WO2021201226A1 - ポリカーボネート共重合体、塗工液、電子写真感光体、ポリカーボネート共重合体の製造方法、および電気機器 - Google Patents

ポリカーボネート共重合体、塗工液、電子写真感光体、ポリカーボネート共重合体の製造方法、および電気機器 Download PDF

Info

Publication number
WO2021201226A1
WO2021201226A1 PCT/JP2021/014162 JP2021014162W WO2021201226A1 WO 2021201226 A1 WO2021201226 A1 WO 2021201226A1 JP 2021014162 W JP2021014162 W JP 2021014162W WO 2021201226 A1 WO2021201226 A1 WO 2021201226A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
represented
polycarbonate copolymer
group
carbon atoms
Prior art date
Application number
PCT/JP2021/014162
Other languages
English (en)
French (fr)
Inventor
賢吾 平田
一徳 千葉
高明 彦坂
森下 浩延
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2022512701A priority Critical patent/JPWO2021201226A1/ja
Publication of WO2021201226A1 publication Critical patent/WO2021201226A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • C08G64/08Aromatic polycarbonates not containing aliphatic unsaturation containing atoms other than carbon, hydrogen or oxygen
    • C08G64/12Aromatic polycarbonates not containing aliphatic unsaturation containing atoms other than carbon, hydrogen or oxygen containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D169/00Coating compositions based on polycarbonates; Coating compositions based on derivatives of polycarbonates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers

