WO2014192633A1 - ポリカーボネート共重合体、それを用いた塗工液、成形体、および電子写真感光体 - Google Patents

ポリカーボネート共重合体、それを用いた塗工液、成形体、および電子写真感光体 Download PDF

Info

Publication number
WO2014192633A1
WO2014192633A1 PCT/JP2014/063585 JP2014063585W WO2014192633A1 WO 2014192633 A1 WO2014192633 A1 WO 2014192633A1 JP 2014063585 W JP2014063585 W JP 2014063585W WO 2014192633 A1 WO2014192633 A1 WO 2014192633A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
group
copolymer
polycarbonate copolymer
mol
Prior art date
Application number
PCT/JP2014/063585
Other languages
English (en)
French (fr)
Inventor
賢吾 平田
森下 浩延
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US14/893,729 priority Critical patent/US9551946B2/en
Priority to EP14804348.2A priority patent/EP3006483B1/en
Priority to KR1020157032188A priority patent/KR20160011627A/ko
Priority to JP2015519821A priority patent/JP6441793B2/ja
Priority to CN201480029911.5A priority patent/CN105246944B/zh
Publication of WO2014192633A1 publication Critical patent/WO2014192633A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/07Polymeric photoconductive materials
    • G03G5/075Polymeric photoconductive materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • C08G64/08Aromatic polycarbonates not containing aliphatic unsaturation containing atoms other than carbon, hydrogen or oxygen
    • C08G64/10Aromatic polycarbonates not containing aliphatic unsaturation containing atoms other than carbon, hydrogen or oxygen containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • C08G64/14Aromatic polycarbonates not containing aliphatic unsaturation containing a chain-terminating or -crosslinking agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D169/00Coating compositions based on polycarbonates; Coating compositions based on derivatives of polycarbonates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0564Polycarbonates

