the specific surface area obtained by the BET method (based on JIS Z8830) by the mass (amount of use) of the particulate matter.
  • the projected area of the conductive fibers is a sufficient number (for example, 100 or more, preferably 300 or more; in particular, 100 or 300) using an electron microscope (SEM, TEM). It can be measured by taking an electron microscope image of the conductive fibers, calculating the projected area of these conductive fibers using an image analysis device, and arithmetically averaging them.
  • SEM electron microscope
  • the conductive fiber-coated particles can be obtained as a solid by further removing the solvent.
  • the removal of the solvent is not particularly limited, and can be performed by a known or conventional method such as heating, distillation under reduced pressure, or the like.
  • the solvent is not necessarily removed, and for example, it can be used as it is as a dispersion of the conductive fiber-coated particles of the present invention.
  • the conductive fiber-coated particles of the present invention can be manufactured by mixing raw materials (particulate matter and conductive fibers) in a solvent, and do not require a complicated process. This is advantageous.
  • the conductive fiber-coated particles of the present invention can be produced more efficiently.
  • a particulate material having an average circumference B [ ⁇ m] and an average length (B ⁇ 1/6) [ ⁇ m] or more preferably B [ ⁇ m It is preferable to use the above-mentioned conductive fibers.
  • the average perimeter of the particulate matter is a sufficient number (for example, 100 or more, preferably 300 or more; in particular, 100, 300, etc.) using an electron microscope (SEM, TEM). It is obtained by taking an electron microscope image of the substance, measuring the circumference of these particulate substances, and calculating the arithmetic average.
  • SEM electron microscope
  • the ratio of the particulate matter and the conductive fiber constituting the conductive fiber-coated particle of the present invention is such that the ratio of the surface area of the particulate matter to the projected area of the conductive fiber [surface area / projected area] is, for example, 100/1 ⁇
  • the ratio is preferably about 100/100 (particularly 100/10 to 100/50).
  • the conductive fiber-coated particles of the present invention have the above-described configuration, they can impart excellent conductivity (especially conductivity in the thickness direction) with a small amount of addition, and are a cured product excellent in transparency and conductivity. Can be formed.
  • grain is made into fine unevenness
  • the conductive fiber-coated particles are deformed following the concavo-convex structure and spread to details, the occurrence of a portion with poor conductivity can be prevented, and the conductive performance is excellent.
  • An organic EL device can be formed.
  • the conductive fiber-coated particles can be used singly or in combination of two or more.
  • the content (blending amount) of the conductive fiber-coated particles (component (D)) in the curable composition is, for example, about 0.01 to 30 parts by weight, preferably 100 parts by weight with respect to 100 parts by weight of the curable compound of the present invention. Is 0.1 to 20 parts by weight, more preferably 0.3 to 15 parts by weight, and particularly preferably 0.5 to 5 parts by weight. If the content of the conductive fiber-coated particles is less than 0.01 parts by weight, the conductivity of the obtained cured product may be insufficient depending on the application. On the other hand, when the content of the conductive fiber-coated particles exceeds 30 parts by weight, the transparency of the obtained cured product may be insufficient depending on the application.
  • the content of the conductive fiber-coated particles (component (D)) in the curable composition of the present invention is preferably 0.1 to 60% by volume with respect to the total amount (100% by volume) of the curable composition.
  • the amount is preferably 0.2 to 60% by volume, more preferably 0.3 to 50% by volume, and particularly preferably 0.3 to 40% by volume.
  • the conductivity in the curable composition of the present invention when anisotropic conductivity (electric anisotropy that has conductivity in a specific direction but is insulative in other directions) is developed, the conductivity in the curable composition of the present invention.
  • the content of the fiber-coated particles (component (D)) is preferably 30% by volume or less (for example, 0.1 to 10% by volume) with respect to the total amount (100% by volume) of the curable composition of the present invention, Particularly preferred is 0.3 to 5% by volume.
  • the content of the conductive fiber-coated particles (component (D)) can be estimated by, for example, dividing the total weight of the conductive fiber-coated particles by the density of the particles (conductive fiber-coated particles).
  • the content (particulate amount) of the particulate matter (particulate matter contained in the conductive fiber-coated particles) in the curable composition of the present invention is, for example, 0.09 to 6 with respect to 100 parts by weight of the curable compound.
  • the content is preferably 0.1 to 5% by volume, particularly preferably 0.3 to 3% by volume, and most preferably 0.4 to 2% by volume. If the content of the conductive fiber-coated particles is less than 0.02% by volume, the conductivity of the obtained cured product may be insufficient depending on the application. On the other hand, if the content of the conductive fiber-coated particles exceeds 7% by volume, the resulting cured product may have insufficient transparency depending on the application.
  • the conductive fiber content (blending amount) in the curable composition of the present invention is, for example, about 0.01 to 1.0 part by weight, preferably 0.02 to 0 part per 100 parts by weight of the curable compound. 8 parts by weight, more preferably 0.03 to 0.6 parts by weight, still more preferably 0.03 to 0.4 parts by weight, particularly preferably 0.03 to 0.2 parts by weight.
  • the curable composition of the present invention contains conductive fibers in a state of being coated with particulate matter, a cured product having sufficient conductivity even when the amount of the conductive material used is reduced to the above range. Can be formed. Therefore, it is possible to reduce the decrease in transparency of the cured product caused by containing a material having conductivity, and it is possible to greatly reduce the cost occupied by the material having conductivity. .
  • the curable composition of the present invention may further contain a conductive substance other than the conductive fiber-coated particles of the present invention (sometimes referred to as “other conductive substance”).
  • a conductive substance other than the conductive fiber-coated particles of the present invention sometimes referred to as “other conductive substance”.
  • other conductive substances known or commonly used conductive substances can be used, and are not particularly limited.
  • the above conductive fibers may be used.
  • the content (blending amount) of the other conductive substance (for example, conductive fibers) in the curable composition of the present invention is, for example, about 0 to 10 parts by weight with respect to 100 parts by weight of the conductive fiber-coated particles.
  • the amount is preferably 0 to 5 parts by weight, more preferably 0 to 1 part by weight.
  • the curable composition of the present invention may contain various additives within a range that does not impair the effects of the present invention.
  • the additive include hydroxyl group compounds such as ethylene glycol, diethylene glycol, propylene glycol, and glycerin; silicone-based and fluorine-based antifoaming agents; leveling agents; ⁇ -glycidoxypropyltrimethoxysilane, and 3-mercaptopropyl.
  • Silane coupling agents such as trimethoxysilane; Surfactants; Inorganic fillers such as silica and alumina; Flame retardants; Colorants; Antioxidants; Ultraviolet absorbers; Ion adsorbents; Pigments; Phosphors; Of conventional additives.
  • the curable composition of this invention is obtained by mixing each said component uniformly.
  • each component uses a generally known mixing device such as a revolving type stirring deaerator, a homogenizer, a planetary, a three roll mill, a bead mill, and an ultrasonic wave.
  • a generally known mixing device such as a revolving type stirring deaerator, a homogenizer, a planetary, a three roll mill, a bead mill, and an ultrasonic wave.
  • the curable composition of the present invention comprises conductive fiber-coated particles (component (D) (or a dispersion of conductive fiber-coated particles), a curable compound, and other components as necessary in the above-mentioned general composition.
  • conductive fiber-coated particles component (D) (or a dispersion of conductive fiber-coated particles), a curable compound, and other components as necessary in the above-mentioned general composition.
  • Step A Step of obtaining a conductive fiber-coated particle dispersion by mixing particulate matter and fibrous conductive material in a solvent
  • Step B From the conductive fiber-coated particle dispersion obtained through Step A A step of obtaining conductive fiber-coated particles as a solid by removing the solvent (for example, distillation by heating and / or filtration under reduced pressure).
  • the curable composition of the present invention is prepared by previously mixing conductive fiber-coated particles (component (D) (or dispersion of conductive fiber-coated particles), a curable compound, and all other components as necessary.
  • conductive fiber-coated particles component (D) (or dispersion of conductive fiber-coated particles)
  • a curable compound e.g., a curable compound
  • All other components e.g., a curable compound
  • Well one-pack type
  • conductive fiber coated particles (component (D) or dispersion of conductive fiber coated particles
  • curable compound e.g., a curable compound
  • Multi-component type for example, two-component type
  • the curable composition for sealing an optical semiconductor of the present invention discharges the curable composition with a dispenser such as a dispenser, the conductive fiber-coated particles (component (D)) in the curable composition are increased. It is preferable to discharge in a dispersed state, for example, using a discharger having a rotational drive mechanism such as a screw, and discharging while stirring by a screw-type discharge method that discharges the curable composition by rotating the screw. It is preferable.
  • the rotational speed of the screw, the size of the blade of the screw, and the like are preferably adjusted as appropriate according to the viscosity of the curable composition, the size of the conductive fiber-coated particles (component (D)) contained therein, and the like.
  • the curable composition of the present invention preferably has fluidity at room temperature (25 ° C.) from the viewpoint of dispensing properties in the process of sealing the optical semiconductor element.
  • the viscosity of the curable composition of the present invention at normal temperature (25 ° C.) is preferably 10 to 5000 mPa ⁇ s, more preferably 50 to 3000 mPa ⁇ s, and further preferably 100 to 2000 mPa ⁇ s. preferable.
  • the cured product of the present invention can be obtained by curing the curable composition for sealing an optical semiconductor.
  • a curable composition containing a compound that is a raw material of the curable resin as the curable compound a cured product is obtained by heating and / or irradiating active energy rays to the curable composition.
  • the temperature when cured by heating is, for example, about 45 to 200 ° C., preferably 70 to 190 ° C., particularly preferably 90 to 180 ° C.
  • the heating time (curing time) for curing by heating is, for example, about 10 to 600 minutes, preferably 30 to 540 minutes, particularly preferably 60 to 480 minutes. If the curing temperature and the curing time are below the above ranges, curing may be insufficient. On the other hand, when the curing temperature and the curing time exceed the above ranges, the cured product may be decomposed.
  • the curing conditions depend on various conditions, for example, when the curing temperature is increased, the curing time can be shortened, and when the curing temperature is decreased, the curing time can be appropriately increased.
  • irradiation conditions when curing by irradiation with active energy rays for example, when curing by ultraviolet irradiation, a condition where the integrated light quantity is, for example, about 500 to 5000 mJ / cm 2 , particularly preferably 1000 to 3000 mJ / cm 2 is adopted. Is preferred.
  • the cured product of the present invention is not particularly limited, it is preferable that water vapor permeability of not more than 40g / m 2 ⁇ day, 30g / m or less, more preferably 2 ⁇ day, more preferably less 25g / m 2 ⁇ day .
  • the water vapor transmission rate can be measured by attaching a cured product to a moisture permeable cup under the conditions of 60 ° C. and 90% RH in accordance with JIS L1099.
  • the cured product of the present invention is not particularly limited, but the outgas is preferably 20 ppm or less, more preferably 15 ppm or less, and even more preferably 10 ppm or less. Further, acrolein is preferably 3 ppm or less, more preferably 2 ppm or less, and further preferably 1 ppm or less. Outgas and acrolein can be measured by quantifying the amount of outgas generated when heated in an oven at 80 ° C. for 60 minutes using a gas chromatography mass spectrometry (GC / MS) apparatus using toluene as a standard substance. .
  • GC / MS gas chromatography mass spectrometry
  • the cured product of the present invention is preferably transparent, and when the thickness of the cured product is adjusted to 10 ⁇ m, the total light transmittance (cured product thickness: 10 ⁇ m) in the visible light wavelength region is, for example, 80% or more, preferably Is 85% or more, more preferably 90% or more.
  • the total light transmittance in the visible light wavelength region of the cured product of the present invention can be measured according to JIS K7361-1.
  • the cured product of the present invention is excellent in conductivity, and its volume resistivity is, for example, about 0.1 ⁇ ⁇ cm to 10 M ⁇ ⁇ cm, preferably 0.1 ⁇ ⁇ cm to 1 M ⁇ ⁇ cm.
  • the volume resistivity of the cured product of the present invention can be measured in accordance with JIS K6911.
  • optical semiconductor device By sealing an optical semiconductor element using the curable composition of the present invention, an optical semiconductor device having excellent performance stability and a long lifetime can be obtained.
  • an optical semiconductor device For example, a light emitting diode, organic electroluminescence (organic EL), electronic paper, a solar cell, etc. are mentioned. Among these, organic electroluminescence (organic EL) is preferable, and top emission type organic electroluminescence (organic EL) is more preferable.
  • the component (A) has one or more functional groups selected from the group consisting of an epoxy group, an oxetanyl group, a vinyl ether group, and a (meth) acryloyl group, and It is a compound having an aromatic ring
  • the component (B) is an alicyclic epoxy compound (excluding compounds containing an aromatic ring)
  • the component (C) has a cation component having an aromatic ring, and is a central element Is a curing catalyst that generates an acid by light or heat having an anionic component of boron or phosphorus
  • a component (D) a particulate material and a fibrous conductive material that covers the particulate material. It is preferable that the conductive fiber-coated particles are included.
  • the component (A) preferably contains the following compound (A1 ′′) and / or compound (A2 ′′).
  • Compound (A1 ′′) A compound having a functional group selected from the group consisting of two or more epoxy groups, oxetanyl groups, vinyl ether groups and (meth) acryloyl groups in the molecule, and having a molecular weight of 100 to 10,000
  • Compound (A2 ′′) Compound having a molecular weight of 100 to 1000
  • the component (B) is a compound having two or more alicyclic epoxy groups, and the molecular weight is preferably 100 to 500. And it is preferable that a component (B) is a compound represented by the said Formula (3). Moreover, it is preferable that the cation component which has an aromatic ring of a component (C) is an aromatic sulfonium salt.
  • the fibrous conductive substance of component (D) is preferably a conductive nanowire.
  • the conductive nanowire is preferably at least one selected from the group consisting of metal nanowires, semiconductor nanowires, carbon fibers, carbon nanotubes, and conductive polymer nanowires.
  • the metal nanowire is preferably a silver nanowire.
  • the cured product of the present invention is preferably a cured product obtained by curing the curable composition for sealing an optical semiconductor.
  • the cured product preferably has a water vapor transmission rate of 40 g / m 2 ⁇ day or less, preferably has an outgas of 20 ppm or less, preferably has an outgas of 20 ppm or less, and has an acrolein of 3 ppm or less. preferable.
  • Silver nanowires are manufactured according to the method described in “Materials Chemistry and Physics, vol, 114, p333-338,“ Preparation of Aganorods with high yield by poly process ””. The specific procedure is shown below. 0.5 mL of an ethylene glycol solution (6 ⁇ 10 ⁇ 4 M) of FeCl 3 was added to a flask containing 6 mL of ethylene glycol and heated to 150 ° C. Thereafter, 6 mL of an ethylene glycol mixed solution containing 0.052 M AgNO 3 and 0.067 M polyvinylpyrrolidone was added dropwise to the heated solution. The reaction solution thus obtained was kept at 150 ° C. for 1.5 hours.
  • a dispersion was obtained.
  • a part of the obtained dispersion was extracted and dried by heat to confirm the weight% of the silver nanowires in the dispersion, which was 2.9% by weight.
  • the average diameter (average thickness) and average length of the obtained silver nanowires are measured using a scanning electron microscope (SEM) to measure the diameter (thickness) and length of 100 silver nanowires, and each is arithmetically averaged. As a result, the average diameter was 115 nm and the length was 20 to 50 ⁇ m.
  • plastic fine particles fine particles made of methyl methacrylate-styrene copolymer (trade name “SM10X-8JH”, manufactured by Sekisui Chemical Co., Ltd., refractive index: 1.565, average particle size: 8.3 ⁇ m, CV value: 39, 10% compressive strength: 2.4 to 2.5 kgf / mm 2 ) is mixed with 100 parts by weight of the curable compound, 0.85 parts by weight of ethanol is mixed with 29.15 parts by weight, and dispersed. A dispersion was prepared.
  • SM10X-8JH methyl methacrylate-styrene copolymer
  • the solvent was removed by stirring while heating at 70 ° C. for 30 minutes to obtain conductive fiber-coated particles (component (D)).
  • the surface area per one the plastic particulate is 226.9Myuemu 2
  • the projected area per one silver nanowires was 2.4 [mu] m 2.
  • the content [ppm] of acrolein and 1-iodo-4-methylbenzene contained in the outgas is also determined by quantifying the amounts of acrolein and 1-iodo-4-methylbenzene, respectively, using toluene as a standard substance. Asked.
  • the evaluation criteria for the obtained heat generation temperature and heat generation amount are as follows. A: No exothermic peak is observed at 250 ° C. or higher (curability is particularly good) B: An exothermic peak of 10 J / g or less is observed at 250 ° C. or higher (good curability) C: An exothermic peak of 10 J / g or more is observed at 250 ° C. or more (poor curability)
  • the cured product of the present invention is a cation having an alicyclic epoxy compound as component (B) and an aromatic ring as component (C). It has been found that outgassing can be significantly suppressed by including a curing catalyst having a component and an anionic component whose central element is boron or phosphorus.
  • the curable composition of the present invention can be used for applications such as sealing materials and sealing materials for optical semiconductor elements such as LED elements and organic EL elements.
  • the optical semiconductor element sealed or sealed with the curable composition of the present invention and the optical semiconductor device using the optical semiconductor element can be used for applications such as light emitting diodes, organic electroluminescence, electronic paper, or solar cells. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Polyethers (AREA)

Abstract

 本発明の光半導体封止用硬化性組成物は、下記成分(A)、(B)、及び(C)を含むことを特徴とする。また、本発明の光半導体封止用硬化性組成物は、上記成分(A)、(B)及び(C)に加え、さらに下記成分(D)を含むことを特徴とする。 成分(A):エポキシ基、オキセタニル基、ビニルエーテル基及び(メタ)アクリロイル基からなる群より選ばれる1以上の官能基を有する化合物 成分(B):脂環エポキシ化合物 成分(C):芳香環を有するカチオン成分を有し、且つ、中心元素がホウ素又はリンであるアニオン成分を有する光又は熱により酸を発生する硬化触媒 成分(D):粒子状物質と該粒子状物質を被覆する繊維状の導電性物質を含む導電性繊維被覆粒子