Definitions

  • the present invention relates to a polycarbonate copolymer, a coating liquid, an electrophotographic photosensitive member, a method for producing a polycarbonate copolymer, and an electric device.
  • Polycarbonate resins are excellent in mechanical, thermal, and electrical properties. Therefore, polycarbonate resins have been used as materials for molded products and the like in various industrial fields. In recent years, polycarbonate resins have been widely used in the field of functional products by utilizing the above-mentioned properties of polycarbonate resins as well as optical properties. With the expansion of such applications and fields, the performance required for polycarbonate resins is also diversifying. In response to such demands for polycarbonate resins, conventionally used raw materials (for example, 2,2-bis (4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, etc.) are used. Polycarbonate resin obtained by simply polycondensing may not be sufficient. Therefore, polycarbonate copolymers having various chemical structures have been proposed according to their uses and required properties.
  • raw materials for example, 2,2-bis (4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, etc.
  • an electrophotographic photosensitive member in which the polycarbonate resin is used as a binder resin for a functional material such as a charge generating material and a charge transport material.
  • the electrophotographic photosensitive member is required to have predetermined sensitivity, electrical characteristics, and optical characteristics depending on the electrophotographic process.
  • various operations for example, corona charging, toner development, transfer to paper, cleaning treatment, etc.
  • electricity is applied each time these operations are performed.
  • At least one of a physical external force and a mechanical external force is applied. Therefore, in order to maintain the image quality of an electrophotographic photograph for a long period of time, the photosensitive layer provided on the surface of the electrophotographic photosensitive member is required to have durability against these external forces.
  • a polycarbonate resin made from 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) cyclohexane, or the like has been used as a binder resin for a photoconductor, but it is durable. It was not enough in terms of sex. Therefore, various methods have been adopted in order to meet the demand for high durability of the binder resin for the photoconductor.
  • Copolymerized polycarbonate is known as an effective technique for improving the abrasion resistance of the photosensitive layer of an electrophotographic photosensitive member.
  • Patent Document 1 describes a polycarbonate obtained by polycondensing a biphenol having a rigid skeleton and a bischlorohomete oligomer derived from a dimeric phenol compound having a dimer to tetramer number. Polymers are listed. It is described that the copolymerization ratio of the biphenol component in the polycarbonate copolymer is close to 25 mol%.
  • Patent Document 2 and Patent Document 3 a bischlorohomete oligomer derived from a dimeric phenol compound having a dimer to a dimer number and a dimer phenol compound containing biphenol or the like are described. Polyphenolic copolymers obtained by polycondensation are described. It is described that the copolymerization ratio of biphenol or the like in the polycarbonate copolymer is close to 50 mol%.
  • Patent Document 4 describes an electrophotographic photosensitive member containing a specific charge generating substance and a specific polycarbonate resin in the photosensitive layer, and the specific polycarbonate resin has a terphenyl skeleton that is more rigid than biphenol. It is described that it is a polycarbonate copolymer having a repeating unit containing an anthracene skeleton and a repeating unit containing a bisphenol skeleton.
  • Patent Document 5 describes a polycarbonate copolymer having a structural unit containing a p-terphenyl skeleton.
  • Japanese Unexamined Patent Publication No. 4-179961 Japanese Unexamined Patent Publication No. 2011-26574 Japanese Unexamined Patent Publication No. 2011-26575 Japanese Unexamined Patent Publication No. 9-43882 Japanese Unexamined Patent Publication No. 6-56982
  • the polycarbonate copolymer described in Patent Document 1 is produced by copolymerizing a bisphenol Z skeleton having good solubility and a biphenol having good wear resistance.
  • the polycarbonate copolymer is produced using a raw material having a dimer to tetramer number of oligomers. Therefore, the copolymerization ratio of the biphenol component in the polycarbonate copolymer is limited to about 23 mol%, and the abrasion resistance is insufficient.
  • the polycarbonate copolymers described in Patent Documents 2 and 3 are produced from raw materials in which the number of oligomers is reduced. Therefore, the copolymerization ratio of the skeleton such as biphenol in the polycarbonate copolymer is improved from 25 mol% to 47 mol%. However, even the polycarbonate copolymers described in Patent Documents 2 and 3 are wear-resistant in order to satisfy the need for high durability against mechanical deterioration that occurs when a toner containing a large amount of an external additive is used. Not enough sex.
  • the polycarbonate copolymers described in Patent Documents 4 and 5 are copolymerized with a terphenyl skeleton which is a skeleton such as terphenyl which is more rigid than biphenol or the like and is expected to improve durability.
  • a terphenyl skeleton which is a skeleton such as terphenyl which is more rigid than biphenol or the like and is expected to improve durability.
  • the structure and composition of the polycarbonate copolymer have not been optimized for applications requiring abrasion resistance, and the abrasion resistance is insufficient.
  • the polycarbonate copolymer is required to have good solubility in the organic solvent.
  • An object of the present invention is a polycarbonate copolymer having excellent wear resistance and good solubility in an organic solvent, a method for producing the polycarbonate copolymer, a coating liquid using the polycarbonate copolymer, and the polycarbonate. It is an object of the present invention to provide an electrophotographic photosensitive member using a copolymer and an electric device using the electrophotographic photosensitive member.
  • the polycarbonate copolymer according to one aspect of the present invention has a repeating unit A represented by the following general formula (1) and a repeating unit B represented by the following general formula (2), and has the following general formula. It is obtained by using at least one of the bischlorohomet oligomer represented by the formula (1A) and the bischlorohomet oligomer represented by the following general formula (2A) as raw materials.
  • the average number n 1 of the bischlorohomet oligomer represented by the general formula (1A) is 1.0 or more and 1.3 or less.
  • the average number n 2 of the bischlorohomet oligomer represented by the general formula (2A) is 1.0 or more and 1.3 or less.
  • Ar 1 is a group represented by the following general formula (3).
  • Ar 2 is a group represented by the following general formula (4).
  • R 11 to R 18 and R 21 to R 28 are independent hydrogen atoms or substituents, respectively.
  • R 11 to R 18 and R 21 to R 28 as substituents are independent of each other.
  • An unsubstituted alkyl group having 1 to 2 carbon atoms An unsubstituted fluoroalkyl group having 1 to 2 carbon atoms, It is an unsubstituted alkoxy group having 1 to 2 carbon atoms.
  • R 19 and R 20 are independent hydrogen atoms or substituents, respectively.
  • R 19 and R 20 as substituents are independent of each other. It is an unsubstituted alkyl group having 1 to 2 carbon atoms.
  • X 2 and X 3 are independent of each other CR 100 or nitrogen atom, R 100 is, A hydrogen atom or an unsubstituted alkyl group having 1 to 2 carbon atoms.
  • X 1 is -CR 3 R 4- Group represented by-, Substituted or unsubstituted cycloalkylidene group having 5 to 6 carbon atoms, A substituted or unsubstituted bicyclohydrocarbon diyl group having 7 to 10 carbon atoms or a substituted or unsubstituted tricyclohydrocarbon diyl group having 10 to 16 carbon atoms.
  • R 3 and R 4 are independently hydrogen atoms or substituents, respectively.
  • R 3 and R 4 as substituents are independent of each other.
  • Ar 1 is a group represented by the general formula (3), and n 1 represents the average number of dimers.
  • Ar 2 is a group represented by the general formula (4), and n 2 represents the average number of dimers.
  • the method for producing a polycarbonate copolymer according to one aspect of the present invention is to produce a polycarbonate copolymer by the following synthetic reaction (CS1), (CS2) or (CS3).
  • CS1 The bischlorohomet oligomer represented by the following general formula (1A) and the divalent phenolic compound represented by the following general formula (6) are interfacial polycondensed in the presence of an acid binder.
  • CS2A The bischlorohomet oligomer represented by the following general formula (2A) and the divalent phenolic compound represented by the following general formula (5) are interfacial polycondensed in the presence of an acid binder.
  • the bischlorohomet oligomer represented by the following general formula (1A) and the bischlorohomete oligomer represented by the following general formula (2A) are mixed and represented by the following general formula (1A).
  • a mixture of a bischlorohomet oligomer and a bischlorohomete oligomer represented by the following general formula (2A) is represented by a divalent phenolic compound represented by the following general formula (5) or a following general formula (6).
  • Divalent phenolic compounds are polycondensed at the interface.
  • Ar 1 is a group represented by the following general formula (3)
  • Ar 2 is the following general formula. It is a group represented by (4).
  • n 1 represents the average number of dimers, which is 1.0 or more and 1.3 or less.
  • n 2 represents the average number of dimers, and is 1.0 or more and 1.3 or less.
  • R 11 to R 18 and R 21 to R 28 are independent hydrogen atoms or substituents, respectively.
  • R 11 to R 18 and R 21 to R 28 as substituents are independent of each other.
  • An unsubstituted alkyl group having 1 to 2 carbon atoms An unsubstituted fluoroalkyl group having 1 to 2 carbon atoms, It is an unsubstituted alkoxy group having 1 to 2 carbon atoms.
  • R 19 and R 20 are independent hydrogen atoms or substituents, respectively.
  • R 19 and R 20 as substituents are independent of each other. It is an unsubstituted alkyl group having 1 to 2 carbon atoms.
  • X 2 and X 3 are independent of each other CR 100 or nitrogen atom, R 100 is, A hydrogen atom or an unsubstituted alkyl group having 1 to 2 carbon atoms.
  • X 1 is -CR 3 R 4- Group represented by-, Substituted or unsubstituted cycloalkylidene group having 5 to 6 carbon atoms, A substituted or unsubstituted bicyclohydrocarbon diyl group having 7 to 10 carbon atoms or a substituted or unsubstituted tricyclohydrocarbon diyl group having 10 to 16 carbon atoms.
  • R 3 and R 4 are independently hydrogen atoms or substituents, respectively.
  • R 3 and R 4 as substituents are independent of each other.
  • the coating liquid according to one aspect of the present invention contains a polycarbonate copolymer according to one aspect of the present invention and an organic solvent.
  • the electrophotographic photosensitive member according to one aspect of the present invention includes a polycarbonate copolymer according to one aspect of the present invention.
  • the electrophotographic photosensitive member according to one aspect of the present invention includes a substrate and a photosensitive layer provided on the substrate, and the photosensitive layer includes a polycarbonate copolymer according to one aspect of the present invention.
  • the electrical device according to one aspect of the present invention has an electrophotographic photosensitive member according to one aspect of the present invention.
  • a polycarbonate copolymer having excellent wear resistance and good solubility in an organic solvent a method for producing the polycarbonate copolymer, a coating liquid using the polycarbonate copolymer, and the polycarbonate. It is possible to provide an electrophotographic photosensitive member using a copolymer and an electric device using the electrophotographic photosensitive member.
  • a polycarbonate copolymer having excellent wear resistance By using at least one of the bischlorohomet oligomers (bischlorohomet oligomers derived from the repeating unit B represented by the general formula (2)) having the above as a raw material, a polycarbonate copolymer having excellent wear resistance
  • the present invention was completed by finding that The bischlorohomet oligomer having the p-terphenyl skeleton and the bischlorohomet oligomer having the bisphenol skeleton are both adjusted to have an average number of 1.0 or more and 1.3 or less, and are low-mer. It is a number.
  • the present inventors have also confirmed that excellent wear resistance is related to good yield stress and elastic power.
  • the present inventors use at least one of a bischloroformate oligomer having a p-terphenyl skeleton and a bischlorohomet oligomer having a bisphenol skeleton as raw materials, so that p-is highly crystalline and rigid. Even when the terphenyl skeleton is contained in a relatively high proportion, it is possible to obtain a polycarbonate copolymer which has good solubility in an organic solvent, can suppress crystallization, and can suppress white turbidity of the solution due to crystallization. I found it.
  • Example 10 and the like of Patent Document 2 Japanese Unexamined Patent Publication No. 2011-26574
  • a low-molecular-weight bischlorohomet oligomer having a dimeric aromatic group of bisphenol Z is reacted with a biphenol monomer.
  • the polycarbonate copolymers used are described.
  • the polycarbonate copolymer of the present embodiment has better wear resistance than the polycarbonate copolymer described in Patent Document 2 (Japanese Unexamined Patent Publication No. 2011-26574), and yield stress and elastic work related to wear. The rate is also good.
  • the polycarbonate copolymer of the present embodiment has good solubility in an organic solvent even when it contains a highly crystalline and rigid p-terphenyl skeleton in a relatively high proportion. Crystallization can be suppressed, and white turbidity of the solution due to crystallization can be suppressed. Therefore, the polycarbonate copolymer of the present embodiment has good abrasion resistance even in the electrophotographic photosensitive member application, and the electrophotographic photosensitive member using the polycarbonate copolymer has good electrophotographic properties. Can be expressed.
  • the polycarbonate copolymer according to the embodiment of the present invention (hereinafter, the polycarbonate copolymer may be simply referred to as "PC copolymer”), the coating liquid using the PC copolymer, and the present invention.
  • PC copolymer polycarbonate copolymer
  • An electrophotographic photosensitive member using a PC copolymer and an electric device using the electrophotographic photosensitive member will be described in detail.
  • the numerical range represented by using "-” means a range including a numerical value before "-" as a lower limit value and a numerical value after "-" as an upper limit value. do.
  • the PC copolymer of the present embodiment has a repeating unit A represented by the following general formula (1) and a repeating unit B represented by the following general formula (2), and has the following general formula (1A).
  • a repeating unit A represented by the following general formula (1) and a repeating unit B represented by the following general formula (2), and has the following general formula (1A).
  • at least one of the bischlorohomete oligomer represented by the following general formula (2A) can be obtained as a raw material.
  • the average number n 1 of the bischlorohomet oligomer represented by the general formula (1A) is 1.0 or more and 1.3 or less.
  • the average number n 2 of the bischlorohomet oligomer represented by the general formula (2A) is 1.0 or more and 1.3 or less.
  • Ar 1 is a group represented by the following general formula (3)
  • Ar 2 is a group represented by the following general formula (4). * Indicates the connection position.
  • R 11 to R 18 and R 21 to R 28 are independent hydrogen atoms or substituents, respectively.
  • R 11 to R 18 and R 21 to R 28 as substituents are independent of each other.
  • An unsubstituted alkyl group having 1 to 2 carbon atoms An unsubstituted fluoroalkyl group having 1 to 2 carbon atoms, It is an unsubstituted alkoxy group having 1 to 2 carbon atoms.
  • R 19 and R 20 are independent hydrogen atoms or substituents, respectively.
  • R 19 and R 20 as substituents are independent of each other. It is an unsubstituted alkyl group having 1 to 2 carbon atoms.
  • X 2 and X 3 are independent of each other CR 100 or nitrogen atom, R 100 is, A hydrogen atom or an unsubstituted alkyl group having 1 to 2 carbon atoms.
  • X 1 is -CR 3 R 4- Group represented by-, Substituted or unsubstituted cycloalkylidene group having 5 to 6 carbon atoms, A substituted or unsubstituted bicyclohydrocarbon diyl group having 7 to 10 carbon atoms or a substituted or unsubstituted tricyclohydrocarbon diyl group having 10 to 16 carbon atoms.
  • R 3 and R 4 are independently hydrogen atoms or substituents, respectively.
  • R 3 and R 4 as substituents are independent of each other.
  • Ar 1 is a group represented by the general formula (3), and n 1 represents the average number of dimers.
  • Ar 2 is a group represented by the general formula (4), and n 2 represents the average number of dimers.
  • the hydrogen atom includes isotopes having different numbers of neutrons, that is, hydrogen (protium), deuterium (deuterium), and tritium (tritium).
  • examples of the alkyl group having 1 to 2 carbon atoms constituting R 11 to R 20 , R 21 to R 28 and R 100 include a methyl group and an ethyl group. It is preferably a methyl group.
  • the fluoroalkyl group having 1 to 2 carbon atoms constituting R 11 to R 18 and R 21 to R 28 is 1 in the above alkyl group having 1 to 2 carbon atoms.
  • a group substituted with two or more fluorine atoms can be mentioned. It is preferably a perfluoroalkyl group, and examples thereof include a trifluoromethyl group.
  • examples of the alkoxy group having 1 to 2 carbon atoms constituting R 11 to R 18 and R 21 to R 28 include a methoxy group and an ethoxy group.
  • examples of the alkyl group having 1 to 3 carbon atoms constituting R 3 and R 4 include linear alkyl and branched alkyl. For example, a methyl group, an ethyl group, and various propyl groups can be mentioned. It is preferably a methyl group.
  • examples of the fluoroalkyl group having 1 to 3 carbon atoms constituting R 3 and R 4 1 or 2 or more fluorine atoms are added to the above alkyl group having 1 to 3 carbon atoms. Examples include groups substituted with. It is preferably a perfluoroalkyl group, and examples thereof include a trifluoromethyl group.
  • examples of the aryl group having 6 to 12 ring-forming carbon atoms constituting R 3 and R 4 include a phenyl group, a biphenyl group and a naphthyl group.
  • examples of the cycloalkylidene group having 5 to 6 carbon atoms constituting X 1 include a cyclopentylidene group, a cyclohexylidene group, and a 3,5,5-trimethylcyclohexi.
  • examples include silidene groups.
  • a bicyclohydrocarbon diyl group is a divalent group derived by removing two hydrogen atoms from a bicyclohydrocarbon.
  • examples of the bicyclohydrocarbon diyl group having 7 to 10 carbon atoms constituting X 1 include decahydronaphthalene (bicyclo [44.0] decane) and norbornane ( Bicyclo [2.2.1] heptane), bornane, bicyclo [4.2.0] octane, bicyclo [4.3.0] nonane, bicyclo [3.3.1] nonane, perhydroazulene, etc. Examples include divalent groups derived from.
  • a tricyclohydrocarbon diyl group is a divalent group derived by removing two hydrogen atoms from a tricyclohydrocarbon.
  • examples of the tricyclohydrocarbon diyl group having 10 to 16 carbon atoms constituting X 1 include perhydroanthracene, 10,10-dimethyl-2,3,4,4a. , 5, 6, 7, 8, 8a, 9, 9a, 10a-dodecahydro-1H-anthracene, perhydrofluorene, tricyclo [8.5.0.0 2,8 ] pentadecane, exo-tricyclo [5.5. Examples thereof include divalent groups derived from either 5.0 2,6 ] decane, endo-tricyclo [5.5.5.0 2,6] decane, and the like.
  • examples of the substituent in the case of "substituted or unsubstituted” include an aryl group having 6 to 12 ring-forming carbon atoms (for example, a phenyl group, a biphenyl group, a naphthyl group, etc.) and a ring-forming atom.
  • heteroaryl groups eg, pyridyl group, etc.
  • alkyl groups with 1 to 20 carbon atoms eg, methyl group, ethyl group, n-propyl group, isopropyl group, etc.
  • fluoro 1 to 20 carbon atoms At least one group selected from the group consisting of an alkyl group (eg, fluoromethyl group, difluoromethyl group, etc.), an alkoxy group having 1 to 20 carbon atoms (eg, methoxy group, ethoxy group, etc.), and a halogen atom can be mentioned. Be done.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and the like.
  • the substituent in the case of "substituted or unsubstituted” is, for example, an aryl group having 6 to 12 ring-forming carbon atoms, a heteroaryl group having 5 to 12 ring-forming atoms, and an alkyl having 1 to 20 carbon atoms. It may be further substituted with at least one group selected from the group consisting of a group, a fluoroalkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and a halogen atom.
  • the abundance ratio represented by Ar 1 / (Ar 1 + Ar 2 ) is preferably 30 mol% or more and 55 mol% or less, more preferably 35 mol% or more and 45 mol% or less. More preferably, it is 38 mol% or more and 43 mol% or less.
  • the abundance ratio represented by Ar 1 / (Ar 1 + Ar 2 ) is 30 mol% or more, the effect of improving wear resistance is likely to be exhibited.
  • the abundance ratio represented by Ar 1 / (Ar 1 + Ar 2 ) is 55 mol% or less, crystallization of a highly regular p-terphenyl structure is less likely to occur, and the solubility in an organic solvent is reduced. It is suppressed.
  • the above mol% is a value indicating the molar copolymer composition as a percentage.
  • the molar copolymer composition can be measured from the nuclear magnetic resonance spectrum, and specifically, can be obtained by the method described in Examples.
  • the abundance ratio represented by Ar 2 / (Ar 1 + Ar 2 ) is preferably 45 mol% or more and 70 mol% or less, more preferably 55 mol% or more and 65 mol% or less. More preferably, it is 57 mol% or more and 62 mol% or less.
  • the abundance ratio represented by Ar 2 / (Ar 1 + Ar 2 ) is 45 mol% or more, crystallization of a highly regular p-terphenyl structure is less likely to occur, and the solubility in an organic solvent is reduced. It is suppressed.
  • the abundance ratio represented by Ar 2 / (Ar 1 + Ar 2 ) is 70 mol% or less, the effect of improving wear resistance is likely to be exhibited.
  • X 2 and X 3 are preferably CR 100 and more preferably CH, respectively.
  • X 1 is a group represented by ⁇ CR 3 R 4 ⁇ , or a substituted or unsubstituted cycloalkylidene group having 5 to 6 carbon atoms. It is preferably present, and more preferably a substituted or unsubstituted cycloalkylidene group having 5 to 6 carbon atoms.
  • X 1 is -CR 3 R 4 - is a group represented by, R 3 and R 4 each independently is preferably an unsubstituted alkyl group having 1 to 3 carbon atoms.
  • R 11 to R 18 and R 21 to R 28 are preferably hydrogen atoms or unsubstituted alkyl groups having 1 to 2 carbon atoms, respectively.
  • R 11 and R 16 are the same.
  • R 12 and R 15 are the same.
  • R 13 and R 18 are the same.
  • R 14 and R 17 are the same.
  • R 19 and R 20 are the same.
  • X 2 and X 3 are preferably identical.
  • R 21 and R 26 are the same.
  • R 22 and R 25 are the same.
  • R 23 and R 28 are the same.
  • R 24 and R 27 are the same.
  • R 3 and R 4 are different from each other.
  • the PC copolymer having the repeating unit A represented by the general formula (1) and the repeating unit B represented by the general formula (2) the one represented by the following general formula (100) is used. preferable.
  • a represents the molar copolymer weight ratio in the repeating unit A
  • b represents the molar copolymer weight ratio in the repeating unit B.
  • a is Ar 1 / (Ar 1 + Ar 2 )
  • b is Ar 2 / (Ar 1 + Ar 2 ).
  • Ar 1 / (Ar 1 + Ar 2 ) as the abundance ratio is represented by the molar percentage of Ar 1.
  • Ar 1 / (Ar 1 + Ar 2 ) as the molar copolymerization ratio is represented by the mole fraction of Ar 1. The same applies to the abundance ratio of Ar 2 and the molar copolymerization ratio.
  • each repeating unit is not always continuous.
  • the PC copolymer represented by the general formula (100) may be any of an alternating copolymer, a random copolymer and the like.
  • Ar 1 is 2,5-bis (4-hydroxyphenyl) -3,6-dimethylpyrazine, 2', 5'-dimethyl-[ 1,1';4',1'']Terphenyl-4,4''-diol, and 3,3''-dimethyl-4,4''-dihydroxy-p-terphenyl derived from either It is preferably a divalent group.
  • the divalent group derived from 2,5-bis (4-hydroxyphenyl) -3,6-dimethylpyrazine is a group represented by the following general formula (3-1).
  • the divalent group derived from 2', 5'-dimethyl- [1,1';4',1'']terphenyl-4,4''-diol is given by the following general formula (3-2). It is the group represented. 3,3''-dimethyl-4,4''-dihydroxy-p-terphenyl is a group represented by the following general formula (3-3).
  • examples of Ar 1 include groups represented by the following general formulas (3-1) to (3-4). * Indicates the bonding position.
  • Ar 2 is preferably a group represented by the following general formula (4A).
  • R 21 to R 28 are independently synonymous with R 21 to R 28 in the general formula (4). * Indicates a bonding position.
  • examples of Ar 2 include groups represented by the following general formulas (4-1) to (4-6). * Indicates the bonding position.
  • the general formula (1A) bischloroformate oligomer represented by the average amount body number n 1 is in the range of 1.0 to 1.3, and the average
  • the bischlorohomet oligomers represented by the general formula (2A) having a polymer number n 2 in the range of 1.0 or more and 1.3 or less a highly crystalline Ar 1 skeleton can be obtained.
  • the triplet fraction of triplet AAA (structural unit AAA composed of three consecutively arranged repeating units A) in the PC copolymer should be suppressed to 5 mol% or less. Can be done. As a result, the crystallization of the PC copolymer can be suppressed, so that the PC copolymer having good solubility in an organic solvent can be obtained.
  • any one of the repeating unit A represented by the general formula (1) and the repeating unit B represented by the general formula (2) is continuously arranged in three.
  • Structural units ABA, BAA, AAA, AAB, BBA, BAB, ABB, and BBB are defined as triplets, respectively.
  • the number of moles of each triplet with respect to the total number of moles of all triplets is shown as a percentage. Define.
  • a total of eight triplets represented by AAA, AAB, BBA, BAB, ABB, and BBB are included. exist.
  • the number of moles of each triplet in the total number of moles of eight triplets is expressed as a percentage, which is the triplet fraction.
  • any one of the repeating unit A represented by the general formula (1) and the repeating unit B represented by the general formula (2) is continuously arranged side by side.
  • the structural units AA, BB, AB, and BA are defined as double elements.
  • the number of moles of each twin is defined as a percentage with respect to the total number of moles of all the duplexes (AA, BB, AB, and BA).
  • the 13 C-NMR spectrum shows that ⁇ , ⁇ , ⁇ , and ⁇ in the following general formula.
  • the carbon at the 4-position shown is influenced by the left and right skeletons and shows a unique shift value. In the case of the following general formula, it is affected by the left and right A skeletons. This makes it possible to know at a percentage how much each of the triplet patterns represented by ABA, BAA, AAA, AAB, BBA, BAB, ABB, and BBB is included.
  • the C-NMR spectrum is measured, for example, under the following measurement conditions.
  • any one of the repeating unit A represented by the general formula (1) and the repeating unit B represented by the general formula (2) is continuously arranged in three.
  • the structural units ABA, BAA, AAA, AAB, BBA, BAB, ABB, and BBB are defined as triplets, the total represented by ABA, BAA, AAA, AAB, BBA, BAB, ABB, and BBB.
  • the percentage of the number of moles of triplets represented by AAA to the total number of moles of eight types of triplets (triplet fraction) is preferably 3 mol% or less, more preferably 2 mol% or less, still more preferable. Is less than 1 mol%.
  • any one of the repeating unit A represented by the general formula (1) and the repeating unit B represented by the general formula (2) is continuously arranged side by side.
  • the structural units AA, BB, AB, and BA are defined as doubles, they are represented by AA for the total number of moles of the total of four types of doubles represented by AA, BB, AB, and BA.
  • the percentage of the number of moles of the double-coupled compound (double-coupled component) is preferably 5 mol% or less, more preferably 3 mol% or less, still more preferably 1 mol% or less.
  • the percentage of the number of moles of the duplex represented by AA (percentage of duplex) is 5 mol% or less, the crystallinity of the resin is lowered and the solubility in an organic solvent is improved. As a result, the compatibility with the charge transport material and the like is improved, and the wear resistance and the electrical characteristics of the photoconductor are further improved.
  • the PC copolymer of the present embodiment is dissolved in THF (tetrahydrofuran) at a solid content concentration of 10% by mass, and the HAZE value of the solution is 3% or less.
  • the HAZE value is more preferably 2% or less, still more preferably 1% or less.
  • the method for measuring the HAZE value include the methods described in Examples described later.
  • the PC copolymer of the present embodiment preferably has a yield stress of 70% or more at a tensile speed of 1 mm / min.
  • the yield stress is more preferably 72% or more, still more preferably 75% or more.
  • the yield stress is 70% or more, a PC copolymer having further improved wear resistance can be obtained. Examples of the method for measuring the yield stress include the methods described in Examples described later.
  • the PC copolymer of the present embodiment preferably has a Martens hardness of 160 MPa or more when the load is set to 0.6 N in the nanoindentation test.
  • the Martens hardness is more preferably 170 MPa or more, still more preferably 180 MPa or more.
  • the Martens hardness is 160 MPa or more, it also contributes to the improvement of abrasion resistance, but a PC copolymer having good toner adhesion resistance when used as a binder resin for a photoconductor can be obtained. Examples of the method for measuring the Martens hardness include the methods described in Examples described later.
  • the PC copolymer of the present embodiment preferably has an elastic power of 46% or more when the load is set to 0.6N.
  • the elastic power is more preferably 47% or more, still more preferably 48% or more.
