WO2018070301A1 - 反射防止材 - Google Patents

反射防止材 Download PDF

Info

Publication number
WO2018070301A1
WO2018070301A1 PCT/JP2017/035961 JP2017035961W WO2018070301A1 WO 2018070301 A1 WO2018070301 A1 WO 2018070301A1 JP 2017035961 W JP2017035961 W JP 2017035961W WO 2018070301 A1 WO2018070301 A1 WO 2018070301A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
weight
filler
antireflection material
cured product
Prior art date
Application number
PCT/JP2017/035961
Other languages
English (en)
French (fr)
Inventor
▲高▼林尚史
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to CN201780063063.3A priority Critical patent/CN109844571A/zh
Priority to KR1020197013179A priority patent/KR20190059970A/ko
Priority to JP2018544968A priority patent/JP7128112B2/ja
Publication of WO2018070301A1 publication Critical patent/WO2018070301A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to an antireflection material.
  • the present invention also relates to an optical semiconductor device in which an optical semiconductor element is sealed with the antireflection material.
  • the present invention also relates to a resin composition suitable for the production of the antireflection material, and a method for producing the antireflection material using the resin composition.
  • a light emitting device using an optical semiconductor element (LED element) as a light source
  • LED element optical semiconductor element
  • an optical semiconductor device in general, an optical semiconductor device in which an optical semiconductor element is mounted on a substrate (substrate for mounting an optical semiconductor element) and the optical semiconductor element is sealed with a transparent sealing material is widespread. is doing.
  • the sealing material in such an optical semiconductor device is subjected to antireflection treatment on its surface in order to prevent a decrease in visibility due to total reflection of incident light such as illumination light from outside and sunlight. Yes.
  • Patent Document 1 when the method of Patent Document 1 is applied to a resin for sealing an optical semiconductor, it is difficult to ensure the total luminous flux of the light source while providing a sufficient antireflection function. That is, when a sufficient amount of inorganic filler is added to obtain a sufficient antireflection function, the total luminous flux of the light source is greatly reduced, while the inorganic filler is reduced in order to prevent a decrease in the total luminous flux of the light source. In this case, it was revealed that there was a trade-off relationship that sufficient antireflection performance could not be obtained.
  • thermal shock such as a cooling cycle (repeating heating and cooling periodically) has been applied to a sealing material in such an optical semiconductor device.
  • a crack (crack) is generated, causing a problem of non-lighting.
  • the sealing material in the optical semiconductor device is required to have a characteristic that does not easily cause a crack even when a thermal shock is applied (sometimes referred to as “thermal shock resistance”).
  • an object of the present invention is to provide an antireflection material that can prevent a decrease in the total luminous flux of a light source while having a sufficient antireflection function, and further has high thermal shock resistance.
  • the other object of this invention is to provide the said antireflection material for optical semiconductor sealing.
  • another object of the present invention is to provide an optical semiconductor device in which an optical semiconductor element is sealed with the antireflection material.
  • Another object of the present invention is to provide a resin composition suitable for the production of the antireflection material, and a method for producing the antireflection material using the resin composition.
  • the present inventors have formulated a porous filler as a filler in the resin layer constituting the antireflection material, and a sufficient antireflection function is imparted even with a small amount of addition.
  • a porous filler as a filler in the resin layer constituting the antireflection material, and a sufficient antireflection function is imparted even with a small amount of addition.
  • the resin layer is also excellent in thermal shock resistance.
  • an antireflection material having a sufficient antireflection function and excellent thermal shock resistance without significantly reducing the total luminous flux of the light source is provided, and as a material for sealing an optical semiconductor element in an optical semiconductor device It has been found that it is extremely suitable, and the present invention has been completed.
  • the present invention is an antireflection material made of a cured product of a resin composition in which a porous filler (A) is dispersed, and the porous filler (A) has irregularities that suppress reflection on the surface of the cured product.
  • the resin composition contains a rubber particle-dispersed epoxy compound (B) in which rubber particles are dispersed in an alicyclic epoxy resin, an acid anhydride-based curing agent (C), and a curing accelerator (D).
  • the rubber particles are composed of a polymer having a core-shell structure and having (meth) acrylic acid ester as an essential monomer component, and a hydroxyl group and / or a carboxyl group as functional groups capable of reacting with an alicyclic epoxy resin on the surface.
  • the average particle size is 10 nm to 500 nm, the maximum particle size is 50 nm to 1000 nm, and the difference between the refractive index of the rubber particles and the refractive index of the cured product of the resin composition is within ⁇ 0.02.
  • an antireflection material characterized in that the content of the porous filler (A) is 4 to 40% by weight with respect to the total amount (100% by weight) of the antireflection material.
  • the porous filler (A) is preferably uniformly distributed over the entire cured product, and has irregularities that suppress reflection on the surface.
  • the resin composition may further contain a nonporous filler (F) having a specific surface area of 10 m 2 / g or less, and in that case, the total amount of the antireflection material (100 wt%).
  • the total content of the porous filler (A) and the nonporous filler (F) is preferably 20 to 60% by weight.
  • the porous filler (A) may be an inorganic porous filler.
  • the resin composition may be made of a transparent curable resin composition.
  • the antireflection material may be for optical semiconductor sealing.
  • the present invention also provides an optical semiconductor device in which an optical semiconductor element is sealed with the antireflection material.
  • the present invention is a resin composition in which a porous filler (A) is dispersed, which is used for producing the antireflection material, Containing a rubber particle-dispersed epoxy compound (B) in which rubber particles are dispersed in an alicyclic epoxy resin, an acid anhydride-based curing agent (C), and a curing accelerator (D);
  • the rubber particles are composed of a polymer having a core-shell structure and having (meth) acrylic acid ester as an essential monomer component, and a hydroxyl group and / or a carboxyl group as functional groups capable of reacting with an alicyclic epoxy resin on the surface.
  • the average particle size is 10 nm to 500 nm, the maximum particle size is 50 nm to 1000 nm, and the difference between the refractive index of the rubber particles and the refractive index of the cured product of the resin composition is within ⁇ 0.02.
  • a resin composition in which the content of the porous filler (A) is 4 to 40% by weight relative to the total amount (100% by weight) of the resin composition.
  • the resin composition may be liquid.
  • the amount of components that volatilize during curing relative to the total amount (100% by weight) of the resin composition may be 10% by weight or less.
  • the present invention provides a method for producing an antireflective material in which irregularities for suppressing reflection are formed on the surface, wherein the resin composition is cured.
  • the antireflection material of the present invention Since the antireflection material of the present invention has the above-described configuration, a sufficient antireflection function can be obtained even when the amount of the porous filler (A) is reduced, and a significant decrease in the total luminous flux of the light source is prevented. And has excellent thermal shock resistance. Accordingly, by using the antireflection material of the present invention as a material for sealing an optical semiconductor element in an optical semiconductor device, high quality (for example, sufficient brightness and high durability while suppressing gloss). An optical semiconductor device is obtained. Moreover, since the resin composition of this invention has the said structure, in order to manufacture the said antireflection material, it is very suitable.
  • FIG. 1 It is the schematic which shows one Embodiment of the optical semiconductor device containing the reflection preventing material of this invention.
  • the left figure (a) is a perspective view
  • the right figure (b) is a sectional view.
  • the antireflection material of the present invention is composed of a cured product of a resin composition in which a porous filler (A) is dispersed, and the porous filler (A) forms irregularities that suppress reflection on the surface of the cured product,
  • the resin composition contains a rubber particle-dispersed epoxy compound (B) in which rubber particles are dispersed in an alicyclic epoxy resin, an acid anhydride-based curing agent (C), and a curing accelerator (D), and the rubber
  • the particles have a core-shell structure and are composed of a polymer having (meth) acrylic acid ester as an essential monomer component, and have hydroxyl groups and / or carboxyl groups as functional groups capable of reacting with an alicyclic epoxy resin on the surface.
  • the average particle size is 10 nm to 500 nm, the maximum particle size is 50 nm to 1000 nm, and the difference between the refractive index of the rubber particles and the refractive index of the cured product of the resin composition is within ⁇ 0.02, preventing reflection Is characterized in that the content of porous filler (A) to the total amount (100 wt%) of 4 to 40 wt%.
  • the resin composition of the present invention comprises a rubber particle-dispersed epoxy compound (B) in which a porous inorganic filler is dispersed and rubber particles are dispersed in an alicyclic epoxy resin, an acid anhydride-based curing agent (C), and Functionality that contains a curing accelerator (D), the rubber particles have a core-shell structure, are composed of a polymer having (meth) acrylic acid ester as an essential monomer component, and can react with an alicyclic epoxy resin on the surface Having a hydroxyl group and / or a carboxyl group as a group, an average particle diameter of 10 nm to 500 nm, a maximum particle diameter of 50 nm to 1000 nm, and the refractive index of the rubber particles and the refractive index of the cured product of the resin composition
  • the difference is within ⁇ 0.02 and the content of the porous filler (A) is 4 to 40% by weight with respect to the total amount (100% by weight) of the resin composition. It is intended to be
  • the apparent volume with respect to the resin composition is increased as compared with a non-porous filler. It can be uniformly dispersed, and uniform fine irregularities can be formed on the surface of the cured product.
  • the resin composition soaks into the porous structure and the apparent specific gravity difference between the porous filler (A) and the resin composition decreases, so that the dispersion state becomes stable and the porous filler (A). Since the interaction between the surfaces of the resin is suppressed and it becomes difficult to agglomerate, the porous filler (A) can be uniformly distributed over the entire resin composition or its cured product, so that uniform and fine irregularities are formed on the surface of the cured product.
  • the addition amount (use amount) of the porous filler (A) is small (small) means that it is small in terms of weight and does not mean that it is small in terms of capacity (volume). Absent.
  • porous filler (A) When the porous filler (A) is used, reflection can be effectively suppressed even if the amount used is small compared to a non-porous filler, so the light beam of the porous filler (A) itself. A sufficient antireflection function can be ensured while suppressing a significant decrease in the total luminous flux due to absorption.
  • the resin composition contains a rubber particle-dispersed epoxy compound (B) in which rubber particles are dispersed in an alicyclic epoxy resin, an acid anhydride curing agent (C), and a curing accelerator (D).
  • the rubber particles are composed of a polymer having a core-shell structure and having (meth) acrylic acid ester as an essential monomer component, and hydroxyl groups and / or carboxyl groups as functional groups capable of reacting with an alicyclic epoxy resin on the surface. Rubber particles having an average particle size of 10 nm to 500 nm and a maximum particle size of 50 nm to 1000 nm, wherein the difference between the refractive index of the rubber particles and the refractive index of the cured product of the resin composition is ⁇ 0.
  • Porous filler (A) The porous filler (A) in the antireflection material or resin composition of the present invention is uniformly dispersed throughout the resin composition or the cured product thereof, and as a result of stabilization of the dispersed state, the surface of the cured product is obtained.
  • the existing porous filler (A) has a function of forming irregularities for scattering incident light.
  • the porous filler (A) that can be used in the antireflection material or the resin composition of the present invention means an inorganic or organic filler having an apparent specific gravity smaller than the true specific gravity of the filler and having a porous structure therein. .
  • inorganic porous filler (A1)” and organic porous filler (A2) respectively.
  • inorganic porous filler (A1) known or conventional ones can be used, and are not particularly limited.
  • inorganic glass for example, borosilicate glass, borosilicate soda glass, sodium silicate glass, aluminum silicate glass is used.
  • silica silica, alumina, zircon, calcium silicate, calcium phosphate, calcium carbonate, magnesium carbonate, silicon carbide, silicon nitride, boron nitride, aluminum hydroxide, iron oxide, zinc oxide, zirconium oxide, magnesium oxide, titanium oxide, Powders of aluminum oxide, calcium sulfate, barium sulfate, fosterite, steatite, spinel, clay, kaolin, dolomite, hydroxyapatite, nepheline sinite, cristobalite, wollastonite, diatomaceous earth, talc, etc.
  • the inorganic porous filler (A1) a known or commonly used surface treatment [for example, metal oxide, silane coupling agent, titanium coupling agent, organic acid, polyol, silicone, etc.] And the like subjected to surface treatment with a surface treating agent].
  • a surface treatment for example, metal oxide, silane coupling agent, titanium coupling agent, organic acid, polyol, silicone, etc.
  • a surface treating agent for example, metal oxide, silane coupling agent, titanium coupling agent, organic acid, polyol, silicone, etc.
  • the porous inorganic glass or the porous material is used from the viewpoint that the resin composition or the cured product can be uniformly distributed over the entire surface of the cured product and the unevenness can be efficiently formed on the surface of the cured product.
  • Silica porous silica filler
  • the porous silica is not particularly limited, and for example, known or conventional porous silica such as fused silica, crystalline silica, high-purity synthetic silica, colloidal silica, or the like can be used.
  • a known or conventional surface treatment for example, a surface treatment with a hydrophobic surface treatment agent such as a metal oxide, a silane coupling agent, a titanium coupling agent, an organic acid, a polyol, an organic silicon compound, etc.
  • a hydrophobic surface treatment agent such as a metal oxide, a silane coupling agent, a titanium coupling agent, an organic acid, a polyol, an organic silicon compound, etc.
  • porous silica surface-treated with a hydrophobic surface treatment agent may be referred to as “hydrophobic porous silica”.
  • hydrophobic porous silica is preferable.
  • Organosilicon compounds for example, trimethylchlorosilane, hexamethyldisiloxane, dimethyldichlorosilane, octamethylcyclotetrasilane, polydimethylsiloxane, hexadecylsilane, methacrylsilane, silcorn oil, etc. are preferred, and polydimethylsiloxane is more preferred. preferable.
  • organic porous filler (A2) known or conventional ones can be used, and are not particularly limited.
  • styrene resins acrylic resins, silicone resins, acrylic-styrene resins, vinyl chloride resins are used.
  • organic porous fillers such as polymer porous sintered bodies, polymer foams, gel porous bodies, and the like composed of organic substances such as Further, inorganic-organic porous fillers composed of the above-mentioned inorganic and organic hybrid materials can also be used.
  • the porous filler (A) may be composed of a single material, or may be composed of two or more materials.
  • the inorganic porous filler (A) is used from the viewpoint that the resin composition or the cured product can be uniformly dispersed throughout the cured product to efficiently form irregularities on the surface of the cured product.
  • A1 is preferred, porous silica (porous silica filler) is more preferred from the viewpoints of availability and ease of manufacture, and hydrophobic porous silica is further preferred from the viewpoint of heat resistance of the cured product (eg, hot water resistance). (Hydrophobic porous silica filler) is more preferable.
  • the shape of the porous filler (A) is not particularly limited, and examples thereof include powder, spherical shape, crushed shape, fibrous shape, needle shape, and scale shape. Among them, from the viewpoint that the porous filler (A) is dispersed uniformly throughout the resin composition or the cured product thereof, and it becomes easy to form a uniform and fine uneven shape on the surface of the cured product, The crushed porous filler (A) is preferred.
  • the center particle diameter of the porous filler (A) is not particularly limited, but the porous filler (A) is uniformly dispersed throughout the resin composition or its cured product, and is uniform and fine on the surface of the cured product. From the viewpoint that it becomes easy to form an uneven shape, it is preferably 0.1 to 100 ⁇ m, more preferably 1 to 50 ⁇ m.
  • the central particle diameter means a volume particle diameter (median volume diameter) at an integrated value of 50% in a particle size distribution measured by a laser diffraction / scattering method.
  • the porous structure of the porous filler (A) can be specified by various parameters such as specific surface area, pore volume, oil absorption, etc., each having a grade suitable for the antireflection material of the present invention.
  • the filler (A) can be selected without particular limitation.
  • the specific surface area of the porous filler (A) is not particularly limited, but the porous filler (A) is distributed uniformly throughout the resin composition or the cured product thereof, and is uniform and fine on the surface of the cured product. From the viewpoint of facilitating formation of the uneven shape and efficiently preventing reflection, the thickness is preferably 10 to 2000 m 2 / g, more preferably 100 to 1000 m 2 / g. If the specific surface area is 10 m 2 / g or more, the porous filler (A) spreads uniformly throughout the resin composition or its cured product, and the antireflection function on the surface of the cured product tends to be improved. is there.
  • the specific surface area means a nitrogen adsorption specific surface area determined from a nitrogen adsorption isotherm at ⁇ 196 ° C. based on the BET equation in accordance with JIS K6430 Annex E.
  • the above-mentioned "specific surface area” means the specific surface area of the porous filler (A) before the surface treatment in the case of the porous filler (A) surface-treated with the hydrophobic surface treatment agent. .
  • the pore volume of the porous filler (A) is not particularly limited, but the porous filler (A) is distributed uniformly throughout the resin composition or the cured product thereof, and is uniform and fine on the surface of the cured product. From the viewpoint of facilitating formation of an uneven shape and efficiently preventing reflection, the concentration is preferably 0.1 to 10 mL / g, more preferably 0.2 to 5 mL / g. If the pore volume is 0.1 mL / g or more, the porous filler (A) spreads uniformly throughout the resin composition or its cured product, and forms an uneven shape on the surface of the cured product. It tends to be easier.
  • the pore volume of the porous filler (A) can be determined by measuring the pore distribution by the mercury intrusion method (porosimeter method).
  • the amount of oil absorption of the porous filler (A) is not particularly limited, but the porous filler (A) is distributed uniformly throughout the resin composition or the cured product thereof, and is uniform and fine on the surface of the cured product. From the viewpoint of facilitating formation of the uneven shape and efficiently preventing reflection, the amount is preferably 10 to 2000 mL / 100 g, more preferably 100 to 1000 mL / 100 g. If the oil absorption amount is 10 mL / 100 g or more, the porous filler (A) tends to form a concavo-convex shape on the surface of the cured product by being uniformly dispersed throughout the resin composition or its cured product. There is.
  • the amount of oil supplied to the porous filler (A) is the amount of oil absorbed by 100 g of the filler, and can be measured according to JIS K5101.
  • the porous filler (A) can be used singly or in combination of two or more.
  • the porous filler (A) can also be produced by a known or conventional production method.
  • Cylos Sphere C-1504 Cyros Sphere series such as “Cyclosphere C-1510” (Fuji Silysia Chemical Co., Ltd.), trade names “Sunsphere H-31”, “Sunsphere H-32”, “Sunsphere H-33”, “ Sunspheres such as “Sunsphere H-51”, “Sunsphere H-52”, “Sunsphere H-53”, “Sunsphere H-121", “Sunsphere H-122”, “Sunsphere H-201”
  • Non-hydrophobic porous inorganic fillers such as H series (manufactured by AGC S-Tech Co., Ltd.), trade names “Silo Hovic 702”, “Silo Hovic 4004”, “Silo Hovic 505” “Silo Hovic 100”, “Silo Hovic 200”, “Silo Hovic 704”, “Silo Hovic 507”, “Silo Ho 603 "and other silo hobic series (above, manufactured by Fuji Silysia Chemical Co., Ltd.
  • the content (blending amount) of the porous filler (A) in the antireflection material or resin composition of the present invention is 4 to 40% by weight with respect to the total amount (100% by weight) of the antireflection material or resin composition. Yes, preferably 4 to 35% by weight, more preferably 4 to 30% by weight.
  • the content of the porous filler (A) is 4% by weight or more, the porous filler (A) is dispersed and uniformly dispersed throughout the resin composition or the cured product constituting the antireflection material. It becomes easy to form a uniform uneven shape on the entire surface of the object.
  • the content of the porous filler (A) is 40% by weight or less
  • the antireflection material or the resin composition of the present invention is used as, for example, a sealing material for an optical semiconductor device, the total luminous flux is remarkable. There is a tendency that sufficient illumination can be secured by preventing the decrease.
  • the content (blending amount) of the porous filler (A) in the antireflection material or resin composition of the present invention is usually 5 to 80 weights with respect to the resin composition (100 parts by weight) constituting the antireflection material. Part, preferably 5 to 70 parts by weight, more preferably 5 to 60 parts by weight.
  • the content of the porous filler (A) is 5 parts by weight or more, the porous filler (A) is dispersed throughout the resin composition or the entire cured product constituting the antireflection material, and cured. It becomes easy to form a uniform uneven shape on the entire surface of the object.
  • the content of the porous filler (A) is 80 parts by weight or less
  • the antireflection material or the resin composition of the present invention is used as, for example, a sealing material for an optical semiconductor device, the total luminous flux is remarkable. There is a tendency that sufficient illumination can be secured by preventing the decrease.
  • the resin composition constituting the cured product in the antireflection material of the present invention is a rubber particle-dispersed epoxy compound (B) in which rubber particles are dispersed in an alicyclic epoxy resin (hereinafter referred to as “rubber particle-dispersed epoxy”).
  • the resin composition is suitable as a sealing material for an optical semiconductor element in an optical semiconductor device, that is, a resin composition for optical semiconductor sealing.
  • the resin composition is cured by heat and has high transparency and durability.
  • the property that transparency is not easily lowered by heating or light, the property that it is difficult to cause cracking or peeling from the adherend even when high-temperature heat or thermal shock is applied, etc. Gives an excellent cured product.
  • the rubber particle-dispersed epoxy compound (B) in the present invention has a core-shell structure, is composed of a polymer having (meth) acrylic acid ester as an essential monomer component, and has a functional group capable of reacting with an alicyclic epoxy resin on the surface. Rubber particles having a hydroxyl group and / or a carboxyl group as a group, an average particle diameter of 10 nm to 500 nm, and a maximum particle diameter of 50 nm to 1000 nm, wherein the refractive index of the rubber particles and a cured product of the resin composition The rubber particles having a difference from the refractive index of ⁇ 0.02 are dispersed in an alicyclic epoxy resin.
  • the rubber particles in the present invention have a multilayer structure (core-shell structure) composed of a core portion having rubber elasticity and at least one shell layer covering the core portion. Moreover, it is comprised with the polymer which uses (meth) acrylic acid ester as an essential monomer component, and has a hydroxyl group and / or a carboxyl group as a functional group which can react with an alicyclic epoxy resin on the surface. When a hydroxyl group and / or a carboxyl group do not exist on the surface of the rubber particle, the cured product becomes clouded by a thermal shock such as a cooling / heating cycle and the transparency is lowered, which is not preferable.
  • (meth) acrylate such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate is essential.
  • monomer components that may be contained in addition to (meth) acrylic acid esters include silicones such as dimethylsiloxane and phenylmethylsiloxane, aromatic vinyls such as styrene and ⁇ -methylstyrene, and nitriles such as acrylonitrile and methacrylonitrile.
  • Conjugated dienes such as butadiene and isoprene, urethane, ethylene, propylene, and isobutene.
  • a monomer component constituting the core portion having rubber elasticity together with (meth) acrylic acid ester, one or more selected from silicone, aromatic vinyl, nitrile and conjugated diene are included.
  • silicone, aromatic vinyl, nitrile and conjugated diene are included.
  • binary copolymers such as (meth) acrylic acid ester / aromatic vinyl, (meth) acrylic acid ester / conjugated diene; (meth) acrylic acid ester / aromatic vinyl / conjugated diene, etc. And terpolymers of the above.
  • the core portion having rubber elasticity includes divinylbenzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diallyl maleate, triallyl cyanurate, diallyl phthalate, butylene glycol diacrylate, etc.
  • One corresponding monomer may contain a reactive crosslinking monomer having two or more reactive functional groups.
  • the monomer component constituting the core portion having rubber elasticity in the present invention is, among others, a (meth) acrylate / aromatic vinyl binary copolymer (particularly, butyl acrylate / styrene), This is preferable because the refractive index of the rubber particles can be easily adjusted.
  • the core portion having rubber elasticity can be produced by a commonly used method, and examples thereof include a method of polymerizing the above monomer by an emulsion polymerization method.
  • the emulsion polymerization method the whole amount of the monomer may be charged and polymerized in a lump, or after polymerizing a part of the monomer, the rest may be added continuously or intermittently to polymerize, Alternatively, a polymerization method using seed particles may be used.
  • the shell layer is preferably composed of a polymer different from the polymer constituting the core portion.
  • the shell layer has a hydroxyl group and / or a carboxyl group as a functional group capable of reacting with the alicyclic epoxy resin.
  • the adhesiveness can be improved at the interface with the alicyclic epoxy resin, and by curing the resin composition containing the rubber particles having the shell layer, it has excellent crack resistance and is cloudy.
  • a transparent cured product can be obtained. Moreover, it can prevent that the glass transition temperature of hardened
  • (meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, and (butyl) (meth) acrylate
  • a core part is comprised
  • the shell layer is made of (meth) acrylate other than butyl acrylate (for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl methacrylate). Is preferably used.
  • Examples of the monomer component that may be contained in addition to the (meth) acrylic acid ester include nitriles such as aromatic vinyl such as styrene and ⁇ -methylstyrene, acrylonitrile, and methacrylonitrile.
  • nitriles such as aromatic vinyl such as styrene and ⁇ -methylstyrene, acrylonitrile, and methacrylonitrile.
  • the above monomers alone or in combination of two or more, together with (meth) acrylic acid ester, and particularly at least aromatic vinyl.
  • the refractive index of the rubber particles can be easily adjusted.
  • hydroxyalkyl (meth) acrylate such as 2-hydroxyethyl (meth) acrylate
  • (meth) acrylic acid It is preferable to contain a monomer corresponding to an ⁇ , ⁇ -unsaturated acid such as ⁇ , ⁇ -unsaturated acid anhydride such as maleic anhydride.
  • the monomer component constituting the shell layer preferably contains one or more selected from the above monomers together with (meth) acrylic acid ester, for example, (meth) acrylic Terpolymers such as acid ester / aromatic vinyl / hydroxyalkyl (meth) acrylate, (meth) acrylic ester / aromatic vinyl / ⁇ , ⁇ -unsaturated acid, (meth) acrylic ester / hydroxyalkyl ( Binary copolymers such as (meth) acrylate, (meth) acrylate / ⁇ , ⁇ -unsaturated acid (preferably (meth) acrylate / hydroxyalkyl (meth) acrylate, (meth) acrylate / ⁇ , ⁇ -unsaturated acids and the like).
  • (meth) acrylic acid ester for example, (meth) acrylic Terpolymers such as acid ester / aromatic vinyl / hydroxyalkyl (meth) acrylate, (meth) acrylic ester / aromatic vinyl / ⁇ ,
  • the shell layer is composed of divinylbenzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diallyl maleate, triallyl cyanurate, diallyl phthalate, butylene glycol diacrylate, as well as the core portion.
  • a reactive crosslinking monomer having two or more reactive functional groups may be contained in one monomer corresponding to the above.
  • a method of coating the core portion with the shell layer for example, a method of coating the surface of the core portion having rubber elasticity obtained by the above method by applying a copolymer constituting the shell layer, by the above method
  • examples thereof include a method of graft polymerization using the obtained core portion having rubber elasticity as a trunk component and each component constituting the shell layer as a branch component.
  • the average particle diameter of the rubber particles in the present invention is about 10 to 500 nm, preferably about 20 to 400 nm.
  • the maximum particle size of the rubber particles is about 50 to 1000 nm, preferably about 100 to 800 nm.
  • the average particle diameter exceeds 500 nm, or when the maximum particle diameter of the rubber particles exceeds 1000 nm, the transparency of the cured product tends to decrease and the light intensity of the optical semiconductor tends to decrease.
  • the average particle size is less than 10 nm or the maximum particle size of the rubber particles is less than 50 nm, the crack resistance tends to be reduced.