Description

光半導体封止用硬化性組成物
 本発明は、LED素子や有機EL素子等の光半導体素子を封止するために使用する硬化性組成物及びその硬化物、並びにそれを用いた光半導体及び光半導体装置に関する。本願は、2013年5月28日に日本に出願した特願2013−111763号及び2014年1月23日に日本に出願した特願2014−010808号の優先権を主張し、その内容をここに援用する。
 LED素子や有機EL素子等の光半導体素子は、小さな電力で高い輝度の発光が得られるという特徴があり、照明デバイスや表示デバイス等、多用途への応用展開が試みられている。
 しかし、これらの光半導体素子は、水分やガスに対する耐久性が弱いため、輝度が低下したり、場合によっては発光しなくなるという問題があった。
 このような問題を解決するための有効な手段として、硬化性を有する樹脂組成物により光半導体素子を封止する方法が種々試みられている。特に、エポキシ系樹脂組成物を用いて封止する方法は、その優れた封止性能により、有望な方法として期待されている。
 但し、硬化性を有する樹脂組成物により光半導体素子を封止する場合、低透過性や高ガスバリア性が求められると共に、その樹脂組成物に由来するガス(アウトガス)により、光半導体素子等が劣化しないことが求められている。
 特許文献1には、脂肪族環状骨格を有するエポキシ化合物を20~80重量部、及び、芳香族環を有するエポキシ化合物を80~20重量部含有する有機エレクトロルミネッセンス素子用封止剤が開示されている。しかし、その樹脂組成物に由来するアウトガスへの対策に関する記載はない。
 特許文献2には、(A)1分子中に少なくとも2個以上のグリシジル基を有し、分子量が200~7000のエポキシ樹脂と、(B)1分子中に少なくとも1個以上のグリシジル基を有し、分子量が20000~100000のエポキシ樹脂と、(C)エネルギー線照射により活性化し、酸を発生する潜在性の光酸触媒と、(D)分子中にグリシジル基を含有するシランカップリング剤とを含む組成物であって、前記(A)成分100重量部に対して前記(B)成分を30~150重量部含み、なおかつ前記(A)成分及び(B)成分の合計100重量部に対して前記(C)成分を0.1~10重量部、前記(D)成分を0.1~10重量部含む有機EL素子封止用硬化性樹脂組成物が開示されている。しかし、アウトガスの抑制レベルは十分ではない。
 特許文献3には、有機EL等の素子パッケージ用接着剤として、(A)エポキシ化合物、(B)ノボラック樹脂、(C)光カチオン重合開始剤、及び(D)フィラーを含有する樹脂組成物が開示されている。しかし、アウトガスへの対策に関する記載はない。
 特許文献4には、1分子中に2つ以上の反応性官能基(a)を有する化合物(A)と、1分子中に1つの反応性官能基(b)を有し、分子量が50~1000である化合物(B)と、重合開始剤(C)とを含有することを特徴とする、低透湿性が要求される電子デバイス用低透湿性樹脂組成物が開示されている。しかし、その樹脂組成物の硬化性や、アウトガスへの対策に関する記載はない。
 特許文献5の硬化性樹脂では、末端にオキシラン環を有するエポキシ樹脂、並びに、脂肪族環状エポキシ樹脂及び/又はオキタセン環を有する化合物を含有しているため、アウトガスが多く発生する。また、特許文献4及び特許文献6のエポキシ樹脂組成物は、ビフェニル構造を有するため、触媒によって、アクロレイン等のアウトガスを発生させる。
 また、LED素子や有機EL素子等の光半導体素子における微細電極の接続等においては、導電性を有する微粒子(導電性微粒子)が使用されている。このような導電性微粒子としては、特許文献5のように樹脂製の微粒子の表面に金属をコーティングして得られる導電性微粒子等が知られている。
 上記の導電性微粒子は、樹脂製の微粒子の表面に金属をコーティングされているため、高価な金属材料が多く使用されており、原材料コストが高いという問題を有していた。また、電解めっき法や交互吸着法等の特殊な方法により製造する必要があるため、特殊な装置を使用したり多くの工程を経る必要があり、製造コストが高いという問題も有していた。
 さらに、上記金属コーティング樹脂粒子は全面が金属でコーティングされているため着色しており、その上、樹脂硬化物に導電性を付与するためには樹脂硬化物中で導電性微粒子同士を接触させる必要があるため多量に配合する。このため、透明性と導電性を兼ね備えた硬化物を安価に得ることは困難であった。
特開2007−046035号公報 特開2010−126699号公報 特開2010−024364号公報 WO2012/020688号公報 特開2013−186976号公報 特開2010−163566号公報
 本発明の目的は、光半導体素子を劣化させるような水分やガスの侵入又は発生を抑制することにより、光半導体素子や光半導体装置の性能安定化と長寿命化に寄与し、且つ、高い透明性や優れた生産性を有する光半導体素子封止用硬化性組成物及びその硬化物を提供することにある。また、本発明の目的は、導電性繊維被覆粒子を使用することにより、導電性(特に、厚み方向への導電性)に優れる光半導体素子封止用硬化性組成物及びその硬化物を提供することにある。また、性能が安定しており、且つ、寿命が長い光半導体及び光半導体装置を提供することにある。
 本発明者らは、上記課題を解決するため鋭意検討した結果、特定の官能基を有する硬化性化合物、硬化触媒を含む光半導体用硬化性組成物の硬化物が、光半導体素子を劣化させるような水分やガスの侵入又は発生を抑制することを見出した。
 すなわち、本発明は以下に関する。
[1] 下記成分(A)、(B)、及び(C)を含む光半導体封止用硬化性組成物。
成分(A):エポキシ基、オキセタニル基、ビニルエーテル基及び(メタ)アクリロイル基からなる群より選ばれる1以上の官能基を有する化合物
成分(B):脂環エポキシ化合物
成分(C):3以上の芳香環を有するカチオン成分を有し、且つ、中心元素がホウ素又はリンであるアニオン成分を有する光又は熱により酸を発生する硬化触媒
[2] 下記成分(A)、(B)、(C)、及び(D)を含む光半導体封止用硬化性組成物。
成分(A):エポキシ基、オキセタニル基、ビニルエーテル基及び(メタ)アクリロイル基からなる群より選ばれる1以上の官能基を有する化合物
成分(B):脂環エポキシ化合物
成分(C):芳香環を有するカチオン成分を有し、且つ、中心元素がホウ素又はリンであるアニオン成分を有する光又は熱により酸を発生する硬化触媒
成分(D):粒子状物質と該粒子状物質を被覆する繊維状の導電性物質を含む導電性繊維被覆粒子
[3] 成分(A)が、芳香環を有し、且つ、エポキシ基、オキセタニル基、ビニルエーテル基及び(メタ)アクリロイル基からなる群より選ばれる2以上の官能基を有する化合物(A1’)を含む上記[1]又は[2]に記載の半導体封止用硬化性組成物。
[4] 化合物(A1’)の分子量が100~10000である上記[3]に記載の半導体封止用硬化性組成物。
[5] 成分(A)が、芳香環を有し、且つ、分子量が100~1000であり、且つ、エポキシ基、オキセタニル基、ビニルエーテル基及び(メタ)アクリロイル基からなる群より選ばれる1の官能基を有する化合物(A2’)を含む上記[1]~[4]のいずれかに記載の光半導体封止用硬化性組成物。
[6] 成分(B)が、2以上の脂環エポキシ基を有する化合物である上記[1]~[5]のいずれかに記載の光半導体封止用硬化性組成物。
[7] 成分(B)の分子量が100~500である上記[1]~[6]のいずれかに記載の光半導体封止用硬化性組成物。
[8] 成分(B)が、エステル基及び/又はカーボネート基を有さない化合物である上記[1]~[7]のいずれかに記載の光半導体封止用硬化性組成物。
[9] 成分(A)が、エポキシ基、オキセタニル基、ビニルエーテル基及び(メタ)アクリロイル基からなる群より選ばれる1以上の官能基を有し、且つ芳香環を有する化合物であり、成分(B)が、脂環エポキシ化合物(芳香環を含む化合物を除く)である上記[1]~[8]のいずれかに記載の光半導体封止用硬化性組成物。
[10] 成分(B)が、下記式(3)で表される化合物である上記[1]~[9]のいずれかに記載の光半導体封止用硬化性組成物。
Figure JPOXMLDOC01-appb-C000002
[式(3)中、Xは単結合又は連結基を示す]
[11] 成分(B)の含有量が硬化性組成物の全量(100重量%)に対して30~95重量%であり、且つ、成分(C)の含有量が硬化性組成物の全量(100重量%)に対して0.01~8重量%である上記[1]~[10]のいずれかに記載の光半導体封止用硬化性組成物。
[12] 成分(C)の芳香環を有するカチオン成分が、芳香族スルホニウム塩である上記[1]~[11]のいずれかに記載の光半導体封止用硬化性組成物。
[13] 成分(D)の繊維状の導電性物質が、導電性ナノワイヤである上記[2]~[12]のいずれかに記載の光半導体封止用硬化性組成物。
[14] 前記導電性ナノワイヤが、金属ナノワイヤ、半導体ナノワイヤ、炭素繊維、カーボンナノチューブ、及び導電性高分子ナノワイヤからなる群より選択される少なくとも一種である上記[13]に記載の光半導体封止用硬化性組成物。
[15] 前記金属ナノワイヤが銀ナノワイヤである上記[14]に記載の光半導体封止用硬化性組成物。
[16] 上記[1]~[15]のいずれかに記載の光半導体封止用硬化性組成物を硬化させることにより得られる硬化物。
[17] 水蒸気透過率が40g/m・day以下である上記[16]記載の硬化物。
[18] アウトガスが20ppm以下である上記[16]又は[17]に記載の硬化物。
[19] アクロレインが3ppm以下である上記[16]~[18]のいずれかに記載の硬化物。
[20] 上記[1]~[15]のいずれかに記載の光半導体封止用硬化性組成物を用いて封止又はシールされた光半導体。
[21] 上記[20]に記載の光半導体を用いた光半導体装置。
 本発明の硬化性組成物は上記構成を有するため、光半導体素子を劣化させるような水分やガスの侵入又は発生を抑制することが可能となり、光半導体素子や光半導体装置の性能安定化長寿命化を達成することができる。また、高い透明性や優れた生産性を有する光半導体素子封止用硬化性組成物及びその硬化物を得ることができる。よって、本発明の硬化性組成物を封止材として使用すれば、光半導体素子や光半導体装置の性能安定化と長寿命化を達成することができる。そのため、本発明の硬化性組成物は、有機EL素子(特に、トップエミッション型有機EL素子)の封止材又は封止用シート又はフィルムとして好適に使用することができる。
 さらに、上記硬化性組成物や、上記硬化性組成物からなる封止用シート又はフィルムで封止された本発明の有機ELデバイスは、光取出し効率に優れ(すなわち、発光効率に優れ)、優れた輝度を有する。
 さらに、導電性繊維被覆粒子を使用した場合、導電性(特に、厚み方向への導電性)に優れる光半導体素子封止用硬化性組成物及びその硬化物を得ることができる。本発明の導電性繊維被覆粒子の中でも特に柔軟性を有する導電性繊維被覆粒子は、それを含む硬化性組成物を微細な凹凸を有する形状に成形した場合、導電性繊維被覆粒子が前記凹凸構造に追従して変形し細部にまで行き渡ることができるため、導電性が不良となる部分の発生を防止することができ、導電性能に優れた硬化物を得ることができる。
製造例1で得られた導電性繊維被覆粒子(本発明の導電性繊維被覆粒子)の走査型電子顕微鏡像(SEM像)の一例である。
 本発明の光半導体封止用硬化性組成物は、下記成分(A)、(B)、及び(C)を含むことを特徴とする。
成分(A):エポキシ基、オキセタニル基、ビニルエーテル基及び(メタ)アクリロイル基からなる群より選ばれる1以上の官能基を有する化合物
成分(B):脂環エポキシ化合物
成分(C):3以上の芳香環を有するカチオン成分を有し、且つ、中心元素がホウ素又はリンであるアニオン成分を有する光又は熱により酸を発生する硬化触媒
 また、本発明の光半導体封止用硬化性組成物は、下記成分(A)、(B)、(C)及び(D)を含むことを特徴とする。
成分(A):エポキシ基、オキセタニル基、ビニルエーテル基及び(メタ)アクリロイル基からなる群より選ばれる1以上の官能基を有する化合物
成分(B):脂環エポキシ化合物
成分(C):芳香環を有するカチオン成分を有し、且つ、中心元素がホウ素又はリンであるアニオン成分を有する光又は熱により酸を発生する硬化触媒
成分(D):粒子状物質と該粒子状物質を被覆する繊維状の導電性物質を含む導電性繊維被覆粒子
 成分(A)は、エポキシ基、オキセタニル基、ビニルエーテル基及び(メタ)アクリロイル基からなる群より選ばれる1以上の官能基を有する化合物(成分(B)に該当する化合物を除く)であってもよい。また、成分(A)は、エポキシ基、オキセタニル基、ビニルエーテル基及び(メタ)アクリロイル基からなる群より選ばれる1以上の官能基を有し、且つ芳香族環を有する化合物であり、成分(B)が脂環エポキシ化合物(芳香族環を含む化合物を除く)であってもよい。
 本発明の硬化性化合物は、光又は熱により硬化する化合物であり、上記成分(A)及び成分(B)を含む限り特に制限されない。本願の効果を損なわない範囲で、上記成分(A)及び成分(B)以外の硬化性化合物を含めることもできる。
[成分(A)]
 成分(A)は、エポキシ基、オキセタン基、ビニルエーテル基及び(メタ)アクリロイル基からなる群より選ばれる1以上の官能基を有する化合物であれば特に限定されない。成分(A)の化合物が有する官能基の数は特に限定されないが、WO2012/020688号公報(特許文献4)に記載の通り、一般に、エポキシ基、オキセタニル基、ビニルエーテル基及び(メタ)アクリロイル基からなる群より選ばれる2以上の官能基を有する化合物(以下、「化合物(A1)」という場合がある。)が用いられることが好ましい。また、低透過性及び高ガスバリア性の観点からは、分子量が100~1000であり、且つ、エポキシ基、オキセタニル基、ビニルエーテル基及び(メタ)アクリロイル基からなる群より選ばれる1の官能基を有する化合物(以下、「化合物(A2)」という場合がある。)を上記化合物(A1)とともに配合することがより好ましい。なお、1分子中に2つ以上のエポキシ基、オキセタン基、ビニルエーテル基及び(メタ)アクリロイル基を有する場合、2つ以上の基は、それぞれ同一であっても異なっていてもよい。
 成分(A)としては、特に限定されないが、例えば、脂環式環状骨格や芳香族環状骨格等の環状骨格を有することが好ましい。それぞれの環状骨格は、同一であっても異なっていてもよい。また、成分(A)1分子が2つ以上の環状骨格を有する場合、それぞれの複数の環状骨格は、同一であっても異なっていてもよい。
 環状骨格としては、具体的には、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フルオレン環等の単環又は縮合多環の芳香族環;シクロペンタン環、シクロヘキサン環、デカヒドロナフタレン環、ノルボルナン環、アダマンタン環等の単環又は多環の脂肪族環が挙げられる。なお、本明細書において、n個の環が縮合等した多環の環状骨格の数はn個とする。成分(A)1分子中の環状骨格の数は、例えば、1~30個であり、好ましくは1~10個、より好ましくは1~6個、さらに好ましくは1~5個である。
 化合物(A)の含有量は、低透湿性、高ガスバリア性、硬化性組成物の塗布性、硬化物の硬度等の観点からは、本発明の硬化性化合物の全量(100重量%)に対して、5~80重量%が好ましく、10~70重量%がより好ましく、20~60重量%がさらに好ましい。特に、アウトガス抑制の観点からは、10~70重量%が好ましく、20~60重量%がより好ましい。
[化合物(A1)]
 化合物(A1)は、エポキシ基、オキセタニル基、ビニルエーテル基(以上、カチオン重合性官能基)、及び(メタ)アクリロイル基(ラジカル重合性官能基)からなる群より選ばれる2以上の官能基を有する化合物である。中でも官能基としては、エポキシ基が好ましい(特に好ましくはグリシジル基)。化合物(A1)1分子中の官能基の数は、例えば2~30個であり、好ましくは2~10個、より好ましくは2~6個、さらに好ましくは2~3個である。複数個の官能基は、それぞれ同一であっても異なっていても良い。化合物(A1)の分子量は、特に制限されないが、100~10000が好ましく、より好ましくは150~5000、さらに好ましくは200~1000である。なお、化合物(A1)は、1種を単独で、又は2種以上を組み合わせて使用することができる。
 化合物(A1)としては、例えば、1分子中に2つ以上のカチオン重合性官能基と、芳香族環とを有する化合物(A1−1);1分子中に2つ以上のラジカル重合性官能基と、芳香族環とを有する化合物(A1−2)等が挙げられる。
 1分子中に2つ以上のカチオン重合性官能基と、芳香族環とを有する化合物(A1−1)としては、例えば、ビフェノールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、テトラメチルビフェノールジグリシジルエーテル等のベンゼン環と2つのエポキシ基を有する化合物;ナフタレンジオールジグリシジルエーテル、ビスフェノールフルオレンジグリシジルエーテル、ビスクレゾールフルオレンジグリシジルエーテル、ビスフェノキシエタノールフルオレンジグリシジルエーテル等の縮合環と2つのエポキシ基を有する化合物;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル骨格含有ノボラック型エポキシ樹脂、ナフタレン骨格含有ノボラック型エポキシ樹脂のような繰り返し単位を有するポリフェニルグリシジルエーテル類等のベンゼン環及び/又は縮合環と2以上のエポキシ基とを有する化合物;ビスフェノールFビス(3−エチルオキセタン−3−イルメチル)エーテル等の芳香族環と2つのオキセタニル基を有する化合物;ビフェノールジビニルエーテル、ビスフェノールAジビニルエーテル、ビスフェノールFジビニルエーテル、ビスフェノールFビス(2−ビニルオキシエチル)エーテル、ビスフェノールSジビニルエーテル、テトラメチルビフェノールジビニルエーテル等のベンゼン環と2つのビニルエーテル基を有する化合物;ナフタレンジオールジビニルエーテル、ビスフェノールフルオレンジビニルエーテル、ビスクレゾールフルオレンジビニルエーテル、ビスフェノキシエタノールフルオレンジビニルエーテル等の縮合環と2つのビニルエーテル基を有する化合物;及びこれらのハロゲン化物、又はこれらのC1−9アルキル置換体等が挙げられる。C1−9アルキル置換体におけるC1−9アルキル置換基としては、メチル、エチル、プロピル、t−ブチル基等が挙げられる。ハロゲン化物におけるハロゲンとしては、F、Cl、Br等が挙げられる。
 1分子中に2つ以上のラジカル重合性官能基と、芳香族環とを有する化合物(A1−2)としては、ビフェノールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ビスフェノールFジ(メタ)アクリレート、ビスフェノールSジ(メタ)アクリレート、テトラメチルビフェノールジ(メタ)アクリレート等のベンゼン環と2つの(メタ)アクリロイル基を有する化合物;ナフタレンジオールジ(メタ)アクリレート、ビフェノールフルオレンジ(メタ)アクリレート、ビスクレゾールフルオレンジ(メタ)アクリレート、ビスフェノキシエタノールフルオレンジ(メタ)アクリレート等の縮合環と2つの(メタ)アクリロイル基を有する化合物;及びこれらのハロゲン化物、又はこれらのC1−9アルキル置換体等が挙げられる。C1−9アルキル置換体におけるC1−9アルキル置換基としては、メチル、エチル、プロピル、t−ブチル基等が挙げられる。ハロゲン化物におけるハロゲンとしては、F、Cl、Br等が挙げられる。
 化合物(A1)としては、例えば、下記式(1)
Figure JPOXMLDOC01-appb-C000003
[式(1)中、Zはm価の多価ヒドロキシ化合物(Z(OH)m)からm個のOH基を除した基を示し、Rはグリシジル基、置換基を有しても良いオキセタニル基、ビニル基、又は(メタ)アクリロイル基を示す。mは2以上の整数である。]で表される化合物が挙げられる。上記Zは環状骨格を有する基であるのが好ましい。環状骨格としては、前記例示のものが挙げられる。
 m価の多価ヒドロキシ化合物Z(OH)mとしては、ビフェノール、ビスフェノールA、ビスフェノールF、ビスフェノールS等のベンゼン環を2個有する化合物、及びこれらのハロゲン化物、又はこれらのC1−9アルキル置換体;ナフタレンジオール、ビスフェノールフルオレン、ビスクレゾールフルオレン、ビスフェノキシエタノールフルオレン等の縮合環を有する化合物、及びこれらのハロゲン化物、又はこれらのC1−9アルキル置換体;水添ビスフェノールA、水添ビスフェノールF、水添ビスフェノールS、ジシクロヘキシル等のベンゼン環等の芳香族環を3個以上有する化合物、及びこれらのハロゲン化物、又はこれらのC1−9アルキル置換体等が挙げられる。C1−9アルキル置換体におけるC1−9アルキル置換基としては、メチル、エチル、プロピル、t−ブチル基等が挙げられる。ハロゲン化物におけるハロゲンとしては、F、Cl、Br等が挙げられる。