  • a PC copolymer having further improved wear resistance can be obtained. Examples of the method for measuring the elastic power include the methods described in Examples described later.
  • the amount of weight loss of the film sample is preferably 3.0 mg or less.
  • the amount of mass loss is more preferably 2.5 mg or less, still more preferably 2.0 mg or less.
  • the mass reduction amount is 3.0 mg or less, a PC copolymer having further improved wear resistance can be obtained. Examples of the method for measuring the amount of mass loss include the methods described in Examples described later.
  • the reduced viscosity [ ⁇ SP / C] of the PC copolymer is a value at 20 ° C. of a methylene chloride solution of the PC copolymer having a concentration of 0.5 g / dL.
  • the reduced viscosity [ ⁇ SP / C] of the PC copolymer of the present embodiment is preferably 0.1 dL / g or more and 5 dL / g or less, more preferably 0.2 dL / g or more and 3 dL / g or less, and further preferably 0. .3 dL / g or more and 2.5 dL / g or less.
  • the reduced viscosity [ ⁇ SP / C] of the PC copolymer is 0.1 dL / g or more, sufficient wear resistance can be obtained when used as an electrophotographic photosensitive member or the like.
  • the reduced viscosity [ ⁇ SP / C] of the PC copolymer is 5 dL / g or less, it is possible to maintain an appropriate coating viscosity when producing a molded product such as an electrophotographic photosensitive member from the coating liquid. It is possible to increase the productivity of molded products such as electrophotographic photosensitive members. Examples of the method for measuring the reduced viscosity include the methods described in Examples described later.
  • the PC copolymer of the present embodiment preferably has a chain end sealed with a monovalent aromatic group or a monovalent fluorine-containing aliphatic group from the viewpoint of improving electrical properties.
  • the monovalent aromatic group may be a group containing an aliphatic group such as an alkyl group.
  • the monovalent fluorine-containing aliphatic group may be a group containing an aromatic group.
  • a substituent such as an alkyl group, a halogen atom, and an aryl group may be added to the monovalent aromatic group and the monovalent fluorine-containing aliphatic group.
  • Substituents such as an alkyl group, a halogen atom, and an aryl group may be further added to these substituents. Further, when there are a plurality of substituents, these substituents may be bonded to each other to form a ring.
  • the monovalent aromatic group constituting the chain end preferably contains an aryl group having 6 to 12 carbon atoms.
  • Examples of such an aryl group include a phenyl group and a biphenyl group.
  • Examples of the substituent added to the aromatic group and the substituent added to the alkyl group added to the aromatic group include halogen atoms such as a fluorine atom, a chlorine atom, and a bromine atom.
  • Examples of the substituent added to the aromatic group include an alkyl group having 1 to 20 carbon atoms. This alkyl group may be a group to which a halogen atom is added as described above, or may be a group to which an aryl group is added.
  • Examples of the monovalent fluorine-containing aliphatic group constituting the chain end include a monovalent group derived from a fluorine-containing alcohol.
  • the fluorine-containing alcohol As the fluorine-containing alcohol, a fluorine-containing alcohol having a total number of fluorine atoms of 13 to 19 in which a plurality of fluoroalkyl chains having 2 to 6 carbon atoms are linked via an ether bond is preferable.
  • the total number of fluorine atoms When the total number of fluorine atoms is 13 or more, sufficient water repellency and oil repellency can be exhibited.
  • the total number of fluorine atoms is 19 or less, the decrease in reactivity during polymerization can be suppressed, and the mechanical strength, surface hardness, heat resistance and the like of the obtained PC copolymer can be improved.
  • the monovalent fluorine-containing aliphatic group a monovalent group derived from a fluorine-containing alcohol having two or more ether bonds is also preferable.
  • a fluorine-containing alcohol By using such a fluorine-containing alcohol, the dispersibility of the PC copolymer in the coating liquid is improved, the abrasion resistance in the molded product and the electrophotographic photosensitive member is improved, and the surface lubricity and repellent after abrasion are improved. Can retain water and oil repellency.
  • examples of the fluorine-containing alcohol include a fluorine-containing alcohol represented by the following general formula (30) or (31), a fluorine-containing alcohol such as 1,1,1,3,3,3-hexafluoro-2-propanol, and the like.
  • a fluorine-containing alcohol via an ether bond represented by the following general formulas (32), (33), or (34) is also preferable.
  • n1 is an integer of 1 to 12
  • m1 is an integer of 1 to 12.
  • n 31 is an integer of 1 to 10, preferably an integer of 5 to 8.
  • n 32 is an integer of 0 to 5, preferably an integer of 0 to 3.
  • n 33 is an integer of 1 to 5, preferably an integer of 1 to 3.
  • n 34 is an integer of 1 to 5, preferably an integer of 1 to 3.
  • n 35 is an integer of 0 to 5, preferably an integer of 0 to 3.
  • R is CF 3 or F.
  • the chain end of the PC copolymer is a monovalent group derived from phenol represented by the following general formula (9) or the following general formula ( It is preferably sealed with a monovalent group derived from the fluorine-containing alcohol represented by 10).
  • R 10 represents an alkyl group having 1 to 10 carbon atoms or a fluoroalkyl group having 1 to 10 carbon atoms
  • p is an integer of 1 to 3.
  • R f is a perfluoroalkyl group having 5 or more carbon atoms and 11 or more fluorine atoms, or a perfluoroalkyloxy group represented by the following general formula (11). show.
  • R f2 is a linear or branched perfluoroalkyl group having 1 to 6 carbon atoms.
  • m is an integer of 1 to 3.
  • the PC copolymer of the present embodiment is suitably obtained by, for example, the following synthetic reaction (CS1), (CS2) or (CS3).
  • CS1 The bischlorohomet oligomer represented by the following general formula (1A) and the divalent phenolic compound represented by the following general formula (6) are interfacial polycondensed in the presence of an acid binder.
  • CS2 A low-molecular-weight bischlorohomet oligomer represented by the following general formula (2A) and a divalent phenolic compound represented by the following general formula (5) are interfacial weight in the presence of an acid binder. Condensate.
  • a low-dimer bischlorohomete oligomer represented by the following general formula (1A) and a low-mer bischlorohomete oligomer represented by the following general formula (2A) are mixed.
  • a mixture of a bischlorohomet oligomer represented by the following general formula (1A) and a bischlorohomete oligomer represented by the following general formula (2A) is a divalent phenolic compound represented by the following general formula (5).
  • a divalent phenolic compound represented by the following general formula (6) is polycondensed at the interface.
  • the synthesis reaction of the above (CS1) to (CS3) of the PC copolymer is carried out in the presence of at least one of the terminal encapsulant and the branching agent, if necessary.
  • Ar 1 is a group represented by the general formula (3).
  • Ar 2 is a group represented by the general formula (4).
  • n 1 indicates the average number of bischlorohomet oligomers.
  • the average number of dimers n 1 is 1.0 or more and 1.3 or less, preferably 1.0 or more and 1.2 or less, and more preferably 1.0 or more and 1.1 or less.
  • N 2 in the general formula (2A) indicates the average number of bischlorohomet oligomers.
  • the average number of dimers n 2 is 1.0 or more and 1.3 or less, preferably 1.0 or more and 1.2 or less, and more preferably 1.0 or more and 1.1 or less.
  • the general formula (1A) bischloroformate oligomer represented by the average amount body number n 1 is in the range of 1.0 to 1.3, and the average amount body number n 2 is 1.0 or more
  • the production of the PC copolymer of the present embodiment becomes easy.
  • Examples of the method for calculating the average number of dimers n 1 and the average number of dimers n 2 include the methods described in Examples described later.
  • molar ratio 1 even reacted with 1, abundance ratio of Ar 1 (Ar 1 / (Ar 1 + Ar 2)) in some cases less likely to 50 mol%. It is with a monomer containing Ar 1 (terphenyl compound represented by the general formula (5)) after forming an Ar 2 oligomer (bischlorohomet oligomer represented by the general formula (2A)). This is because during the reaction, the chlorohomate group at the terminal of the Ar 2 oligomer reacts with the base existing in the reaction system to form a hydroxyl group, which may be polycondensed with the Ar 2 oligomer at the terminal chlorine.
  • the general formula (1A) bischloroformate oligomer represented by the average amount body number n 1 is in the range of 1.0 to 1.3, and the average amount body number n 2 is 1.
  • the bischlorohomet oligomers represented by the general formula (2A) in the range of 0 or more and 1.3 or less, as described above, even a highly crystalline Ar 1 skeleton can be used.
  • the triplet fraction of the triplet AAA (structural unit AAA composed of three consecutively arranged repeating units A) in the PC copolymer can be suppressed to 5 mol% or less. As a result, the crystallization of the PC copolymer can be suppressed, so that the PC copolymer having good solubility in an organic solvent can be obtained.
  • the bischlorohomet oligomer represented by the general formula (1A) used in the method for producing a PC copolymer of the present embodiment is derived from the terphenyl compound represented by the general formula (5).
  • the bischlorohomet oligomer represented by the general formula (2A) used in the method for producing a PC copolymer of the present embodiment is derived from the divalent phenolic compound represented by the general formula (6). NS.
  • the monomer (terphenyl compound) represented by the general formula (5) which is a raw material of Ar 1 which is a constituent unit of the PC copolymer of the present embodiment, will be described.
  • Examples of the monomer (terphenyl compound) represented by the general formula (5) include 2,5-bis (3-dimethyl-4-hydroxyphenyl) -pyrazine and 2,5-bis (3-diethyl-4).
  • terphenyl compound 2,5-bis (3-dimethyl-4-hydroxyphenyl) -pyrazine, 2', 5'-dimethyl- [1,1'; 4', 1''] terphenyl- 4,4''-diol and 3,3''-dimethyl-4,4''-dihydroxy-p-terphenyl are preferable in that they provide a PC copolymer having excellent mechanical properties. Further, when applied as a PC copolymer for an electrophotographic photosensitive member, a good coating liquid can be obtained, which is preferable. These may be used alone or in combination of two or more.
  • these terphenyl compounds have a solubility of a homopolymer in methylene chloride of 2% by mass or less, and crystallize during a polycarbonate synthesis reaction by an interfacial polycondensation method to increase the number average molecular weight. It is preferable that the divalent phenol monomer is substantially impossible to synthesize 10,000 or more homopolymers.
  • the solubility in methylene chloride is 2% by mass or less is determined by 2 parts by mass of a solid homopolymer having an organic solvent content of 500% by mass or less and a viscosity average molecular weight in the range of 15,000 or more and 30,000 or less.
  • the divalent phenolic compound (comonomer) represented by the general formula (6) which is a raw material of Ar 2 which is a constituent unit of the PC copolymer of the present embodiment, will be described.
  • Examples of the divalent phenolic compound represented by the general formula (6) include bisphenol compounds.
  • 2,2-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, and 1, 1-Bis (3-methyl-4-hydroxyphenyl) cyclohexane is preferable in that it provides a PC copolymer having excellent wear resistance and solubility in an organic solvent. Further, when applied as a PC copolymer for an electrophotographic photosensitive member, a good coating liquid can be obtained, which is preferable.
  • These bisphenol compounds may be used alone or in combination of two or more.
  • a monovalent carboxylic acid and a derivative thereof, or a monovalent phenol can be used as the terminal encapsulant for producing the chain end.
  • a monovalent fluorine-containing alcohol is also preferably used. It is also preferable to use a fluorine-containing alcohol via an ether bond represented by the general formula (32), (33), or (34).
  • the end-capping agent that produces the chain end is a monovalent phenol represented by the general formula (9) or the general formula (10) from the viewpoint of improving electrical characteristics and wear resistance. It is preferable to use the represented monovalent fluorine-containing alcohol.
  • Examples of the monovalent phenol represented by the general formula (9) include p-tert-butyl-phenol, p-perfluorononylphenol, p-perfluorohexylphenol, p-tert-perfluorobutylphenol, and p. -Perfluorooctylphenol and the like are preferably used. That is, in the present embodiment, the chain end is a group consisting of p-tert-butyl-phenol, p-perfluorononylphenol, p-perfluorohexylphenol, p-tert-perfluorobutylphenol, and p-perfluorooctylphenol. It is preferably sealed with an end-capping agent selected from.
  • Examples of the fluorine-containing alcohol via the ether bond represented by the general formula (10) include the following compounds. That is, it is preferable that the chain end of the present embodiment is sealed with an end sealant selected from any of the following fluorine-containing alcohols.
  • a compound in which a monovalent organic siloxane-modified phenyl group is used as a monovalent phenol can also be preferably used.
  • the monovalent organic siloxane-modified phenyl group include a group represented by the following formula (9).
  • Z is a hydrocarbon group having 2 to 6 carbon atoms, preferably an alkylene group, and more preferably a methylene group having 2 to 4 repeating units.
  • R 41 is an aliphatic hydrocarbon group having 1 to 6 carbon atoms. It is preferably an alkyl group having 1 to 6 carbon atoms.
  • R 42 to R 45 are each independently hydrogen, an alkyl group having 1 to 12 carbon atoms substituted or unsubstituted, an alkoxy group having 1 to 12 carbon atoms substituted or unsubstituted, and a ring-forming carbon number 6 to 6 to substituted or unsubstituted. It is an aryl group of 12.
  • R 46 to R 49 are independently substituted or unsubstituted alkyl groups having 1 to 12 carbon atoms and substituted or unsubstituted aryl groups having 6 to 12 carbon atoms.
  • Examples of the substituted or unsubstituted alkyl group having 1 to 12 carbon atoms and the substituted or unsubstituted aryl group having 6 to 12 carbon atoms include R 3 and R 4 in the above general formulas (3) and (4). Examples are given in.
  • the alkyl group is preferably a methyl group.
  • the aryl group is preferably a phenyl group.
  • n is an integer of 2 to 600, and when it has a molecular weight distribution, it indicates the average number of repeating units. )
  • Examples of the monovalent organic siloxane-modified phenyl group include the following groups.
  • the ratio of the monovalent organic siloxane-modified phenyl group is preferably 0.01% by mass or more with respect to the entire PC copolymer. , More preferably 50% by mass or less. More preferably, it is 0.1% by mass or more and 20% by mass or less, and particularly preferably 0.5% by mass or more and 10% by mass or less.
  • the addition ratio of the end-capping agent is preferably 0.05 mol% or more and 30 mol% or less, more preferably 0.05 mol% or more and 30 mol% or less, as the molar percentage (copolymerization composition ratio) of the copolymerization composition of the repeating unit A, the repeating unit B, and the chain end. Is 0.1 mol% or more and 10 mol% or less.
  • the addition ratio of the end sealant is 30 mol% or less, the decrease in mechanical strength can be suppressed.
  • the addition ratio of the end sealant is 0.05 mol% or more, the deterioration of moldability can be suppressed.
  • the branching agent that can be used in the method for producing the PC copolymer of the present embodiment is not particularly limited.
  • Specific examples of the branching agent include fluoroglucin, pyrogallol, 4,6-dimethyl-2,4,6-tris (4-hydroxyphenyl) -2-heptene, 2,6-dimethyl-2,4,6- Tris (4-hydroxyphenyl) -3-heptene, 2,4-dimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (2-hydroxyphenyl) benzene, 1, 3,5-Tris (4-hydroxyphenyl) benzene, 1,1,1-Tris (4-hydroxyphenyl) ethane, Tris (4-hydroxyphenyl) phenylmethane, 2,2-bis [4,4-bis (4,4-bis) 4-Hydroxyphenyl) cyclohexyl] propane, 2,4-bis [2-bis (4-hydroxyphenyl) -2-
  • the addition ratio of the branching agent is preferably 30 mol% or less, more preferably 5 mol% or less, as a copolymerization composition ratio.
  • the addition ratio of the branching agent is 30 mol% or less, the decrease in moldability can be suppressed.
  • examples of the acid binder include alkali metal hydroxides (eg, sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide, etc.) and alkaline earth metal hydroxides (eg, sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide, etc.).
  • alkali metal hydroxides eg, sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide, etc.
  • alkaline earth metal hydroxides eg, sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide, etc.
  • magnesium hydroxide and calcium hydroxide, etc. alkali metal weak salts (eg, sodium carbonate, potassium carbonate, calcium acetate, etc.), alkaline earth metal weak salts, and organic bases (eg, pyridine, etc.). Be done.
  • Preferred acid binders for interfacial polycondensation are alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, and calcium hydroxide, and alkaline earth metal hydroxides. In addition, these acid binders can also be used as a mixture.
  • the ratio of the acid binder used may be appropriately adjusted in consideration of the stoichiometric ratio (equivalent) of the reaction. Specifically, 1 equivalent or an excess amount of the acid binder may be used per 1 mol of the total hydroxyl groups of the divalent phenol as the raw material, and preferably 1 equivalent or more and 10 or less equivalents of the acid binder are used. do it.
  • the solvent used in the method for producing the PC copolymer of the present embodiment there is no problem as long as it shows a certain level of solubility in the obtained copolymer.
  • the solvent include aromatic hydrocarbons (for example, toluene, xylene, etc.) and halogenated hydrocarbons (for example, methylene chloride, chloroform, 1,1-dichloroethane, 1,2-dichloroethane, 1,1,1-trichloroethane).
  • the catalyst used in the method for producing the PC copolymer of the present embodiment is not particularly limited.
  • tertiary amines eg, trimethylamine, triethylamine, tributylamine, N, N-dimethylcyclohexylamine, pyridine, N, N-diethylaniline, and N, N-dimethylaniline, etc.
  • quaternary ammonium salts eg, for example.
  • Trimethylbenzylammonium chloride triethylbenzylammonium chloride, tributylbenzylammonium chloride, trioctylmethylammonium chloride, tetrabutylammonium chloride, tetrabutylammonium bromide, etc.
  • quaternary phosphonium salts eg, tetrabutylphosphonium chloride and tetrabutyl.
  • Phosphonium bromide, etc. is preferable.
  • a small amount of an antioxidant such as sodium sulfite and a hydrosulfite salt may be added to the reaction system of the PC copolymer of the present embodiment.
  • the method for producing a PC copolymer of the present embodiment can be specifically implemented in various modes other than the above-mentioned method for producing a PC copolymer.
  • the terphenyl compound represented by the general formula (5) is reacted with phosgene or the like to produce a bischlorohomete oligomer having a low molecular weight represented by the general formula (1A).
  • a method of reacting the bischlorohomet oligomer with the divalent phenolic compound represented by the general formula (6) in the presence of a mixed solution of the solvent and the alkaline aqueous solution of the acid binder. can be adopted.
  • This method is preferable in that the abundance ratio represented by Ar 1 / (Ar 1 + Ar 2) in the PC copolymer can be adjusted within a preferable range.
  • n 1 value in the general formula (1A) is 1.0 or more and 1.3 or less, or the n 2 value in the general formula (2A) is 1.0 or more and 1.3.
  • a method for producing the bischlorohomet oligomer in the following range there is a method shown in a production example described later in detail, which is roughly as follows. First, the terphenyl compound represented by the general formula (5) or the divalent phenolic compound represented by the general formula (6) is suspended in a hydrophobic solvent such as methylene chloride, and further phosgene is added to the second. Form one solution.
  • a tertiary amine such as triethylamine is dissolved in a hydrophobic solvent such as methylene chloride to form a second solution, and the second solution is added dropwise to the first solution at room temperature (25 ° C.) or lower. React at the temperature of. Hydrochloric acid and pure water are added to a third solution containing the obtained reaction mixture for washing to obtain an organic layer containing a low-volume polycarbonate oligomer.
  • the dropping temperature and the reaction temperature are usually 0 ° C. or higher and 70 ° C. or lower, preferably 5 ° C. or higher and 65 ° C. or lower.
  • Both the dropping time and the reaction time are usually about 15 minutes or more and 4 hours or less, preferably about 30 minutes or more and 3 hours or less.
  • the average number n 1 and the average number n 2 of the bischlorohomet oligomer represented by the general formula (1A) or (2A) thus obtained are independently 1.0 or more and 1 or more. It is 0.3 or less, preferably 1.0 or more and 1.2 or less, and more preferably 1.0 or more and 1.1 or less. It is preferable to use the bischlorohomet oligomer produced by the production method because the cleaning step at the time of producing the PC copolymer can be simplified.
  • the divalent phenolic compound (monomer) represented by the general formula (6) is added to the organic layer containing the bischlorohomete oligomer represented by the general formula (1A) having a low number of bodies thus obtained. ) Is added and reacted.
  • a divalent phenolic compound (monomer) represented by the general formula (5) is added to an organic layer containing a low-quantity bischlorohomet oligomer represented by the general formula (2A) to react. Let me.
  • the reaction temperature is preferably 0 ° C. or higher and 150 ° C. or lower, more preferably 5 ° C. or higher and 40 ° C. or lower, and further preferably 10 ° C. or higher and 25 ° C. or lower.
  • the reaction pressure may be reduced pressure, normal pressure, or pressurization, but usually, normal pressure or the self-pressure of the reaction system can be preferably used.
  • the reaction time depends on the reaction temperature, but is usually 0.5 minutes or more and 10 hours or less, preferably 1 minute or more and 3 hours or less.
  • the terphenyl compound represented by the general formula (5) or the divalent phenolic compound represented by the general formula (6) as an aqueous solution or an organic solvent solution.
  • the order of addition is not particularly limited.
  • the catalyst, end-capping agent, branching agent, etc. are used in the above-mentioned production method, if necessary, at the time of producing the bischlorohomet oligomer and / or at the time of the subsequent reaction for increasing the molecular weight. It can be added and used.
  • the PC copolymer obtained as described above is a copolymer composed of the repeating unit A represented by the general formula (1) and the repeating unit B represented by the general formula (2). Further, this PC copolymer contains a polycarbonate unit having a structural unit other than the repeating unit A and the repeating unit B, and a unit having a polyester or a polyether structure, as long as the object of the present invention is not hindered. May be good.
  • the reduced viscosity [ ⁇ SP / C] of the obtained PC copolymer can be adjusted to the above range by various methods such as selection of the reaction conditions, adjustment of the amount of the branching agent and the end-capping agent used, and the like. can.
  • the obtained PC copolymer may be subjected to at least one of physical treatment (for example, mixing and fractionation, etc.) and chemical treatment (for example, polymer reaction, cross-linking treatment, partial decomposition treatment, etc.) as appropriate. It can also be obtained as a PC copolymer having a predetermined reduced viscosity [ ⁇ SP / C].
  • the obtained reaction product (crude product) can be recovered as a PC copolymer having a desired purity (degree of purification) by subjecting various post-treatments such as a known separation and purification method.
  • the coating liquid of the present embodiment contains at least the PC copolymer of the present embodiment and an organic solvent capable of dissolving or dispersing the PC copolymer.
  • the coating liquid includes low molecular weight compounds, colorants (for example, dyes and pigments), and functional compounds (for example, charge transport material, electron transport material, hole transport material). , And charge generating materials, etc.), fillers (eg, inorganic or organic fillers, fibers, and fine particles, etc.), antioxidants, UV absorbers, and additives such as acid traps.
  • the coating liquid may contain other resins as long as the effects of the present invention are not impaired, and examples thereof include the following constituent components of the electrophotographic photosensitive member.
  • the organic solvent used in this embodiment has the solubility, dispersibility, viscosity, evaporation rate, chemical stability, stability against physical changes, etc. of the PC copolymer and other materials of this embodiment. Considering this, it can be used alone or in combination of a plurality of solvents. An example thereof is given as an example of the constituent components of the electrophotographic photosensitive member described later.
  • the concentration of the PC copolymer component in the coating liquid of the present embodiment may be an appropriate viscosity according to the usage of the coating liquid.
  • the concentration of the PC copolymer component in the coating liquid is preferably 0.1% by mass or more and 40% by mass or less, more preferably 1% by mass or more and 35% by mass or less, and 5% by mass or more and 30% by mass or less. % Or less is more preferable.
  • the concentration of the PC copolymer component in the coating liquid is 40% by mass or less, the viscosity does not become too high and the coating property is good. If it is 0.1% by mass or more, the viscosity can be maintained at an appropriate level, and a homogeneous film can be obtained.
  • the concentration is appropriate for shortening the drying time after coating and easily achieving the target film thickness.
  • the PC copolymer of the present embodiment has good compatibility with the charge transport material, and is unlikely to cause whitening or gelation even when dissolved in the organic solvent. Therefore, the coating liquid of the present embodiment containing the PC copolymer and the organic solvent suppresses whitening or gelation of the PC polymer component for a long period of time even when the charge transport material is further contained. It can be stored stably. Further, when the photosensitive layer of the electrophotographic photosensitive member is formed by using this coating liquid (coating liquid containing a charge transport material), it is possible to suppress the crystallization of the photosensitive layer and cause a defect in image quality. No excellent electrophotographic photosensitive member can be produced.
  • the ratio of the PC copolymer to the charge transporting substance in the coating liquid is usually 20:80 to mass ratio. It is preferably 80:20, preferably 30:70 to 70:30.
  • the PC copolymer of the present embodiment may be used alone or in combination of two or more.
  • the coating liquid of the present embodiment is usually suitably used for forming the charge transport layer of a laminated electrophotographic photosensitive member in which the photosensitive layer includes at least a charge generation layer and a charge transport layer. Further, by further incorporating the charge generating substance in the coating liquid, it can be used for forming a photosensitive layer of a single-layer electrophotographic photosensitive member. Further, since the coating liquid of the present embodiment is excellent in moldability, it is suitably used for forming a molded product. Further, when the molded product is formed by using the coating liquid of the present embodiment, it is possible to prevent the molded product from crystallizing. As a result, a highly transparent molded product can be obtained.
  • a molded product can be formed by using at least one of the PC copolymer of the present embodiment and the coating liquid of the present embodiment.
  • the molded body include an optical member, and examples of the optical member include an electrophotographic photosensitive member and an optical lens.
  • the laminated film as one aspect of the molded body can be applied as, for example, an in-mold molding film and a decorative film.
  • the laminated film can also be applied as a touch panel film used for liquid crystal displays and organic EL displays, optical films such as optical compensation films and antireflection films, and conductive films.
  • the molded product containing the PC copolymer of the present embodiment is less likely to cause whitening, is excellent in transparency, and is excellent in mechanical strength such as abrasion resistance and electrical strength.
  • the electrophotographic photosensitive member of this embodiment includes the PC copolymer of this embodiment.
  • the electrophotographic photosensitive member according to one embodiment has a substrate and a photosensitive layer provided on the substrate, and the photosensitive layer contains the PC copolymer of the present embodiment.
  • the electrophotographic photosensitive member of the present embodiment may be any electrophotographic photosensitive member as well as various known types of electrophotographic photosensitive member as long as the PC copolymer of the present embodiment is used in the photosensitive layer.
  • the photosensitive layer is a laminated electrophotographic photosensitive member having at least one charge generating layer and at least one charge transporting layer, or a single layer electrophotographic photosensitive member having a charge generating substance and a charge transporting substance in one layer. It is preferably a body.