  • the refractive index of the rubber particles in the present invention is, for example, about 1.40 to 1.60, preferably about 1.42 to 1.58. Further, the difference between the refractive index of the rubber particles and the refractive index of the cured product obtained by curing the resin composition containing the rubber particles is within ⁇ 0.02, particularly within ⁇ 0.018. It is preferable. If the difference in refractive index exceeds ⁇ 0.02, the transparency of the cured product decreases, sometimes it becomes cloudy, and the light intensity of the optical semiconductor tends to decrease, and the function of the optical semiconductor may be lost. .
  • the refractive index of the rubber particles is, for example, by casting 1 g of rubber particles into a mold and compression molding at 210 ° C. and 4 MPa to obtain a flat plate having a thickness of 1 mm. From the obtained flat plate, a test piece of 20 mm length ⁇ 6 mm width And using a multi-wavelength Abbe refractometer (trade name “DR-M2”, manufactured by Atago Co., Ltd.) in a state where the prism and the test piece are in close contact using monobromonaphthalene as an intermediate solution, It can be determined by measuring the refractive index at 20 ° C. and sodium D line.
  • DR-M2 multi-wavelength Abbe refractometer
  • the refractive index of the cured product of the resin composition is obtained by, for example, cutting out a test piece of 20 mm long ⁇ 6 mm wide ⁇ 1 mm thick from a cured product obtained by the heat curing method described in the section of the optical semiconductor device below. Using a monobromonaphthalene as a liquid, the prism and the test piece are in close contact with each other, using a multi-wavelength Abbe refractometer (trade name “DR-M2”, manufactured by Atago Co., Ltd.), 20 ° C., sodium It can be determined by measuring the refractive index at the D line.
  • DR-M2 multi-wavelength Abbe refractometer
  • the alicyclic epoxy resin in the present invention is a compound having one or more alicyclic rings (aliphatic hydrocarbon rings) and one or more epoxy groups in the molecule.
  • the alicyclic epoxy compound include (i) at least one alicyclic epoxy group (an epoxy group composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring) in the molecule (preferably (Ii) a compound having an epoxy group bonded directly to the alicyclic ring with a single bond; (iii) a compound having an alicyclic ring and a glycidyl group.
  • the alicyclic epoxy resin in the present invention those exhibiting a liquid state at normal temperature (25 ° C.) are preferable from the viewpoint of workability during preparation and casting.
  • numerator has, In particular, it is a cyclohexene oxide group (adjacent which comprises a cyclohexane ring from a sclerosing
  • the compound having at least one alicyclic epoxy group in the molecule is preferably a compound having two or more cyclohexene oxide groups in the molecule from the viewpoint of transparency and heat resistance of the cured product.
  • a compound represented by the following formula (1) is preferable.
  • X represents a single bond or a linking group (a divalent group having one or more atoms).
  • the linking group include divalent hydrocarbon groups, alkenylene groups in which part or all of carbon-carbon double bonds are epoxidized, carbonyl groups, ether bonds, ester bonds, carbonate groups, amide groups, and the like. And a group in which a plurality of are connected.
  • a substituent such as an alkyl group may be bonded to one or more carbon atoms constituting the alicyclic ring (alicyclic epoxy group) in the formula (1).
  • Examples of the compound in which X in the formula (1) is a single bond include (3,4,3 ′, 4′-diepoxy) bicyclohexyl.
  • Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms and a divalent alicyclic hydrocarbon group.
  • Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group.
  • divalent alicyclic hydrocarbon group examples include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group, 1,3-cyclopentylene group, And divalent cycloalkylene groups (including cycloalkylidene groups) such as cyclohexylene group, 1,4-cyclohexylene group and cyclohexylidene group.
  • alkenylene group in the alkenylene group in which part or all of the carbon-carbon double bond is epoxidized include, for example, vinylene group, propenylene group, 1-butenylene group , 2-butenylene group, butadienylene group, pentenylene group, hexenylene group, heptenylene group, octenylene group, etc., and a linear or branched alkenylene group having 2 to 8 carbon atoms (including alkapolyenylene group).
  • the epoxidized alkenylene group is preferably an alkenylene group in which all of the carbon-carbon double bonds are epoxidized, more preferably 2 to 4 carbon atoms in which all of the carbon-carbon double bonds are epoxidized. Alkenylene group.
  • the linking group X is particularly preferably a linking group containing an oxygen atom, specifically, —CO—, —O—CO—O—, —COO—, —O—, —CONH—, epoxidation.
  • Representative examples of the compound represented by the above formula (1) include 2,2-bis (3,4-epoxycyclohexane-1-yl) propane, bis (3,4-epoxycyclohexylmethyl) ether, , 2-bis (3,4-epoxycyclohexane-1-yl) ethane, 1,2-epoxy-1,2-bis (3,4-epoxycyclohexane-1-yl) ethane, the following formula (1-1) And compounds represented by (1-10).
  • l and m each represents an integer of 1 to 30.
  • R in the following formula (1-5) is an alkylene group having 1 to 8 carbon atoms, and is a methylene group, ethylene group, propylene group, isopropylene group, butylene group, isobutylene group, s-butylene group, pentylene group, hexylene.
  • linear or branched alkylene groups such as a group, a heptylene group, and an octylene group.
  • linear or branched alkylene groups having 1 to 3 carbon atoms such as a methylene group, an ethylene group, a propylene group, and an isopropylene group are preferable.
  • N1 to n6 in the following formulas (1-9) and (1-10) each represents an integer of 1 to 30.
  • Examples of the compound (ii) having an epoxy group bonded directly to the alicyclic ring with a single bond include compounds represented by the following formula (2).
  • R ′ is a group obtained by removing p hydroxyl groups (—OH) from a p-valent alcohol (p-valent organic group) in the structural formula, and p and q each represent a natural number.
  • the p-valent alcohol [R ′ (OH) p ] include polyhydric alcohols (such as alcohols having 1 to 15 carbon atoms) such as 2,2-bis (hydroxymethyl) -1-butanol.
  • p is preferably 1 to 6, and q is preferably 1 to 30.
  • q in each () (inside the parenthesis) may be the same or different.
  • 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol for example, , Trade name “EHPE3150” (manufactured by Daicel Corporation), etc.
  • Examples of the compound (iii) having an alicyclic ring and a glycidyl group include 2,2-bis [4- (2,3-epoxypropoxy) cyclohexyl] propane, 2,2-bis [3,5 -Dimethyl-4- (2,3-epoxypropoxy) cyclohexyl] propane, hydrogenated bisphenol A type epoxy resin (hydrogenated bisphenol A type epoxy resin), etc .; bis [2- (2,3-epoxy Propoxy) cyclohexyl] methane, [2- (2,3-epoxypropoxy) cyclohexyl] [4- (2,3-epoxypropoxy) cyclohexyl] methane, bis [4- (2,3-epoxy Propoxy) cyclohexyl] methane, bis [3,5-dimethyl-4- (2,3-epoxypropoxy) cyclohexyl] methane, bisphenol F type epoxy Hydrogenated resin (hydrogenated bisphenol F
  • alicyclic epoxy compound examples include 1,2,8,9-diepoxy limonene.
  • alicyclic epoxy resins can be used alone or in combination of two or more.
  • commercial products such as trade names “Celoxide 2021P” and “Celoxide 2081” (manufactured by Daicel Chemical Industries, Ltd.). Can also be used.
  • the rubber particle-dispersed epoxy compound (B) in the present invention is obtained by dispersing the rubber particles in the alicyclic epoxy resin.
  • the blending amount of the rubber particles can be appropriately adjusted as necessary. For example, it is about 0.5 to 30% by weight, preferably 1 to 20% by weight with respect to the total amount of the rubber particle-dispersed epoxy compound (B). %. If the amount of rubber particles used is less than 0.5% by weight, the crack resistance tends to be reduced. On the other hand, if the amount of rubber particles used exceeds 30% by weight, the heat resistance and transparency tend to be reduced. is there.
  • the viscosity of the rubber particle-dispersed epoxy compound (B) is preferably 400 mPa ⁇ s to 50000 mPa ⁇ s at 25 ° C., and more preferably 500 mPa ⁇ s to 10000 mPa ⁇ s.
  • the viscosity (25 ° C.) of the rubber particle-dispersed epoxy compound (B) is less than 400 mPa ⁇ s, the transparency tends to decrease.
  • the viscosity (25 ° C.) of the rubber particle-dispersed epoxy compound (B) is 50,000 mPa ⁇ s. If it exceeds 1, both the production of the rubber particle-dispersed epoxy compound (B) and the production of the resin composition tend to decrease the productivity.
  • the viscosity of the rubber particle-dispersed epoxy compound (B) can be adjusted by using a reactive diluent.
  • a reactive diluent an aliphatic polyglycidyl ether having a viscosity at room temperature (25 ° C.) of 200 mPa ⁇ s or less can be suitably used.
  • Examples of the aliphatic polyglycidyl ether include cyclohexanedimethanol diglycidyl ether, cyclohexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, and polypropylene glycol.
  • a diglycidyl ether etc. can be mentioned.
  • the amount of the reactive diluent used can be appropriately adjusted. For example, it is 30 parts by weight or less, preferably 25 parts by weight or less (for example, 5 to 5 parts per 100 parts by weight of the rubber particle-dispersed epoxy compound (B). 25 parts by weight). If the amount of the reactive diluent used exceeds 30 parts by weight, it tends to be difficult to obtain desired performance such as crack resistance.
  • the production method of the rubber particle-dispersed epoxy compound (B) in the present invention is not particularly limited, and a well-known and conventional method can be used.
  • a well-known and conventional method can be used.
  • examples thereof include a method of mixing and dispersing in a cyclic epoxy resin and a method of directly mixing and dehydrating a rubber particle emulsion and an alicyclic epoxy resin.
  • the amount of the rubber particle-dispersed epoxy compound (B) used is preferably about 20 to 100% by weight of the total epoxy group-containing resin contained in the resin composition, and in particular, about 50 to 100% by weight. Preferably there is.
  • distribution epoxy compound (B) is less than 20 weight% of all the epoxy group containing resin, there exists a tendency for the crack resistance of the hardened
  • the resin composition according to the present invention contains at least three components of a rubber particle-dispersed epoxy compound (B), an acid anhydride curing agent (C), and a curing accelerator (D) as essential components.
  • a rubber particle-dispersed epoxy compound (B) an acid anhydride curing agent (C)
  • a curing accelerator (D) a curing accelerator
  • the aspect which has 2 components of a compound (B) and a curing catalyst (E) as an essential component may be sufficient.
  • the acid anhydride curing agent (C) has a function of curing a compound having an epoxy group.
  • a conventionally known curing agent can be used as a curing agent for epoxy resin.
  • the acid anhydride curing agent (C) in the present invention is preferably an acid anhydride which is liquid at 25 ° C., for example, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, dodecenyl succinic anhydride. And methyl endomethylenetetrahydrophthalic anhydride.
  • acid anhydrides that are solid at room temperature (25 ° C.) such as phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylcyclohexene dicarboxylic acid anhydride, are liquid acid anhydrides at room temperature (25 ° C.) It can be used as an acid anhydride curing agent (C) in the present invention by dissolving in a product to form a liquid mixture.
  • the acid anhydride curing agent (C) the trade name “Licacid MH-700” (manufactured by Shin Nippon Rika Co., Ltd.) and the trade name “HN-5500” (manufactured by Hitachi Chemical Co., Ltd.) Commercial products such as these can also be used.
  • the amount of the acid anhydride curing agent (C) used is, for example, 50 to 150 parts by weight, preferably 52 to 145 parts by weight with respect to 100 parts by weight of the compound having all epoxy groups contained in the resin composition. Particularly preferred is about 55 to 140 parts by weight. More specifically, it is preferably used in a ratio of 0.5 to 1.5 equivalents per 1 equivalent of epoxy groups in all the compounds having an epoxy group contained in the resin composition.
  • the amount of the acid anhydride curing agent (C) used is less than 50 parts by weight, the effect becomes insufficient and the toughness of the cured product tends to decrease, while the amount of the acid anhydride curing agent (C) used. If the amount exceeds 150 parts by weight, the cured product may be colored to deteriorate the hue.
  • the curing accelerator (D) is a compound having a function of accelerating the curing rate when the compound having an epoxy group is cured by the acid anhydride curing agent (C).
  • a well-known and commonly used curing accelerator can be used as the curing accelerator (D) in the present invention.
  • DBU 1,8-diazabicyclo [5.4.0] undecene-7
  • salts thereof for example, phenol salt, octylate, p-toluenesulfonate, formate, tetraphenylborate salt); 1,5-diazabicyclo [4.3.0] nonene-5 (DBN), and salts thereof (for example, Phosphonium salts, sulfonium salts, quaternary ammonium salts, iodonium salts); tertiary amines such as benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, N, N-dimethylcyclohexylamine; 2-ethyl- Imidazoles such as 4-methylimidazole and 1-cyanoethyl-2-ethyl-4-methylimidazole; Phosphines such as Li triphenylphosphine; tetraphenylphosphonium
  • the amount of the curing accelerator (D) used is, for example, 0.05 to 5 parts by weight, preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the compound having all epoxy groups contained in the resin composition. Parts, particularly preferably 0.2 to 3 parts by weight, most preferably about 0.25 to 2.5 parts by weight.
  • the amount of the curing accelerator (D) used is less than 0.05 parts by weight, the curing acceleration effect may be insufficient.
  • the amount of the curing accelerator (D) used is more than 5 parts by weight, The cured product may be colored to deteriorate the hue.
  • the curing catalyst (E) in the present invention has a function of initiating polymerization of the epoxy compound in the rubber particle-dispersed epoxy compound (B).
  • the curing catalyst (E) in the present invention is preferably a cationic polymerization initiator that generates cationic species by performing ultraviolet irradiation or heat treatment to initiate polymerization of the rubber particle-dispersed epoxy compound (B).
  • Examples of the cationic polymerization initiator that generates a cationic species by ultraviolet irradiation include hexafluoroantimonate salt, pentafluorohydroxyantimonate salt, hexafluorophosphate salt, hexafluoroarsenate salt, etc.
  • UVACURE 1590 manufactured by Daicel Cytec Co., Ltd.
  • trade names "CD-1010”, “CD-1011”, “CD-1012” manufactured by Sartomer, USA
  • trade name "Irgacure 264” trade name "Irgacure 264” (Ciba Japan Co., Ltd.)
  • a commercial name such as “CIT-1682” (manufactured by Nippon Soda Co., Ltd.) can be suitably used.
  • Examples of the cationic polymerization initiator that generates cationic species by heat treatment include aryldiazonium salts, aryliodonium salts, arylsulfonium salts, and allene-ion complexes.
  • a chelate compound of a metal such as aluminum or titanium and a acetoacetate or diketone compound and a silanol such as triphenylsilanol or a chelate compound of a metal such as aluminum or titanium and acetoacetate or diketone and bisphenol S
  • a chelate compound of a metal such as aluminum or titanium and acetoacetate or diketone and bisphenol S
  • the compound with phenols, such as these may be sufficient.
  • the curing catalyst (E) in the present invention is preferably a hexafluorophosphate salt because it is low in toxicity and easy to handle, and is excellent in versatility.
  • the amount of the curing catalyst (E) used is, for example, 0.01 to 15 parts by weight, preferably 0.01 to 12 parts by weight with respect to 100 parts by weight of the compound having all epoxy groups contained in the resin composition. Particularly preferred is 0.05 to 10 parts by weight, and most preferred is about 0.1 to 10 parts by weight. By using within this range, a cured product having excellent heat resistance, transparency, and weather resistance can be obtained.
  • Nonporous filler (F) The resin composition constituting the antireflection material of the present invention may contain a nonporous filler (F).
  • the resin composition in the antireflection material of the present invention contains the nonporous filler (F)
  • the thermal shock resistance of the cured product is further improved.
  • the nonporous filler (F) that can be used in the antireflection material of the present invention means an inorganic or organic filler that does not have a porous structure and has a specific surface area of 10 m 2 / g or less.
  • inorganic nonporous filler (F1) that can be used in the antireflection material of the present invention
  • a known or conventional inorganic nonporous filler can be used, and is not particularly limited.
  • inorganic glass for example, boron Silicate glass, sodium borosilicate glass, sodium silicate glass, aluminum silicate glass, quartz, etc.
  • nonporous filler (F) a surface treatment [for example, metal oxide, silane coupling agent, titanium coupling agent, organic acid, polyol, silicone, etc., known or commonly used for the above-mentioned inorganic fillers. And the like subjected to surface treatment with a treatment agent].
  • a surface treatment for example, metal oxide, silane coupling agent, titanium coupling agent, organic acid, polyol, silicone, etc., known or commonly used for the above-mentioned inorganic fillers. And the like subjected to surface treatment with a treatment agent.
  • an inorganic nonporous filler (F1) an inorganic nonporous glass or nonporous silica (nonporous silica filler) is preferable from the viewpoint that excellent thermal shock resistance can be imparted to the cured product.
  • the nonporous silica is not particularly limited, and for example, known or commonly used nonporous silica such as fused silica, crystalline silica, high-purity synthetic silica or the like can be used.
  • Nonporous silica is subjected to a known or conventional surface treatment [for example, surface treatment with a surface treatment agent such as a metal oxide, a silane coupling agent, a titanium coupling agent, an organic acid, a polyol, or silicone]. It is also possible to use what has been made.
  • an inorganic nonporous filler (F1), you may use what has a hollow body structure.
  • the hollow inorganic nonporous filler is not particularly limited, and examples thereof include inorganic glass [eg, borosilicate glass, borosilicate soda glass, sodium silicate glass, aluminum silicate glass, quartz, etc.], silica, alumina, zirconia, and the like.
  • Inorganic hollow particles (including natural products such as shirasu balloons) composed of inorganic materials such as metal oxides, calcium carbonate, barium carbonate, nickel carbonate, calcium silicate, etc .; composed of hybrid materials of inorganic and organic materials And inorganic-organic hollow particles.
  • the hollow portion of the hollow inorganic nonporous filler may be in a vacuum state or may be filled with a medium.
  • the light scattering efficiency is improved.
  • hollow particles filled with a medium having a low refractive index for example, an inert gas such as nitrogen or argon or air
  • its hollowness is not particularly limited, but is preferably 10 to 90% by volume, more preferably 30 to 90% by volume. .
  • organic nonporous filler (F2) known or conventional ones can be used, and are not particularly limited.
  • styrene resin acrylic resin, silicone resin, acrylic-styrene resin, vinyl chloride Polymers, vinylidene chloride resins, amide resins, urethane resins, phenol resins, styrene-conjugated diene resins, acrylic-conjugated diene resins, olefin resins, cellulose resins, etc.
  • Organic non-porous filler composed of an organic substance such as
  • inorganic-organic nonporous fillers composed of the above-mentioned inorganic-organic hybrid materials can also be used.
  • the nonporous filler (F) may be composed of a single material, or may be composed of two or more materials.
  • the nonporous filler (F) the inorganic nonporous filler (F1) is preferable from the viewpoint of imparting excellent thermal shock resistance to the cured product, and from the viewpoint of availability and manufacturability, it is nonporous.
  • Silica nonporous silica filler is more preferable.
  • the shape of the nonporous filler (F) is not particularly limited, and examples thereof include powder, spherical shape, crushed shape, fibrous shape, needle shape, and scale shape. Among these, spherical or crushed nonporous filler (F) is preferable from the viewpoint that the nonporous filler (F) improves the thermal shock resistance of the cured product.
  • the center particle diameter of the nonporous filler (F) is not particularly limited, but is preferably 0.1 to 100 ⁇ m, more preferably from the viewpoint that the nonporous filler (F) improves the thermal shock resistance of the cured product. 1 to 50 ⁇ m.
  • the central particle diameter means a volume particle diameter (median volume diameter) at an integrated value of 50% in a particle size distribution measured by a laser diffraction / scattering method.
  • the nonporous filler (F) can be used singly or in combination of two or more.
  • the inorganic filler can also be produced by a known or conventional production method.
  • the FB series (trade name “FB-910”, “FB-940”, “FB-950”, etc.) Manufactured by Kogyo Co., Ltd.), trade names “MSR-2212”, “MSR-25” (above, manufactured by Tatsumori), trade names “HS-105”, “HS-106”, “HS-107”
  • Commercial products such as (manufactured by Micron) can also be used.
  • the hollow inorganic nonporous filler can be produced by a known or conventional production method.
  • the content (mixing amount) is not particularly limited, but the resin composition constituting the antireflection material (100 parts by weight) ) Is preferably 10 to 200 parts by weight, more preferably 20 to 150 parts by weight.
  • the content of the nonporous filler (F) is 10 parts by weight or more, the thermal shock resistance of the cured product constituting the antireflection material tends to be improved.
  • the content of the nonporous filler (F) is 200 parts by weight or less
  • the antireflection material of the present invention is used as, for example, a sealing material for an optical semiconductor device, a significant decrease in the total luminous flux is prevented. Therefore, there is a tendency that sufficient illuminance can be secured.
  • the total content (total blending amount) of the porous filler (A) and the nonporous filler (F) is particularly Although not limited, it is preferably 20 to 60% by weight with respect to the total amount (100% by weight) of the antireflection material.
  • the total content of the porous filler (A) and the nonporous filler (F) is 20% by weight or more, the thermal shock resistance of the cured product constituting the antireflection material tends to be improved.
  • the antireflection material of the present invention is used as, for example, a sealing material for an optical semiconductor device.
  • a sufficient decrease in the total luminous flux can be prevented and sufficient illumination can be secured.
  • the resin composition of the present invention may contain a polyhydric alcohol.
  • a polyhydric alcohol when the resin composition of the present invention includes an acid anhydride curing agent (C) and a curing accelerator (D), it further includes a polyhydric alcohol in that curing can proceed more efficiently. It is preferable.
  • the polyhydric alcohol known or commonly used polyhydric alcohols can be used, and are not particularly limited.
  • ethylene glycol, propylene glycol, butylene glycol, 1,3-butanediol, 1,4-butanediol examples include 1,6-hexanediol, diethylene glycol, triethylene glycol, neopentyl glycol, polyethylene glycol, polypropylene glycol, polybutylene glycol, trimethylolpropane, glycerin, pentaerythritol, and dipentaerythritol.
  • the polyhydric alcohol is preferably an alkylene glycol having 1 to 6 carbon atoms, more preferably carbon in terms of being able to control curing well and easily obtaining a cured product that is less prone to cracking and peeling. It is an alkylene glycol of formula 2-4.
  • polyhydric alcohols can be used alone or in combination of two or more.
  • the content (blending amount) of the polyhydric alcohol in the resin composition of the present invention is not particularly limited, but the total amount of epoxy compounds contained in the resin composition (total epoxy compounds; for example, total amount of alicyclic epoxy resins) 100 0.05 to 5 parts by weight is preferable with respect to parts by weight, more preferably 0.1 to 3 parts by weight, still more preferably 0.2 to 3 parts by weight, and particularly preferably 0.25 to 2.5 parts by weight. It is.
  • the content of the polyhydric alcohol is 0.05 parts by weight or more, curing tends to proceed more efficiently.
  • the content of the polyhydric alcohol is 5 parts by weight or less, the reaction rate of the curing tends to be easily controlled.
  • the resin composition of the present invention may contain a phosphor.
  • a phosphor When the resin composition of the present invention contains a phosphor, it can be particularly preferably used as an optical semiconductor element sealing application (sealing material application) in an optical semiconductor device, that is, an optical semiconductor sealing resin composition.
  • the phosphor a known or commonly used phosphor (in particular, a phosphor used for sealing an optical semiconductor element) can be used, and is not particularly limited.
  • the general formula A 3 B 5 O 12 M [Wherein, A represents one or more elements selected from the group consisting of Y, Gd, Tb, La, Lu, Se, and Sm, and B is selected from the group consisting of Al, Ga, and In.
  • YAG phosphor fine particles represented by the following formula: M represents one or more elements selected from the group consisting of Ce, Pr, Eu, Cr, Nd, and Er] (For example, Y 3 Al 5 O 12 : Ce phosphor fine particles, (Y, Gd, Tb) 3 (Al, Ga) 5 O 12 : Ce phosphor fine particles, etc.), silicate type phosphor fine particles (for example, (Sr, Ca, Ba) 2 SiO 4 : Eu and the like.
  • the surface of the phosphor may be modified with an organic group (for example, a long-chain alkyl group, a phosphate group, etc.) to improve dispersibility, for example.
  • the phosphor can be used alone or in combination of two or more.
  • a commercial item can be used as a fluorescent substance.
  • the phosphor content (blending amount) in the resin composition of the present invention is not particularly limited, and is appropriately selected within the range of 0.5 to 20% by weight with respect to the total amount (100% by weight) of the resin composition. be able to.
  • the resin composition according to the present invention may contain an alicyclic epoxy resin not containing rubber particles in addition to the rubber particle-dispersed epoxy compound (B).
  • the alicyclic epoxy resin include alicyclic epoxy resins represented by the above formula (1).
  • the amount of the alicyclic epoxy resin not containing rubber particles is preferably less than 70% by weight of the total epoxy group-containing resin contained in the resin composition, and in particular, less than 60% by weight. Is preferred. When the amount of the alicyclic epoxy resin not containing rubber particles exceeds 70% by weight of the total epoxy group-containing resin, the crack resistance of the resulting cured product tends to be lowered.
  • the resin composition according to the present invention includes a glycidyl ether type epoxy compound having an aromatic ring such as bisphenol A type or bisphenol F type; a glycidyl ether type having no aromatic ring such as hydrogenated bisphenol A type or aliphatic glycidyl type.
  • Epoxy compounds; glycidyl ester epoxy compounds; glycidyl amine epoxy compounds; epoxy resins other than alicyclic epoxy resins such as polyol compounds, oxetane compounds and vinyl ether compounds may be contained.
  • the amount of the epoxy resin other than the alicyclic epoxy resin used is preferably less than 70% by weight of the total epoxy group-containing resin contained in the resin composition, and in particular, less than 60% by weight. preferable. When the usage-amount of epoxy resins other than an alicyclic epoxy resin exceeds 70 weight% of all epoxy group containing resin, there exists a tendency for the crack resistance of the obtained hardened
  • epoxy compound which shows solid at normal temperature (25 degreeC)
  • blends and may show liquid state you may contain.
  • the epoxy compound that exhibits a solid at room temperature (25 ° C.) include solid bisphenol-type epoxy compounds, novolac-type epoxy compounds, glycidyl esters, triglycidyl isocyanurate, and 2,2-bis (hydroxymethyl) -1-butanol.
  • 1,2-epoxy-4- (2-oxiranyl) cyclosoxane adduct (trade name “EHPE3150”, manufactured by Daicel Chemical Industries, Ltd.). These epoxy compounds can be used individually or in combination of 2 or more types.
  • a glycidyl ether epoxy compound having no aromatic ring and / or liquid at 25 ° C it is preferable that it contains a polyol compound (excluding a polyether polyol) in view of improving crack resistance without impairing high heat resistance, and in particular, a glycidyl ether epoxy compound having no aromatic ring. It is preferable to contain it in that the crack resistance can be improved without impairing the high heat resistance and light resistance.
  • the glycidyl ether epoxy compound having no aromatic ring in the present invention includes an aliphatic glycidyl ether epoxy compound and a compound obtained by hydrogenating an aromatic glycidyl ether epoxy compound.
  • product names “EPICLON 703”, “EPICLON 707”, “EPICLON 720”, “EPICLON 725” (manufactured by DIC Corporation), product names “YH-300”, “YH-315”, “YH-324”, “PG-” 202 ”,“ PG-207 ”,“ Santoto ST-3000 ”(manufactured by Toto Kasei Co., Ltd.), trade names“ Rikaresin DME-100 ”,“ Rikaresin HBE-100 ”(Shin Nippon Rika Co., Ltd.), merchandise Commercially available products such as names “Denacol EX-212”, “Denacol EX-321” (manufactured by Nagase ChemteX Corp.), product names “YX8000”, “YX8034” (manufactured by Japan Epoxy Resins Co., Ltd.) are preferably used. can do.
  • the amount of the glycidyl ether epoxy compound having no aromatic ring is, for example, about 10 to 60 parts by weight, preferably about 20 to 50 parts by weight with respect to 100 parts by weight of the alicyclic epoxy resin.
  • the polyol compound exhibiting a liquid state at 25 ° C. in the present invention includes polyol compounds other than polyether polyol, for example, polyester polyol and polycarbonate polyol.
  • polyester polyol examples include trade names “Placcel 205”, “Placcel 205H”, “Placcel 205U”, “Placcel 205BA”, “Placcel 208”, “Placcel 210”, “Placcel 210CP”, “Placcel 210BA”, “ Plaxel 212, Plaxel 212CP, Plaxel 220, Plaxel 220CPB, Plaxel 220NP1, Plaxel 220BA, Plaxel 220ED, Plaxel 220EB, Plaxel 220EC, Plaxel 230, Plaxel 230CP, Plaxel 240, Plaxel 240CP, Plaxel 210N, Plaxel 220N, Plaxel L205AL, Plaxel L208AL , “Placcel L212AL”, “Placcel L220AL”, “Placcel L230AL”, “Placcel 305”, “Plaxel 308”, “Plaxel 312”, “Plaxel L312AL”, “Plaxel 320”,
  • polycarbonate polyol examples include trade names “Placcel CD205PL”, “Placcel CD205HL”, “Placcel CD210PL”, “Placcel CD210HL”, “Placcel CD220PL”, “Placcel CD220HL” (manufactured by Daicel Chemical Industries, Ltd.), trade names “UH-CARB50”, “UH-CARB100”, “UH-CARB300”, “UH-CARB90 (1/3)”, “UH-CARB90 (1/1)”, “UC-CARB100” (Ube Industries, Ltd.)
  • Commercial products such as “PCDL T4671”, “PCDL T4672”, “PCDL T5650J”, “PCDL T5651”, “PCDL T5652” (manufactured by Asahi Kasei Chemicals Corporation) can be used.
  • the amount of the polyol compound that exhibits a liquid state at 25 ° C. is, for example, about 5 to 50 parts by weight, preferably about 10 to 40 parts by weight with respect to 100 parts by weight of the rubber particle-dispersed epoxy compound (B).
  • the resin composition of the present invention may contain other components other than those described above within a range that does not significantly affect the curability and transparency.
  • the other components include a silicone resin having a linear or branched chain, a silicone resin having an alicyclic ring, a silicone resin having an aromatic ring, a cage type / ladder type / random type silsesquioxane, Silane coupling agents such as ⁇ -glycidoxypropyltrimethoxysilane, silicone-based and fluorine-based antifoaming agents, leveling agents, surfactants, fillers, flame retardants, colorants, antioxidants, UV absorbers, Examples thereof include an ion adsorbent, a pigment, and a release agent.