 化合物(A1)としては、エポキシ基、オキセタン基、ビニルエーテル基及び(メタ)アクリロイル基と、ベンゼン環又はシクロヘキサン環とを各2つ有する化合物が好ましい。化合物(A1)としては、具体的には、ビスフェノールFジグリシジルエーテル、テトラメチルビフェノールジグリシジルエーテル、又はビスフェノキシエタノールフルオレンジグリシジルエーテル等のベンゼン環を2~4個有するジグリシジルエーテル;ビスフェノールFビス(3−エチルオキセタン−3−イルメチル)エーテル等のベンゼン環を2~4個有するジオキセタニルエーテル;ビスフェノールFジビニルエーテル等のベンゼン環を2~4個有するジビニルエーテル;又はビスフェノールFジ(メタ)アクリレート等のベンゼン環を2~4個有する(メタ)アクリレート等が好ましく使用できる。化合物(A1)としては、グリシジル基とベンゼン環とを各2つ有する化合物が特に好ましい。
 よって、化合物(A1)としては、芳香環を有し、且つ、エポキシ基、オキセタニル基、ビニルエーテル基及び(メタ)アクリロイル基からなる群より選ばれる2以上の官能基を有する化合物(A1’)であることが好ましい。
 化合物(A1)(化合物(A1’)を含む)の分子量は、低湿性、高ガスバリア性、及び硬化性組成物の塗布性等の観点からは、100~10000が好ましく、200~1000がより好ましく、300~500がさらに好ましい。
 化合物(A1)の含有量は、低透湿性、高ガスバリア性、及び硬化性組成物の塗布性、硬化物の硬度等の観点からは、本発明の硬化性化合物の全量(100重量%)に対して、5~80重量%が好ましく、7~60重量%がより好ましく、10~50重量%がさらに好ましい。特に、アウトガス抑制の観点からは、5~60重量%が好ましく、7~50重量%がより好ましく、10~45重量%がさらに好ましい。
[化合物(A2)]
 化合物(A2)は、1分子中に1つのエポキシ基、オキセタン基、ビニルエーテル基及び(メタ)アクリロイル基からなる群より選ばれる1つの官能基を有し、さらに分子量が100~1000である化合物である。化合物(A2)の分子量が100~1000であると、硬化性組成物が硬化した場合に、生成する重合物の側鎖として、硬化物における自由体積をパッキングすることにより、低透湿性及び高ガスバリア性に寄与する効果が得られる。化合物(A2)における環状骨格としては、上記化合物(A1)で例示のものが挙げられる。中でも、ベンゼン環、シクロヘキサン環が好ましい。なお、化合物(A2)は、1種を単独で、又は2種以上を組合せて使用することができる。
 成分(A)として、化合物(A1)と化合物(A2)を両方用いた場合、化合物(A1)がカチオン重合性官能基を有する場合は、化合物(A2)もカチオン重合性官能基を有し、化合物(A1)がラジカル重合性官能基を有する場合は、化合物(A2)もラジカル重合性官能基を有することが好ましい。上記のカチオン官能基としては、化合物(A1)と化合物(A2)共にエポキシ基が好ましい(特に好ましくはグリシジル基)。
 化合物(A2)としては、例えば、芳香族環とカチオン重合性官能基とを有する化合物(A2−1);芳香族環とラジカル重合性官能基とを有する化合物(A2−2);脂肪族環とカチオン重合性官能基とを有する化合物(A2−3);脂肪族環とラジカル重合性官能基とを有する化合物(A2−4);アルキル基とカチオン重合性官能基とを有する化合物(A2−5);アルキル基とラジカル重合性官能基とを有する化合物(A2−6)等が挙げられる。
 芳香族環とカチオン重合性官能基とを有する化合物(A2−1)としては、例えば、グリシジルフェニルエーテル、o−,m−,又はp−フェニルフェノールグリシジルエーテル、2,3−,2,4−,2,5−,2,6−,3,4−,又は3,5−ジフェニルフェノールグリシジルエーテル、2−フェニル−4−ベンジルフェニルフェノールグリシジルエーテル、2−フェニル−5−ベンジルフェニルフェノールグリシジルエーテル、2−フェニル−6−ベンジルフェニルフェノールグリシジルエーテル、3−フェニル−5−ベンジルフェニルフェノールグリシジルエーテル、3−フェニル−6−ベンジルフェニルフェノールグリシジルエーテル、4−フェニル−2−ベンジルフェニルフェノールグリシジルエーテル、トリフェニルフェノールグリシジルエーテル、ジフェニルベンジルフェノールグリシジルエーテル、フェニルベンジルフェノールグリシジルエーテル、トリベンジルフェノールグリシジルエーテル等のフェノール骨格とエポキシ基を有する化合物;前記フェノール骨格がフェノキシエタノール骨格、フェノキシプロパノール骨格、又はフェノキシジブタノール骨格に置き換わった、エポキシ基を有する化合物(例えば、2−(2,6−ジフェニルフェノキシ)エタノールグリシジルエーテル等);グリシジルメチルフェニルエーテル、グリシジルエチルフェニルエーテル、グリシジルプロピルフェニルエーテル、グリシジル−n−ブチルフェニルエーテル、グリシジルt−ブチルフェニルエーテル等のアルキル置換ベンゼン環とエポキシ基を有する化合物(例えば、C1−9アルキル置換ベンゼン環とエポキシ基を有する化合物);メチルフェニルフェノールグリシジルエーテル、エチルフェニルフェノールグリシジルエーテル、プロピルフェニルフェノールグリシジルエーテル、n−ブチルフェニルフェノールグリシジルエーテル、t−ブチルフェニルフェノールグリシジルエーテル等のアルキル置換フェニルフェノールグリシジルエーテル(例えば、C1−9アルキル置換フェノールグリシジルエーテル);ベンジル(R)−(−)−グリシジルエーテル、フェニルベンジルグリシジルエーテル等のベンジルグリシジルエーテル化合物;フェニルビニルエーテル、フェニルフェノールビニルエーテル、フェノキシメチルビニルエーテル、(フェニルフェノキシ)メチルビニルエーテル、(2−フェニルフェノキシ)エチルビニルエーテル、(2−フェニルフェノキシ)エチルビニルエーテル等の1又は2個のベンゼン環を有するビニルエーテル化合物;フェニルオキセタン、フェニルフェノールオキセタン、フェノキシメチルオキセタン、(フェニルフェノキシ)メチルオキセタン、(2−フェノキシ)エチルオキセタン、(2−フェニルフェノキシ)エチルオキセタン等の1又は2個のベンゼン環を有するオキセタン化合物及びこれらのハロゲン化物等が挙げられる。上記C1−9アルキル置換基としては、メチル、エチル、プロピル、t−ブチル基等が挙げられる。
 芳香族環とラジカル重合性官能基とを有する化合物(A2−2)としては、例えば、フェニル(メタ)アクリレート、フェニルフェノール(メタ)アクリレート、フェノキシメチル(メタ)アクリレート、(フェニルフェノキシ)メチル(メタ)アクリレート、(2−フェノキシ)エチル(メタ)アクリレート、(2−フェニルフェノキシ)エチル(メタ)アクリレート等の1又は2個のベンゼン環と(メタ)アクリロイル基を有する化合物;及びこれらのハロゲン化物、又はこれらのC1−9アルキル置換体等が挙げられる。C1−9アルキル置換体におけるC1−9アルキル置換基としては、メチル、エチル、プロピル、t−ブチル基等が挙げられる。ハロゲン化物におけるハロゲンとしては、F、Cl、Br等が挙げられる。
 脂肪族環とカチオン重合性官能基とを有する化合物(A2−3)としては、例えば、シクロヘキシルグリシジルエーテル、ジシクロヘキシルグリシジルエーテル、トリシクロヘキシルグリシジルエーテル等のC5−20シクロアルキルグリシジルエーテル化合物;シクロヘキシルオキタセニルエーテル、ジシクロヘキシルオキタセニルエーテル、トリシクロヘキシルオキタセニルエーテル等のC5−20シクロアルキルオキタセニルエーテル化合物;シクロヘキシルビニルエーテル、ジシクロヘキシルビニルエーテル、トリシクロヘキシルビニルエーテル等のC5−20シクロアルキルビニルエーテル化合物等が挙げられる。
 脂肪族環とラジカル重合性官能基とを有する化合物(A2−4)としては、例えば、シクロヘキシル(メタ)アクリレート、ジシクロヘキシル(メタ)アクリレート、トリシクロヘキシル(メタ)アクリレート等のC5−20シクロアルキル(メタ)アクリレート化合物等が挙げられる。
 アルキル基とカチオン重合性官能基とを有する化合物(A2−5)としては、例えば、グリシジルメチルエーテル、グリシジルエチルエーテル、プロピルグリシジルエーテル、ブチルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル等のC1−9アルキルグリシジルエーテル化合物;メチルオキセタニルエーテル、エチルオキセタニルエーテル、プロピルオキセタニルエーテル、ブチルオキセタニルエーテル等のC1−9アルキルオキセタニルエーテル化合物;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル等のC1−9アルキルビニルエーテル化合物等が挙げられる。
 アルキル基とラジカル重合性官能基とを有する化合物(A2−6)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート等のC1−9アルキル(メタ)アクリレート化合物等が挙げられる。
 化合物(A2)としては、例えば、下記式(2)
Figure JPOXMLDOC01-appb-C000004
[式(2)中、Zは1価のヒドロキシ化合物(ZOH)からOH基を除した基を示し、Rは前記Rと同様である。]
で表される化合物が挙げられる。上記Zは環状骨格を有する基であることが好ましい。環状骨格としては、前記例示のものが挙げられる。
 ヒドロキシ化合物ZOHとしては、例えば、フェノール、フェニルフェノール、ジフェニルフェノール、トリフェニルフェノール等のベンゼン環を1~3個有するフェノール類;メチルフェノール、エチルフェノール、プロピルフェノール、n−ブチルフェノール、t−ブチルフェノール等のアルキル置換フェノール(例えば、C1−9アルキル置換フェノール);メチルフェニルフェノール、エチルフェニルフェノール、プロピルフェニルフェノール、n−ブチルフェニルフェノール、t−ブチルフェニルフェノール等のアルキル置換フェニルフェノール(例えば、C1−9アルキル置換フェニルフェノール);メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール等のアルキルアルコール(例えば、C1−9アルキルアルコール);ベンジルアルコール、フェニルベンジルアルコール等のベンジルアルコール類;シクロヘキシルアルコール、ジシクロヘキシルアルコール、トリシクロヘキシルアルコール等と脂肪族環を有するアルコール類;及びこれらのハロゲン化物等が挙げられる。上記C1−9アルキル置換基としては、メチル、エチル、プロピル、t−ブチル基等が挙げられる。ハロゲン化物におけるハロゲンとしては、F、Cl、Br等が挙げられる。
 化合物(A2)としては、エポキシ基、オキセタン基、ビニルエーテル基、又は(メタ)アクリロイル基と、ベンゼン環又はシクロヘキサン環とを有する化合物が好ましい。化合物(A2)としては、具体的には、グリシジルフェニルエーテル、又はo−フェニルフェノールグリシジルエーテル等のベンゼン環を1~2個有するグリシジルエーテル;2−(フェニルフェノキシ)エチル(メタ)アクリレート等のベンゼン環を1~2個有する(メタ)アクリレート等が好ましい。
 化合物(A2)としては、芳香環を有し、且つ、分子量が100~1000であり、且つ、エポキシ基、オキセタニル基、ビニルエーテル基及び(メタ)アクリロイル基からなる群より選ばれる1の官能基を有する化合物(A2’)であることが好ましい。
 化合物(A2)の分子量は、低透湿性、高ガスバリア性、及び硬化性組成物の塗布性等の観点からは、100~1000が好ましく、150~800がより好ましく、170~600がさらに好ましく、200~400が特に好ましい。
 化合物(A2)の含有量は、低透湿性、高ガスバリア性、及び硬化性組成物の塗布性等の観点からは、化合物(A1)の全量(100重量部)に対して、0~1400重量部であることが好ましく、70~850重量部がより好ましく、100~500重量部がさらに好ましい。
 また、化合物(A2)の含有量は、本発明の硬化性化合物の全量(100重量%)に対して0~70重量%であることが好ましく、5~60重量%がより好ましく、10~50重量%がさらに好ましい。
 化合物(A1)と化合物(A2)の好ましい組合せとしては、低透湿性及び高ガスバリア性の観点からは、例えば、化合物(A1)が環状骨格を2個有し、化合物(A2)が環状骨格を1個有している組合せ、化合物(A1)が環状骨格を2個有し、化合物(A2)が環状骨格を2個有している組合せ、化合物(A1)が環状骨格を5個有し、化合物(A2)が環状骨格を1個有している組合せが挙げられる。
 化合物(A1)と化合物(A2)の好ましい組合せとしては、具体的には、ビスフェノールFジグリシジルエーテルとグリシジルフェニルエーテルとの組合せ、ビスフェノールFジグリシジルエーテルとo−,m−,又はp−フェニルフェノールグリシジルエーテルとの組合せ等が挙げられる。ビスフェノールFジグリシジルエーテルとグリシジルフェニルエーテルとを組合せる場合、化合物(A2)としてのグリシジルフェニルエーテルの含有量は、化合物(A1)としてのビスフェノールFジグリシジルエーテル100重量部に対して、1~100重量部であることが特に好ましい。また、ビスフェノールFジグリシジルエーテルとo−,m−,又はp−フェニルフェノールグリシジルエーテルとを組合せる場合、化合物(A2)としてのo−,m−,又はp−フェニルフェノールグリシジルエーテルの含有量は、化合物(A1)としてのビスフェノールFジグリシジルエーテル100重量部に対して、1~1000重量部であることが好ましい。
 また、化合物(A1)と化合物(A2)の合計の含有量は、本発明の硬化性化合物の全量(100重量%)に対して、5~80重量%であることが好ましく、10~70重量%がより好ましく、20~60重量%がさらに好ましい。
[成分(B)]
 成分(B)は、脂環エポキシ化合物、即ち、分子内(一分子中)に脂環(脂肪族炭化水素環)構造とエポキシ基とを少なくとも有する化合物である。本発明の硬化性組成物において、成分(B)は、1種を単独で、又は2種以上を組合せて使用することができる。
 成分(B)としては、例えば、1分子中に2以上のカチオン重合性官能基と、脂肪族環とを有する化合物(B−1);1分子中に2以上のラジカル重合性官能基と、脂肪族環とを有する化合物(B−2)等が挙げられる。
 化合物(B−1)としては、例えば、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、水添ビスフェノールSジグリシジルエーテル、ジシクロヘキシルジグリシジルエーテル、ビス(3,4−エポキシシクロヘキシル)メチル、(3,4,3’,4’−ジエポキシ)ビシクロヘキシル等のシクロヘキサン環と2つのエポキシ基を有する化合物;シクロヘキサン環と2つのオキセタン基を有する化合物;及び、水添ビスフェノールAジビニルエーテル、水添ビスフェノールFジビニルエーテル、水添ビスフェノールSジビニルエーテル、ジシクロヘキシルジビニルエーテル等のシクロヘキサン環と2つのビニルエーテル基を有する化合物等が挙げられる。
 化合物(B−2)としては、例えば、水添ビスフェノールAジ(メタ)アクリレート、水添ビスフェノールFジ(メタ)アクリレート、水添ビスフェノールSジ(メタ)アクリレート、ジシクロヘキシルジ(メタ)アクリレート等のシクロヘキサン環と2つの(メタ)アクリロイル基を有する化合物等が挙げられる。
 化合物(B−1)としては、より詳細には、(i)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(脂環エポキシ基)を有する化合物、(ii)脂環にエポキシ基が直接単結合で結合している化合物、(iii)脂環とグリシジル基とを有する化合物等が挙げられる。
 上記(i)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(脂環エポキシ基)を有する化合物としては、公知乃至慣用のものの中から任意に選択して使用することができる。中でも、上記脂環エポキシ基としては、シクロヘキセンオキシド基が好ましい。
 上記(i)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基を有する化合物としては、透明性、耐熱性の観点で、シクロヘキセンオキシド基を有する化合物が好ましく、特に、下記式(3)で表される化合物(脂環式エポキシ化合物)が好ましい。
Figure JPOXMLDOC01-appb-C000005
 式(3)中、Xは単結合又は連結基(1以上の原子を有する2価の基)を示す。上記連結基としては、例えば、2価の炭化水素基、カルボニル基、エーテル結合、エステル結合、カーボネート基、アミド基、これらが複数個連結した基等が挙げられる。
 式(3)中のXが単結合である化合物としては、(2,3,2’,3’−ジエポキシ)ビシクロヘキシル、(2,3,3’,4’−ジエポキシ)ビシクロヘキシル、(3,4,3’,4’−ジエポキシ)ビシクロヘキシル等が挙げられ、中でも、(3,4,3’,4’−ジエポキシ)ビシクロヘキシルが好ましい。
 上記2価の炭化水素基としては、炭素数が1~18の直鎖又は分岐鎖状のアルキレン基、2価の脂環式炭化水素基等が挙げられる。炭素数が1~18の直鎖又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基等が挙げられる。上記2価の脂環式炭化水素基としては、例えば、1,2−シクロペンチレン基、1,3−シクロペンチレン基、シクロペンチリデン基、1,2−シクロヘキシレン基、1,3−シクロヘキシレン基、1,4−シクロヘキシレン基、シクロヘキシデン基等の2価のシクロアルキレン基(シクロアルキデン基を含む)等が挙げられる。
 上記連結基Xとしては、酸素原子を含有する連結基が挙げられ、具体的には、−CO−、−O−CO−O−、−COO−、−O−、−CONH−;これらの基が複数個連結した基;これらの基の1又は2以上と2価の炭化水素基の1又は2以上とが連結した基等が挙げられる。2価の炭化水素基としては上記で例示したものが挙げられる。
 式(3)で表される脂環式エポキシ化合物の代表的な例としては、下記式(3−1)~(3−10)で表される化合物等が挙げられる。中でも、式(3−1)で表される化合物[3,4−エポキシシクロヘキシルメチル(3,4−エポキシ)シクロヘキサンカルボキシレート](例えば、株式会社ダイセル製、商品名「セロキサイド2021P」等)が特に好ましい。なお、下記式(3−5)、(3−7)中のp、qは、それぞれ1~30の整数を表す。下記式(3−5)中のRは炭素数1~8のアルキレン基であり、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、s−ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基等の直鎖又は分岐鎖状のアルキレン基が挙げられる。これらの中でも、メチレン基、エチレン基、プロピレン基、イソプロピレン基等の炭素数1~3の直鎖又は分岐鎖状のアルキレン基が好ましい。下記式(3−9)、(3−10)中のn1~n6は、それぞれ1~30の整数を示す。
Figure JPOXMLDOC01-appb-C000006
 上記式(3−1)~(3−10)で表される化合物以外に、式(3)で表される脂環式エポキシ化合物の例としては、ビス(3,4−エポキシシクロヘキシルメチル)エーテル、2,2−ビス(3,4−エポキシシクロヘキシル)プロパン、1,2−ビス(3,4−エポキシシクロヘキシル)エタン等が挙げられる。
 上記(ii)脂環にエポキシ基が直接単結合で結合している化合物としては、例えば、下記式(4)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 式(4)中、Rはs価のアルコールからs個の−OHを除した基であり、s、rはそれぞれ自然数を表す。s価のアルコール[R−(OH)s]としては、2,2−ビス(ヒドロキシメチル)−1−ブタノール等の多価アルコール等(炭素数1~15のアルコール等)が挙げられる。sは1~6が好ましく、rは1~30が好ましい。sが2以上の場合、それぞれ( )内(丸括弧内)の基におけるrは同一でもよく異なっていてもよい。上記式(4)で表される化合物としては、具体的には、2,2−ビス(ヒドロキシメチル)−1−ブタノールの1,2−エポキシ−4−(2−オキシラニル)シクロヘキサン付加物(例えば、株式会社ダイセル製、商品名「EHPE3150」等)等が挙げられる。
 上記(iii)脂環とグリシジル基とを有する化合物としては、例えば、2,2−ビス[4−(2,3−エポキシプロポキシ)シクロヘキシル]プロパン、2,2−ビス[3,5−ジメチル−4−(2,3−エポキシプロポキシ)シクロヘキシル]プロパン等のビスフェノールA型エポキシ化合物を水素化した化合物(水素化ビスフェノールA型エポキシ化合物);ビス[o,o−(2,3−エポキシプロポキシ)シクロヘキシル]メタン、ビス[o,p−(2,3−エポキシプロポキシ)シクロヘキシル]メタン、ビス[p,p−(2,3−エポキシプロポキシ)シクロヘキシル]メタン、ビス[3,5−ジメチル−4−(2,3−エポキシプロポキシ)シクロヘキシル]メタン等のビスフェノールF型エポキシ化合物を水素化した化合物(水素化ビスフェノールF型エポキシ化合物);水添ビフェノール型エポキシ化合物;水添フェノールノボラック型エポキシ化合物;水添クレゾールノボラック型エポキシ化合物;ビスフェノールAの水添クレゾールノボラック型エポキシ化合物;水添ナフタレン型エポキシ化合物;トリスフェノールメタンから得られるエポキシ化合物の水添エポキシ化合物等の水素化芳香族グリシジルエーテル系エポキシ化合物が挙げられる。