  • the PC copolymer may be used in any part of the photosensitive layer, but in order to fully exert the effect of the present embodiment, is it used as a binder resin for a charge transfer substance in the charge transport layer? , It is desirable to use it as a binder resin for a single photosensitive layer. Further, it is desirable to use it not only as a photosensitive layer but also as a surface protective layer. In the case of a multi-layer electrophotographic photosensitive member having two charge transport layers, it is preferable to use it for any one of the charge transport layers. In the electrophotographic photosensitive member of the present embodiment, the PC copolymer of the present embodiment may be used alone or in combination of two or more. Further, if desired, a binder resin component such as another polycarbonate may be contained as long as the object of the present embodiment is not impaired. Further, an additive such as an antioxidant may be contained.
  • the electrophotographic photosensitive member of this embodiment has a photosensitive layer on a conductive substrate.
  • the charge transport layer may be laminated on the charge generation layer, or conversely, the charge generation layer may be laminated on the charge transport layer.
  • it may be a photosensitive layer containing a charge generating substance and a charge transporting substance at the same time in one layer.
  • a conductive or insulating protective film may be formed on the surface layer, if necessary.
  • the conductive substrate material used for the electrophotographic photosensitive member of the present embodiment various materials such as known materials can be used, and specifically, aluminum, nickel, chromium, palladium, titanium, molybdenum, and indium. , Gold, platinum, silver, copper, zinc, brass, stainless steel, lead oxide, tin oxide, indium oxide, ITO (indium tin oxide: tin-doped indium oxide) or graphite, plates, drums, and sheets, vapor deposition, Glass, cloth, paper, and plastic films, sheets or seamless belts that have been conductively treated by coating such as by sputtering or coating, and metal drums that have been subjected to metal oxidation treatment by electrode oxidation or the like can be used.
  • the charge generation layer has at least a charge generation material.
  • a layer of charge generation material is formed on the substrate which is the base thereof by vacuum deposition or sputtering method, or the charge generation material is bound on the substrate which is the base by using a binder resin. It can be obtained by forming a layer of resin.
  • a method for forming the charge generation layer using the binder resin various methods such as a known method can be used. Usually, for example, a method in which a coating liquid in which a charge generating material is dispersed or dissolved with a binder resin in an appropriate solvent is applied onto a substrate as a predetermined base and dried to obtain a wet molded product is preferable.
  • the charge generating material in the charge generating layer various known materials can be used. Specific compounds include selenium alone (eg, amorphous selenium, and trigonal selenium, etc.), selenium alloys (eg, selenium-tellu, etc.), selenium compounds, or selenium-containing compositions (eg, As 2 Se 3 and the like). ), Inorganic materials consisting of Group 12 and Group 16 elements of the periodic table (eg, zinc oxide and CdS-Se, etc.), oxide-based semiconductors (eg, titanium oxide, etc.), silicon-based materials (eg, amorphous silicon).
  • Metal-free phthalocyanine pigments eg, ⁇ -type metal-free phthalocyanine, and ⁇ -type metal-free phthalocyanine, etc.
  • Metal phthalocyanine pigments eg, ⁇ -type copper phthalocyanine, ⁇ -type copper phthalocyanine, ⁇ -type copper phthalocyanine, ⁇ -type copper phthalocyanine
  • X-type copper phthalocyanine A-type titanyl phthalocyanine, B-type titanyl phthalocyanine, C-type titanyl phthalocyanine, D-type titanyl phthalocyanine, E-type titanyl phthalocyanine, F-type titanyl phthalocyanine, G-type titanyl phthalocyanine, H-type titanyl phthalocyanine, K-type titanyl phthalocyanine , L-type titanyl phthalocyanine, M-type titanyl phthalocyanine, N-type titanyl phthalo
  • cyanine dyes anthracene pigments, bisazo pigments, pyrene pigments, polycyclic quinone pigments, quinacridone pigments, indigo pigments, perylene pigments, pyririum dyes, squalium pigments, anthanthronic pigments, benzimidazole pigments, azo pigments, Examples thereof include thioindigo pigments, quinoline pigments, lake pigments, oxazine pigments, dioxazine pigments, triphenylmethane pigments, azulenium dyes, triarylmethane dyes, xanthin dyes, thiazine dyes, thiapyrrium dyes, polyvinylcarbazole, and bisbenzoimidazole pigments.
  • charge generating substances include the charge generating substances specifically
  • the charge transport layer can be obtained as a wet molded product by forming a layer formed by binding a charge transport substance with a binder resin on a substrate as a base.
  • the binder resin for the charge generation layer and the charge transport layer is not particularly limited, and various known resins can be used. Specifically, for example, polystyrene, polyvinyl chloride, polyvinyl acetate, vinyl chloride-vinyl acetate copolymer, polyvinyl acetal, alkyd resin, acrylic resin, polyacrylonitrile, polycarbonate, polyurethane, epoxy resin, phenol resin, polyamide, etc.
  • Polyketone polyacrylamide, butyral resin, polyester resin, vinylidene chloride-vinyl chloride copolymer, methacrylic resin, styrene-butadiene copolymer, vinylidene chloride-acrylonitrile copolymer, vinyl chloride-vinyl acetate-maleic anhydride copolymer , Silicon resin, Silicon alkyd resin, Phenol-formaldehyde resin, Styrene-Alkid resin, Melamine resin, Polyether resin, Benzoguanamine resin, Epoxy acrylate resin, Urethane acrylate resin, Poly-N-Vinylcarbazole, Polyvinyl butyral, Polyvinylformal, Polysulfone , Casein, gelatin, polyvinyl alcohol, ethyl cellulose, nitrocellulose, carboxy-methylcellulose, vinylidene chloride polymer latex, acrylonitrile-butadiene copolymer, vinyltoluene-
  • the charge transport layer As a method for forming the charge transport layer, various known methods can be used, and a coating liquid in which the charge transport substance is dispersed or dissolved in an appropriate solvent together with the PC copolymer of the present embodiment is used as a predetermined method. A method of applying it on a substrate as a base and drying it to obtain a wet molded product is preferable.
  • the blending ratio of the charge transport substance used for forming the charge transport layer and the PC copolymer is preferably 20:80 to 80:20, more preferably 30:70 to 70:30 in terms of mass ratio.
  • the PC copolymer of the present embodiment can be used alone or in combination of two or more. Further, it is also possible to use another binder resin in combination with the PC copolymer of the present embodiment as long as the object of the present embodiment is not impaired.
  • the thickness of the charge transport layer thus formed is usually about 5 ⁇ m or more and 100 ⁇ m or less, preferably 10 ⁇ m or more and 50 ⁇ m or less, and more preferably 15 ⁇ m or more and 35 ⁇ m or less. When this thickness is 5 ⁇ m or more, the initial charging potential does not decrease, and when it is 100 ⁇ m or less, deterioration of electrophotographic characteristics can be prevented.
  • the charge transporting substance that can be used together with the PC copolymer of the present embodiment various known compounds can be used.
  • Examples of such compounds include carbazole compounds, indol compounds, imidazole compounds, oxazole compounds, pyrazole compounds, oxaziazole compounds, pyrazoline compounds, thiadiazol compounds, aniline compounds, hydrazone compounds, aromatic amine compounds and aliphatic amine compounds.
  • Stilben compounds Fluorenone compounds, butadiene compounds, quinone compounds, quinodimethane compounds, thiazole compounds, triazole compounds, imidazolone compounds, imidazolidine compounds, bisimidazolidine compounds, oxazolone compounds, benzothiazole compounds, benzimidazole compounds, quinazoline compounds, benzofuran compounds , Aclysine compound, phenazine compound, poly-N-vinylcarbazole, polyvinylpyrene, polyvinylanthracene, polyvinylacridin, poly-9-vinylphenylanthracene, pyrene-formaldehyde resin, ethylcarbazole resin, or the main chain or side chain of these structures.
  • the polymer or the like contained in the above is preferably used. These compounds may be used alone or in combination of two or more. Among these charge-transporting substances, the compounds specifically exemplified in JP-A-11-172003 and the charge-transporting substances represented by the following structures are particularly preferably used.
  • the PC copolymer of the present embodiment as a binder resin for at least one of the charge generation layer and the charge transport layer.
  • an undercoat layer as is normally used can be provided between the conductive substrate and the photosensitive layer.
  • the undercoat layer includes, for example, fine particles (eg, titanium oxide, aluminum oxide, zirconia, titanic acid, zirconic acid, lanthanum lead, titanium black, silica, lead titanate, barium titanate, tin oxide, indium oxide, and the like. (Silicon oxide, etc.), polyamide resin, phenol resin, casein, melamine resin, benzoguanamine resin, polyurethane resin, epoxy resin, cellulose, nitrocellulose, polyvinyl alcohol, polyvinyl butyral resin and other components can be used.
  • the binder resin may be used, or the PC copolymer of the present embodiment may be used.
  • These fine particles and resin can be used alone or in admixture. When used as a mixture of these, it is preferable to use the inorganic fine particles and the resin in combination because a film having good smoothness is formed.
  • the thickness of the undercoat layer is 0.01 ⁇ m or more and 10 ⁇ m or less, preferably 0.1 ⁇ m or more and 7 ⁇ m or less. When this thickness is 0.01 ⁇ m or more, the undercoat layer can be uniformly formed, and when it is 10 ⁇ m or less, deterioration of electrophotographic characteristics can be suppressed.
  • a known blocking layer that is usually used can be provided between the conductive substrate and the photosensitive layer.
  • a resin of the same type as the binder resin can be used.
  • the thickness of this blocking layer is 0.01 ⁇ m or more and 20 ⁇ m or less, preferably 0.1 ⁇ m or more and 10 ⁇ m or less. When this thickness is 0.01 ⁇ m or more, the blocking layer can be uniformly formed, and when it is 20 ⁇ m or less, deterioration of electrophotographic characteristics can be suppressed.
  • a protective layer may be laminated on the photosensitive layer.
  • a resin of the same type as the binder resin can be used for this protective layer. Further, it is particularly preferable to use the PC copolymer of the present embodiment.
  • the thickness of this protective layer is 0.01 ⁇ m or more and 20 ⁇ m or less, preferably 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the protective layer contains a conductive material such as the charge generating substance, a charge transporting substance, an additive, a metal and its oxide, a nitride, or a salt, an alloy, carbon black, and an organic conductive compound. May be.
  • the charge generating layer and the charge transporting layer are provided with a binder, a plasticizer, a curing catalyst, a fluidity imparting agent, a pinhole control agent, and a spectral sensitivity sensitizer. (Increase in infection fee) and the like may be added.
  • various chemical substances, antioxidants, surfactants, curl inhibitors, leveling agents, etc. are added for the purpose of preventing an increase in residual potential, a decrease in charge potential, and a decrease in sensitivity with repeated use. Agents can be added.
  • binder examples include silicone resin, polyamide resin, polyurethane resin, polyester resin, epoxy resin, polyketone resin, polycarbonate copolymer, polystyrene resin, polymethacrylate resin, polyacrylamide resin, polybutadiene resin, polyisoprene resin, and melamine.
  • thermosetting resin and a photocurable resin
  • the resin is electrically insulating and can form a film in a normal state, and is not particularly limited as long as it does not impair the effects of the present invention.
  • plasticizer examples include biphenyl, biphenyl chloride, o-terphenyl, halogenated paraffin, dimethylnaphthalene, dimethylphthalate, dibutylphthalate, dioctylphthalate, diethyleneglycolphthalate, triphenylphosphate, diisobutyladipate, and dimethylseva.
  • plasticizer examples include kate, dibutyl sebacate, butyl laurate, methyl phthalyl ethyl glycolate, dimethyl glycol phthalate, methyl naphthalene, benzophenone, polypropylene, polystyrene, and fluorohydrocarbons.
  • the curing catalyst include methanesulfonic acid, dodecylbenzenesulfonic acid, dinonylnaphthalenedisulfonic acid and the like, and examples of the fluidity-imparting agent include modaflow and acronal 4F.
  • the pinhole control agent include benzoin and dimethylphthalate.
  • the plasticizer, curing catalyst, fluidity imparting agent, and pinhole control agent are preferably used in an amount of 5% by mass or less based on the charge transporting substance.
  • a brightening agent for example, a triphenylmethane dye (for example, methyl violet, crystal violet, night blue, and Victoria blue), an acridin dye (for example, erythrosin) are used.
  • a triphenylmethane dye for example, methyl violet, crystal violet, night blue, and Victoria blue
  • an acridin dye for example, erythrosin
  • Rhodamine B, Rhodamine 3R, Acrydin Orange, and Frapeosin, etc. Thiadine Dyes (eg, Methylene Blue, Methylene Green, etc.), Oxazine Dyes (Capri Blue, Meldra Blue, etc.), Cyanine Dyes, Melosinine Dyes, Styryl Dyes, Pyrylium salt dyes, thiopyrilium salt dyes and the like are suitable.
  • An electron-accepting substance can be added to the photosensitive layer for the purpose of improving sensitivity, reducing residual potential, reducing fatigue during repeated use, and the like.
  • Specific examples thereof include succinic anhydride, maleic anhydride, dibromomaleic anhydride, phthalic anhydride, tetrachlorophthalic anhydride, tetrabromophthalic anhydride, 3-nitrohydride phthalic acid, and 4-nitrohydride phthalic acid.
  • These compounds may be added to either the charge generating layer or the charge transporting layer, and the blending ratio thereof is 0.01 parts by mass or more and 200 parts by mass when the amount of the charge generating substance or the charge transporting substance is 100 parts by mass.
  • it is preferably 0.1 part by mass or more and 50 parts by mass or less.
  • ethylene tetrafluoride resin ethylene trifluoride resin, ethylene tetrafluoride propylene hexafluoride resin, vinyl fluoride resin, vinylidene fluoride resin, ethylene difluoride dichloride resin and Such copolymers, fluorine-based graft polymers and the like may be used.
  • the blending ratio of these surface modifiers is 0.1% by mass or more and 60% by mass or less, preferably 5% by mass or more and 40% by mass or less, based on the binder resin. If the blending ratio is 0.1% by mass or more, surface modification such as surface durability and reduction in surface energy is sufficient, and if it is 60% by mass or less, the electrophotographic characteristics are not deteriorated.
  • antioxidant for example, a hindered phenol-based antioxidant, an aromatic amine-based antioxidant, a hindered amine-based antioxidant, a sulfide-based antioxidant, an organic phosphoric acid-based antioxidant, and the like are preferable.
  • the blending ratio of these antioxidants is usually 0.01% by mass or more and 10% by mass or less, preferably 0.1% by mass or more and 2% by mass or less, based on the charge transporting substance.
  • the compounds of the chemical formulas [Chemical Formula 94] to [Chemical Formula 101] described in the specification of JP-A-11-172003 are suitable.
  • These antioxidants may be used alone or in admixture of two or more, and these may be added to the photosensitive layer, the surface protective layer, the undercoat layer, and the blocking layer. You may.
  • the solvent used in forming at least one of the charge generation layer and the charge transport layer include, for example, aromatic solvents (for example, benzene, toluene, xylene, and chloroform), ketones (for example, for example, chlorobenzene, etc.).
  • aromatic solvents for example, benzene, toluene, xylene, and chloroform
  • ketones for example, for example, chlorobenzene, etc.
  • alcohols eg, methanol, ethanol, and isopropano
  • the photosensitive layer of the single-layer electrophotographic photosensitive member can be easily formed by applying the PC copolymer of the present embodiment as a binder resin using the above-mentioned charge generating substance, charge transporting substance, and additive. can. Further, as the charge transporting substance, it is preferable to add at least one of the above-mentioned hole transporting substance and electron transporting substance.
  • the electron-transporting substance the electron-transporting substance exemplified in JP-A-2005-139339 can be preferably applied.
  • the coating of each layer can be performed using various coating devices such as known devices. Specifically, for example, an applicator, a spray coater, a bar coater, a tip coater, a roll coater, a dip coater, a doctor blade and the like are used. Can be done.
  • the thickness of the photosensitive layer in the electrophotographic photosensitive member is 5 ⁇ m or more and 100 ⁇ m or less, preferably 10 ⁇ m or more and 50 ⁇ m or less, and more preferably 15 ⁇ m or more and 35 ⁇ m or less. When this is 5 ⁇ m or more, it is possible to prevent the initial potential from being lowered, and when it is 100 ⁇ m or less, it is possible to suppress the deterioration of the electrophotographic characteristics.
  • the ratio of the charge generating substance: binder resin used in the production of the electrophotographic photosensitive member is 1:99 to 30:70, preferably 3:97 to 15:85 in terms of mass ratio.
  • the ratio of the charge transporting substance to the binder resin is 10:90 to 80:20, preferably 30:70 to 70:30 in terms of mass ratio.
  • the electrophotographic photosensitive member thus obtained uses the PC copolymer of the present embodiment, it is possible to suppress the coating liquid from becoming cloudy at the time of producing the photosensitive layer, and it is also possible to suppress gelation. Further, since the PC copolymer of the present embodiment is contained as a binder resin in the photosensitive layer, it has excellent durability (wear resistance) and excellent electrical characteristics (charging characteristics) for a long period of time.
  • a photoconductor that maintains excellent electrophotographic properties over the years copiers (monochrome, multicolor, full color; analog, digital), printers (lasers, LEDs, liquid crystal shutters), facsimiles, plate makers, and multiple functions. It is suitably used in various electrophotographic fields such as equipment to be carried.
  • corona discharge corotron, scorotron
  • contact electrification charging roll, charging brush
  • the charging method include a DC charging method and an AC / DC superimposing charging method in which AC is superimposed.
  • any of a halogen lamp, a fluorescent lamp, a laser (semiconductor, He-Ne), an LED, and a photoconductor internal exposure method may be adopted.
  • a dry development method such as cascade development, two-component magnetic brush development, one-component insulating toner development, one-component conductive toner development, or a wet development method is used.
  • an electrostatic transfer method for example, corona transfer, roller transfer, belt transfer, etc.
  • a pressure transfer method for example, thermal roller fixing, radiant flash fixing, open fixing, pressure fixing and the like are used.
  • cleaning and static elimination for example, a brush cleaner, a magnetic brush cleaner, an electrostatic brush cleaner, a magnetic roller cleaner, a blade cleaner and the like are used.
  • a cleanerless method may be adopted.
  • the resin for the toner for example, a styrene resin, a styrene-acrylic copolymer resin, a polyester, an epoxy resin, a polymer of a cyclic hydrocarbon, or the like can be applied.
  • the shape of the toner may be spherical or irregular. Toners controlled to a certain shape (eg, spheroidal shape, potato shape, etc.) can also be applied.
  • the toner may be any of a pulverized toner, a suspension polymerization toner, an emulsion polymerization toner, a chemical granulation toner, and an ester extension toner.
  • the electrical device of the present embodiment has the electrophotographic photosensitive member of the present embodiment (for example, a photoconductor drum using the electrophotographic photosensitive member of the present embodiment).
  • Examples of such electric devices include copiers, printers such as laser printers, and the like. Since the electric device of the present embodiment has the electrophotographic photosensitive member of the present embodiment having excellent wear resistance, the frequency of replacement of the photoconductor drum and the like is reduced, which is a great cost advantage.
  • the raw material obtained in Production Example 1 is referred to as Z-CF.
  • the raw material Z-CF is a bischlorohomete oligomer represented by the general formula (2A).
  • the molecular weight of the bischlorohomet compound at the time, the CF value (N / kg) is (CF value / concentration), and the CF value (N) is represented by the general formula (2A) contained in 1 L of the reaction solution.
  • the raw material obtained in Production Example 2 is referred to as CZ-CF.
  • the raw material CZ-CF is a bischlorohomete oligomer represented by the general formula (2A).
  • the raw material obtained in Production Example 3 is referred to as MpT-CF.
  • the raw material MpT-CF is a bischlorohomete oligomer represented by the general formula (1A).
  • the average number of dimers (n 1 ) was determined by the same method as the above-mentioned average number of dimers (n 2).
  • Example 1 Manufacturing of PC copolymer
  • Raw material Z-CF (bischlorohomet oligomer, average number of dimers 1.02) (155 mL) and methylene chloride (155 mL) obtained in Production Example 1 were placed in a reaction vessel equipped with a mechanical stirrer, a stirring blade, and a baffle plate. 332 mL) and was injected.
  • p-tert-butylphenol 0.317 g was added as an end-capping agent, and the mixture was stirred so as to be sufficiently mixed. After cooling to 15 ° C.
  • the obtained reaction mixture was diluted with 0.36 L of methylene chloride and 0.03 L of water and washed. The lower layer was separated, and further washed once with 0.15 L of water, once with 0.15 L of 0.03N hydrochloric acid, and three times with 0.1 L of water.
  • the obtained methylene chloride solution was added dropwise to warm water at 60 ° C. to 70 ° C. under stirring, and the obtained precipitate was filtered and dried to obtain a PC copolymer (PC-1) having the following structure.
  • PC copolymer (PC-1) (Specification of PC copolymer)
  • PC-1 The PC copolymer (PC-1) thus obtained was dissolved in methylene chloride to prepare a solution having a concentration of 0.5 g / dL, and the reduced viscosity [ ⁇ SP / C] at 20 ° C. was measured. However, it was 1.22 dL / g.
  • PC-1 When the structure and composition of the obtained PC copolymer (PC-1) were analyzed by 1 H-NMR spectrum and 13 C-NMR spectrum, it was found to be a PC copolymer composed of the following repeating units and composition. It was confirmed that.
  • the reduced viscosity was measured with a Ubberode improved viscometer (RM type) for automatic viscosity using an automatic viscosity measuring device VMR-042 manufactured by Rigosha.
  • RM type Ubberode improved viscometer
  • the measurement conditions for 1 1 H-NMR spectrum and 13 C-NMR spectrum are as follows.
  • An electrophotographic photosensitive member was produced in which a polyethylene terephthalate (PET) resin film on which aluminum metal was vapor-deposited was used as a conductive substrate, and a charge generation layer and a charge transport layer were sequentially laminated on the surface of the polyethylene terephthalate (PET) resin film to form a laminated photosensitive layer. .. 0.5 parts by mass of oxotitanium phthalocyanine was used as the charge generating substance, and 0.5 parts by mass of butyral resin was used as the binder resin.
  • the HAZE value (%) was measured using the solution used in the evaluation of the solubility of the PC copolymer (THF solution having a solid content concentration of PC-1 of 10% by mass).
  • the HAZE value (%) was measured according to JISK 7136 (2000).
  • a haze meter manufactured by Nippon Denshoku Kogyo (NDH500) was used as a measuring device.
  • the international standard number corresponding to JISK 7136 is ISO 14782 (1999).
  • the HAZE value (%) can also be measured according to ISO 14782 (1999).
  • Table 1 shows the results of these evaluations. Also in Examples 2 to 5 and Comparative Examples 1 to 4, which will be described later, the copolymer and the photoconductor are evaluated by using the PC copolymer obtained in each example instead of the PC copolymer (PC-1). A sample was prepared and the same evaluation was performed. The results are also shown in Table 1.
  • Example 2 Raw material Z-CF (bischlorohomet oligomer, average number of dimers 1.02) (155 mL) and methylene chloride (155 mL) obtained in Production Example 1 were placed in a reaction vessel equipped with a mechanical stirrer, a stirring blade, and a baffle plate. 323 mL) and was injected. To this, p-tert-butylphenol (0.346 g) was added as an end-capping agent, and the mixture was stirred so as to be sufficiently mixed. After cooling to a temperature of 15 ° C. in the reactor, 2', 5'-dimethyl- [1,1';4',1'']terphenyl-4,4''-prepared in this solution.
  • the obtained reaction mixture was diluted with 0.36 L of methylene chloride and 0.03 L of water and washed. The lower layer was separated, and further washed once with 0.15 L of water, once with 0.15 L of 0.03N hydrochloric acid, and three times with 0.1 L of water.
  • the obtained methylene chloride solution was added dropwise to warm water at 60 ° C. to 70 ° C. under stirring, and the obtained precipitate was filtered and dried to obtain a PC copolymer (PC-2) having the following structure.
  • the reduced viscosity [ ⁇ SP / C] of the PC copolymer (PC-2) at 20 ° C. is 1.21 dL / g, and the structure is a PC copolymer composed of the following repeating units and composition in NMR. It was confirmed that.
  • Example 3 Raw material Z-CF (bischlorohomet oligomer, average number of dimers 1.02) (155 mL) and methylene chloride (155 mL) obtained in Production Example 1 were placed in a reaction vessel equipped with a mechanical stirrer, a stirring blade, and a baffle plate. 332 mL) and was injected. To this, p-tert-butylphenol (0.369 g) was added as an end-capping agent, and the mixture was stirred so as to be sufficiently mixed. After cooling to a temperature of 15 ° C.
  • PC-3 having the following structure.
  • the reduced viscosity [ ⁇ SP / C] of the PC copolymer (PC-3) at 20 ° C. is 1.21 dL / g, and the structure is a PC copolymer having the following repeating units and composition in NMR. It was confirmed that.
  • Example 4 Raw materials MpT-CF (bischlorohomet oligomer, average number of molecules: 1.03) (155 mL) and methylene chloride (221 mL) obtained in Production Example 3 were placed in a reaction vessel equipped with a mechanical stirrer, a stirring blade, and a baffle plate. ) was injected. To this, p-tert-butylphenol (0.250 g) was added as an end-capping agent, and the mixture was stirred so as to be sufficiently mixed. After cooling to a temperature of 15 ° C.
  • PC-4 PC copolymer having the following structure.
  • the reduced viscosity [ ⁇ SP / C] of the PC copolymer (PC-4) at 20 ° C. is 1.21 dL / g, and the structure is a PC copolymer having the following repeating units and composition in NMR. Was confirmed.
  • the obtained reaction mixture was diluted with 0.2 L of methylene chloride and 0.1 L of water and washed. The lower layer was separated, and further washed once with 0.1 L of water, once with 0.1 L of 0.03N hydrochloric acid, and three times with 0.1 L of water.
  • the obtained methylene chloride solution was added dropwise to warm water at 60 ° C. to 70 ° C. under stirring, and the obtained precipitate was filtered and dried to obtain a PC copolymer (PC-5) having the following structure.
  • the reduced viscosity [ ⁇ SP / C] of the PC copolymer (PC-5) at 20 ° C. is 1.21 dL / g, and the structure is a PC copolymer having the following repeating units and composition in NMR. Was confirmed.
  • PC-6 PC copolymer having the following structure.
  • the reduced viscosity [ ⁇ SP / C] of the PC copolymer (PC-6) at 20 ° C. is 1.17 dL / g, and the structure is a PC copolymer having the following repeating units and composition in NMR. Was confirmed.
  • the obtained reaction mixture was diluted with 0.36 L of methylene chloride and 0.03 L of water and washed. The lower layer was separated, and further washed once with 0.15 L of water, once with 0.15 L of 0.03N hydrochloric acid, and three times with 0.15 L of water.
  • the obtained methylene chloride solution was added dropwise to warm water at 60 ° C. to 70 ° C. under stirring, and the obtained precipitate was filtered and dried to obtain a PC copolymer (PC-7) having the following structure.
  • the reduced viscosity [ ⁇ SP / C] of the PC copolymer (PC-7) at 20 ° C. is 1.19 dL / g, and the structure is a PC copolymer having the following repeating units and composition in NMR. Was confirmed.
  • PC-8 having the following structure.
  • the reduced viscosity [ ⁇ SP / C] of the PC copolymer (PC-8) at 20 ° C. is 1.21 dL / g, and the structure is a PC copolymer having the following repeating units and composition in NMR. Was confirmed.
  • This reaction solution is allowed to stand to separate the organic layer, and a methylene chloride solution of an oligomer of 2,2-bis (4-hydroxyphenyl) propane having a degree of polymerization of 2 to 4 and a chloroformating group at the molecular terminal.
  • a methylene chloride solution of an oligomer of 2,2-bis (4-hydroxyphenyl) propane having a degree of polymerization of 2 to 4 and a chloroformating group at the molecular terminal Got A small amount of p-tert-butylphenol and methylene chloride were added to the obtained oligomer solution as a terminal terminator to make the total volume 720 mL, and then 2,5-bis (4-hydroxyphenyl) -3,6-dimethylpyrazine 20 g.
  • the reduced viscosity [ ⁇ SP / C] of the PC copolymer (PC-9) at 20 ° C. is 0.89 dL / g, and the structure is a PC copolymer having the following repeating units and composition in NMR. Was confirmed.
  • Table 1 shows the evaluation results of Examples 1 to 5 and Comparative Examples 1 to 4. Comparing Examples 1 to 5 with Comparative Examples 1 to 4, it was confirmed that the PC copolymers of Examples 1 to 5 had good abrasion resistance and stable solubility in an organic solvent. Further, the PC copolymers of Examples 1 to 5 had good resin physical characteristics (yield stress, Martens hardness, and elastic power), and were also excellent in transparency.
  • a low-molecular-weight oligomer raw material Z-CF having a divalent aromatic group of bisphenol Z and a 2,5-bis (4-hydroxyphenyl) -3,6-dimethylpyrazine monomer were used.
  • PC copolymer (PC-1) of Example 1 was obtained by reacting a low molecular weight bischlorohomet oligomer having a divalent aromatic group of bisphenol Z with a biphenol monomer.
  • the polycarbonate copolymer of the present invention can be suitably used as a binder resin for a photosensitive layer of an electrophotographic photosensitive member.
  • the photoconductor drum made by using the electrophotographic photosensitive member of the present invention can be suitably used for an electric device such as a copying machine and a printer such as a laser printer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