  • the content (blending amount) of the other components is not particularly limited, but is preferably 5% by weight or less (for example, 0 to 3% by weight) with respect to the total amount (100% by weight) of the resin composition.
  • the resin composition of the present invention is not particularly limited, but can be prepared, for example, by stirring and mixing the above-described components in a heated state as necessary.
  • the curable epoxy resin composition of the present invention may be a one-component composition that uses a mixture of all the components in advance, or, for example, a component divided into two or more. It may be a multi-liquid composition (for example, a two-liquid system) used by mixing at a predetermined ratio immediately before use.
  • the method of stirring and mixing is not particularly limited, and for example, known or conventional stirring and mixing means such as various mixers such as a dissolver and a homogenizer, a kneader, a roll, a bead mill and a self-revolving stirrer can be used. Further, after stirring and mixing, defoaming may be performed under reduced pressure or under vacuum.
  • the porous filler (A) is uniformly dispersed throughout the resin composition or the cured product thereof, and is present on the surface of the cured product as a result of stable dispersion.
  • the porous filler (A) forms an uneven shape and exhibits an antireflection function by scattering incident light. Further, the porous structure on the surface of the porous filler (A) can also scatter incident light, and the antireflection function is further improved.
  • the said resin composition contains a rubber particle dispersion
  • the method for uniformly spreading the porous filler (A) over the entire cured product is not particularly limited.
  • the porous filler (A) is uniformly dispersed in the resin composition constituting the cured product and then cured. And the like.
  • a method in which the porous filler (A) is uniformly dispersed and then cured is preferable.
  • one embodiment of the method for producing an antireflection material of the present invention will be described, but the present invention is not limited thereto.
  • a porous filler (A) and, if necessary, a nonporous filler (F) can be added to the resin composition, and the resin composition can be uniformly dispersed by mixing and stirring.
  • the mixing / stirring method is not particularly limited.
  • known or conventional stirring / mixing means such as various mixers such as a dissolver and a homogenizer, a kneader, a roll, a bead mill, and a self-revolving stirrer can be used.
  • defoaming may be performed under reduced pressure or under vacuum.
  • the properties of the resin composition before curing of the present invention are not particularly limited, but are preferably liquid. Since the resin composition before curing forming the antireflection material of the present invention can exhibit an antireflection function with a small amount of addition by using the porous filler (A), a solvent such as toluene is not used. Both are preferable because they are liable to become liquid.
  • the antireflection material of the present invention is obtained by curing the resin composition in which the porous filler (A) is uniformly dispersed to obtain a cured product (hereinafter sometimes referred to as “cured product of the present invention”). Can do.
  • the amount of the component that volatilizes during curing relative to the total amount (100% by weight) of the resin composition before curing is not particularly limited, but is preferably 10% by weight or less, more preferably 8% by weight or less, Preferably it is 5 weight% or less. When the amount of the component that volatilizes during curing is 10% by weight or less, the dimensional stability of the cured product is increased, which is preferable.
  • the resin composition before curing of the present invention can exhibit an antireflection function with a small amount of addition by using the porous filler (A), it is liquid without using a volatile component of a solvent (toluene or the like). The amount of components that volatilize during curing can be reduced.
  • the temperature for curing by heating is not particularly limited, but is preferably 45 to 200 ° C, more preferably 50 to 190 ° C, and still more preferably 55 to 180 ° C.
  • the heating time (curing time) for curing is not particularly limited, but is preferably 30 to 600 minutes, more preferably 45 to 540 minutes, and further preferably 60 to 480 minutes.
  • the curing conditions depend on various conditions, for example, when the curing temperature is increased, the curing time can be shortened, and when the curing temperature is decreased, the curing time can be appropriately increased. Moreover, hardening can also be performed in one step and can also be performed in two or more steps.
  • light (radiation) including i-line (365 nm), h-line (405 nm), g-line (436 nm), etc. is irradiated at an illuminance of 10 to 1200 mW / cm 2 .
  • the antireflection material of the present invention can be obtained by irradiating with a light amount of 20 to 2500 mJ / cm 2 .
  • the irradiation light amount is preferably 20 to 600 mJ / cm 2 , more preferably 20 to 300 mJ / cm 2 .
  • a high-pressure mercury lamp, xenon lamp, carbon arc lamp, metal halide lamp, laser light, or the like can be used as an irradiation source.
  • the antireflection material of the present invention has high thermal shock resistance in addition to high transparency and excellent antireflection function, and is therefore suitable as a resin for optical materials (used for forming optical materials).
  • Can be used for An optical material is a material that exhibits various optical functions such as light diffusibility, light transmission, and light reflectivity.
  • an optical member containing at least the cured product (optical material) of the present invention can be obtained.
  • the said optical member may be comprised only from the reflection preventing material of this invention, and the reflection preventing material of this invention may be used for only one part.
  • optical member examples include a member that expresses various optical functions such as light diffusibility, light transmittance, and light reflectivity, and a member that constitutes a device or an apparatus using the optical function.
  • optical semiconductor devices organic EL devices, adhesives, electrical insulating materials, laminates, coatings, inks, paints, sealants, resists, composite materials, transparent substrates, transparent sheets, transparent films, optical elements, optics
  • Examples thereof include known or conventional optical members used in various applications such as lenses, optical modeling, electronic paper, touch panels, solar cell substrates, optical waveguides, light guide plates, holographic memories, and optical pickup sensors.
  • the antireflection material of the present invention has a fine and uniform concavo-convex shape formed by the porous filler (A) on its surface as a result of the porous filler (A) being uniformly distributed throughout the cured product, Since the incident light is scattered by the uneven shape and total reflection does not occur, the gloss can be suppressed and the visibility can be improved.
  • the arithmetic average surface roughness Ra of the concavo-convex shape formed on the antireflection material of the present invention is preferably in the range of 0.1 to 1.0 ⁇ m, and more preferably in the range of 0.2 to 0.8 ⁇ m.
  • the arithmetic average surface roughness Ra of the concavo-convex shape is in this range, there is a tendency that a sufficient antireflection function can be exhibited without significantly impairing the total luminous flux.
  • the arithmetic average surface roughness Ra is a numerical value defined by JIS B 0601-2001, and means a value measured and calculated by a method described in Examples described later.
  • the resin composition constituting the antireflection material of the present invention can be preferably used as, for example, a resin composition for optical semiconductor encapsulation. That is, the resin composition of the present invention can be preferably used as a composition for sealing an optical semiconductor element in an optical semiconductor device (an optical semiconductor element sealing material in an optical semiconductor device). An optical semiconductor device in which an optical semiconductor element is sealed with the antireflection material produced using the resin composition of the present invention (an optical semiconductor sealing resin composition) (for example, 104 in FIG. An optical semiconductor device composed of a prevention material is obtained.
  • Sealing of the optical semiconductor element can be performed, for example, by injecting a resin composition in which the porous filler (A) is uniformly dispersed into a predetermined mold and heat curing or photocuring under predetermined conditions.
  • the curing temperature, curing time, photocuring conditions, and the like can be set as appropriate within the same range as in the preparation of the antireflection material.
  • the above-described optical semiconductor device of the present invention can particularly exhibit an excellent antireflection function without reducing the total luminous flux.
  • the resin composition of the present invention contains a rubber particle-dispersed epoxy compound (B) and, if necessary, a nonporous filler (F), a cured product containing this has excellent thermal shock resistance. .
  • the “optical semiconductor device of the present invention” means that the antireflective material of the present invention is used for at least a part of constituent members (for example, a sealing material, a die bonding material, etc.) of the optical semiconductor device.
  • An optical semiconductor device is meant.
  • the unit of the component which comprises the resin composition shown to Table 1, 2 is a weight part.
  • the average particle size and the maximum particle size of the rubber particles are determined based on a nanotrac TM particle size distribution measuring device (trade name “UPA-EX150”, manufactured by Nikkiso Co., Ltd.) using the dynamic light scattering method as a measurement principle. ) Is used to measure the following sample, and in the obtained particle size distribution curve, the average particle size, which is the particle size when the cumulative curve becomes 50%, is the average particle size, and the frequency (%) of the particle size distribution measurement result is The maximum particle size at the time when it exceeded 0.00% was defined as the maximum particle size.
  • sample A sample prepared by dispersing 1 part by weight of a rubber particle-dispersed epoxy compound (B) in 20 parts by weight of tetrahydrofuran was used as a sample.
  • the rubber particles have a refractive index of 1 g of rubber particles cast into a mold and compression molded at 210 ° C. and 4 MPa to obtain a flat plate having a thickness of 1 mm. From the obtained flat plate, a test piece of 20 mm length ⁇ 6 mm width is cut out. The test was conducted using a multi-wavelength Abbe refractometer (trade name “DR-M2”, manufactured by Atago Co., Ltd.) in a state where the prism and the test piece were in close contact using monobromonaphthalene as an intermediate solution. The refractive index at 20 ° C. and sodium D line on the piece was measured.
  • DR-M2 multi-wavelength Abbe refractometer
  • the viscosity of the rubber particle-dispersed epoxy compound (B) obtained in Production Example (5 parts by weight of rubber particles dispersed in 100 parts by weight of Celoxide 2021P (manufactured by Daicel Chemical Industries)) is a digital viscosity type (product The viscosity at 25 ° C. was measured using a name “DVU-EII type” (manufactured by Tokimec Co., Ltd.).
  • Production Example 1 A 1 L polymerization vessel equipped with a reflux condenser was charged with 500 g of ion exchange water and 0.68 g of sodium dioctyl succinate, and the temperature was raised to 80 ° C. while stirring under a nitrogen stream.
  • a monomer mixture consisting of 9.5 g of butyl acrylate, 2.57 g of styrene, and 0.39 g of divinylbenzene corresponding to about 5% by weight of the amount required to form the core portion is collectively collected.
  • the mixture was cooled to room temperature (25 ° C.) and filtered through a plastic mesh having an opening of 120 ⁇ m to obtain a latex containing particles having a core-shell structure.
  • the obtained latex was frozen at ⁇ 30 ° C., dehydrated and washed with a suction filter, and then blown and dried at 60 ° C. overnight to obtain rubber particles (1).
  • the obtained rubber particles (1) had an average particle size of 254 nm, a maximum particle size of 486 nm, and a refractive index of 1.500.
  • Rubber particles (2) were obtained in the same manner as in Production Example 1, except that 2.7 g of 2-hydroxyethyl methacrylate was used instead of 1.5 g of acrylic acid.
  • the obtained rubber particles (2) had an average particle size of 261 nm, a maximum particle size of 578 nm, and a refractive index of 1.500.
  • a rubber particle-dispersed epoxy compound (B-2) (viscosity at 25 ° C .: 512 mPa ⁇ s) was obtained in the same manner as in Production Example 1.
  • Production Example 3 A 1 L polymerization vessel equipped with a reflux condenser was charged with 500 g of ion-exchanged water and 1.3 g of sodium dioctyl succinate and heated to 80 ° C. while stirring under a nitrogen stream.
  • a monomer mixture consisting of 9.5 g of butyl acrylate, 2.57 g of styrene, and 0.39 g of divinylbenzene corresponding to about 5% by weight of the amount required to form the core portion is collectively collected.
  • rubber particles (3) were obtained in the same manner as in Production Example 1 except that the amount of acrylic acid used was changed from 1.5 g to 2.0 g.
  • the rubber particles (3) obtained had an average particle size of 108 nm, a maximum particle size of 289 nm, and a refractive index of 1.500.
  • a rubber particle-dispersed epoxy compound (B-3) (viscosity at 25 ° C .: 1036 mPa ⁇ s) was obtained in the same manner as in Production Example 1.
  • Production Example 4 100 parts by weight of a curing agent (trade name “Licacid MH-700”, manufactured by Shin Nippon Rika Co., Ltd.), 0.5 part by weight of a curing accelerator (trade name “U-CAT 18X”, manufactured by Sun Apro Co., Ltd.), and 1 part by weight of ethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd.) is mixed using a self-revolving stirrer (trade name “Awatori Nertaro AR-250”, manufactured by Shinky Co., Ltd., the same shall apply hereinafter) An epoxy curing agent (K agent) was produced.
  • a curing agent trade name “Licacid MH-700”, manufactured by Shin Nippon Rika Co., Ltd.
  • a curing accelerator trade name “U-CAT 18X”, manufactured by Sun Apro Co., Ltd.
  • ethylene glycol manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 1 100 parts by weight of the rubber particle-dispersed epoxy compound (B-1) obtained in Production Example 1 and 101.5 parts by weight of the epoxy curing agent obtained in Production Example 4 are mixed using a self-revolving stirrer, and defoamed. Thus, a curable epoxy resin composition was produced. 100 parts by weight of the curable epoxy resin composition obtained above and 20 parts by weight of a porous filler (trade name “Silicia 430”, manufactured by Fuji Silysia Chemical Ltd.) are mixed using a self-revolving stirrer, The curable epoxy resin composition obtained by defoaming is cast on an optical semiconductor lead frame (InGaN element, 3.5 mm ⁇ 2.8 mm) shown in FIG.
  • an optical semiconductor lead frame InGaN element, 3.5 mm ⁇ 2.8 mm
  • FIG. 1 100 is a reflector, 101 is a metal wiring, 102 is an optical semiconductor element, 103 is a bonding wire, 104 is a sealing material (antireflection material), and the porous filler is uniformly distributed throughout 104.
  • corrugated shape is formed by the porous filler which exists in the upper surface among them (the uneven
  • Examples 2 to 15 and Comparative Examples 1 to 5 An optical semiconductor device was produced in the same manner as in Example 1 except that the compositions of the curable epoxy resin composition, the porous filler, and the nonporous filler were changed as shown in Tables 1 and 2.
  • Rubber particle dispersed epoxy compound (B)) B-1 Rubber particle-dispersed epoxy compound (B-1) produced in Production Example 1
  • B-2 Rubber particle-dispersed epoxy compound (B-2) produced in Production Example 2
  • B-3 Rubber particle-dispersed epoxy compound (B-3) produced in Production Example 3
  • Celoxide 2021P Trade name “Celoxide 2021P” [3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate], manufactured by Daicel Corporation
  • YD-128 Trade name “YD-128” [Bisphenol A type epoxy Resin], manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • U-CAT 18X Trade name “U-CAT 18X "[curing accelerator], manufactured by San Apro Co., Ltd.
  • Ethylene glycol Wako Pure Chemical Industries, Ltd.
  • SI-100L Trade name” Sun Aid SI-100L ", manufactured by San Apro Co., Ltd.
  • Silicia 430 trade name “Cylicia 430”, manufactured by Fuji Silysia Chemical Ltd., volume average particle size: 4.1 ⁇ m; specific surface area: 350 m 2 / g; average pore size: 17 nm; pore volume: 1.25 mL / g Oil absorption: 230 mL / 100 g Pyrosphere C-1504: Trade name “Cyrosphere C-1504”, manufactured by Fuji Silysia Chemical Ltd., volume average particle size: 4.5 ⁇ m; specific surface area: 520 m 2 / g; average pore size: 12 nm; pore volume : 1.5 mL / g; Oil absorption: 290 mL / 100 g Sunsphere H-52: trade name “Sunsphere H-52” manufactured by AGC S-Tech Co., Ltd., volume average particle diameter: 5 ⁇ m; specific surface area: 700 m 2 / g; average pore diameter: 10 n
  • Nonporous silica filler Fused spherical silica: manufactured by Tatsumori Co., Ltd., volume average particle size: 5 ⁇ m
  • a predetermined amount of porous silica filler is added according to the present invention, and the light further includes an antireflection material according to an example manufactured from a resin composition containing a rubber particle-dispersed epoxy compound (B).
  • the reflection of the fluorescent lamp is either ⁇ or ⁇
  • the arithmetic average surface roughness Ra is in the range of 0.10 to 1.0 ⁇ m
  • the total luminous flux is 0.60 lm or more.
  • the number of non-lighted optical semiconductor devices in the thermal shock test was zero, and it was confirmed that the film had good illuminance while having excellent antireflection function, and also had excellent thermal shock resistance. .
  • the optical semiconductor device provided with the antireflection material of Comparative Examples 1 and 2 not using the rubber particle-dispersed epoxy compound (B) showed excellent antireflection function and good illuminance.
  • the number of unlit optical semiconductor devices was two, and it was confirmed that the thermal shock resistance was poor.
  • blending a porous silica filler and the compounding quantity of a porous silica filler less than the predetermined range of this invention is provided.
  • the antireflection function is inferior.
  • Comparative Example 3 the nonporous silica filler settled, and in Comparative Example 4, the amount of the porous silica filler was not sufficient. As a result, it was considered that a uniform fine uneven shape was not formed on the surface. Furthermore, in the optical semiconductor device provided with the antireflection material of Comparative Example 5 in which the compounding amount of the porous silica filler is larger than the predetermined range of the present invention, while showing a good antireflection function, the total luminous flux is 0.48 lm or more. , Illuminance decreased significantly. It is considered that light was absorbed because of the large amount of the porous silica filler.
  • An antireflection material composed of a cured product of a resin composition in which a porous filler (A) is dispersed, wherein the porous filler (A) forms irregularities that suppress reflection on the surface of the cured product
  • the resin composition contains a rubber particle-dispersed epoxy compound (B) in which rubber particles are dispersed in an alicyclic epoxy resin, an acid anhydride-based curing agent (C), and a curing accelerator (D).
  • the rubber particles are composed of a polymer having a core-shell structure and having (meth) acrylic acid ester as an essential monomer component, and a hydroxyl group and / or a carboxyl group as functional groups capable of reacting with an alicyclic epoxy resin on the surface.
  • the average particle size is 10 nm to 500 nm
  • the maximum particle size is 50 nm to 1000 nm
  • the difference between the refractive index of the rubber particles and the refractive index of the cured product of the resin composition is within ⁇ 0.02.
  • An antireflection material wherein the content of the porous filler (A) is 4 to 40% by weight relative to the total amount (100% by weight) of the antireflection material.
  • the inorganic porous filler (A1) is an inorganic glass [for example, borosilicate glass, borosilicate soda glass, sodium silicate glass, aluminum silicate glass, quartz, etc.], silica, alumina, zircon, calcium silicate, calcium phosphate, carbonic acid Calcium, magnesium carbonate, silicon carbide, silicon nitride, boron nitride, aluminum hydroxide, iron oxide, zinc oxide, zirconium oxide, magnesium oxide, titanium oxide, aluminum oxide, calcium sulfate, barium sulfate, fosterite, steatite, spinel, Clay, kaolin, dolomite, hydroxyapatite, nepheline syenite, cristobalite, wollastonite, diatomaceous earth, and talc, a powder having a porous structure, or a molded product thereof ( Example If, spheronized beads, etc.) (preferably a porous inorganic glass or
  • [6] Surface treatment with at least one surface treatment agent selected from the group consisting of metal oxide, silane coupling agent, titanium coupling agent, organic acid, polyol, and silicone as the inorganic porous filler (A1).
  • the antireflection material according to any one of [3] to [5] above, wherein [7] The above-mentioned [5] or [6], wherein the porous silica is at least one kind of porous silica selected from the group consisting of fused silica, crystalline silica, high-purity synthetic silica, and colloidal silica.
  • Anti-reflective material is any one of [3] to [5] above, wherein [7] The above-mentioned [5] or [6], wherein the porous silica is at least one kind of porous silica selected from the group consisting of fused silica, crystalline silica, high-purity synthetic silica, and colloidal silica.
  • At least one hydrophobic surface treatment agent preferably, the porous silica is selected from the group consisting of metal oxides, silane coupling agents, titanium coupling agents, organic acids, polyols, and organosilicon compounds
  • the antireflection material according to any one of the above [5] to [7], which is a surface-treated (hydrophobic porous silica) with an organosilicon compound.
  • the hydrophobic surface treating agent is selected from the group consisting of trimethylchlorosilane, hexamethyldisiloxane, dimethyldichlorosilane, octamethylcyclotetrasilane, polydimethylsiloxane, hexadecylsilane, methacrylsilane, and silcorn oil.
  • the organic porous filler (A2) is a styrene resin, acrylic resin, silicone resin, acrylic-styrene resin, vinyl chloride resin, vinylidene chloride resin, amide resin, urethane resin, phenol.
  • Porous polymer composed of at least one organic material selected from the group consisting of styrene-based resins, styrene-conjugated diene-based resins, acrylic-conjugated diene-based resins, olefin-based resins, and cellulose resins (including cross-linked products of these polymers)
  • the antireflection material according to any one of the above [3] to [9], which is a porous sintered body, a polymer foam, or a gel porous body.
  • the shape of the porous filler (A) is at least one (preferably spherical or crushed) selected from the group consisting of powder, spherical, crushed, fibrous, acicular, and scaly.
  • the specific surface area of the porous filler (A) is 10 to 2000 m 2 / g (preferably 100 to 1000 m 2 / g), according to any one of the above [1] to [12] Anti-reflective material.
  • the porous filler (A) has a pore volume of 0.1 to 10 mL / g (preferably 0.2 to 5 mL / g).
  • Antireflection material as described in 4.
  • the content (blending amount) of the porous filler (A) is 4 to 35% by weight (preferably 4 to 30% by weight) with respect to the total amount (100% by weight) of the antireflection material or resin composition.
  • the antireflection material according to any one of [1] to [15] above. [17]
  • the content (blending amount) of the porous filler (A) is 5 to 80 parts by weight (preferably 5 to 70 parts by weight) with respect to the resin composition (100 parts by weight) constituting the antireflection material.
  • the shell layer in the core-shell structure is composed of (meth) acrylic acid ester / aromatic vinyl / hydroxyalkyl (meth) acrylate and (meth) acrylic acid ester / aromatic vinyl / ⁇ , ⁇ -unsaturated acid.
  • the antireflection material according to any one of the above [1] to [22], which is composed of (preferably a binary copolymer).
  • Anti-reflective material [25] The antireflection material according to any one of [1] to [24], wherein the rubber particles have an average particle diameter of 20 to 400 nm. [26] The antireflection material according to any one of [1] to [25], wherein the rubber particles have a maximum particle size of 100 to 800 nm. [27] The antireflection according to any one of [1] to [26], wherein the rubber particles have a refractive index of 1.40 to 1.60 (preferably 1.42 to 1.58). Wood. [28] The difference between the refractive index of the rubber particles and the refractive index of the cured product of the resin composition is ⁇ 0.018 or less, according to any one of [1] to [27] above. Anti-reflective material.
  • the alicyclic epoxy resin (i) a compound having at least one (preferably two or more) alicyclic epoxy groups in the molecule; (ii) an epoxy group bonded directly to the alicyclic ring by a single bond. And (iii) at least one selected from the group consisting of compounds having an alicyclic ring and a glycidyl group.
  • the antireflection material according to any one of the above [1] to [28].
  • the antireflection material according to [29] wherein the alicyclic epoxy group contained in the compound (i) having at least one alicyclic epoxy group in the molecule is a cyclohexene oxide group.
  • the antireflection material according to [30], wherein the compound (i) having at least one alicyclic epoxy group in the molecule is a compound represented by the following formula (1).
  • X represents a single bond or a linking group (a divalent group having one or more atoms).
  • a substituent preferably an alkyl group
  • the compound represented by the formula (1) is 2,2-bis (3,4-epoxycyclohexane-1-yl) propane, bis (3,4-epoxycyclohexylmethyl) ether, 1,2- Bis (3,4-epoxycyclohexane-1-yl) ethane, 1,2-epoxy-1,2-bis (3,4-epoxycyclohexane-1-yl) ethane, and the following formulas (1-1) to ( The antireflection material according to [31] above, which contains at least one selected from the group consisting of compounds represented by 1-10). [In the formulas (1-5) and (1-7), l and m each represents an integer of 1 to 30.
  • R in the formula (1-5) is an alkylene group having 1 to 8 carbon atoms.
  • N1 to n6 in the formulas (1-9) and (1-10) each represents an integer of 1 to 30.
  • the compound (ii) having an epoxy group directly bonded to the alicyclic ring with a single bond is a compound represented by the following formula (2):
  • R ′ is a p-valent organic group, and p and q each represent a natural number.
  • the amount of the rubber particles is 0.5 to 30% by weight (preferably about 1 to 20% by weight) with respect to the total amount (100% by weight) of the rubber particle-dispersed epoxy compound (B).
  • the antireflection material according to any one of [34].
  • the antireflection material as described in any one.
  • the amount of the acid anhydride curing agent (C) used is 50 to 150 parts by weight (preferably 52 to 145 parts by weight) with respect to 100 parts by weight of the compound having all epoxy groups contained in the resin composition.
  • the amount of the acid anhydride curing agent (C) used is such that the amount of the acid anhydride curing agent (C) is 0.5 to 1.5 equivalents per one equivalent of epoxy groups in the compound having all epoxy groups contained in the resin composition.
  • the amount of the curing accelerator (D) used is 0.05 to 5 parts by weight (preferably 0.1 to 3 parts by weight) with respect to 100 parts by weight of the compound having all epoxy groups contained in the resin composition. Part, particularly preferably 0.2 to 3 parts by weight, and most preferably 0.25 to 2.5 parts by weight.)
  • the antireflection material according to any one of [1] to [40] above.
  • the content (blending amount) of the nonporous filler (F) is 10 to 200 parts by weight (preferably 20 to 150 parts by weight) with respect to the resin composition (100 parts by weight) constituting the antireflection material.
  • the total content (total blending amount) of the porous filler (A) and the nonporous filler (F) is 20 to 60% by weight with respect to the total amount (100% by weight) of the antireflection material.
  • the antireflection material according to any one of the above [42] to [44].
  • the content (blending amount) of the polyhydric alcohol is 0.05 to 5 parts by weight (preferably 0.1 to 3 parts by weight) with respect to 100 parts by weight of the total amount of the epoxy compound contained in the resin composition.
  • the antireflection material according to the above [46] more preferably 0.2 to 3 parts by weight, particularly preferably 0.25 to 2.5 parts by weight.
  • the resin composition contains an alicyclic epoxy resin not containing rubber particles (preferably an alicyclic epoxy resin represented by the above formula (1)) in addition to the rubber particle-dispersed epoxy compound (B).
  • the antireflection material according to any one of [1] to [49] above.
  • the amount of the alicyclic epoxy resin not containing the rubber particles is less than 70% by weight (preferably less than 60% by weight) of the total epoxy group-containing resin contained in the resin composition. 50].
  • the resin composition contains an epoxy resin other than an alicyclic epoxy resin (preferably a glycidyl ether epoxy compound having an aromatic ring such as bisphenol A type or bisphenol F type). 51].
  • the antireflection material according to any one of [51].
  • the amount of the epoxy resin other than the alicyclic epoxy resin used is less than 70% by weight (preferably less than 60% by weight) of the total epoxy group-containing resin contained in the resin composition.
  • the antireflective material of description is
  • the arithmetic mean surface roughness Ra of the uneven shape formed on the antireflection material is in the range of 0.1 to 1.0 ⁇ m (preferably in the range of 0.2 to 0.8 ⁇ m).
  • the rubber particles are composed of a polymer having a core-shell structure and having (meth) acrylic acid ester as an essential monomer component, and a hydroxyl group and / or a carboxyl group as functional groups capable of reacting with an alicyclic epoxy resin on the surface.
  • the average particle size is 10 nm to 500 nm, the maximum particle size is 50 nm to 1000 nm, and the difference between the refractive index of the rubber particles and the refractive index of the cured product of the resin composition is within ⁇ 0.02.
  • a resin composition wherein the content of the porous filler (A) is 4 to 40% by weight relative to the total amount (100% by weight) of the resin composition.
  • the resin composition according to the above [57] which is liquid.
  • a method for producing an antireflective material wherein the resin composition according to any one of the above [57] to [59] is cured, wherein unevenness for suppressing reflection is formed on a surface.
  • the antireflection material of the present invention has high thermal shock resistance in addition to high transparency and excellent antireflection function, it is preferably used as a resin for optical materials (used for forming optical materials). Can do.
  • the optical member include a member that expresses various optical functions such as light diffusibility, light transmittance, and light reflectivity, and a member that constitutes a device or an apparatus using the optical function.
  • optical semiconductor devices organic EL devices, adhesives, electrical insulating materials, laminates, coatings, inks, paints, sealants, resists, composite materials, transparent substrates, transparent sheets, transparent films, optical elements, optics
  • optical members include known or conventional optical members used in various applications such as lenses, optical modeling, electronic paper, touch panels, solar cell substrates, optical waveguides, light guide plates, holographic memories, and optical pickup sensors.
  • Reflector resin composition for light reflection
  • Metal wiring electrode
  • Optical semiconductor element 103
  • Bonding wire 104: Sealing material (antireflection material)