 成分(B)としては、硬化性組成物の硬化速度、硬化性組成物の塗布性、及びアウトガス抑制等の観点からは、分子量が100~500であることが好ましく、150~400がより好ましく、180~300がさらに好ましい。
 中でも、成分(B)としては、1分子中に2以上の脂環エポキシ基を有し、さらに分子量が100~500である化合物が最も好ましい。
 成分(B)としては、成分(C)の硬化触媒の触媒活性への影響が少ないという観点から、成分(B)は、エステル基及び/又はカーボネート基を有する化合物が、硬化性化合物全量(100重量%)に対して、30重量%以下とすることが好ましく、エステル基及び/又はカーボネート基を有さない化合物であることがより好ましい。
 成分(B)の含有量は、硬化物の耐熱性、耐光性、耐熱衝撃性、耐吸湿リフロー性等を確保するという観点からは、本発明の硬化性化合物の全量(100重量%)に対して、20~95重量%が好ましく、30~90重量%がより好ましく、40~80重量%がさらに好ましい。また、成分(B)の含有量は、硬化性組成物の硬化速度、硬化性組成物の塗布性、及びアウトガス抑制等の観点からは、本発明の硬化性組成物の全量(100重量%)に対して、5~80重量%が好ましく、10~70重量%がより好ましく、20~60重量%がさらに好ましい。
[成分(C)]
 本発明における成分(C)は、芳香環を有するカチオン成分を有し、且つ、中心元素がホウ素又はリンであるアニオン成分を有する光又は熱により酸を発生する硬化触媒であってもよく、3以上の芳香環を有するカチオン成分を有し、且つ、中心元素がホウ素又はリンであるアニオン成分を有する光又は熱により酸を発生する硬化触媒であってもよい。
 上記カチオン成分としては、特に限定されないが、硬化触媒の触媒活性の観点からは、3以上の芳香族を有することが好ましく、4以上の芳香族を有することよりが好ましく、5以上の芳香族を有することがさらに好ましい。上記芳香環としては、例えば、1価若しくは2価のフェニル基、ナフチル基、アントラセニル基等が挙げられ、上記芳香環は、直鎖状又は分岐鎖状C1−12アルキル基、直鎖状又は分岐鎖状C1−12アルコキシル基、ハロゲン原子、−OH基、−COOH基、又は直鎖状又は分岐鎖状C1−12アルキルエステル基等の置換基を有していてもよい。上記カチオン成分としては、例えば、芳香族ジアゾニウム塩、芳香族ヨードニウム塩、芳香族スルホニウム塩、芳香族ホスホニウム塩、芳香族セレニウム塩、芳香族オキソニウム塩、芳香族アンモニウム塩等が挙げられる。中でも、上記カチオン成分としては、硬化性に優れた硬化物を形成することができる点から、芳香族スルホニウム塩が好ましい。
 上記アニオン成分としては、特に限定されないが、硬化触媒の触媒活性の観点からは、3以上の芳香族を有することが好ましく、4以上の芳香族を有することがより好ましく、5以上の芳香族を有することがさらに好ましい。上記芳香環としては、例えば、ハロゲン置換基を有する炭素数6~30の芳香族基が挙げられる。上記芳香環としては、例えば、フェニル基、ナフチル基、アントラセニル基等が挙げられる。上記ハロゲン置換基としては、例えば、塩素、フッ素等が挙げられる。上記芳香族環としては、例えば、ペンタフルオロフェニル基、2−(トリフルオロメチル)フェニル基、3−(トリフルオロメチル)フェニル基、4−(トリフルオロメチル)フェニル基、2,3−ジ(トリフルオロメチル)フェニル基、2,4−ジ(トリフルオロメチル)フェニル基、2,5−ジ(トリフルオロメチル)フェニル基、2,6−ジ(トリフルオロメチル)フェニル基、3,4−ジ(トリフルオロメチル)フェニル基、3,5−ジ(トリフルオロメチル)フェニル基等が挙げられる。
 上記アニオン成分としては、特に限定されないが、硬化触媒の触媒活性の観点からは、中心元素がホウ素又はリンであることが好ましく、例えば、テトラキス(ペンタフルオロフェニル)ボレート基、トリス(ペンタフルオロエチル)トリフルオロホスフェート塩、ヘキサフルオロホスフェート塩等が挙げられる。よって、成分(C)としては、3以上の芳香環を有するカチオン成分を有し、且つ、中心元素がホウ素又はリンであるアニオン成分を有することが好ましい。
 本発明の硬化性組成物に含まれる成分(C)としては、特に限定されないが、光カチオン重合開始剤又は熱カチオン重合開始剤が好ましい。本発明の硬化性組成物において、成分(C)は、1種を単独で、又は2種以上を組合せて使用することができる。
[光カチオン重合開始剤]
 光カチオン重合開始剤は、光の照射によってカチオン種を発生してカチオン硬化性化合物の硬化反応を開始させる光カチオン重合開始剤である。光カチオン重合開始剤は、光を吸収するカチオン部と酸の発生源となるアニオン部からなる。なお、光カチオン重合開始剤は、1種を単独で、又は2種以上を組合せて使用することができる。
 本発明の光カチオン重合開始剤としては、例えば、ジアゾニウム塩系化合物、ヨードニウム塩系化合物、スルホニウム塩系化合物、ホスホニウム塩系化合物、セレニウム塩系化合物、オキソニウム塩系化合物、アンモニウム塩系化合物、臭素塩系化合物等が挙げられる。
 中でも、スルホニウム塩系化合物を使用することが、硬化性に優れた硬化物を形成することができる点で好ましい。スルホニウム塩系化合物のカチオン部としては、例えば、トリフェニルスルホニウムイオン、ジフェニル[4−(フェニルチオ)フェニル]スルホニウムイオン、トリ−p−トリスルホニウムイオン等のアリールスルホニウムイオン(特に、トリアリールスルホニムイオン)が挙げられる。
 光カチオン重合開始剤のアニオン部としては、例えば、BF 、B(C 、PF 、[(Rf)PF6−n(Rf:水素原子の80%以上がフッ素原子で置換されたアルキル基、n:1~5の整数)、AsF 、SbF 、ペンタフルオロヒドロキシアンチモネート等が挙げられる。
 光カチオン重合開始剤としては、例えば、ジフェニル[4−(フェニルチオ)フェニル]スルホニウムテトラキス(ペンタフルオロフェニル)ボレート、ジフェニル[4−(フェニルチオ)フェニル]スルホニウムヘキサフルオロホスフェート、ジフェニル[4−(フェニルチオ)フェニル]スルホニウムトリス(ペンタフルオロエチル)トリフルオロホスフェート、(1,1´−ビフェニル)−4−イル[4−(1,1´−ビフェニル)4−イルチオフェニル]フェニルテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。市販品としては、例えば、商品名「サイラキュアUVI−6970」、「サイラキュアUVI−6974」、「サイラキュアUVI−6990」、「サイラキュアUVI−950」(以上、米国ユニオンカーバイド社製)、「イルガキュア250」、「イルガキュア261」、「イルガキュア264」(以上、チバ・スペシャルティ・ケミカルズ社製)、「SP−150」、「SP−151」、「SP−170」、「オプトマーSP−171」(以上、(株)ADEKA製)、「CG−24−61」(チバ・スペシャルティ・ケミカルズ社製)、「DAICAT II」((株)ダイセル製)、「UVAC1590」、「UVAC1591」(以上、ダイセル・サイテック(株)製)、「CI−2064」、「CI−2639」、「CI−2624」、「CI−2481」、「CI−2734」、「CI−2855」、「CI−2823」、「CI−2758」、「CIT−1682」(以上、日本曹達(株)製)、「PI−2074」(ローディア社製、ペンタフルオロフェニルボレートトルイルクミルヨードニウム塩)、「FFC509」(3M社製)、「BBI−102」、「BBI−101」、「BBI−103」、「MPI−103」、「TPS−103」、「MDS−103」、「DTS−103」、「NAT−103」、「NDS−103」(以上、ミドリ化学(株)製)、「CD−1010」、「CD−1011」、「CD−1012」(米国、Sartomer社製)、「CPI−100P」、「CPI−101A」、(以上、サンアプロ(株)製)等が使用できる。
[熱カチオン重合開始剤]
 熱カチオン重合開始剤としては、例えば、ジアゾニウム塩系化合物、ヨードニウム塩系化合物、スルホニウム塩系化合物、ホスホニウム塩系化合物、セレニウム塩系化合物、オキソニウム塩系化合物、アンモニウム塩系化合物、臭素塩系化合物等が挙げられる。なお、熱カチオン重合開始剤は、1種を単独で、又は2種以上を組合せて使用することができる。
 熱カチオン重合開始剤としては、例えば、アルミニウムやチタン等の金属とアセト酢酸若しくはジケトン類とキレート化合物とのトリフェニルシラノール等のシラノールとの化合物、又は、アルミニウムやチタン等の金属とアセト酢酸若しくはジケトン類とのキレート化合物とビスフェノールS等のフェノール類との化合物であってもよい。市販品としては、例えば、商品名「サンエイドSI−45」、「サンエイドSI−47」、「サンエイドSI−60」、「サンエイドSI−60L」、「サンエイドSI−80」、「サンエイドSI−80L」、「サンエイドSI−100」、「サンエイドSI−100L」、「サンエイドSI−110L」、「サンエイドSI−180L」(以上、三新化学工業(株)製)、「CI−2921」、「CI−2920」、「CI−2946」、「CI−3128」、「CI−2624」、「CI−2639」、「CI−2064」(以上、日本曹達(株)製)、「PP−33」、「CP−66」、「CP−77」((株)アデカ製)、「FC−509」、「FC−520」(以上、3M社製)等が使用できる。
 成分(C)の含有量は、特に制限されないが、本発明の硬化性化合物の全量(100重量部)に対して、0.01~8重量部であることが好ましく、0.1~5重量部がより好ましく、0.2~4重量部がさらに好ましく、0.5~3重量部が特に好ましい。0.01重量部以上であると、硬化性組成物の硬化速度を高め、硬化不良を防止し、低透過性、高ガスバリア性、耐熱性等に寄与することができる。また、8重量%以下であると、コスト面で有利であると共に、反応の不均一性の抑制及びアウトガスの抑制等に寄与することができる。
 特に、成分(B)の含有量が硬化性組成物の全量(100重量%)に対して30~95重量%であり、且つ、成分(C)の含有量が硬化性組成物の全量(100重量%)に対して0.01~8重量%であることが好ましい。
 成分(C)の種類や含有量につき、上記の範囲から選択することにより、特に、硬化性組成物の硬化速度を高める効果が得られる一方、アウトガスに対しては、その発生を促進する効果がある。これに対して、成分(B)の種類、分子量、含有量等につき、上記の範囲から選択することにより、成分(C)の含有量を少なくする等によりアウトガスを抑制しつつ、硬化性組成物の硬化速度を高めることができるため、低透湿性、高ガスバリア性、耐熱性、硬化性、コスト、アウトガス抑制を兼ね備えた、優れた硬化物を得ることができる。
[硬化促進剤]
 本発明の硬化性組成物は、硬化速度を促進する硬化促進剤を含んでもよい。硬化促進剤としては、周知慣用の硬化促進剤を使用することができ、例えば、1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)、及びその塩(例えば、フェノール塩、オクチル酸塩、p−トルエンスルホン酸塩、テトラフェニルボレート塩);1,5−ジアザビシクロ[4.3.0]ノネン−5(DBN)、及びその塩(例えば、ホスホニウム塩、スルホニウム塩、4級アンモニウム塩、ヨードニウム塩);ベンジルジメチルアミン、2,4,6−トリス(ジメチルアミノメチル)フェノール、N,N−ジメチルシクロヘキシルアミン等の3級アミン;2−エチル−4−メチルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール等のイミダゾール;リン酸エステル、トリフェニルホスフィン等のホスフィン類;テトラフェニルホスホニウムテトラ(p−トリル)ボレート等のホスホニウム化合物;オクチル酸スズ、オクチル酸亜鉛等の有機金属塩;金属キレート等が挙げられる。これらは1種を単独で、又は2種以上を組合せて使用することができる。
 また、硬化促進剤として、U−CAT SA 506、U−CAT SA 102、U−CAT 5003、U−CAT 18X(以上、サンアプロ(株)製)、TPP−K、TPP−MK(以上、北興化学工業(株)製)PX−4ET(日本化学工業(株)製)等の市販品を使用することもできる。
 硬化促進剤の含有量としては、硬化性組成物の硬化促進効果、硬化物の着色防止等の観点から、本発明の硬化性組成物の全量(100重量%)に対して、0.05~5重量%が好ましく、0.1~3重量%がより好ましく、0.2~3重量%がさらに好ましく、0.25~2.5重量%が特に好ましい。
[光ラジカル重合開始剤]
 本発明の硬化性組成物は、光ラジカル重合開始剤を含んでもよい。光ラジカル重合開始剤としては、例えば、ベンゾフェノン、アセトフェノンベンジル、ジベンジルメチルケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ジメトキシアセトフェノン、ジメトキシフェニルアセトフェノン、ジエトキシアセトフェノン、ジフェイニルジサルファイト、オルトベンゾイル安息香酸メチル、4−ジメチルアミノ安息香酸エチル(日本化薬(株)製、商品名「カヤキュアEPA」等)、2,4−ジエチルチオキサンソン(日本化薬(株)製、商品名「カヤキュアDETX」等)、2−メチル−1−[4−(メチル)フェニル]−2−モルホリノプロパノン−1(チバガイギー(株)製、商品名「イルガキュア907」等)、2−ジメチルアミノ−2−(4−モルホリノ)ベンゾイル−1−フェイニルプロパン等の2−アミノ−2−ベンゾイル−1−フェニルアルカノン化合物、テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン、ベンジル、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン、4,4−ビスジエチルアミノベンゾフェノン等のアミノベンゼン誘導体、2,2’−ビス(2−クロロフェニル)−4,5,4’,5’−テトラフェニル−1,2’−ビイミダゾール(保土谷化学(株)製、商品名「B−CIM」等)等のイミダゾール化合物、2,6−ビス(トリクロロメチル)−4−(4−メトキシナフタレン−1−イル)−1,3,5−トリアジン等のハロメチル化トリアジン化合物、2−トリクロロメチル−5−(2−ベンゾフラン2−イル−エテニル)−1,3,4−オキサジアゾール等のハロメチルオキサジアゾール化合物等が挙げられる。これらの光ラジカル重合開始剤は1種を単独で、又は2種以上を組合せて使用することができる。また、必要に応じて光増感剤を加えることができる。光ラジカル重合開始剤としては、感度及び耐薬品性等の観点から、イミダゾール化合物とアミノベンゼン誘導体の組合せ、2−アミノ−2−ベンゾイル−1−フェニルアルカン化合物、ハロメチル化トリアジン化合物、ハロメチルオキサジアゾール化合物等が好ましい。
[熱ラジカル重合開始剤]
 本発明の硬化性組成物は、熱ラジカル重合開始剤を含んでいてもよい。熱ラジカル重合開始剤としては、例えば、有機過酸化物類が挙げられる。有機過酸化物類としては、ジアルキルパーオキサイド、アシルパーオキサイド、ハイドロパーオキサイド、ケトンパーオキサイド、パーオキシエステル等を使用することができる。有機過酸化物類の具体例としては、ベンゾイルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサネート、2,5−ジメチル−2,5−ジ(2−エチルヘキサノイル)パーオキシヘキサン、t−ブチルパーオキシベンゾエート、t−ブチルパーオキサイド、クメンハイドロパーオキサイド、ジクミルパーオキサイド、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ジブチルパーオキシヘキサン、2,4−ジクロロベンゾイルパーオキサイド、ジ−t−ブチルパーオキサイドジ−イソプロピルベンゼン、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、メチルエチルケトンパーオキシド、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート等が挙げられる。さらに、上記熱ラジカル重合開始剤とともに、ナフテン酸コバルト、ナフテン酸マンガン、ナフテン酸亜鉛、オクテン酸コバルト等のナフテン酸やオクテン酸のコバルト、マンガン、鉛、亜鉛、バナジウム等の金属塩を併用することができる。同様に、ジメチルアニリン等の3級アミンも使用することができる。
 光ラジカル重合開始剤又は熱ラジカル重合開始剤の含有量としては、本発明の硬化性組成物の全量(100重量%)に対して、0.1~5重量%が好ましく、0.5~4重量%がより好ましい。
 本発明の硬化性組成物において、光ラジカル重合開始剤又は熱ラジカル重合開始剤は、1種を単独で、又は2種以上を組合せて使用することができる。
[硬化遅延剤]
 本発明の硬化性組成物は、重合開始剤として光カチオン重合開始剤を含有する場合は、硬化遅延剤を含有してもよい。硬化遅延剤としては、例えば、ピロール、ピラゾール、3,5−ジメチルピラゾール、イミダゾール、1,2,3−トリアゾール、1,2,4−トリアゾール等のアゾール系化合物;エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ブチレングリコール等の(ポリ)アルキレングリコール、グリセリン、ポリグリセリン、ペンタエリスリトール、ポリカプロラクトンポリオール、クラウンエーテル等のポリオール化合物(特に、脂肪族ポリオール化合物)等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。前記硬化遅延剤を添加することで、本発明の硬化性組成物に光を照射した後の可使時間及び硬化開始時間を制御することができる。より詳細には、前記硬化遅延剤は、UV照射することにより光カチオン重合開始剤から発生するカチオンをトラップして硬化性化合物のカチオン重合を抑制することができ、加熱処理を施すとカチオンを放出して硬化性化合物のカチオン重合を進行させる作用を有する。前記硬化遅延剤の中でもアゾール系化合物は、アウトガス発生の原因とはならない点で好ましく、硬化性組成物に添加することにより硬化性組成物の可使時間を自由にコントロールすることができ、硬化性組成物の塗膜にUVを照射し、その後有機EL素子に貼り合わせて加熱処理を施すことにより、有機EL素子をUVに直に曝すことなく封止することができ、低アウトガス性及び防湿性を有する硬化物で有機EL素子を封止することができる。
 硬化遅延剤の使用量(配合量)は、光カチオン重合開始剤の使用量(2種以上含有する場合はその総量)の、例えば5~25重量%程度、好ましくは10~25重量%である。
[成分(D)]
 本発明における成分(D)は、粒子状物質と、該粒子状物質を被覆する繊維状の導電性物質(「導電性繊維」と称する場合がある)とを含む導電性繊維被覆粒子である。なお、本発明の導電性繊維被覆粒子において「被覆する」とは、導電性繊維が粒子状物質の表面の一部又は全部を覆った状態を意味する。本発明の導電性繊維被覆粒子においては、導電性繊維が粒子状物質の表面の少なくとも一部を被覆していればよく、例えば、被覆された部分よりも被覆されていない部分の方が多く存在していてもよい。なお、本発明の導電性繊維被覆粒子においては、必ずしも粒子状物質と導電性繊維とが接触している必要はないが、通常、導電性繊維の一部は粒子状物質の表面に接触している。
 図1は、本発明の導電性繊維被覆粒子の走査型電子顕微鏡像の一例である。図1に示すように、本発明の導電性繊維被覆粒子は、粒子状物質(図1における真球状の物質)の少なくとも一部が導電性繊維(図1における繊維状の物質)により被覆された構成を有する。
[粒子状物質]
 本発明の導電性繊維被覆粒子を構成する粒子状物質は、粒子状の構造体である。
 上記粒子状物質を構成する材料(素材)は、特に限定されず、例えば、金属、プラスチック、ゴム、セラミック、ガラス、シリカなどの公知乃至慣用の材料が挙げられる。本発明においては、なかでも、透明プラスチック、ガラス、シリカなどの透明な材料を使用することが好ましく、特に、柔軟性を有する点で透明プラスチックを使用することが好ましい。
 上記透明プラスチックには熱硬化性樹脂及び熱可塑性樹脂等が含まれる。前記熱硬化性樹脂としては、例えば、ポリ(メタ)アクリレート樹脂;ポリスチレン樹脂;ポリカーボネート樹脂;ポリエステル樹脂;ポリウレタン樹脂;エポキシ樹脂;ポリスルホン樹脂;非晶性ポリオレフィン樹脂;ジビニルベンゼン、ヘキサトリエン、ジビニルエーテル、ジビニルスルホン、ジアリルカルビノール、アルキレンジアクリレート、オリゴ又はポリアルキレングリコールジアクリレート、オリゴ又はポリアルキレングリコールジメタクリレート、アルキレントリアクリレート、アルキレンテトラアクリレート、アルキレントリメタクリレート、アルキレンテトラメタクリレート、アルキレンビスアクリルアミド、アルキレンビスメタクリルアミド、両末端アクリル変性ポリブタジエンオリゴマーなどの多官能性モノマーを単独で又はその他のモノマーと重合させて得られる網目状ポリマー;フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂等が挙げられる。前記熱可塑性樹脂としては、例えば、エチレン/酢酸ビニル共重合体、エチレン/酢酸ビニル/不飽和カルボン酸共重合体、エチレン/エチルアクリレート共重合体、エチレン/メチルメタクリレート共重合体、エチレン/アクリル酸共重合体、エチレン/メタクリル酸共重合体、エチレン/無水マレイン酸共重合体、エチレン/アミノアルキルメタクリレート共重合体、エチレン/ビニルシラン共重合体、エチレン/グリシジルメタクリレート共重合体、エチレン/ヒドロキシエチルメタクリレート共重合体、(メタ)アクリル酸メチル/スチレン共重合体、アクリロニトリル/スチレン共重合体等が挙げられる。