Definitions

  • the present invention relates to a polycarbonate copolymer, a coating solution using the same, a molded product, and an electrophotographic photosensitive member.
  • Polycarbonate copolymers have been used as raw materials for molded products in various industrial fields because of their excellent mechanical, thermal, and electrical properties. In recent years, polycarbonate copolymers have been widely used in the field of functional products that also use their optical properties and the like. As the application field expands, the required performance for polycarbonate copolymers is diversified. In addition to conventionally used polycarbonate copolymers, polycarbonate copolymers having various chemical structures have been proposed.
  • an electrophotographic photoreceptor using a polycarbonate copolymer as a binder resin for a functional material such as a charge generation material or a charge transport material.
  • the electrophotographic photosensitive member is required to have predetermined sensitivity, electrical characteristics, and optical characteristics according to the applied electrophotographic process.
  • operations such as corona charging, toner development, transfer to paper, and cleaning treatment are repeatedly performed on the surface of the photosensitive layer. Therefore, an electrical and mechanical external force is applied every time these operations are performed. Therefore, in order to maintain the electrophotographic image quality for a long period of time, the photosensitive layer provided on the surface of the electrophotographic photosensitive member is required to have durability against these external forces.
  • an electrophotographic photoreceptor is usually manufactured by a method in which a binder resin is dissolved in an organic solvent together with a functional material and cast on a conductive substrate or the like, the electrophotographic photosensitive member has solubility and stability in an organic solvent. Desired.
  • Patent Document 1 and Patent Document 2 describe polycarbonate copolymers composed of 1,1-bis (3-methyl-4-hydroxyphenyl) cyclohexane (bisphenol Z) and biphenol.
  • Patent Document 3 discloses 4,4′-dihydroxy-3,3′-dimethylbiphenyl and 1,1-bis (3-methyl-4-hydroxyphenyl) cyclohexane or 2,2-bis (3-methyl-).
  • PC copolymers consisting of 4-hydroxyphenyl) propane (bisphenol C) are described.
  • an AC / DC superimposed charging method in which an AC voltage is superimposed on a DC voltage is used.
  • the stability during charging is improved, while the amount of discharge on the surface of the electrophotographic photosensitive member is greatly increased because the AC voltage is superimposed.
  • the resin deteriorates and the amount of shaving of the electrophotographic photosensitive member increases. Therefore, electrophotographic photoreceptors are required not only to have mechanical strength but also to have electrical strength.
  • the polycarbonate copolymers described in Patent Document 1 and Patent Document 3 are excellent in wear resistance, but their electrical strength is insufficient for the AC / DC superimposed charging method.
  • the bond is broken between molecules due to discharge at the contact nip between the electrophotographic photosensitive member and the charging roll, thereby causing deterioration of charging.
  • the wear resistance of the polycarbonate copolymer is extremely lowered. Therefore, it has been proposed to use the polyarylate resin described in Patent Document 4 having excellent electrical strength.
  • the ester bond of polyarylate has a smaller dipole moment than the carbonate bond and is stronger than the carbonate bond with respect to electric energy.
  • ester bond of polyarylate is more difficult to break than the carbonate bond.
  • this polyarylate is not sufficient in mechanical strength, and its performance is insufficient for the recent high durability needs.
  • Polyarylate resins are also inferior to polycarbonate resins in terms of sensitivity and electrical characteristics in the electrophotographic process. It has been difficult to produce an electrophotographic photoreceptor excellent in mechanical strength and electrical strength, and having no problem in sensitivity and electrical characteristics in the electrophotographic process.
  • an object of the present invention is to provide a polycarbonate copolymer excellent in mechanical strength and electrical strength, and to provide a coating liquid using the polycarbonate copolymer.
  • Another object of the present invention is a molded article and an electrophotographic photosensitive member using the polycarbonate copolymer or the coating liquid, which are excellent in wear resistance and can suppress electrical deterioration. It is to provide a photoreceptor.
  • the inventors have obtained a mechanical structure and an excellent electrical strength by using a specific manufacturing method using a skeleton in which a methyl group is substituted at the ortho position of the oxygen atom of bisphenol as a main skeleton. It was found that a polycarbonate copolymer was obtained, and the present invention was completed. In addition, the present inventors improve the solubility in an organic solvent by reducing the chain of the main skeleton, and by limiting to a specific skeleton and a specific composition together with a partner skeleton to be copolymerized, mechanical strength, It was also found that a polycarbonate copolymer having excellent electric strength against discharge such as contact charging can be obtained.
  • the present inventors have obtained an electrophotographic photosensitive member that is excellent in abrasion resistance, resistant to electrical deterioration, and has no problem in sensitivity and electrical characteristics in an electrophotographic process by being used for a surface layer or a photosensitive layer.
  • the present invention has been completed.
  • the polycarbonate copolymer which concerns on one embodiment of this invention has a repeating unit represented by following General formula (1), and a repeating unit represented by following General formula (2), and is represented by following General formula (1)
  • the repeating unit represented by formula (100) is formed using a bischloroformate oligomer having an average monomer number n represented by the following general formula (100) of 1.0 to 1.3. To do.
  • Ar 1 is a group represented by the following general formula (3).
  • Ar 2 has a divalent aromatic group. It is a group. ]
  • X 1 is a single bond or an oxygen atom.
  • R 11 is independently a methyl group or an ethyl group.
  • the coating liquid which concerns on one embodiment of this invention is characterized by including the polycarbonate copolymer and organic solvent which concern on one embodiment of the above-mentioned this invention.
  • the molded object which concerns on one embodiment of this invention is characterized by including the polycarbonate copolymer which concerns on one embodiment of the above-mentioned this invention.
  • An electrophotographic photoreceptor according to an embodiment of the present invention includes a conductive substrate and a photosensitive layer provided on the conductive substrate, and the above-described one embodiment of the present invention is used as one component of the photosensitive layer.
  • the polycarbonate copolymer according to the embodiment is contained.
  • a polycarbonate copolymer having excellent mechanical strength and electrical strength against discharge such as contact charging can be provided. Further, according to the present invention, by using this polycarbonate copolymer for the surface layer or photosensitive layer of an electrophotographic photosensitive member, it has excellent wear resistance and resistance to electrical deterioration, sensitivity in an electrophotographic process, and electrical characteristics. An electrophotographic photosensitive member having no problem in characteristics can be obtained.
  • PC copolymer a polycarbonate copolymer according to an embodiment of the present invention
  • the PC copolymer of this embodiment has a repeating unit represented by the following general formula (1) and a repeating unit represented by the following general formula (2), and is represented by the following general formula (1).
  • the repeating unit is formed using a bischloroformate oligomer having an average monomer number n represented by the following general formula (100) of 1.0 or more and 1.3 or less.
  • Ar 1 is a group represented by the following general formula (3).
  • Ar 2 has a divalent aromatic group. It is a group. ]
  • X 1 is a single bond or an oxygen atom.
  • R 11 is independently a methyl group or an ethyl group.
  • the PC copolymer of this embodiment is produced using a bischloroformate oligomer represented by the general formula (100) as a part of the raw material.
  • the average number (n) of bischloroformate oligomers represented by the general formula (100) is 1.0 or more and 1.3 or less.
  • the triplet and the triplet fraction will be described.
  • a structure in which three monomer units are continuously arranged is defined as a triplet.
  • the thing which showed the mole number of each triplet in the total mole number of all the triplets in percentage is made into the triplet fraction.
  • a total of eight triads represented by AAA, AAB, BBA, BAB, ABB, BBB are included in addition to ABA and BAA surrounded by a square. Exists.
  • the triplet fraction is the percentage of the number of moles of each triplet in the total number of moles of the eight triplets.
  • the 4-position carbon represented by ⁇ and ⁇ in the A skeleton exhibits an inherent shift value under the influence of the left and right skeletons.
  • the carbon at the 4-position is affected by the left and right B skeletons.
  • the mole percentage of all repeating units including the repeating unit represented by the general formula (1) and the repeating unit represented by the general formula (2) is 100 mol%.
  • the molar percentage of the repeating unit represented by the general formula (1) is 52 mol% or more and 72 mol% or less
  • the molar percentage of the repeating unit represented by the general formula (2) is 28 mol% or more and 48 mol%.
  • the mole percentage is 5 mol% or less
  • Ar 2 is a group represented by the following general formula (4).
  • X 2 is an oxygen atom or CR 3 R 4
  • R 1 is a hydrogen atom or a methyl group.
  • R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 5 to 6 carbon atoms formed by ring formation of R 3 and R 4. Yes, R 3 and R 4 may be the same or different from each other.
  • examples of the alkyl group having 1 to 3 carbon atoms constituting R 3 and R 4 include linear alkyl or branched alkyl. Examples thereof include a methyl group, an ethyl group, and various propyl groups. Examples of the substituted or unsubstituted cycloalkyl group having 5 to 6 carbon atoms formed by R 3 and R 4 as a ring include a cyclohexyl group.
  • examples of the substituent include an alkyl group having 1 to 3 carbon atoms. Examples of the alkyl group having 1 to 3 carbon atoms include the groups mentioned in the description of R 3 and R 4 above.
  • X 2 in the general formula (4) if a CR 3 R 4, R 3, and R 4, from the same, is more a different group from the viewpoint of abrasion resistance.
  • the group represented by the general formula (4) is preferably a divalent group derived from 2,2-bis (4-hydroxyphenyl) butane, for example.
  • the mole percentage of the repeating unit represented by the general formula (1) (hereinafter, the repeating unit represented by the general formula (1) is also referred to as Ar 1 skeleton unit). Is preferably 52 mol% or more and 72 mol% or less, more preferably 55 mol% or more and 70 mol% or less, and still more preferably 58 mol% or more and 65 mol% or less.
  • Ar 1 skeleton unit is 72 mol% or less, an increase in blocks in which Ar 1 skeleton units having a highly regular cresol type structure are bonded to each other is suppressed, and crystallization is suppressed. Therefore, solubility is improved and electrophotographic characteristics are improved.
  • the molar percentage of the Ar 1 skeleton unit is 52 mol% or more, a significant decrease in electrical strength is prevented and charging deterioration is less likely to occur. Therefore, both mechanical strength such as wear resistance and electrical strength can be achieved.
  • the above mol% is a value indicating the molar copolymer composition in percent.
  • the molar copolymer composition can be measured from a nuclear magnetic resonance spectrum, and specifically can be determined by the method described in the examples.
  • the electrical strength refers to a characteristic in which electrical deterioration hardly occurs.
  • the mole percentage of the repeating unit represented by the general formula (2) (hereinafter, the repeating unit represented by the general formula (2) is also referred to as Ar 2 skeleton unit). Is preferably 28 mol% or more and 48 mol% or less, more preferably 30 mol% or more and 45 mol% or less, and further preferably 35 mol% or more and 42 mol% or less. If Ar 2 backbone units is more than 48 mol%, without percentage decreases of Ar 1 backbone units, and the effect of Ar 1 backbone units, effective and can be obtained with good balance by Ar 2 backbone units.
  • Examples of the PC copolymer having the repeating unit represented by the general formula (1) and the repeating unit represented by the general formula (2) include a PC copolymer represented by the following general formula (8). preferable.
  • a represents the molar copolymerization ratio of the repeating unit represented by the said General formula (1)
  • b represents the molar copolymerization ratio of the repeating unit represented by the said General formula (2). Represents. ]
  • a is a value corresponding to the mole percentage of the Ar 1 skeleton unit when the mole percentage of all repeating units including the Ar 1 skeleton unit and the Ar 2 skeleton unit is 100 mol%. As described above, a is preferably 0.52 or more and 0.72 or less.
  • b is a value corresponding to the mole percentage of the Ar 2 skeleton unit when the mole percentage of all repeating units including the Ar 1 skeleton unit and the Ar 2 skeleton unit is 100 mol%. b is preferably 0.28 or more and 0.48 or less.
  • Ar 1 in the general formulas (1), (8) and (100) is a group consisting of 3,3′-dimethyl-4,4′-biphenol and bis (3-methyl-4-hydroxyphenyl) ether.
  • Ar 2 includes bis (4-hydroxyphenyl) ether, 2,2-bis (4-hydroxyphenyl) butane and 1,1-bis (4-hydroxyphenyl). It is preferably a divalent group derived from a compound selected from the group consisting of cyclohexane. Among these, Ar 2 is preferably a divalent group derived from 2,2-bis (4-hydroxyphenyl) butane.
  • the chain terminal of the PC copolymer represented by the general formula (8) is sealed with a terminal sealing agent.
  • the chain end of the PC copolymer is preferably sealed with a monovalent aromatic group or a monovalent fluorine-containing alcohol.
  • the monovalent aromatic group is preferably an aryl group having 6 to 12 carbon atoms. Examples of such an aryl group include a phenyl group and a biphenyl group. Examples of the substituent added to the aromatic group and the substituent added to the aliphatic group such as an alkyl group added to the aromatic group include halogen atoms such as a fluorine atom, a chlorine atom, and a bromine atom.
  • Examples of the substituent added to the aromatic group include an alkyl group having 1 to 20 carbon atoms.
  • the alkyl group may be a group to which a halogen atom is added as described above, or may be a group to which an aryl group is added.
  • the monovalent fluorine-containing alcohol it is preferable that a plurality of fluoroalkyl chains having 2 to 6 carbon atoms are connected through an ether bond, and the total number of fluorine atoms is 13 to 19. If the total number of fluorine atoms is 13 or more, sufficient water repellency and oil repellency can be exhibited. On the other hand, if the total number of fluorine atoms is 19 or less, a decrease in reactivity during polymerization is suppressed, and the mechanical strength, surface hardness, heat resistance, and the like of the obtained polycarbonate copolymer can be improved. Further, a fluorine-containing alcohol having two or more ether bonds is also preferable. By using such a fluorine-containing alcohol, the dispersibility of the PC copolymer is improved, wear resistance is improved, and surface lubricity, water repellency, and oil repellency are maintained even after wear.
  • the chain end is a monovalent phenol represented by the following general formula (5) or a monovalent fluorine represented by the following general formula (6) from the viewpoint of improving electrical characteristics and wear resistance. It is preferably sealed with alcohol.
  • R 5 represents an alkyl group having 1 to 10 carbon atoms or a fluoroalkyl group having 1 to 10 carbon atoms
  • p is an integer of 1 to 3.
  • R f represents a perfluoroalkyl group having 5 or more carbon atoms and 11 or more fluorine atoms, or a perfluoroalkyloxy group represented by the following general formula (7). Show. ]
  • R f2 represents a linear or branched perfluoroalkyl group having 1 to 6 carbon atoms.
  • n 6 is an integer of 1 to 3.
  • the reduced viscosity [ ⁇ SP / C] of the PC copolymer is a value at 20 ° C. of a 0.5 g / dL solution having methylene chloride as a solvent.
  • the reduced viscosity [ ⁇ SP / C] of the PC copolymer of the present embodiment is preferably from 0.1 dL / g to 5 dL / g, more preferably from 0.2 dL / g to 3 dL / g. Preferably, it is 0.3 dL / g or more and 2.5 dL / g or less.
  • the wear resistance is sufficient when used as an electrophotographic photoreceptor.
  • the coating viscosity can be appropriately maintained when a molded product such as an electrophotographic photosensitive member is produced from the coating solution, and the electrophotographic photosensitive member can be maintained. Productivity of molded bodies such as bodies is maintained or improved.
  • the PC copolymer of the present embodiment comprises a bischloroformate oligomer represented by the following general formula (100) and a dihydric phenolic compound represented by the following general formula (11) in the presence of an acid binder.
  • a carbonic acid ester bond is suitably formed and obtained.
  • the PC copolymer of the present embodiment includes a bischloroformate oligomer represented by the following general formula (100), a bisphenol compound represented by the following general formula (10), and a dihydric phenol represented by the following general formula (11).
  • a carbonic acid ester bond is preferably formed by interfacial polycondensation with an organic compound in the presence of an acid binder. These reactions are performed in the presence of the end-capping agent represented by the general formulas (5) and (6), and a branching agent is also used as necessary.
  • Ar 1 is a group represented by the following general formula (3).
  • Ar 2 is a group having a divalent aromatic group.
  • X 1 is a single bond or an oxygen atom.
  • R 11 is independently a methyl group or an ethyl group.
  • n in the general formula (100) represents the average number of bischloroformate oligomers.
  • the average monomer number n is in the range of 1.0 or more and 1.3 or less.
  • the chloroformate group at the terminal of the bischloroformate oligomer is reacted with the comonomer represented by the general formula (11). This is because it may react with a base present therein to form a hydroxyl group, and this hydroxyl group may be polycondensed with a terminal chlorine Ar 1 oligomer (bischloroformate oligomer represented by the general formula (100)).
  • Examples of a method for calculating the average number n of monomers include the methods described in Examples described later.
  • Examples of the bisphenol compound represented by the general formula (10) include 3,3′-dimethyl-4,4′-biphenol, bis (3-methyl-4-hydroxyphenyl) ether, and 3,3′- Examples include diethyl-4,4′-biphenol and bis (3-ethyl-4-hydroxyphenyl) ether.
  • a PC copolymer using this bisphenol compound is preferable because a good coating solution can be obtained when it is applied as a PC copolymer for an electrophotographic photoreceptor.
  • dihydric phenolic compounds bis (4-hydroxyphenyl) ether, 2,2-bis (4-hydroxyphenyl) butane, and 1,1-bis (4-hydroxyphenyl) cyclohexane are excellent in wear resistance. It is preferable because an excellent PC copolymer can be obtained. These may be used alone or in combination of two or more.
  • monovalent phenol or fluorine-containing alcohol can be used as the end-capping agent that generates a chain end.
  • fluorine-containing alcohol a fluorine-containing alcohol represented by the following general formula (30) or the following general formula (31), or 1,1,1,3,3,3-hexafluoro-2-propanol is also preferable. Used. Moreover, it is also preferable to use the fluorine-containing alcohol through the ether bond represented by the following general formula (14), the following general formula (15), or the following general formula (16).
  • n 31 is an integer of 1 to 10, preferably an integer of 5 to 8.
  • n 32 is an integer of 0 to 5, preferably an integer of 0 to 3, and n 33 is an integer of 1 to 5, and an integer of 1 to 3. preferable.
  • n 34 is an integer of 1 to 5, and preferably an integer of 1 to 3, and n 35 is an integer of 0 to 5, and is an integer of 0 to 3.
  • R is CF 3 or F.
  • the chain end is a monovalent phenol represented by the following general formula (5) or a monovalent fluorine represented by the following general formula (6) from the viewpoint of improving electrical characteristics and wear resistance. It is preferably sealed with the contained alcohol.
  • R 5 represents an alkyl group having 1 to 10 carbon atoms or a fluoroalkyl group having 1 to 10 carbon atoms
  • p is an integer of 1 to 3.
  • R f represents a perfluoroalkyl group having 5 or more carbon atoms and 11 or more fluorine atoms, or a perfluoroalkyloxy group represented by the following general formula (7). Show. ]
  • R f2 represents a linear or branched perfluoroalkyl group having 1 to 6 carbon atoms.
  • n 6 is an integer of 1 to 3.
  • Examples of the monovalent phenol represented by the general formula (5) include p-tert-butyl-phenol, p-perfluorononylphenol, p-perfluorohexylphenol, p-tert-perfluorobutylphenol, p- Perfluorooctylphenol and the like are preferably used. That is, in this embodiment, the chain end is a group consisting of p-tert-butyl-phenol, p-perfluorononylphenol, p-perfluorohexylphenol, p-tert-perfluorobutylphenol, and p-perfluorooctylphenol. It is preferably sealed with an end-capping agent selected from:
  • Examples of the fluorine-containing alcohol via an ether bond represented by the general formula (6) include the following compounds. That is, it is preferable that the chain terminal of this embodiment is sealed using an end-capping agent selected from any of the following fluorine-containing alcohols.
  • the addition ratio of the end-capping agent is preferably 0.05 mol% or more and 30 mol% or less, more preferably with respect to the molar percentage of the copolymer composition of Ar 1 skeleton unit, Ar 2 skeleton unit and chain end. It is 0.1 mol% or more and 10 mol% or less.
  • the addition ratio of the end-capping agent is 30 mol% or less, a decrease in mechanical strength is suppressed, and when it is 0.05 mol% or more, a decrease in moldability is suppressed.
  • the addition amount of these branching agents is 30 mol% or less, preferably 5 mol% or less in terms of copolymer composition ratio.
  • the addition amount of the branching agent is 30 mol% or less in terms of the copolymer composition ratio, a decrease in moldability is suppressed.
  • examples of the acid binder include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, lithium hydroxide, and cesium hydroxide, and alkaline earths such as magnesium hydroxide and calcium hydroxide.
  • alkali metal weak acid salts such as metal hydroxide, sodium carbonate, potassium carbonate, and calcium acetate
  • alkaline earth metal weak acid salts and organic bases such as pyridine.
  • Preferred acid binders for interfacial polycondensation are alkali metal hydroxides and alkaline earth metal hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide. These acid binders can also be used as a mixture.
  • an acid binder suitably considering the stoichiometric ratio (equivalent) of reaction. Specifically, 1 equivalent or an excess amount, preferably 1 equivalent or more and 10 equivalents or less of an acid binder may be used per 1 mol of the total of hydroxyl groups of the dihydric phenol as a raw material.
  • the solvent include aromatic hydrocarbons such as toluene and xylene, methylene chloride, chloroform, 1,1-dichloroethane, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2-trichloroethane, Halogenated hydrocarbons such as 1,1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane, pentachloroethane, chlorobenzene, ketones such as cyclohexanone, acetone, acetophenone, tetrahydrofuran, 1,4-dioxane, etc.
  • the ethers are suitable. These solvents may be used alone or in combination of two or more. Further, the interfacial polycondensation reaction may be used alone or in combination of two or more. Further, the interfacial polycondensation reaction may be used alone or in combination of two or more. Further, the interfacial polycondensation
  • the catalyst used in the method for producing the PC copolymer of the present embodiment includes trimethylamine, triethylamine, tributylamine, N, N-dimethylcyclohexylamine, pyridine, N, N-diethylaniline, N, N-dimethylaniline.
  • Tertiary amines such as trimethylbenzylammonium chloride, triethylbenzylammonium chloride, tributylbenzylammonium chloride, trioctylmethylammonium chloride, tetrabutylammonium chloride, tetrabutylammonium bromide, etc.
  • quaternary ammonium salts tetrabutylphosphonium chloride, tetra Quaternary phosphonium salts such as butylphosphonium bromide are preferred. Furthermore, you may add small amounts of antioxidants, such as sodium sulfite and a hydrosulfite salt, to the reaction system of the manufacturing method of PC copolymer as needed.
  • the method for producing the PC copolymer of the present embodiment can be specifically carried out in various modes other than the method for producing the PC copolymer described above.
  • a bischloroformate oligomer of the general formula (100) is produced by reacting the bisphenol compound of the general formula (10) with phosgene or the like.
  • the bischloroformate oligomer the general formula (11) or the general formula (10) and the general formula (11) are used in combination, and the presence of a mixed solution of the solvent and the alkaline aqueous solution of the acid binder is present.
  • the method of making it react below can be employ
  • This method is preferable in that the mole percentage of the Ar 1 skeleton unit can be adjusted within a preferable range when the mole percentage of all repeating units is 100 mole%.
  • the bisphenol compound of the general formula (10) is suspended in a hydrophobic solvent such as methylene chloride, and phosgene is added to the mixed solution (first solution). Solution).
  • a tertiary amine such as triethylamine is dissolved in a hydrophobic solvent such as methylene chloride to form a second solution, and this second solution is dropped into the mixed solution to be reacted.
  • hydrochloric acid and pure water are added and washed to obtain an organic layer containing a polycarbonate oligomer having a low number of monomers.
  • the dropping temperature and reaction temperature are usually from ⁇ 10 ° C. to 40 ° C., preferably from 0 ° C. to 30 ° C. Both the dropping time and the reaction time are 15 minutes or more and 4 hours or less, preferably about 30 minutes to 3 hours.
  • the average number of oligomers (n) of the polycarbonate oligomer thus obtained is preferably 1.0 or more and 1.3 or less, more preferably 1.0 or more and 1.2 or less.
  • the aromatic dihydric phenol monomer represented by the general formula (11) is added to the organic phase containing the bischloroformate oligomer having a low number of monomers obtained in this manner and reacted.
  • the reaction temperature is preferably 0 ° C. or higher and 150 ° C. or lower, more preferably 5 ° C. or higher and 40 ° C. or lower, and further preferably 7 ° C. or higher and 20 ° C. or lower.
  • the reaction pressure may be any of reduced pressure, normal pressure, or increased pressure, and can usually be suitably performed at normal pressure or about the pressure of the reaction system.
  • the reaction time depends on the reaction temperature, and is usually from 0.5 minutes to 10 hours, preferably from about 1 minute to 3 hours.
  • the dihydric phenolic compound represented by the general formula (11) is preferably added as an aqueous solution or an organic solvent solution.
  • the catalyst, the end-capping agent, the branching agent, and the like are added in the above-described production method as needed, either during the production of the bischloroformate oligomer, during the subsequent high molecular weight reaction, or both. Can be used.
  • the PC copolymer obtained as described above is a copolymer comprising a repeating unit represented by the general formula (1) and a repeating unit represented by the general formula (2). Further, this PC copolymer contains a polycarbonate unit having a structural unit other than Ar 1 and Ar 2 , a unit having a polyester structure, and a unit having a polyether structure, as long as the object of the present invention is not impaired. It may be.
  • the reduced viscosity [ ⁇ sp / C] of the obtained PC copolymer is adjusted to the above-mentioned range by various methods such as selection of the reaction conditions and adjustment of the amount of branching agent and terminal blocking agent used. be able to.
  • the obtained PC copolymer is appropriately subjected to at least one of physical treatment (mixing, fractionation, etc.) and chemical treatment (polymer reaction, crosslinking treatment, partial decomposition treatment, etc.) It can also be obtained as a PC copolymer having a reduced viscosity [ ⁇ sp / C].
  • the obtained reaction product (crude product) can be recovered as a PC copolymer having a desired purity (purity) by performing various post-treatments such as a known separation and purification method.
  • the coating liquid of this embodiment contains at least the PC copolymer of this embodiment and an organic solvent capable of dissolving or dispersing the PC copolymer.
  • the coating liquid has colorants such as low molecular weight compounds, dyes and pigments, charge transport materials, electron transport materials, hole transport materials, charge generation materials and other functionalities.
  • colorants such as low molecular weight compounds, dyes and pigments, charge transport materials, electron transport materials, hole transport materials, charge generation materials and other functionalities.
  • Compounds, inorganic or organic fillers, fibers, fillers such as fine particles, antioxidants, ultraviolet absorbers, acid scavengers and other additives may be included.
  • Examples of the substance that may be contained other than the PC copolymer include substances contained in the constituent components of the electrophotographic photoreceptor described later.
  • the coating solution may contain other resins as long as the effects of the present invention are not impaired, and examples thereof are given as examples of the constituent components of the following electrophotographic photoreceptor.
  • the organic solvent used in the present embodiment has the solubility, dispersibility, viscosity, evaporation rate, chemical stability, stability against physical change, etc. of the PC copolymer of the present embodiment and other materials. In consideration, a single solvent or a mixture of a plurality of solvents can be used. The example is mentioned as an example of the component of the electrophotographic photoreceptor described later.
  • the concentration of the PC copolymer component in the coating liquid of the present embodiment may be an appropriate viscosity according to the usage method of the coating liquid, and may be 0.1% by mass or more and 40% by mass or less. It is preferably 1% by mass or more and 35% by mass or less, more preferably 5% by mass or more and 30% by mass or less.
  • concentration of the PC copolymer component exceeds 40% by mass, the coating property deteriorates because the viscosity is too high.
  • the concentration of the PC copolymer component is less than 0.1% by mass, the viscosity is too low and the coating liquid flows, so that a homogeneous film cannot be obtained or the concentration is too low. There is a possibility that time is required or the target film thickness is not reached.
  • the PC copolymer of this embodiment has good compatibility with the charge transport material, and does not cause whitening or gelation even when dissolved in the organic solvent. Therefore, the coating liquid of this embodiment containing the PC copolymer of this embodiment, the charge transport material, and the organic solvent is stably stored for a long time without causing whitening or gelation of the PC polymer component. Is possible. Further, when a photosensitive layer of an electrophotographic photosensitive member is formed using this coating solution, it is possible to produce an excellent electrophotographic photosensitive member in which the photosensitive layer does not crystallize and does not cause image quality defects. it can.
  • the ratio of the PC copolymer to the charge transport material in the coating solution is usually preferably 20:80 to 80:20, more preferably 30:70 to 70:30 in terms of mass ratio. preferable.
  • the PC copolymer of the present embodiment may be used alone or in combination of two or more.
  • the coating solution of the present embodiment is usually suitably used for forming a charge transport layer of a multilayer electrophotographic photoreceptor in which the photosensitive layer includes at least a charge generation layer and a charge transport layer. Further, the coating liquid of this embodiment can be used for forming a photosensitive layer of a single-layer type electrophotographic photosensitive member by further containing the charge generating substance.
  • the molded body of this embodiment is characterized by using at least one of the PC copolymer of this embodiment and the coating liquid of this embodiment.
  • the molded body include an optical member, and examples of the optical member include an electrophotographic photosensitive member and an optical lens.
  • mode of a molded object is applicable as a film for in-mold molding, or a decorating film, for example.
  • the laminated film can be applied as an optical film such as a film for a touch panel used for a liquid crystal or an organic EL display, an optical compensation film, an antireflection film, or a conductive film. Since the molded body of the present embodiment contains the PC copolymer of the present embodiment, it is free from whitening, is excellent in transparency, and is excellent in mechanical strength and electrical strength such as wear resistance.