Abstract

本発明は、十分な反射防止機能を有しながら、光源の全光束低下を防ぐことができ、高い耐熱衝撃性を有する反射防止材及び当該反射防止材により光半導体素子が封止された光半導体装置を提供することを目的とする。 本発明は、多孔質フィラー(A)が分散された樹脂組成物の硬化物からなる反射防止材であって、当該多孔質フィラー(A)は当該硬化物の表面に反射を抑える凹凸を形成し、当該樹脂組成物は、ゴム粒子を脂環式エポキシ樹脂に分散させたゴム粒子分散エポキシ化合物(B)、酸無水物系硬化剤(C)、及び硬化促進剤(D)を含有し、該ゴム粒子が、コアシェル構造を有し、(メタ)アクリル酸エステルを必須モノマー成分とするポリマーで構成され、表面に脂環式エポキシ樹脂と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有し、平均粒子径が10nm~500nm、最大粒子径が50nm~1000nmであり、該ゴム粒子の屈折率と当該樹脂組成物の硬化物の屈折率との差が±0.02以内であり、反射防止材全量(100重量%)に対する多孔質フィラー(A)の含有量が4~40重量%であることを特徴とする、反射防止材、並びに、該反射防止材により光半導体素子が封止された光半導体装置を提供する。

Description

反射防止材
 本発明は、反射防止材に関する。また、本発明は、当該反射防止材により光半導体素子が封止された光半導体装置に関する。また、本発明は、前記反射防止材の製造に適した樹脂組成物、及び当該樹脂組成物を用いた反射防止材の製造方法に関する。本願は、2016年10月11日に日本に出願した、特願2016-200398の優先権を主張し、その内容をここに援用する。
 近年、各種の屋内又は屋外表示板、交通信号、大型ディスプレイ用ユニット等においては、光半導体素子(LED素子)を光源とする発光装置(光半導体装置)の採用が進んでいる。このような光半導体装置としては、一般に、基板(光半導体素子搭載用基板)上に光半導体素子が搭載され、さらに該光半導体素子が透明な封止材により封止された光半導体装置が普及している。このような光半導体装置における封止材には、外部からの照明光や太陽光などの入射光が全反射することによる視認性の低下を防止するためにその表面に反射防止処理が施されている。
 従来、樹脂層の表面に反射防止機能を付与する方法としては、樹脂にガラスビーズ、シリカ等の無機フィラーを分散させることによって入射光を散乱させる方法が知られている(例えば、特許文献1参照)。
特開2007-234767
 しかしながら、特許文献1の方法を光半導体封止用の樹脂に適用した場合には、十分な反射防止機能を付与しながら、光源の全光束を確保することが困難であることが判明した。すなわち、十分な反射防止機能を得るために必要十分な量の無機フィラーを配合した場合には光源の全光束が大幅に低下する一方、光源の全光束低下を防ぐために無機フィラーの配合量を少なくした場合には十分な反射防止能が得られないというトレードオフの関係にあることが明らかとなった。
 また、近年、光半導体装置の高出力化が進んでおり、このような光半導体装置における封止材では、冷熱サイクル(加熱と冷却を周期的に繰り返すこと)のような熱衝撃が加えられた場合に、クラック(ひび割れ)が発生して、不灯になる問題が生じていた。このため、光半導体装置における封止材には、熱衝撃が加えられた場合にもクラックが生じにくい特性(「耐熱衝撃性」と称する場合がある)が求められている。
 従って、本発明の目的は、十分な反射防止機能を有しながら、光源の全光束低下を防ぐことができ、さらに、高い耐熱衝撃性を有する反射防止材を提供することである。
 また、本発明の他の目的は、光半導体封止用である、上記反射防止材を提供することである。
 さらに、本発明の他の目的は、上記反射防止材により光半導体素子が封止された光半導体装置を提供することである。
 また、本発明の他の目的は、上記反射防止材の製造に適した樹脂組成物、並びに当該樹脂組成物を用いた上記反射防止材の製造方法を提供することである。
 無機フィラーの配合量を少なくした場合に十分な反射防止能が得られない原因の1つとして、無機フィラーの沈降により樹脂層全体に行き渡らず、その結果、その表面全体に均一な凹凸が形成されないために入射光が効率的に散乱されない一方、無機フィラーが沈降しても樹脂層表面全体に反射防止能が得られるように配合量を増やした場合には、無機フィラー自身が光を吸収して全光束が大幅に低下するということを本発明者はつきとめた。
 本発明者は上記課題を解決するために鋭意検討した結果、反射防止材を構成する樹脂層中のフィラーとして多孔質フィラーを配合したところ、少量の添加でも十分な反射防止機能が付与されることを見出した。さらに、樹脂層として、特定構造のゴム粒子を分散させた脂環式エポキシ樹脂を採用したところ、耐熱衝撃性にも優れることを見出した。これにより、光源の全光束を大幅に低下させることなく十分な反射防止機能と優れた耐熱衝撃性を兼ね備えた反射防止材が提供され、光半導体装置における光半導体素子を封止するための材料として極めて適していることを見出し、本発明を完成するに至った。
 すなわち、本発明は、多孔質フィラー(A)が分散された樹脂組成物の硬化物からなる反射防止材であって、当該多孔質フィラー(A)は当該硬化物の表面に反射を抑える凹凸を形成し、
 当該樹脂組成物は、ゴム粒子を脂環式エポキシ樹脂に分散させたゴム粒子分散エポキシ化合物(B)、酸無水物系硬化剤(C)、及び硬化促進剤(D)を含有し、
 該ゴム粒子が、コアシェル構造を有し、(メタ)アクリル酸エステルを必須モノマー成分とするポリマーで構成され、表面に脂環式エポキシ樹脂と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有し、平均粒子径が10nm~500nm、最大粒子径が50nm~1000nmであり、該ゴム粒子の屈折率と当該樹脂組成物の硬化物の屈折率との差が±0.02以内であり、
 反射防止材全量(100重量%)に対する多孔質フィラー(A)の含有量が4~40重量%であることを特徴とする、反射防止材を提供する。
 前記反射防止材において、前記多孔質フィラー(A)は、好ましくは、前記硬化物全体に渡って均一に分散しており、表面に反射を抑える凹凸を形成している。
 前記反射防止材において、前記樹脂組成物は、さらに、比表面積が10m2/g以下である無孔質フィラー(F)を含んでいてもよく、その場合、反射防止材全量(100重量%)に対する前記多孔質フィラー(A)と前記無孔質フィラー(F)の合計含有量は、好ましくは、20~60重量%である。
 前記反射防止材において、前記多孔質フィラー(A)は、無機多孔質フィラーであってもよい。
 前記反射防止材において、前記樹脂組成物は、透明な硬化性樹脂組成物からなるものであってもよい。
 前記反射防止材は、光半導体封止用であってもよい。
 また、本発明は、前記反射防止材により光半導体素子が封止された光半導体装置を提供する。
 また、本発明は、前記反射防止材の製造のために用いられることを特徴とする、多孔質フィラー(A)が分散された樹脂組成物であって、
 ゴム粒子を脂環式エポキシ樹脂に分散させたゴム粒子分散エポキシ化合物(B)、酸無水物系硬化剤(C)、及び硬化促進剤(D)を含有し、
 該ゴム粒子が、コアシェル構造を有し、(メタ)アクリル酸エステルを必須モノマー成分とするポリマーで構成され、表面に脂環式エポキシ樹脂と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有し、平均粒子径が10nm~500nm、最大粒子径が50nm~1000nmであり、該ゴム粒子の屈折率と当該樹脂組成物の硬化物の屈折率との差が±0.02以内であり、
 樹脂組成物全量(100重量%)に対する多孔質フィラー(A)の含有量が4~40重量%である、樹脂組成物を提供する。
 前記樹脂組成物は、液状であってもよい。
 前記樹脂組成物の全量(100重量%)に対する硬化中に揮発する成分の量は、10重量%以下であってもよい。
 さらに、本発明は、前記樹脂組成物を硬化させることを特徴とする、表面に反射を抑える凹凸が形成されている反射防止材の製造方法を提供する。
 本発明の反射防止材は上記構成を有するため、多孔質フィラー(A)の配合量を少なくした場合であっても十分な反射防止機能が得られ、且つ光源の全光束の大幅な低下を防ぐことができると共に優れた耐熱衝撃性も有する。従って、本発明の反射防止材を光半導体装置における光半導体素子を封止するための材料として使用することにより、高品質な(例えば、光沢を抑えつつ明るさも十分で、高い耐久性を有する)光半導体装置が得られる。
 また、本発明の樹脂組成物は上記構成を有するため、上記反射防止材を製造するために、極めて適している。
本発明の反射防止材を含む光半導体装置の一実施形態を示す概略図である。左側の図(a)は斜視図であり、右側の図(b)は断面図である。
<反射防止材及び樹脂組成物>
 本発明の反射防止材は、多孔質フィラー(A)が分散された樹脂組成物の硬化物から構成され、当該多孔質フィラー(A)が当該硬化物の表面に反射を抑える凹凸を形成し、当該樹脂組成物が、ゴム粒子を脂環式エポキシ樹脂に分散させたゴム粒子分散エポキシ化合物(B)、酸無水物系硬化剤(C)、及び硬化促進剤(D)を含有し、該ゴム粒子が、コアシェル構造を有し、(メタ)アクリル酸エステルを必須モノマー成分とするポリマーで構成され、表面に脂環式エポキシ樹脂と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有し、平均粒子径が10nm~500nm、最大粒子径が50nm~1000nmであり、該ゴム粒子の屈折率と当該樹脂組成物の硬化物の屈折率との差が±0.02以内であり、反射防止材全量(100重量%)に対する多孔質フィラー(A)の含有量が4~40重量%であることを特徴とするものである。
 また、本発明の樹脂組成物は、多孔質無機フィラーが分散され、ゴム粒子を脂環式エポキシ樹脂に分散させたゴム粒子分散エポキシ化合物(B)、酸無水物系硬化剤(C)、及び硬化促進剤(D)を含有し、該ゴム粒子が、コアシェル構造を有し、(メタ)アクリル酸エステルを必須モノマー成分とするポリマーで構成され、表面に脂環式エポキシ樹脂と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有し、平均粒子径が10nm~500nm、最大粒子径が50nm~1000nmであり、該ゴム粒子の屈折率と当該樹脂組成物の硬化物の屈折率との差が±0.02以内であり、樹脂組成物全量(100重量%)に対する多孔質フィラー(A)の含有量が4~40重量%であることを特徴とし、上記反射防止材を製造するために使用されるものである。
 多孔質フィラー(A)の多孔質構造により、多孔質でないフィラーと比べ、樹脂組成物に対する見かけ上の体積が増加するため、少量の添加でも樹脂組成物又は、その硬化物全体に行き渡らせて、均一に分散させることができ、硬化物の表面に均一で微細な凹凸を形成できる。また、多孔質構造に樹脂組成物が浸み込み、多孔質フィラー(A)と樹脂組成物の見かけ上の比重差が低下することで、分散状態が安定になるとともに、多孔質フィラー(A)の表面同士の相互作用が抑制されて凝集しにくくなり、多孔質フィラー(A)が樹脂組成物又は、その硬化物全体に均一に行き渡ることができるので、均一で微細な凹凸を硬化物表面に形成して効率的に入射光を散乱させることができる。
 なお、本明細書において、多孔質フィラー(A)の添加量(使用量)が少量(少ない)とは、重量換算で少ないことを意味し、容量(体積)換算で少ないことを意味するものではない。
 多孔質フィラー(A)を使用した場合には、多孔質でないフィラーと比較して、使用量を少なくしても反射を効率的に抑制することができるので、多孔質フィラー(A)自身の光線吸収による全光束の大幅な低下を抑えながら、十分な反射防止機能を担保することができる。
 また、上記樹脂組成物が、ゴム粒子を脂環式エポキシ樹脂に分散させたゴム粒子分散エポキシ化合物(B)、酸無水物系硬化剤(C)、及び硬化促進剤(D)を含有し、ゴム粒子として、コアシェル構造を有し、(メタ)アクリル酸エステルを必須モノマー成分とするポリマーで構成されており、表面に脂環式エポキシ樹脂と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有し、平均粒子径が10nm~500nm、最大粒子径が50nm~1000nmであるゴム粒子であって、該ゴム粒子の屈折率と当該樹脂組成物の硬化物の屈折率との差が±0.02以内であるゴム粒子を使用するため、ゴム粒子からゴム成分が溶出することがなく、樹脂組成物を硬化して得られる硬化物のガラス転移温度を大きく低下させずに、透明性を損なうこともない。そして、該ゴム粒子分散エポキシ化合物(B)を含む樹脂組成物を硬化することにより得られる硬化物は、優れた耐熱性及び透明性を維持しつつ、熱衝撃に対して優れた耐クラック性(耐熱衝撃性)を発揮することができる。
 以下、各構成要素について詳細に説明する。
[多孔質フィラー(A)]
 本発明の反射防止材又は樹脂組成物における多孔質フィラー(A)は、樹脂組成物又は、その硬化物全体に行き渡って均一に分散しており、分散状態が安定した結果、硬化物の表面に存在する多孔質フィラー(A)が入射光を散乱させるための凹凸を形成する働きを有する。
 本発明の反射防止材又は樹脂組成物に使用できる多孔質フィラー(A)とは、フィラーの真比重に比べて見掛け比重が小さく、その内部に多孔質構造を有する無機又は有機のフィラーを意味する。以下、それぞれ、「無機多孔質フィラー(A1)」、「有機多孔質フィラー(A2)」と称する場合がある。
 無機多孔質フィラー(A1)としては、公知乃至慣用のものを使用することができ、特に限定されないが、例えば、無機ガラス[例えば、硼珪酸ガラス、硼珪酸ソーダガラス、珪酸ソーダガラス、アルミ珪酸ガラス、石英等]、シリカ、アルミナ、ジルコン、珪酸カルシウム、リン酸カルシウム、炭酸カルシウム、炭酸マグネシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、水酸化アルミニウム、酸化鉄、酸化亜鉛、酸化ジルコニウム、酸化マグネシウム、酸化チタン、酸化アルミニウム、硫酸カルシウム、硫酸バリウム、フォステライト、ステアタイト、スピネル、クレー、カオリン、ドロマイト、ヒドロキシアパタイト、ネフェリンサイナイト、クリストバライト、ウォラストナイト、珪藻土、タルク等の粉体であって多孔質構造を有するもの、又はこれらの成型体(例えば、球形化したビーズ等)等が挙げられる。また、無機多孔質フィラー(A1)としては、上述の無機多孔質フィラーに公知乃至慣用の表面処理[例えば、金属酸化物、シランカップリング剤、チタンカップリング剤、有機酸、ポリオール、シリコーン等の表面処理剤による表面処理等]が施されたもの等も挙げられる。このような表面処理を施すことにより、樹脂組成物の成分との相溶性や分散性を向上させることができる場合がある。中でも、無機多孔質フィラー(A1)としては、樹脂組成物又は、その硬化物全体に均一に行き渡って、硬化物の表面に凹凸を効率的に形成できるという観点で、多孔質無機ガラス又は多孔質シリカ(多孔質シリカフィラー)が好ましい。
 多孔質シリカとしては、特に限定されず、例えば、溶融シリカ、結晶シリカ、高純度合成シリカ、コロイド状シリカ等の公知乃至慣用の多孔質シリカを使用できる。なお、多孔質シリカとしては、公知乃至慣用の表面処理[例えば、金属酸化物、シランカップリング剤、チタンカップリング剤、有機酸、ポリオール、有機ケイ素化合物等の疎水性表面処理剤による表面処理等]が施されたものを使用することもできる。本明細書において、疎水性表面処理剤により表面処理された多孔質シリカを「疎水性多孔質シリカ」と称する場合がある。
 樹脂組成物の成分との相溶性や分散性が向上すると共に、硬化物の耐熱性(例えば、耐熱水性)を向上させるという観点から、疎水性多孔質シリカが好ましく、疎水性表面処理剤としては、有機ケイ素化合物(例えば、トリメチルクロロシラン、ヘキサメチルジシロキサン、ジメチルジクロロシラン、オクタメチルシクロテトラシラン、ポリジメチルシロキサン、ヘキサデシルシラン、メタクリルシラン、シルコーンオイル等)が好ましく、ポリジメチルシロキサン等がより好ましい。
 有機多孔質フィラー(A2)としては、公知乃至慣用のものを使用することができ、特に限定されないが、例えば、スチレン系樹脂、アクリル系樹脂、シリコーン系樹脂、アクリル-スチレン系樹脂、塩化ビニル系樹脂、塩化ビニリデン系樹脂、アミド系樹脂、ウレタン系樹脂、フェノール系樹脂、スチレン-共役ジエン系樹脂、アクリル-共役ジエン系樹脂、オレフィン系樹脂、セルロース樹脂等のポリマー(これらポリマーの架橋体も含む)等の有機物により構成された高分子多孔質焼結体、高分子発泡体、ゲル多孔質体等の有機多孔質フィラー等が挙げられる。
 また、上記無機物と有機物のハイブリッド材料により構成された無機-有機多孔質フィラー等も使用することができる。
 上記多孔質フィラー(A)は、単一の材料より構成されたものであってもよいし、二種以上の材料より構成されたものであってもよい。中でも、多孔質フィラー(A)としては、樹脂組成物又は、その硬化物全体に行き渡って均一に分散して、硬化物の表面に凹凸を効率的に形成できるという観点で、無機多孔質フィラー(A1)が好ましく、入手性や製造容易性の観点から、多孔質シリカ(多孔質シリカフィラー)がより好ましく、さらに、硬化物の耐熱性(例えば、耐熱水性)の観点から、疎水性多孔質シリカ(疎水性多孔質シリカフィラー)がさらに好ましい。
 多孔質フィラー(A)の形状は、特に限定されないが、例えば、粉体、球状、破砕状、繊維状、針状、鱗片状等が挙げられる。中でも、多孔質フィラー(A)が樹脂組成物又は、その硬化物全体に行き渡って均一に分散して、硬化物の表面に均一で微細な凹凸形状を形成しやすくなるという観点から、球状、又は破砕状の多孔質フィラー(A)が好ましい。
 多孔質フィラー(A)の中心粒径は、特に限定されないが、多孔質フィラー(A)が樹脂組成物又は、その硬化物全体に行き渡って均一に分散して、硬化物の表面に均一で微細な凹凸形状を形成しやすくなるという観点から、0.1~100μmが好ましく、より好ましくは1~50μmである。なお、上記中心粒径は、レーザー回折・散乱法で測定した粒度分布における積算値50%での体積粒径(メディアン体積径)を意味する。
 多孔質フィラー(A)の多孔質構造は、比表面積、細孔容積、吸油量等の各種パラメーターにより特定することができ、それぞれ、本発明の反射防止材に適したパラメーターを有するグレードの多孔質フィラー(A)を、特に制限なく選択することができる。
 多孔質フィラー(A)の比表面積は、特に限定されないが、多孔質フィラー(A)が樹脂組成物又は、その硬化物全体に行き渡って均一に分散して、硬化物の表面に均一で微細な凹凸形状を形成しやすくし、反射を効率的に防止するという観点から、10~2000m2/gが好ましく、より好ましくは100~1000m2/gである。比表面積が10m2/g以上であれば、多孔質フィラー(A)が樹脂組成物又は、その硬化物全体に行き渡って均一に分散して、硬化物の表面の反射防止機能が向上する傾向がある。一方、比表面積が、2000m2/g以下であることにより、多孔質フィラー(A)を含む樹脂組成物の粘度上昇やチキソトロピー性が抑制され、反射防止材を製造する際の流動性が担保される傾向がある。なお、上記比表面積は、JIS K6430附属書Eに準拠して、-196℃における窒素の吸着等温線からBET式に基づいて求められる窒素吸着比表面積を意味する。
 また、上記「比表面積」は、疎水性表面処理剤により表面処理された多孔質フィラー(A)の場合は、表面処理される前の多孔質フィラー(A)の比表面積を意味するものとする。
 多孔質フィラー(A)の細孔容積は、特に限定されないが、多孔質フィラー(A)が樹脂組成物又は、その硬化物全体に行き渡って均一に分散して、硬化物の表面に均一で微細な凹凸形状を形成しやすくし、反射を効率的に防止するという観点から、0.1~10mL/gが好ましく、より好ましくは0.2~5mL/gである。細孔容積が、0.1mL/g以上であれば、多孔質フィラー(A)が樹脂組成物又は、その硬化物全体に行き渡って均一に分散して、硬化物の表面に凹凸形状を形成しやすくなる傾向がある。一方、細孔容積が、5mL/g以下であることにより、多孔質フィラー(A)の機械的強度が向上する傾向がある。なお、多孔質フィラー(A)の細孔容積は水銀圧入法(ポロシメータ法)によって細孔分布を測定することにより求めることができる。
 多孔質フィラー(A)の吸油量は、特に限定されないが、多孔質フィラー(A)が樹脂組成物又は、その硬化物全体に行き渡って均一に分散して、硬化物の表面に均一で微細な凹凸形状を形成しやすくし、反射を効率的に防止するという観点から、10~2000mL/100gが好ましく、より好ましくは100~1000mL/100gである。吸油量が、10mL/100g以上であれば、多孔質フィラー(A)が樹脂組成物又は、その硬化物全体に行き渡って均一に分散して、硬化物の表面に凹凸形状を形成しやすくなる傾向がある。一方、吸油量が、2000mL/100g以下であることにより、多孔質フィラー(A)の機械的強度が向上する傾向がある。なお、多孔質フィラー(A)の給油量は、フィラー100gが吸収する油の量であり、JIS K5101に準拠して測定することができる。
 本発明の反射防止材において多孔質フィラー(A)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、多孔質フィラー(A)は、公知乃至慣用の製造方法により製造することもできるし、例えば、商品名「サイリシア250N」、「サイリシア256」、「サイリシア256N」、「サイリシア310」、「サイリシア320」、「サイリシア350」、「サイリシア358」、「サイリシア430」、「サイリシア431」、「サイリシア440」、「サイリシア450」、「サイリシア470」、「サイリシア435」、「サイリシア445」、「サイリシア436」、「サイリシア446」、「サイリシア456」、「サイリシア530」、「サイリシア540」、「サイリシア550」、「サイリシア730」、「サイリシア740」、「サイリシア770」等のサイリシアシリーズ、商品名「サイロスフェアC-1504」、「サイロスフェアC-1510」等のサイロスフェアシリーズ(以上、富士シリシア化学(株)製)、商品名「サンスフェアH-31」、「サンスフェアH-32」、「サンスフェアH-33」、「サンスフェアH-51」、「サンスフェアH-52」、「サンスフェアH-53」、「サンスフェアH-121」、「サンスフェアH-122」、「サンスフェアH-201」等のサンスフェアHシリーズ(以上、AGCエスアイテック(株)製)等の疎水性表面処理されていない多孔質無機フィラー、商品名「サイロホービック702」、「サイロホービック4004」、「サイロホービック505」、「サイロホービック100」、「サイロホービック200」、「サイロホービック704」、「サイロホービック507」、「サイロホービック603」等のサイロホービックシリーズ(以上、富士シリシア化学(株)製)、商品名「エアロジルRX200」、「エアロジルRX300」等のエアロジルシリーズ(以上、エボニックデグサ社製)、商品名「サンスフェアH-121-ET」、「サンスフェアH-51-ET」等のサンスフェアETシリーズ(以上、AGCエスアイテック社製)等の疎水性多孔質シリカ等の市販品を使用することもできる。
 本発明の反射防止材又は樹脂組成物における多孔質フィラー(A)の含有量(配合量)は、反射防止材又は樹脂組成物の全量(100重量%)に対して、4~40重量%であり、好ましくは4~35重量%、より好ましくは4~30重量%である。多孔質フィラー(A)の含有量が4重量%以上であることにより、多孔質フィラー(A)が樹脂組成物又は、その反射防止材を構成する硬化物全体に行き渡り均一に分散して、硬化物の表面全体に均一な凹凸形状を形成しやすくなる。一方、多孔質フィラー(A)の含有量が40重量%以下であることにより、本発明の反射防止材又は樹脂組成物を例えば光半導体装置用の封止材として使用した場合に全光束の著しい低下を防止して十分な照度を確保できる傾向がある。
 本発明の反射防止材又は樹脂組成物における多孔質フィラー(A)の含有量(配合量)は、反射防止材を構成する樹脂組成物(100重量部)に対して、通常、5~80重量部であり、好ましくは5~70重量部、より好ましくは5~60重量部である。多孔質フィラー(A)の含有量が5重量部以上であることにより、多孔質フィラー(A)が樹脂組成物又は、その反射防止材を構成する硬化物全体に行き渡り均一に分散して、硬化物の表面全体に均一な凹凸形状を形成しやすくなる。一方、多孔質フィラー(A)の含有量が80重量部以下であることにより、本発明の反射防止材又は樹脂組成物を例えば光半導体装置用の封止材として使用した場合に全光束の著しい低下を防止して十分な照度を確保できる傾向がある。
[樹脂組成物]
 本発明の反射防止材における硬化物を構成する樹脂組成物は、ゴム粒子を脂環式エポキシ樹脂に分散させたゴム粒子分散エポキシ化合物(B)(以下、本明細書において、「ゴム粒子分散エポキシ化合物(B)」と称する場合がある)、酸無水物系硬化剤(C)、及び硬化促進剤(D)を含有し、該ゴム粒子が、コアシェル構造を有し、(メタ)アクリル酸エステルを必須モノマー成分とするポリマーで構成され、表面に脂環式エポキシ樹脂と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有し、平均粒子径が10nm~500nm、最大粒子径が50nm~1000nmであり、該ゴム粒子の屈折率と当該樹脂組成物の硬化物の屈折率との差が±0.02以内であることを特徴とする。上記樹脂組成物は、光半導体装置における光半導体素子の封止材、即ち、光半導体封止用樹脂組成物として適しており、例えば、熱により硬化して、高い透明性を有し、耐久性(例えば、加熱や光によっても透明性が低下しにくい特性、高温の熱や熱衝撃が加えられてもクラックや被着体からの剥離が生じにくい特性等)にも優れ、特に耐熱衝撃性に優れる硬化物を与える。
[ゴム粒子分散エポキシ化合物(B)]
 本発明におけるゴム粒子分散エポキシ化合物(B)は、コアシェル構造を有し、(メタ)アクリル酸エステルを必須モノマー成分とするポリマーで構成されており、表面に脂環式エポキシ樹脂と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有し、平均粒子径が10nm~500nm、最大粒子径が50nm~1000nmであるゴム粒子であって、該ゴム粒子の屈折率と当該樹脂組成物の硬化物の屈折率との差が±0.02以内であるゴム粒子を脂環式エポキシ樹脂に分散させてなるものである。
 (ゴム粒子)
 本発明におけるゴム粒子は、ゴム弾性を有するコア部分と、該コア部分を被覆する少なくとも1層のシェル層とから成る多層構造(コアシェル構造)を有する。また、(メタ)アクリル酸エステルを必須モノマー成分とするポリマーで構成されており、表面に脂環式エポキシ樹脂と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有する。ヒドロキシル基及び/又はカルボキシル基がゴム粒子表面に存在しない場合、冷熱サイクル等の熱衝撃により硬化物が白濁して透明性が低下するため好ましくない。
 ゴム弾性を有するコア部分のポリマーを構成するモノマー成分としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチルなどの(メタ)アクリル酸エステルを必須とする。(メタ)アクリル酸エステル以外に含んでいてもよいモノマー成分としては、例えば、ジメチルシロキサン、フェニルメチルシロキサンなどのシリコーン、スチレン、α-メチルスチレンなどの芳香族ビニル、アクリロニトリル、メタクリロニトリルなどのニトリル、ブタジエン、イソプレンなどの共役ジエン、ウレタン、エチレン、プロピレン、イソブテンなどを挙げることができる。