 上記粒子状物質の形状は、特に限定されないが、例えば、球状(真球状、略真球状、楕円球状など)、多面体状、棒状(円柱状、角柱状など)、平板状、りん片状、不定形状等が挙げられる。本発明においては、中でも、導電性繊維被覆粒子を高い生産性で製造でき、硬化性化合物と均一に分散しやすく、樹脂全体への導電性の付与が容易である点で、上記粒子状物質の形状としては、球状、棒状が好ましく、球状(特に、真球状)が特に好ましい。
 上記粒子状物質の平均アスペクト比は、特に限定されないが、20未満(例えば、1以上、20未満)が好ましく、1~10が特に好ましい。平均アスペクト比が上記範囲を上回ると、少量の導電性繊維被覆粒子の配合によって硬化性化合物に優れた導電性を発現させることが困難となる場合がある。なお、上記粒子状物質の平均アスペクト比は、例えば、電子顕微鏡(SEM、TEM)を用いて十分な数(例えば、100個以上、好ましくは300個以上;特に、100個、300個)の粒子状物質について電子顕微鏡像を撮影し、これらの粒子状物質のアスペクト比を計測し、算術平均することにより測定できる。
 また、上記粒子状物質の構成は特に限定されず、単層の構成であってもよいし、多層(複層)の構成であってもよい。また、上記粒子状物質は、中実粒子、中空粒子、多孔粒子などのいずれであってもよい。
 上記粒子状物質の平均粒子径は、特に限定されないが、0.1~100μmが好ましく、1~50μmがより好ましく、5~30μmがさらに好ましい。平均粒子径が上記範囲を下回ると、少量の導電性繊維被覆粒子の配合によって優れた導電性を発現させることが困難となる場合がある。一方、平均粒子径が上記範囲を上回ると、有機EL素子の封止層の厚みよりも平均粒子径が大きくなり、均一な厚みの塗膜を形成することが困難となる傾向がある。上記粒子状物質が異方形状の場合には、長軸(最も長軸の)方向の平均粒子径が上記範囲内に制御されることが好ましい。なお、上記粒子状物質の平均粒子径は、レーザー回折・散乱法によるメディアン径(d50)である。
 上記粒子状物質は透明であることが好ましい。具体的には、上記粒子状物質の可視光波長領域における全光線透過率は、特に限定されないが、70%以上が好ましく、75%以上が特に好ましい。全光線透過率が上記範囲を下回ると、硬化物(導電性繊維被覆粒子を含む)の透明性が低下する場合がある。なお、上記粒子状物質の可視光波長領域における全光線透過率は、粒子状物質の原料である単量体をガラス間で80~150℃の温度領域で重合させて、厚さ1mmの平板を得、当該平板の可視光波長領域における全光線透過率をJIS K7361−1に準拠して測定することにより求められる。
 少なくとも一方の面に凹凸を有する導電性基板の凹凸を有する面と他の導電性基板の一方の面を接着する用途に使用する場合は、上記粒子状物質は柔軟性を有することが好ましく、10%圧縮強度は例えば10kgf/mm以下、好ましくは5kgf/mm以下、特に好ましくは3kgf/mm以下である。10%圧縮強度が上記範囲である粒子状物質を含む導電性繊維被覆粒子は加圧することにより微細な凹凸構造に追従して変形することができる。そのため、該導電性繊維被覆粒子を含有する硬化性組成物を微細な凹凸構造を有する形状に硬化した場合、該粒子状物質を細部にまで行き渡らせることができ、導電性が不良となる部分の発生を防止することができるためである。
 上記粒子状物質の屈折率は、特に限定されないが、1.4~2.7が好ましく、1.5~1.8が特に好ましい。なお、上記粒子状物質の屈折率は、該粒子状物質がプラスチック粒子の場合には、粒子状物質の原料を80~150℃で重合させ、縦20mm×横6mmの試験片を作成し、中間液としてモノブロモナフタレンを使用してプリズムと該試験片とを密着させた状態で、多波長アッベ屈折計(商品名「DR−M2」、(株)アタゴ製)を使用し、20℃、ナトリウムD線での屈折率を測定することにより求めることができる。
 また、上記粒子状物質は、本発明の硬化性化合物(例えば、成分(A)や成分(B))の硬化物との屈折率差が小さいことが好ましく、導電性繊維被覆粒子(成分(D))を構成する粒子状物質と本発明の硬化性化合物の硬化物の屈折率差(25℃、波長589.3nmにおける)の絶対値は、0.1以下(好ましくは0.5以下、特に好ましくは0.02以下)であることが好ましい。すなわち、本発明の硬化性組成物に含まれる導電性繊維被覆粒子と硬化性化合物は、下記式を満たすことが好ましい。
 |導電性繊維被覆粒子を構成する粒子状物質の屈折率(25℃、波長589.3nmにおける)−硬化性化合物の硬化物の屈折率(25℃、波長589.3nmにおける)|≦0.1
 さらに、上記粒子状物質は、シャープな粒度分布を有すること(=粒子径のバラツキが少ないこと)が、より少ない使用量で優れた導電性を付与することができる点で好ましく、変動係数(CV値)が40以下(特に好ましくは30以下)であることが好ましい。
 なお、粒子状物質の体積基準の粒度分布における変動係数は、以下の式より算出される。また、粒度分布は粒度分布測定装置(商品名「Coulter Multisizer」、ベックマン・コールター社製)等を使用して測定することができる。
 変動係数(CV値)(%)=(S2/Dn)×100
(式中、S2は、体積基準の粒度分布における標準偏差を示し、Dnは、体積基準におけるメディアン径(D50)を示す)
 上記粒子状物質は、公知乃至慣用の方法により製造でき、その製造方法は特に限定されない。例えば、金属粒子の場合には、CVD法や噴霧熱分解法等の気相法や、化学的還元反応による湿式法などにより製造できる。また、プラスチック粒子の場合には、例えば、上記で例示した樹脂(ポリマー)を構成するモノマーを懸濁重合法、乳化重合法、シード重合法、分散重合法等の公知の重合方法により重合する方法などにより製造できる。
 本発明においては市販品を使用することもできる。熱硬化性樹脂から成る粒子状物質としては、例えば、商品名「テクポリマー MBXシリーズ」、「テクポリマー BMXシリーズ」、「テクポリマー ABXシリーズ」、「テクポリマー ARXシリーズ」、「テクポリマー AFXシリーズ」(以上、積水化成品工業(株)製)、商品名「ミクロパールSP」、「ミクロパールSI」(以上、積水化学工業(株)製);熱可塑性樹脂から成る粒子状物質としては、例えば、商品名「ソフトビーズ」(住友精化(株)製)、製品名「デュオマスター」(積水化成品工業(株)製)等を使用することができる。
[繊維状の導電性物質(導電性繊維)]
 本発明の導電性繊維被覆粒子を構成する導電性繊維は、導電性を有する繊維状の構造体(線状構造体)である。上記導電性繊維の形状は繊維状(ファイバー状)であればよく、特に限定されないが、その平均アスペクト比は、10以上(例えば、20~5000)が好ましく、50~3000がより好ましく、100~1000がさらに好ましい。平均アスペクト比が上記範囲を下回ると、少量の導電性繊維被覆粒子の配合によって優れた導電性を発現させることが困難となる場合がある。上記導電性繊維の平均アスペクト比は、粒子状物質の平均アスペクト比と同様の手順で測定できる。なお、上記導電性繊維における「繊維状」の概念には、「ワイヤー状」、「ロッド状」等の各種の線状構造体の形状も含まれる。また、本明細書においては、平均太さが1000nm以下の繊維を「ナノワイヤ」と称する場合がある。
 上記導電性繊維の平均太さ(平均直径)は、特に限定されないが、1~400nmが好ましく、10~200nmがより好ましく、50~150nmがさらに好ましい。平均太さが上記範囲を下回ると、導電性繊維同士が凝集しやすく、導電性繊維被覆粒子の製造が困難となる場合がある。一方、平均太さが上記範囲を上回ると、粒子状物質を被覆することが困難となり、効率的に導電性繊維被覆粒子を得ることができなくなる場合がある。上記導電性繊維の平均太さは、電子顕微鏡(SEM、TEM)を用いて十分な数(例えば、100個以上、好ましくは300個以上;特に、100個、300個)の導電性繊維について電子顕微鏡像を撮影し、これらの導電性繊維の太さ(直径)を計測し、算術平均することにより測定できる。
 上記導電性繊維の平均長さは、特に限定されないが、1~100μmが好ましく、5~80μmがより好ましく、10~50μmがさらに好ましい。平均長さが上記範囲を下回ると、粒子状物質を被覆することが困難となり、効率的に導電性繊維被覆粒子を得ることができなくなる場合がある。一方、平均長さが上記範囲を上回ると、導電性繊維が複数の粒子に付着乃至吸着し、導電性繊維被覆粒子の凝集(分散性の悪化)を引き起こす場合がある。上記導電性繊維の平均長さは、電子顕微鏡(SEM、TEM)を用いて十分な数(例えば、100個以上、好ましくは300個以上;特に、100個、300個)の導電性繊維について電子顕微鏡像を撮影し、これらの導電性繊維の長さを計測し、算術平均することにより測定できる。なお、導電性繊維の長さについては、直線状に伸ばした状態で計測すべきであるが、現実には屈曲しているものが多いため、電子顕微鏡像から画像解析装置を用いて導電性繊維の投影径及び投影面積を算出し、円柱体を仮定して下記式から算出するものとする。
 長さ=投影面積/投影径
 上記導電性繊維を構成する材料(素材)は、導電性を有する素材であればよく、例えば、金属、半導体、炭素材料、導電性高分子等が挙げられる。
 上記金属としては、例えば、金、銀、銅、鉄、ニッケル、コバルト、錫、及びこれらの合金等の公知乃至慣用の金属が挙げられる。本発明においては、中でも、導電性に優れる点で銀が好ましい。
 上記半導体としては、例えば、硫化カドミウム、セレン化カドミウム等の公知乃至慣用の半導体が挙げられる。
 上記炭素材料としては、例えば、炭素繊維、カーボンナノチューブ等の公知乃至慣用の炭素材料が挙げられる。
 上記導電性高分子としては、例えば、ポリアセチレン、ポリアセン、ポリパラフェニレン、ポリパラフェニレンビニレン、ポリピロール、ポリアニリン、ポリチオフェン、及びこれらの誘導体(例えば、共通するポリマー骨格にアルキル基、ヒドロキシル基、カルボキシル基、エチレンジオキシ基等の置換基を有するもの;具体的には、ポリエチレンジオキシチオフェン等)等が挙げられる。本発明においては、中でも、ポリアセチレン、ポリアニリン及びその誘導体、ポリピロール及びその誘導体、ポリチオフェン及びその誘導体が好ましい。なお、上記導電性高分子には、公知乃至慣用のドーパント(例えば、ハロゲン、ハロゲン化物、ルイス酸等のアクセプター;アルカリ金属、アルカリ土類金属等のドナー等)が含まれていてもよい。
 本発明の導電性繊維としては導電性ナノワイヤが好ましく、特に、金属ナノワイヤ、半導体ナノワイヤ、炭素繊維、カーボンナノチューブ、及び導電性高分子ナノワイヤからなる群より選択される少なくとも一種の導電性ナノワイヤが好ましく、特に導電性に優れる点で銀ナノワイヤが最も好ましい。
 上記導電性繊維は、公知乃至慣用の製造方法により製造することができる。例えば、上記金属ナノワイヤは、液相法や気相法等により製造することができる。より具体的には、銀ナノワイヤは、例えば、Mater.Chem.Phys.2009,114,333−338、Adv.Mater.2002,14,P833−837や、Chem.Mater.2002,14,P4736−4745、特表2009−505358号公報に記載の方法により製造することができる。また、金ナノワイヤは、例えば、特開2006−233252号公報に記載の方法により製造することができる。また、銅ナノワイヤは、例えば、特開2002−266007号公報に記載の方法により製造することができる。また、コバルトナノワイヤは、例えば、特開2004−149871号公報に記載の方法により製造することができる。さらに、半導体ナノワイヤは、例えば、特開2010−208925号公報に記載の方法により製造することができる。上記炭素繊維は、例えば、特開平06−081223号公報に記載の方法により製造することができる。上記カーボンナノチューブは、例えば、特開平06−157016号公報に記載の方法により製造することができる。上記導電性高分子ナノワイヤは、例えば、特開2006−241334号公報、特開2010−76044号公報に記載の方法により製造することができる。上記導電性繊維としては、市販品を使用することも可能である。
 本発明の導電性繊維被覆粒子は、上記粒子状物質と導電性繊維とを溶媒中で混合することにより製造することができる。具体的には、本発明の導電性繊維被覆粒子の製造方法として、例えば、下記の(1)~(4)の方法等が挙げられる。
(1)上記粒子状物質を溶媒に分散させた分散液(「粒子分散液」と称する)と、上記導電性繊維を溶媒に分散させた分散液(「繊維分散液」と称する)とを混合し、必要に応じて溶媒を除去して、本発明の導電性繊維被覆粒子(又は該導電性繊維被覆粒子の分散液)を得る。
(2)上記粒子分散液に上記導電性繊維を配合し、混合した後、必要に応じて溶媒を除去して、本発明の導電性繊維被覆粒子(又は該導電性繊維被覆粒子の分散液)を得る。
(3)上記繊維分散液に上記粒子状物質を配合し、混合した後、必要に応じて溶媒を除去して、本発明の導電性繊維被覆粒子(又は該導電性繊維被覆粒子の分散液)を得る。
(4)溶媒に上記粒子状物質及び上記導電性繊維を配合し、混合した後、必要に応じて溶媒を除去して、本発明の導電性繊維被覆粒子(又は該導電性繊維被覆粒子の分散液)を得る。
 本発明においては、中でも、均質な導電性繊維被覆粒子が得られる点で、上記(1)の方法が好ましい。
 本発明の導電性繊維被覆粒子を製造する際に使用される溶媒としては、例えば、水;メタノール、エタノール、プロパノール、イソプロパノール、ブタノール等のアルコール;アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)等のケトン;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル;酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル等が挙げられる。これらは一種を単独で、又は二種以上を組み合わせて(即ち、混合溶媒として)使用することができる。本発明においては、中でも、アルコール、ケトンが好ましい。
 また、上記溶媒としては、液状のものであれば本発明の硬化性化合物(例えば、エポキシ化合物)を使用することも可能である。液状の硬化性化合物を溶媒として使用することにより、溶媒を除去する工程を経ることなく、硬化性化合物と本発明の導電性繊維被覆粒子とを含む硬化性組成物を得ることができる。
 上記溶媒の粘度は、特に限定されないが、導電性繊維被覆粒子を効率的に製造する観点で、25℃における粘度として、10cP以下(例えば、0.1~10cP)が好ましく、0.5~5cPが特に好ましい。なお、溶媒の25℃における粘度は、例えば、E型粘度計(商品名「VISCONIC」、(株)トキメック製)を用いて測定することができる(ローター:1°34’×R24、回転数:0.5rpm、測定温度:25℃)。
 上記溶媒の1気圧における沸点は、導電性繊維被覆粒子を効率的に製造することができる点で、200℃以下が好ましく、150℃以下がより好ましく、120℃以下がさらに好ましい。
 溶媒中で粒子状物質と導電性繊維とを混合する際の上記粒子状物質の含有量は、溶媒100重量部に対して、例えば0.1~50重量部程度、好ましくは1~30重量部である。粒子状物質の含有量を上記範囲に制御することにより、導電性繊維被覆粒子をより効率的に生成することができる。
 溶媒中で粒子状物質と導電性繊維とを混合する際の上記導電性繊維の含有量は、溶媒100重量部に対して、例えば0.1~50重量部程度、好ましくは1~30重量部である。導電性繊維の含有量を上記範囲に制御することにより、導電性繊維被覆粒子をより効率的に生成することができる。
 溶媒中で粒子状物質と導電性繊維とを混合する際の上記粒子状物質と上記導電性繊維の割合は、粒子状物質の表面積と導電性繊維の投影面積との比[表面積/投影面積]が、例えば100/1~100/100程度、100/10~100/50となるような割合であることが好ましい。上記比を上記範囲に制御することにより、導電性繊維被覆粒子をより効率的に生成することができる。なお、上記粒子状物質の表面積は、BET法(JIS Z8830に準拠)により求めた比表面積に粒子状物質の質量(使用量)を乗ずる方法により測定できる。また、上記導電性繊維の投影面積は、上述のように、電子顕微鏡(SEM、TEM)を用いて十分な数(例えば、100個以上、好ましくは300個以上;特に、100個、300個)の導電性繊維について電子顕微鏡像を撮影し、画像解析装置を用いてこれらの導電性繊維の投影面積を算出し、算術平均することにより測定できる。
 粒子状物質と導電性繊維とを混合後、さらに溶媒を除去することによって、導電性繊維被覆粒子を固体として得ることができる。溶媒の除去は、特に限定されず、例えば、加熱、減圧留去等の公知乃至慣用の方法により実施できる。なお、溶媒は必ずしも除去する必要はなく、例えば、本発明の導電性繊維被覆粒子の分散液としてそのまま使用することもできる。
 本発明の導電性繊維被覆粒子は、上述のように、原料(粒子状物質及び導電性繊維)を溶媒中で混合することによって製造することができ、複雑な工程を必要としないため、製造コストの面で有利である。
 特に、粒子状物質と導電性繊維の組み合わせとして、平均粒子径A[μm]の粒子状物質と平均長さA[μm]以上(好ましくはA×0.5[μm]以上、より好ましくはA×1.0[μm]以上、さらに好ましくはA×1.5[μm]以上)の導電性繊維を使用することによって、より効率的に本発明の導電性繊維被覆粒子を製造することができる。特に、真球状又は略真球状の粒子状物質の場合には、平均周長B[μm]の粒子状物質と平均長さ(B×1/6)[μm]以上(好ましくは、B[μm]以上)の導電性繊維を使用することが好ましい。なお、上記粒子状物質の平均周長は、電子顕微鏡(SEM、TEM)を用いて十分な数(例えば、100個以上、好ましくは300個以上;特に、100個、300個等)の粒子状物質について電子顕微鏡像を撮影し、これらの粒子状物質の周長を計測し、算術平均することにより求められる。
 本発明の導電性繊維被覆粒子を構成する粒子状物質と導電性繊維の割合は、粒子状物質の表面積と導電性繊維の投影面積との比[表面積/投影面積]が、例えば100/1~100/100程度(特に100/10~100/50)となるような割合であることが好ましい。上記比を上記範囲に制御することにより、硬化物の透明性を確保しつつ、より効率的に導電性を付与することができる。なお、上記粒子状物質の表面積及び導電性繊維の投影面積は、それぞれ上記の方法により測定できる。
 本発明の導電性繊維被覆粒子は上記構成を有するため、少量の添加で優れた導電性(特に、厚み方向への導電性)を付与することができ、透明性と導電性に優れた硬化物を形成することができる。
 そして、本発明の導電性繊維被覆粒子が柔軟性を有する場合(例えば、10%圧縮強度が10kgf/mm以下の場合)は、当該導電性繊維被覆粒子を含む硬化性組成物を微細な凹凸を有する形状に成形した際、導電性繊維被覆粒子が前記凹凸構造に追従して変形し細部にまで行き渡るため、導電性が不良となる部分の発生を防止することができ、導電性能に優れた有機ELデバイスを形成することができる。
 導電性繊維被覆粒子は、1種を単独で、又は2種以上を組合せて使用することができる。硬化性組成物における導電性繊維被覆粒子(成分(D))の含有量(配合量)は、本発明の硬化性化合物100重量部に対して、例えば、0.01~30重量部程度、好ましくは0.1~20重量部、より好ましくは0.3~15重量部、特に好ましくは0.5~5重量部である。導電性繊維被覆粒子の含有量が0.01重量部未満であると、用途によっては、得られる硬化物の導電性が不十分となる場合がある。一方、導電性繊維被覆粒子の含有量が30重量部を超えると、用途によっては、得られる硬化物の透明性が不十分となる場合がある。
 本発明の硬化性組成物における導電性繊維被覆粒子(成分(D))の含有量は、硬化性組成物の全量(100体積%)に対して、0.1~60体積%が好ましく、より好ましくは0.2~60体積%、さらに好ましくは0.3~50体積%、特に好ましくは0.3~40体積%である。
 特に、異方導電性(特定の方向に導電性を有するがそれ以外の方向には絶縁性であるような、電気的異方性)を発現させる場合、本発明の硬化性組成物における導電性繊維被覆粒子(成分(D))の含有量は、本発明の硬化性組成物の全量(100体積%)に対して、30体積%以下(例えば、0.1~10体積%)が好ましく、特に好ましくは0.3~5体積%である。導電性繊維被覆粒子の含有量を上記範囲に調整することにより、特定の方向に優れた導電性を発現させることができる。なお、導電性繊維被覆粒子(成分(D))の含有量は、例えば、導電性繊維被覆粒子の総重量を粒子(導電性繊維被覆粒子)の密度で割ることで概算できる。