  • the electrophotographic photosensitive member of this embodiment may be of any type as well as various known types of electrophotographic photosensitive members as long as the PC copolymer of this embodiment is used in the photosensitive layer.
  • the photosensitive layer has a multilayer electrophotographic photosensitive member having at least one charge generation layer and at least one charge transport layer, or a charge generation material and a charge transport material in one layer.
  • the PC copolymer may be used in any part of the photosensitive layer.
  • the PC copolymer in order to fully demonstrate the effects of the present invention, whether the PC copolymer is used as a binder resin for a charge transfer material in a charge transport layer or a binder resin for a single photosensitive layer, It is desirable to use it as a surface protective layer.
  • a PC copolymer for any one of the charge transport layers.
  • the PC copolymer of this embodiment may be used alone or in combination of two or more.
  • binder resin components such as another polycarbonate, in the range which does not inhibit the objective of this invention as desired.
  • additives such as antioxidant.
  • the electrophotographic photosensitive member of this embodiment has a photosensitive layer on a conductive substrate.
  • the charge transport layer may be laminated on the charge generation layer, or the charge generation layer may be laminated on the charge transport layer. Further, it may be a photosensitive layer containing a charge generation material and a charge transport material in one layer. Furthermore, a conductive or insulating protective film may be formed on the surface layer as necessary. Further, an adhesive layer for improving the adhesion between the layers or an intermediate layer such as a blocking layer that serves to block charges may be formed.
  • the conductive substrate material used in the electrophotographic photosensitive member of the present embodiment various materials such as known materials can be used.
  • Specific examples of the conductive substrate material include aluminum, nickel, chromium, palladium, titanium, molybdenum, indium, gold, platinum, silver, copper, zinc, brass, stainless steel, lead oxide, tin oxide, indium oxide, Plates, drums, sheets made of ITO (indium tin oxide: tin-doped indium oxide) or graphite, and glass, cloth, paper or plastic films, sheets, and seamless treated by coating such as vapor deposition, sputtering, coating, etc.
  • a belt, a metal drum subjected to metal oxidation treatment by electrode oxidation, or the like can be used.
  • the charge generation layer has at least a charge generation material.
  • the charge generation layer is formed by forming a layer of charge generation material on the underlying substrate by vacuum deposition, sputtering, or the like, or binding the charge generation material on the underlying substrate using a binder resin. It can obtain by forming the layer formed.
  • a method for forming the charge generation layer using the binder resin various methods such as a known method can be used.
  • a coating solution in which a charge generation material is dispersed or dissolved together with a binder resin in an appropriate solvent is applied onto a substrate serving as a predetermined base, dried, and wet-molded. The method obtained as a body is preferred.
  • charge generation material in the charge generation layer various known materials can be used.
  • Specific charge generating materials include amorphous selenium, selenium alone such as trigonal selenium, selenium alloys such as selenium-tellurium, selenium compounds such as As 2 Se 3 or selenium-containing compositions, zinc oxide, CdS— Inorganic materials consisting of Group 12 and Group 16 elements such as Se, oxide-based semiconductors such as titanium oxide, silicon-based materials such as amorphous silicon, ⁇ -type metal-free phthalocyanine, ⁇ -type metal-free phthalocyanine, etc.
  • Metal phthalocyanine pigment ⁇ -type copper phthalocyanine, ⁇ -type copper phthalocyanine, ⁇ -type copper phthalocyanine, ⁇ -type copper phthalocyanine, X-type copper phthalocyanine, A-type titanyl phthalocyanine, B-type titanyl phthalocyanine, C-type titanyl phthalocyanine, D-type titanyl phthalocyanine, E Type titanyl phthalocyanine, F type titanyl phthalocyanine, G type Tanyl phthalocyanine, H-type titanyl phthalocyanine, K-type titanyl phthalocyanine, L-type titanyl phthalocyanine, M-type titanyl phthalocyanine, N-type titanyl phthalocyanine, Y-type titanyl phthalocyanine, oxo-titanyl phthalocyanine, black angle 2 ⁇ in X-ray diffraction diagram is 27.3 ⁇ Metal phthalo
  • the charge transport layer can be obtained as a wet molded body by forming a layer formed by binding a charge transport material with a binder resin on a base substrate.
  • binder resin of an above described electric charge generation layer or an electric charge transport layer Well-known various resin can be used.
  • a method for forming the charge transport layer various known methods can be used.
  • a coating liquid in which a charge transport material is dispersed or dissolved in a suitable solvent together with the PC copolymer of the present embodiment is applied onto a substrate serving as a predetermined base, dried and wetted.
  • a method obtained as a molded body is preferred.
  • the blending ratio of the charge transport material used for forming the charge transport layer and the PC copolymer is preferably 20:80 to 80:20, more preferably 30:70 to 70:30 in terms of mass ratio. .
  • the PC copolymer of the present embodiment can be used singly or in combination of two or more. Further, other binder resins can be used in combination with the PC copolymer of the present embodiment as long as the object of the present invention is not impaired.
  • the thickness of the charge transport layer thus formed is usually about 5 ⁇ m to 100 ⁇ m, preferably 10 ⁇ m to 30 ⁇ m. If the thickness of the charge transport layer is less than 5 ⁇ m, the initial potential may be lowered, and if it exceeds 100 ⁇ m, the electrophotographic characteristics may be deteriorated.
  • various known compounds can be used as the charge transport material that can be used together with the PC copolymer of the present embodiment. Such compounds include carbazole compounds, indole compounds, imidazole compounds, oxazole compounds, pyrazole compounds, oxadiazole compounds, pyrazoline compounds, thiadiazole compounds, aniline compounds, hydrazone compounds, aromatic amine compounds, aliphatic amine compounds, stilbenes.
  • the PC copolymer of this embodiment as a binder resin in at least one of the charge generation layer and the charge transport layer.
  • an undercoat layer that is usually used can be provided between the conductive substrate and the photosensitive layer.
  • fine particles such as titanium oxide, aluminum oxide, zirconia, titanic acid, zirconic acid, lanthanum lead, titanium black, silica, lead titanate, barium titanate, tin oxide, indium oxide, silicon oxide, polyamide Components such as resin, phenol resin, casein, melamine resin, benzoguanamine resin, polyurethane resin, epoxy resin, cellulose, nitrocellulose, polyvinyl alcohol, and polyvinyl butyral resin can be used.
  • the binder resin may be used, or the PC copolymer of the present embodiment may be used.
  • These fine particles and resins can be used alone or in various mixtures. In the case of using these as a mixture, it is preferable to use inorganic fine particles and a resin together because a film having good smoothness is formed.
  • the thickness of the undercoat layer is preferably 0.01 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 7 ⁇ m or less.
  • a known blocking layer that is usually used can be provided between the conductive substrate and the photosensitive layer.
  • this blocking layer the same kind of resin as the binder resin can be used.
  • the thickness of the blocking layer is preferably 0.01 ⁇ m or more and 20 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the thickness of the blocking layer is 0.01 ⁇ m or more, it is possible to form the blocking layer uniformly, and when it is 20 ⁇ m or less, deterioration of electrophotographic characteristics is suppressed.
  • a protective layer may be laminated on the photosensitive layer.
  • this protective layer the same kind of resin as the binder resin can be used.
  • the PC copolymer of the present embodiment The thickness of this protective layer is preferably 0.01 ⁇ m or more and 20 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the protective layer may contain a conductive material such as the charge generating substance, charge transporting substance, additive, metal or oxide thereof, nitride, salt, alloy, carbon black, or organic conductive compound. Good.
  • the charge generation layer and the charge transport layer include a binder, a plasticizer, a curing catalyst, a fluidity imparting agent, a pinhole control agent, and a spectral sensitivity sensitizer. (Infectious charges) may be added.
  • various chemical substances, antioxidants, surfactants, anti-curling agents, leveling agents, and other additives are added for the purpose of preventing increase in residual potential, decrease in charging potential, and reduction in sensitivity due to repeated use. Can be added.
  • binder examples include silicone resin, polyamide resin, polyurethane resin, polyester resin, epoxy resin, polyketone resin, polycarbonate copolymer, polystyrene resin, polymethacrylate resin, polyacrylamide resin, polybutadiene resin, polyisoprene resin, melamine resin, Benzoguanamine resin, polychloroprene resin, polyacrylonitrile resin, ethyl cellulose resin, nitrocellulose resin, urea resin, phenol resin, phenoxy resin, polyvinyl butyral resin, formal resin, vinyl acetate resin, vinyl acetate / vinyl chloride copolymer resin, polyester carbonate resin Etc.
  • thermosetting resin and a photocurable resin can also be used.
  • thermosetting resin and a photocurable resin there is no particular limitation as long as it is an electrically insulating resin that can form a film in a normal state and does not impair the effects of the present invention.
  • plasticizer examples include biphenyl, biphenyl chloride, o-terphenyl, halogenated paraffin, dimethyl naphthalene, dimethyl phthalate, dibutyl phthalate, dioctyl phthalate, diethylene glycol phthalate, triphenyl phosphate, diisobutyl adipate, dimethyl sebacate, Examples include dibutyl sebacate, butyl laurate, methyl phthalyl ethyl glycolate, dimethyl glycol phthalate, methyl naphthalene, benzophenone, polypropylene, polystyrene, and fluorohydrocarbon.
  • the curing catalyst examples include methanesulfonic acid, dodecylbenzenesulfonic acid, dinonylnaphthalenedisulfonic acid, and the like.
  • the fluidity-imparting agent examples include modaflow and acronal 4F.
  • the pinhole control agent examples include benzoin and dimethyl phthalate.
  • a sensitizing dye for example, triphenylmethane dyes such as methyl violet, crystal violet, knight blue, and victoria blue, erythrosin, rhodamine B, rhodamine 3R, acridine orange, Acridine dyes such as frappeosin, thiazine dyes such as methylene blue and methylene green, oxazine dyes such as capri blue and meldra blue, cyanine dyes, merocyanine dyes, styryl dyes, pyrylium salt dyes and thiopyrylium salt dyes are suitable.
  • a sensitizing dye for example, triphenylmethane dyes such as methyl violet, crystal violet, knight blue, and victoria blue, erythrosin, rhodamine B, rhodamine 3R, acridine orange, Acridine dyes such as frappeosin, thiazine dyes such as
  • An electron-accepting substance can be added to the photosensitive layer for the purpose of improving sensitivity, reducing residual potential, and reducing fatigue during repeated use.
  • Specific examples thereof include succinic anhydride, maleic anhydride, dibromomaleic anhydride, phthalic anhydride, tetrachlorophthalic anhydride, tetrabromophthalic anhydride, 3-nitrophthalic anhydride, 4-nitrophthalic anhydride, pyroanhydride Merit acid, merit anhydride, tetracyanoethylene, tetracyanoquinodimethane, o-dinitrobenzene, m-dinitrobenzene, 1,3,5-trinitrobenzene, p-nitrobenzonitrile, picryl chloride, quinone chloride, Chloranil, bromanyl, benzoquinone, 2,3-dichlorobenzoquinone, dichlorodicyanoparabenzoquinone, naphthoquinone, diphenoquinon
  • Masui These compounds may be added to either the charge generation layer or the charge transport layer, and the blending ratio is 0.01 parts by mass or more and 200 parts by mass when the amount of the charge generation substance or the charge transport substance is 100 parts by mass.
  • the amount is preferably 0.1 parts by mass or less, and more preferably 0.1 parts by mass or more and 50 parts by mass or less.
  • tetrafluoroethylene resin In order to improve surface properties, tetrafluoroethylene resin, trifluoroethylene chloride resin, tetrafluoroethylene hexafluoropropylene resin, vinyl fluoride resin, vinylidene fluoride resin, difluorodiethylene chloride resin and Those copolymers and fluorine-based graft polymers may be used.
  • the blending ratio of these surface modifiers is preferably 0.1% by mass or more and 60% by mass or less, and more preferably 5% by mass or more and 40% by mass or less with respect to the binder resin. If the blending ratio is less than 0.1% by mass, surface modification such as surface durability and surface energy reduction is not sufficient, and if it is more than 60% by mass, electrophotographic characteristics may be degraded.
  • antioxidant a hindered phenol antioxidant, an aromatic amine antioxidant, a hindered amine antioxidant, a sulfide antioxidant, an organic phosphate antioxidant, and the like are preferable.
  • the mixing ratio of these antioxidants is usually preferably 0.01% by mass or more and 10% by mass or less, and more preferably 0.1% by mass or more and 2% by mass or less with respect to the charge transport material. preferable.
  • compounds represented by the chemical formulas [Chemical Formula 94] to [Chemical Formula 101] described in the specification of JP-A No. 11-172003 are suitable. These antioxidants may be used alone or as a mixture of two or more thereof. These antioxidants may be used for the surface protective layer, the undercoat layer, the blocking layer in addition to the photosensitive layer. It may be added to the layer.
  • the solvent used in forming the charge generation layer and the charge transport layer include, for example, aromatic solvents such as benzene, toluene, xylene, and chlorobenzene, ketones such as acetone, methyl ethyl ketone, and cyclohexanone, Alcohols such as methanol, ethanol and isopropanol, esters such as ethyl acetate and ethyl cellosolve, halogenated hydrocarbons such as carbon tetrachloride, carbon tetrabromide, chloroform, dichloromethane and tetrachloroethane, ethers such as tetrahydrofuran, dioxolane and dioxane, dimethyl Examples include formamide, dimethyl sulfoxide, and diethylformamide. These solvents may be used alone or in combination of two or more.
  • the photosensitive layer of the single layer type electrophotographic photosensitive member can be easily formed by using the above-described charge generating material, charge transporting material, and additive and applying the PC copolymer of the present embodiment as a binder resin. it can.
  • As the charge transport material it is preferable to add at least one of the hole transport material and the electron transport material described above.
  • As the electron transport material an electron transport material exemplified in JP-A-2005-139339 can be preferably applied.
  • Each layer can be applied by using various kinds of application devices such as a known device. Specifically, for example, an applicator, a spray coater, a bar coater, a chip coater, a roll coater, a dip coater, a doctor blade or the like is used. Can be done.
  • the thickness of the photosensitive layer in the electrophotographic photoreceptor is preferably 5 ⁇ m or more and 100 ⁇ m or less, and more preferably 8 ⁇ m or more and 50 ⁇ m or less. When the thickness of the photosensitive layer is 5 ⁇ m or more, the initial potential is prevented from being lowered. When the thickness of the photosensitive layer is 100 ⁇ m or less, deterioration of electrophotographic characteristics is suppressed.
  • the ratio of the charge generating material: binder resin used in the production of the electrophotographic photosensitive member is preferably 1:99 to 30:70, more preferably 3:97 to 15:85 in terms of mass ratio.
  • the ratio of the charge transport material: binder resin is preferably 10:90 to 80:20, more preferably 30:70 to 70:30, in terms of mass ratio.
  • the electrophotographic photoreceptor thus obtained uses the PC copolymer of the present embodiment, the coating solution does not become cloudy and does not gel when the photosensitive layer is produced. Further, since the PC copolymer of the present embodiment is used as a binder resin in the photosensitive layer, the electrophotographic photosensitive member of the present embodiment has excellent durability (abrasion resistance) and electrical characteristics (charging characteristics). ). Therefore, the electrophotographic photosensitive member of this embodiment is a photosensitive member that maintains excellent electrophotographic characteristics over a long period of time.
  • the electrophotographic photosensitive member of the present embodiment includes various types such as a copying machine (monochrome, multicolor, full color; analog, digital), a printer (laser, LED, liquid crystal shutter), a facsimile, a plate making machine, and a device having these functions. It is suitably used in the field of electrophotography.
  • corona discharge corotron, scorotron
  • contact charging charging roll, charging brush
  • the charging roll include a DC charging method and an AC / DC superimposed charging method in which an AC voltage is superimposed.
  • any of a halogen lamp, a fluorescent lamp, a laser (semiconductor, He—Ne), an LED, and a photoreceptor internal exposure method may be employed.
  • dry development methods such as cascade development, two-component magnetic brush development, one-component insulating toner development, and one-component conductive toner development are used.
  • electrostatic transfer methods such as corona transfer, roller transfer, and belt transfer, pressure transfer methods, and adhesive transfer methods are used.
  • fixing heat roller fixing, radiant flash fixing, open fixing, pressure fixing, or the like is used.
  • brush cleaner, magnetic brush cleaner, electrostatic brush cleaner, magnetic roller cleaner, blade cleaner, etc. are used for cleaning and static elimination.
  • a cleaner-less method may be adopted.
  • the resin for the toner a styrene resin, a styrene-acrylic copolymer resin, a polyester, an epoxy resin, a cyclic hydrocarbon polymer, and the like can be applied.
  • the shape of the toner may be spherical or irregular.
  • a toner controlled to have a certain shape can also be applied.
  • the toner may be any one of a pulverized toner, a suspension polymerization toner, an emulsion polymerization toner, a chemical granulation toner, and an ester extension toner.
  • OCBP-CF the raw material obtained in Production Example 1 is referred to as OCBP-CF.
  • Average number of oligomers (n) was calculated
  • Average number of masses (n) 1 + (Mav ⁇ M1) / M2 (Equation 1)
  • Mav is (2 ⁇ 1000 / (CF value))
  • M2 is (M1 ⁇ 98.92)
  • the molecular weight of the bischloroformate oligomer the CF value (N / kg) is (CF value / concentration), and the CF value (N) is represented by the general formula (100) contained in 1 L of the reaction solution.
  • the solid concentration (kg / L) is the amount of solid content obtained by concentrating 1 L of the reaction solution, where 98.92 is bischloro (This is the total atomic weight of two chlorine atoms, one oxygen atom, and one carbon atom that are eliminated by polycondensation between the formate oligomers.)
  • DMDPE-CF the raw material obtained in Production Example 2 is referred to as DMDPE-CF.
  • the reaction mixture was washed with 5.0 mL of concentrated hydrochloric acid and 200 mL of pure water. Thereafter, washing with water was repeated until the aqueous layer became neutral, and a methylene chloride solution of DE-BP oligomer having a chloroformate group at the molecular end was obtained.
  • the resulting solution had a chloroformate concentration of 0.57 mol / L, a solid concentration of 0.01 kg / L, and an average number of monomers of 1.06.
  • DEBP-CF the raw material obtained in Production Example 3 is referred to as DEBP-CF.
  • Example 1 (Production of PC copolymer) Into a reaction vessel equipped with a mechanical stirrer, a stirring blade, and a baffle plate, OCBP-CF (47.9 mL) of Production Example 1 and methylene chloride (20 mL) were injected. To this was added p-tert-butylphenol (hereinafter sometimes referred to as PTBP) (0.054 g) as an end-capping agent, and the mixture was stirred so as to be mixed well. After cooling to a temperature of 15 ° C.
  • PTBP p-tert-butylphenol
  • the 2,2-bis (4-hydroxyphenyl) butane solution in Example 1 was prepared by preparing 23 mL of a 2.2N potassium hydroxide aqueous solution (3.3 g of potassium hydroxide), cooling to room temperature or lower, and then oxidizing the solution. As an inhibitor, 0.1 g of hydrosulfite and 3.36 g of 2,2-bis (4-hydroxyphenyl) butane were added and completely dissolved to obtain.
  • PC copolymer (PC-1) obtained in Example 1 was dissolved in methylene chloride to prepare a solution having a concentration of 0.5 g / dL, and the reduced viscosity [ ⁇ sp / C] at 20 ° C. was measured. 1.17 dL / g.
  • the structure and composition of the obtained PC copolymer (PC-1) were analyzed by 1 H-NMR spectrum and 13 C-NMR spectrum.
  • the repeating unit represented by the following general formula (8) average repeating It was confirmed to be a PC copolymer having a number and a composition.
  • the structure in the general formula (8) was confirmed by the following procedure. First, attribution analysis was performed using the 1 H-NMR spectrum and 13 C-NMR spectrum, and the molar copolymerization ratio a of the Ar 1 skeleton unit and the molar copolymerization ratio b of the Ar 2 skeleton unit were calculated from the integrated intensity. .
  • a polyethylene terephthalate resin film vapor-deposited with aluminum metal was used as the conductive substrate.
  • a charge generation layer and a charge transport layer were sequentially laminated to produce an electrophotographic photoreceptor having a laminated photosensitive layer.
  • Oxotitanium phthalocyanine 0.5 parts by mass
  • butyral resin 0.5 parts by mass
  • Photoreceptor wear resistance evaluation sample preparation PC-1 (1 g) and CTM-1 (0.67 g) were dissolved in methylene chloride (10 mL), and a commercially available PET film was used using an applicator. Cast into a film. This film was heated under reduced pressure to remove the solvent, and a film sample having a thickness of about 30 ⁇ m was obtained.
  • abrasion resistance of the cast surfaces of the films prepared in [1-1] and [1-2] was evaluated using a Taber abrasion tester (manufactured by Toyo Seiki Seisakusho).
  • the test condition was that a wear wheel (model number: CS-10) loaded with a load of 500 g was brought into contact with the film surface, and in the case of the film sample [1-1], after 1,000 rotations, the above [1-2] In the case of the film sample, the mass loss was measured after 500 rotations.
  • Example preparation> Plasma resistance evaluation sample preparation of copolymer: PC-1 (2 g) was dissolved in methylene chloride (12 mL), and cast on a commercially available PET film using an applicator. This film was heated under reduced pressure to remove the solvent, and a film sample having a thickness of about 30 ⁇ m was obtained.
  • PC-1 (1 g) and the above CTM-1 (0.67 g) were dissolved in methylene chloride (10 mL), and a commercially available PET film was used using an applicator. Cast into a film. This film was heated under reduced pressure to remove the solvent, and a film sample having a thickness of about 30 ⁇ m was obtained.
  • electrophotographic characteristics of the electrophotographic photosensitive member were measured using an electrostatic charge test apparatus EPA-8100 (manufactured by Kawaguchi Electric Manufacturing Co., Ltd.). In static mode, -6 kV corona discharge is performed, initial surface potential (V 0 ), residual potential after 5 seconds of light irradiation (10 Lux) (initial residual potential (V R )), and half exposure (E 1/2 ) was measured. In addition, a commercially available printer (FS-600, manufactured by Kyocera) was modified so that the surface potential of the photoreceptor could be measured.
  • EPA-8100 manufactured by Kawaguchi Electric Manufacturing Co., Ltd.
  • the photosensitive member can be mounted and evaluated in the form of a drum, and charging characteristics before and after repeated operation for 24 hours under conditions of high temperature and high humidity (35 ° C., 85%) and no toner and paper (repetitive residual potential increase) were evaluated (V R increase)). These results are shown in Table 1, and the same evaluation was performed for Examples 2 to 3 and Comparative Example 1 described later, and the results are shown in Table 1.
  • Example 2 DMDPE-CF (256 mL) and methylene chloride (383 mL) of Production Example 2 were injected into a reaction vessel equipped with a mechanical stirrer, stirring blades, and baffle plates. To this, p-tert-butylphenol (PTBP) (0.389 g) was added as a terminal blocking agent, and the mixture was stirred so as to be mixed well. After cooling until the temperature in the reactor reaches 15 ° C., add the entire amount of the dihydric phenol solution prepared to this solution, add 2.0 mL of triethylamine aqueous solution (7 vol%) while stirring, and continue stirring for 1 hour. did.
  • PTBP p-tert-butylphenol
  • the resulting reaction mixture was diluted with 0.80 L of methylene chloride and 0.22 L of water and washed. The lower layer was separated, and further washed with 0.26 L of water, once with 0.1 L of 0.03N hydrochloric acid, and three times with 0.26 L of water in this order.
  • the obtained methylene chloride solution was dropped into methanol with stirring.
  • the obtained reprecipitate was filtered and dried to obtain a PC copolymer (PC-2) having the following structure.
  • the dihydric phenol solution in Example 2 was prepared by preparing 215 mL of a 2.2N aqueous sodium hydroxide solution (31.5 g of sodium hydroxide), cooling to room temperature or lower, and then adding hydrosulfite as an antioxidant to 0. .2 g, 28.97 g of 2,2-bis (4-hydroxyphenyl) butane, and 3.05 g of bis (4-hydroxyphenyl) ether were added and completely dissolved.
  • the reduced viscosity [ ⁇ sp / C] of the PC copolymer (PC-2) is 1.22 dL / g, and the structure is a PC copolymer having the following repeating unit and composition in the general formula (8). It was confirmed.
  • Example 3 Into a reaction vessel equipped with a mechanical stirrer, a stirring blade, and a baffle plate, Z-CF (47.9 mL) of Production Example 4 and methylene chloride (200 mL) were injected. To this was added fluorinated diethylene glycol monohexyl ether (hereinafter sometimes referred to as F15 improvement) (1.480 g) as a terminal blocking agent, and the mixture was stirred so as to be sufficiently mixed. After cooling until the temperature in the reactor reaches 15 ° C., add the whole amount of the dihydric phenol solution prepared in this solution, add 0.2 mL of triethylamine aqueous solution (7 vol%) while stirring, and continue stirring for 1 hour. did.
  • F15 improvement fluorinated diethylene glycol monohexyl ether
  • the obtained reaction mixture was diluted with 1.3 L of methylene chloride and 0.1 L of water and washed. The lower layer was separated, and further washed with 0.34 L of water, once with 0.1 L of 0.03N hydrochloric acid, and three times with 0.34 L of water in this order.
  • the obtained methylene chloride solution was dropped into methanol with stirring.
  • the obtained reprecipitate was filtered and dried to obtain a PC copolymer (PC-3) having the following structure.
  • the dihydric phenol solution in Example 3 was prepared by preparing 230 mL of 2.2N potassium hydroxide aqueous solution (32.6 g of potassium hydroxide), cooling to room temperature or lower, and then adding hydrosulfite as an antioxidant to 0. .25 g, 30.85 g of 1,1-bis (4-hydroxyphenyl) cyclohexane, and 5.10 g of 3,3′-dimethyl-4,4′-biphenol were added and completely dissolved.
  • the reduced viscosity [ ⁇ sp / C] of the PC copolymer (PC-3) is 1.23 dL / g, and the structure is a PC copolymer having the following repeating unit and composition in the general formula (8). It was confirmed.
  • Example 4 DMDPE-CF (256 mL) and methylene chloride (383 mL) of Production Example 2 were injected into a reaction vessel equipped with a mechanical stirrer, stirring blades, and baffle plates. To this, p-tert-butylphenol (PTBP) (0.389 g) was added as a terminal blocking agent, and the mixture was stirred so as to be mixed well. After cooling until the temperature in the reactor reaches 15 ° C., add the entire amount of the dihydric phenol solution prepared to this solution, add 2.0 mL of triethylamine aqueous solution (7 vol%) while stirring, and continue stirring for 1 hour. did.
  • PTBP p-tert-butylphenol
  • the resulting reaction mixture was diluted with 0.80 L of methylene chloride and 0.22 L of water and washed. The lower layer was separated, and further washed with 0.26 L of water, once with 0.1 L of 0.03N hydrochloric acid, and three times with 0.26 L of water in this order.
  • the obtained methylene chloride solution was dropped into methanol with stirring.
  • the obtained reprecipitate was filtered and dried to obtain a PC copolymer (PC-4) having the following structure.
  • the dihydric phenol solution in Example 4 was prepared by preparing 215 mL of a 2.2N aqueous sodium hydroxide solution (31.5 g of sodium hydroxide), cooling to room temperature or lower, and then adding hydrosulfite as an antioxidant to 0. .2 g, and 35.95 g of 2,2-bis (3-methyl-4-hydroxyphenyl) butane were added and completely dissolved.
  • the reduced viscosity [ ⁇ sp / C] of the PC copolymer (PC-4) is 1.17 dL / g, and the structure is a PC copolymer having the following repeating unit and composition in the general formula (8). It was confirmed.
  • Example 5 Into a reaction vessel equipped with a mechanical stirrer, a stirring blade, and a baffle plate, OCBP-CF (47.9 mL) of Production Example 1 and methylene chloride (20 mL) were injected. To this was added p-tert-butylphenol (PTBP) (0.054 g) as an end-capping agent, and the mixture was stirred so that it was thoroughly mixed. After cooling to a temperature of 15 ° C. in the reactor, the total amount of the 1,1-bis (4-hydroxyphenyl) ethane solution prepared was added to this solution, and an aqueous triethylamine solution (7 vol%) was added to the solution while stirring. 2 mL was added and stirring was continued for 1 hour.
  • PTBP p-tert-butylphenol
  • the obtained reaction mixture was diluted with 0.15 L of methylene chloride and 0.01 L of PTBP water and washed. The lower layer was separated, and further washed with 0.12 L of water once, 0.1 L of 0.03N hydrochloric acid once, and 0.12 L of water three times in this order.
  • the obtained methylene chloride solution was dropped into methanol with stirring.
  • the obtained reprecipitate was filtered and dried to obtain a PC copolymer (PC-5) having the following structure.
  • the 1,1-bis (4-hydroxyphenyl) ethane solution was prepared by preparing 23 mL of a 2.2N aqueous potassium hydroxide solution (3.25 g of potassium hydroxide), cooling to room temperature or lower, and using it as an antioxidant. 0.1 g of hydrosulfite and 2.97 g of 1,1-bis (4-hydroxyphenyl) ethane were added and completely dissolved.
  • the reduced viscosity [ ⁇ sp / C] of the PC copolymer (PC-5) is 1.20 dL / g, and the structure is a PC copolymer having the following repeating units and composition in the general formula (8). It was confirmed.
  • Example 6 In Example 6, the fluorinated diethylene glycol monohexyl ether (1.480 g) as the end capping agent in Example 3 was replaced with 2,2-difluoro-2- (1,1,2,2-tetrafluoro-2. The same procedure as in Example 3 was performed except that-(1,1,2,3,3,3-hexafluoro-2- (trifluoromethyl) propoxy) ethoxy) ethanol (1.09 g) was used. As a result, a PC copolymer (PC-6) having the following structure was obtained.
  • PC-6 PC copolymer having the following structure was obtained.
  • the reduced viscosity [ ⁇ sp / C] of the PC copolymer (PC-6) is 1.22 dL / g, and the structure is a PC copolymer having the following repeating unit and composition in the general formula (8). It was confirmed.
  • Example 7 Into a reaction vessel equipped with a mechanical stirrer, a stirring blade, and a baffle plate, DEBP-CF (478.6 mL) and methylene chloride (198 mL) of Production Example 3 were injected. To this, p-tert-butylphenol (PTBP) (0.411 g) was added as a terminal blocking agent, and the mixture was stirred so as to be mixed well. After cooling until the temperature in the reactor reaches 15 ° C., add the entire amount of the dihydric phenol solution prepared to this solution, add 2.0 mL of triethylamine aqueous solution (7 vol%) while stirring, and continue stirring for 1 hour. did.
  • PTBP p-tert-butylphenol
  • PC-7 PC copolymer having the following structure.
  • the dihydric phenol solution in Example 7 was prepared by preparing 228 mL of a 2.2N potassium hydroxide aqueous solution (32.0 g of potassium hydroxide), cooling to room temperature or lower, and then adding hydrosulfite as an antioxidant to 0. .2 g, 32.75 g of 1,1-bis (4-hydroxyphenyl) cyclohexane, and 3.50 g of 3,3′-diethyl-4,4′-biphenol were added and completely dissolved.
  • the reduced viscosity [ ⁇ sp / C] of the PC copolymer (PC-7) is 1.18 dL / g, and the structure is a PC copolymer having the following repeating unit and composition in the general formula (8). It was confirmed.
  • PC-8 PC copolymer having the following structure.
  • the dihydric phenol solution in Comparative Example 1 was prepared by preparing 135 mL of a 1.5N aqueous sodium hydroxide solution (sodium hydroxide 11.1 g), cooling to room temperature or lower, and then adding hydrosulfite as an antioxidant to 0. .25 g, and 7.6 g of 4,4′-biphenol were added and completely dissolved.
  • the reduced viscosity [ ⁇ sp / C] of the PC copolymer (PC-8) is 1.18 dL / g, and the structure is a PC copolymer comprising the following repeating units and compositions in the general formula (8). It was confirmed.
  • Table 1 shows the evaluation results of Examples 1 to 7 and Comparative Example 1.
  • the PC copolymers of Example 1 to Example 7 showed very good wear resistance, and the contact angle change ⁇ due to the discharge treatment was small. It was confirmed that charging deterioration hardly occurs.
  • the copolymer of Comparative Example 1 was sufficiently good in wear resistance, but it was confirmed that the contact angle change amount ⁇ due to the discharge treatment was large and charge deterioration was likely to occur.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Paints Or Removers (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