 本発明においては、ゴム弾性を有するコア部分を構成するモノマー成分として、(メタ)アクリル酸エステルと共に、シリコーン、芳香族ビニル、ニトリル、共役ジエンから選択された1種又は2種以上を組み合わせて含んでいることが好ましく、例えば、(メタ)アクリル酸エステル/芳香族ビニル、(メタ)アクリル酸エステル/共役ジエン等の二元共重合体;(メタ)アクリル酸エステル/芳香族ビニル/共役ジエン等の三元共重合体などを挙げることができる。
 ゴム弾性を有するコア部分には、上記モノマー成分の他にジビニルベンゼン、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジアリルマレエート、トリアリルシアヌレート、ジアリルフタレート、ブチレングリコールジアクリレートなどに対応する1モノマー中に2以上の反応性官能基を有する反応性架橋モノマーを含有していてもよい。
 本発明におけるゴム弾性を有するコア部分を構成するモノマー成分としては、なかでも、(メタ)アクリル酸エステル/芳香族ビニルの二元共重合体(特に、アクリル酸ブチル/スチレン)であることが、容易にゴム粒子の屈折率を調整することができる点で好ましい。
 ゴム弾性を有するコア部分は、通常用いられる方法で製造することができ、例えば、上記モノマーを乳化重合法により重合する方法などを挙げることができる。乳化重合法としては、上記モノマーの全量を一括して仕込み重合してもよく、上記モノマーの一部を重合した後、残りを連続的に又は断続的に添加して重合してもよく、さらに、シード粒子を使用する重合方法を使用してもよい。
 シェル層は、上記コア部分を構成する重合体とは異種の重合体から成ることが好ましい。また、シェル層には、脂環式エポキシ樹脂と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有する。それにより、脂環式エポキシ樹脂との界面で接着性を向上させることができ、該シェル層を有するゴム粒子を含む樹脂組成物を硬化させることにより、優れた耐クラック性を有し、白濁のない透明な硬化物を得ることができる。また、硬化物のガラス転移温度が低下することを防止することができる。
 シェル層を構成するモノマー成分としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチルなどの(メタ)アクリル酸エステルを必須とし、例えば、コア部分を構成する(メタ)アクリル酸エステルがアクリル酸ブチルである場合、シェル層は、アクリル酸ブチル以外の(メタ)アクリル酸エステル(例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、メタクリル酸ブチルなど)を使用することが好ましい。(メタ)アクリル酸エステル以外に含んでいてもよいモノマー成分としては、例えば、スチレン、α-メチルスチレンなどの芳香族ビニル、アクリロニトリル、メタクリロニトリルどのニトリルなどを挙げることができる。本発明においては、シェル層を構成するモノマー成分として、(メタ)アクリル酸エステルと共に、上記モノマーを単独で又は2種以上を組み合わせて含んでいることが好ましく、特に、少なくとも芳香族ビニルを含むことが、容易にゴム粒子の屈折率を調整することができる点で好ましい。
 さらに、脂環式エポキシ樹脂と反応し得る官能基としてのヒドロキシル基及び/又はカルボキシル基を有するモノマー成分として、2-ヒドロキシエチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート、(メタ)アクリル酸などのα,β-不飽和酸、マレイン酸無水物などのα,β-不飽和酸無水物などに対応するモノマーを含有することが好ましい。
 本発明においては、シェル層を構成するモノマー成分として、(メタ)アクリル酸エステルと共に、上記モノマーから選択された1種又は2種以上を組み合わせて含んでいることが好ましく、例えば、(メタ)アクリル酸エステル/芳香族ビニル/ヒドロキシアルキル(メタ)アクリレート、(メタ)アクリル酸エステル/芳香族ビニル/α,β-不飽和酸等の三元共重合体、(メタ)アクリル酸エステル/ヒドロキシアルキル(メタ)アクリレート、(メタ)アクリル酸エステル/α,β-不飽和酸等の二元共重合体(好ましくは(メタ)アクリル酸エステル/ヒドロキシアルキル(メタ)アクリレート、(メタ)アクリル酸エステル/α,β-不飽和酸等の二元共重合体)などを挙げることができる。
 また、シェル層は、コア部分と同様に、上記モノマーの他にジビニルベンゼン、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジアリルマレエート、トリアリルシアヌレート、ジアリルフタレート、ブチレングリコールジアクリレートなどに対応する1モノマー中に2以上の反応性官能基を有する反応性架橋モノマーを含有していてもよい。
 コア部分をシェル層で被覆する方法としては、例えば、上記方法により得られたゴム弾性を有するコア部分の表面に、シェル層を構成する共重合体を塗布することにより被覆する方法、上記方法により得られたゴム弾性を有するコア部分を幹成分とし、シェル層を構成する各成分を枝成分としてグラフト重合する方法などを挙げることができる。
 本発明におけるゴム粒子の平均粒子径は、10~500nm程度、好ましくは、20~400nm程度である。また、ゴム粒子の最大粒子径は、50~1000nm程度、好ましくは、100~800nm程度である。平均粒子径が500nmを上回ると、又は、ゴム粒子の最大粒子径が1000nmを上回ると、硬化物の透明性が低下し、光半導体の光度が低下する傾向がある。一方、平均粒子径が10nmを下回ると、又は、ゴム粒子の最大粒子径が50nmを下回ると、耐クラック性が低下する傾向がある。
 本発明におけるゴム粒子の屈折率としては、例えば、1.40~1.60、好ましくは、1.42~1.58程度である。また、ゴム粒子の屈折率と、該ゴム粒子を含む樹脂組成物を硬化して得られる硬化物の屈折率との差は±0.02以内であり、なかでも、±0.018以内であることが好ましい。屈折率の差が±0.02を上回ると、硬化物の透明性が低下し、時には白濁して、光半導体の光度が低下する傾向があり、光半導体の機能を消失させてしまう場合がある。
 ゴム粒子の屈折率は、例えば、ゴム粒子1gを型に注型して210℃、4MPaで圧縮成形し、厚さ1mmの平板を得、得られた平板から、縦20mm×横6mmの試験片を切り出し、中間液としてモノブロモナフタレンを使用してプリズムと該試験片とを密着させた状態で、多波長アッベ屈折計(商品名「DR-M2」、(株)アタゴ製)を使用し、20℃、ナトリウムD線での屈折率を測定することにより求めることができる。
 上記樹脂組成物の硬化物の屈折率は、例えば、下記光半導体装置の項に記載の加熱硬化方法により得られた硬化物から、縦20mm×横6mm×厚さ1mmの試験片を切り出し、中間液としてモノブロモナフタレンを使用してプリズムと該試験片とを密着させた状態で、多波長アッベ屈折計(商品名「DR-M2」、(株)アタゴ製)を使用し、20℃、ナトリウムD線での屈折率を測定することにより求めることができる。
 (脂環式エポキシ樹脂)
 本発明における脂環式エポキシ樹脂は、分子内に1個以上の脂環(脂肪族炭化水素環)と1個以上のエポキシ基とを有する化合物である。脂環式エポキシ化合物としては、例えば、(i)分子内に脂環エポキシ基(脂環を構成する隣接する2個の炭素原子と酸素原子とで構成されるエポキシ基)を少なくとも1個(好ましくは2個以上)有する化合物;(ii)脂環に直接単結合で結合したエポキシ基を有する化合物;(iii)脂環とグリシジル基とを有する化合物等が挙げられる。本発明における脂環式エポキシ樹脂としては、調合時、及び注型時の作業性の点から、常温(25℃)で液状を呈するものが好ましい。
 上述の(i)分子内に脂環エポキシ基を少なくとも1個有する化合物が有する脂環エポキシ基としては、特に限定されないが、中でも、硬化性の観点で、シクロヘキセンオキシド基(シクロヘキサン環を構成する隣接する2個の炭素原子と酸素原子とで構成されるエポキシ基)が好ましい。特に、(i)分子内に脂環エポキシ基を少なくとも1個有する化合物としては、硬化物の透明性、耐熱性の観点で、分子内に2個以上のシクロヘキセンオキシド基を有する化合物が好ましく、より好ましくは下記式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、Xは単結合又は連結基(1以上の原子を有する2価の基)を示す。上記連結基としては、例えば、2価の炭化水素基、炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基、カルボニル基、エーテル結合、エステル結合、カーボネート基、アミド基、これらが複数個連結した基等が挙げられる。なお、式(1)における脂環(脂環式エポキシ基)を構成する炭素原子の1以上には、アルキル基等の置換基が結合していてもよい。
 式(1)中のXが単結合である化合物としては、(3,4,3',4'-ジエポキシ)ビシクロヘキシルが挙げられる。
 上記2価の炭化水素基としては、炭素数が1~18の直鎖又は分岐鎖状のアルキレン基、2価の脂環式炭化水素基等が挙げられる。炭素数が1~18の直鎖又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基等が挙げられる。上記2価の脂環式炭化水素基としては、例えば、1,2-シクロペンチレン基、1,3-シクロペンチレン基、シクロペンチリデン基、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基、シクロヘキシリデン基等の2価のシクロアルキレン基(シクロアルキリデン基を含む)等が挙げられる。
 上記炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基(「エポキシ化アルケニレン基」と称する場合がある)におけるアルケニレン基としては、例えば、ビニレン基、プロペニレン基、1-ブテニレン基、2-ブテニレン基、ブタジエニレン基、ペンテニレン基、ヘキセニレン基、ヘプテニレン基、オクテニレン基等の炭素数2~8の直鎖又は分岐鎖状のアルケニレン基(アルカポリエニレン基も含まれる)等が挙げられる。特に、上記エポキシ化アルケニレン基としては、炭素-炭素二重結合の全部がエポキシ化されたアルケニレン基が好ましく、より好ましくは炭素-炭素二重結合の全部がエポキシ化された炭素数2~4のアルケニレン基である。
 上記連結基Xとしては、特に、酸素原子を含有する連結基が好ましく、具体的には、-CO-、-O-CO-O-、-COO-、-O-、-CONH-、エポキシ化アルケニレン基;これらの基が複数個連結した基;これらの基の1又は2以上と2価の炭化水素基の1又は2以上とが連結した基等が挙げられる。2価の炭化水素基としては上記で例示したものが挙げられる。
 上記式(1)で表される化合物の代表的な例としては、2,2-ビス(3,4-エポキシシクロヘキサン-1-イル)プロパン、ビス(3,4-エポキシシクロヘキシルメチル)エーテル、1,2-ビス(3,4-エポキシシクロヘキサン-1-イル)エタン、1,2-エポキシ-1,2-ビス(3,4-エポキシシクロヘキサン-1-イル)エタン、下記式(1-1)~(1-10)で表される化合物等が挙げられる。なお、下記式(1-5)、(1-7)中のl、mは、それぞれ1~30の整数を表す。下記式(1-5)中のRは炭素数1~8のアルキレン基であり、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、s-ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基等の直鎖又は分岐鎖状のアルキレン基が挙げられる。これらの中でも、メチレン基、エチレン基、プロピレン基、イソプロピレン基等の炭素数1~3の直鎖又は分岐鎖状のアルキレン基が好ましい。下記式(1-9)、(1-10)中のn1~n6は、それぞれ1~30の整数を示す。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 上述の(ii)脂環に直接単結合で結合したエポキシ基を有する化合物としては、例えば、下記式(2)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 式(2)中、R'は、構造式上、p価のアルコールからp個の水酸基(-OH)を除いた基(p価の有機基)であり、p、qはそれぞれ自然数を表す。p価のアルコール[R'(OH)p]としては、2,2-ビス(ヒドロキシメチル)-1-ブタノール等の多価アルコール(炭素数1~15のアルコール等)等が挙げられる。pは1~6が好ましく、qは1~30が好ましい。pが2以上の場合、それぞれの( )内(外側の括弧内)の基におけるqは同一でもよく異なっていてもよい。上記式(2)で表される化合物としては、具体的には、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物[例えば、商品名「EHPE3150」((株)ダイセル製)等]等が挙げられる。
 上述の(iii)脂環とグリシジル基とを有する化合物としては、例えば、2,2-ビス[4-(2,3-エポキシプロポキシ)シクロへキシル]プロパン、2,2-ビス[3,5-ジメチル-4-(2,3-エポキシプロポキシ)シクロへキシル]プロパン、ビスフェノールA型エポキシ樹脂を水素化したもの(水添ビスフェノールA型エポキシ樹脂)等;ビス[2-(2,3-エポキシプロポキシ)シクロへキシル]メタン、[2-(2,3-エポキシプロポキシ)シクロへキシル][4-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[4-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[3,5-ジメチル-4-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビスフェノールF型エポキシ樹脂を水素化したもの(水添ビスフェノールF型エポキシ樹脂)等;水添ビフェノール型エポキシ樹脂;水添ノボラック型エポキシ樹脂(例えば、水添フェノールノボラック型エポキシ樹脂、水添クレゾールノボラック型エポキシ樹脂、ビスフェノールAの水添クレゾールノボラック型エポキシ樹脂等);水添ナフタレン型エポキシ樹脂;トリスフェノールメタンから得られるエポキシ樹脂の水添エポキシ樹脂等が挙げられる。
 上記脂環式エポキシ化合物としては、その他、例えば、1,2,8,9-ジエポキシリモネン等が挙げられる。
 これらの脂環式エポキシ樹脂は、単独で又は2種以上を組み合わせて使用することができ、例えば、商品名「セロキサイド2021P」、「セロキサイド2081」(ダイセル化学工業(株)製)等の市販品を使用することもできる。
 本発明におけるゴム粒子分散エポキシ化合物(B)は、上記ゴム粒子を、上記脂環式エポキシ樹脂に分散させてなる。ゴム粒子の配合量としては、必要に応じて適宜調整することができ、例えば、ゴム粒子分散エポキシ化合物(B)全量に対して、0.5~30重量%程度、好ましくは、1~20重量%程度である。ゴム粒子の使用量が0.5重量%を下回ると、耐クラック性が低下する傾向があり、一方、ゴム粒子の使用量が30重量%を上回ると、耐熱性及び透明性が低下する傾向がある。
 ゴム粒子分散エポキシ化合物(B)の粘度としては、25℃における粘度が400mPa・s~50000mPa・sが好ましく、なかでも、500mPa・s~10000mPa・sが好ましい。ゴム粒子分散エポキシ化合物(B)の粘度(25℃)が400mPa・sを下回ると透明性が低下する傾向があり、一方、ゴム粒子分散エポキシ化合物(B)の粘度(25℃)が50000mPa・sを上回るとゴム粒子分散エポキシ化合物(B)の製造、樹脂組成物の製造共に生産性が低下する傾向がある。
 ゴム粒子分散エポキシ化合物(B)は、反応性希釈剤を使用することにより粘度を調整することができる。反応性希釈剤としては、常温(25℃)における粘度が200mPa・s以下の脂肪族ポリグリシジルエーテルを好適に使用することができる。前記脂肪族ポリグリシジルエーテルとしては、例えば、シクロヘキサンジメタノールジグリシジルエーテル、シクロヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテルなどを挙げることができる。
 反応性希釈剤の使用量としては、適宜調整することができ、例えば、ゴム粒子分散エポキシ化合物(B)100重量部に対して30重量部以下、好ましくは、25重量部以下(例えば、5~25重量部)程度である。反応性希釈剤の使用量が30重量部を上回ると、耐クラック性等の所望の性能を得ることが困難となる傾向がある。
 本発明におけるゴム粒子分散エポキシ化合物(B)の製造方法としては、特に限定されることなく周知慣用の方法を使用することができ、例えば、ゴム粒子を脱水乾燥して粉体とした後に、脂環式エポキシ樹脂に混合、分散する方法や、ゴム粒子エマルジョンと脂環式エポキシ樹脂とを直接混合、脱水する方法などを挙げることができる。
 ゴム粒子分散エポキシ化合物(B)の使用量としては、樹脂組成物中に含有される全エポキシ基含有樹脂の20~100重量%程度であることが好ましく、なかでも、50~100重量%程度であることが好ましい。ゴム粒子分散エポキシ化合物(B)の使用量が全エポキシ基含有樹脂の20重量%を下回ると、得られる硬化物の耐クラック性が低下する傾向がある。
 本発明にかかる樹脂組成物は、少なくとも、ゴム粒子分散エポキシ化合物(B)、酸無水物硬化剤(C)、硬化促進剤(D)の3成分を必須成分として含有するが、ゴム粒子分散エポキシ化合物(B)、及び硬化触媒(E)の2成分を必須成分とする態様であってもよい。
[酸無水物硬化剤(C)]
 酸無水物硬化剤(C)は、エポキシ基を有する化合物を硬化させる働きを有する。本発明における酸無水物硬化剤(C)としては、エポキシ樹脂用硬化剤として周知慣用の硬化剤を使用することができる。本発明における酸無水物硬化剤(C)としては、なかでも、25℃で液状の酸無水物であることが好ましく、例えば、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ドデセニル無水コハク酸、メチルエンドメチレンテトラヒドロ無水フタル酸などを挙げることができる。また、例えば、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物などの常温(25℃)で固体状の酸無水物は、常温(25℃)で液状の酸無水物に溶解させて液状の混合物とすることで、本発明における酸無水物硬化剤(C)として使用することができる。
 また、本発明においては、酸無水物硬化剤(C)として、商品名「リカシッド MH-700」(新日本理化(株)製)、商品名「HN-5500」(日立化成(株)製)等の市販品を使用することもできる。
 酸無水物硬化剤(C)の使用量としては、例えば、樹脂組成物中に含有する全エポキシ基を有する化合物100重量部に対して、50~150重量部、好ましくは52~145重量部、特に好ましくは、55~140重量部程度である。より具体的には、上記樹脂組成物中に含有する全てのエポキシ基を有する化合物におけるエポキシ基1当量当たり、0.5~1.5当量となる割合で使用することが好ましい。酸無水物硬化剤(C)の使用量が50重量部を下回ると、効果が不十分となり、硬化物の強靱性が低下する傾向があり、一方、酸無水物硬化剤(C)の使用量が150重量部を上回ると、硬化物が着色して色相が悪化する場合がある。
[硬化促進剤(D)]
 硬化促進剤(D)は、エポキシ基を有する化合物が酸無水物硬化剤(C)により硬化する際に、硬化速度を促進する機能を有する化合物である。本発明における硬化促進剤(D)としては、周知慣用の硬化促進剤を使用することができ、例えば、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、及びその塩(例えば、フェノール塩、オクチル酸塩、p-トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩);1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、及びその塩(例えば、ホスホニウム塩、スルホニウム塩、4級アンモニウム塩、ヨードニウム塩);ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、N,N-ジメチルシクロヘキシルアミンなどの3級アミン;2-エチル-4-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾールなどのイミダゾール;リン酸エステル、トリフェニルホスフィンなどのホスフィン類;テトラフェニルホスホニウムテトラ(p-トリル)ボレートなどのホスホニウム化合物;オクチル酸スズ、オクチル酸亜鉛などの有機金属塩;金属キレートなどが挙げられる。これらは、単独で又は2種以上を混合して使用することができる。
 また、本発明においては、硬化促進剤(D)として、商品名「U-CAT SA 506」、「U-CAT SA 102」、「U-CAT 5003」、「U-CAT 18X」、「12XD(開発品)」(いずれもサンアプロ(株)製)、商品名「TPP-K」、「TPP-MK」(いずれも北興化学工業(株)製)、商品名「PX-4ET」(日本化学工業(株)製)等の市販品を使用することもできる。
 硬化促進剤(D)の使用量としては、例えば、樹脂組成物中に含有する全エポキシ基を有する化合物100重量部に対して、0.05~5重量部、好ましくは0.1~3重量部、特に好ましくは0.2~3重量部、最も好ましくは0.25~2.5重量部程度である。硬化促進剤(D)の使用量が0.05重量部を下回ると、硬化促進効果が不十分となる場合があり、一方、硬化促進剤(D)の使用量が5重量部を上回ると、硬化物が着色して色相が悪化する場合がある。
[硬化触媒(E)]
 本発明における硬化触媒(E)は、上記ゴム粒子分散エポキシ化合物(B)中のエポキシ化合物の重合を開始させる働きを有する。本発明における硬化触媒(E)としては、紫外線照射又は加熱処理を施すことによりカチオン種を発生して、ゴム粒子分散エポキシ化合物(B)の重合を開始させるカチオン重合開始剤が好ましい。
 紫外線照射によりカチオン種を発生するカチオン重合開始剤としては、例えば、ヘキサフルオロアンチモネート塩、ペンタフルオロヒドロキシアンチモネート塩、ヘキサフルオロホスフェート塩、ヘキサフルオロアルゼネート塩などを挙げることができ、商品名「UVACURE1590」(ダイセル・サイテック(株)製)、商品名「CD-1010」、「CD-1011」、「CD-1012」(米国サートマー社製)、商品名「イルガキュア264」(チバ・ジャパン(株)製)、商品名「CIT-1682」(日本曹達(株)製)等の市販品を好適に使用することができる。
 加熱処理を施すことによりカチオン種を発生するカチオン重合開始剤としては、例えば、アリールジアゾニウム塩、アリールヨードニウム塩、アリールスルホニウム塩、アレン-イオン錯体などを挙げることができ、商品名「PP-33」、「CP-66」、「CP-77」(ADEKA(株)製)、商品名「FC-509」(スリーエム(株)製)、商品名「UVE1014」(G.E.(株)製)、商品名「サンエイド SI-60L」、「サンエイド SI-80L」、「サンエイド SI-100L」、「サンエイド SI-110L」(三新化学工業(株)製)、商品名「CG-24-61」(チバ・ジャパン(株)製)等の市販品を好適に使用することができる。さらに、アルミニウムやチタンなどの金属とアセト酢酸若しくはジケトン類とのキレート化合物とトリフェニルシラノール等のシラノールとの化合物、又は、アルミニウムやチタンなどの金属とアセト酢酸若しくはジケトン類とのキレート化合物とビスフェノールS等のフェノール類との化合物であってもよい。
 本発明における硬化触媒(E)としては、なかでも、毒性が低く取り扱いやすい点や、汎用性に優れる点で、ヘキサフルオロホスフェート塩が好ましい。
 硬化触媒(E)の使用量としては、例えば、樹脂組成物中に含有する全エポキシ基を有する化合物100重量部に対して、0.01~15重量部、好ましくは0.01~12重量部、特に好ましくは、0.05~10重量部、最も好ましくは、0.1~10重量部程度である。この範囲内で使用することにより、耐熱性、透明性、耐候性に優れた硬化物を得ることができる。
[無孔質フィラー(F)]
 本発明の反射防止材を構成する樹脂組成物は、無孔質フィラー(F)を含んでいてもよい。本発明の反射防止材における樹脂組成物が無孔質フィラー(F)を含むことにより、硬化させた硬化物の耐熱衝撃性がさらに向上する。
 本発明の反射防止材に使用できる無孔質フィラー(F)は、多孔質構造を有さず、比表面積が10m2/g以下である無機又は有機のフィラーを意味する。以下、それぞれ、「無機無孔質フィラー(F1)」、「有機無孔質フィラー(F2)」と称する場合がある。
 本発明の反射防止材に使用できる無機無孔質フィラー(F1)としては、公知乃至慣用の無機無孔質充填剤を使用することができ、特に限定されないが、例えば、無機ガラス[例えば、硼珪酸ガラス、硼珪酸ソーダガラス、珪酸ソーダガラス、アルミ珪酸ガラス、石英等]、シリカ、アルミナ、ジルコン、珪酸カルシウム、リン酸カルシウム、炭酸カルシウム、炭酸マグネシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、水酸化アルミニウム、酸化鉄、酸化亜鉛、酸化ジルコニウム、酸化マグネシウム、酸化チタン、酸化アルミニウム、硫酸カルシウム、硫酸バリウム、フォステライト、ステアタイト、スピネル、クレー、カオリン、ドロマイト、ヒドロキシアパタイト、ネフェリンサイナイト、クリストバライト、ウォラストナイト、珪藻土、タルク等の粉体、又はこれらの成型体(例えば、球形化したビーズ等)等が挙げられる。また、無孔質フィラー(F)としては、上述の無機充填剤に公知乃至慣用の表面処理[例えば、金属酸化物、シランカップリング剤、チタンカップリング剤、有機酸、ポリオール、シリコーン等の表面処理剤による表面処理等]が施されたもの等も挙げられる。このような表面処理を施すことにより、樹脂組成物の成分との相溶性や分散性を向上させることができる場合がある。中でも、無機無孔質フィラー(F1)としては、硬化物に優れた耐熱衝撃性を付与できるという観点で、無機無孔質ガラス又は無孔質シリカ(無孔質シリカフィラー)が好ましい。
 無孔質シリカとしては、特に限定されず、例えば、溶融シリカ、結晶シリカ、高純度合成シリカ等の公知乃至慣用の無孔質シリカを使用できる。なお、無孔質シリカとしては、公知乃至慣用の表面処理[例えば、金属酸化物、シランカップリング剤、チタンカップリング剤、有機酸、ポリオール、シリコーン等の表面処理剤による表面処理等]が施されたものを使用することもできる。
 また、無機無孔質フィラー(F1)としては、中空体構造を有するものを使用してもよい。上記中空体無機無孔質フィラーとしては、特に限定されないが、例えば、無機ガラス[例えば、硼珪酸ガラス、硼珪酸ソーダガラス、珪酸ソーダガラス、アルミ珪酸ガラス、石英等]、シリカ、アルミナ、ジルコニア等の金属酸化物、炭酸カルシウム、炭酸バリウム、炭酸ニッケル、珪酸カルシウム等の金属塩等の無機物により構成された無機中空粒子(シラスバルーン等の天然物も含む);無機物と有機物のハイブリッド材料により構成された無機-有機中空粒子等が挙げられる。また、上記中空体無機無孔質フィラーの中空部(中空粒子の内部の空間)は、真空状態であってもよいし、媒質で満たされていてもよいが、特に、光散乱効率を向上させるためには、屈折率が低い媒質(例えば、窒素、アルゴン等の不活性ガスや空気等)で満たされた中空粒子が好ましい。