式(1)で表される繰り返し単位A及び式(2)で表される繰り返し単位Bを有し、式(1A)及び式(2A)で表されるビスクロロホーメートオリゴマーの少なくとも一方を原料として得られ、式(1A)で表されるビスクロロホーメートオリゴマーの平均量体数nが1.0以上1.3以下であり、式(2A)で表されるビスクロロホーメートオリゴマーの平均量体数nが1.0以上1.3以下であるポリカーボネート共重合体。式(1)中、Arは式(3)で表される基であり、式(2)中、Arは式(4)で表される基である。式(1A)中、Arは式(1)のArと同義であり、式(2A)中、Arは式(2)のArと同義であり、n、nは平均量体数を表す。

Description

ポリカーボネート共重合体、塗工液、電子写真感光体、ポリカーボネート共重合体の製造方法、および電気機器
 本発明は、ポリカーボネート共重合体、塗工液、電子写真感光体、ポリカーボネート共重合体の製造方法、および電気機器に関する。
 ポリカーボネート樹脂は、機械的性質、熱的性質、および電気的性質に優れている。そのため、ポリカーボネート樹脂は、様々な産業分野において成形品等の素材に用いられてきた。近年、ポリカーボネート樹脂の前述の特性に併せて、さらに光学的性質等をも利用することで、ポリカーボネート樹脂は、機能的な製品の分野においても多用されている。このような用途および分野の拡大に伴って、ポリカーボネート樹脂に対する要求される性能も多様化している。
 ポリカーボネート樹脂に対するこのような要求に対して、従来から用いられてきた原料(例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン、及び1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン等)を単に重縮合させて得られるポリカーボネート樹脂では、充分に対応できないことがある。そこで、様々な化学構造を有するポリカーボネート共重合体が、その用途および要求特性に応じて提案されている。
 ところで、ポリカーボネート樹脂の電気的性質および光学的性質を利用した製品の一例として、ポリカーボネート樹脂を、電荷発生材料および電荷輸送材料等の機能性材料のバインダー樹脂として使用した電子写真感光体が挙げられる。
 電子写真感光体は、電子写真プロセスに応じて、所定の感度、電気特性および光学特性を備えていることが要求される。
 また、電子写真感光体は、その感光層の表面に、種々の操作(例えば、コロナ帯電、トナー現像、紙への転写、およびクリーニング処理等)が繰り返し行われるため、これら操作を行う度に電気的な外力および機械的な外力の少なくともいずれかが加えられる。従って、長期間に亘って電子写真の画質を維持するためには、電子写真感光体の表面に設けた感光層に、これら外力に対する耐久性が要求される。
 また、近年では、プリンターの多様なシステム導入に伴い、電子写真感光体の摩耗は、様々な要因(摩耗モード)で生じることが知られている。電子写真感光体の摩耗としては、機械的な摩耗(例えば、疲労摩耗等)、及び帯電ローラ等による放電劣化に起因する電気的な摩耗等が知られている。
 そのため、前記摩耗モードで生じる摩耗に対して有効なバインダー樹脂が求められている。
 従来、感光体用バインダー樹脂として、2,2-ビス(4-ヒドロキシフェニル)プロパン、または2,2-ビス(4-ヒドロキシフェニル)シクロヘキサンなどを原料とするポリカーボネート樹脂が使用されてきたが、耐久性の点で充分ではなかった。そこで、感光体用バインダー樹脂に対する高耐久化の要求に応えるため、多様な手法がとられてきた。電子写真感光体の感光層の耐摩耗性を向上させるための効果的な技術として、共重合ポリカーボネートが知られている。
 例えば、特許文献1には、剛直骨格であるビフェノールと、量体数が2量体~4量体程度の二価フェノール化合物から誘導されるビスクロロホーメートオリゴマーとを重縮合させてなるポリカーボネート共重合体が記載されている。当該ポリカーボネート共重合体におけるビフェノール成分の共重合比は、25モル%近くを有することが記載されている。
 また、特許文献2及び特許文献3には、量体数が1量体~2量体程度の二価フェノール化合物から誘導されるビスクロロホーメートオリゴマーと、ビフェノール等を含む二価フェノール化合物とを重縮合させてなるポリカーボネート共重合体が記載されている。当該ポリカーボネート共重合体におけるビフェノール等の共重合比は、50モル%近くを有することが記載されている。
 また、特許文献4には、感光層中に、特定の電荷発生物質と、特定のポリカーボネート樹脂とを含有する電子写真感光体が記載され、特定のポリカーボネート樹脂が、ビフェノールよりも剛直なターフェニル骨格やアントラセン骨格を含む繰り返し単位と、ビスフェノール骨格を含む繰り返し単位とを有するポリカーボネート共重合体であることが記載されている。
 また、特許文献5には、p-ターフェニル骨格を含む構造単位を有するポリカーボネート共重合体が記載されている。
特開平4-179961号公報 特開2011-26574号公報 特開2011-26575号公報 特開平9-43882号公報 特開平6-56982号公報
 特許文献1に記載のポリカーボネート共重合体は、溶解性の良好なビスフェノールZ骨格と耐摩耗性の良好なビフェノールとを共重合して製造されている。当該ポリカーボネート共重合体は、オリゴマーの量体数が2量体~4量体程度の原料を用いて製造されている。そのため、当該ポリカーボネート共重合体におけるビフェノール成分の共重合比は、23モル%程度が限界であり、耐摩耗性が不足している。
 特許文献2及び特許文献3に記載のポリカーボネート共重合体は、オリゴマーの量体数を低減した原料から作製されている。そのため、当該ポリカーボネート共重合体におけるビフェノール等の骨格の共重合比は、25モル%~47モル%まで向上している。しかしながら、特許文献2及び特許文献3に記載のポリカーボネート共重合体であっても、外添剤を多く含むトナーを使用する際に起こる機械的劣化に対する高耐久化ニーズを満たすためには、耐摩耗性が十分ではない。
 特許文献4及び特許文献5に記載のポリカーボネート共重合体には、ビフェノール等よりも剛直なターフェニル等の骨格であって、耐久性の向上が期待されるターフェニル骨格が共重合されている。しかしながら、当該ポリカーボネート共重合体は、耐摩耗性が要求される用途に向けて構造や組成が最適化されておらず、耐摩耗性が不足している。
 また、ポリカーボネート共重合体を有機溶媒に溶解させて用いる場合、ポリカーボネート共重合体には、有機溶媒への溶解性が良好であることが求められる。
 本発明の目的は、耐摩耗性に優れ、有機溶媒への溶解性が良好であるポリカーボネート共重合体、当該ポリカーボネート共重合体の製造方法、当該ポリカーボネート共重合体を用いた塗工液、当該ポリカーボネート共重合体を用いた電子写真感光体、および当該電子写真感光体を用いた電気機器を提供することである。
 本発明の一態様に係るポリカーボネート共重合体は、下記一般式(1)で表される繰り返し単位Aと、下記一般式(2)で表される繰り返し単位Bとを有し、かつ、下記一般式(1A)で表されるビスクロロホーメートオリゴマー及び下記一般式(2A)で表されるビスクロロホーメートオリゴマーの少なくとも一方を原料として得られ、
 前記一般式(1A)で表されるビスクロロホーメートオリゴマーの平均量体数nが1.0以上1.3以下であり、
 前記一般式(2A)で表されるビスクロロホーメートオリゴマーの平均量体数nが1.0以上1.3以下である。
Figure JPOXMLDOC01-appb-C000007
(前記一般式(1)中、Arは、下記一般式(3)で表される基であり、
 前記一般式(2)中、Arは、下記一般式(4)で表される基である。)
Figure JPOXMLDOC01-appb-C000008

 
[前記一般式(3)及び(4)中、
 R11~R18及びR21~R28は、それぞれ独立に、水素原子もしくは置換基であり、
 置換基としてのR11~R18及びR21~R28は、それぞれ独立に、
  無置換の炭素数1~2のアルキル基、
  無置換の炭素数1~2のフルオロアルキル基、
  無置換の炭素数1~2のアルコキシ基であり、
 R19及びR20は、それぞれ独立に、水素原子もしくは置換基であり、
 置換基としてのR19及びR20は、それぞれ独立に、
  無置換の炭素数1~2のアルキル基であり、
 X及びXは、それぞれ独立に、
 CR100または窒素原子であり、
 R100は、
  水素原子、または
  無置換の炭素数1~2のアルキル基であり、
 Xは、
  -CR-で表される基、
  置換もしくは無置換の炭素数5~6のシクロアルキリデン基、
  置換もしくは無置換の炭素数7~10のビシクロ炭化水素ジイル基、または
  置換もしくは無置換の炭素数10~16のトリシクロ炭化水素ジイル基であり、
 R及びRは、それぞれ独立に、水素原子もしくは置換基であり、
 置換基としてのR及びRは、それぞれ独立に、
  無置換の炭素数1~3のアルキル基、
  無置換の炭素数1~3のフルオロアルキル基、または
  置換もしくは無置換の環形成炭素数6~12のアリール基であり、
 ただし、R19及びR20が水素原子である場合、R11~R14のいずれか1つ以上は置換基であり、かつR15~R18のいずれか1つ以上は置換基であり、
 R11~R18が水素原子である場合、R19及びR20は置換基である。]
Figure JPOXMLDOC01-appb-C000009