 下記一般式(1)で表される繰返し単位と、下記一般式(2)で表される繰返し単位とを有し、下記一般式(1)で表される繰り返し単位は、下記一般式(100)で表される平均量体数nが1.0以上1.3以下のビスクロロホーメートオリゴマーを用いて形成されることを特徴とするポリカーボネート共重合体。 下記一般式(100)および(1)において、Arは、下記一般式(3)で表される基であり、下記一般式(2)において、Arは、二価の芳香族を有する基である。下記一般式(3)において、Xは、単結合または酸素原子である。また、R11は、それぞれ独立に、メチル基またはエチル基である。

Description

ポリカーボネート共重合体、それを用いた塗工液、成形体、および電子写真感光体
 本発明は、ポリカーボネート共重合体、それを用いた塗工液、成形体、および電子写真感光体に関する。
 ポリカーボネート共重合体は、機械的性質や熱的性質、電気的性質に優れていることから、様々な産業分野において成形品の素材に用いられてきた。近年、ポリカーボネート共重合体は、その光学的性質などをも併せて利用した機能的な製品の分野においても多用されている。そして、このような用途分野の拡大に伴って、ポリカーボネート共重合体に対する要求性能も多様化している。従来から用いられてきたポリカーボネート共重合体のみではなく、様々な化学構造を有するポリカーボネート共重合体が提案されてきている。
 機能的な製品の一例として、ポリカーボネート共重合体を電荷発生材料や電荷輸送材料といった機能性材料のバインダー樹脂として使用した電子写真感光体がある。
 この電子写真感光体には、適用される電子写真プロセスに応じて、所定の感度や電気特性、光学特性を備えていることが要求される。電子写真感光体は、その感光層の表面に、コロナ帯電、トナー現像、紙への転写、およびクリーニング処理などの操作が繰返し行われる。そのため、これら操作を行う度に電気的、および機械的な外力が加えられる。したがって、長期間にわたって電子写真の画質を維持するためには、電子写真感光体の表面に設けた感光層に、これら外力に対する耐久性が要求される。また、電子写真感光体は、通常、機能性材料と共にバインダー樹脂を有機溶剤に溶解し、導電性基板等にキャスト製膜する方法で製造されることから、有機溶剤への溶解性、安定性が求められる。
 このような特性を充足するポリカーボネート共重合体として、特許文献1から特許文献3に記載のポリカーボネート共重合体が知られている。
 特許文献1および特許文献2には、1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン(ビスフェノールZ)とビフェノールからなるポリカーボネート共重合体が記載されている。特許文献3には、4,4’-ジヒドロキシ-3,3’-ジメチルビフェニルと、1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン、又は2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン(ビスフェノールC)からなるPC共重合体が記載されている。
 ここで、近年の高画質化に伴い、電子写真感光体の感光層の表面を帯電させる方式として、DC電圧にAC電圧を重畳させたAC/DC重畳帯電方式が用いられている。このAC/DC重畳帯電方式によれば、帯電時の安定性が向上する一方、AC電圧を重畳するために電子写真感光体表面の放電量は大幅に増大する。そのため、樹脂が劣化し、電子写真感光体の削れ量が増加してしまう。そこで、電子写真感光体には、機械的強度のみならず電気的強度も要求されるようになってきた。
特開平4-179961号公報 特開2011-26577号公報 特開2012-51983号公報 特許第3402936号公報
 特許文献1や特許文献3に記載のポリカーボネート共重合体は、耐摩耗性に優れるが、AC/DC重畳帯電方式に対しては電気的強度が不十分である。当該ポリカーボネート共重合体では、電子写真感光体と帯電ロールとの間の接触ニップでの放電により、分子間に結合断裂が生じることで、帯電劣化が引き起こされる。その結果、ポリカーボネート共重合体の耐摩耗性が極めて低下してしまう。
 そこで、電気的強度に優れる特許文献4に記載のポリアリレート樹脂を用いることが提案されている。ポリアリレートのエステル結合は、ダイポールモーメントがカーボネート結合と比較して小さく、電気エネルギーに対してカーボネート結合より強い。そのため、ポリアリレートのエステル結合は、カーボネート結合より切れにくいとされている。しかしながら、このポリアリレートは、機械的強度については十分でなく、近年の高耐久化ニーズには性能不十分であった。また、ポリアリレート樹脂は、電子写真プロセスにおける感度、および電気的特性についてもポリカーボネート樹脂よりも劣っている。機械的強度、および電気的強度に優れ、かつ電子写真プロセスにおける感度、および電気特性にも問題のない電子写真感光体の作成が困難であった。
 そこで、本発明は、機械的強度、および電気的強度に優れたポリカーボネート共重合体を提供すること、および当該ポリカーボネート共重合体を用いた塗工液を提供することを目的とする。また、本発明の別の目的は、当該ポリカーボネート共重合体または塗工液を用いた成形体および電子写真感光体であって、耐摩耗性に優れ、電気的劣化を抑制できる成形体および電子写真感光体を提供することである。
 本発明者らは、鋭意研究を重ねた結果、ビスフェノールの酸素原子のオルト位にメチル基を置換した骨格を主骨格として、特定の製造方法を用いることにより機械的強度、かつ電気的強度に優れたポリカーボネート共重合体が得られることを見出し、本発明を完成させた。
 また、本発明者らは、上記主骨格の連鎖を低減することで有機溶剤への溶解性を改善し、共重合する相手骨格とともに特定骨格、および特定組成に限定することで、機械的強度、及び接触帯電など放電に対する電気的強度に優れたポリカーボネート共重合体が得られることを見出した。
 また、本発明者らは、表面層や感光層に用いることで耐摩耗性に優れ、かつ電気的劣化に強く、電子写真プロセスにおける感度、および電気特性にも問題のない電子写真感光体が得られることを見出し、本発明を完成させた。
 本発明の一実施態様に係るポリカーボネート共重合体は、下記一般式(1)で表される繰返し単位と、下記一般式(2)で表される繰返し単位とを有し、下記一般式(1)で表される繰り返し単位は、下記一般式(100)で表される平均量体数nが1.0以上1.3以下のビスクロロホーメートオリゴマーを用いて形成されていることを特徴とする。
Figure JPOXMLDOC01-appb-C000007

[前記一般式(1)および(100)において、Arは、下記一般式(3)で表される基であり、前記一般式(2)において、Arは、二価の芳香族を有する基である。]
Figure JPOXMLDOC01-appb-C000008

[前記一般式(3)において、Xは、単結合または酸素原子である。また、R11は、それぞれ独立に、メチル基またはエチル基である。]
 一方、本発明の一実施態様に係る塗工液は、前述の本発明の一実施態様に係るポリカーボネート共重合体と有機溶剤とを含むことを特徴とする。
 また、本発明の一実施態様に係る成形体は、前述の本発明の一実施態様に係るポリカーボネート共重合体を含むことを特徴とする。
 本発明の一実施態様に係る電子写真感光体は、導電性基板と、前記導電性基板上に設けられた感光層と、を備え、前記感光層の一成分として、前述の本発明の一実施態様に係るポリカーボネート共重合体を含有することを特徴とする。
 本発明によれば、機械的強度および接触帯電など放電に対する電気的強度に優れたポリカーボネート共重合体を提供できる。また、本発明によれば、このポリカーボネート共重合体を電子写真感光体の表面層や感光層に用いることにより、耐摩耗性に優れ、かつ電気的劣化に強く、電子写真プロセスにおける感度、および電気特性にも問題のない電子写真感光体が得られる。
 以下に、本発明の一実施態様に係るポリカーボネート共重合体(以下、ポリカーボネート共重合体を単に「PC共重合体」ともいう)、このPC共重合体を用いた塗工液、成形体、および電子写真感光体について詳細に説明する。
[PC共重合体の構造]
 本実施形態のPC共重合体は、下記一般式(1)で表される繰返し単位と、下記一般式(2)で表される繰返し単位とを有し、下記一般式(1)で表される繰り返し単位は、下記一般式(100)で表される平均量体数nが1.0以上1.3以下のビスクロロホーメートオリゴマーを用いて形成されていることを特徴とする。
Figure JPOXMLDOC01-appb-C000009

[前記一般式(1)および(100)において、Arは、下記一般式(3)で表される基であり、前記一般式(2)において、Arは、二価の芳香族を有する基である。]
Figure JPOXMLDOC01-appb-C000010

[前記一般式(3)において、Xは、単結合または酸素原子である。また、R11は、それぞれ独立に、メチル基またはエチル基である。]
 本実施形態のPC共重合体は、前記一般式(100)で表されるビスクロロホーメートオリゴマーを原料の一部として製造される。前記一般式(100)で表されるビスクロロホーメートオリゴマーの平均量体数(n)が1.0以上1.3以下である。前記一般式(100)で表されるビスクロロホーメートオリゴマーを使用することで、前記一般式(1)で表され、結晶性の高いAr骨格であっても、PC共重合体中のAr骨格の3連子分率を5mol%以下に抑えることができる。その結果、PC共重合体の結晶化を抑制できるので、溶液安定性に優れたPC共重合体を得ることができる。上記Ar骨格の3連子分率のより好ましい範囲としては、3mol%以下であり、さらに好ましくは1mol%以下である。
 ここで、3連子および3連子分率について説明する。
 モノマー単位A、およびモノマー単位Bの連鎖に関して、モノマー単位が連続で3つ並んでいるものを3連子と定義する。そして、全ての3連子の合計モル数における各3連子のモル数を百分率で示したものを3連子分率とする。
 例えば、以下に示すモノマー単位A、およびモノマー単位Bの連鎖では、四角で囲って示すABA、BAAの他、AAA、AAB、BBA、BAB、ABB、BBBで表される合計8つの3連子が存在する。この連鎖において、8つの3連子の合計モル数における各3連子のモル数を百分率で示したものが3連子分率となる。
Figure JPOXMLDOC01-appb-C000011

 NMR-13Cにより、下記一般式中、A骨格におけるαおよびβで示された4位の炭素は、左右の骨格の影響を受けて固有のシフト値を示す。下記一般式の場合では、当該4位の炭素は、左右のB骨格の影響を受ける。これにより、ABA,BAA、AAA、AAB、BBA、BAB、ABB、およびBBBで表される3連子パターンが、それぞれどれだけ含まれるかを百分率で知ることができる。
Figure JPOXMLDOC01-appb-C000012

 本実施形態のPC共重合体において、前記一般式(1)で表される繰返し単位と前記一般式(2)で表される繰返し単位とを合わせた全繰返し単位のモル百分率を100モル%としたとき、前記一般式(1)で表される繰返し単位のモル百分率が52モル%以上72モル%以下、かつ前記一般式(2)で表される繰返し単位のモル百分率が28モル%以上48モル%以下であり、繰返し単位の連鎖中に含まれる全ての3連子の合計を100モル%としたとき、前記一般式(1)の繰り返し単位が連続で3つ並んだ3連子について、そのモル百分率が5モル%以下であり、Arが、下記一般式(4)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000013

[前記一般式(4)において、Xは、酸素原子、またはCRであり、Rは、水素原子、またはメチル基である。
 R、およびRは、各々独立に、水素原子、炭素数1~3のアルキル基、またはR、およびRが環形成した炭素数5~6の置換もしくは無置換のシクロアルキル基であり、R、およびRは、同一でもよく、互いに異なる基であってもよい。]
 前記一般式(4)において、R、およびRを構成する炭素数1~3のアルキル基としては、直鎖アルキルあるいは分岐アルキルが挙げられる。例えば、メチル基、エチル基、各種のプロピル基が挙げられる。また、R、およびRが環形成した炭素数5~6の置換もしくは無置換のシクロアルキル基としては、シクロヘキシル基などが挙げられる。
 前記一般式(4)において、シクロアルキル基が置換基を有する場合、置換基としては、炭素数1~3のアルキル基を挙げることができる。炭素数1~3のアルキル基としては、上記のR、およびRの説明で挙げた基が挙げられる。
 また、前記一般式(4)におけるXが、CRである場合、R、およびRは、同一であるより、互いに異なる基である方が耐摩耗性の観点から好ましい。この場合、前記一般式(4)で表される基としては、例えば、2,2-ビス(4-ヒドロキシフェニル)ブタンから誘導される2価の基であることが好ましい。
 本実施形態のPC共重合体において、前記一般式(1)で表される繰返し単位(以下、前記一般式(1)で表される繰返し単位を、Ar骨格単位、とも言う)のモル百分率は、52モル%以上72モル%以下であることが好ましく、55モル%以上70モル%以下であることがより好ましく、58モル%以上65モル%以下であることが更に好ましい。Ar骨格単位が72モル%以下であると、規則性の高いクレゾールタイプ構造であるAr骨格単位同士が結合したブロックの増加が抑えられ、結晶化が抑制される。したがって、溶解性が向上し、電子写真特性が良好になる。Ar骨格単位のモル百分率が52モル%以上だと、電気的強度の顕著な低下が防止され、帯電劣化が生じにくくなる。したがって、耐摩耗性などの機械的強度と、電気的強度との両立が可能となる。上記のモル%は、モル共重合組成をパーセントで示した値である。モル共重合組成は、核磁気共鳴スペクトルから測定することができ、具体的には実施例に記載の方法で求めることができる。なお、電気的強度とは、電気的劣化が起こりにくい特性を言う。
 本実施形態のPC共重合体において、前記一般式(2)で表される繰返し単位(以下、前記一般式(2)で表される繰返し単位を、Ar骨格単位、とも言う)のモル百分率は、28モル%以上48モル%以下であることが好ましく、30モル%以上45モル%以下であることがより好ましく、35モル%以上42モル%以下であることが更に好ましい。Ar骨格単位が48モル%以下であれば、Ar骨格単位の割合が減ることなく、Ar骨格単位による効果と、Ar骨格単位による効果とがバランスよく得られる。また溶解性が高くなりすぎて、逆に耐溶剤性が悪くなるという不都合がなく、クラックの発生が抑制される。Ar骨格単位が28モル%以上であれば、Ar骨格単位の効果が十分に得られ、PC共重合体において、耐摩耗性および溶解性が十分となる。
 前記一般式(1)で表される繰り返し単位、および前記一般式(2)で表される繰返し単位を有するPC共重合体としては、下記一般式(8)で表されるPC共重合体が好ましい。
Figure JPOXMLDOC01-appb-C000014

[前記一般式(8)において、aは前記一般式(1)で表される繰返し単位のモル共重合比を表し、bは前記一般式(2)で表される繰返し単位のモル共重合比を表す。]
 aは、Ar骨格単位とAr骨格単位とを合わせた全繰返し単位のモル百分率を100モル%としたときのAr骨格単位のモル百分率に相当する値である。aは、前述の通り、0.52以上0.72以下であることが好ましい。bは、Ar骨格単位とAr骨格単位とを合わせた全繰返し単位のモル百分率を100モル%としたときのAr骨格単位のモル百分率に相当する値である。bは、0.28以上0.48以下であることが好ましい。
 前記一般式(1)、(8)および(100)におけるArとしては、3,3’-ジメチル-4,4’-ビフェノール、およびビス(3-メチル-4-ヒドロキシフェニル)エーテルからなる群から選ばれる化合物から誘導される2価の基であることが好ましい。
 また、前記一般式(2)および(8)におけるArとしては、ビス(4-ヒドロキシフェニル)エーテル、2,2-ビス(4-ヒドロキシフェニル)ブタンおよび1,1-ビス(4-ヒドロキシフェニル)シクロヘキサンからなる群から選ばれる化合物から誘導される2価の基であることが好ましい。Arとしては、これらの中でも特に、2,2-ビス(4-ヒドロキシフェニル)ブタンから誘導される2価の基であることが好ましい。
 本実施形態において、前記一般式(8)で表されるPC共重合体の連鎖末端は、末端封止剤により、封止されていることが好ましい。PC共重合体の連鎖末端は、一価の芳香族基、または一価のフッ素含有アルコールにより封止されていることが好ましい。
 一価の芳香族基としては、炭素数6~12のアリール基であると好ましい。このようなアリール基としては、例えば、フェニル基やビフェニル基が挙げられる。芳香族基に付加する置換基や、芳香族基に付加するアルキル基等の脂肪族基に付加する置換基としては、フッ素原子、塩素原子、臭素原子等のハロゲン原子が挙げられる。また、芳香族基に付加する置換基としては、炭素数1~20アルキル基が挙げられる。このアルキル基は、前述のようにハロゲン原子が付加した基であってもよく、アリール基が付加した基であってもよい。
 一価のフッ素含有アルコールとしては、炭素数が2~6である複数のフルオロアルキル鎖同士が、エーテル結合を介して連結し、全フッ素原子数が13~19であることが好ましい。全フッ素原子数が13以上であれば、十分な撥水性、および撥油性を発現させることができる。一方、全フッ素原子数が19以下であれば、重合時の反応性の低下が抑制され、得られたポリカーボネート共重合体の機械的強度、表面硬度、および耐熱性等が向上しうる。
 さらに、エーテル結合を2つ以上有するフッ素含有アルコールでも好ましい。このようなフッ素含有アルコールを用いることで、PC共重合体の分散性が良くなり、耐摩耗性が向上し、摩耗後においても、表面潤滑性、撥水性、および撥油性が保持される。
 連鎖末端は、これらの中でも、電気特性や耐摩耗性の改善の点から、下記一般式(5)で表される一価のフェノールまたは下記一般式(6)で表される一価のフッ素含有アルコールにより封止されていることが好ましい。
Figure JPOXMLDOC01-appb-C000015

[前記一般式(5)において、Rは炭素数1~10のアルキル基、または炭素数1~10のフルオロアルキル基を表し、pは1~3の整数である。
 前記一般式(6)において、Rは、炭素数が5以上、かつ、フッ素原子数が11以上であるパーフルオロアルキル基、あるいは下記一般式(7)で表されるパーフルオロアルキルオキシ基を示す。]
Figure JPOXMLDOC01-appb-C000016

[前記一般式(7)中、Rf2は炭素数1~6の直鎖もしくは分岐のパーフルオロアルキル基である。nは1~3の整数である。]
 また、本実施形態において、PC共重合体の還元粘度[ηSP/C]は、塩化メチレンを溶媒とする濃度0.5g/dL溶液の20℃における値である。本実施形態のPC共重合体の還元粘度[ηSP/C]は、0.1dL/g以上5dL/g以下であることが好ましく、0.2dL/g以上3dL/g以下であることがより好ましく、0.3dL/g以上2.5dL/g以下であることが更に好ましい。還元粘度[ηSP/C]が0.1dL/g以上であると、電子写真感光体として使用した場合に耐摩耗性が十分となる。また、還元粘度[ηSP/C]が5dL/g以下であると、塗工液から電子写真感光体等の成形体を製造する時に、塗工粘度を適切に保つことができ、電子写真感光体等の成形体の生産性が維持または向上する。
[PC共重合体の製造方法]
 本実施形態のPC共重合体は、例えば、下記一般式(100)で示すビスクロロホーメートオリゴマーと、下記一般式(11)に示す二価フェノール性化合物とを酸結合剤存在下で界面重縮合をさせることで、好適に炭酸エステル結合を形成させて、得られる。または、本実施形態のPC共重合体は、下記一般式(100)で示すビスクロロホーメートオリゴマーと、下記一般式(10)に示すビスフェノール化合物と、下記一般式(11)に示す二価フェノール性化合物とを酸結合剤存在下で界面重縮合させることで、好適に炭酸エステル結合を形成させて、得られる。これらの反応は、前記一般式(5)および(6)で表される末端封止剤の存在下で行われ、必要に応じて分岐剤も使用される。
Figure JPOXMLDOC01-appb-C000017