 中空体無機無孔質フィラーを用いる場合、その中空率(無機フィラー全体の体積に対する空隙の体積の割合)は、特に限定されないが、10~90体積%が好ましく、30~90体積%がより好ましい。
 有機無孔質フィラー(F2)としては、公知乃至慣用のものを使用することができ、特に限定されないが、例えば、スチレン系樹脂、アクリル系樹脂、シリコーン系樹脂、アクリル-スチレン系樹脂、塩化ビニル系樹脂、塩化ビニリデン系樹脂、アミド系樹脂、ウレタン系樹脂、フェノール系樹脂、スチレン-共役ジエン系樹脂、アクリル-共役ジエン系樹脂、オレフィン系樹脂、セルロース樹脂等のポリマー(これらポリマーの架橋体も含む)等の有機物により構成された有機無孔質フィラー等が挙げられる。
 また、上記無機物と有機物のハイブリッド材料により構成された無機-有機無孔質フィラー等も使用することができる。
 上記無孔質フィラー(F)は、単一の材料より構成されたものであってもよいし、二種以上の材料より構成されたものであってもよい。中でも、無孔質フィラー(F)としては、硬化物に優れた耐熱衝撃性を付与できるという観点で、無機無孔質フィラー(F1)が好ましく、入手性や製造容易性の観点から、無孔質シリカ(無孔質シリカフィラー)がより好ましい。
 無孔質フィラー(F)の形状は、特に限定されないが、例えば、粉体、球状、破砕状、繊維状、針状、鱗片状等が挙げられる。中でも、無孔質フィラー(F)が硬化物の耐熱衝撃性を向上させるという観点から、球状、又は破砕状の無孔質フィラー(F)が好ましい。
 無孔質フィラー(F)の中心粒径は、特に限定されないが、無孔質フィラー(F)が硬化物の耐熱衝撃性を向上させるという観点から、0.1~100μmが好ましく、より好ましくは1~50μmである。なお、上記中心粒径は、レーザー回折・散乱法で測定した粒度分布における積算値50%での体積粒径(メディアン体積径)を意味する。
 本発明の反射防止材において無孔質フィラー(F)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、無機フィラーは、公知乃至慣用の製造方法により製造することもできるし、例えば、商品名「FB-910」、「FB-940」、「FB-950」等のFBシリーズ(以上、電気化学工業(株)製)、商品名「MSR-2212」、「MSR-25」(以上、(株)龍森製)、商品名「HS-105」、「HS-106」、「HS-107」(以上、マイクロン社製)等の市販品を使用することもできる。
 また、中空体無機無孔質フィラーとしては、公知乃至慣用の製造方法により製造することもできるし、例えば、商品名「Sphericel(商標)110P8」、「Sphericel(商標)25P45」、「Sphericel(商標)34P30」、「Sphericel(商標)60P18」、「Q-CEL(商標)5020」、「Q-CEL(商標)7014」、「Q-CEL(商標)7040S」(以上、ポッターズ・バロッティーニ(株)製)、商品名「ガラスマイクロバルーン」、「フジバルーン H-40」、「フジバルーン H-35」(以上、富士シリシア化学(株)製)、商品名「セルスターZ-20」、「セルスターZ-27」、「セルスターCZ-31T」、「セルスターZ-36」、「セルスターZ-39」、「セルスターZ-39」、「セルスターT-36」、「セルスターPZ-6000」(以上、東海工業(株)製)、商品名「サイラックス・ファインバルーン」((有)ファインバルーン製)、商品名「スーパーバルーンBA-15」、「スーパーバルーン732C」(以上、昭和化学工業(株)製)等の市販品を用いることができる。
 本発明の反射防止材における樹脂組成物が無孔質フィラー(F)を含有する場合、その含有量(配合量)は、特に限定されないが、反射防止材を構成する樹脂組成物(100重量部)に対して、好ましくは10~200重量部であり、より好ましくは20~150重量部である。無孔質フィラー(F)の含有量が10重量部以上であることにより、反射防止材を構成する硬化物の熱衝撃性が向上する傾向がある。一方、無孔質フィラー(F)の含有量が200重量部以下であることにより、本発明の反射防止材を例えば光半導体装置用の封止材として使用した場合に全光束の著しい低下を防止して十分な照度を確保できる傾向がある。
 本発明の反射防止材における樹脂組成物が無孔質フィラー(F)を含有する場合、前記多孔質フィラー(A)と無孔質フィラー(F)の合計含有量(合計配合量)は、特に限定されないが、反射防止材全量(100重量%)に対して、好ましくは20~60重量%である。多孔質フィラー(A)と無孔質フィラー(F)の合計含有量が20重量%以上であることにより、反射防止材を構成する硬化物の熱衝撃性が向上する傾向がある。一方、多孔質フィラー(A)と無孔質フィラー(F)の合計含有量が60重量部以下であることにより、本発明の反射防止材を例えば光半導体装置用の封止材として使用した場合に全光束の著しい低下を防止して十分な照度を確保できる傾向がある。
[多価アルコール]
 本発明の樹脂組成物は、多価アルコールを含んでいてもよい。特に、本発明の樹脂組成物が酸無水物硬化剤(C)及び硬化促進剤(D)を含む場合には、硬化をより効率的に進行させることができる点で、さらに多価アルコールを含むことが好ましい。多価アルコールとしては、公知乃至慣用の多価アルコールを使用することができ、特に限定されないが、例えば、エチレングリコール、プロピレングリコール、ブチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、ネオペンチルグリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ジペンタエリスリトール等が挙げられる。
 中でも、上記多価アルコールとしては、硬化を良好に制御することができ、クラックや剥離がより生じにくい硬化物が得られやすい点で、炭素数1~6のアルキレングリコールが好ましく、より好ましくは炭素数2~4のアルキレングリコールである。
 本発明の樹脂組成物において多価アルコールは、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 本発明の樹脂組成物における多価アルコールの含有量(配合量)は、特に限定されないが、樹脂組成物に含まれるエポキシ化合物の全量(全エポキシ化合物;例えば、脂環式エポキシ樹脂の全量)100重量部に対して、0.05~5重量部が好ましく、より好ましくは0.1~3重量部、さらに好ましくは0.2~3重量部、特に好ましくは0.25~2.5重量部である。多価アルコールの含有量を0.05重量部以上とすることにより、硬化をより効率的に進行させることができる傾向がある。一方、多価アルコールの含有量を5重量部以下とすることにより、上記硬化の反応速度を制御しやすい傾向がある。
[蛍光体]
 本発明の樹脂組成物は、蛍光体を含んでいてもよい。本発明の樹脂組成物が蛍光体を含む場合には、光半導体装置における光半導体素子の封止用途(封止材用途)、即ち、光半導体封止用樹脂組成物として特に好ましく使用できる。上記蛍光体としては、公知乃至慣用の蛍光体(特に、光半導体素子の封止用途において使用される蛍光体)を使用でき、特に限定されないが、例えば、一般式A3512:M[式中、Aは、Y、Gd、Tb、La、Lu、Se、及びSmからなる群より選択された1種以上の元素を示し、Bは、Al、Ga、及びInからなる群より選択された1種以上の元素を示し、Mは、Ce、Pr、Eu、Cr、Nd、及びErからなる群より選択された1種以上の元素を示す]で表されるYAG系の蛍光体微粒子(例えば、Y3Al512:Ce蛍光体微粒子、(Y,Gd,Tb)3(Al,Ga)512:Ce蛍光体微粒子等)、シリケート系蛍光体微粒子(例えば、(Sr,Ca,Ba)2SiO4:Eu等)等が挙げられる。なお、蛍光体は、例えば、分散性向上のために、有機基(例えば、長鎖アルキル基、リン酸基等)等により表面が修飾されたものであってもよい。本発明の樹脂組成物において蛍光体は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。また、蛍光体としては市販品を使用することができる。
 本発明の樹脂組成物における蛍光体の含有量(配合量)は、特に限定されず、樹脂組成物の全量(100重量%)に対して、0.5~20重量%の範囲で適宜選択することができる。
 本発明にかかる樹脂組成物は、ゴム粒子分散エポキシ化合物(B)以外に、ゴム粒子を含まない脂環式エポキシ樹脂を含有していてもよい。脂環式エポキシ樹脂としては、上記式(1)で表される脂環式エポキシ樹脂を挙げることができる。ゴム粒子を含まない脂環式エポキシ樹脂の使用量としては、樹脂組成物中に含有される全エポキシ基含有樹脂の70重量%未満であることが好ましく、なかでも、60重量%未満であることが好ましい。ゴム粒子を含まない脂環式エポキシ樹脂の使用量が全エポキシ基含有樹脂の70重量%を上回ると、得られる硬化物の耐クラック性が低下する傾向がある。
 さらに、本発明にかかる樹脂組成物は、ビスフェノールA型、ビスフェノールF型などの芳香環を有するグリシジルエーテル系エポキシ化合物;水添ビスフェノールA型、脂肪族グリシジル型などの芳香環を有しないグリシジルエーテル系エポキシ化合物;グリシジルエステル系エポキシ化合物;グリシジルアミン系エポキシ化合物;ポリオール化合物、オキセタン化合物、ビニルエーテル化合物等の脂環式エポキシ樹脂以外のエポキシ樹脂を含有していてもよい。脂環式エポキシ樹脂以外のエポキシ樹脂の使用量としては、樹脂組成物中に含有される全エポキシ基含有樹脂の70重量%未満であることが好ましく、なかでも、60重量%未満であることが好ましい。脂環式エポキシ樹脂以外のエポキシ樹脂の使用量が全エポキシ基含有樹脂の70重量%を上回ると、得られる硬化物の耐クラック性が低下する傾向がある。
 また、常温(25℃)で固体を呈するエポキシ化合物であっても、配合した後に液状を呈するものであれば、含有していてもよい。常温(25℃)で固体を呈するエポキシ化合物としては、例えば、固形のビスフェノール型エポキシ化合物、ノボラック型エポキシ化合物、グリシジルエステル、トリグリシジルイソシアヌレート、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロセキサン付加物(商品名「EHPE3150」、ダイセル化学工業(株)製)などを挙げることができる。これらのエポキシ化合物は、単独で又は2種以上を組み合わせて使用することができる。
 本発明においては、なかでも、上記酸無水物硬化剤(C)、硬化触媒(E)、硬化触媒(E)以外に、芳香環を有しないグリシジルエーテル系エポキシ化合物及び/又は25℃で液状を呈するポリオール化合物(但し、ポリエーテルポリオールを除く)を含むことが、高い耐熱性を損なうことなく耐クラック性を向上させることができる点で好ましく、特に、芳香環を有しないグリシジルエーテル系エポキシ化合物を含むことが、高い耐熱性及び耐光性を損なうことなく耐クラック性を向上させることができる点で好ましい。
 [芳香環を有しないグリシジルエーテル系エポキシ化合物]
 本発明における芳香環を有しないグリシジルエーテル系エポキシ化合物には、脂肪族グリシジルエーテル系エポキシ化合物、及び、芳香族グリシジルエーテル系エポキシ化合物を核水添した化合物を含む。例えば、商品名「EPICLON703」、「EPICLON707」、「EPICLON720」、「EPICLON725」(DIC(株)製)、商品名「YH-300」、「YH-315」、「YH-324」、「PG-202」、「PG-207」、「サントートST-3000」(東都化成(株)製)、商品名「リカレジンDME-100」、「リカレジンHBE-100」(新日本理化(株)製)、商品名「デナコールEX-212」、「デナコールEX-321」(ナガセケムテックス(株)製)、商品名「YX8000」、「YX8034」(ジャパンエポキシレジン(株)製)等の市販品を好適に使用することができる。
 芳香環を有しないグリシジルエーテル系エポキシ化合物の使用量としては、例えば、脂環式エポキシ樹脂100重量部に対して10~60重量部程度、好ましくは、20~50重量部程度である。
 [25℃で液状を呈するポリオール化合物]
 本発明における25℃で液状を呈するポリオール化合物には、ポリエーテルポリオール以外のポリオール化合物が含まれ、例えば、ポリエステルポリオール、ポリカーボネートポリオールが含まれる。
 ポリエステルポリオールとしては、例えば、商品名「プラクセル205」、「プラクセル205H」、「プラクセル205U」、「プラクセル205BA」、「プラクセル208」、「プラクセル210」、「プラクセル210CP」、「プラクセル210BA」、「プラクセル212」、「プラクセル212CP」、「プラクセル220」、「プラクセル220CPB」、「プラクセル220NP1」、「プラクセル220BA」、「プラクセル220ED」、「プラクセル220EB」、「プラクセル220EC」、「プラクセル230」、「プラクセル230CP」、「プラクセル240」、「プラクセル240CP」、「プラクセル210N」、「プラクセル220N」、「プラクセルL205AL」、「プラクセルL208AL」、「プラクセルL212AL」、「プラクセルL220AL」、「プラクセルL230AL」、「プラクセル305」、「プラクセル308」、「プラクセル312」、「プラクセルL312AL」、「プラクセル320」、「プラクセルL320AL」、「プラクセルL330AL」、「プラクセル410」、「プラクセル410D」、「プラクセル610」、「プラクセルP3403」、「プラクセルCDE9P」(ダイセル化学工業(株)製)等の市販品を使用することができる。
 ポリカーボネートポリオールとしては、例えば、商品名「プラクセルCD205PL」、「プラクセルCD205HL」、「プラクセルCD210PL」、「プラクセルCD210HL」、「プラクセルCD220PL」、「プラクセルCD220HL」(ダイセル化学工業(株)製)、商品名「UH-CARB50」、「UH-CARB100」、「UH-CARB300」、「UH-CARB90(1/3)」、「UH-CARB90(1/1)」、「UC-CARB100」(宇部興産(株)製)、商品名「PCDL T4671」、「PCDL T4672」、「PCDL T5650J」、「PCDL T5651」、「PCDL T5652」(旭化成ケミカルズ(株)製)等の市販品を使用することができる。
 25℃で液状を呈するポリオール化合物の使用量としては、例えば、ゴム粒子分散エポキシ化合物(B)100重量部に対して5~50重量部程度、好ましくは、10~40重量部程度である。
[その他の成分]
 本発明の樹脂組成物は、硬化性や透明性等に大きな悪影響が及ばない範囲で、上記以外のその他の成分を含んでいてもよい。上記その他の成分としては、例えば、直鎖又は分岐鎖を有するシリコーン系樹脂、脂環を有するシリコーン系樹脂、芳香環を有するシリコーン系樹脂、かご型/ラダー型/ランダム型のシルセスキオキサン、γ-グリシドキシプロピルトリメトキシシラン等のシランカップリング剤、シリコーン系やフッ素系の消泡剤、レベリング剤、界面活性剤、充填剤、難燃剤、着色剤、酸化防止剤、紫外線吸収剤、イオン吸着体、顔料、離型剤等が挙げられる。上記その他の成分の含有量(配合量)は、特に限定されないが、樹脂組成物の全量(100重量%)に対して、5重量%以下(例えば、0~3重量%)が好ましい。
 本発明の樹脂組成物は、特に限定されないが、例えば、上述の各成分を、必要に応じて加熱した状態で撹拌、混合することによって調製することができる。なお、本発明の硬化性エポキシ樹脂組成物は、各成分の全てがあらかじめ混合されたものをそのまま使用する1液系の組成物であってもよいし、例えば、2以上に分割された成分を使用の直前で所定の割合で混合して使用する多液系(例えば、2液系)の組成物であってもよい。撹拌、混合の方法は、特に限定されず、例えば、ディゾルバー、ホモジナイザー等の各種ミキサー、ニーダー、ロール、ビーズミル、自公転式撹拌装置等の公知乃至慣用の撹拌、混合手段を使用できる。また、撹拌、混合後、減圧下又は真空下にて脱泡してもよい。
[硬化物及び凹凸形状]
 本発明の反射防止材は、上記多孔質フィラー(A)が上記樹脂組成物又は、その硬化物全体に行き渡って均一に分散しており、分散状態が安定した結果、硬化物の表面に存在する多孔質フィラー(A)が凹凸形状を形成して、入射光を散乱させることにより反射防止機能を発揮する。また、多孔質フィラー(A)表面の多孔質構造も入射光を散乱させることができ、さらに反射防止機能が向上する。
 また、上記樹脂組成物はゴム粒子分散エポキシ化合物(B)を含有するため、これを含む硬化物は優れた耐熱衝撃性を有する。
 上記多孔質フィラー(A)を上記硬化物全体に均一に行き渡らせる方法は、特に限定させず、例えば、硬化物を構成する樹脂組成物に多孔質フィラー(A)を均一に分散させた後に硬化させる方法等が挙げられる。本発明の反射防止材を効率的に製造するためには、多孔質フィラー(A)を均一に分散させた後に硬化させる方法が好ましい。
 以下に、本発明の反射防止材の製造方法の一態様を説明するが、本発明はこれに限定されるものではない。
 樹脂組成物に多孔質フィラー(A)、さらに必要に応じて無孔質フィラー(F)を添加して、混合・撹拌することにより均一に分散させることができる。混合・撹拌の方法は、特に限定されず、例えば、ディゾルバー、ホモジナイザー等の各種ミキサー、ニーダー、ロール、ビーズミル、自公転式撹拌装置等の公知乃至慣用の撹拌、混合手段を使用できる。また、撹拌、混合後、減圧下又は真空下にて脱泡してもよい。
 無孔質フィラー(F)を多孔質フィラー(A)と共に硬化物中に分散させた場合、硬化物の耐熱衝撃性をさらに向上させることができる。
 本発明の硬化前の樹脂組成物の性状は、特に限定されないが、液状であることが好ましい。本発明の反射防止材を形成する硬化前の樹脂組成物は、多孔質フィラー(A)を用いることで少量の添加で反射防止機能を発現することができるため、トルエン等の溶剤を使用しなくとも液状になりやすく、好ましい。
[硬化工程]
 多孔質フィラー(A)が均一に分散した樹脂組成物を硬化させて硬化物(以下、「本発明の硬化物」と称する場合がある)とすることにより、本発明の反射防止材を得ることができる。
 硬化前の樹脂組成物の全量(100重量%)に対する、硬化中に揮発する成分の量は、特に限定されないが、好ましくは10重量%以下であり、より好ましくは8重量%以下であり、さらに好ましくは5重量%以下である。硬化中に揮発する成分の量が10重量%以下であることにより、硬化物の寸法安定性が高くなり、好ましい。本発明の硬化前の樹脂組成物は、多孔質フィラー(A)を用いることで少量の添加で反射防止機能を発現することができるため、溶剤(トルエン等)の揮発成分を使用しなくとも液状になりやすく、硬化中に揮発する成分の量を少なくすることができる。
 硬化の手段としては、加熱処理や光照射処理等の公知乃至慣用の手段を利用できる。加熱により硬化させる際の温度(硬化温度)は、特に限定されないが、45~200℃が好ましく、より好ましくは50~190℃、さらに好ましくは55~180℃である。また、硬化の際に加熱する時間(硬化時間)は、特に限定されないが、30~600分が好ましく、より好ましくは45~540分、さらに好ましくは60~480分である。硬化温度と硬化時間が上記範囲の下限値より低い場合は硬化が不十分となり、逆に上記範囲の上限値より高い場合は、樹脂成分の分解が起きる場合があるので、いずれも好ましくない。硬化条件は種々の条件に依存するが、例えば、硬化温度を高くした場合は硬化時間を短く、硬化温度を低くした場合は硬化時間を長くする等により、適宜調整することができる。また、硬化は、一段階で行うこともできるし、二段階以上の多段階で行うこともできる。
 また、光照射により硬化させる場合は、例えば、i-線(365nm)、h-線(405nm)、g-線(436nm)等を含む光(放射線)を、照度10~1200mW/cm2、照射光量20~2500mJ/cm2で照射することにより本発明の反射防止材を得ることができる。放射線による硬化物の劣化を抑える観点と、生産性の観点から、好ましくは放射線の照射光量20~600mJ/cm2、より好ましくは照射光量20~300mJ/cm2が望ましい。照射には、高圧水銀ランプ、キセノンランプ、カーボンアークランプ、メタルハライドランプ、レーザー光等を照射源として使用することができる。
[反射防止材]
 本発明の反射防止材は、上述の通り、高い透明性と優れた反射防止機能に加え、高い耐熱衝撃性を兼ね備えるため、光学材料用の(光学材料を形成する用途に用いられる)樹脂として好適に使用することができる。光学材料とは、光拡散性、光透過性、光反射性等の各種の光学的機能を発現する材料である。本発明の反射防止材を使用することで、本発明の硬化物(光学材料)を少なくとも含む光学部材が得られる。なお、当該光学部材は、本発明の反射防止材のみから構成されたものであってもよいし、本発明の反射防止材が一部のみに使用されたものであってもよい。光学部材としては、光拡散性、光透過性、光反射性等の各種の光学的機能を発現する部材や、上記光学的機能を利用した装置や機器を構成する部材等が挙げられ、特に限定されず、例えば、光半導体装置、有機EL装置、接着剤、電気絶縁材、積層板、コーティング、インク、塗料、シーラント、レジスト、複合材料、透明基材、透明シート、透明フィルム、光学素子、光学レンズ、光造形、電子ペーパー、タッチパネル、太陽電池基板、光導波路、導光板、ホログラフィックメモリ、光ピックアップセンサー等の各種用途において使用される公知乃至慣用の光学部材が例示される。
 本発明の反射防止材は、多孔質フィラー(A)が硬化物全体に均一に行き渡って分散する結果、その表面に多孔質フィラー(A)により形成された微細で均一な凹凸形状を有し、当該凹凸形状で入射光が散乱して全反射が起こらないので、光沢が抑えられて視認性を向上させることができる。本発明の反射防止材に形成された凹凸形状の算術平均表面粗さRaは、0.1~1.0μmの範囲が好ましく、0.2~0.8μmの範囲がより好ましい。凹凸形状の算術平均表面粗さRaがこの範囲にあれば、全光束を顕著に損なうことなく、十分な反射防止機能が発揮できる傾向がある。
 なお、本発明において算術平均表面粗さRaは、JIS B 0601-2001により定義される数値であり、後述の実施例に記載の方法により測定、算出されたものを意味するものとする。
 本発明の反射防止材を構成する樹脂組成物は、例えば、光半導体封止用樹脂組成物として好ましく使用できる。即ち、本発明の樹脂組成物は、光半導体装置における光半導体素子を封止するための組成物(光半導体装置における光半導体素子の封止材)として好ましく使用できる。本発明の樹脂組成物(光半導体封止用樹脂組成物)を用いて製造される該反射防止材により光半導体素子が封止された光半導体装置(例えば、図1における104が本発明の反射防止材で構成された光半導体装置)が得られる。光半導体素子の封止は、例えば、多孔質フィラー(A)が均一に分散した樹脂組成物を所定の成形型内に注入し、所定の条件で加熱硬化又は光硬化して行うことができる。硬化温度、硬化時間や光硬化の条件等は、上記反射防止材の調製時と同様の範囲で適宜設定することができる。上述の本発明の光半導体装置は、特に、全光束を低下させることなく、優れた反射防止機能を発揮することができる。また、本発明の樹脂組成物はゴム粒子分散エポキシ化合物(B)、さらには必要に応じて、無孔質フィラー(F)を含有するため、これを含む硬化物は優れた耐熱衝撃性を有する。なお、本明細書において「本発明の光半導体装置」とは、光半導体装置の構成部材(例えば、封止材、ダイボンディング材等)の少なくとも一部に本発明の反射防止材が使用された光半導体装置を意味する。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。なお、表1、2に示す樹脂組成物を構成する成分の単位は、重量部である。
 なお、ゴム粒子の平均粒子径、最大粒子径は、動的光散乱法を測定原理とした「NanotracTM」形式のナノトラック粒度分布測定装置(商品名「UPA-EX150」、日機装(株)製)を使用して下記試料を測定し、得られた粒度分布曲線において、累積カーブが50%となる時点の粒子径である累積平均径を平均粒子径、粒度分布測定結果の頻度(%)が0.00%を超えた時点の最大の粒子径を最大粒子径とした。
 試料:
 ゴム粒子分散エポキシ化合物(B)1重量部をテトラヒドロフラン20重量部に分散させたものを試料とした。
 ゴム粒子の屈折率は、ゴム粒子1gを型に注型して210℃、4MPaで圧縮成形し、厚さ1mmの平板を得、得られた平板から、縦20mm×横6mmの試験片を切り出し、中間液としてモノブロモナフタレンを使用してプリズムと該試験片とを密着させた状態で、多波長アッベ屈折計(商品名「DR-M2」、(株)アタゴ製)を使用し、該試験片における20℃、ナトリウムD線での屈折率を測定した。
 製造例で得られたゴム粒子分散エポキシ化合物(B)(ゴム粒子5重量部をセロキサイド2021P(ダイセル化学工業(株)製)100重量部に分散させたもの)の粘度は、デジタル粘度形(商品名「DVU-EII型」、(株)トキメック製)を使用して、25℃における粘度を測定した。
 製造例1
 還流冷却器付きの1L重合容器に、イオン交換水500g、及びジオクチルコハク酸ナトリウム0.68gを仕込み、窒素気流下に撹拌しながら、80℃に昇温した。ここに、コア部分を形成するために必要とする量の約5重量%分に該当するアクリル酸ブチル9.5g、スチレン2.57g、及びジビニルベンゼン0.39gからなる単量体混合物を、一括添加し、20分間撹拌して乳化させた後、ペルオキソ2硫酸カリウム9.5mgを添加し、1時間撹拌して最初のシード重合を行い、続いて、ペルオキソ2硫酸カリウム180.5mgを添加し、5分間撹拌した。ここに、コア部分を形成するために必要とする量の残り(約95重量%分)のアクリル酸ブチル180.5g、スチレン48.89g、ジビニルベンゼン7.33gにジオクチルコハク酸ナトリウム0.95gを溶解させてなる単量体混合物を2時間かけて連続的に添加し、2度目のシード重合を行い、その後、1時間熟成してコア部分を得た。
 次いで、ペルオキソ2硫酸カリウム60mgを添加して5分間撹拌し、これに、メタクリル酸メチル60g、アクリル酸1.5g、及びアリルメタクリレート0.3gにジオクチルコハク酸ナトリウム0.3gを溶解させてなる単量体混合物を30分かけて連続的に添加し、シード重合を行い、その後、1時間熟成し、コア部分を被覆するシェル層を形成した。
 次いで、室温(25℃)まで冷却し、目開き120μmのプラスチック製網で濾過することにより、コアシェル構造を有する粒子を含むラテックスを得た。得られたラテックスをマイナス30℃で凍結し、吸引濾過器で脱水洗浄した後、60℃で一昼夜送風乾燥してゴム粒子(1)を得た。得られたゴム粒子(1)の平均粒子径は254nm、最大粒子径は486nm、屈折率は1.500であった。
 窒素気流下、60℃に加温した状態でディゾルバー(1000rpm、60分間)を使用して、得られたゴム粒子(1)5重量部を、セロキサイド2021P(ダイセル化学工業(株)製)100重量部に分散させ、真空脱泡して、ゴム粒子分散エポキシ化合物(B-1)(25℃での粘度:559mPa・s)を得た。
 製造例2
 アクリル酸1.5gの代わりに2-ヒドロキシエチルメタクリレート2.7gを使用した以外は製造例1と同様にして、ゴム粒子(2)を得た。得られたゴム粒子(2)の平均粒子径は261nm、最大粒子径は578nm、屈折率は1.500であった。
 さらに、製造例1と同様にしてゴム粒子分散エポキシ化合物(B-2)(25℃での粘度:512mPa・s)を得た。
 製造例3