 本発明の硬化性組成物における粒子状物質(導電性繊維被覆粒子に含まれる粒子状物質)の含有量(配合量)は、硬化性化合物100重量部に対して、例えば、0.09~6.0重量部程度、好ましくは0.1~4.0重量部、より好ましくは0.3~3.5重量部、さらに好ましくは0.3~3.0重量部、特に好ましくは0.3~2.5重量部、最も好ましくは0.5~2.0重量部であり、本発明の硬化性組成物の全量(100体積%)に対して、例えば、0.02~7体積%程度、好ましくは0.1~5体積%、特に好ましくは0.3~3体積%、最も好ましくは0.4~2体積%である。導電性繊維被覆粒子の含有量が0.02体積%未満であると、用途によっては、得られる硬化物の導電性が不十分となる場合がある。一方、導電性繊維被覆粒子の含有量が7体積%を超えると、用途によっては、得られる硬化物の透明性が不十分となる場合がある。
 本発明の硬化性組成物における導電性繊維の含有量(配合量)は、硬化性化合物100重量部に対して、例えば、0.01~1.0重量部程度、好ましくは0.02~0.8重量部、より好ましくは0.03~0.6重量部、さらに好ましくは0.03~0.4重量部、特に好ましくは0.03~0.2重量部であり、本発明の硬化性組成物の全量(100体積%)に対して、例えば、0.01~1.1体積%程度、好ましくは0.02~0.9体積%、より好ましくは0.03~0.7体積%、さらに好ましくは0.03~0.4体積%である。
 本発明の硬化性組成物は、導電性繊維を粒子状物質に被覆した状態で含有するため、導電性を有する素材の使用量を上記範囲まで低減しても、十分な導電性を有する硬化物を形成することができる。そのため、導電性を有する素材を含有することによって引き起こされる硬化物の透明性の低下を極めて低く低減することができると共に、導電性を有する素材により占められていたコストを大幅に削減することができる。
 本発明の硬化性組成物は、さらに、本発明の導電性繊維被覆粒子以外の導電性物質(「その他の導電性物質」と称する場合がある)を含有していてもよい。その他の導電性物質としては、公知乃至慣用の導電性物質を使用することができ、特に限定されない。例えば、上記の導電性繊維を使用してもよい。
 本発明の硬化性組成物における上記その他の導電性物質(例えば、導電性繊維)の含有量(配合量)は、導電性繊維被覆粒子100重量部に対して、例えば、0~10重量部程度、好ましくは0~5重量部、より好ましくは0~1重量部である。
[その他]
 本発明の硬化性組成物は、上記以外にも、本発明の効果を損なわない範囲内で各種添加剤を含有していてもよい。上記添加剤としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン等の水酸基を有する化合物;シリコーン系やフッ素系消泡剤;レベリング剤;γ−グリシドキシプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン等のシランカップリング剤;界面活性剤;シリカ、アルミナ等の無機充填剤;難燃剤;着色剤;酸化防止剤;紫外線吸収剤;イオン吸着体;顔料;蛍光体;離型剤等の慣用の添加剤が挙げられる。
[硬化性組成物]
 本発明の硬化性組成物は、上記各成分を均一に混合することにより得られる。本発明の硬化性組成物を得るには、各成分を自公転式撹拌脱泡装置、ホモジナイザー、プラネタリー、3本ロールミル、ビーズミル、超音波等の一般的に知られている混合用機器を使用してなるべく均一になるように、撹拌、溶解、混合、分散等を行うことが望ましい。
 本発明の硬化性組成物は、導電性繊維被覆粒子(成分(D)(又は導電性繊維被覆粒子の分散液)と硬化性化合物と、必要に応じてその他の成分とを、上記の一般的に知られている混合用機器を使用して均一に混合することにより製造することができ、例えば、
(1)粒子状物質と繊維状の導電性物質とを溶媒中で混合して得られる導電性繊維被覆粒子の分散液と、硬化性化合物と必要に応じてその他の添加剤とを、所定の割合で撹拌及び混合し、次いで、溶媒を留去することにより製造する方法や、
(2)下記工程A及び工程Bを経て得られた導電性繊維被覆粒子と硬化性化合物と必要に応じてその他の添加剤とを、所定の割合で撹拌及び混合することにより製造する方法等が挙げられる。
 工程A:粒子状物質と繊維状の導電性物質とを溶媒中で混合することにより導電性繊維被覆粒子分散液を得る工程
 工程B:工程Aを経て得られた導電性繊維被覆粒子分散液から溶媒を除去(例えば、加熱により留去及び/又は減圧濾過等)することにより導電性繊維被覆粒子を固体として得る工程
 本発明の硬化性組成物は、導電性繊維被覆粒子(成分(D)(又は導電性繊維被覆粒子の分散液)と硬化性化合物と、必要に応じてその他の成分の全てを予め混合してもよく(1液型)、導電性繊維被覆粒子(成分(D)(又は導電性繊維被覆粒子の分散液)と硬化性化合物と、必要に応じてその他の成分の一部を別に保管し[多液型(例えば、2液型)]、使用直前に所定の割合で混合してもよい。
 本発明の光半導体封止用硬化性組成物は、ディスペンサー等の吐出機で硬化性組成物を吐出する際には、硬化性組成物中の導電性繊維被覆粒子(成分(D))を高分散した状態で吐出することが好ましく、例えば、スクリュー等の回転駆動機構を有する吐出機を使用して、スクリューの回転により硬化性組成物を吐出するスクリュー式吐出方法等により、撹拌しつつ吐出することが好ましい。スクリューの回転速度やスクリューの羽のサイズ等は、硬化性組成物の粘度や、それに含まれる導電性繊維被覆粒子(成分(D))のサイズ等に応じて適宜調整することが好ましい。
 本発明の硬化性組成物は、光半導体素子を封止する工程におけるディスペンス性の観点からは、常温(25℃)において流動性を有することが好ましい。本発明の硬化性組成物の常温(25℃)における粘度は、10~5000mPa・sであることが好ましく、50~3000mPa・sであることがより好ましく、100~2000mPa・sであることがさらに好ましい。
[硬化物]
 本発明の硬化物は、上記光半導体封止用硬化性組成物を硬化させることにより得られる。硬化性化合物として硬化性樹脂の原料となる化合物を含む硬化性組成物の場合は、該硬化性組成物を加熱及び/又は活性エネルギー線照射にすることにより硬化物が得られる。
 加熱により硬化させる場合の温度(硬化温度)は、例えば45~200℃程度、好ましくは70~190℃、特に好ましくは90~180℃である。また、加熱により硬化させる際の加熱時間(硬化時間)は、例えば、10~600分程度、好ましくは30~540分、特に好ましくは60~480分である。硬化温度と硬化時間が上記範囲を下回ると、硬化が不十分となる場合がある。一方、硬化温度と硬化時間が上記範囲を上回ると、硬化物の分解が起きる場合がある。硬化条件は種々の条件に依存するが、例えば、硬化温度を高くした場合は硬化時間を短く、硬化温度を低くした場合は硬化時間を長くする等により、適宜調整することができる。
 活性エネルギー線照射により硬化させる場合の照射条件は、例えば、紫外線照射により硬化させる場合、積算光量が例えば500~5000mJ/cm程度、特に好ましくは1000~3000mJ/cmとなる条件を採用することが好ましい。
 本発明の硬化物は、特に制限されないが、水蒸気透過率が40g/m・day以下であることが好ましく、30g/m・day以下がより好ましく、25g/m・day以下がさらに好ましい。水蒸気透過率は、JIS L1099に従って、60℃、90%RHの条件にて、硬化物を透湿カップに取り付け測定できる。
 本発明の硬化物は、特に制限されないが、アウトガスが20ppm以下であることが好ましく、15ppm以下がより好ましく、10ppm以下がさらに好ましい。また、アクロレインが3ppm以下であることが好ましく、2ppm以下がより好ましく、1ppm以下がさらに好ましい。アウトガスやアクロレインは、ガスクロマトグラフィー質量分析(GC/MS)装置を用いて、80℃のオーブンにて60分加熱した際に発生するアウトガスの量を、トルエンを標準物質として定量することにより測定できる。
 本発明の硬化物は透明であることが好ましく、硬化物の厚みを10μmに調整した場合、その可視光波長領域における全光線透過率(硬化物厚み:10μm)は、例えば、80%以上、好ましくは85%以上、より好ましくは90%以上である。なお、本発明の硬化物の可視光波長領域における全光線透過率は、JIS K7361−1に準拠して測定することができる。
 また、本発明の硬化物は導電性に優れ、その体積抵抗率は、例えば、0.1Ω・cm~10MΩ・cm程度、好ましくは0.1Ω・cm~1MΩ・cmである。なお、本発明の硬化物の体積抵抗率は、JIS K6911に準拠して測定することができる。
[光半導体装置]
 本発明の硬化性組成物を用いて、光半導体素子を封止することにより、性能の安定性に優れ、寿命の長い光半導体装置を得ることができる。光半導体装置としては、特に限定されないが、例えば、発光ダイオード、有機エレクトロルミネッセンス(有機EL)、電子ペーパー、又は太陽電池等が挙げられる。その中でも、有機エレクトロルミネッセンス(有機EL)が好ましく、トップエミッション型有機エレクトロルミネッセンス(有機EL)がより好ましい。
[成分(D)を含む光半導体封止用硬化性組成物、及び硬化物]
 本発明の光半導体封止用硬化性組成物は、成分(A)が、エポキシ基、オキセタニル基、ビニルエーテル基及び(メタ)アクリロイル基からなる群より選ばれる1以上の官能基を有し、且つ芳香環を有する化合物であり、成分(B)が、脂環エポキシ化合物(芳香環を含む化合物を除く)であり、成分(C)が、芳香環を有するカチオン成分を有し、且つ、中心元素がホウ素又はリンであるアニオン成分を有する光又は熱により酸を発生する硬化触媒であり、さらに成分(D)として、粒子状物質と該粒子状物質を被覆する繊維状の導電性物質を含む導電性繊維被覆粒子を含むことが好ましい。この成分(D)を含むことにより、導電性(特に、厚み方向への導電性)に優れる光半導体素子封止用硬化性組成物及びその硬化物を得ることができる。
 上記光半導体封止用硬化性組成物は、成分(A)が、下記化合物(A1’’)及び/又は化合物(A2’’)を含むことが好ましい。
化合物(A1’’):1分子中に2つ以上のエポキシ基、オキセタニル基、ビニルエーテル基及び(メタ)アクリロイル基からなる群より選ばれる官能基を有し、さらに分子量が100~10000である化合物
化合物(A2’’):分子量が100~1000である化合物
 上記光半導体封止用硬化性組成物は、成分(B)が、2以上の脂環エポキシ基を有する化合物であり、さらに分子量が100~500であることが好ましい。そして、成分(B)が、上記式(3)で表される化合物であることが好ましい。また、成分(C)の芳香環を有するカチオン成分が、芳香族スルホニウム塩であることが好ましい。
 上記光半導体封止用硬化性組成物は、成分(D)の繊維状の導電性物質が、導電性ナノワイヤであることが好ましい。上記導電性ナノワイヤが、金属ナノワイヤ、半導体ナノワイヤ、炭素繊維、カーボンナノチューブ、及び導電性高分子ナノワイヤからなる群より選択される少なくとも一種であることが好ましい。上記金属ナノワイヤが銀ナノワイヤであることが好ましい。
 本発明の硬化物は、上記光半導体封止用硬化性組成物を硬化させることにより得られる硬化物であることが好ましい。上記硬化物は、水蒸気透過率が40g/m・day以下であることが好ましく、アウトガスが20ppm以下であることが好ましく、アウトガスが20ppm以下であることが好ましく、アクロレインが3ppm以下であることが好ましい。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
 製造例1
[銀ナノワイヤの製造]
 銀ナノワイヤを、「Materials Chemistry and Physics,vol,114,p333−338,”Preparation of Ag nanorods with high yield by polyol process”」に記載された方法に準じて製造した。具体的な手順を以下に示す。
 FeClのエチレングリコール溶液(6×10−4M)0.5mLを、エチレングリコール6mLを入れたフラスコ内に加え、150℃に加熱した。その後、0.052MのAgNO及び0.067Mのポリビニルピロリドンを含むエチレングリコール混合溶液6mLを、上記加熱溶液に滴下した。このようにして得られた反応溶液を150℃で1.5時間保持した。その後、得られた懸濁液10mLを800mLのエタノールとアセトンの混合溶媒(エタノール:アセトン=1:1(重量比))で希釈し、遠心分離(2000rpm、10分間)を2回行い、銀ナノワイヤの分散液を得た。得られた分散液を一部抜き取り、熱乾燥させて分散液中の銀ナノワイヤの重量%を確認したところ、2.9重量%であった。
 得られた銀ナノワイヤの平均直径(平均太さ)及び平均長さを走査型電子顕微鏡(SEM)を用いて100個の銀ナノワイヤの直径(太さ)及び長さを計測し、それぞれ算術平均することにより測定したところ、平均直径は115nmであり、長さは20~50μmであった。
[導電性繊維被覆粒子(成分(D))の製造]
 プラスチック微粒子として、メタクリル酸メチル−スチレン共重合体からなる微粒子(商品名「SM10X−8JH」、積水化学工業(株)製、屈折率:1.565、平均粒子径:8.3μm、CV値:39、10%圧縮強度:2.4~2.5kgf/mm)を硬化性化合物100重量部に対して、0.85重量部をエタノール29.15重量部に混合し、分散させ、プラスチック微粒子の分散液を調製した。そして、上記プラスチック微粒子の分散液と、上記銀ナノワイヤの製造で得られた銀ナノワイヤの分散液を5.22重量部(硬化性化合物100重量部に対して、銀ナノワイヤ0.15重量部を含む)とを混合し、その後、70℃で30分間加熱しながら撹拌することによって溶媒を除去して、導電性繊維被覆粒子(成分(D))を得た。
 なお、上記プラスチック微粒子1個あたりの表面積は226.9μmであり、銀ナノワイヤの1本当たりの投影面積は2.4μmであった。上記で仕込んだプラスチック微粒子(0.85重量部)と銀ナノワイヤ(0.15重量部)から、プラスチック微粒子1個に対して20本の銀ナノワイヤが吸着していると考えられ、これよりプラスチック微粒子の表面積(総表面積)/銀ナノワイヤの投影面積(総投影面積)を算出すると、約100/15となった。
[硬化性組成物の調製]
 実施例及び比較例において、各化合物を表1及び表2に示した配合割合(単位:重量部)にて混合した後、室温にて撹拌し、各硬化性組成物を調製した。なお、化合物(A1)及び化合物(A2)は、成分(A)であり、化合物(B)は、成分(B)であり、化合物(C)−1、化合物(C)−2、化合物(C)−3及び化合物(C)−4は、成分(C)である。
[アウトガスの評価]
 上記にて得られた各硬化性組成物を約60mg計量し、ベルトコンベアーUV照射装置(商品名「UVC−02516S1AA02」、ウシオ電機株式会社製)にて2500mJ/cmの紫外線を照射した後、ガスクロマトグラフィー質量分析(GC/MS)装置(商品名「HP6890GC/5973MSD」、アジレント・テクノロジー株式会社)を用いて、80℃のオーブン(商品名「DRM320DB」、ADVANTEC社製)にて60分加熱した際に発生するアウトガスの量を、トルエンを標準物質として定量することにより、各硬化性組成物におけるアウトガス含有量[ppm]を求めた。また、アウトガス中に含まれるアクロレイン及び1−ヨード−4−メチルベンゼンの含有量[ppm]も、アクロレイン及び1−ヨード−4−メチルベンゼン、それぞれの量を、トルエンを標準物質として定量することにより求めた。
[発熱の評価]
 上記にて得られた各硬化性組成物を5mg計量し、ベルトコンベアーUV照射装置(商品名「UVC−02516S1AA02」、ウシオ電機株式会社製)にて2500mJ/cmの紫外線を照射した後、示差走査熱量分析(DSC)装置(商品名「DSC−Q2000」、ティー・エイ・インスツルメント社製)を用いて、各硬化性組成物の硬化反応における発熱温度及び発熱量を確認した。なお、紫外線の照射完了からDSC装置による測定開始までの時間は12分間とした。
 得られた発熱温度及び発熱量に対する評価基準は、以下の通りである。
A:250℃以上に発熱ピークが認められない(硬化性が特に良い)
B:250℃以上に10J/g以下の発熱ピークが認められる(硬化性が良い)
C:250℃以上に10J/g以上の発熱ピークが認められる(硬化性が悪い)
[硬化性組成物の分散性の評価]
 上記にて得られた各硬化性組成物を試験管(試験管サイズ:管径1cm×高さ2.5cm)に2mL採取し、25℃、1気圧の環境下において静置し、含有する粒子が完全に沈降するまでの時間を測定して分散性を評価した。なお、粒子が完全に沈降した時点(終点)は、目視で透明な硬化性組成物を確認することによって判断できる。
[水蒸気バリア性の評価]
 上記にて得られた各硬化性組成物を硬化後の厚みが100μmとなるようにPETフィルムに塗布し、ベルトコンベアーUV照射装置(商品名「UVC−02516S1AA02」、ウシオ電機株式会社製)にて2500mJ/cmの紫外線を照射した後、得られた硬化物を透湿カップに取り付け、JIS L1099に従って、60℃、90%RHの条件にて、上記硬化物の水蒸気透過率を測定した。
[硬化物の導電性評価]
 上記にて得られた各硬化性組成物を2枚の導電性ガラス基板(Luminescence Technology社製、サイズ:25mm×25mm、ITO厚み:0.14μm)の間に硬化後の厚みが10μmとなるように挟み、窒素雰囲気下、100℃で1時間熱処理を行い、得られた硬化物を25℃、1気圧環境下において、エレクトロンメーター(ピー・エス・エス社製)を用いて、電気抵抗率(Ω・cm)と電圧(V)を測定し、導電性を評価した。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表1及び表2における各成分の表記の意味は、は次の通りである。
化合物(A1): ビスフェノールFジグリシジルエーテル(商品名「YL−983U」、三菱化学(株)製)
化合物(A2): o−フェニルフェノールグリシジルエーテル(商品名「SY−OYG」、阪本薬品工業(株)製)
化合物(B): (3,4,3’,4’−ジエポキシ)ビシクロヘキシル
化合物(C)−1: 4−(4−ビフェニルチオ)フェニル−4−ビフェニルフェニルスルホニウム テトラキス(ペンタフルオロフェニル)ボレート
化合物(C)−2: ジフェニル[4−(フェニルチオ)フェニル]スルホニウム テトラキス(ペンタフルオロフェニル)ボレート
化合物(C)−3: ジフェニル[4−(フェニルチオ)フェニル]スルホニウム トリス(ペンタフルオロエチル)トリフルオロホスフェート(商品名「CPI−210S」、サンアプロ(株)製)
化合物(C)−4: ジフェニル[4−(フェニルチオ)フェニル]スルホニウム ヘキサフルオロホスフェート(商品名「CPI−110P」、サンアプロ(株)製)
PI‐2074: ペンタフルオロフェニルボレート トルイルクミルヨードニウム塩(商品名「PI‐2074」、ローディア社製)
ミクロパールAU:ジビニルベンゼンを主成分とする架橋重合体からなる粒子状物質の表面が金メッキされたもの、商品名「ミクロパールAU−2085」、積水化学工業(株)製、平均粒子径8.5μm
 実施例1~3及び比較例2(表1)の結果から、脂環エポキシ化合物(B)を含むことにより、アウトガスを大幅に抑制できることが分かった。特に、アクロレインを抑制する効果は顕著であった。また、実施例1~3及び比較例1(表1)の結果から、成分(C)として、3以上の芳香族環を有するカチオン成分を有し、且つ、中心元素がホウ素又はリンであるアニオン成分を有する硬化触媒を有することにより、アウトガスの含有量を大幅に抑制できることが分かった。特に、1−ヨード−4−メチルベンゼンを抑制する効果は顕著であった。また、実施例1の結果から、アウトガス全般を抑制する効果は顕著であった。
 実施例1~2及び実施例3(表1)との比較により、成分(C)のアニオン成分が芳香環及び/又は炭素数2以上の脂肪族鎖を3以上有する場合、優れた硬化性が得られることが分かった。
 実施例4~10及び比較例3、4(表2)との比較により、本発明の硬化物は、成分(B)である脂環エポキシ化合物と成分(C)である芳香族環を有するカチオン成分を有し、且つ、中心元素がホウ素又はリンであるアニオン成分を有する硬化触媒を含むことにより、アウトガスを大幅に抑制できることが分かった。
 実施例4~8及び実施例10(表2)との比較により、成分(D)である導電性繊維被覆粒子を含んでも、優れた分散性を有していた。また、実施例4~8及び実施例9(表2)との比較により、成分(D)である導電性繊維被覆粒子を含むことにより、本発明の硬化物は、厚み方向に優れた導電性を有していた。
 以上の結果から、本発明によれば、光半導体素子を劣化させるような水分やガスの侵入又は発生を抑制することが可能となり、光半導体素子や光半導体装置の性能安定化と長寿命化を達成できる。また、厚み方向に優れた導電性を有しており、優れた生産性を有する光半導体封止用硬化性組成物が得られ、さらに性能が安定しており、且つ、寿命が長い光半導体装置が得られる。
 本発明の硬化性組成物は、LED素子や有機EL素子等の光半導体素子の封止材料やシール材料等の用途に使用することができる。また、本発明の硬化性組成物により封止又はシールされた光半導体素子及びそれを用いた光半導体装置は、発光ダイオード、有機エレクトロルミネッセンス、電子ペーパー、又は太陽電池等の用途に使用することができる。