Figure JPOXMLDOC01-appb-C000018

[前記一般式(10)において、Arは、下記一般式(3)で表される基であり、前記一般式(11)において、Arは、二価の芳香族を有する基である。]
Figure JPOXMLDOC01-appb-C000019

[前記一般式(3)において、Xは、単結合または酸素原子である。また、R11は、それぞれ独立に、メチル基またはエチル基である。]
 ここで、前記一般式(100)中のnは、ビスクロロホーメートオリゴマーの平均量体数を示す。前記一般式(100)のビスクロロホーメートオリゴマーにおいて、その平均量体数nは、1.0以上1.3以下の範囲にある。平均量体数が1.0以上1.3以下の範囲にあるビスクロロホーメートオリゴマーを使用することで、前記一般式(10)に示すビスフェノール化合物、及び前記一般式(11)に示す二価フェノール性化合物を併用した場合でも、前記一般式(100)に示すビスクロロホーメートオリゴマーの量体数を超える高量体数ブロックの生成が抑制され、PC共重合体の製造が容易になる。
 なお、前記一般式(10)に示す平均量体数1.0のビスクロロホーメートオリゴマーと、前記一般式(11)に示されるコモノマーである二価フェノール性化合物とをモル比1:1で反応させたとしても、Arの存在比は50モル%を超える場合が多い。それは、前記一般式(100)に示すビスクロロホーメートオリゴマーを形成した後、前記一般式(11)に示されるコモノマーとの反応時に、ビスクロロホーメートオリゴマー末端のクロロホーメート基が、反応系内に存在する塩基と反応して水酸基となり、この水酸基が末端塩素のArオリゴマー(前記一般式(100)に示すビスクロロホーメートオリゴマー)と重縮合する場合があるからである。
 平均量体数nの算出方法は、後述する実施例において説明する方法が挙げられる。
 前記一般式(10)で表されるビスフェノール化合物としては、例えば、3,3’-ジメチル-4,4’-ビフェノールや、ビス(3-メチル-4-ヒドロキシフェニル)エーテル、3,3’-ジエチル-4,4’-ビフェノール、ビス(3-エチル-4-ヒドロキシフェニル)エーテルが挙げられる。
 このビスフェノール化合物を用いたPC共重合体は、電子写真感光体用のPC共重合体として適用した場合に良好な塗工液が得られるため好ましい。
 次に、前記一般式(11)で表される二価フェノール性化合物については、ビス(4-ヒドロキシフェニル)エーテル、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)ブタン、3,3-ビス(4-ヒドロキシフェニル)ヘキサン、4,4-ビス(4-ヒドロキシフェニル)ヘプタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)-3-メチルシクロヘキサン等が挙げられる。
 これらの二価フェノール性化合物の中でもビス(4-ヒドロキシフェニル)エーテル、2,2-ビス(4-ヒドロキシフェニル)ブタン、および1,1-ビス(4-ヒドロキシフェニル)シクロヘキサンが、耐摩耗性に優れるPC共重合体が得られることから好ましい。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
 本実施形態のPC共重合体の製造方法において、連鎖末端を生成させる末端封止剤としては、一価のフェノールや、フッ素含有アルコールを用いることができる。
 フッ素含有アルコールとしては、下記一般式(30)もしくは下記一般式(31)で表されるフッ素含有アルコール、又は1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール等も好適に用いられる。また下記一般式(14)、下記一般式(15)、または下記一般式(16)で表されるエーテル結合を介したフッ素含有アルコールを用いることも好ましい。
  H(CFCHOH・・・(30)
  F(CFCHOH・・・(31)
[前記一般式(30)において、nは1~12の整数であり、前記一般式(31)において、mは1~12の整数である。]
Figure JPOXMLDOC01-appb-C000020

[前記一般式(14)において、n31は1~10の整数であり、5~8の整数であることが好ましい。
 前記一般式(15)において、n32は0~5の整数であり、0~3の整数であることが好ましく、n33は1~5の整数であり、1~3の整数であることが好ましい。
 前記一般式(16)において、n34は1~5の整数であり、1~3の整数であることが好ましく、n35は0~5の整数であり、0~3の整数であることが好ましく、Rは、CF又はFである。]
 連鎖末端は、これらの中でも、電気特性や耐摩耗性の改善の点から、下記一般式(5)で表される一価のフェノール、または下記一般式(6)で表される一価のフッ素含有アルコールにより封止されていることが好ましい。
Figure JPOXMLDOC01-appb-C000021

[前記一般式(5)において、Rは炭素数1~10のアルキル基、または炭素数1~10のフルオロアルキル基を表し、pは1~3の整数である。
 前記一般式(6)において、Rは、炭素数が5以上、かつ、フッ素原子数が11以上であるパーフルオロアルキル基、あるいは下記一般式(7)で表されるパーフルオロアルキルオキシ基を示す。]
Figure JPOXMLDOC01-appb-C000022

[前記一般式(7)中、Rf2は炭素数1~6の直鎖もしくは分岐のパーフルオロアルキル基である。nは1~3の整数である。]
 前記一般式(5)で表される一価のフェノールとしては、例えば、p-tert-ブチル-フェノール、p-パーフルオロノニルフェノール、p-パーフルオロヘキシルフェノール、p-tert-パーフルオロブチルフェノール、p-パーフルオロオクチルフェノール、などが好適に用いられる。
 すなわち、本実施形態においては、連鎖末端は、p-tert-ブチル-フェノール、p-パーフルオロノニルフェノール、p-パーフルオロヘキシルフェノール、p-tert-パーフルオロブチルフェノール、およびp-パーフルオロオクチルフェノールからなる群から選ばれる末端封止剤を用いて封止されていることが好ましい。
 前記一般式(6)で表されるエーテル結合を介したフッ素含有アルコールとしては、例えば、以下の化合物が挙げられる。すなわち、本実施形態の連鎖末端は、下記フッ素含有アルコールのいずれかから選ばれる末端封止剤を用いて封止されていても好ましい。
Figure JPOXMLDOC01-appb-C000023

 末端封止剤の添加割合は、Ar骨格単位、Ar骨格単位および連鎖末端の共重合組成のモル百分率に対して、好ましくは0.05モル%以上30モル%以下であり、さらに好ましくは0.1モル%以上10モル%以下である。末端封止剤の添加割合が、30モル%以下であると機械的強度の低下が抑制され、0.05モル%以上であると成形性の低下が抑制される。
 また、本実施形態のPC共重合体の製造方法において用いることができる分岐剤の具体例としては、フロログルシン、ピロガロール、4,6-ジメチル-2,4,6-トリス(4-ヒドロキシフェニル)-2-ヘプテン、2,6-ジメチル-2,4,6-トリス(4-ヒドロキシフェニル)-3-ヘプテン、2,4-ジメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、1,3,5-トリス(2-ヒドロキシフェニル)ベンゼン、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、トリス(4-ヒドロキシフェニル)フェニルメタン、2,2-ビス〔4,4-ビス(4-ヒドロキシフェニル)シクロヘキシル〕プロパン、2,4-ビス〔2-ビス(4-ヒドロキシフェニル)-2-プロピル〕フェノール、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、2-(4-ヒドロキシフェニル)-2-(2,4-ジヒドロキシフェニル)プロパン、テトラキス(4-ヒドロキシフェニル)メタン、テトラキス〔4-(4-ヒドロキシフェニルイソプロピル)フェノキシ〕メタン、2,4-ジヒドロキシ安息香酸、トリメシン酸、シアヌル酸、3,3-ビス(3-メチル-4-ヒドロキシフェニル)-2-オキソ-2,3-ジヒドロインドール、3,3-ビス(4-ヒドロキシアリール)オキシインドール、5-クロロイサチン、5,7-ジクロロイサチン、5-ブロモイサチンなどが挙げられる。
 これら分岐剤の添加量は、共重合組成比で30モル%以下、好ましくは5モル%以下である。分岐剤の添加量が共重合組成比で30モル%以下であると成形性の低下が抑制される。
 界面重縮合を行う場合、酸結合剤としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウムなどのアルカリ金属水酸化物や、水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属水酸化物、炭酸ナトリウム、炭酸カリウム、酢酸カルシウムなどのアルカリ金属弱酸塩、アルカリ土類金属弱酸塩、ピリジンなどの有機塩基が挙げられる。界面重縮合を行う場合に好ましい酸結合剤は、水酸化ナトリウム、水酸化カリウム、水酸化カルシウムなどのアルカリ金属水酸化物、アルカリ土類金属水酸化物である。また、これらの酸結合剤は混合物としても用いることができる。酸結合剤の使用割合も反応の化学量論比(当量)を考慮して適宜調製すればよい。具体的には、原料である二価フェノールの水酸基の合計1モル当たり、1当量もしくはそれより過剰量、好ましくは1当量以上10当量以下の酸結合剤を使用すればよい。
 本実施形態のPC共重合体の製造方法で用いる溶媒としては、得られた共重合体に対して一定以上の溶解性を示せば問題無い。溶媒としては、例えばトルエン、キシレンなどの芳香族炭化水素や、塩化メチレン、クロロホルム、1,1-ジクロロエタン、1,2-ジクロロエタン、1,1,1-トリクロロエタン、1,1,2-トリクロロエタン、1,1,1,2-テトラクロロエタン、1,1,2,2-テトラクロロエタン、ペンタクロロエタン、クロロベンゼンなどのハロゲン化炭化水素、シクロヘキサノン、アセトン、アセトフェノンなどのケトン類、テトラヒドロフラン、1,4-ジオキサン等のエーテル類などが好適なものとして挙げられる。これら溶媒は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。さらに、互いに混ざり合わない2種の溶媒を用いて界面重縮合反応を行ってもよい。
 また、本実施形態のPC共重合体の製造方法で用いる触媒としては、トリメチルアミンや、トリエチルアミン、トリブチルアミン、N,N-ジメチルシクロヘキシルアミン、ピリジン、N,N-ジエチルアニリン、N,N-ジメチルアニリンなどの第三級アミン、トリメチルベンジルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド、トリブチルベンジルアンモニウムクロライド、トリオクチルメチルアンモニウムクロライド、テトラブチルアンモニウムクロライド、テトラブチルアンモニウムブロマイドなどの四級アンモニウム塩、テトラブチルホスホニウムクロライド、テトラブチルホスホニウムブロマイドなどの四級ホスホニウム塩などが好適である。
 さらに、必要に応じて、PC共重合体の製造方法の反応系に亜硫酸ナトリウムやハイドロサルファイト塩などの酸化防止剤を少量添加してもよい。
 本実施形態のPC共重合体の製造法としては、前述したPC共重合体の製造方法以外にも、具体的には様々な態様で実施可能である。例えば、前記一般式(10)のビスフェノール化合物とホスゲンなどを反応させて、前記一般式(100)のビスクロロホーメートオリゴマーを製造する。ついでこのビスクロロホーメートオリゴマーに、前記一般式(11)、もしくは前記一般式(10)と前記一般式(11)とを併用して、前記溶媒及び酸結合剤のアルカリ水溶液の混合液の存在下に反応させる方法を採用することができる。この方法は、全繰返し単位のモル百分率を100モル%としたときのAr骨格単位のモル百分率を好ましい範囲に調整できる点で好ましい。
 前記一般式(100)のn値が1.0以上1.3以下の範囲である低量体数のビスクロロホーメートオリゴマーを製造する方法としては、後述する製造例で示す方法がある。後述する製造例で示す方法によって製造されたビスクロロホーメートオリゴマーを用いると、PC共重合体製造時の洗浄工程が簡略化される等の点で好ましい。
 低量体数のビスクロロホーメートオリゴマーを製造する方法としては、まず、前記一般式(10)のビスフェノール化合物を塩化メチレン等の疎水性溶媒に懸濁し、ホスゲンを加えて混合溶液(第一の溶液)を形成する。一方、トリエチルアミン等の第三級アミンを塩化メチレン等の疎水性溶媒に溶解させて第二の溶液を形成し、この第二の溶液を前記の混合溶液に滴下して、反応させる。得られた反応混合物を含む第三の溶液に塩酸と純水を加えて洗浄し、低量体数のポリカーボネートオリゴマーを含む有機層を得る。
 滴下温度や反応温度は、通常-10℃以上40℃以下、好ましくは0℃以上30℃以下である。滴下時間、反応時間は共に、15分間以上4時間以下、好ましくは30分間~3時間程度である。このようにして得られるポリカーボネートオリゴマーの平均量体数(n)は、好ましくは1.0以上1.3以下、さらに好ましくは1.0以上1.2以下である。
 このようにして得られた低量体数のビスクロロホーメートオリゴマーを含む有機相に、前記一般式(11)に示される芳香族二価フェノールモノマーを加えて反応させる。反応温度は、0℃以上150℃以下であることが好ましく、5℃以上40℃以下であることがより好ましく、7℃以上20℃以下であることが更に好ましい。
 反応圧力は、減圧、常圧、または加圧のいずれでもよく、通常は、常圧もしくは反応系の自圧程度で好適に行い得る。反応時間は、反応温度によって左右され、通常0.5分間以上10時間以下、好ましくは1分間~3時間程度である。
 この反応にあたって、前記一般式(11)に示される2価フェノール性化合物は、水溶液、又は有機溶媒溶液として添加するのが望ましい。その添加順序については、特に制限はない。なお、触媒、末端封止剤および分岐剤などは、前述の製造法において、必要に応じ、ビスクロロホーメートオリゴマーの製造時、その後の高分子量化の反応時のいずれか、またはその両方において添加して用いることができる。
 前述のようにして得られるPC共重合体は、前記一般式(1)で表される繰返し単位および前記一般式(2)で表される繰返し単位とからなる共重合体である。
 また、このPC共重合体は、本発明の目的達成を阻害しない範囲で、ArおよびAr以外の構造単位を有するポリカーボネート単位や、ポリエステル構造を有する単位、ポリエーテル構造を有する単位を含有していてもよい。
 また、得られるPC共重合体の還元粘度[ηsp/C]は、例えば、前記反応条件の選択、分岐剤や末端封止剤の使用量の調節など各種の方法によって前述の範囲に調整することができる。また、場合により、得られたPC共重合体に適宜、物理的処理(混合、分画など)および化学的処理(ポリマー反応、架橋処理、部分分解処理など)の少なくとも一方を施して、所定の還元粘度[ηsp/C]のPC共重合体として取得することもできる。
 また、得られた反応生成物(粗生成物)は、公知の分離精製法等の各種の後処理を施して、所望の純度(精製度)のPC共重合体として回収することができる。
[塗工液の構成]
 本実施形態の塗工液は、少なくとも本実施形態のPC共重合体、及び当該PC共重合体を溶解、又は分散可能な有機溶剤を含む。また、塗工液には前記PC共重合体および有機溶剤以外に、低分子化合物、染料、顔料などの着色剤、電荷輸送材、電子輸送材、正孔輸送材、電荷発生材料等の機能性化合物、無機又は有機のフィラー、ファイバー、微粒子などの充填材、酸化防止剤、紫外線吸収剤、酸捕捉剤等の添加剤を含んでいても良い。PC共重合体以外に含まれても良い物質の例は、例えば後述する電子写真感光体の構成成分に含まれる物質が挙げられる。また、塗工液には本発明の効果を損なわない限り他の樹脂を含んでいても良く、その例は下記電子写真感光体の構成成分の例として挙げられる。また、本実施形態で使用される有機溶剤は、本実施形態のPC共重合体、他の材料の溶解性、分散性、粘度、蒸発速度、化学的安定性、物理的変化に対する安定性などを考慮し、単独、あるいは複数の溶媒を混合して使用することができる。その例は、後述する電子写真感光体の構成成分の例として挙げられる。
 本実施形態の塗工液中のPC共重合体成分の濃度は、同塗工液の使用法に合わせた適切な粘度であれば良く、0.1質量%以上40質量%以下であることが好ましく、1質量%以上35質量%以下であることがより好ましく、5質量%以上30質量%以下であることがさらに好ましい。PC共重合体成分の濃度が40質量%を超えると、粘度が高すぎるために塗工性が悪化する。PC共重合体成分の濃度が0.1質量%未満では、粘度が低すぎるため塗液が流れてしまい、均質な膜が得られなかったり、濃度が低すぎるため、塗工後の乾燥に長時間を要したり、目標とする膜厚に達しないおそれがある。
 本実施形態のPC共重合体は、前記電荷輸送材との相溶性がよい上に、前記有機溶剤に溶解しても白化又はゲル化を起こすことがない。従って、本実施形態のPC共重合体、電荷輸送材、および有機溶媒を含有する本実施形態の塗工液は、長期に亘ってPC重合体成分の白化又はゲル化を起こすことなく安定に保存することが可能である。また、この塗工液を用いて電子写真感光体の感光層を形成した場合、感光層が結晶化を起こすこともなく、画質状のディフェクトを生じない優れた電子写真感光体を作製することができる。
 また本塗工液中のPC共重合体と電荷輸送物質との割合は、通常、質量比で20:80~80:20であることが好ましく、30:70~70:30であることがより好ましい。
 本実施形態の塗工液中、本実施形態のPC共重合体は1種単独で用いてもよいし、2種以上を併用してもよい。
 本実施形態の塗工液は、通常、感光層が少なくとも電荷発生層と電荷輸送層とを含む積層型電子写真感光体の電荷輸送層の形成に好適に用いられる。また、本実施形態の塗工液に、さらに前記電荷発生物質を含有させることにより、単層型の電子写真感光体の感光層の形成に使用することも可能である。
[成形体の構成]
 本実施形態の成形体は、本実施形態のPC共重合体および本実施形態の塗工液の少なくとも一方を用いたことを特徴とする。
 成形体としては、光学部材が挙げられ、光学部材としては、例えば、電子写真感光体、光学レンズなどが挙げられる。また、基材がフィルム状である場合、成形体の一態様としての積層フィルムは、例えば、インモールド成型用フィルムや加飾フィルムとして適用できる。その他、当該積層フィルムは、液晶や有機ELディスプレイなどに使用されるタッチパネル用フィルム、光学補償フィルムや反射防止フィルムなどの光学フィルムや導電性フィルムとしても適用できる。
 本実施形態の成形体は、本実施形態のPC共重合体を含んでいるので、白化がなく、透明性に優れるとともに、耐摩耗性などの機械的強度および電気的強度に優れる。
[電子写真感光体の構成]
 本実施形態の電子写真感光体は、本実施形態のPC共重合体を感光層中に用いる限り、公知の種々の形式の電子写真感光体はもとより、どのような形式としてもよい。本実施形態の電子写真感光体としては、感光層が、少なくとも1層の電荷発生層と少なくとも1層の電荷輸送層を有する積層型電子写真感光体、または、一層に電荷発生物質と電荷輸送物質を有する単層型電子写真感光体であることが好ましい。
 PC共重合体は、感光層中のどの部分にも使用してもよい。例えば、本発明の効果を十分に発揮するためには、PC共重合体を、電荷輸送層中において電荷移動物質のバインダー樹脂として使用するか、単一の感光層のバインダー樹脂として使用するか、表面保護層として使用することが望ましい。電荷輸送層を2層有する多層型の電子写真感光体の場合には、そのいずれかの電荷輸送層にPC共重合体を使用することが好ましい。
 本実施形態の電子写真感光体において、本実施形態のPC共重合体は、1種単独で使用してもよいし、2種以上を組合せて用いてもよい。また、所望に応じて本発明の目的を阻害しない範囲で、他のポリカーボネート等のバインダー樹脂成分を含有させてもよい。さらに、酸化防止剤等の添加物を含有させてもよい。
 本実施形態の電子写真感光体は、感光層を導電性基板上に有する。感光層が電荷発生層と電荷輸送層とを有する場合、電荷発生層上に電荷輸送層が積層されていてもよく、また電荷輸送層上に電荷発生層が積層されていてもよい。また、一層中に電荷発生物質と電荷輸送物質とを含む感光層であってもよい。さらにまた、必要に応じて表面層に導電性又は絶縁性の保護膜が形成されていてもよい。さらに、各層間の接着性を向上させるための接着層あるいは電荷のブロッキングの役目を果すブロッキング層等の中間層などが形成されていてもよい。
 本実施形態の電子写真感光体に用いられる導電性基板材料としては、公知の材料など各種材料を使用することができる。導電性基板材料としては、具体的には、アルミニウムやニッケル、クロム、パラジウム、チタン、モリブデン、インジウム、金、白金、銀、銅、亜鉛、真鍮、ステンレス鋼、酸化鉛、酸化錫、酸化インジウム、ITO(インジウムチンオキサイド:錫ドープ酸化インジウム)もしくはグラファイトからなる板やドラム、シート、ならびに蒸着、スパッタリング、塗布などによりコーティングするなどして導電処理したガラス、布、紙もしくはプラスチックのフィルム、シートおよびシームレスベルト、ならびに電極酸化等により金属酸化処理した金属ドラムなどを使用することができる。
 前記電荷発生層は少なくとも電荷発生材料を有する。この電荷発生層は、その下地となる基板上に真空蒸着、スパッタ法等により電荷発生材料の層を形成するか、又はその下地となる基板上に電荷発生材料を、バインダー樹脂を用いて結着してなる層を形成することによって得ることができる。バインダー樹脂を用いる電荷発生層の形成方法としては、公知の方法等、各種の方法を使用することができる。この電荷発生層の形成方法としては、通常、例えば、電荷発生材料をバインダー樹脂と共に適当な溶媒により分散若しくは溶解した塗工液を、所定の下地となる基板上に塗布し、乾燥せしめて湿式成形体として得る方法が好適である。
 前記電荷発生層における電荷発生材料としては、公知の各種材料を使用することができる。具体的な電荷発生材料としては、非晶質セレンや、三方晶セレン等のセレン単体、セレン-テルル等のセレン合金、AsSe等のセレン化合物もしくはセレン含有組成物、酸化亜鉛、CdS-Se等の周期律表第12族および第16族元素からなる無機材料、酸化チタン等の酸化物系半導体、アモルファスシリコン等のシリコン系材料、τ型無金属フタロシアニン、χ型無金属フタロシアニン等の無金属フタロシアニン顔料、α型銅フタロシアニン、β型銅フタロシアニン、γ型銅フタロシアニン、ε型銅フタロシアニン、X型銅フタロシアニン、A型チタニルフタロシアニン、B型チタニルフタロシアニン、C型チタニルフタロシアニン、D型チタニルフタロシアニン、E型チタニルフタロシアニン、F型チタニルフタロシアニン、G型チタニルフタロシアニン、H型チタニルフタロシアニン、K型チタニルフタロシアニン、L型チタニルフタロシアニン、M型チタニルフタロシアニン、N型チタニルフタロシアニン、Y型チタニルフタロシアニン、オキソチタニルフタロシアニン、X線回折図におけるブラック角2θが27.3±0.2度に強い回折ピークを示すチタニルフタロシアニン、ガリウムフタロシアニン等の金属フタロシアニン顔料、シアニン染料、アントラセン顔料、ビスアゾ顔料、ピレン顔料、多環キノン顔料、キナクリドン顔料、インジゴ顔料、ペリレン顔料、ピリリウム染料、スクアリウム顔料、アントアントロン顔料、ベンズイミダゾール顔料、アゾ顔料、チオインジゴ顔料、キノリン顔料、レーキ顔料、オキサジン顔料、ジオキサジン顔料、トリフェニルメタン顔料、アズレニウム染料、トリアリールメタン染料、キサンチン染料、チアジン染料、チアピリリウム染料、ポリビニルカルバゾール、ビスベンゾイミダゾール顔料などが挙げられる。これら化合物は、1種を単独で、あるいは2種以上の化合物を混合して、電荷発生物質として用いることができる。これら電荷発生物質の中でも、好適な電荷発生物質としては、特開平11-172003号公報に具体的に記載の電荷発生物質が挙げられる。
 前記電荷輸送層は、下地となる基板上に、電荷輸送物質をバインダー樹脂で結着してなる層を形成することによって、湿式成形体として得ることができる。
 前記した電荷発生層や電荷輸送層のバインダー樹脂としては、特に制限はなく、公知の各種の樹脂を使用することができる。具体的には、ポリスチレン、ポリ塩化ビニル、ポリ酢酸ビニル、塩化ビニル-酢酸ビニル共重合体、ポリビニルアセタール、アルキッド樹脂、アクリル樹脂、ポリアクリロニトリル、ポリカーボネート、ポリウレタン、エポキシ樹脂、フェノール樹脂、ポリアミド、ポリケトン、ポリアクリルアミド、ブチラール樹脂、ポリエステル樹脂、塩化ビニリデン-塩化ビニル共重合体、メタクリル樹脂、スチレン-ブタジエン共重合体、塩化ビニリデン-アクリロニトリル共重合体、塩化ビニル-酢酸ビニル-無水マレイン酸共重合体、シリコン樹脂、シリコンアルキッド樹脂、フェノール-ホルムアルデヒド樹脂、スチレン-アルキッド樹脂、メラミン樹脂、ポリエーテル樹脂、ベンゾグアナミン樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、ポリ-N-ビニルカルバゾール、ポリビニルブチラール、ポリビニルホルマール、ポリスルホン、カゼイン、ゼラチン、ポリビニルアルコール、エチルセルロース、ニトロセルロース、カルボキシ-メチルセルロース、塩化ビニリデン系ポリマーラテックス、アクリロニトリル-ブタジエン共重合体、ビニルトルエン-スチレン共重合体、大豆油変性アルキッド樹脂、ニトロ化ポリスチレン、ポリメチルスチレン、ポリイソプレン、ポリチオカーボネート、ポリアリレート、ポリハロアリレート、ポリアリルエーテル、ポリビニルアクリレート、ポリエステルアクリレートなどが挙げられる。
 これらは、1種を単独で用いることもできるし、また、2種以上を混合して用いることもできる。なお、電荷発生層や電荷輸送層におけるバインダー樹脂としては、前記した本実施形態のPC共重合体を使用することが好適である。
 電荷輸送層の形成方法としては、公知の各種の方式を使用することができる。電荷輸送層の形成方法としては、電荷輸送物質を本実施形態のPC共重合体とともに適当な溶媒に分散若しくは溶解した塗工液を、所定の下地となる基板上に塗布し、乾燥して湿式成形体として得る方法が好適である。電荷輸送層形成に用いられる電荷輸送物質とPC共重合体との配合割合は、質量比で20:80~80:20であることが好ましく、30:70~70:30であることがより好ましい。
 この電荷輸送層において、本実施形態のPC共重合体は1種単独で用いることもでき、また2種以上混合して用いることもできる。また、本発明の目的を阻害しない範囲で、他のバインダー樹脂を本実施形態のPC共重合体と併用することも可能である。
 このようにして形成される電荷輸送層の厚さは、通常5μm以上100μm以下程度であり、好ましくは10μm以上30μm以下である。電荷輸送層の厚さが5μm未満であると初期電位が低くなるおそれがあり、100μmを超えると電子写真特性の低下を招くおそれがある。
 本実施形態のPC共重合体と共に使用できる電荷輸送物質としては、公知の各種の化合物を使用することができる。このような化合物としては、カルバゾール化合物、インドール化合物、イミダゾール化合物、オキサゾール化合物、ピラゾール化合物、オキサジアゾール化合物、ピラゾリン化合物、チアジアゾール化合物、アニリン化合物、ヒドラゾン化合物、芳香族アミン化合物、脂肪族アミン化合物、スチルベン化合物、フルオレノン化合物、ブタジエン化合物、キノン化合物、キノジメタン化合物、チアゾール化合物、トリアゾール化合物、イミダゾロン化合物、イミダゾリジン化合物、ビスイミダゾリジン化合物、オキサゾロン化合物、ベンゾチアゾール化合物、ベンズイミダゾール化合物、キナゾリン化合物、ベンゾフラン化合物、アクリジン化合物、フェナジン化合物、ポリ-N-ビニルカルバゾール、ポリビニルピレン、ポリビニルアントラセン、ポリビニルアクリジン、ポリ-9-ビニルフェニルアントラセン、ピレン-ホルムアルデヒド樹脂、エチルカルバゾール樹脂、あるいはこれらの構造を主鎖や側鎖に有する重合体などが好適に用いられる。これら化合物は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これら電荷輸送物質の中でも、特開平11-172003公報において具体的に例示されている化合物、及び以下の構造で表される電荷輸送物質が特に好適に用いられる。
Figure JPOXMLDOC01-appb-C000024