 還流冷却器付きの1L重合容器に、イオン交換水500g、及びジオクチルコハク酸ナトリウム1.3gを仕込み、窒素気流下に撹拌しながら、80℃に昇温した。ここに、コア部分を形成するために必要とする量の約5重量%分に該当するアクリル酸ブチル9.5g、スチレン2.57g、及びジビニルベンゼン0.39gからなる単量体混合物を、一括添加し、20分間撹拌して乳化させた後、ペルオキソ2硫酸カリウム12mgを添加し、1時間撹拌して最初のシード重合を行い、続いて、ペルオキソ2硫酸カリウム228mgを添加し、5分間撹拌した。ここに、コア部分を形成するために必要とする量の残り(約95重量%分)のアクリル酸ブチル180.5g、スチレン48.89g、ジビニルベンゼン7.33gにジオクチルコハク酸ナトリウム1.2gを溶解させてなる単量体混合物を2時間かけて連続的に添加し、2度目のシード重合を行い、その後、1時間熟成してコア部分を得た。
 次いで、アクリル酸の使用量を1.5gから2.0gに変更した以外は製造例1と同様にして、ゴム粒子(3)を得た。得られたゴム粒子(3)の平均粒子径は108nm、最大粒子径は289nm、屈折率は1.500であった。
 さらに、製造例1と同様にしてゴム粒子分散エポキシ化合物(B-3)(25℃での粘度:1036mPa・s)を得た。
製造例4
 硬化剤(商品名「リカシッドMH-700」、新日本理化(株)製)100重量部、硬化促進剤(商品名「U-CAT 18X」、サンアプロ(株)製)0.5重量部、及びエチレングリコール(和光純薬工業(株)製)1重量部を、自公転式撹拌装置(商品名「あわとり練太郎 AR-250」、(株)シンキー製、以下同じ)を用いて混合し、エポキシ硬化剤(K剤)を製造した。
実施例1
 製造例1で得られたゴム粒子分散エポキシ化合物(B-1)100重量部、製造例4で得られたエポキシ硬化剤101.5重量部を自公転式撹拌装置を用いて混合し、脱泡して、硬化性エポキシ樹脂組成物を製造した。
 上記で得られた硬化性エポキシ樹脂組成物100重量部、及び多孔質フィラー(商品名「サイリシア430」、富士シリシア化学(株)製)20重量部を自公転式撹拌装置を用いて混合し、脱泡して得られた硬化性エポキシ樹脂組成物を図1に示す光半導体のリードフレーム(InGaN素子、3.5mm×2.8mm)に注型した後、150℃の樹脂硬化オーブンで5時間加熱することで、本発明の反射防止材により光半導体素子が封止された光半導体装置を製造した。なお、図1において、100はリフレクター、101は金属配線、102は光半導体素子、103はボンディングワイヤ、104は封止材(反射防止材)を示し、104の全体に渡り多孔質フィラーが均一に分散しており、そのうちの上部表面に存在する多孔質フィラーにより均一で微細な凹凸形状が形成されている(凹凸形状は図示略)。
実施例2~15、比較例1~5
 硬化性エポキシ樹脂組成物、多孔質フィラー、無孔質フィラーの組成を表1、2に示すように変更したこと以外は実施例1と同様にして、光半導体装置を製造した。
[評価]
 上記で製造した光半導体装置について、下記の評価を行った。結果を表1、2のそれぞれに示す。
(1)蛍光灯の映り込み
 実施例、比較例で得られた光半導体装置の上面(図1の封止材104の上面)に点灯した蛍光灯を当てて反射を見た際に、反射防止材に映る蛍光灯の鮮明さを目視で3段階評価した。
 蛍光灯の輪郭が認識できない場合を○、輪郭が不鮮明ながら認識できる場合を△、輪郭が鮮明に認識できる場合を×とした。
(2)算術平均表面粗さRa
 実施例、比較例で得られた光半導体装置の上面(図1の封止材104の上面)を、レーザー顕微鏡(商品名「形状測定レーザマイクロスコープ VK-8710」、キーエンス社製)を用いて測定した。
(3)全光束
 実施例、比較例で得られた各光半導体装置について、5V、20mAの条件で通電した際の全光束を、全光束測定機(商品名「マルチ分光放射測定システム OL771」、オプトロニックラボラトリーズ社製)を用いて測定した。
(4)熱衝撃試験
 実施例及び比較例で得られた光半導体装置(各硬化性エポキシ樹脂組成物につき2個ずつ用いた)に対し、-40℃の雰囲気下に30分曝露し、続いて、100℃の雰囲気下に30分曝露することを1サイクルとした熱衝撃を、熱衝撃試験機を用いて200サイクル分与えた。その後、光半導体装置に10mAの電流を通電し、点灯しなかった光半導体装置(不灯の光半導体装置)の個数を計測した。なお、熱衝撃試験前には全ての光半導体装置が点灯するものであることを確認済みである。結果を表1、2の「熱衝撃試験[不灯数]」の欄に示した。
(5)屈折率差試験
 実施例1~15、比較例3~5で得られた硬化性エポキシ樹脂組成物を型に注型し、150℃で5時間加熱した。得られた硬化物から縦20mm×横6mm×厚さ1mmの試験片を切り出し、中間液としてモノブロモナフタレンを使用してプリズムと該試験片とを密着させ、多波長アッベ屈折計(商品名「DR-M2」、(株)アタゴ製)を使用し、20℃、ナトリウムD線での屈折率を測定することにより、硬化物の屈折率を測定し、下記式に従って、屈折率差を算出した。結果を表1、2の「ゴム粒子との屈折率の差」の欄に示した。
   屈折率差=[ゴム粒子の屈折率]-[硬化物の屈折率]
(6)総合判定
 実施例、比較例で得られた各光半導体装置について、下記(a)~(d)を全て満足する場合を○(良好である)、下記(a)~(d)のいずれかを満足しない場合を×(不良である)と判定した。
 (a)上記(1)において測定された蛍光灯の映り込みが、○又は△である。
 (b)上記(2)において測定された算術平均表面粗さRaが0.10~1.0μmである。
 (c)上記(3)において測定された全光束が0.60lm以上である。
 (d)上記(4)において、不灯の光半導体装置の個数が0個である。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1、2に示す反射防止材を構成する各成分について、以下に説明する。
(ゴム粒子分散エポキシ化合物(B))
 B-1:製造例1で製造されたゴム粒子分散エポキシ化合物(B-1)
 B-2:製造例2で製造されたゴム粒子分散エポキシ化合物(B-2)
 B-3:製造例3で製造されたゴム粒子分散エポキシ化合物(B-3)
(エポキシ樹脂)
 セロキサイド2021P:商品名「セロキサイド2021P」[3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート]、(株)ダイセル製
 YD-128:商品名「YD-128」[ビスフェノールA型エポキシ樹脂]、新日鐡住金化学(株)製
(エポキシ硬化剤)
 MH-700:商品名「リカシッドMH-700」[4-メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸=70/30]、新日本理化(株)製
 U-CAT 18X:商品名「U-CAT 18X」[硬化促進剤]、サンアプロ(株)製
 エチレングリコール:和光純薬工業(株)製
 SI-100L:商品名「サンエイド SI-100L」、サンアプロ(株)製
(多孔質シリカフィラー)
 サイリシア430:商品名「サイリシア430」、富士シリシア化学(株)製、体積平均粒子径:4.1μm;比表面積:350m2/g;平均細孔径:17nm;細孔容積:1.25mL/g;吸油量:230mL/100g
 サイロスフェアC-1504:商品名「サイロスフェアC-1504」、富士シリシア化学(株)製、体積平均粒子径:4.5μm;比表面積:520m2/g;平均細孔径:12nm;細孔容積:1.5mL/g;吸油量:290mL/100g
 サンスフェアH-52:商品名「サンスフェアH-52」、AGCエスアイテック(株)製、体積平均粒子径:5μm;比表面積:700m2/g;平均細孔径:10nm;細孔容積:2mL/g;吸油量:300mL/100g
 サイロホービック702:商品名「サイロホービック702」、富士シリシア化学(株)製、ポリジメチルシロキサンで疎水性表面処理された多孔質シリカフィラー、体積平均粒子径:4.1μm;疎水性表面処理される前の多孔質シリカフィラーの比表面積:350m2/g;吸油量:170mL/100g
 サイロホービック4004:商品名「サイロホービック4004」、富士シリシア化学(株)製、ポリジメチルシロキサンで疎水性表面処理された多孔質シリカフィラー、体積平均粒子径:8.0μm;疎水性表面処理される前の多孔質シリカフィラーの比表面積:350m2/g;吸油量:165mL/100g
 サイロホービック505:商品名「サイロホービック505」、富士シリシア化学(株)製、ポリジメチルシロキサンで疎水性表面処理された多孔質シリカフィラー、体積平均粒子径:3.9μm;疎水性表面処理される前の多孔質シリカフィラーの比表面積:500m2/g;吸油量:110mL/100g
(無孔質シリカフィラー)
溶融球状シリカ:(株)龍森製、体積平均粒径:5μm
 表1に示されるように、多孔質シリカフィラーが本発明の所定量添加され、さらに、ゴム粒子分散エポキシ化合物(B)を含む樹脂組成物から製造された実施例に係る反射防止材を備える光半導体装置によると、蛍光灯の映り込みはいずれも○又は△、算術平均表面粗さRaはいずれも0.10~1.0μmの範囲にあり、全光束はいずれも0.60lm以上であり、熱衝撃性試験の不灯の光半導体装置の個数もいずれも0個であり、優れた反射防止機能を備えながら、良好な照度を示し、さらに、優れた耐熱衝撃性も有することが確認された。
 一方、表2に示されるように、ゴム粒子分散エポキシ化合物(B)を使用しない比較例1と2の反射防止材を備える光半導体装置では、優れた反射防止機能と良好な照度を示したが、熱衝撃性試験で不灯の光半導体装置の個数がいずれも2個であり、耐熱衝撃性に劣ることが確認された。また、多孔質シリカフィラーが配合されずに無孔質シリカフィラーのみが配合された比較例3、多孔質シリカフィラーの配合量が本発明既定の範囲よりも少ない比較例4の反射防止材を備える光半導体装置では、反射防止機能に劣るものであった。比較例3では無孔質シリカフィラーが沈降し、比較例4では多孔質シリカフィラーの配合量が十分ではない結果、表面に均一で微細な凹凸形状が形成されていないと考えられた。さらに、多孔質シリカフィラーの配合量が本発明既定の範囲よりも多い比較例5の反射防止材を備える光半導体装置では、良好な反射防止機能を示す一方、全光束が0.48lm以上であり、照度が著しく低下した。多孔質シリカフィラーの配合量が多いため、光が吸収されたと考えられる。
 上記で説明した本発明のバリエーションを以下に付記する。
[1]多孔質フィラー(A)が分散された樹脂組成物の硬化物からなる反射防止材であって、当該多孔質フィラー(A)は当該硬化物の表面に反射を抑える凹凸を形成し、
 当該樹脂組成物は、ゴム粒子を脂環式エポキシ樹脂に分散させたゴム粒子分散エポキシ化合物(B)、酸無水物系硬化剤(C)、及び硬化促進剤(D)を含有し、
 該ゴム粒子が、コアシェル構造を有し、(メタ)アクリル酸エステルを必須モノマー成分とするポリマーで構成され、表面に脂環式エポキシ樹脂と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有し、平均粒子径が10nm~500nm、最大粒子径が50nm~1000nmであり、該ゴム粒子の屈折率と当該樹脂組成物の硬化物の屈折率との差が±0.02以内であり、
 反射防止材全量(100重量%)に対する多孔質フィラー(A)の含有量が4~40重量%であることを特徴とする、反射防止材。
[2]前記多孔質フィラー(A)が前記硬化物全体に渡って均一に分散しており、表面に反射を抑える凹凸を形成している、上記[1]に記載の反射防止材。
[3]前記多孔質フィラー(A)が、無機多孔質フィラー(A1)、及び有機多孔質フィラー(A2)からなる群から選ばれる少なくとも1種である、上記[1]又は[2]に記載の反射防止材。
[4]前記多孔質フィラー(A)が、無機多孔質フィラー(A1)である、上記[3]に記載の反射防止材。
[5]無機多孔質フィラー(A1)が、無機ガラス[例えば、硼珪酸ガラス、硼珪酸ソーダガラス、珪酸ソーダガラス、アルミ珪酸ガラス、石英等]、シリカ、アルミナ、ジルコン、珪酸カルシウム、リン酸カルシウム、炭酸カルシウム、炭酸マグネシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、水酸化アルミニウム、酸化鉄、酸化亜鉛、酸化ジルコニウム、酸化マグネシウム、酸化チタン、酸化アルミニウム、硫酸カルシウム、硫酸バリウム、フォステライト、ステアタイト、スピネル、クレー、カオリン、ドロマイト、ヒドロキシアパタイト、ネフェリンサイナイト、クリストバライト、ウォラストナイト、珪藻土、及びタルクからなる群から選ばれる少なくとも一種の粉体であって多孔質構造を有するもの、又はこれらの成型体(例えば、球形化したビーズ等)(好ましくは多孔質無機ガラス又は多孔質シリカ、より好ましくは多孔質シリカ)である、上記[3]又は[4]に記載の反射防止材。
[6]前記無機多孔質フィラー(A1)が、金属酸化物、シランカップリング剤、チタンカップリング剤、有機酸、ポリオール、及びシリコーンからなる群から選ばれる少なくとも1種の表面処理剤による表面処理が施されたものである、上記[3]~[5]のいずれか1つに記載の反射防止材。
[7]前記多孔質シリカが、溶融シリカ、結晶シリカ、高純度合成シリカ、及びコロイド状シリカからなる群から選ばれる少なくとも一種の多孔質シリカである、上記[5]又は[6]に記載の反射防止材。
[8]前記多孔質シリカが、金属酸化物、シランカップリング剤、チタンカップリング剤、有機酸、ポリオール、及び有機ケイ素化合物からなる群から選ばれる少なくとも1種の疎水性表面処理剤(好ましくは有機ケイ素化合物)による表面処理が施されたもの(疎水性多孔質シリカ)である、上記[5]~[7]のいずれか1つに記載の反射防止材。
[9]前記疎水性表面処理剤が、トリメチルクロロシラン、ヘキサメチルジシロキサン、ジメチルジクロロシラン、オクタメチルシクロテトラシラン、ポリジメチルシロキサン、ヘキサデシルシラン、メタクリルシラン、及びシルコーンオイルからなる群から選ばれる少なくとも1種の有機ケイ素化合物(好ましくは、ポリジメチルシロキサン)である、上記[8]に記載の反射防止材。
[10]前記有機多孔質フィラー(A2)が、スチレン系樹脂、アクリル系樹脂、シリコーン系樹脂、アクリル-スチレン系樹脂、塩化ビニル系樹脂、塩化ビニリデン系樹脂、アミド系樹脂、ウレタン系樹脂、フェノール系樹脂、スチレン-共役ジエン系樹脂、アクリル-共役ジエン系樹脂、オレフィン系樹脂、及びセルロース樹脂(これらポリマーの架橋体も含む)からなる群から選ばれる少なくとも一種の有機物により構成された高分子多孔質焼結体、高分子発泡体、又はゲル多孔質体である、上記[3]~[9]のいずれか1つに記載の反射防止材。
[11]前記多孔質フィラー(A)の形状が、粉体、球状、破砕状、繊維状、針状、及び鱗片状からなる群から選ばれる少なくとも一種(好ましくは球状、又は破砕状)である、上記[1]~[10]のいずれか1つに記載の反射防止材。
[12]前記多孔質フィラー(A)の中心粒径が、0.1~100μm(好ましくは1~50μm)である、上記[1]~[11]のいずれか1つに記載の反射防止材。
[13]前記多孔質フィラー(A)の比表面積が、10~2000m2/g(好ましくは100~1000m2/g)である、上記[1]~[12]のいずれか1つに記載の反射防止材。
[14]前記多孔質フィラー(A)の細孔容積が、0.1~10mL/g(好ましくは0.2~5mL/g)である、上記[1]~[13]のいずれか1つに記載の反射防止材。
[15]前記多孔質フィラー(A)の吸油量が、10~2000mL/100g(好ましくは100~1000mL/100g)である、上記[1]~[14]のいずれか1つに記載の反射防止材。
[16]前記多孔質フィラー(A)の含有量(配合量)が、反射防止材又は樹脂組成物の全量(100重量%)に対して、4~35重量%(好ましくは4~30重量%)である、上記[1]~[15]のいずれか1つに記載の反射防止材。
[17]前記多孔質フィラー(A)の含有量(配合量)が、反射防止材を構成する樹脂組成物(100重量部)に対して、5~80重量部(好ましくは5~70重量部、より好ましくは5~60重量部)である、上記[1]~[16]のいずれか1つに記載の反射防止材。
[18]前記樹脂組成物が、透明な硬化性樹脂組成物からなる、上記[1]~[17]のいずれか1つに記載の反射防止材。
[19]前記コアシェル構造におけるコア部分が、(メタ)アクリル酸エステル/芳香族ビニル、及び(メタ)アクリル酸エステル/共役ジエンからなる群から選ばれる二元共重合体;又は(メタ)アクリル酸エステル/芳香族ビニル/共役ジエンの三元共重合体から構成されている、上記[1]~[18]のいずれか1つに記載の反射防止材。
[20]前記コアシェル構造におけるコア部分が、(メタ)アクリル酸エステル/芳香族ビニルの二元共重合体(好ましくはアクリル酸ブチル/スチレン)から構成されている、上記[19]に記載の反射防止材。
[21]前記コアシェル構造におけるコア部分が、さらに、1モノマー中に2以上の反応性官能基を有する反応性架橋モノマー(好ましくはジビニルベンゼン)を含有する、上記[19]又は[20]に記載の反射防止材。
[22]前記コアシェル構造におけるシェル層が、前記コアシェル構造におけるコア部分を構成する重合体とは異種の重合体から成る、上記[1]~[21]のいずれか1つに記載の反射防止材。
[23]前記コアシェル構造におけるシェル層が、(メタ)アクリル酸エステル/芳香族ビニル/ヒドロキシアルキル(メタ)アクリレート、及び(メタ)アクリル酸エステル/芳香族ビニル/α,β-不飽和酸からなる群から選ばれる三元共重合体、又は(メタ)アクリル酸エステル/ヒドロキシアルキル(メタ)アクリレート、(メタ)アクリル酸エステル/α,β-不飽和酸からなる群から選ばれる二元共重合体(好ましくは二元共重合体)から構成されている、上記[1]~[22]のいずれか1つに記載の反射防止材。
[24]前記コアシェル構造におけるシェル層が、さらに、1モノマー中に2以上の反応性官能基を有する反応性架橋モノマー(好ましくはアリル(メタ)アクリレート)を含有する、上記[23]に記載の反射防止材。
[25]前記ゴム粒子の平均粒子径が、20~400nmである、上記[1]~[24]のいずれか1つに記載の反射防止材。
[26]前記ゴム粒子の最大粒子径が、100~800nmである、上記[1]~[25]のいずれか1つに記載の反射防止材。
[27]前記ゴム粒子の屈折率が、1.40~1.60(好ましくは1.42~1.58)である、上記[1]~[26]のいずれか1つに記載の反射防止材。
[28]前記ゴム粒子の屈折率と、前記樹脂組成物の硬化物の屈折率との差が、±0.018以内である、上記[1]~[27]のいずれか1つに記載の反射防止材。
[29]前記脂環式エポキシ樹脂が、(i)分子内に脂環エポキシ基を少なくとも1個(好ましくは2個以上)有する化合物;(ii)脂環に直接単結合で結合したエポキシ基を有する化合物;及び(iii)脂環とグリシジル基とを有する化合物からなる群から選ばれる少なくとも1種を含む、上記[1]~[28]のいずれか1つに記載の反射防止材。
[30]前記(i)分子内に脂環エポキシ基を少なくとも1個有する化合物が有する脂環エポキシ基が、シクロヘキセンオキシド基である、上記[29]に記載の反射防止材。
[31]前記(i)分子内に脂環エポキシ基を少なくとも1個有する化合物が、下記式(1)で表される化合物である、上記[30]に記載の反射防止材。
Figure JPOXMLDOC01-appb-C000007
[式(1)中、Xは単結合又は連結基(1以上の原子を有する2価の基)を示す。式(1)における脂環を構成する炭素原子の1以上には、置換基(好ましくはアルキル基)が結合していてもよい。]
[32]前記式(1)で表される化合物が、2,2-ビス(3,4-エポキシシクロヘキサン-1-イル)プロパン、ビス(3,4-エポキシシクロヘキシルメチル)エーテル、1,2-ビス(3,4-エポキシシクロヘキサン-1-イル)エタン、1,2-エポキシ-1,2-ビス(3,4-エポキシシクロヘキサン-1-イル)エタン、及び下記式(1-1)~(1-10)で表される化合物からなる群から選ばれる少なくとも1種を含む、上記[31]に記載の反射防止材。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
[式(1-5)、(1-7)中のl、mは、それぞれ1~30の整数を表す。式(1-5)中のRは炭素数1~8のアルキレン基である。式(1-9)、(1-10)中のn1~n6は、それぞれ1~30の整数を示す。]
[33]前記式(1)で表される化合物が、上記式(1-1)で表される化合である、上記[32]に記載の反射防止材。
[34]前記(ii)脂環に直接単結合で結合したエポキシ基を有する化合物が、下記式(2)で表される化合物である、上記[29]~[33]のいずれか1つに記載の反射防止材。
Figure JPOXMLDOC01-appb-C000010
[式(2)中、R'は、p価の有機基であり、p、qはそれぞれ自然数を表す。]
[35]前記ゴム粒子の配合量が、ゴム粒子分散エポキシ化合物(B)全量(100重量%)に対して、0.5~30重量%(好ましくは1~20重量%程度)である、上記[1]~[34]のいずれか1つに記載の反射防止材。
[36]前記ゴム粒子分散エポキシ化合物(B)の25℃における粘度が、400mPa・s~50000mPa・s(好ましくは500mPa・s~10000mPa・s)である、上記[1]~[35]のいずれか1つに記載の反射防止材。
[37]前記ゴム粒子分散エポキシ化合物(B)の使用量が、樹脂組成物中に含有される全エポキシ基含有樹脂の20~100重量%(好ましく50~100重量%)である、上記[1]~[36]のいずれか1つに記載の反射防止材。
[38]前記酸無水物硬化剤(C)が、25℃で液状の酸無水物、又は25℃で固体状の酸無水物を、25℃で液状の酸無水物に溶解させた液状の混合物である、上記[1]~[37]のいずれか1つに記載の反射防止材。
[39]前記酸無水物硬化剤(C)の使用量が、樹脂組成物中に含有する全エポキシ基を有する化合物100重量部に対して、50~150重量部(好ましくは52~145重量部、より好ましくは、55~140重量部)である、上記[1]~[38]のいずれか1つに記載の反射防止材。
[40]前記酸無水物硬化剤(C)の使用量が、樹脂組成物中に含有する全てのエポキシ基を有する化合物におけるエポキシ基1当量当たり、0.5~1.5当量となる割合である、上記[1]~[39]のいずれか1つに記載の反射防止材。
[41]硬化促進剤(D)の使用量が、樹脂組成物中に含有する全エポキシ基を有する化合物100重量部に対して、0.05~5重量部(好ましくは0.1~3重量部、特に好ましくは0.2~3重量部、最も好ましくは0.25~2.5重量部)である、上記[1]~[40]のいずれか1つに記載の反射防止材。
[42]前記樹脂組成物が、さらに、比表面積が10m2/g以下である無孔質フィラー(F)を含む、上記[1]~[41]のいずれか1つに記載の反射防止材。
[43]前記無孔質フィラー(F)が、無孔質シリカフィラーである、上記[42]に記載の反射防止材。
[44]前記無孔質フィラー(F)の含有量(配合量)が、反射防止材を構成する樹脂組成物(100重量部)に対して、10~200重量部(好ましくは20~150重量部)である、上記[42]又は[43]に記載の反射防止材。
[45]前記多孔質フィラー(A)と前記無孔質フィラー(F)の合計含有量(合計配合量)が、反射防止材全量(100重量%)に対して、20~60重量%である、上記[42]~[44]のいずれか1つに記載の反射防止材。
[46]前記樹脂組成物が、多価アルコール(好ましくは炭素数2~4のアルキレングリコール)を含む、上記[1]~[45]のいずれか1つに記載の反射防止材。
[47]前記多価アルコールの含有量(配合量)が、樹脂組成物に含まれるエポキシ化合物の全量100重量部に対して、0.05~5重量部(好ましくは0.1~3重量部、より好ましくは0.2~3重量部、特に好ましくは0.25~2.5重量部)である、上記[46]に記載の反射防止材。
[48]前記樹脂組成物が、蛍光体を含む、上記[1]~[47]のいずれか1つに記載の反射防止材。
[49]前記蛍光体の含有量(配合量)が、樹脂組成物の全量(100重量%)に対して、0.5~20重量%である、上記[48]に記載の反射防止材。
[50]前記樹脂組成物が、ゴム粒子分散エポキシ化合物(B)以外に、ゴム粒子を含まない脂環式エポキシ樹脂(好ましくは上記式(1)で表される脂環式エポキシ樹脂)を含有する、上記[1]~[49]のいずれか1つに記載の反射防止材。
[51]前記ゴム粒子を含まない脂環式エポキシ樹脂の使用量が、樹脂組成物中に含有される全エポキシ基含有樹脂の70重量%未満(好ましくは60重量%未満)である、上記[50]に記載の反射防止材。
[52]前記樹脂組成物が、脂環式エポキシ樹脂以外のエポキシ樹脂(好ましくはビスフェノールA型、ビスフェノールF型などの芳香環を有するグリシジルエーテル系エポキシ化合物)を含有する、上記[1]~[51]のいずれか1つに記載の反射防止材。
[53]前記脂環式エポキシ樹脂以外のエポキシ樹脂の使用量が、樹脂組成物中に含有される全エポキシ基含有樹脂の70重量%未満(好ましくは60重量%未満)である、上記[52]に記載の反射防止材。
[54]前記反射防止材に形成された凹凸形状の算術平均表面粗さRaが、0.1~1.0μmの範囲(好ましくは0.2~0.8μmの範囲)である、上記[1]~[53]のいずれか1つに記載の反射防止材。
[55]光半導体封止用である、上記[1]~[54]のいずれか1つに記載の反射防止材。
[56]上記[55]に記載の反射防止材により光半導体素子が封止された光半導体装置。
[57]上記[1]~[55]のいずれか1つに記載の反射防止材の製造のために用いられることを特徴とする、多孔質フィラー(A)が分散された樹脂組成物であって、
 ゴム粒子を脂環式エポキシ樹脂に分散させたゴム粒子分散エポキシ化合物(B)、酸無水物系硬化剤(C)、及び硬化促進剤(D)を含有し、
 該ゴム粒子が、コアシェル構造を有し、(メタ)アクリル酸エステルを必須モノマー成分とするポリマーで構成され、表面に脂環式エポキシ樹脂と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有し、平均粒子径が10nm~500nm、最大粒子径が50nm~1000nmであり、該ゴム粒子の屈折率と当該樹脂組成物の硬化物の屈折率との差が±0.02以内であり、
 樹脂組成物全量(100重量%)に対する多孔質フィラー(A)の含有量が4~40重量%である、樹脂組成物。
[58]液状である、上記[57]に記載の樹脂組成物。
[59]前記樹脂組成物の全量(100重量%)に対する硬化中に揮発する成分の量が、10重量%以下である、上記[57]又は[58]に記載の樹脂組成物。
[60]上記[57]~[59]のいずれか1つに記載の樹脂組成物を硬化させることを特徴とする、表面に反射を抑える凹凸が形成されている反射防止材の製造方法。
 本発明の反射防止材は、高い透明性と優れた反射防止機能に加え、高い耐熱衝撃性を兼ね備えるため、光学材料用の(光学材料を形成する用途に用いられる)樹脂として好適に使用することができる。光学部材としては、光拡散性、光透過性、光反射性等の各種の光学的機能を発現する部材や、上記光学的機能を利用した装置や機器を構成する部材等が挙げられ、特に限定されず、例えば、光半導体装置、有機EL装置、接着剤、電気絶縁材、積層板、コーティング、インク、塗料、シーラント、レジスト、複合材料、透明基材、透明シート、透明フィルム、光学素子、光学レンズ、光造形、電子ペーパー、タッチパネル、太陽電池基板、光導波路、導光板、ホログラフィックメモリ、光ピックアップセンサー等の各種用途において使用される公知乃至慣用の光学部材が例示される。
 100:リフレクター(光反射用樹脂組成物)
 101:金属配線(電極)
 102:光半導体素子
 103:ボンディングワイヤ
 104:封止材(反射防止材)