Claims (21)

  1.  下記成分(A)、(B)、及び(C)を含む光半導体封止用硬化性組成物。
    成分(A):エポキシ基、オキセタニル基、ビニルエーテル基及び(メタ)アクリロイル基からなる群より選ばれる1以上の官能基を有する化合物
    成分(B):脂環エポキシ化合物
    成分(C):3以上の芳香環を有するカチオン成分を有し、且つ、中心元素がホウ素又はリンであるアニオン成分を有する光又は熱により酸を発生する硬化触媒
  2.  下記成分(A)、(B)、(C)、及び(D)を含む光半導体封止用硬化性組成物。
    成分(A):エポキシ基、オキセタニル基、ビニルエーテル基及び(メタ)アクリロイル基からなる群より選ばれる1以上の官能基を有する化合物
    成分(B):脂環エポキシ化合物
    成分(C):芳香環を有するカチオン成分を有し、且つ、中心元素がホウ素又はリンであるアニオン成分を有する光又は熱により酸を発生する硬化触媒
    成分(D):粒子状物質と該粒子状物質を被覆する繊維状の導電性物質を含む導電性繊維被覆粒子
  3.  成分(A)が、芳香環を有し、且つ、エポキシ基、オキセタニル基、ビニルエーテル基及び(メタ)アクリロイル基からなる群より選ばれる2以上の官能基を有する化合物(A1’)を含む請求項1又は2に記載の半導体封止用硬化性組成物。
  4.  化合物(A1’)の分子量が100~10000である請求項3に記載の半導体封止用硬化性組成物。
  5.  成分(A)が、芳香環を有し、且つ、分子量が100~1000であり、且つ、エポキシ基、オキセタニル基、ビニルエーテル基及び(メタ)アクリロイル基からなる群より選ばれる1の官能基を有する化合物(A2’)を含む請求項1~4のいずれか1項に記載の光半導体封止用硬化性組成物。
  6.  成分(B)が、2以上の脂環エポキシ基を有する化合物である請求項1~5のいずれか1項に記載の光半導体封止用硬化性組成物。
  7.  成分(B)の分子量が100~500である請求項1~6のいずれか1項に記載の光半導体封止用硬化性組成物。
  8.  成分(B)が、エステル基及び/又はカーボネート基を有さない化合物である請求項1~7のいずれか1項に記載の光半導体封止用硬化性組成物。
  9.  成分(A)が、エポキシ基、オキセタニル基、ビニルエーテル基及び(メタ)アクリロイル基からなる群より選ばれる1以上の官能基を有し、且つ芳香環を有する化合物であり、成分(B)が、脂環エポキシ化合物(芳香環を含む化合物を除く)である請求項1~8のいずれか1項に記載の光半導体封止用硬化性組成物。
  10.  成分(B)が、下記式(3)で表される化合物である請求項1~9のいずれか1項に記載の光半導体封止用硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式(3)中、Xは単結合又は連結基を示す]
  11.  成分(B)の含有量が硬化性組成物の全量(100重量%)に対して30~95重量%であり、且つ、成分(C)の含有量が硬化性組成物の全量(100重量%)に対して0.01~8重量%である請求項1~10のいずれか1項に記載の光半導体封止用硬化性組成物。
  12.  成分(C)の芳香環を有するカチオン成分が、芳香族スルホニウム塩である請求項1~11のいずれか1項に記載の光半導体封止用硬化性組成物。
  13.  成分(D)の繊維状の導電性物質が、導電性ナノワイヤである請求項2~12のいずれか1項に記載の光半導体封止用硬化性組成物。
  14.  前記導電性ナノワイヤが、金属ナノワイヤ、半導体ナノワイヤ、炭素繊維、カーボンナノチューブ、及び導電性高分子ナノワイヤからなる群より選択される少なくとも一種である請求項13に記載の光半導体封止用硬化性組成物。
  15.  前記金属ナノワイヤが銀ナノワイヤである請求項14に記載の光半導体封止用硬化性組成物。
  16.  請求項1~15のいずれか1項に記載の光半導体封止用硬化性組成物を硬化させることにより得られる硬化物。
  17.  水蒸気透過率が40g/m・day以下である請求項16記載の硬化物。
  18.  アウトガスが20ppm以下である請求項16又は17に記載の硬化物。
  19.  アクロレインが3ppm以下である請求項16~18のいずれか1項に記載の硬化物。
  20.  請求項1~15のいずれか1項に記載の光半導体封止用硬化性組成物を用いて封止又はシールされた光半導体。
  21.  請求項20に記載の光半導体を用いた光半導体装置。
PCT/JP2014/064201 2013-05-28 2014-05-21 光半導体封止用硬化性組成物 WO2014192839A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015519916A JP5926458B2 (ja) 2013-05-28 2014-05-21 光半導体封止用硬化性組成物
US14/894,438 US9685597B2 (en) 2013-05-28 2014-05-21 Curable composition for sealing optical semiconductor
EP14804282.3A EP3006481A4 (en) 2013-05-28 2014-05-21 Curable composition for sealing optical semiconductor
CN201480029261.4A CN105246940B (zh) 2013-05-28 2014-05-21 光半导体密封用固化性组合物
KR1020157033601A KR101763058B1 (ko) 2013-05-28 2014-05-21 광반도체 밀봉용 경화성 조성물