Figure JPOXMLDOC01-appb-C000025

Figure JPOXMLDOC01-appb-C000026

Figure JPOXMLDOC01-appb-C000027

Figure JPOXMLDOC01-appb-C000028

 なお、本実施形態の電子写真感光体においては、電荷発生層および電荷輸送層の少なくともいずれかに本実施形態のPC共重合体をバインダー樹脂として用いることが好適である。
 本実施形態の電子写真感光体においては、前記導電性基板と前記感光層との間に、通常使用されるような下引き層を設けることができる。この下引き層としては、酸化チタンや酸化アルミニウム、ジルコニア、チタン酸、ジルコン酸、ランタン鉛、チタンブラック、シリカ、チタン酸鉛、チタン酸バリウム、酸化錫、酸化インジウム、酸化珪素などの微粒子、ポリアミド樹脂、フェノール樹脂、カゼイン、メラミン樹脂、ベンゾグアナミン樹脂、ポリウレタン樹脂、エポキシ樹脂、セルロース、ニトロセルロース、ポリビニルアルコール、ポリビニルブチラール樹脂などの成分を使用することができる。また、この下引き層に用いる樹脂として、前記バインダー樹脂を用いてもよいし、本実施形態のPC共重合体を用いてもよい。これら微粒子や樹脂は、単独または種々混合して用いることができる。これらの混合物として用いる場合には、無機質微粒子と樹脂とを併用すると、平滑性のよい皮膜が形成されることから好適である。
 この下引き層の厚みは、0.01μm以上10μm以下であることが好ましく、0.1μm以上7μm以下であることがより好ましい。この下引き層の厚みが0.01μm以上であると、下引き層を均一に形成することが可能となり、また10μm以下であると電子写真特性の低下が抑制される。
 また、前記導電性基体と前記感光層との間には、通常使用されるような公知のブロッキング層を設けることができる。このブロッキング層としては、前記のバインダー樹脂と同種の樹脂を用いることができる。また本実施形態のPC共重合体を用いてもよい。このブロッキング層の厚みは、0.01μm以上20μm以下であることが好ましく、0.1μm以上10μm以下であることがより好ましい。このブロッキング層の厚みが0.01μm以上であると、ブロッキング層を均一に形成することが可能となり、また20μm以下であると電子写真特性の低下が抑制される。
 さらに、本実施形態の電子写真感光体には、前記感光層の上に、保護層を積層してもよい。この保護層には、前記のバインダー樹脂と同種の樹脂を用いることができる。また、本実施形態のPC共重合体を用いることが特に好ましい。この保護層の厚みは、0.01μm以上20μm以下であることが好ましく、0.1μm以上10μm以下であることがより好ましい。そして、この保護層は、前記電荷発生物質、電荷輸送物質、添加剤、金属やその酸化物、窒化物、塩、合金、カーボンブラック、有機導電性化合物などの導電性材料を含有していてもよい。
 さらに、この電子写真感光体の性能向上のために、前記電荷発生層および前記電荷輸送層には、結合剤、可塑剤、硬化触媒、流動性付与剤、ピンホール制御剤、分光感度増感剤(増感染料)を添加してもよい。また、繰返し使用に対しての残留電位の増加、帯電電位の低下、感度の低下を防止する目的で種々の化学物質、酸化防止剤、界面活性剤、カール防止剤、レベリング剤などの添加剤を添加することができる。
 前記結合剤としては、シリコーン樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、ポリケトン樹脂、ポリカーボネート共重合体、ポリスチレン樹脂、ポリメタクリレート樹脂、ポリアクリルアミド樹脂、ポリブタジエン樹脂、ポリイソプレン樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ポリクロロプレン樹脂、ポリアクリロニトリル樹脂、エチルセルロース樹脂、ニトロセルロース樹脂、尿素樹脂、フェノール樹脂、フェノキシ樹脂、ポリビニルブチラール樹脂、ホルマール樹脂、酢酸ビニル樹脂、酢酸ビニル/塩化ビニル共重合樹脂、ポリエステルカーボネート樹脂などが挙げられる。また、熱硬化性樹脂および光硬化性樹脂の少なくとも一方も使用できる。いずれにしても、電気絶縁性で通常の状態で皮膜を形成し得る樹脂であり、本発明の効果を損なわない範囲であれば、特に制限はない。
 前記可塑剤の具体例としては、ビフェニル、塩化ビフェニル、o-ターフェニル、ハロゲン化パラフィン、ジメチルナフタレン、ジメチルフタレート、ジブチルフタレート、ジオクチルフタレート、ジエチレングリコールフタレート、トリフェニルフォスフェート、ジイソブチルアジペート、ジメチルセバケート、ジブチルセバケート、ラウリル酸ブチル、メチルフタリールエチルグリコレート、ジメチルグリコールフタレート、メチルナフタレン、ベンゾフェノン、ポリプロピレン、ポリスチレン、フルオロ炭化水素などが挙げられる。
 前記硬化触媒の具体例としては、メタンスルホン酸、ドデシルベンゼンスルホン酸、ジノニルナフタレンジスルホン酸などが挙げられる。流動性付与剤としては、モダフロー、アクロナール4Fなどが挙げられる。ピンホール制御剤としては、ベンゾイン、ジメチルフタレートが挙げられる。これら可塑剤や硬化触媒、流動性付与剤、ピンホール制御剤は、前記電荷輸送物質に対して、5質量%以下で用いることが好ましい。
 また、分光感度増感剤としては、増感染料を用いる場合には,例えばメチルバイオレット、クリスタルバイオレット、ナイトブルー、ビクトリアブルーなどのトリフェニルメタン系染料、エリスロシン、ローダミンB、ローダミン3R、アクリジンオレンジ、フラペオシンなどのアクリジン染料、メチレンブルー、メチレングリーンなどのチアジン染料、カプリブルー、メルドラブルーなどのオキサジン染料、シアニン染料、メロシアニン染料、スチリル染料、ピリリウム塩染料、チオピリリウム塩染料などが適している。
 前記感光層には、感度の向上、残留電位の減少、反復使用時の疲労低減などの目的で、電子受容性物質を添加することができる。その具体例としては、無水コハク酸、無水マレイン酸、ジブロモ無水マレイン酸、無水フタル酸、テトラクロロ無水フタル酸、テトラブロモ無水フタル酸、3-ニトロ無水フタル酸、4-ニトロ無水フタル酸、無水ピロメリット酸、無水メリット酸、テトラシアノエチレン、テトラシアノキノジメタン、o-ジニトロベンゼン、m-ジニトロベンゼン、1,3,5-トリニトロベンゼン、p-ニトロベンゾニトリル、ピクリルクロライド、キノンクロルイミド、クロラニル、ブロマニル、ベンゾキノン、2,3-ジクロロベンゾキノン、ジクロロジシアノパラベンゾキノン、ナフトキノン、ジフェノキノン、トロポキノン、アントラキノン、1-クロロアントラキノン、ジニトロアントラキノン、4-ニトロベンゾフェノン、4,4’-ジニトロベンゾフェノン、4-ニトロベンザルマロンジニトリル、α-シアノ-β-(p-シアノフェニル)アクリル酸エチル、9-アントラセニルメチルマロンジニトリル、1-シアノ-(p-ニトロフェニル)-2-(p-クロロフェニル)エチレン、2,7-ジニトロフルオレノン、2,4,7-トリニトロフルオレノン、2,4,5,7-テトラニトロフルオレノン、9-フルオレニリデン-(ジシアノメチレンマロノニトリル)、ポリニトロ-9-フルオレニリデン-(ジシアノメチレンマロノジニトリル)、ピクリン酸、o-ニトロ安息香酸、p-ニトロ安息香酸、3,5-ジニトロ安息香酸、ペンタフルオロ安息香酸、5-ニトロサリチル酸、3,5-ジニトロサリチル酸、フタル酸、メリット酸などの電子親和力の大きい化合物が好ましい。これら化合物は電荷発生層、および電荷輸送層のいずれに加えてもよく、その配合割合は、電荷発生物質または電荷輸送物質の量を100質量部としたときに、0.01質量部以上200質量部以下であることが好ましく、0.1質量部以上50質量部以下であることがより好ましい。
 また、表面性の改良のため、四フッ化エチレン樹脂、三フッ化塩化エチレン樹脂、四フッ化エチレン六フッ化プロピレン樹脂、フッ化ビニル樹脂、フッ化ビニリデン樹脂、二フッ化二塩化エチレン樹脂およびそれらの共重合体、フッ素系グラフトポリマーを用いてもよい。これら表面改質剤の配合割合は、前記バインダー樹脂に対して、0.1質量%以上60質量%以下であることが好ましく、5質量%以上40質量%以下であることがより好ましい。この配合割合が0.1質量%より少ないと、表面耐久性、表面エネルギー低下などの表面改質が充分でなく、60質量%より多いと、電子写真特性の低下を招くことがある。
 前記酸化防止剤としては、ヒンダードフェノール系酸化防止剤、芳香族アミン系酸化防止剤、ヒンダードアミン系酸化防止剤、スルフィド系酸化防止剤、有機リン酸系酸化防止剤などが好ましい。これら酸化防止剤の配合割合は、前記電荷輸送物質に対して、通常、0.01質量%以上10質量%以下であることが好ましく、0.1質量%以上2質量%以下であることがより好ましい。
 このような酸化防止剤の具体例としては、特開平11-172003号公報の明細書に記載された化学式[化94]~[化101]の化合物が好適である。
 これら酸化防止剤は、1種単独で用いてもよく、2種以上を混合して用いてもよい、そして、これら酸化防止剤は、前記感光層のほか、表面保護層や下引き層、ブロッキング層に添加してもよい。
 前記電荷発生層、および前記電荷輸送層の形成の際に使用する前記溶媒の具体例としては、例えば、ベンゼン、トルエン、キシレン、クロロベンゼン等の芳香族系溶媒、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン、メタノール、エタノール、イソプロパノール等のアルコール、酢酸エチル、エチルセロソルブ等のエステル、四塩化炭素、四臭化炭素、クロロホルム、ジクロロメタン、テトラクロロエタン等のハロゲン化炭化水素、テトラヒドロフラン、ジオキソラン、ジオキサン等のエーテル、ジメチルホルムアミド、ジメチルスルホキシド、ジエチルホルムアミド等を挙げることができる。これらの溶媒は、1種単独で使用してもよく、あるいは、2種以上を混合溶媒として使用してもよい。
 単層型電子写真感光体の感光層は、前述の電荷発生物質、電荷輸送物質、および添加剤を用い、本実施形態のPC共重合体をバインダー樹脂として適用することで容易に形成することができる。また、電荷輸送物質としては前述したホール輸送性物質および電子輸送物質の少なくとも一方を添加することが好ましい。電子輸送物質としては、特開2005-139339号公報に例示される電子輸送物質が好ましく適用できる。
 各層の塗布は、公知の装置など各種の塗布装置を用いて行なうことができ、具体的には、例えば、アプリケーター、スプレーコーター、バーコーター、チップコーター、ロールコーター、ディップコーター、ドクタブレード等を用いて行なうことができる。
 電子写真感光体における感光層の厚さは、5μm以上100μm以下であることが好ましく、8μm以上50μm以下であることがより好ましい。感光層の厚さが5μm以上であると初期電位が低くなることが防がれる。感光層の厚さが100μm以下であると電子写真特性の低下が抑制される。電子写真感光体の製造に用いられる電荷発生物質:バインダー樹脂の比率は、質量比で1:99~30:70であることが好ましく、3:97~15:85であることがより好ましい。また、電荷輸送物質:バインダー樹脂の比率は、質量比で10:90~80:20であることが好ましく、30:70~70:30であることがより好ましい。
 このようにして得られる電子写真感光体は、本実施形態のPC共重合体を用いるため、感光層作製時に塗工液が白濁することがなく、ゲル化することもない。また、感光層中に本実施形態のPC共重合体をバインダー樹脂として有しているため、本実施形態の電子写真感光体は、耐久性(耐摩耗性)に優れるとともに、電気特性(帯電特性)に優れる。そのため、本実施形態の電子写真感光体は、長期間にわたって優れた電子写真特性を維持する感光体である。本実施形態の電子写真感光体は、複写機(モノクロ、マルチカラー、フルカラー;アナログ、デジタル)、プリンター(レーザー、LED、液晶シャッター)、ファクシミリ、製版機、およびこれら複数の機能を有する機器など各種の電子写真分野に好適に用いられる。
 なお、本実施形態の電子写真感光体を使用するにあたっては、帯電には、コロナ放電(コロトロン、スコロトロン)、接触帯電(帯電ロール、帯電ブラシ)などが用いられる。帯電ロールとしては、DC帯電方式やAC電圧を重畳させたAC/DC重畳帯電方式が挙げられる。また、露光には、ハロゲンランプや蛍光ランプ、レーザー(半導体、He-Ne)、LED、感光体内部露光方式のいずれを採用してもよい。現像には、カスケード現像、二成分磁気ブラシ現像、一成分絶縁トナー現像、一成分導電トナー現像などの乾式現像方式や湿式現像方式が用いられる。転写には、コロナ転写、ローラ転写、ベルト転写などの静電転写法や、圧力転写法、粘着転写法が用いられる。定着には、熱ローラ定着、ラジアントフラッシュ定着、オープン定着、圧力定着などが用いられる。さらに、クリーニングおよび除電には、ブラシクリーナー、磁気ブラシクリーナー、静電ブラシクリーナー、磁気ローラクリーナー、ブレードクリーナーなどが用いられる。なお、クリーナーレス方式を採用してもよい。また、トナー用の樹脂としては、スチレン系樹脂、スチレン-アクリル系共重合樹脂、ポリエステル、エポキシ樹脂、環状炭化水素の重合体などが適用できる。トナーの形状は、球形でも不定形でもよい。一定の形状(回転楕円体状、ポテト状等)に制御されたトナーも適用できる。トナーは、粉砕型トナー、懸濁重合トナー、乳化重合トナー、ケミカル造粒トナー、あるいはエステル伸長トナーのいずれでもよい。
 次に、本発明を実施例および比較例によってさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではなく、本発明の思想を逸脱しない範囲での種々の変形および応用が可能である。
〔製造例:オリゴマーの調製〕
<製造例1:OC-BPオリゴマー(ビスクロロホーメート)の合成>
 3,3’-ジメチル-4,4’-ビフェノール(OC-BP)150.0g(0.701モル)を塩化メチレン1100mLで懸濁し、そこにホスゲン186g(1.88モル)を加えて溶解させた。これにトリエチルアミン199.4g(1.97モル)を塩化メチレン460mLに溶解させた液を13℃~16℃で2時間50分かけて滴下した。反応混合物を14℃~16℃で30分間撹拌した。反応混合物に濃塩酸5.0mLおよび純水200mLを加え洗浄した。その後、水層が中性になるまで水洗を繰り返し、分子末端にクロロホーメート基を有するOC-BPオリゴマーの塩化メチレン溶液を得た。得られた溶液のクロロホーメート濃度は0.58モル/L、固形物濃度は0.01kg/L、平均量体数は1.06であった。以後、製造例1で得られた原料をOCBP-CFという。
 尚、平均量体数(n)は、次の数式を用いて求めた。
 平均量体数(n)=1+(Mav-M1)/M2・・・(数1)
(前記式(数1)において、Mavは(2×1000/(CF価))であり、M2は(M1-98.92)であり、M1は前記一般式(100)において、n=1のときのビスクロロホーメートオリゴマーの分子量であり、CF価(N/kg)は(CF値/濃度)であり、CF値(N)は反応溶液1Lに含まれる前記一般式(100)で表されるビスクロロホーメートオリゴマー中のクロル原子数であり、上記固形物濃度(kg/L)は反応溶液1Lを濃縮して得られる固形分の量である。ここで、98.92は、ビスクロロホーメートオリゴマー同士の重縮合で脱離する2個の塩素原子、1個の酸素原子および1個の炭素原子の合計の原子量である。)
<製造例2:DMDPEオリゴマー(ビスクロロホーメート)の合成>
 ビス(3-メチル-4-ヒドロキシフェニル)エーテル(DMDPE)160.0g(0.695mol)、塩化メチレン1020mL、およびホスゲン187g(1.89mol)の混合液に、トリエチルアミン199.4g(1.97mol)を塩化メチレン460mLで希釈した溶液を13℃~16℃で3時間6分かけて滴下した。反応混合物を14℃~16℃で1時間38分撹拌した。反応混合物に濃塩酸5.0mLおよび純水200mLを加え、洗浄した。その後、水層が中性になるまで水洗を繰り返し、分子末端にクロロホーメート基を有するDMDPEオリゴマーの塩化メチレン溶液を得た。
 得られた溶液のクロロホーメート濃度は1.04モル/L、固形物濃度は0.18kg/L、平均量体数は1.07であった。以後、製造例2で得られた原料をDMDPE-CFという。
<製造例3:DE-BPオリゴマー(ビスクロロホーメート)の合成>
 3,3’-ジエチル-4,4’-ビフェノール(DE-BP)150.0g(0.620モル)を塩化メチレン1100mLで懸濁し、そこにホスゲン186g(1.88モル)を加えて溶解させた。これにトリエチルアミン199.4g(1.97モル)を塩化メチレン460mLに溶解させた液を13℃~16℃で2時間50分かけて滴下した。反応混合物を14℃~16℃で30分間撹拌した。反応混合物に濃塩酸5.0mLおよび純水200mLを加え洗浄した。その後、水層が中性になるまで水洗を繰り返し、分子末端にクロロホーメート基を有するDE-BPオリゴマーの塩化メチレン溶液を得た。得られた溶液のクロロホーメート濃度は0.57モル/L、固形物濃度は0.01kg/L、平均量体数は1.06であった。以後、製造例3で得られた原料をDEBP-CFという。
<製造例4:BisZオリゴマー(ビスクロロホーメート)の合成>
 1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(ビスフェノールZ)56.6kg(224モル)を塩化メチレン1080Lで懸濁し、そこにホスゲン66.0kg(667モル)を加えて溶解させた。これにトリエチルアミン44.0kg(435モル)を塩化メチレン120Lに溶解させた液を2.2℃~17.8℃で2時間50分かけて滴下した。17.9℃~19.6℃で30分間撹拌後、14℃~20℃で塩化メチレン900Lを留去した。残液に純水210L、濃塩酸1.2kg、およびハイドロサルファイト450gを加え洗浄した。その後、純水210Lで5回洗浄を繰り返し、分子末端にクロロホーメート基を有するビスフェノールZオリゴマーの塩化メチレン溶液を得た。
 得られた溶液のクロロホーメート濃度は1.14モル/L、固形物濃度は0.22kg/L、平均量体数は1.02であった。以後、製造例4で得られた原料をZ-CFという。
〔実施例1〕
(PC共重合体の製造)
 メカニカルスターラー、撹拌羽根、および邪魔板を装着した反応容器に、製造例1のOCBP-CF(47.9mL)および塩化メチレン(20mL)を注入した。これに末端封止剤としてp-tert-ブチルフェノール(以下、PTBPと表記する場合がある)(0.054g)を添加し、十分に混合されるように撹拌した。反応器内の温度が15℃になるまで冷却した後、この溶液に調製した2,2-ビス(4-ヒドロキシフェニル)ブタン溶液を全量添加し、撹拌しながらトリエチルアミン水溶液(7vol%)を0.2mL添加し、1時間撹拌を継続した。
 得られた反応混合物を塩化メチレン0.15L、および水0.01Lで希釈し、洗浄を行った。下層を分離し、さらに水0.12Lで1回、0.03N塩酸0.1Lで1回、水0.12Lで3回の順で洗浄を行った。得られた塩化メチレン溶液を、撹拌下メタノールに滴下投入した。得られた再沈物をろ過、および乾燥することにより下記構造のPC共重合体(PC-1)を得た。
 なお、実施例1における2,2-ビス(4-ヒドロキシフェニル)ブタン溶液は、2.2Nの水酸化カリウム水溶液23mL(水酸化カリウム3.3g)を調製し、室温以下に冷却した後、酸化防止剤としてハイドロサルファイトを0.1g、および2,2-ビス(4-ヒドロキシフェニル)ブタン3.36gを添加し、完全に溶解して調製して得た。
(PC共重合体の特定)
 実施例1で得られたPC共重合体(PC-1)を塩化メチレンに溶解して、濃度0.5g/dLの溶液を調製し、20℃における還元粘度[ηsp/C]を測定したところ、1.17dL/gであった。なお、得られたPC共重合体(PC-1)の構造及び組成を1H-NMRスペクトルおよび13C-NMRスペクトルにより分析したところ、下記一般式(8)で表される繰返し単位、平均繰返し数、及び組成からなるPC共重合体であることが確認された。
Figure JPOXMLDOC01-appb-C000029