Claims (11)

  1.  多孔質フィラー(A)が分散された樹脂組成物の硬化物からなる反射防止材であって、当該多孔質フィラー(A)は当該硬化物の表面に反射を抑える凹凸を形成し、
     当該樹脂組成物は、ゴム粒子を脂環式エポキシ樹脂に分散させたゴム粒子分散エポキシ化合物(B)、酸無水物系硬化剤(C)、及び硬化促進剤(D)を含有し、
     該ゴム粒子が、コアシェル構造を有し、(メタ)アクリル酸エステルを必須モノマー成分とするポリマーで構成され、表面に脂環式エポキシ樹脂と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有し、平均粒子径が10nm~500nm、最大粒子径が50nm~1000nmであり、該ゴム粒子の屈折率と当該樹脂組成物の硬化物の屈折率との差が±0.02以内であり、
     反射防止材全量(100重量%)に対する多孔質フィラー(A)の含有量が4~40重量%であることを特徴とする、反射防止材。
  2.  前記多孔質フィラー(A)が前記硬化物全体に渡って均一に分散しており、表面に反射を抑える凹凸を形成している、請求項1に記載の反射防止材。
  3.  前記樹脂組成物が、さらに、比表面積が10m2/g以下である無孔質フィラー(F)を含み、反射防止材全量(100重量%)に対する前記多孔質フィラー(A)と前記無孔質フィラー(F)の合計含有量が、20~60重量%である、請求項1又は2に記載の反射防止材。
  4.  前記多孔質フィラー(A)は、無機多孔質フィラーである、請求項1~3のいずれか1項に記載の反射防止材。
  5.  前記樹脂組成物は、透明な硬化性樹脂組成物からなる、請求項1~4のいずれか1項に記載の反射防止材。
  6.  光半導体封止用である、請求項1~5のいずれか1項に記載の反射防止材。
  7.  請求項6に記載の反射防止材により光半導体素子が封止された光半導体装置。
  8.  請求項1~6のいずれか1項に記載の反射防止材の製造のために用いられることを特徴とする、多孔質フィラー(A)が分散された樹脂組成物であって、
     ゴム粒子を脂環式エポキシ樹脂に分散させたゴム粒子分散エポキシ化合物(B)、酸無水物系硬化剤(C)、及び硬化促進剤(D)を含有し、
     該ゴム粒子が、コアシェル構造を有し、(メタ)アクリル酸エステルを必須モノマー成分とするポリマーで構成され、表面に脂環式エポキシ樹脂と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有し、平均粒子径が10nm~500nm、最大粒子径が50nm~1000nmであり、該ゴム粒子の屈折率と当該樹脂組成物の硬化物の屈折率との差が±0.02以内であり、
     樹脂組成物全量(100重量%)に対する多孔質フィラー(A)の含有量が4~40重量%である、樹脂組成物。
  9.  液状である、請求項8に記載の樹脂組成物。
  10.  前記樹脂組成物の全量(100重量%)に対する硬化中に揮発する成分の量は、10重量%以下である、請求項8又は9に記載の樹脂組成物。
  11.  請求項8~10のいずれか1項に記載の樹脂組成物を硬化させることを特徴とする、表面に反射を抑える凹凸が形成されている反射防止材の製造方法。
PCT/JP2017/035961 2016-10-11 2017-10-03 反射防止材 WO2018070301A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780063063.3A CN109844571A (zh) 2016-10-11 2017-10-03 抗反射材料
KR1020197013179A KR20190059970A (ko) 2016-10-11 2017-10-03 반사 방지재
JP2018544968A JP7128112B2 (ja) 2016-10-11 2017-10-03 反射防止材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-200398 2016-10-11
JP2016200398 2016-10-11

Publications (1)

Publication Number Publication Date
WO2018070301A1 true WO2018070301A1 (ja) 2018-04-19

Family

ID=61905435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035961 WO2018070301A1 (ja) 2016-10-11 2017-10-03 反射防止材

Country Status (5)

Country Link
JP (1) JP7128112B2 (ja)
KR (1) KR20190059970A (ja)
CN (1) CN109844571A (ja)
TW (1) TW201823348A (ja)
WO (1) WO2018070301A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114539721A (zh) * 2022-01-05 2022-05-27 广东盈骅新材料科技有限公司 一种扩散板用环氧树脂组合物、半固化片及其制备方法和应用
JP7329319B2 (ja) 2018-11-01 2023-08-18 株式会社ダイセル 硬化性エポキシ樹脂組成物
JP7329320B2 (ja) 2018-11-01 2023-08-18 株式会社ダイセル 硬化性エポキシ樹脂組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322641B (zh) * 2022-08-25 2023-05-23 北京星驰恒动科技发展有限公司 一种高吸收率的杂散光抑制涂料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151466A (ja) * 2010-12-28 2012-08-09 Nichia Chem Ind Ltd 発光装置
US20120235190A1 (en) * 2011-03-18 2012-09-20 Cree, Inc. Encapsulant with index matched thixotropic agent
JP2013203928A (ja) * 2012-03-29 2013-10-07 Sumitomo Bakelite Co Ltd 封止用エポキシ樹脂組成物、電子機器、および電子機器の製造方法
JP2014084332A (ja) * 2012-10-19 2014-05-12 Daicel Corp 硬化性エポキシ樹脂組成物及びその硬化物、並びに光半導体装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5082259B2 (ja) 2006-02-28 2012-11-28 日亜化学工業株式会社 つや消し保護部材およびその保護部材を有する発光装置
WO2016127938A1 (zh) * 2015-02-13 2016-08-18 苏州中科纳福材料科技有限公司 一种具有色相和光泽的光学功能材料及其制备与应用
DE102019123890A1 (de) * 2019-09-05 2021-03-11 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optischer körper, reflexionselement, bauelement, verfahren zur herstellung eines optischen körpers und verfahren zur herstellung eines rerflexionselements

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151466A (ja) * 2010-12-28 2012-08-09 Nichia Chem Ind Ltd 発光装置
US20120235190A1 (en) * 2011-03-18 2012-09-20 Cree, Inc. Encapsulant with index matched thixotropic agent
JP2013203928A (ja) * 2012-03-29 2013-10-07 Sumitomo Bakelite Co Ltd 封止用エポキシ樹脂組成物、電子機器、および電子機器の製造方法
JP2014084332A (ja) * 2012-10-19 2014-05-12 Daicel Corp 硬化性エポキシ樹脂組成物及びその硬化物、並びに光半導体装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7329319B2 (ja) 2018-11-01 2023-08-18 株式会社ダイセル 硬化性エポキシ樹脂組成物
JP7329320B2 (ja) 2018-11-01 2023-08-18 株式会社ダイセル 硬化性エポキシ樹脂組成物
CN114539721A (zh) * 2022-01-05 2022-05-27 广东盈骅新材料科技有限公司 一种扩散板用环氧树脂组合物、半固化片及其制备方法和应用

Also Published As

Publication number Publication date
JPWO2018070301A1 (ja) 2019-07-25
CN109844571A (zh) 2019-06-04
KR20190059970A (ko) 2019-05-31
JP7128112B2 (ja) 2022-08-30
TW201823348A (zh) 2018-07-01

Similar Documents

Publication Publication Date Title
JP5466643B2 (ja) 光半導体封止用樹脂組成物とこれを使用した光半導体装置
US9184355B2 (en) Curable resin composition for reflection of light, and optical semiconductor device
JP5829893B2 (ja) 硬化性エポキシ樹脂組成物
WO2018070301A1 (ja) 反射防止材
WO2012086463A1 (ja) 硬化性エポキシ樹脂組成物及びこれを使用した光半導体装置
JP6185703B2 (ja) 硬化性エポキシ樹脂組成物及びその硬化物、並びに光半導体装置
JP5852014B2 (ja) 硬化性エポキシ樹脂組成物
JPWO2018135557A1 (ja) 硬化性エポキシ樹脂組成物
JP2016224338A (ja) 反射防止材及びその製造方法
JP7127989B2 (ja) 反射防止材
JP2016212269A (ja) 反射防止材
WO2017138491A1 (ja) 光反射用硬化性樹脂組成物及びその硬化物、並びに光半導体装置
JP2017126045A (ja) 反射防止材
TWI829625B (zh) 反射防止材
JP7329320B2 (ja) 硬化性エポキシ樹脂組成物
JP2017125212A (ja) 硬化性エポキシ樹脂組成物及びその硬化物、並びに光半導体装置
JP2020070392A (ja) 硬化性エポキシ樹脂組成物
JP6929069B2 (ja) 光反射用硬化性樹脂組成物及びその硬化物、並びに光半導体装置
JP7329319B2 (ja) 硬化性エポキシ樹脂組成物
JP6118313B2 (ja) 硬化性エポキシ樹脂組成物
JP2017155145A (ja) 光学材料用硬化性エポキシ樹脂組成物
JP2017141411A (ja) 光反射用硬化性樹脂組成物及びその硬化物、並びに光半導体装置
JP2020003818A (ja) 反射防止材
JP2017141412A (ja) 光反射用硬化性樹脂組成物及びその硬化物、並びに光半導体装置
JP2017141413A (ja) 光反射用硬化性樹脂組成物及びその硬化物、並びに光半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860257

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018544968

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197013179

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17860257

Country of ref document: EP

Kind code of ref document: A1