 
[前記一般式(1A)中、Arは、前記一般式(3)で表される基であり、nは、平均量体数を表し、
 前記一般式(2A)中、Arは、前記一般式(4)で表される基であり、nは、平均量体数を表す。]
 本発明の一態様に係るポリカーボネート共重合体の製造方法は、下記(CS1)、(CS2)又は(CS3)の合成反応でポリカーボネート共重合体を製造する。
(CS1)下記一般式(1A)で表されるビスクロロホーメートオリゴマーと、下記一般式(6)で表される二価フェノール性化合物とを酸結合剤存在下で界面重縮合させる。
(CS2)下記一般式(2A)で表されるビスクロロホーメートオリゴマーと、下記一般式(5)で表される二価フェノール性化合物とを酸結合剤存在下で界面重縮合させる。
(CS3)下記一般式(1A)で表されるビスクロロホーメートオリゴマーと、下記一般式(2A)で表されるビスクロロホーメートオリゴマーとを混合し、下記一般式(1A)で表されるビスクロロホーメートオリゴマー及び下記一般式(2A)で表されるビスクロロホーメートオリゴマーの混合物を、下記一般式(5)で表される二価フェノール性化合物または下記一般式(6)で表される二価フェノール性化合物を界面重縮合させる。
Figure JPOXMLDOC01-appb-C000010
[前記一般式(1A)及び(5)において、Arは、下記一般式(3)で表される基であり、前記一般式(2A)及び(6)において、Arは、下記一般式(4)で表される基であり、
 前記一般式(1A)中、nは平均量体数を表し、1.0以上1.3以下であり、
 前記一般式(2A)中、nは平均量体数を表し、1.0以上1.3以下である、]
Figure JPOXMLDOC01-appb-C000011

 
[前記一般式(3)及び(4)中、
 R11~R18及びR21~R28は、それぞれ独立に、水素原子もしくは置換基であり、
 置換基としてのR11~R18及びR21~R28は、それぞれ独立に、
  無置換の炭素数1~2のアルキル基、
  無置換の炭素数1~2のフルオロアルキル基、
  無置換の炭素数1~2のアルコキシ基であり、
 R19及びR20は、それぞれ独立に、水素原子もしくは置換基であり、
 置換基としてのR19及びR20は、それぞれ独立に、
  無置換の炭素数1~2のアルキル基であり、
 X及びXは、それぞれ独立に、
 CR100または窒素原子であり、
 R100は、
  水素原子、または
  無置換の炭素数1~2のアルキル基であり、
 Xは、
  -CR-で表される基、
  置換もしくは無置換の炭素数5~6のシクロアルキリデン基、
  置換もしくは無置換の炭素数7~10のビシクロ炭化水素ジイル基、または
  置換もしくは無置換の炭素数10~16のトリシクロ炭化水素ジイル基であり、
 R及びRは、それぞれ独立に、水素原子もしくは置換基であり、
 置換基としてのR及びRは、それぞれ独立に、
  無置換の炭素数1~3のアルキル基、
  無置換の炭素数1~3のフルオロアルキル基、または
  置換もしくは無置換の環形成炭素数6~12のアリール基であり、
 ただし、R19及びR20が水素原子である場合、R11~R14のいずれか1つ以上は置換基であり、かつR15~R18のいずれか1つ以上は置換基であり、
 R11~R18が水素原子である場合、R19及びR20は置換基である。]
 本発明の一態様に係る塗工液は、本発明の一態様に係るポリカーボネート共重合体と、有機溶剤とを含む。
 本発明の一態様に係る電子写真感光体は、本発明の一態様に係るポリカーボネート共重合体を含む。
 本発明の一態様に係る電子写真感光体は、基板と、前記基板上に設けられた感光層と、を有し、前記感光層は、本発明の一態様に係るポリカーボネート共重合体を含む。
 本発明の一態様に係る電気機器は、本発明の一態様に係る電子写真感光体を有する。
 本発明によれば、耐摩耗性に優れ、有機溶媒への溶解性が良好であるポリカーボネート共重合体、当該ポリカーボネート共重合体の製造方法、当該ポリカーボネート共重合体を用いた塗工液、当該ポリカーボネート共重合体を用いた電子写真感光体、および当該電子写真感光体を用いた電気機器を提供することができる。
 本発明者らは、鋭意研究を重ねた結果、p―ターフェニル骨格を有するビスクロロホーメートオリゴマー(一般式(1)で表される繰り返し単位Aに由来するビスクロロホーメートオリゴマー)及びビスフェノール骨格を有するビスクロロホーメートオリゴマー(一般式(2)で表される繰り返し単位Bに由来するビスクロロホーメートオリゴマー)の少なくとも一方を原料に使用することで、耐摩耗性に優れたポリカーボネート共重合体が得られることを見出し、本発明を完成させた。前記p―ターフェニル骨格を有するビスクロロホーメートオリゴマー、及び前記ビスフェノール骨格を有するビスクロロホーメートオリゴマーは、共に平均量体数が1.0以上1.3以下に調整されており、低量体数である。
 また、本発明者らは、優れた耐摩耗性が、良好な降伏応力及び弾性仕事率に関係する事も確認した。
 さらに、本発明者らは、p―ターフェニル骨格を有するビスクロロホーメートオリゴマー及びビスフェノール骨格を有するビスクロロホーメートオリゴマーの少なくとも一方を原料に使用することで、結晶性が高く且つ剛直なp-ターフェニル骨格を比較的高い割合で含有した場合でも、有機溶媒への溶解性が良好であり、結晶化を抑制でき、結晶化による溶液の白濁化を抑制できるポリカーボネート共重合体が得られることを見出した。
 特許文献2(特開2011-26574号公報)の実施例10等には、ビスフェノールZの二価芳香族基を有する低量体数のビスクロロホーメートオリゴマーと、ビフェノールモノマーとを反応させて得られたポリカーボネート共重合体が記載されている。本実施形態のポリカーボネート共重合体は、この特許文献2(特開2011-26574号公報)に記載のポリカーボネート共重合体に比べ、耐摩耗性が良好であり、摩耗に関連する降伏応力及び弾性仕事率も良好である。
 また、本実施形態のポリカーボネート共重合体は、前述の通り、結晶性が高く且つ剛直なp-ターフェニル骨格を比較的高い割合で含有した場合でも、有機溶媒への溶解性が良好であり、結晶化を抑制でき、結晶化による溶液の白濁化を抑制できる。そのため、本実施形態のポリカーボネート共重合体は、電子写真感光体用途でも、良好な耐摩耗性を有しており、当該ポリカーボネート共重合体を用いた電子写真感光体は、良好な電子写真特性を発現できる。
 以下に、本発明の一実施形態におけるポリカーボネート共重合体(以下、ポリカーボネート共重合体を単に「PC共重合体」と表記することもある)、当該PC共重合体を用いた塗工液、当該PC共重合体を用いた電子写真感光体、および当該電子写真感光体を用いた電気機器について詳細に説明する。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前に記載される数値を下限値とし、「~」の後に記載される数値を上限値として含む範囲を意味する。
[PC共重合体の構造]
 本実施形態のPC共重合体は、下記一般式(1)で表される繰り返し単位Aと、下記一般式(2)で表される繰り返し単位Bとを有し、かつ、下記一般式(1A)で表されるビスクロロホーメートオリゴマー及び下記一般式(2A)で表されるビスクロロホーメートオリゴマーの少なくとも一方を原料として得られる。
 一般式(1A)で表されるビスクロロホーメートオリゴマーの平均量体数nが1.0以上1.3以下である。
 一般式(2A)で表されるビスクロロホーメートオリゴマーの平均量体数nが1.0以上1.3以下である。
Figure JPOXMLDOC01-appb-C000012
(前記一般式(1)中、Arは、下記一般式(3)で表される基であり、前記一般式(2)中、Arは、下記一般式(4)で表される基である。*は、結合位置を示す。)
Figure JPOXMLDOC01-appb-C000013

 
[前記一般式(3)及び(4)中、
 R11~R18及びR21~R28は、それぞれ独立に、水素原子もしくは置換基であり、
 置換基としてのR11~R18及びR21~R28は、それぞれ独立に、
  無置換の炭素数1~2のアルキル基、
  無置換の炭素数1~2のフルオロアルキル基、
  無置換の炭素数1~2のアルコキシ基であり、
 R19及びR20は、それぞれ独立に、水素原子もしくは置換基であり、
 置換基としてのR19及びR20は、それぞれ独立に、
  無置換の炭素数1~2のアルキル基であり、
 X及びXは、それぞれ独立に、
 CR100または窒素原子であり、
 R100は、
  水素原子、または
  無置換の炭素数1~2のアルキル基であり、
 Xは、
  -CR-で表される基、
  置換もしくは無置換の炭素数5~6のシクロアルキリデン基、
  置換もしくは無置換の炭素数7~10のビシクロ炭化水素ジイル基、または
  置換もしくは無置換の炭素数10~16のトリシクロ炭化水素ジイル基であり、
 R及びRは、それぞれ独立に、水素原子もしくは置換基であり、
 置換基としてのR及びRは、それぞれ独立に、
  無置換の炭素数1~3のアルキル基、
  無置換の炭素数1~3のフルオロアルキル基、または
  置換もしくは無置換の環形成炭素数6~12のアリール基であり、
 ただし、R19及びR20が水素原子である場合、R11~R14のいずれか1つ以上は置換基であり、かつR15~R18のいずれか1つ以上は置換基であり、
 R11~R18が水素原子である場合、R19及びR20は置換基である。*は、結合位置を示す。]
Figure JPOXMLDOC01-appb-C000014

 
[前記一般式(1A)中、Arは、前記一般式(3)で表される基であり、nは、平均量体数を表し、
 前記一般式(2A)中、Arは、前記一般式(4)で表される基であり、nは、平均量体数を表す。]
 本明細補書において、水素原子とは、中性子数が異なる同位体、すなわち、軽水素(protium)、重水素(deuterium)、および三重水素(tritium)を包含する。
 前記一般式(3)及び(4)において、R11~R20、R21~R28及びR100を構成する炭素数1~2のアルキル基としては、メチル基およびエチル基が挙げられる。好ましくはメチル基である。
 前記一般式(3)及び(4)において、R11~R18及びR21~R28を構成する炭素数1~2のフルオロアルキル基としては、上記の炭素数1~2のアルキル基に1または2以上のフッ素原子が置換した基が挙げられる。好ましくは、パーフルオロアルキル基であり、例えば、トリフルオロメチル基等が挙げられる。
 前記一般式(3)及び(4)において、R11~R18及びR21~R28を構成する炭素数1~2のアルコキシ基としては、メトキシ基およびエトキシ基が挙げられる。
 前記一般式(3)及び(4)において、R及びRを構成する炭素数1~3のアルキル基としては、直鎖アルキルあるいは分岐アルキルが挙げられる。例えば、メチル基、エチル基、および各種のプロピル基が挙げられる。好ましくはメチル基である。
 前記一般式(3)及び(4)において、R及びRを構成する炭素数1~3のフルオロアルキル基としては、上記の炭素数1~3のアルキル基に1または2以上のフッ素原子が置換した基が挙げられる。好ましくは、パーフルオロアルキル基であり、例えば、トリフルオロメチル基等が挙げられる。
 前記一般式(3)及び(4)において、R及びRを構成する環形成炭素数6~12のアリール基としては、例えば、フェニル基、ビフェニル基およびナフチル基等が挙げられる。
 前記一般式(3)及び(4)において、Xを構成する炭素数5~6のシクロアルキリデン基としては、例えば、シクロペンチリデン基、シクロヘキシリデン基、および3,5,5-トリメチルシクロヘキシリデン基等が挙げられる。
 ビシクロ炭化水素ジイル基とは、ビシクロ炭化水素から2つの水素原子を除くことにより誘導される2価の基をいう。
 前記一般式(3)及び(4)において、Xを構成する炭素数7~10のビシクロ炭化水素ジイル基としては、例えば、デカヒドロナフタレン(ビシクロ[4.4.0]デカン)、ノルボルナン(ビシクロ[2.2.1]ヘプタン)、ボルナン、ビシクロ[4.2.0]オクタン、ビシクロ[4.3.0]ノナン、ビシクロ[3.3.1]ノナン、及びペルヒドロアズレン等のいずれかから誘導される2価の基が挙げられる。
 トリシクロ炭化水素ジイル基とは、トリシクロ炭化水素から2つの水素原子を除くことにより誘導される2価の基をいう。
 前記一般式(3)及び(4)において、Xを構成する炭素数10~16のトリシクロ炭化水素ジイル基としては、例えば、ペルヒドロアントラセン、10,10-ジメチル-2,3,4,4a,5,6,7,8,8a,9,9a,10a-ドデカヒドロ-1H-アントラセン、ペルヒドロフルオレン、トリシクロ[8.5.0.02,8]ペンタデカン、exo-トリシクロ[5.5.5.02,6]デカン、及びendo-トリシクロ[5.5.5.02,6]デカン等のいずれかから誘導される2価の基が挙げられる。
 本明細書において、「置換もしくは無置換の」という場合における置換基としては、例えば、環形成炭素数6~12のアリール基(例えば、フェニル基、ビフェニル基、及びナフチル基等)、環形成原子数5~12ヘテロアリール基(例えば、ピリジル基等)、炭素数1~20のアルキル基(例えば、メチル基、エチル基、n-プロピル基、及びイソプロピル基等)、炭素数1~20のフルオロアルキル基(例えば、フルオロメチル基及びジフルオロメチル基等)、炭素数1~20のアルコキシ基(例えば、メトキシ基及びエトキシ基等)、およびハロゲン原子からなる群から選択される少なくとも一種の基が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、および臭素原子等が挙げられる。
 本明細書において、「置換もしくは無置換の」という場合における置換基は、例えば、環形成炭素数6~12のアリール基、環形成原子数5~12ヘテロアリール基、炭素数1~20のアルキル基、炭素数1~20のフルオロアルキル基、炭素数1~20のアルコキシ基、およびハロゲン原子からなる群から選択される少なくとも一種の基によってさらに置換されてもよい。
 本実施形態のPC共重合体において、Ar/(Ar+Ar)で表される存在比は、好ましくは30モル%以上55モル%以下、より好ましくは35モル%以上45モル%以下、さらに好ましくは38モル%以上43モル%以下である。
 Ar/(Ar+Ar)で表される存在比が30モル%以上であると、耐摩耗性改善の効果が発現され易くなる。
 Ar/(Ar+Ar)で表される存在比が55モル%以下であると、規則性の高いp-ターフェニル構造の結晶化が起こり難くなり、有機溶媒への溶解性の低下が抑制される。
 なお、上記のモル%は、モル共重合組成をパーセントで示した値である。モル共重合組成は、核磁気共鳴スペクトルから測定することができ、具体的には実施例に記載の方法で求めることができる。
 本実施形態のPC共重合体において、Ar/(Ar+Ar)で表される存在比は、好ましくは45モル%以上70モル%以下、より好ましくは55モル%以上65モル%以下、さらに好ましくは57モル%以上62モル%以下である。
 Ar/(Ar+Ar)で表される存在比が45モル%以上であると、規則性の高いp-ターフェニル構造の結晶化が起こり難くなり、有機溶媒への溶解性の低下が抑制される。
 Ar/(Ar+Ar)で表される存在比が70モル%以下であると、耐摩耗性改善の効果が発現され易くなる。
 本実施形態のPC共重合体において、前記一般式(3)中、X及びXは、それぞれ独立に、CR100であることが好ましく、CHであることがより好ましい。
 本実施形態のPC共重合体において、前記一般式(4)中、Xは、-CR-で表される基、または置換もしくは無置換の炭素数5~6のシクロアルキリデン基であることが好ましく、置換もしくは無置換の炭素数5~6のシクロアルキリデン基であることがより好ましい。
 Xが-CR-で表される基である場合、R及びRは、それぞれ独立に、無置換の炭素数1~3のアルキル基であることが好ましい。
 本実施形態のPC共重合体において、R11~R18及びR21~R28は、それぞれ独立に、水素原子、または無置換の炭素数1~2のアルキル基であることが好ましい。
 本実施形態のPC共重合体において、R11及びR16は同一であることが好ましい。
 本実施形態のPC共重合体において、R12及びR15は同一であることが好ましい。
 本実施形態のPC共重合体において、R13及びR18は同一であることが好ましい。
 本実施形態のPC共重合体において、R14及びR17は同一であることが好ましい。
 本実施形態のPC共重合体において、R19及びR20は同一であることが好ましい。
 本実施形態のPC共重合体において、X及びXは同一であることが好ましい。
 本実施形態のPC共重合体において、R21及びR26は同一であることが好ましい。
 本実施形態のPC共重合体において、R22及びR25は同一であることが好ましい。
 本実施形態のPC共重合体において、R23及びR28は同一であることが好ましい。
 本実施形態のPC共重合体において、R24及びR27は同一であることが好ましい。
 本実施形態のPC共重合体において、R及びRは互いに異なることが好ましい。
 前記一般式(1)で表される繰り返し単位Aと、前記一般式(2)で表される繰り返し単位Bとを有するPC共重合体としては、下記一般式(100)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000015

 
 前記一般式(100)において、aは、前記繰り返し単位Aにおけるモル共重比を表し、bは、前記繰り返し単位Bにおけるモル共重比を表す。
 aは、Ar/(Ar+Ar)であり、bは、Ar/(Ar+Ar)である。
 存在比としてのAr/(Ar+Ar)は、Arのモル百分率で表される。
 モル共重合比としてのAr/(Ar+Ar)は、Arのモル分率で表される。
 Arの存在比及びモル共重合比についても同様である。
 なお、前記一般式(100)において、各繰り返し単位は必ずしも連続していない。
 前記一般式(100)で表されるPC共重合体は、交互共重合体、およびランダム共重合体等、いずれであってもよい。
 本実施形態のPC共重合体において、前記一般式(1)中、Arは、2,5-ビス(4-ヒドロキシフェニル)-3,6-ジメチルピラジン、2’,5’-ジメチル-[1,1’;4’,1’’]ターフェニル-4,4’’-ジオール、及び3,3’’-ジメチル-4,4’’-ジヒドロキシ-p-ターフェニルのいずれかから誘導される2価の基であることが好ましい。
 2,5-ビス(4-ヒドロキシフェニル)-3,6-ジメチルピラジンから誘導される2価の基は、下記一般式(3-1)で表される基である。2’,5’-ジメチル-[1,1’;4’,1’’]ターフェニル-4,4’’-ジオールから誘導される2価の基は、下記一般式(3-2)で表される基である。3,3’’-ジメチル-4,4’’-ジヒドロキシ-p-ターフェニルは、下記一般式(3-3)で表される基である。
 本実施形態のPC共重合体において、Arとしては、例えば、下記一般式(3-1)~(3-4)で表される基が挙げられる。*は、結合位置を示す。
Figure JPOXMLDOC01-appb-C000016
 本実施形態のPC共重合体において、前記一般式(2)中、Arは、下記一般式(4A)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000017