Figure JPOXMLDOC01-appb-C000030

a= 0.60
b= 0.40
 尚、前記一般式(8)における構造は、次の手順で確認した。まず、H-NMRスペクトルおよび13C-NMRスペクトルを用いて、帰属解析を行い、積分強度からAr骨格単位のモル共重合比a、およびAr骨格単位のモル共重合比bを算出した。
(塗工液および電子写真感光体の製造)
 導電性基体としてアルミニウム金属を蒸着したポリエチレンテレフタレート樹脂フィルムを用いた。導電性基体のアルミニウム金属を蒸着した面に、電荷発生層と電荷輸送層を順次積層して、積層型感光層を形成した電子写真感光体を製造した。電荷発生物質としてオキソチタニウムフタロシアニン(0.5質量部)を用い、バインダー樹脂としてブチラール樹脂(0.5質量部)を用いた。これらを溶媒の塩化メチレン(19質量部)に加え、ボールミルにて分散し、この分散液をバーコーターにより、前記導電性基体フィルム表面に塗工し、乾燥させることにより、膜厚約0.5μmの電荷発生層を形成した。
 次に、電荷輸送物質として、下記式(23)の化合物(CTM-1)0.4g、および前述のとおり得られたPC共重合体(PC-1)0.6gを10mLのテトラヒドロフランに分散し、塗工液を調製した。この塗工液をアプリケーターにより、前記電荷発生層の上に塗布し、乾燥し、膜厚約20μmの電荷輸送層を形成した。
Figure JPOXMLDOC01-appb-C000031

(PC共重合体および電子写真感光体の評価)
 PC共重合体の溶解性は前述の塗工液の調製時に、調製した塗工液の白濁度を目視で観察することにより評価した。PC共重合体が溶解し白濁が認められない場合をA、不溶解部分がある場合をB、白濁した場合をCとした。
 また、PC共重合体、及び電子写真感光体の耐摩耗性の評価を、以下の通り実施した。
<サンプル作製>
〔1-1〕共重合体の耐摩耗性評価サンプル作製:PC-1(2g)を塩化メチレン(12mL)に溶解し、アプリケーターを用い市販のPETフィルム上にキャスト製膜した。このフィルムを減圧下加熱し、溶剤を除去し、厚み約30μmのフィルムサンプルを得た。
〔1-2〕感光体の耐摩耗性評価サンプル作製:PC-1(1g)、および前記CTM-1(0.67g)を塩化メチレン(10mL)に溶解し、アプリケーターを用い市販のPETフィルム上にキャスト製膜した。このフィルムを減圧下加熱し、溶剤を除去し、厚み約30μmのフィルムサンプルを得た。
<評価>
 前記〔1-1〕、および前記〔1-2〕で作製したフィルムのキャスト面の耐摩耗性をテーバー摩耗試験機(東洋精機製作所社製)を用いて評価した。試験条件は500gの荷重をかけた摩耗輪(型番:CS-10)をフィルム表面と接触させて、前記〔1-1〕のフィルムサンプルの場合は1,000回転後に、前記〔1-2〕のフィルムサンプルの場合500回転後に、質量減少量を測定した。
 併せて、PC共重合体、及び電子写真感光体の電気的強度の指標となる耐プラズマ性の評価を、以下の通り実施した。
<サンプル作製>
〔2-1〕共重合体の耐プラズマ性評価サンプル作製:PC-1(2g)を塩化メチレン(12mL)に溶解し、アプリケーターを用い市販のPETフィルム上にキャスト製膜した。このフィルムを減圧下加熱し、溶剤を除去し、厚み約30μmのフィルムサンプルを得た。
〔2-2〕感光体の耐プラズマ性評価サンプル作製:PC-1(1g)、及び上記CTM-1(0.67g)を塩化メチレン(10mL)に溶解し、アプリケーターを用い市販のPETフィルム上にキャスト製膜した。このフィルムを減圧下加熱し、溶剤を除去し、厚み約30μmのフィルムサンプルを得た。
<評価>
 前記〔2-1〕、および前記〔2-2〕で作製したフィルムサンプルについて、コロナ表面処理機AGI-020S(春日電気社製)を用いて、表面を処理後、水の接触角を測定した。放電処理前と処理後の接触角の差を変化量Δとして求め、耐プラズマ性の評価指標とした。試験条件としては、放電量を58W・min/mで実施した。
 次に、電子写真感光体について、電子写真特性を静電気帯電試験装置EPA-8100(川口電機製作所社製)を用いて測定した。スタティックモードで、-6kVのコロナ放電を行い、初期表面電位(V),光照射(10Lux)5秒後の残留電位(初期残留電位(V)),および半減露光量(E1/2)を測定した。また、市販のプリンター(FS-600、京セラ製)を、感光体の表面電位を測定可能に改造した。前記感光体をドラム状に装着および評価可能とし、高温および高湿条件下(35℃、85%)で、トナー、および紙は通さない条件で24時間繰返し運転前後の帯電特性(繰返し残留電位上昇(V上昇))の評価を行った。
 これらの結果を表1に示し、後述する実施例2~3および比較例1についても同様の評価を行い、結果を表1に示す。
〔実施例2〕
 メカニカルスターラー、撹拌羽根、および邪魔板を装着した反応容器に、製造例2のDMDPE-CF(256mL)および塩化メチレン(383mL)を注入した。これに末端封止剤としてp-tert-ブチルフェノール(PTBP)(0.389g)を添加し、十分に混合されるように撹拌した。反応器内の温度が15℃になるまで冷却した後、この溶液に調製した二価フェノール溶液を全量添加し、撹拌しながらトリエチルアミン水溶液(7vol%)を2.0mL添加し、1時間撹拌を継続した。
 得られた反応混合物を塩化メチレン0.80L、および水0.22Lで希釈し、洗浄を行った。下層を分離し、さらに水0.26Lで1回、0.03N塩酸0.1Lで1回、水0.26Lで3回の順で洗浄を行った。得られた塩化メチレン溶液を、撹拌下メタノールに滴下投入した。得られた再沈物をろ過、および乾燥することにより、下記構造のPC共重合体(PC-2)を得た。
 なお、実施例2における前記二価フェノール溶液は、2.2Nの水酸化ナトリウム水溶液215mL(水酸化ナトリウム31.5g)を調製し、室温以下に冷却した後、酸化防止剤としてハイドロサルファイトを0.2g、2,2-ビス(4-ヒドロキシフェニル)ブタン28.97g、およびビス(4-ヒドロキシフェニル)エーテル3.05gを添加し、完全に溶解して調製した。
 PC共重合体(PC-2)の還元粘度[ηsp/C]は1.22dL/gであり、構造は前記一般式(8)において、下記の繰り返し単位及び組成からなるPC共重合体であることが確認された。
Figure JPOXMLDOC01-appb-C000032

a= 0.58
b= 0.42
〔実施例3〕
 メカニカルスターラー、撹拌羽根、および邪魔板を装着した反応容器に、製造例4のZ-CF(47.9mL)および塩化メチレン(200mL)を注入した。これに末端封止剤としてフッ素化ジエチレングリコールモノヘキシルエーテル(以下、F15改良と表記する場合がある)(1.480g)を添加し、十分に混合されるように撹拌した。反応器内の温度が15℃になるまで冷却した後、この溶液に調製した二価フェノール溶液を全量添加し、撹拌しながらトリエチルアミン水溶液(7vol%)を0.2mL添加し、1時間撹拌を継続した。
 得られた反応混合物を塩化メチレン1.3L、および水0.1Lで希釈し、洗浄を行った。下層を分離し、さらに水0.34Lで1回、0.03N塩酸0.1Lで1回、水0.34Lで3回の順で洗浄を行った。得られた塩化メチレン溶液を、撹拌下メタノールに滴下投入した。得られた再沈物をろ過、乾燥することにより下記構造のPC共重合体(PC-3)を得た。
 なお、実施例3における前記二価フェノール溶液は、2.2Nの水酸化カリウム水溶液230mL(水酸化カリウム32.6g)を調製し、室温以下に冷却した後、酸化防止剤としてハイドロサルファイトを0.25g、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン30.85g、および3,3’-ジメチル-4,4’-ビフェノール5.10gを添加し、完全に溶解して調製した。
 PC共重合体(PC-3)の還元粘度[ηsp/C]は1.23dL/gであり、構造は前記一般式(8)において、下記の繰り返し単位及び組成からなるPC共重合体であることが確認された。
Figure JPOXMLDOC01-appb-C000033

a= 0.64
b= 0.36
〔実施例4〕
 メカニカルスターラー、撹拌羽根、および邪魔板を装着した反応容器に、製造例2のDMDPE-CF(256mL)および塩化メチレン(383mL)を注入した。これに末端封止剤としてp-tert-ブチルフェノール(PTBP)(0.389g)を添加し、十分に混合されるように撹拌した。反応器内の温度が15℃になるまで冷却した後、この溶液に調製した二価フェノール溶液を全量添加し、撹拌しながらトリエチルアミン水溶液(7vol%)を2.0mL添加し、1時間撹拌を継続した。
 得られた反応混合物を塩化メチレン0.80L、および水0.22Lで希釈し、洗浄を行った。下層を分離し、さらに水0.26Lで1回、0.03N塩酸0.1Lで1回、水0.26Lで3回の順で洗浄を行った。得られた塩化メチレン溶液を、撹拌下メタノールに滴下投入した。得られた再沈物をろ過、および乾燥することにより下記構造のPC共重合体(PC-4)を得た。
 なお、実施例4における前記二価フェノール溶液は、2.2Nの水酸化ナトリウム水溶液215mL(水酸化ナトリウム31.5g)を調製し、室温以下に冷却した後、酸化防止剤としてハイドロサルファイトを0.2g、および2,2-ビス(3-メチル-4-ヒドロキシフェニル)ブタン35.95gを添加し、完全に溶解して調製した。
 PC共重合体(PC-4)の還元粘度[ηsp/C]は1.17dL/gであり、構造は前記一般式(8)において、下記の繰り返し単位及び組成からなるPC共重合体であることが確認された。
Figure JPOXMLDOC01-appb-C000034

a= 0.53
b= 0.47
〔実施例5〕
 メカニカルスターラー、撹拌羽根、および邪魔板を装着した反応容器に、製造例1のOCBP-CF(47.9mL)および塩化メチレン(20mL)を注入した。これに末端封止剤としてp-tert-ブチルフェノール(PTBP)(0.054g)を添加し、十分に混合されるように撹拌した。反応器内の温度が15℃になるまで冷却した後、この溶液に調製した1,1-ビス(4-ヒドロキシフェニル)エタン溶液を全量添加し、撹拌しながらトリエチルアミン水溶液(7vol%)を0.2mL添加し、1時間撹拌を継続した。
 得られた反応混合物を塩化メチレン0.15L、PTBP水0.01Lで希釈し、洗浄を行った。下層を分離し、さらに水0.12Lで1回、0.03N塩酸0.1Lで1回、水0.12Lで3回の順で洗浄を行った。得られた塩化メチレン溶液を、撹拌下メタノールに滴下投入した。得られた再沈物をろ過、乾燥することにより下記構造のPC共重合体(PC-5)を得た。
 なお、前記1,1-ビス(4-ヒドロキシフェニル)エタン溶液は、2.2Nの水酸化カリウム水溶液23mL(水酸化カリウム3.25g)を調製し、室温以下に冷却した後、酸化防止剤としてハイドロサルファイトを0.1g、および1,1-ビス(4-ヒドロキシフェニル)エタン2.97gを添加し、完全に溶解して調製した。
 PC共重合体(PC-5)の還元粘度[ηsp/C]は1.20dL/gであり、構造は前記一般式(8)において、下記の繰り返し単位及び組成からなるPC共重合体であることが確認された。
Figure JPOXMLDOC01-appb-C000035

a= 0.55
b= 0.45
〔実施例6〕
 実施例6では、実施例3において、末端封止剤であるフッ素化ジエチレングリコールモノヘキシルエーテル(1.480g)を、2,2-ジフルオロ-2-(1,1,2,2-テトラフルオロ-2-(1,1,2,3,3,3-ヘキサフルオロ-2-(トリフルオロメチル)プロポキシ)エトキシ)エタノール(1.09g)に変更したこと以外は、実施例3と同様の操作を行って、下記の構造からなるPC共重合体(PC-6)を得た。
 PC共重合体(PC-6)の還元粘度[ηsp/C]は1.22dL/gであり、構造は前記一般式(8)において、下記の繰り返し単位及び組成からなるPC共重合体であることが確認された。
Figure JPOXMLDOC01-appb-C000036