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-111763 2013-05-28
JP2013111763 2013-05-28
JP2014-010808 2014-01-23
JP2014010808 2014-01-23

Publications (1)

Publication Number Publication Date
WO2014192839A1 true WO2014192839A1 (ja) 2014-12-04

Family

ID=51988862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064201 WO2014192839A1 (ja) 2013-05-28 2014-05-21 光半導体封止用硬化性組成物

Country Status (7)

Country Link
US (1) US9685597B2 (ja)
EP (1) EP3006481A4 (ja)
JP (1) JP5926458B2 (ja)
KR (1) KR101763058B1 (ja)
CN (1) CN105246940B (ja)
TW (1) TWI554540B (ja)
WO (1) WO2014192839A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3168843A1 (en) * 2015-11-16 2017-05-17 Samsung Electronics Co., Ltd. Silver nanowires, production methods thereof, conductors and electronic devices including the same
WO2019039587A1 (ja) * 2017-08-24 2019-02-28 デンカ株式会社 有機エレクトロルミネッセンス素子用封止剤
JP2020516752A (ja) * 2017-04-21 2020-06-11 エルジー・ケム・リミテッド 有機電子素子封止用組成物
JP2021509218A (ja) * 2017-12-18 2021-03-18 エルジー・ケム・リミテッド 封止フィルム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160053750A (ko) * 2014-10-29 2016-05-13 삼성에스디아이 주식회사 디스플레이 밀봉재용 조성물, 이를 포함하는 유기보호층, 및 이를 포함하는 디스플레이 장치
JP7050411B2 (ja) * 2016-08-31 2022-04-08 東京応化工業株式会社 ネガ型感光性樹脂組成物、感光性レジストフィルム、パターン形成方法、硬化膜、硬化膜の製造方法
US10913874B2 (en) 2016-12-09 2021-02-09 Lg Chem, Ltd. Encapsulating composition
US10851232B2 (en) 2016-12-09 2020-12-01 Lg Chem, Ltd. Encapsulating composition, organic electronic device and method for manufacturing thereof
US11248142B2 (en) 2016-12-09 2022-02-15 Lg Chem, Ltd. Encapsulating composition
WO2018119250A1 (en) * 2016-12-21 2018-06-28 Huntsman Advanced Materials Licensing (Switzerland) Gmbh Latent curing accelerators
US10870319B2 (en) * 2018-05-24 2020-12-22 The Goodyear Tire & Rubber Company Pneumatic tire with post cure sealant layer
KR102389882B1 (ko) * 2018-10-31 2022-04-21 한양대학교 산학협력단 기공 형성 깊이가 제어된 다공성 중합체 필름의 제조방법 및 이로부터 제조된 다공성 중합체 필름
JP2019206717A (ja) * 2019-08-08 2019-12-05 三井化学株式会社 画像表示装置封止材
KR102541648B1 (ko) * 2020-06-03 2023-06-08 삼성에스디아이 주식회사 유기발광소자 봉지용 조성물 및 이로부터 제조된 유기층을 포함하는 유기발광소자 표시장치
KR20230102200A (ko) * 2021-12-30 2023-07-07 솔루스첨단소재 주식회사 고굴절 고접착성 에폭시 수지 조성물 및 이를 포함하는 봉지재

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681223A (ja) 1992-08-31 1994-03-22 Toray Ind Inc 炭素繊維の製造方法
JPH06157016A (ja) 1992-11-20 1994-06-03 Nec Corp カーボンナノチューブの製造方法
JPH06157876A (ja) * 1992-11-30 1994-06-07 Ajinomoto Co Inc 導電性一液型エポキシ樹脂組成物
JP2002266007A (ja) 2001-03-08 2002-09-18 Japan Science & Technology Corp 金属ナノワイヤー及びその製造方法
JP2004149871A (ja) 2002-10-31 2004-05-27 Japan Science & Technology Agency ナノサイズの金属コバルト微粒子の電解析出方法
JP2006233252A (ja) 2005-02-23 2006-09-07 Mitsubishi Materials Corp ワイヤー状の金微粒子と、その製造方法および含有組成物ならびに用途
JP2006241334A (ja) 2005-03-04 2006-09-14 Japan Science & Technology Agency らせん状導電性高分子ナノワイヤー/多糖複合体
JP2007046035A (ja) 2005-01-26 2007-02-22 Sekisui Chem Co Ltd 有機エレクトロルミネッセンス素子用封止剤、有機エレクトロルミネッセンス表示装置の製造方法、及び、有機エレクトロルミネッセンス表示装置
JP2008031438A (ja) * 2006-06-30 2008-02-14 Sanyo Chem Ind Ltd 感光性組成物
JP2009505358A (ja) 2005-08-12 2009-02-05 カンブリオス テクノロジーズ コーポレイション ナノワイヤに基づく透明導電体
WO2009057600A1 (ja) * 2007-11-01 2009-05-07 Adeka Corporation 塩化合物、カチオン重合開始剤およびカチオン重合性組成物
JP2010024364A (ja) 2008-07-22 2010-02-04 Denki Kagaku Kogyo Kk 樹脂組成物
JP2010076044A (ja) 2008-09-26 2010-04-08 National Institute For Materials Science 有機高分子ナノワイヤーとその製造方法
JP2010126699A (ja) 2008-11-28 2010-06-10 Three Bond Co Ltd 有機el素子封止用光硬化性樹脂組成物
JP2010163566A (ja) 2009-01-16 2010-07-29 Three M Innovative Properties Co エポキシ樹脂組成物
JP2010208925A (ja) 2009-03-12 2010-09-24 Nec Corp 半導体ナノワイヤの製造方法及び半導体装置
JP2012017368A (ja) * 2010-07-06 2012-01-26 Sekisui Chem Co Ltd 光学デバイス用封止剤
WO2012020688A1 (ja) 2010-08-12 2012-02-16 ダイセル化学工業株式会社 低透湿性樹脂組成物及びその硬化物
JP2013091676A (ja) * 2011-10-24 2013-05-16 Panasonic Corp 新規uv硬化性樹脂組成物
JP2013186976A (ja) 2012-03-06 2013-09-19 Sekisui Chem Co Ltd 有機エレクトロルミネッセンス表示素子用上下導通材料及び有機エレクトロルミネッセンス表示素子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322848B1 (en) * 1999-10-26 2001-11-27 Lord Corporation Flexible epoxy encapsulating material
JP2007169172A (ja) 2005-12-19 2007-07-05 Sekisui Chem Co Ltd エポキシ樹脂の精製方法、光学部材用接着剤及び光学部材の製造方法
JP2009031438A (ja) 2007-07-25 2009-02-12 Toshiba Matsushita Display Technology Co Ltd 液晶表示パネル
CN101425580A (zh) * 2007-10-29 2009-05-06 比亚迪股份有限公司 锂离子电池负极活性物质及其制备方法以及负极和电池
JP5310656B2 (ja) * 2010-06-18 2013-10-09 信越化学工業株式会社 シルフェニレン含有光硬化性組成物、それを用いたパターン形成方法およびその方法により得られる光半導体素子
JP5466095B2 (ja) 2010-06-21 2014-04-09 ユニチカ株式会社 共重合ポリエステル樹脂およびそれを用いた接着剤
CN102766987A (zh) * 2011-05-05 2012-11-07 绍兴豪德斯电暖科技有限公司 一种高性能导电纤维的生产方法
KR101641480B1 (ko) * 2014-01-23 2016-07-20 주식회사 다이셀 밀봉용 조성물

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681223A (ja) 1992-08-31 1994-03-22 Toray Ind Inc 炭素繊維の製造方法
JPH06157016A (ja) 1992-11-20 1994-06-03 Nec Corp カーボンナノチューブの製造方法
JPH06157876A (ja) * 1992-11-30 1994-06-07 Ajinomoto Co Inc 導電性一液型エポキシ樹脂組成物
JP2002266007A (ja) 2001-03-08 2002-09-18 Japan Science & Technology Corp 金属ナノワイヤー及びその製造方法
JP2004149871A (ja) 2002-10-31 2004-05-27 Japan Science & Technology Agency ナノサイズの金属コバルト微粒子の電解析出方法
JP2007046035A (ja) 2005-01-26 2007-02-22 Sekisui Chem Co Ltd 有機エレクトロルミネッセンス素子用封止剤、有機エレクトロルミネッセンス表示装置の製造方法、及び、有機エレクトロルミネッセンス表示装置
JP2006233252A (ja) 2005-02-23 2006-09-07 Mitsubishi Materials Corp ワイヤー状の金微粒子と、その製造方法および含有組成物ならびに用途
JP2006241334A (ja) 2005-03-04 2006-09-14 Japan Science & Technology Agency らせん状導電性高分子ナノワイヤー/多糖複合体
JP2009505358A (ja) 2005-08-12 2009-02-05 カンブリオス テクノロジーズ コーポレイション ナノワイヤに基づく透明導電体
JP2008031438A (ja) * 2006-06-30 2008-02-14 Sanyo Chem Ind Ltd 感光性組成物
WO2009057600A1 (ja) * 2007-11-01 2009-05-07 Adeka Corporation 塩化合物、カチオン重合開始剤およびカチオン重合性組成物
JP2010024364A (ja) 2008-07-22 2010-02-04 Denki Kagaku Kogyo Kk 樹脂組成物
JP2010076044A (ja) 2008-09-26 2010-04-08 National Institute For Materials Science 有機高分子ナノワイヤーとその製造方法
JP2010126699A (ja) 2008-11-28 2010-06-10 Three Bond Co Ltd 有機el素子封止用光硬化性樹脂組成物
JP2010163566A (ja) 2009-01-16 2010-07-29 Three M Innovative Properties Co エポキシ樹脂組成物
JP2010208925A (ja) 2009-03-12 2010-09-24 Nec Corp 半導体ナノワイヤの製造方法及び半導体装置
JP2012017368A (ja) * 2010-07-06 2012-01-26 Sekisui Chem Co Ltd 光学デバイス用封止剤
WO2012020688A1 (ja) 2010-08-12 2012-02-16 ダイセル化学工業株式会社 低透湿性樹脂組成物及びその硬化物
JP2013091676A (ja) * 2011-10-24 2013-05-16 Panasonic Corp 新規uv硬化性樹脂組成物
JP2013186976A (ja) 2012-03-06 2013-09-19 Sekisui Chem Co Ltd 有機エレクトロルミネッセンス表示素子用上下導通材料及び有機エレクトロルミネッセンス表示素子

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Preparation of Ag nanorods with high yield by polyol process", MATERIALS CHEMISTRY AND PHYSICS, vol. 114, pages 333 - 338
ADV. MATER, vol. 14, 2002, pages 833 - 837
CHEM. MATER, vol. 14, 2002, pages 4736 - 4745
MATER. CHEM. PHYS., vol. 114, 2009, pages 333 - 338
See also references of EP3006481A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3168843A1 (en) * 2015-11-16 2017-05-17 Samsung Electronics Co., Ltd. Silver nanowires, production methods thereof, conductors and electronic devices including the same
CN107039098A (zh) * 2015-11-16 2017-08-11 三星电子株式会社 银纳米线的群、其制造方法、包括其的电导体和电子装置
US10088931B2 (en) 2015-11-16 2018-10-02 Samsung Electronics Co., Ltd. Silver nanowires, production methods thereof, conductors and electronic devices including the same
CN107039098B (zh) * 2015-11-16 2020-06-30 三星电子株式会社 银纳米线的群、其制造方法、包括其的电导体和电子装置
JP2020516752A (ja) * 2017-04-21 2020-06-11 エルジー・ケム・リミテッド 有機電子素子封止用組成物
US11295999B2 (en) 2017-04-21 2022-04-05 Lg Chem, Ltd. Composition for encapsulating organic electronic element
WO2019039587A1 (ja) * 2017-08-24 2019-02-28 デンカ株式会社 有機エレクトロルミネッセンス素子用封止剤
JPWO2019039587A1 (ja) * 2017-08-24 2020-07-30 デンカ株式会社 有機エレクトロルミネッセンス素子用封止剤
JP2021509218A (ja) * 2017-12-18 2021-03-18 エルジー・ケム・リミテッド 封止フィルム
US11700744B2 (en) 2017-12-18 2023-07-11 Lg Chem, Ltd. Encapsulation film including metal layer and protective layer with resin component

Also Published As

Publication number Publication date
EP3006481A1 (en) 2016-04-13
KR20160015226A (ko) 2016-02-12
US9685597B2 (en) 2017-06-20
JPWO2014192839A1 (ja) 2017-02-23
JP5926458B2 (ja) 2016-05-25
TWI554540B (zh) 2016-10-21
CN105246940B (zh) 2018-09-04
TW201500396A (zh) 2015-01-01
KR101763058B1 (ko) 2017-07-28
US20160126431A1 (en) 2016-05-05
CN105246940A (zh) 2016-01-13
EP3006481A4 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
JP5926458B2 (ja) 光半導体封止用硬化性組成物
JP5914778B2 (ja) 封止用組成物
JP6336002B2 (ja) 封止材
WO2011024719A1 (ja) 異方性導電材料、接続構造体及び接続構造体の製造方法
JP6434428B2 (ja) 導電性繊維被覆粒子を含むフィルム状接着剤
KR102624114B1 (ko) 밀봉용 조성물
JP2015137338A (ja) 導電性繊維被覆粒子を含む硬化性組成物
WO2018070301A1 (ja) 反射防止材
JP2015196783A (ja) シート状組成物
JP7523568B2 (ja) 封止剤、硬化体、有機エレクトロルミネッセンス表示装置、及び、有機エレクトロルミネッセンス表示装置の製造方法
JP2015137337A (ja) 導電性繊維被覆粒子を含む硬化性組成物
JP2015137339A (ja) 導電性繊維被覆粒子を含む硬化性組成物
JP2015137336A (ja) 導電性繊維被覆粒子を含む硬化性組成物
KR102385096B1 (ko) 수지 성형품의 제조 방법 및 광학 부품의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519916

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157033601

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14894438

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014804282

Country of ref document: EP