 
(前記一般式(4A)中、R21~R28は、それぞれ独立に、前記一般式(4)におけるR21~R28と同義である。*は、結合位置を示す。)
 本実施形態のPC共重合体において、Arとしては、例えば、下記一般式(4-1)~(4-6)で表される基が挙げられる。*は、結合位置を示す。
Figure JPOXMLDOC01-appb-C000018
 本実施形態のPC共重合体は、原料として、平均量体数nが1.0以上1.3以下の範囲にある前記一般式(1A)で表されるビスクロロホーメートオリゴマー、及び平均量体数nが1.0以上1.3以下の範囲にある前記一般式(2A)で表されるビスクロロホーメートオリゴマーの少なくとも一方を使用することで、結晶性の高いAr骨格を有する場合であっても、PC共重合体中の3連子AAA(繰り返し単位Aが連続して3つ並んで構成される構造単位AAA)の3連子分率を5モル%以下に抑えることができる。その結果、PC共重合体の結晶化を抑制できるので、有機溶媒への溶解性が良好であるPC共重合体とすることができる。
 ここで、3連子および3連子分率について説明する。
 本実施形態のPC共重合体において、前記一般式(1)で表される繰り返し単位A及び前記一般式(2)で表される繰り返し単位Bのいずれかが連続して3つ並んで構成される構造単位ABA、BAA、AAA、AAB、BBA、BAB、ABB、及びBBBをそれぞれ3連子と定義する。
 そして、全ての3連子(ABA、BAA、AAA、AAB、BBA、BAB、ABB、及びBBB)の合計モル数に対する各3連子のモル数を百分率で示したものを3連子分率と定義する。
 例えば、以下に示す繰り返し単位A及び繰り返し単位Bの連鎖では、四角で囲って示すABA、BAAの他、AAA、AAB、BBA、BAB、ABB、及びBBBで表される合計8つの3連子が存在する。この連鎖において、8つの3連子の合計モル数における各3連子のモル数を百分率で示したものが3連子分率となる。
 2連子および2連子分率についても、3連子および3連子分率と同様に説明できる。
 本実施形態のPC共重合体において、前記一般式(1)で表される繰り返し単位A及び前記一般式(2)で表される繰り返し単位Bのいずれかが連続して2つ並んで構成される構造単位AA、BB、AB、及びBAをそれぞれ2連子と定義する。
 そして、全ての2連子(AA、BB、AB、及びBA)の合計モル数に対する各2連子のモル数を百分率で示したものを2連子分率と定義する。
 例えば、以下に示す繰り返し単位A及び繰り返し単位Bの連鎖では、楕円で囲って示すAA、BBの他、AB及びBAで表される合計4つの2連子が存在する。この連鎖において、4つの2連子の合計モル数における各2連子のモル数を百分率で示したものが2連子分率となる。
Figure JPOXMLDOC01-appb-C000019
 本実施形態のPC共重合体が、例えば、下記一般式で表される繰り返し単位A及び繰り返し単位Bを有する場合、13C-NMRスペクトルにより、下記一般式中、α、β、γ、δで示された4位の炭素は左右の骨格の影響を受けて固有のシフト値を示す。下記一般式の場合では、左右のA骨格の影響を受ける。これによりABA、BAA、AAA、AAB、BBA、BAB、ABB、及びBBBで表される3連子パターンがそれぞれどれだけ含まれるかを百分率で知ることができる。
 13C-NMRスペクトルは、例えば、以下の測定条件で測定される。
13C-NMRスペクトルの測定条件)
・装置  :ブルカージャパン株式会社製(AVANCE III HD 500)
     (5mmφ TCIクライオプローブ使用)
・溶媒  :CDCl
・測定濃度(サンプル量/溶媒量):50mg/mL
・積算回数:1024回(約1時間)
Figure JPOXMLDOC01-appb-C000020
 本実施形態のPC共重合体において、前記一般式(1)で表される繰り返し単位A及び前記一般式(2)で表される繰り返し単位Bのいずれかが連続して3つ並んで構成される構造単位ABA、BAA、AAA、AAB、BBA、BAB、ABB、及びBBBをそれぞれ3連子と定義した場合、ABA、BAA、AAA、AAB、BBA、BAB、ABB、及びBBBで表される合計8種の3連子の合計モル数に対するAAAで表される3連子のモル数の百分率(3連子分率)は、好ましくは3モル%以下、より好ましくは2モル%以下、さらに好ましくは1モル%以下である。
 AAAで表される3連子のモル数の百分率(3連子分率)が3モル%以下であると、樹脂の結晶性が低下し、有機溶剤への溶解性が向上する。その結果、電荷輸送材などとの相溶性が向上し、感光体の耐摩耗性や電気特性がより向上する。
 本実施形態のPC共重合体において、前記一般式(1)で表される繰り返し単位A及び前記一般式(2)で表される繰り返し単位Bのいずれかが連続して2つ並んで構成される構造単位AA、BB、AB、及びBAをそれぞれ2連子と定義した場合、AA、BB、AB、及びBAで表される合計4種の2連子の合計モル数に対するAAで表される2連子のモル数の百分率(2連子分率)は、好ましくは5モル%以下、より好ましくは3モル%以下、さらに好ましくは1モル%以下である。
 AAで表される2連子のモル数の百分率(2連子分率)が5モル%以下であると、樹脂の結晶性が低下し、有機溶剤への溶解性が向上する。その結果、電荷輸送材などとの相溶性が向上し、感光体の耐摩耗性や電気特性がより向上する。
 本実施形態のPC共重合体がTHF(テトラヒドロフラン)に対して、固形分濃度10質量%で溶解し、その溶液のHAZE値が3%以下であることが好ましい。
 HAZE値は、より好ましくは2%以下、さらに好ましくは1%以下である。
 HAZE値が3%以下であると、透明性に優れたPC共重合体が得られる。
 HAZE値の測定方法としては、後述する実施例において説明する方法が挙げられる。
 本実施形態のPC共重合体は、引張試験において、引張速度1mm/minでの降伏応力が70%以上であることが好ましい。
 降伏応力は、より好ましくは72%以上、さらに好ましくは75%以上である。
 降伏応力が70%以上であると、耐摩耗性がより向上したPC共重合体が得られる。
 降伏応力の測定方法としては、後述する実施例において説明する方法が挙げられる。
 本実施形態のPC共重合体は、ナノインデンテーション試験において、荷重を0.6Nに設定した場合のマルテンス硬度が160MPa以上であることが好ましい。
 マルテンス硬度は、より好ましくは170MPa以上、さらに好ましくは180MPa以上である。
 マルテンス硬度が160MPa以上であると、耐摩耗性の向上にも寄与するが、感光体のバインダー樹脂に用いた場合の耐トナー付着性が良好なPC共重合体が得られる。
 マルテンス硬度の測定方法としては、後述する実施例において説明する方法が挙げられる。
 本実施形態のPC共重合体は、インデンテーション試験において、荷重を0.6Nに設定した場合の弾性仕事率が46%以上であることが好ましい。
 弾性仕事率は、より好ましくは47%以上、さらに好ましくは48%以上である。
 弾性仕事率が46%以上であると、耐摩耗性がより向上したPC共重合体が得られる。
 弾性仕事率の測定方法としては、後述する実施例において説明する方法が挙げられる。
 本実施形態のPC共重合体2gを塩化メチレンに溶解しPETフィルム上にキャスト製膜して得たフィルムサンプルのキャスト面に、500gの荷重をかけた摩耗輪を接触させて2000回転させた後の前記フィルムサンプルの質量減少量が3.0mg以下であることが好ましい。
 質量減少量は、より好ましくは2.5mg以下、さらに好ましくは2.0mg以下である。
 質量減少量が3.0mg以下であると、耐摩耗性がより向上したPC共重合体が得られる。
 質量減少量の測定方法としては、後述する実施例において説明する方法が挙げられる。
 本実施形態において、PC共重合体の還元粘度[ηSP/C]は、濃度0.5g/dLであるPC共重合体の塩化メチレン溶液の20℃における値である。
 本実施形態のPC共重合体の還元粘度[ηSP/C]は、好ましくは0.1dL/g以上5dL/g以下、より好ましくは0.2dL/g以上3dL/g以下、さらに好ましくは0.3dL/g以上2.5dL/g以下である。
 PC共重合体の還元粘度[ηSP/C]が0.1dL/g以上であると、電子写真感光体等として使用した場合に十分な耐摩耗性を得ることができる。
 PC共重合体の還元粘度[ηSP/C]が5dL/g以下であると、塗工液から電子写真感光体等の成形体を製造する時に、適切な塗工粘度に保つことができ、電子写真感光体等の成形体の生産性を上げることができる。
 還元粘度の測定方法としては、後述する実施例において説明する方法が挙げられる。
 本実施形態のPC共重合体は、電気特性の改善の点で、連鎖末端が一価の芳香族基または一価のフッ素含有脂肪族基により封止されていることが好ましい。
 一価の芳香族基は、アルキル基等の脂肪族基を含有する基であってもよい。
 一価のフッ素含有脂肪族基は、芳香族基を含有する基であってもよい。
 また、一価の芳香族基および一価のフッ素含有脂肪族基には、例えば、アルキル基、ハロゲン原子、およびアリール基等の置換基が付加していてもよい。これらの置換基には、例えば、アルキル基、ハロゲン原子、およびアリール基等の置換基がさらに付加していてもよい。また、置換基が複数ある場合、これらの置換基同士が互いに結合して環を形成してもよい。
 連鎖末端を構成する一価の芳香族基は、炭素数6~12のアリール基を含むことが好ましい。このようなアリール基としては、例えば、フェニル基およびビフェニル基等が挙げられる。
 芳香族基に付加する置換基、および芳香族基に付加しているアルキル基に付加する置換基としては、例えば、フッ素原子、塩素原子、および臭素原子等のハロゲン原子が挙げられる。また、芳香族基に付加する置換基として、例えば、炭素数1~20のアルキル基等が挙げられる。このアルキル基は、上記のようにハロゲン原子が付加した基であってもよく、アリール基が付加した基であってもよい。
 連鎖末端を構成する一価のフッ素含有脂肪族基としては、例えば、フッ素含有アルコールから誘導される一価の基等が挙げられる。
 フッ素含有アルコールとしては、炭素数2~6である複数のフルオロアルキル鎖同士が、エーテル結合を介して連結し、全フッ素原子数が13~19のフッ素含有アルコールが好ましい。全フッ素原子数が13以上であれば、十分な撥水性および撥油性を発現させることができる。一方、全フッ素原子数が19以下であれば、重合時の反応性の低下を抑制し、得られたPC共重合体の機械的強度、表面硬度、および耐熱性等が向上し得る。
 さらに、一価のフッ素含有脂肪族基としては、エーテル結合を2つ以上有するフッ素含有アルコールから誘導される一価の基でも好ましい。このようなフッ素含有アルコールを用いることで、塗工液におけるPC共重合体の分散性が良くなり、成形体および電子写真感光体における耐摩耗性を向上させ、摩耗後の、表面潤滑性、撥水性および撥油性を保持することができる。
 あるいは、フッ素含有アルコールとしては、下記一般式(30)もしくは(31)で表されるフッ素含有アルコール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール等のフッ素含有アルコール、または下記一般式(32)、(33)、もしくは(34)で表されるエーテル結合を介したフッ素含有アルコールも好ましい。
  H(CFn1CHOH・・・(30)
  F(CFm1CHOH・・・(31)
 前記一般式(30)において、n1は1~12の整数であり、前記一般式(31)において、m1は1~12の整数である。
 F-(CF 31-OCFCH-OH・・・(32)
 F-(CFCF 32-(CFCFO) 33-CFCHOH・・・(33)
 C(R)-(CF 35-O-(CFCFO) 34-CFCHOH・・・(34)
 前記一般式(32)において、n31は1~10の整数であり、好ましくは、5~8の整数である。
 前記一般式(33)において、n32は0~5の整数であり、好ましくは、0~3の整数である。n33は1~5の整数であり、好ましくは、1~3の整数である。
 前記一般式(34)において、n34は1~5の整数であり、好ましくは、1~3の整数である。n35は0~5の整数であり、好ましくは、0~3の整数である。Rは、CFまたはFである。
 本実施形態において、電気特性および耐摩耗性の改善の点から、PC共重合体の連鎖末端は、下記一般式(9)で表されるフェノールから誘導される一価の基または下記一般式(10)で表されるフッ素含有アルコールから誘導される一価の基により封止されていることが好ましい。
Figure JPOXMLDOC01-appb-C000021
 前記一般式(9)において、R10は炭素数1~10のアルキル基、または炭素数1~10のフルオロアルキル基を表し、pは1~3の整数である。
 前記一般式(10)において、Rは、炭素数が5以上、かつ、フッ素原子数が11以上であるパーフルオロアルキル基、あるいは下記一般式(11)で表されるパーフルオロアルキルオキシ基を示す。
Figure JPOXMLDOC01-appb-C000022
 前記一般式(11)中、Rf2は炭素数1~6の直鎖または分岐のパーフルオロアルキル基である。mは1~3の整数である。
[PC共重合体の製造方法]
 以下に、前記一般式(100)で表されるPC共重合体を例に、PC共重合体の製造方法を示す。
Figure JPOXMLDOC01-appb-I000023
 本実施形態のPC共重合体は、例えば、下記(CS1)、(CS2)又は(CS3)の合成反応で好適に得られる。
(CS1)下記一般式(1A)で表されるビスクロロホーメートオリゴマーと、下記一般式(6)で表される二価フェノール性化合物とを酸結合剤存在下で界面重縮合させる。
(CS2)下記一般式(2A)で表される低量体数のビスクロロホーメートオリゴマーと、下記一般式(5)で表される二価フェノール性化合物とを酸結合剤存在下で界面重縮合させる。
(CS3)下記一般式(1A)で表される低量体数のビスクロロホーメートオリゴマーと、下記一般式(2A)で表される低量体数のビスクロロホーメートオリゴマーとを混合し、下記一般式(1A)で表されるビスクロロホーメートオリゴマー及び下記一般式(2A)で表されるビスクロロホーメートオリゴマーの混合物を、下記一般式(5)で表される二価フェノール性化合物または下記一般式(6)で表される二価フェノール性化合物を界面重縮合させる。
 PC共重合体の上記(CS1)~(CS3)の合成反応は、必要に応じて末端封止剤及び分岐剤少なくとも一方の存在下で行われる。
Figure JPOXMLDOC01-appb-C000024
 前記一般式(1A)及び(5)において、Arは、前記一般式(3)で表される基である。前記一般式(2A)及び(6)において、Arは、前記一般式(4)で表される基である。
 前記一般式(1A)中のnは、ビスクロロホーメートオリゴマーの平均量体数を示す。平均量体数nは、1.0以上1.3以下であり、好ましくは1.0以上1.2以下であり、さらに好ましくは1.0以上1.1以下である。
 前記一般式(2A)中のnは、ビスクロロホーメートオリゴマーの平均量体数を示す。平均量体数nは、1.0以上1.3以下であり、好ましくは1.0以上1.2以下であり、さらに好ましくは1.0以上1.1以下である。
 原料として、平均量体数nが1.0以上1.3以下の範囲にある前記一般式(1A)で表されるビスクロロホーメートオリゴマー、及び平均量体数nが1.0以上1.3以下の範囲にある前記一般式(2A)で表されるビスクロロホーメートオリゴマーの少なくとも一方を使用することで、本実施形態のPC共重合体の製造が容易になる。
 平均量体数n及び平均量体数nの算出方法は、後述する実施例において説明する方法が挙げられる。
 例えば、平均量体数nが1.0である前記一般式(2A)で表されるビスクロロホーメートオリゴマーと、コモノマー、例えば、前記一般式(5)で表されるターフェニル化合物とをモル比1:1で反応させたとしても、Arの存在比(Ar/(Ar+Ar))が50モル%になりにくい場合がある。
 それは、Arオリゴマー(前記一般式(2A)で表されるビスクロロホーメートオリゴマー)を形成した後の、Arを含むモノマー(前記一般式(5)で表されるターフェニル化合物)との反応時に、Arオリゴマー末端のクロロホーメート基が、反応系内に存在する塩基と反応して水酸基となり、これが末端塩素のArオリゴマーと重縮合する場合があるからである。
 また、原料として、平均量体数nが1.0以上1.3以下の範囲にある前記一般式(1A)で表されるビスクロロホーメートオリゴマー、及び平均量体数nが1.0以上1.3以下の範囲にある前記一般式(2A)で表されるビスクロロホーメートオリゴマーの少なくとも一方を使用することで、前述の通り、結晶性の高いAr骨格であっても、PC共重合体中の3連子AAA(繰り返し単位Aが連続して3つ並んで構成される構造単位AAA)の3連子分率を5モル%以下に抑えることができる。その結果、PC共重合体の結晶化を抑制できるので、有機溶媒への溶解性が良好であるPC共重合体とすることができる。
 本実施形態のPC共重合体の製造方法に使用される前記一般式(1A)で表されるビスクロロホーメートオリゴマーは、前記一般式(5)で表されるターフェニル化合物から誘導される。
 本実施形態のPC共重合体の製造方法に使用される前記一般式(2A)で表されるビスクロロホーメートオリゴマーは、前記一般式(6)で表される二価フェノール性化合物から誘導される。
(一般式(5)で表されるモノマー)
 本実施形態のPC共重合体の構成単位であるArの原料となる前記一般式(5)で表されるモノマー(ターフェニル化合物)について説明する。
 前記一般式(5)で表されるモノマー(ターフェニル化合物)としては、例えば、2,5-ビス(3-ジメチル-4-ヒドロキシフェニル)-ピラジン、2,5-ビス(3-ジエチル-4-ヒドロキシフェニル)-ピラジン、2,5-ビス(4-ヒドロキシフェニル)-3,6-ジメチルピラジン、2,5-ビス(4-ヒドロキシフェニル)-3,6-ジエチルピラジン、2’,5’-ジメチル-[1,1’;4’,1’’]ターフェニル-4,4’’-ジオール、2’,5’-ジエチル-[1,1’;4’,1’’]ターフェニル-4,4’’-ジオール、3,3’’-ジメチル-4,4’’-ジヒドロキシ-p-ターフェニル、3,3’’-ジエチル-4,4’’-ジヒドロキシ-p-ターフェニル、2,5-ビス(3-ジトリフルオロメチル-4-ヒドロキシフェニル)-ピラジン、2,5-ビス(3-ジテトラフルオロエチル-4-ヒドロキシフェニル)-ピラジン、2,5-ビス(4-ヒドロキシフェニル)-3,6-ジトリフルオロメチルピラジン、2,5-ビス(4-ヒドロキシフェニル)-3,6-ジテトラフルオロエチルピラジン、2’,5’-ジトリフルオロメチル-[1,1’;4’,1’’]ターフェニル-4,4’’-ジオール、2’,5’-ジテトラフルオロエチル-[1,1’;4’,1’’]ターフェニル-4,4’’-ジオール、3,3’’-ジトリフルオロメチル-4,4’’-ジヒドロキシ-p-ターフェニル、3,3’’-ジテトラフルオロエチル-4,4’’-ジヒドロキシ-p-ターフェニルなどが挙げられる。
 中でも、ターフェニル化合物としては、2,5-ビス(3-ジメチル-4-ヒドロキシフェニル)-ピラジン、2’,5’-ジメチル-[1,1’;4’,1’’]ターフェニル-4,4’’-ジオール、3,3’’-ジメチル-4,4’’-ジヒドロキシ-p-ターフェニルが、機械特性に優れるPC共重合体を与えるという点で好ましい。また、電子写真感光体用のPC共重合体として適用した場合には良好な塗工液が得られるため好ましい。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
 これらのターフェニル化合物は、耐摩耗性の観点から、単独重合体の塩化メチレンに対する溶解度が2質量%以下であり、かつ界面重縮合法によるポリカーボネート合成反応中に結晶化する事により数平均分子量が10000以上の単独重合体の合成が実質的に不可能な二価フェノールモノマーであることが好ましい。
 尚、塩化メチレンに対する溶解度が2質量%以下であるか否かは、有機溶媒含有量が500質量ppm以下の、粘度平均分子量が15000以上30000以下の範囲にある固体状の単独重合体2質量部を室温(25℃)で塩化メチレン98質量部に浸漬し、24時間放置した後、固液分離し、固体側を乾燥させて求めた質量減少が0.04質量部以上であるか否かにより確認できる。
(一般式(6)で表されるモノマー)
 本実施形態のPC共重合体の構成単位であるArの原料となる前記一般式(6)で表される二価フェノール性化合物(コモノマー)について説明する。
 前記一般式(6)で表される二価フェノール性化合物としては、ビスフェノール化合物が挙げられる。具体的には、例えば、1,1-ビス(3-メチル-4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,2-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5トリメチルシクロヘキサン、ビス(3-メチル-4-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-1,1-ジフェニルメタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルメタン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5トリメチルシクロヘキサン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、1,1-ビス(3-エチル-4-ヒドロキシフェニル)シクロヘキサン、2,2-ビス(3-トリフルオロメチル-4-ヒドロキシフェニル)エタン、2,2-ビス(3-ペンタフルオロエチル-4-ヒドロキシフェニル)エタン、2,2-ビス(2-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-トリフルオロメチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-ペンタフルオロエチル-4-ヒドロキシフェニル)プロパン、1,1-ビス(3-トリフルオロメチル-4-ヒドロキシフェニル)シクロヘキサン、及び1,1-ビス(3-ペンタフルオロエチル-4-ヒドロキシフェニル)シクロヘキサン等が挙げられる。
 これらのビスフェノール化合物の中で、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、及び1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサンが、耐摩耗性、及び有機溶媒への溶解性に優れるPC共重合体を与えるという点で好ましい。また、電子写真感光体用のPC共重合体として適用した場合には良好な塗工液が得られるため好ましい。これらのビスフェノール化合物は1種単独で用いてもよいし、2種以上を併用してもよい。
(末端封止剤)
 本実施形態のPC共重合体の製造方法において、連鎖末端を生成させる末端封止剤としては、例えば、一価のカルボン酸及びその誘導体、または一価のフェノールを用いることができる。例えば、p-tert-ブチル-フェノール、p-フェニルフェノール、p-クミルフェノール、p-パーフルオロノニルフェノール、p-(パーフルオロノニルフェニル)フェノール、p-(パーフルオロヘキシル)フェノール、p-tert-パーフルオロブチルフェノール、パーフルオロオクチルフェノール、パーフルオロヘキシルフェノール、1-(P-ヒドロキシベンジル)パーフルオロデカン、p-〔2-(1H,1H-パーフルオロトリドデシルオキシ)-1,1,1,3,3,3-ヘキサフルオロプロピル〕フェノール、3,5-ビス(パーフルオロヘキシルオキシカルボニル)フェノール、p-ヒドロキシ安息香酸パーフルオロドデシル、p-(1H,1H-パーフルオロオクチルオキシ)フェノール、2H,2H,9H-パーフルオロノナン酸、及び1,1,1,3,3,3-テトラフロロ-2-プロパノール等が挙げられる。
 また、連鎖末端を生成させる末端封止剤として、前記一般式(30)もしくは(31)で表されるフッ素含有アルコール、または1,1,1,3,3,3-ヘキサフロロ-2-プロパノール等の一価のフッ素含有アルコールも好適に用いられる。また、前記一般式(32)、(33)、または(34)で表されるエーテル結合を介したフッ素含有アルコールを用いることも好ましい。
 連鎖末端を生成させる末端封止剤としては、これらの中でも、電気特性および耐摩耗性の改善の点から、前記一般式(9)で表される一価のフェノールまたは前記一般式(10)で表される一価のフッ素含有アルコールを用いることが好ましい。
 前記一般式(9)で表される一価のフェノールとしては、例えば、p-tert-ブチル-フェノール、p-パーフルオロノニルフェノール、p-パーフルオロヘキシルフェノール、p-tert-パーフルオロブチルフェノール、およびp-パーフルオロオクチルフェノール等が好適に用いられる。すなわち、本実施形態においては、連鎖末端は、p-tert-ブチル-フェノール、p-パーフルオロノニルフェノール、p-パーフルオロヘキシルフェノール、p-tert-パーフルオロブチルフェノール、およびp-パーフルオロオクチルフェノールからなる群から選ばれる末端封止剤を用いて封止されていることが好ましい。
 前記一般式(10)で表されるエーテル結合を介したフッ素含有アルコールとしては、例えば、以下の化合物が挙げられる。すなわち、本実施形態の連鎖末端は、下記フッ素含有アルコールのいずれかから選ばれる末端封止剤を用いて封止されていても好ましい。
Figure JPOXMLDOC01-appb-C000025
 また、末端封止剤である一価のフェノールとしては、一価の有機シロキサン変性フェニル基を一価のフェノールとした化合物も好適に用いることができる。
 一価の有機シロキサン変性フェニル基としては、例えば、下記式(9)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000026
(前記一般式(9)において、Zは炭素数2~6の炭化水素基である。好ましくはアルキレン基であり、更に好ましくは繰り返し単位数が2~4のメチレン基である。
 R41は炭素数1~6の脂肪族炭化水素基である。好ましくは炭素数1~6のアルキル基である。
 R42~R45は各々独立に水素、置換若しくは無置換の炭素数1~12のアルキル基、置換若しくは無置換の炭素数1~12のアルコキシ基、置換若しくは無置換の環形成炭素数6~12のアリール基である。
 R46~R49は、各々独立に、置換若しくは無置換の炭素数1~12のアルキル基、置換若しくは無置換の環形成炭素数6~12のアリール基である。
 置換若しくは無置換の炭素数1~12のアルキル基、置換若しくは無置換の環形成炭素数6~12のアリール基としては、例えば、前記一般式(3)及び(4)におけるR及びRで例示した基が挙げられる。アルキル基としは、好ましくはメチル基である。アリール基としては、好ましくはフェニル基である。
 nは2~600の整数であり、分子量分布を持つ場合には平均繰り返し単位数を示す。)
 一価の有機シロキサン変性フェニル基としては、例えば、以下の基が挙げられる。
Figure JPOXMLDOC01-appb-C000027
 一価の有機シロキサン変性フェニル基を有するPC共重合体をバインダー樹脂として用いた電子写真感光体では、トナーなどの異物が付着することを低減することができる。
 本実施形態のPC共重合体が一価の有機シロキサン変性フェニル基を有する場合、一価の有機シロキサン変性フェニル基の割合は、PC共重合体全体に対して、好ましくは0.01質量%以上、より好ましくは50質量%以下である。さらに好適には、0.1質量%以上、20質量%以下、特に好適には、0.5質量%以上、10質量%以下である。
 末端封止剤の添加割合は、繰り返し単位A、繰り返し単位B、および連鎖末端の共重合組成のモル百分率(共重合組成比)として、好ましくは0.05モル%以上30モル%以下、より好ましくは0.1モル%以上10モル%以下である。末端封止剤の添加割合が30モル%以下であると、機械的強度の低下を抑制できる。末端封止剤の添加割合が0.05モル%以上であると、成形性の低下を抑制できる。
 また、本実施形態のPC共重合体の製造方法において用いることができる分岐剤は、特に限定されない。分岐剤の具体例としては、例えば、フロログルシン、ピロガロール、4,6-ジメチル-2,4,6-トリス(4-ヒドロキシフェニル)-2-ヘプテン、2,6-ジメチル-2,4,6-トリス(4-ヒドロキシフェニル)-3-ヘプテン、2,4-ジメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、1,3,5-トリス(2-ヒドロキシフェニル)ベンゼン、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、トリス(4-ヒドロキシフェニル)フェニルメタン、2,2-ビス〔4,4-ビス(4-ヒドロキシフェニル)シクロヘキシル〕プロパン、2,4-ビス〔2-ビス(4-ヒドロキシフェニル)-2-プロピル〕フェノール、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、2-(4-ヒドロキシフェニル)-2-(2,4-ジヒドロキシフェニル)プロパン、テトラキス(4-ヒドロキシフェニル)メタン、テトラキス〔4-(4-ヒドロキシフェニルイソプロピル)フェノキシ〕メタン、2,4-ジヒドロキシ安息香酸、トリメシン酸、シアヌル酸、3,3-ビス(3-メチル-4-ヒドロキシフェニル)-2-オキソ-2,3-ジヒドロインドール、3,3-ビス(4-ヒドロキシアリール)オキシインドール、5-クロロイサチン、5,7-ジクロロイサチン、及び5-ブロモイサチン等が挙げられる。
 分岐剤の添加割合は、共重合組成比として、好ましくは30モル%以下、より好ましくは5モル%以下である。分岐剤の添加割合が30モル%以下であると、成形性の低下を抑制できる。
 界面重縮合を行う場合、酸結合剤としては、例えば、アルカリ金属水酸化物(例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、および水酸化セシウム等)、アルカリ土類金属水酸化物(例えば、水酸化マグネシウムおよび水酸化カルシウム等)、アルカリ金属弱酸塩(例えば、炭酸ナトリウム、炭酸カリウム、および酢酸カルシウム等)、アルカリ土類金属弱酸塩、並びに有機塩基(例えば、ピリジン等)等が挙げられる。
 界面重縮合を行う場合に好ましい酸結合剤は、水酸化ナトリウム、水酸化カリウム、および水酸化カルシウム等のアルカリ金属水酸化物、並びにアルカリ土類金属水酸化物である。また、これらの酸結合剤は、混合物としても用いることができる。酸結合剤の使用割合も反応の化学量論比(当量)を考慮して適宜調製すればよい。具体的には、原料である二価フェノールの水酸基の合計1モル当たり、1当量もしくはそれより過剰量の酸結合剤を使用すればよく、好ましくは1当量以上10以下当量の酸結合剤を使用すればよい。
 本実施形態のPC共重合体の製造方法で用いる溶媒としては、得られた共重合体に対して一定以上の溶解性を示せば問題無い。溶媒としては、例えば、芳香族炭化水素(例えば、トルエン、キシレン等)、ハロゲン化炭化水素(例えば、塩化メチレン、クロロホルム、1,1-ジクロロエタン、1,2-ジクロロエタン、1,1,1-トリクロロエタン、1,1,2-トリクロロエタン、1,1,1,2-テトラクロロエタン、1,1,2,2-テトラクロロエタン、ペンタクロロエタン、およびクロロベンゼン等)、ケトン類(例えば、シクロヘキサノン、アセトン、およびアセトフェノン等)、エーテル類(テトラヒドロフランおよび1,4-ジオキサン等)等が好適な溶媒として挙げられる。これら溶媒は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。さらに、互いに混ざり合わない2種の溶媒を用いて界面重縮合反応を行ってもよい。
 また、本実施形態のPC共重合体の製造方法で用いる触媒としては、特に限定されない。例えば、第三級アミン(例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン、N,N-ジメチルシクロヘキシルアミン、ピリジン、N,N-ジエチルアニリン、およびN,N-ジメチルアニリン等)、四級アンモニウム塩(例えば、トリメチルベンジルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド、トリブチルベンジルアンモニウムクロライド、トリオクチルメチルアンモニウムクロライド、テトラブチルアンモニウムクロライド、およびテトラブチルアンモニウムブロマイド等)、並びに四級ホスホニウム塩等(例えば、テトラブチルホスホニウムクロライドおよびテトラブチルホスホニウムブロマイド等)が好適である。
 さらに、必要に応じて、本実施形態のPC共重合体の反応系に亜硫酸ナトリウムおよびハイドロサルファイト塩等の酸化防止剤を少量添加してもよい。
 本実施形態のPC共重合体の製造方法は、前述したPC共重合体の製造方法以外にも、具体的には様々な態様で実施可能である。例えば、前記一般式(5)で表されるターフェニル化合物と、ホスゲン等とを反応させて、前記一般式(1A)で表される低量体数のビスクロロホーメートオリゴマーを製造する。ついで、このビスクロロホーメートオリゴマーに、前記一般式(6)で表される二価フェノール性化合物を使用して、前記溶媒および酸結合剤のアルカリ水溶液の混合液の存在下に反応させる方法を採用することができる。この方法は、PC共重合体中のAr/(Ar+Ar)で表わされる存在比を好ましい範囲に調整できる点で好ましい。
 前記一般式(1A)中のn値が1.0以上1.3以下の範囲にあるビスクロロホーメートオリゴマー、または前記一般式(2A)中のn値が1.0以上1.3以下の範囲にあるビスクロロホーメートオリゴマーを製造する方法としては、詳細には、後述する製造例で示す方法があるが、概略以下の通りである。
 まず、前記一般式(5)で表されるターフェニル化合物、または前記一般式(6)で表される二価フェノール性化合物を塩化メチレン等の疎水性溶媒に懸濁し、さらにホスゲンを加えて第一の溶液を形成する。一方、トリエチルアミン等の第三級アミンを塩化メチレン等の疎水性溶媒に溶解させて第二の溶液を形成し、この第二の溶液を前記第一の溶液に滴下して室温(25℃)以下の温度で反応させる。得られた反応混合物を含む第三の溶液に塩酸と純水を加えて洗浄し、低量体数のポリカーボネートオリゴマーを含む有機層を得る。
 滴下温度及び反応温度は、通常0℃以上70℃以下であり、好ましくは5℃以上65℃以下である。滴下時間及び反応時間は、共に、通常15分間以上4時間以下、好ましくは30分間以上3時間以下程度である。
 このようにして得られる前記一般式(1A)または(2A)で表されるビスクロロホーメートオリゴマーの平均量体数n及び平均量体数nは、それぞれ独立に、1.0以上1.3以下であり、好ましくは1.0以上1.2以下であり、さらに好ましくは1.0以上1.1以下である。
 当該製造方法により製造されたビスクロロホーメートオリゴマーを用いると、PC共重合体製造時の洗浄工程を簡略化できる等の点で好ましい。
 このようにして得られた低量体数の前記一般式(1A)で表されるビスクロロホーメートオリゴマーを含む有機層に、前記一般式(6)で表される二価フェノール性化合物(モノマー)を加えて反応させる。または、低量体数の前記一般式(2A)で表されるビスクロロホーメートオリゴマーを含む有機層に、前記一般式(5)で表される二価フェノール性化合物(モノマー)を加えて反応させる。
 反応温度は、好ましくは0℃以上150℃以下、より好ましくは5℃以上40℃以下、さらに好ましくは10℃以上25℃以下である。
 反応圧力は、減圧、常圧、または加圧のいずれでもよいが、通常は、常圧もしくは反応系の自圧程度で好適に行い得る。反応時間は、反応温度によって左右されるが、通常0.5分間以上10時間以下であり、好ましくは1分間以上3時間以下程度である。
 この反応にあたって、前記一般式(5)で表されるターフェニル化合物、または前記一般式(6)で表される二価フェノール性化合物は、水溶液、又は有機溶媒溶液として添加するのが望ましい。その添加順序については、特に制限はない。なお、触媒、末端封止剤および分岐剤などは、上記の製造法において、必要に応じ、ビスクロロホーメートオリゴマーの製造時、およびその後の高分子量化の反応時のいずれか、またはその両方において添加して用いることができる。
 上記のようにして得られるPC共重合体は、前記一般式(1)で表される繰り返し単位A、及び前記一般式(2)で表される繰り返し単位Bとからなる共重合体である。
 また、このPC共重合体は、本発明の目的達成を阻害しない範囲で、繰り返し単位A及び繰り返し単位B以外の構造単位を有するポリカーボネート単位や、ポリエステル、ポリエーテル構造を有する単位を含有していてもよい。
 得られるPC共重合体の還元粘度[ηSP/C]は、例えば、前記反応条件の選択、分岐剤及び末端封止剤の使用量の調節等、各種の方法によって前記範囲に調整することができる。また、場合により、得られたPC共重合体に適宜、物理的処理(例えば、混合および分画等)並びに化学的処理(例えば、ポリマー反応、架橋処理、および部分分解処理等)の少なくとも一方を施して、所定の還元粘度[ηSP/C]のPC共重合体として取得することもできる。
 また、得られた反応生成物(粗生成物)は、公知の分離精製法等の各種の後処理を施して、所望の純度(精製度)のPC共重合体として回収することができる。
[塗工液の構成]
 本実施形態の塗工液は、少なくとも本実施形態のPC共重合体、および当該PC共重合体を溶解、または分散可能な有機溶剤を含む。また、塗工液には上記PC共重合体および有機溶剤以外に低分子化合物、着色剤(例えば、染料および顔料等)、機能性化合物(例えば、電荷輸送材、電子輸送材、正孔輸送材、および電荷発生材料等)、充填材(例えば、無機または有機のフィラー、ファイバー、および微粒子等)、酸化防止剤、紫外線吸収剤、並びに酸捕捉剤等の添加剤を含んでいても良い。PC共重合体以外に含まれても良い物質の例は、例えば後述する電子写真感光体の構成成分に含まれる物質が挙げられる。また、塗工液には、本発明の効果を損なわない限り他の樹脂を含んでいても良く、その例は下記電子写真感光体の構成成分の例として挙げられる。また、本実施形態で使用される有機溶剤は本実施形態のPC共重合体、他の材料の溶解性、分散性、粘度、蒸発速度、化学的安定性、および物理的変化に対する安定性等を考慮し、単独、あるいは複数の溶媒を混合して使用することができる。その例は、後述する電子写真感光体の構成成分の例として挙げられる。