a= 0.60
b= 0.40
〔実施例7〕
 メカニカルスターラー、撹拌羽根、および邪魔板を装着した反応容器に、製造例3のDEBP-CF(478.6mL)および塩化メチレン(198mL)を注入した。これに末端封止剤としてp-tert-ブチルフェノール(PTBP)(0.411g)を添加し、十分に混合されるように撹拌した。反応器内の温度が15℃になるまで冷却した後、この溶液に調製した二価フェノール溶液を全量添加し、撹拌しながらトリエチルアミン水溶液(7vol%)を2.0mL添加し、1時間撹拌を継続した。
 得られた反応混合物を塩化メチレン0.80L、水0.22Lで希釈し、洗浄を行った。下層を分離し、さらに水0.26Lで1回、0.03N塩酸0.1Lで1回、水0.26Lで3回の順で洗浄を行った。得られた塩化メチレン溶液を、撹拌下メタノールに滴下投入し、得られた再沈物をろ過、乾燥することにより下記構造のPC共重合体(PC-7)を得た。
 なお、実施例7における前記二価フェノール溶液は、2.2Nの水酸化カリウム水溶液228mL(水酸化カリウム32.0g)を調製し、室温以下に冷却した後、酸化防止剤としてハイドロサルファイトを0.2g、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン32.75g、および3,3’-ジエチル-4,4’-ビフェノール3.50gを添加し、完全に溶解して調製した。
 PC共重合体(PC-7)の還元粘度[ηsp/C]は1.18dL/gであり、構造は前記一般式(8)において、下記の繰り返し単位及び組成からなるPC共重合体であることが確認された。
Figure JPOXMLDOC01-appb-C000037

a= 0.56
b= 0.44
〔比較例1〕
 メカニカルスターラー、撹拌羽根、および邪魔板を装着した反応容器に、製造例4のZ-CF(157mL)および塩化メチレン(227mL)を注入した。これに末端封止剤としてPTBP(0.336g)を添加し、十分に混合されるように撹拌した。反応器内の温度が15℃になるまで冷却した後、この溶液に調製した二価フェノール溶液を全量添加し、撹拌しながらトリエチルアミン水溶液(7vol%)を2.0mL添加し、1時間撹拌を継続した。
 得られた反応混合物を塩化メチレン0.2L、および水0.1Lで希釈し、洗浄を行った。下層を分離し、さらに水0.1Lで1回、0.03N塩酸0.1Lで1回、水0.1Lで3回の順で洗浄を行った。得られた塩化メチレン溶液を、撹拌下メタノールに滴下投入した。得られた再沈物をろ過、および乾燥することにより下記構造のPC共重合体(PC-8)を得た。
 なお、比較例1における前記二価フェノール溶液は、1.5Nの水酸化ナトリウム水溶液135mL(水酸化ナトリウム11.1g)を調製し、室温以下に冷却した後、酸化防止剤としてハイドロサルファイトを0.25g、および4,4’-ビフェノール7.6gを添加し、完全に溶解して調製した。
 PC共重合体(PC-8)の還元粘度[ηsp/C]は1.18dL/gであり、構造は前記一般式(8)において、下記の繰り返し単位及び組成からなるPC共重合体であることが確認された。
Figure JPOXMLDOC01-appb-C000038

a= 0.58
b= 0.42
Figure JPOXMLDOC01-appb-T000039

〔評価結果〕
 表1に実施例1から実施例7、および比較例1の評価結果を示す。実施例1から実施例7と、比較例1を比較すると、実施例1から実施例7のPC共重合体では、極めて良好な耐摩耗性を示し、放電処理による接触角変化量Δが小さく、帯電劣化が起こりにくいことが確認された。これに対して、比較例1の共重合体は、耐摩耗性は十分に良好であるが、放電処理による接触角変化量Δが大きく、帯電劣化しやすいことが確認された。

Claims (10)

  1.  下記一般式(1)で表される繰返し単位と、下記一般式(2)で表される繰返し単位とを有し、下記一般式(1)で表される繰り返し単位は、下記一般式(100)で表される平均量体数nが1.0以上1.3以下のビスクロロホーメートオリゴマーを用いて形成されていることを特徴とするポリカーボネート共重合体。
    Figure JPOXMLDOC01-appb-C000001

    [前記一般式(1)および(100)において、Arは、下記一般式(3)で表される基であり、前記一般式(2)において、Arは、二価の芳香族を有する基である。]
    Figure JPOXMLDOC01-appb-C000002

    [前記一般式(3)において、Xは、単結合または酸素原子である。また、R11は、それぞれ独立に、メチル基またはエチル基である。]
  2.  請求項1に記載のポリカーボネート共重合体において、
     前記一般式(1)で表される繰返し単位と前記一般式(2)で表される繰返し単位とを合わせた全繰返し単位のモル百分率を100モル%としたとき、前記一般式(1)で表される繰返し単位のモル百分率が52モル%以上72モル%以下、かつ前記一般式(2)で表される繰返し単位のモル百分率が28モル%以上48モル%以下であり、繰返し単位の連鎖中に含まれる全ての3連子の合計を100モル%としたとき、前記一般式(1)で表される繰り返し単位が連続で3つ並んだ3連子について、そのモル百分率が5モル%以下であり、Arが、下記一般式(4)で表される基であることを特徴とするポリカーボネート共重合体。
    Figure JPOXMLDOC01-appb-C000003

    [前記一般式(4)において、Xは、酸素原子、またはCRであり、Rは、水素原子、又はメチル基である。
     R、およびRは、各々独立に、水素原子、炭素数1~3のアルキル基、またはR、およびRが環形成した炭素数5~6の置換もしくは無置換のシクロアルキル基であり、R、およびRは、同一でもよく、互いに異なる基であってもよい。]
  3.  請求項1または請求項2に記載のポリカーボネート共重合体において、
     下記一般式(5)または(6)で表される一価の末端封止剤により、連鎖末端が封止されていることを特徴とするポリカーボネート共重合体。
    Figure JPOXMLDOC01-appb-C000004

    [前記一般式(5)において、Rは炭素数1~10のアルキル基、または炭素数1~10のフルオロアルキル基を表し、pは1~3の整数である。
     前記一般式(6)において、Rは、炭素数が5以上で、かつ、フッ素原子数が11以上であるパーフルオロアルキル基、あるいは下記一般式(7)で表されるパーフルオロアルキルオキシ基を示す。]
    Figure JPOXMLDOC01-appb-C000005

    [前記一般式(7)において、Rf2は炭素数1~6の直鎖もしくは分岐したパーフルオロアルキル基である。nは1~3の整数である。]
  4.  請求項1から請求項3のいずれか1項に記載のポリカーボネート共重合体において、
     前記一般式(1)のArは、3,3’-ジメチル-4,4’-ビフェノール、およびビス(3-メチル-4-ヒドロキシフェニル)エーテルからなる群から選ばれる化合物から誘導される2価の基であることを特徴とするポリカーボネート共重合体。
  5.  請求項1から請求項4のいずれか1項に記載のポリカーボネート共重合体において、
     前記一般式(2)のArは、ビス(4-ヒドロキシフェニル)エーテル、2,2-ビス(4-ヒドロキシフェニル)ブタン、および1,1-ビス(4-ヒドロキシフェニル)シクロヘキサンからなる群から選ばれる化合物から誘導される2価の基であることを特徴とするポリカーボネート共重合体。
  6.  請求項3から請求項5のいずれか1項に記載のポリカーボネート共重合体において、
     前記連鎖末端は、p-tert-ブチル-フェノール、p-パーフルオロノニルフェノール、p-パーフルオロヘキシルフェノール、p-tert-パーフルオロブチルフェノール、およびp-パーフルオロオクチルフェノールからなる群から選ばれる末端封止剤を用いて封止されていることを特徴とするポリカーボネート共重合体。
  7.  請求項3から請求項5のいずれか1項に記載のポリカーボネート共重合体において、
     前記連鎖末端は、下記フッ素含有アルコールのいずれかから選ばれる末端封止剤を用いて封止されていることを特徴とするポリカーボネート共重合体。
    Figure JPOXMLDOC01-appb-C000006
  8.  請求項1から請求項7のいずれか1項に記載のポリカーボネート共重合体と有機溶剤とを含むことを特徴とする塗工液。
  9.  請求項1から請求項7のいずれか1項に記載のポリカーボネート共重合体を含むことを特徴とする成形体。
  10.  導電性基板と、
     前記導電性基板上に設けられた感光層と、を備え、
     前記感光層の一成分として、請求項1から請求項7のいずれか1項に記載のポリカーボネート共重合体を含有することを特徴とする電子写真感光体。
PCT/JP2014/063585 2013-05-27 2014-05-22 ポリカーボネート共重合体、それを用いた塗工液、成形体、および電子写真感光体 WO2014192633A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/893,729 US9551946B2 (en) 2013-05-27 2014-05-22 Polycarbonate copolymer, coating liquid using same, molded body, and electrophotographic photosensitive body
EP14804348.2A EP3006483B1 (en) 2013-05-27 2014-05-22 Polycarbonate copolymer, coating liquid using same, molded body, and electrophotographic photosensitive body
KR1020157032188A KR20160011627A (ko) 2013-05-27 2014-05-22 폴리카보네이트 공중합체, 그것을 사용한 도포액, 성형체, 및 전자 사진 감광체
JP2015519821A JP6441793B2 (ja) 2013-05-27 2014-05-22 ポリカーボネート共重合体、それを用いた塗工液、成形体、および電子写真感光体
CN201480029911.5A CN105246944B (zh) 2013-05-27 2014-05-22 聚碳酸酯共聚物、聚碳酸酯共聚物的制造方法、使用该聚碳酸酯共聚物的涂敷液、成型体、和电子照相感光体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-110871 2013-05-27
JP2013110871 2013-05-27

Publications (1)

Publication Number Publication Date
WO2014192633A1 true WO2014192633A1 (ja) 2014-12-04

Family

ID=51988666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063585 WO2014192633A1 (ja) 2013-05-27 2014-05-22 ポリカーボネート共重合体、それを用いた塗工液、成形体、および電子写真感光体

Country Status (7)

Country Link
US (1) US9551946B2 (ja)
EP (1) EP3006483B1 (ja)
JP (1) JP6441793B2 (ja)
KR (1) KR20160011627A (ja)
CN (1) CN105246944B (ja)
TW (1) TWI624491B (ja)
WO (1) WO2014192633A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016224108A (ja) * 2015-05-27 2016-12-28 京セラドキュメントソリューションズ株式会社 正帯電単層型電子写真感光体、プロセスカートリッジ、及び画像形成装置
CN108368027A (zh) * 2015-12-16 2018-08-03 出光兴产株式会社 双氯甲酸酯组合物、双氯甲酸酯组合物的制造方法、含有双氯甲酸酯组合物的溶液、聚碳酸酯树脂、聚碳酸酯树脂的制造方法、涂敷液、电子照相感光体、和电子照相装置
WO2018150693A1 (ja) * 2017-02-20 2018-08-23 富士電機株式会社 電子写真感光体、その製造方法およびそれを用いた電子写真装置
WO2018230100A1 (ja) * 2017-06-12 2018-12-20 京セラドキュメントソリューションズ株式会社 電子写真感光体の製造方法
WO2019159342A1 (ja) * 2018-02-16 2019-08-22 富士電機株式会社 電子写真用感光体、その製造方法および電子写真装置
WO2021201226A1 (ja) * 2020-04-01 2021-10-07 出光興産株式会社 ポリカーボネート共重合体、塗工液、電子写真感光体、ポリカーボネート共重合体の製造方法、および電気機器
WO2021201225A1 (ja) * 2020-04-01 2021-10-07 出光興産株式会社 ポリカーボネート共重合体、塗工液、電子写真感光体、ポリカーボネート共重合体の製造方法、および電気機器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6690602B2 (ja) * 2017-06-12 2020-04-28 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179961A (ja) 1990-11-15 1992-06-26 Idemitsu Kosan Co Ltd 電子写真感光体
JPH11172003A (ja) 1997-12-12 1999-06-29 Idemitsu Kosan Co Ltd 架橋ポリカーボネート樹脂の製造法および架橋ポリカーボネート樹脂ならびに電子写真感光体
JP3402936B2 (ja) 1996-06-28 2003-05-06 キヤノン株式会社 電子写真感光体、プロセスカートリッジ及び電子写真装置
JP2005091952A (ja) * 2003-09-19 2005-04-07 Ricoh Co Ltd 電子写真感光体
JP2005139339A (ja) 2003-11-07 2005-06-02 Kyocera Mita Corp ポリカーボネート樹脂、電子写真感光体および画像形成装置
JP2011026577A (ja) 2009-06-26 2011-02-10 Idemitsu Kosan Co Ltd ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
JP2011026574A (ja) * 2009-06-26 2011-02-10 Idemitsu Kosan Co Ltd ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
JP2012051983A (ja) 2010-08-31 2012-03-15 Teijin Chem Ltd 電子写真感光体バインダー用ポリカーボネート共重合体
WO2013191174A1 (ja) * 2012-06-19 2013-12-27 出光興産株式会社 ポリカーボネート共重合体、それを用いた塗工液、および電子写真感光体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7348113B2 (en) * 2003-09-10 2008-03-25 Ricoh Company, Ltd. Electrophotographic photoconductor comprising a polycarbonate resin having a dihydroxy diphenyl ether unit
JP2005092136A (ja) * 2003-09-19 2005-04-07 Ricoh Co Ltd 電子写真感光体
US20060135737A1 (en) * 2004-12-22 2006-06-22 Davis Gary C Polycarbonates with fluoroalkylene carbonate end groups
CN101501101B (zh) * 2006-10-18 2013-06-05 出光兴产株式会社 聚碳酸酯共聚物、其制造方法、成形体,光学材料及电子照相感光体
EP2447299B1 (en) * 2009-06-26 2017-11-29 Idemitsu Kosan Co., Ltd. Polycarbonate copolymer, coating liquid using same, and electrophotographic photosensitive body
CN103391958B (zh) * 2011-02-24 2016-08-10 出光兴产株式会社 聚碳酸酯共聚物、使用其的涂布液、电子照相感光体、及聚碳酸酯共聚物的制造方法
KR102005599B1 (ko) * 2012-02-22 2019-07-30 이데미쓰 고산 가부시키가이샤 폴리카보네이트 공중합체

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179961A (ja) 1990-11-15 1992-06-26 Idemitsu Kosan Co Ltd 電子写真感光体
JP3402936B2 (ja) 1996-06-28 2003-05-06 キヤノン株式会社 電子写真感光体、プロセスカートリッジ及び電子写真装置
JPH11172003A (ja) 1997-12-12 1999-06-29 Idemitsu Kosan Co Ltd 架橋ポリカーボネート樹脂の製造法および架橋ポリカーボネート樹脂ならびに電子写真感光体
JP2005091952A (ja) * 2003-09-19 2005-04-07 Ricoh Co Ltd 電子写真感光体
JP2005139339A (ja) 2003-11-07 2005-06-02 Kyocera Mita Corp ポリカーボネート樹脂、電子写真感光体および画像形成装置
JP2011026577A (ja) 2009-06-26 2011-02-10 Idemitsu Kosan Co Ltd ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
JP2011026574A (ja) * 2009-06-26 2011-02-10 Idemitsu Kosan Co Ltd ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
JP2012051983A (ja) 2010-08-31 2012-03-15 Teijin Chem Ltd 電子写真感光体バインダー用ポリカーボネート共重合体
WO2013191174A1 (ja) * 2012-06-19 2013-12-27 出光興産株式会社 ポリカーボネート共重合体、それを用いた塗工液、および電子写真感光体

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016224108A (ja) * 2015-05-27 2016-12-28 京セラドキュメントソリューションズ株式会社 正帯電単層型電子写真感光体、プロセスカートリッジ、及び画像形成装置
CN108368027A (zh) * 2015-12-16 2018-08-03 出光兴产株式会社 双氯甲酸酯组合物、双氯甲酸酯组合物的制造方法、含有双氯甲酸酯组合物的溶液、聚碳酸酯树脂、聚碳酸酯树脂的制造方法、涂敷液、电子照相感光体、和电子照相装置
EP3392235A4 (en) * 2015-12-16 2019-07-31 Idemitsu Kosan Co., Ltd BISCHLOROFORMIATE COMPOSITION, METHOD FOR MANUFACTURING BISCHLOROFORMIATE COMPOSITION, SOLUTION CONTAINING BISCHLOROFORMATE COMPOSITION, POLYCARBONATE RESIN, METHOD FOR MANUFACTURING POLYCARBONATE RESIN, COATING LIQUID, ELECTROPHOTOGRAPHIC PHOTORECEPTOR, AND ELECTROPHOTOGRAPHIC DEVICE
US11269263B2 (en) 2015-12-16 2022-03-08 Idemitsu Kosan Co., Ltd. Bischloroformate composition, bischloroformate composition production method, bischloroformate composition-containing solution, polycarbonate resin, polycarbonate resin production method, coating liquid, electrophotographic photoreceptor, and electrophotographic device
US10732527B2 (en) 2017-02-20 2020-08-04 Fuji Electric Co., Ltd. Electrophotographic photoreceptor, method for manufacturing same, and electrophotographic apparatus using same
WO2018150693A1 (ja) * 2017-02-20 2018-08-23 富士電機株式会社 電子写真感光体、その製造方法およびそれを用いた電子写真装置
JPWO2018150693A1 (ja) * 2017-02-20 2019-06-27 富士電機株式会社 電子写真感光体、その製造方法およびそれを用いた電子写真装置
WO2018230100A1 (ja) * 2017-06-12 2018-12-20 京セラドキュメントソリューションズ株式会社 電子写真感光体の製造方法
JPWO2018230100A1 (ja) * 2017-06-12 2020-03-19 京セラドキュメントソリューションズ株式会社 電子写真感光体の製造方法
JPWO2019159342A1 (ja) * 2018-02-16 2020-02-27 富士電機株式会社 電子写真用感光体、その製造方法および電子写真装置
US10747129B2 (en) 2018-02-16 2020-08-18 Fuji Electric Co., Ltd. Electrophotographic photoconductor, method of manufacturing the same, and electrophotographic apparatus
WO2019159342A1 (ja) * 2018-02-16 2019-08-22 富士電機株式会社 電子写真用感光体、その製造方法および電子写真装置
WO2021201226A1 (ja) * 2020-04-01 2021-10-07 出光興産株式会社 ポリカーボネート共重合体、塗工液、電子写真感光体、ポリカーボネート共重合体の製造方法、および電気機器
WO2021201225A1 (ja) * 2020-04-01 2021-10-07 出光興産株式会社 ポリカーボネート共重合体、塗工液、電子写真感光体、ポリカーボネート共重合体の製造方法、および電気機器

Also Published As

Publication number Publication date
CN105246944B (zh) 2018-06-22
US9551946B2 (en) 2017-01-24
TW201446833A (zh) 2014-12-16
JPWO2014192633A1 (ja) 2017-02-23
KR20160011627A (ko) 2016-02-01
EP3006483A1 (en) 2016-04-13
CN105246944A (zh) 2016-01-13
JP6441793B2 (ja) 2018-12-19
EP3006483B1 (en) 2018-01-03
US20160116854A1 (en) 2016-04-28
TWI624491B (zh) 2018-05-21
EP3006483A4 (en) 2017-01-04

Similar Documents

Publication Publication Date Title
JP5711902B2 (ja) ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
JP6441793B2 (ja) ポリカーボネート共重合体、それを用いた塗工液、成形体、および電子写真感光体
JP6093342B2 (ja) ポリカーボネート共重合体
JP6530448B2 (ja) ポリカーボネート共重合体の製造方法、ポリカーボネート共重合体、塗工液及び電子写真感光体
JP5802742B2 (ja) 電子写真感光体及び樹脂組成物
JP5680887B2 (ja) ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
WO2012115088A1 (ja) ポリカーボネート共重合体、それを用いた塗工液、電子写真感光体、およびポリカーボネート共重合体の製造方法
WO2017204339A1 (ja) 樹脂組成物、電子写真感光体、および電子写真装置
JP5349709B1 (ja) ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
JP5014390B2 (ja) ポリカーボネート共重合体、成形体、光学材料および電子写真感光体
JP6634011B2 (ja) ポリカーボネート共重合体、塗工液、電子写真感光体、および電気機器
JP4521022B2 (ja) ポリカーボネート共重合体、成形体、光学材料および電子写真感光体
JP5680886B2 (ja) ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
JP4473903B2 (ja) 電子写真感光体用ポリカーボネート共重合体を含む電子写真感光体
JP2008121009A (ja) ポリカーボネート共重合体、その製造方法および電子写真感光体
WO2021201225A1 (ja) ポリカーボネート共重合体、塗工液、電子写真感光体、ポリカーボネート共重合体の製造方法、および電気機器
WO2021201226A1 (ja) ポリカーボネート共重合体、塗工液、電子写真感光体、ポリカーボネート共重合体の製造方法、および電気機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804348

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519821

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157032188

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14893729

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014804348

Country of ref document: EP