 本実施形態の塗工液中のPC共重合体成分の濃度は、同塗工液の使用法に合わせた適切な粘度であれば良い。塗工液中のPC共重合体成分の濃度は、好ましくは0.1質量%以上40質量%以下であり、1質量%以上35質量%以下であることがより好ましく、5質量%以上30質量%以下がさらに好ましい。塗工液中のPC共重合体成分の濃度が40質量%以下であれば、粘度が高くなりすぎることもなく塗工性が良好となる。0.1質量%以上であれば、適度な粘度に保つことができ、均質な膜が得られる。また、塗工後の乾燥時間の短縮および容易に目標とする膜厚とするのに、適度な濃度となる。
 本実施形態のPC共重合体は前記電荷輸送材との相溶性がよい上に、前記有機溶剤に溶解しても白化またはゲル化を起こし難い。従って、上記PC共重合体および有機溶媒を含有する本実施形態の塗工液は、さらに電荷輸送材を含有する場合であっても、長期に亘ってPC重合体成分の白化またはゲル化を抑制でき、安定に保存することが可能である。また、この塗工液(電荷輸送材を含有する塗工液)を用いて電子写真感光体の感光層を形成した場合、感光層が結晶化を起こすことを抑制でき、画質状のディフェクトを生じない優れた電子写真感光体を作製することができる。
 本実施形態の塗工液が、PC共重合体及び電荷輸送材を含有する場合、当該塗工液中のPC共重合体と電荷輸送物質との割合は、通常、質量比で20:80~80:20、好ましくは30:70~70:30とすることが望ましい。
 本実施形態の塗工液中、本実施形態のPC共重合体は1種単独で用いてもよいし、2種以上を併用してもよい。
 本実施形態の塗工液は、通常、感光層が少なくとも電荷発生層と電荷輸送層とを含む積層型電子写真感光体の、当該電荷輸送層の形成に好適に用いられる。また、上記塗工液に、さらに上記電荷発生物質を含有させることにより、単層型の電子写真感光体の感光層の形成に使用することも可能である。
 また、本実施形態の塗工液は成形性に優れているため、成形体の形成にも好適に用いられる。
 また、本実施形態の塗工液を用いて成形体を形成した場合、成形品が結晶化を起こすことを抑制できる。その結果、透明性の高い成形体が得られる。
[成形体の構成]
 本実施形態のPC共重合体および本実施形態の塗工液の少なくとも一方を用いて、成形体を形成することができる。
 成形体としては、例えば、光学部材が挙げられ、光学部材としては、例えば、電子写真感光体、および光学レンズ等が挙げられる。また、基材がフィルム状である場合、成形体の一態様としての積層フィルムは、例えば、インモールド成型用フィルムおよび加飾フィルムとして適用できる。その他、当該積層フィルムは、液晶および有機ELディスプレイ等に使用されるタッチパネル用フィルム、光学補償フィルムおよび反射防止フィルム等の光学フィルム、並びに導電性フィルム等としても適用できる。
 本実施形態のPC共重合体を含む成形体は、白化が生じ難く、透明性に優れるとともに、耐摩耗性等の機械的強度および電気的強度に優れる。
[電子写真感光体の構成]
 本実施形態の電子写真感光体は、本実施形態のPC共重合体を含む。
 一実施形態に係る電子写真感光体は、基板と、前記基板上に設けられた感光層とを有し、前記感光層に、本実施形態のPC共重合体を含む。
 本実施形態の電子写真感光体は、本実施形態のPC共重合体を感光層中に用いる限り、公知の種々の形式の電子写真感光体はもとより、どのような電子写真感光体としてもよいが、感光層が、少なくとも1層の電荷発生層と少なくとも1層の電荷輸送層とを有する積層型電子写真感光体、または、一層に電荷発生物質と電荷輸送物質とを有する単層型電子写真感光体とすることが好ましい。
 PC共重合体は、感光層中のどの部分にも使用してもよいが、本実施形態の効果を十分に発揮するためには、電荷輸送層中において電荷移動物質のバインダー樹脂として使用するか、単一の感光層のバインダー樹脂として使用することが望ましい。また、感光層のみならず、表面保護層として使用することが望ましい。電荷輸送層を2層有する多層型の電子写真感光体の場合には、そのいずれかの電荷輸送層に使用することが好ましい。
 本実施形態の電子写真感光体において、本実施形態のPC共重合体は、1種単独で使用してもよいし、2種以上を組合せて用いてもよい。また、所望に応じて本実施形態の目的を阻害しない範囲で、他のポリカーボネート等のバインダー樹脂成分を含有させてもよい。さらに、酸化防止剤等の添加物を含有させてもよい。
 本実施形態の電子写真感光体は、感光層を導電性基板上に有する。感光層が電荷発生層と電荷輸送層とを有する場合、電荷発生層上に電荷輸送層が積層されていてもよく、また逆に電荷輸送層上に電荷発生層が積層されていてもよい。また、一層中に電荷発生物質と電荷輸送物質を同時に含む感光層であってもよい。さらにまた、必要に応じて表面層に導電性または絶縁性の保護膜が形成されていてもよい。表面層に本実施形態のPC共重合体を用いることで、耐摩耗性に優れた電子写真感光体を得ることができる。
 さらに、各層間の接着性を向上させるための接着層あるいは電荷のブロッキングの役目を果すブロッキング層等の中間層等が形成されていてもよい。
 本実施形態の電子写真感光体に用いられる導電性基板材料としては、公知の材料等各種の材料を使用することができ、具体的には、アルミニウム、ニッケル、クロム、パラジウム、チタン、モリブデン、インジウム、金、白金、銀、銅、亜鉛、真鍮、ステンレス鋼、酸化鉛、酸化錫、酸化インジウム、ITO(インジウムチンオキサイド:錫ドープ酸化インジウム)もしくはグラファイトからなる、板、ドラム、およびシート、蒸着、スパッタリング、または塗布等によりコーティングする等して導電処理した、ガラス、布、紙、およびプラスチックのフィルム、シートもしくはシームレスベルト、並びに電極酸化等により金属酸化処理した金属ドラム等を使用することができる。
 前記電荷発生層は少なくとも電荷発生材料を有する。この電荷発生層はその下地となる基板上に真空蒸着もしくはスパッタ法等により電荷発生材料の層を形成するか、またはその下地となる基板上に電荷発生材料を、バインダー樹脂を用いて結着してなる層を形成することによって得ることができる。バインダー樹脂を用いる電荷発生層の形成方法としては公知の方法等各種の方法を使用することができる。通常、例えば、電荷発生材料をバインダー樹脂と共に適当な溶媒により分散若しくは溶解した塗工液を、所定の下地となる基板上に塗布し、乾燥せしめて湿式成形体として得る方法が好適である。
 前記電荷発生層における電荷発生材料としては、公知の各種の材料を使用することができる。具体的な化合物としては、セレン単体(例えば、非晶質セレン、および三方晶セレン等)、セレン合金(例えば、セレン-テルル等)、セレン化合物もしくはセレン含有組成物(例えば、AsSe等)、周期律表第12族および第16族元素からなる無機材料(例えば、酸化亜鉛、およびCdS-Se等)、酸化物系半導体(例えば、酸化チタン等)、シリコン系材料(例えば、アモルファスシリコン等)、無金属フタロシアニン顔料(例えば、τ型無金属フタロシアニン、およびχ型無金属フタロシアニン等)、金属フタロシアニン顔料(例えば、α型銅フタロシアニン、β型銅フタロシアニン、γ型銅フタロシアニン、ε型銅フタロシアニン、X型銅フタロシアニン、A型チタニルフタロシアニン、B型チタニルフタロシアニン、C型チタニルフタロシアニン、D型チタニルフタロシアニン、E型チタニルフタロシアニン、F型チタニルフタロシアニン、G型チタニルフタロシアニン、H型チタニルフタロシアニン、K型チタニルフタロシアニン、L型チタニルフタロシアニン、M型チタニルフタロシアニン、N型チタニルフタロシアニン、Y型チタニルフタロシアニン、オキソチタニルフタロシアニン、X線回折図におけるブラック角2θが27.3±0.2度に強い回折ピークを示すチタニルフタロシアニン、およびガリウムフタロシアニン等)、シアニン染料、アントラセン顔料、ビスアゾ顔料、ピレン顔料、多環キノン顔料、キナクリドン顔料、インジゴ顔料、ペリレン顔料、ピリリウム染料、スクアリウム顔料、アントアントロン顔料、ベンズイミダゾール顔料、アゾ顔料、チオインジゴ顔料、キノリン顔料、レーキ顔料、オキサジン顔料、ジオキサジン顔料、トリフェニルメタン顔料、アズレニウム染料、トリアリールメタン染料、キサンチン染料、チアジン染料、チアピリリウム染料、ポリビニルカルバゾール、並びにビスベンゾイミダゾール顔料等が挙げられる。これら化合物は、1種を単独であるいは2種以上の化合物を混合して、電荷発生物質として用いることができる。これら電荷発生物質の中でも、好適な電荷発生物質としては、特開平11-172003号公報に具体的に記載の電荷発生物質が挙げられる。
 前記電荷輸送層は、下地となる基板上に、電荷輸送物質をバインダー樹脂で結着してなる層を形成することによって、湿式成形体として得ることができる。
 前記した電荷発生層や電荷輸送層のバインダー樹脂としては、特に制限はなく、公知の各種の樹脂を使用することができる。具体的には、例えば、ポリスチレン、ポリ塩化ビニル、ポリ酢酸ビニル、塩化ビニル-酢酸ビニル共重合体、ポリビニルアセタール、アルキッド樹脂、アクリル樹脂、ポリアクリロニトリル、ポリカーボネート、ポリウレタン、エポキシ樹脂、フェノール樹脂、ポリアミド、ポリケトン、ポリアクリルアミド、ブチラール樹脂、ポリエステル樹脂、塩化ビニリデン-塩化ビニル共重合体、メタクリル樹脂、スチレン-ブタジエン共重合体、塩化ビニリデン-アクリロニトリル共重合体、塩化ビニル-酢酸ビニル-無水マレイン酸共重合体、シリコン樹脂、シリコンアルキッド樹脂、フェノール-ホルムアルデヒド樹脂、スチレン-アルキッド樹脂、メラミン樹脂、ポリエーテル樹脂、ベンゾグアナミン樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、ポリ-N-ビニルカルバゾール、ポリビニルブチラール、ポリビニルホルマール、ポリスルホン、カゼイン、ゼラチン、ポリビニルアルコール、エチルセルロース、ニトロセルロース、カルボキシ-メチルセルロース、塩化ビニリデン系ポリマーラテックス、アクリロニトリル-ブタジエン共重合体、ビニルトルエン-スチレン共重合体、大豆油変性アルキッド樹脂、ニトロ化ポリスチレン、ポリメチルスチレン、ポリイソプレン、ポリチオカーボネート、ポリアリレート、ポリハロアリレート、ポリアリルエーテル、ポリビニルアクリレート、およびポリエステルアクリレート等が挙げられる。
 これらは、1種を単独で用いることもできるし、また、2種以上を混合して用いることもできる。なお、電荷発生層および/または電荷輸送層におけるバインダー樹脂としては、前記した本実施形態のPC共重合体を使用することが好適である。
 電荷輸送層の形成方法としては、公知の各種の方式を使用することができるが、電荷輸送物質を本実施形態のPC共重合体とともに適当な溶媒に分散または溶解した塗工液を、所定の下地となる基板上に塗布し、乾燥して湿式成形体として得る方法が好適である。電荷輸送層形成に用いられる電荷輸送物質とPC共重合体との配合割合は、好ましくは質量比で20:80~80:20、さらに好ましくは30:70~70:30である。
 この電荷輸送層において、本実施形態のPC共重合体は1種単独で用いることもでき、また2種以上混合して用いることもできる。また、本実施形態の目的を阻害しない範囲で、他のバインダー樹脂を本実施形態のPC共重合体と併用することも可能である。
 このようにして形成される電荷輸送層の厚さは、通常5μm以上100μm以下程度、好ましくは10μm以上50μm以下であり、さらに好ましくは15μm以上35μm以下である。この厚さが5μm以上であれば、初期帯電電位が低くなることもなく、100μm以下であれば、電子写真特性の低下を防ぐことができる。
 本実施形態のPC共重合体と共に使用できる電荷輸送物質としては、公知の各種の化合物を使用することができる。このような化合物としては、例えば、カルバゾール化合物、インドール化合物、イミダゾール化合物、オキサゾール化合物、ピラゾール化合物、オキサジアゾール化合物、ピラゾリン化合物、チアジアゾール化合物、アニリン化合物、ヒドラゾン化合物、芳香族アミン化合物、脂肪族アミン化合物、スチルベン化合物、フルオレノン化合物、ブタジエン化合物、キノン化合物、キノジメタン化合物、チアゾール化合物、トリアゾール化合物、イミダゾロン化合物、イミダゾリジン化合物、ビスイミダゾリジン化合物、オキサゾロン化合物、ベンゾチアゾール化合物、ベンズイミダゾール化合物、キナゾリン化合物、ベンゾフラン化合物、アクリジン化合物、フェナジン化合物、ポリ-N-ビニルカルバゾール、ポリビニルピレン、ポリビニルアントラセン、ポリビニルアクリジン、ポリ-9-ビニルフェニルアントラセン、ピレン-ホルムアルデヒド樹脂、エチルカルバゾール樹脂、あるいはこれらの構造を主鎖や側鎖に有する重合体等が好適に用いられる。これら化合物は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 これら電荷輸送物質の中でも、特開平11-172003号公報において具体的に例示されている化合物、および以下の構造で表される電荷輸送物質が特に好適に用いられる。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
 なお、本実施形態の電子写真感光体においては、電荷発生層および電荷輸送層の少なくともいずれかに本実施形態のPC共重合体をバインダー樹脂として用いることが好適である。
 本実施形態の電子写真感光体においては、前記導電性基板と感光層との間に、通常使用されるような下引き層を設けることができる。この下引き層としては、例えば、微粒子(例えば、酸化チタン、酸化アルミニウム、ジルコニア、チタン酸、ジルコン酸、ランタン鉛、チタンブラック、シリカ、チタン酸鉛、チタン酸バリウム、酸化錫、酸化インジウム、および酸化珪素等)、ポリアミド樹脂、フェノール樹脂、カゼイン、メラミン樹脂、ベンゾグアナミン樹脂、ポリウレタン樹脂、エポキシ樹脂、セルロース、ニトロセルロース、ポリビニルアルコール、並びにポリビニルブチラール樹脂等の成分を使用することができる。また、この下引き層に用いる樹脂として、前記バインダー樹脂を用いてもよいし、本実施形態のPC共重合体を用いてもよい。これら微粒子および樹脂は、単独または種々混合して用いることができる。これらの混合物として用いる場合には、無機質微粒子と樹脂を併用すると、平滑性のよい皮膜が形成されることから好適である。
 この下引き層の厚みは、0.01μm以上10μm以下、好ましくは0.1μm以上7μm以下である。この厚みが0.01μm以上であると、下引き層を均一に形成することが可能となり、また10μm以下であると電子写真特性が低下することを抑制できる。
 また、前記導電性基体と感光層との間には、通常使用されるような公知のブロッキング層を設けることができる。このブロッキング層としては、前記のバインダー樹脂と同種の樹脂を用いることができる。また本実施形態のPC共重合体を用いてもよい。このブロッキング層の厚みは、0.01μm以上20μm以下、好ましくは0.1μm以上10μm以下である。この厚みが0.01μm以上であると、ブロッキング層を均一に形成することが可能となり、また20μm以下であると電子写真特性が低下することを抑制できる。
 さらに、本実施形態の電子写真感光体には、感光層の上に、保護層を積層してもよい。この保護層には、前記のバインダー樹脂と同種の樹脂を用いることができる。また、本実施形態のPC共重合体を用いることが特に好ましい。この保護層の厚みは、0.01μm以上20μm以下、好ましくは0.1μm以上10μm以下である。そして、この保護層には、前記電荷発生物質、電荷輸送物質、添加剤、金属およびその酸化物、窒化物、または塩、合金、カーボンブラック、並びに有機導電性化合物等の導電性材料を含有していてもよい。
 さらに、この電子写真感光体の性能向上のために、前記電荷発生層および電荷輸送層には、結合剤、可塑剤、硬化触媒、流動性付与剤、ピンホール制御剤、および分光感度増感剤(増感染料)等を添加してもよい。また、繰り返し使用に対しての残留電位の増加、帯電電位の低下、および感度の低下を防止する目的で種々の化学物質、酸化防止剤、界面活性剤、カール防止剤、およびレベリング剤等の添加剤を添加することができる。
 前記結合剤としては、例えば、シリコーン樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、ポリケトン樹脂、ポリカーボネート共重合体、ポリスチレン樹脂、ポリメタクリレート樹脂、ポリアクリルアミド樹脂、ポリブタジエン樹脂、ポリイソプレン樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ポリクロロプレン樹脂、ポリアクリロニトリル樹脂、エチルセルロース樹脂、ニトロセルロース樹脂、尿素樹脂、フェノール樹脂、フェノキシ樹脂、ポリビニルブチラール樹脂、ホルマール樹脂、酢酸ビニル樹脂、酢酸ビニル/塩化ビニル共重合樹脂、およびポリエステルカーボネート樹脂等が挙げられる。また、熱硬化性樹脂および光硬化性樹脂の少なくとも一方も使用できる。いずれにしても、電気絶縁性で通常の状態で皮膜を形成し得る樹脂であり、本発明の効果を損なわない範囲であれば、特に制限はない。
 前記可塑剤の具体例としては、例えば、ビフェニル、塩化ビフェニル、o-ターフェニル、ハロゲン化パラフィン、ジメチルナフタレン、ジメチルフタレート、ジブチルフタレート、ジオクチルフタレート、ジエチレングリコールフタレート、トリフェニルフォスフェート、ジイソブチルアジペート、ジメチルセバケート、ジブチルセバケート、ラウリル酸ブチル、メチルフタリールエチルグリコレート、ジメチルグリコールフタレート、メチルナフタレン、ベンゾフェノン、ポリプロピレン、ポリスチレン、およびフルオロ炭化水素等が挙げられる。
 前記硬化触媒の具体例としては、例えば、メタンスルホン酸、ドデシルベンゼンスルホン酸、およびジノニルナフタレンジスルホン酸等が挙げられ、流動性付与剤としては、例えば、モダフロー、およびアクロナール4F等が挙げられ、ピンホール制御剤としては、例えば、ベンゾイン、およびジメチルフタレートが挙げられる。これら可塑剤、硬化触媒、流動性付与剤、およびピンホール制御剤は、前記電荷輸送物質に対して、5質量%以下で用いることが好ましい。
 また、分光感度増感剤としては、増感染料を用いる場合には,例えば、トリフェニルメタン系染料(例えば、メチルバイオレット、クリスタルバイオレット、ナイトブルー、およびビクトリアブルー等)、アクリジン染料(例えば、エリスロシン、ローダミンB、ローダミン3R、アクリジンオレンジ、およびフラペオシン等)、チアジン染料(例えば、メチレンブルー、およびメチレングリーン等)、オキサジン染料(カプリブルー、およびメルドラブルー等)、シアニン染料、メロシアニン染料、スチリル染料、ピリリウム塩染料、並びにチオピリリウム塩染料等が適している。
 感光層には、感度の向上、残留電位の減少、反復使用時の疲労低減等の目的で、電子受容性物質を添加することができる。その具体例としては、例えば、無水コハク酸、無水マレイン酸、ジブロモ無水マレイン酸、無水フタル酸、テトラクロロ無水フタル酸、テトラブロモ無水フタル酸、3-ニトロ無水フタル酸、4-ニトロ無水フタル酸、無水ピロメリット酸、無水メリット酸、テトラシアノエチレン、テトラシアノキノジメタン、o-ジニトロベンゼン、m-ジニトロベンゼン、1,3,5-トリニトロベンゼン、p-ニトロベンゾニトリル、ピクリルクロライド、キノンクロルイミド、クロラニル、ブロマニル、ベンゾキノン、2,3-ジクロロベンゾキノン、ジクロロジシアノパラベンゾキノン、ナフトキノン、ジフェノキノン、トロポキノン、アントラキノン、1-クロロアントラキノン、ジニトロアントラキノン、4-ニトロベンゾフェノン、4,4’-ジニトロベンゾフェノン、4-ニトロベンザルマロンジニトリル、α-シアノ-β-(p-シアノフェニル)アクリル酸エチル、9-アントラセニルメチルマロンジニトリル、1-シアノ-(p-ニトロフェニル)-2-(p-クロロフェニル)エチレン、2,7-ジニトロフルオレノン、2,4,7-トリニトロフルオレノン、2,4,5,7-テトラニトロフルオレノン、9-フルオレニリデン-(ジシアノメチレンマロノニトリル)、ポリニトロ-9-フルオレニリデン-(ジシアノメチレンマロノジニトリル)、ピクリン酸、o-ニトロ安息香酸、p-ニトロ安息香酸、3,5-ジニトロ安息香酸、ペンタフルオロ安息香酸、5-ニトロサリチル酸、3,5-ジニトロサリチル酸、フタル酸、およびメリット酸等の電子親和力の大きい化合物が好ましい。これら化合物は電荷発生層および電荷輸送層のいずれに加えてもよく、その配合割合は、電荷発生物質または電荷輸送物質の量を100質量部としたときに、0.01質量部以上200質量部以下、好ましくは0.1質量部以上50質量部以下である。
 また、表面性の改良のため、四フッ化エチレン樹脂、三フッ化塩化エチレン樹脂、四フッ化エチレン六フッ化プロピレン樹脂、フッ化ビニル樹脂、フッ化ビニリデン樹脂、二フッ化二塩化エチレン樹脂およびそれらの共重合体、並びにフッ素系グラフトポリマー等を用いてもよい。これら表面改質剤の配合割合は、前記バインダー樹脂に対して、0.1質量%以上60質量%以下、好ましくは5質量%以上40質量%以下である。この配合割合が0.1質量%以上であれば、表面耐久性および表面エネルギー低下等の表面改質が充分となり、60質量%以下であれば、電子写真特性の低下を招くこともない。
 前記酸化防止剤としては、例えば、ヒンダードフェノール系酸化防止剤、芳香族アミン系酸化防止剤、ヒンダードアミン系酸化防止剤、スルフィド系酸化防止剤、および有機リン酸系酸化防止剤等が好ましい。これら酸化防止剤の配合割合は、前記電荷輸送物質に対して、通常、0.01質量%以上10質量%以下、好ましくは0.1質量%以上2質量%以下である。
 このような酸化防止剤の具体例としては、特開平11-172003号公報の明細書に記載された化学式[化94]~[化101]の化合物が好適である。
 これら酸化防止剤は、1種単独で用いてもよく、2種以上を混合して用いてもよい、そして、これらは前記感光層のほか、表面保護層や下引き層、ブロッキング層に添加してもよい。
 前記電荷発生層及び電荷輸送層の少なくとも一方の形成の際に使用する前記溶媒の具体例としては、例えば、芳香族系溶媒(例えば、ベンゼン、トルエン、キシレン、およびクロロベンゼン等)、ケトン(例えば、アセトン、メチルエチルケトン、およびシクロヘキサノン等)、アルコール(例えば、メタノール、エタノール、およびイソプロパノール等)、エステル(例えば、酢酸エチル、およびエチルセロソルブ等)、ハロゲン化炭化水素(例えば、四塩化炭素、四臭化炭素、クロロホルム、ジクロロメタン、テトラクロロエタン等)、エーテル(例えば、テトラヒドロフラン、ジオキソラン、およびジオキサン等)、スルホキシド(例えば、ジメチルスルホキシド等)、並びにアミド(例えば、ジメチルホルムアミド、ジエチルホルムアミド等)等を挙げることができる。これらの溶媒は、1種単独で使用してもよく、あるいは、2種以上を混合溶媒として使用してもよい。
 単層型電子写真感光体の感光層は、前記の電荷発生物質、電荷輸送物質、および添加剤を用い、本実施形態のPC共重合体をバインダー樹脂として適用することで容易に形成することができる。また、電荷輸送物質としては前述したホール輸送性物質および電子輸送物質の少なくとも一方を添加することが好ましい。電子輸送物質としては、特開2005-139339号公報に例示される電子輸送物質が好ましく適用できる。
 各層の塗布は公知の装置等各種の塗布装置を用いて行うことができ、具体的には、例えば、アプリケーター、スプレーコーター、バーコーター、チップコーター、ロールコーター、ディップコーター、およびドクタブレード等を用いて行うことができる。
 電子写真感光体における感光層の厚さは、5μm以上100μm以下、好ましくは10μm以上50μm以下であり、さらに好ましくは15μm以上35μm以下である。これが5μm以上であると初期電位が低くなることを防ぐことができ、100μm以下であると電子写真特性が低下することを抑制することができる。電子写真感光体の製造に用いられる電荷発生物質:バインダー樹脂の比率は、質量比で1:99~30:70、好ましくは3:97~15:85である。また、電荷輸送物質:バインダー樹脂の比率は、質量比で10:90~80:20、好ましくは30:70~70:30である。
 このようにして得られる電子写真感光体は、本実施形態のPC共重合体を用いるため、感光層作製時に塗工液が白濁することを抑制でき、ゲル化することも抑制できる。また、感光層中に本実施形態のPC共重合体をバインダー樹脂として有しているため、耐久性(耐摩耗性)に優れるとともに、優れた電気特性(帯電特性)をしており、長期間にわたって優れた電子写真特性を維持する感光体であり、複写機(モノクロ、マルチカラー、フルカラー;アナログ、デジタル)、プリンター(レーザー、LED、液晶シャッター)、ファクシミリ、製版機、およびこれら複数の機能を有する機器等各種の電子写真分野に好適に用いられる。
 なお、本実施形態の電子写真感光体を使用するにあたっては、帯電には、コロナ放電(コロトロン、スコロトロン)、接触帯電(帯電ロール、帯電ブラシ)等が用いられる。帯電方式としては、DC帯電方式、及びACを重畳させたAC/DC重畳帯電方式が挙げられる。また、露光には、ハロゲンランプや蛍光ランプ、レーザー(半導体、He-Ne)、LED、感光体内部露光方式のいずれを採用してもよい。現像には、カスケード現像、二成分磁気ブラシ現像、一成分絶縁トナー現像、一成分導電トナー現像等の乾式現像方式や湿式現像方式が用いられる。転写には、例えば、静電転写法(例えば、コロナ転写、ローラ転写、およびベルト転写等)、圧力転写法、並びに粘着転写法等が用いられる。定着には、例えば、熱ローラ定着、ラジアントフラッシュ定着、オープン定着、および圧力定着等が用いられる。さらに、クリーニングおよび除電には、例えば、ブラシクリーナー、磁気ブラシクリーナー、静電ブラシクリーナー、磁気ローラクリーナー、およびブレードクリーナー等が用いられる。なお、クリーナーレス方式を採用してもよい。また、トナー用の樹脂としては、例えば、スチレン系樹脂、スチレン-アクリル系共重合樹脂、ポリエステル、エポキシ樹脂、および環状炭化水素の重合体等が適用できる。トナーの形状は、球形でも不定形でもよい。一定の形状(例えば、回転楕円体状およびポテト状等)に制御されたトナーも適用できる。トナーは、粉砕型トナー、懸濁重合トナー、乳化重合トナー、ケミカル造粒トナー、あるいはエステル伸長トナーのいずれでもよい。
[電気機器の構成]
 本実施形態の電気機器は、本実施形態の電子写真感光体(例えば、本実施形態の電子写真感光体を用いた感光体ドラム等)を有する。このような電気機器としては、例えば、複写機、およびレーザープリンター等のプリンター等が挙げられる。
 本実施形態の電気機器は、耐摩耗性に優れる本実施形態の電子写真感光体を有しているため、感光体ドラム等の交換頻度が少なくなり、コスト的なメリットが大きい。
〔実施形態の変形〕
 なお、本発明は、上述の実施形態に限定されず、本発明の目的を達成できる範囲での変更、改良等は、本発明に含まれる。
 次に、本発明を実施例および比較例によってさらに詳細に説明するが、本発明はこれらの実施例に限定されず、本発明の思想を逸脱しない範囲での種々の変形および応用が可能である。
〔製造例:オリゴマーの調製〕
<製造例1:ビスフェノールZオリゴマー(ビスクロロホーメート)の合成>
 1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(ビスフェノールZ)56.6kg(224モル)を塩化メチレン1080Lで懸濁し、そこにホスゲン66.0kg(667モル)を加えて溶解させた。これにトリエチルアミン44.0kg(435モル)を塩化メチレン120Lに溶解させた液を2.2℃~17.8℃で2時間50分かけて滴下した。17.9℃~19.6℃で30分間撹拌後、14℃~20℃で塩化メチレン900Lを留去した。残液に純水210L、濃塩酸1.2kg、及びハイドロサルファイト450gを加え洗浄した。その後、純水210Lで5回洗浄を繰り返し、分子末端にクロロホーメート基を有するビスフェノールZオリゴマーの塩化メチレン溶液を得た。
 得られた溶液のクロロホーメート濃度は1.14モル/L、固形物濃度は0.22kg/L、平均量体数は1.02であった。以後、製造例1で得られた原料をZ-CFという。
 原料Z-CFは、一般式(2A)で表されるビスクロロホーメートオリゴマーである。
 尚、平均量体数(n)は、次の数式を用いて求めた。
 平均量体数(n)=1+(Mav-M1)/M2・・・(数1)
(式(数1)において、Mavは(2×1000/(CF価))であり、M2は(M1-98.92)であり、M1は前記一般式(2A)において、n=1のときのビスクロロホーメート化合物の分子量であり、CF価(N/kg)は(CF値/濃度)であり、CF値(N)は反応溶液1Lに含まれる前記一般式(2A)で表されるビスクロロホーメート化合物中のクロル原子数であり、濃度(kg/L)は反応溶液1Lを濃縮して得られる固形分の量である。ここで、98.92は、ビスクロロホーメート化合物同士の重縮合で脱離する2個の塩素原子、1個の酸素原子および1個の炭素原子の合計の原子量である。)
<製造例2:ビスフェノールCZオリゴマー(ビスクロロホーメート)の合成>
 1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン(ビスフェノールCZ)266g(0.897mol)、塩化メチレン1058mL、及びホスゲン187g(1.89mol)の混合液に、トリエチルアミン199.4g(1.97mol)を塩化メチレン460mLで希釈した溶液を13℃~16℃で3時間6分かけて滴下した。反応混合物を14℃~16℃で1時間38分撹拌した。反応混合物に濃塩酸5.0mL及び純水200mLを加え洗浄した。その後、水層が中性になるまで水洗を繰り返し、分子末端にクロロホーメート基を有するビスフェノールCオリゴマーの塩化メチレン溶液を得た。
 得られた溶液のクロロホーメート濃度は1.01モル/L、固形物濃度は0.22kg/L、平均量体数は1.10であった。以後、製造例2で得られた原料をCZ-CFという。
 原料CZ-CFは、一般式(2A)で表されるビスクロロホーメートオリゴマーである。
<製造例3:ジメチル-p-ターフェニルオリゴマー(ビスクロロホーメート)の合成>
 3,3’’-ジメチル-4,4’’-ジヒドロキシ-p-ターフェニル250g(0.861モル)を塩化メチレン1000mLで懸濁し、そこにホスゲン179g(1.81モル)を加えて溶解させた。これにトリエチルアミン192.3g(1.90モル)を塩化メチレン500mLに溶解させた液を13℃~17℃で2時間50分かけて滴下した。14℃~16℃で30分間撹拌後、14~20℃で塩化メチレン850mLを留去した。残液に純水210mL、濃塩酸5.0mlを加え洗浄した。その後、水層が中性になるまで水洗を繰り返し、分子末端にクロロホーメート基を有するジメチル-p-ターフェニルオリゴマーの塩化メチレン溶液を得た。
 得られた溶液のクロロホーメート濃度は1.14モル/L、固形物濃度は0.17kg/L、平均量体数は1.03であった。以後、製造例3で得られた原料をMpT-CFという。
 原料MpT-CFは、一般式(1A)で表されるビスクロロホーメートオリゴマーである。
 尚、平均量体数(n)は、前述の平均量体数(n)と同様の方法で求めた。
<製造例4:ビスフェノールZのPCオリゴマーの合成>
 1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(ビスフェノールZ)120.0g(0.448mol)を、水酸化ナトリウム46g(1.15mol)、及び水酸化カリウム64g(1.14mol)を純水1.24Lに溶かしたアルカリ溶液に投入し、塩化メチレン0.64Lを混合して撹拌しながら、5℃冷却下、液中にホスゲンガス69gを15g/hrの割合でpHが9以下になるまで吹き込んだ。
 次いで、ホスゲンガスの導入を停止した後、窒素置換を行い、反応液を塩酸でpH7~pH9に調整した。この反応液を静置分離し、分子末端にクロロホーメート基を有するオリゴマーの塩化メチレン溶液を得た。
 得られた溶液のクロロホーメート濃度は0.52モル/L、固形物濃度は0.220kg/L、平均量体数は2.70であった。以後、製造例4で得られた原料をPCOCHという。
〔実施例1〕
(PC共重合体の製造)
 メカニカルスターラー、撹拌羽根、及び邪魔板を装着した反応容器に、製造例1で得られた原料Z-CF(ビスクロロホーメートオリゴマー、平均量体数は1.02)(155mL)と塩化メチレン(332mL)とを注入した。これに末端封止剤としてp-tert-ブチルフェノール(0.317g)を添加し、十分に混合されるように撹拌した。反応器内の温度が15℃になるまで冷却した後、この溶液に調製した2,5-ビス(4-ヒドロキシフェニル)-3,6-ジメチルピラジン溶液(溶液調製法:2.1Nの水酸化カリウム水溶液122mL(水酸化カリウム16.6g)を調製し、室温(25℃)以下に冷却した後、酸化防止剤としてハイドロサルファイト0.25gを添加し、さらに2,5-ビス(4-ヒドロキシフェニル)-3,6-ジメチルピラジン20.7gを添加し、完全に溶解して調製した)を全量添加し、撹拌しながらトリエチルアミン水溶液(7vol%)を2.0mL添加し、1時間撹拌を継続した。
 得られた反応混合物を塩化メチレン0.36L、水0.03Lで希釈し、洗浄を行った。下層を分離し、さらに水0.15Lで1回、0.03Nの塩酸0.15Lで1回、水0.1Lで3回の順で洗浄を行った。得られた塩化メチレン溶液を、撹拌下60℃~70℃の温水に滴下投入し、得られた析出物をろ過、乾燥することにより下記構造のPC共重合体(PC-1)を得た。
(PC共重合体の特定)
 このようにして得られたPC共重合体(PC-1)を塩化メチレンに溶解して、濃度0.5g/dLの溶液を調製し、20℃における還元粘度[ηSP/C]を測定したところ、1.22dL/gであった。なお、得られたPC共重合体(PC-1)の構造及び組成をH-NMRスペクトルおよび13C-NMRスペクトルにより分析したところ、下記の繰り返し単位、及び組成からなるPC共重合体であることが確認された。
 なお、還元粘度は、離合社製、自動粘度測定装置VMR-042を用い、自動粘度用ウッベローデ改良型粘度計(RM型)で測定した。
 H-NMRスペクトルおよび13C-NMRスペクトルの測定条件は以下の通りである。
H-NMRスペクトルの測定条件)
・装置  :日本電子株式会社製(JNM-ECZ400S)
・溶媒  :CDCl
・測定濃度(サンプル量/溶媒量):1.5mg/mL
・積算回数:64回(約3min)
13C-NMRスペクトルの測定条件)
・装置  :ブルカージャパン株式会社製(AVANCE III HD 500)
     (5mmφ TCIクライオプローブ使用)
・溶媒  :CDCl
・測定濃度(サンプル量/溶媒量):50mg/mL
・積算回数:1024回(約1時間)
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
 a=Ar/(Ar+Ar)= 0.42
 b=Ar/(Ar+Ar)= 0.58
 尚、前記一般式(PC-1)における構造は、次の手順で確認した。
 まず、H-NMRスペクトル及び13C-NMRスペクトルを用いて、帰属解析を行い、積分強度から、繰り返し単位Aにおけるモル共重合比a、及び繰り返し単位Bにおけるモル共重合比bを、下記式より算出した。
 a=Ar/(Ar+Ar)…(数A)
 b=Ar/(Ar+Ar)…(数B)
(塗工液および電子写真感光体の製造)
 導電性基体としてアルミニウム金属を蒸着したポリエチレンテレフタレート(PET)樹脂フィルムを用い、その表面に、電荷発生層と電荷輸送層とを順次積層して積層型感光層を形成した電子写真感光体を製造した。
 電荷発生物質としてオキソチタニウムフタロシアニン0.5質量部を用い、バインダー樹脂としてブチラール樹脂0.5質量部を用いた。これらを溶媒の塩化メチレン19質量部に加え、ボールミルにて分散し、この分散液をバーコーターにより、前記導電性基体フィルム表面に塗工し、乾燥させることにより、膜厚約0.5μmの電荷発生層を形成した。
 つぎに、電荷輸送物質として、下記式(23)で表される化合物(CTM-1)0.5g、前記実施例で得られたPC共重合体(PC-1)0.5gを10mLのテトラヒドロフランに分散し、塗工液を調製した。この塗工液をアプリケーターにより、前記電荷発生層の上に塗布し、乾燥し、膜厚約20μmの電荷輸送層を形成した。
Figure JPOXMLDOC01-appb-C000044
〔PC共重合体および電子写真感光体の評価〕
(PC共重合体の溶解性)
 PC共重合体の溶解性は、前記で得られたPC共重合体(PC-1)(1g)をTHF(9g)に加え、振とう機で30分間攪拌後、液中の不溶解部分及び白濁度を目視で観察することにより評価した。PC共重合体(PC-1)が溶解し白濁が認められない場合を「溶解」、不溶解部分がある場合を「不溶」、白濁した場合を「白濁」とした。
(PC共重合体の透明性(HAZE値))
 PC共重合体の溶解性の評価で用いた溶液(PC-1の固形分濃度が10質量%のTHF溶液)を用いて、HAZE値(%)を測定した。
 HAZE値(%)は、JISK 7136(2000)に準拠して測定した。測定装置としては、日本電色工業製(NDH500)のヘイズメーターを用いた。なお、JISK 7136に対応する国際規格番号は、ISO 14782(1999)である。HAZE値(%)は、ISO 14782(1999)に準拠して測定することもできる。
(PC共重合体の引張特性(降伏応力))
 PC共重合体(PC-1)(2.5g)を塩化メチレン(20mL)に加え、振とう機で60分間攪拌後、作製した溶液を直径150mmのシャーレに展開した。その後、1日風乾を行い、更に乾燥機で100℃/10時間で乾燥した。乾燥したサンプルから、引張試験用の打ち抜き具を用いて、40mm×6mm(くびれ部分は2mm)×厚み約90μmのフィルムサンプルを作製した。このフィルムサンプルを用いて、PC共重合体(PC-1)の降伏応力(%)を測定した。
 降伏応力(%)は、卓上引張試験機(EZgraph、島津製作所製)を用いて、引張速度を1mm/minに設定して測定した。
(PC共重合体のマルテンス硬度及び弾性仕事率)
 PC共重合体の引張特性で用いたフィルムサンプルと同様のフィルムサンプルを作製した。このフィルムサンプルを用いて、PC共重合体(PC-1)のマルテンス硬度及び弾性仕事率を測定した。
 マルテンス硬度(MPa)及び弾性仕事率(%)は、ナノインデンテーション試験により測定した。
 マルテンス硬度(MPa)及び弾性仕事率(%)は、ナノインデンテーション装置(エリオニクス社製、ENT-1100a)を用いて、荷重を0.6Nに設定して測定した。
(PC共重合体及び電子写真感光体の耐摩耗性)
〔作製1〕共重合体の耐摩耗性評価サンプル作製
 PC共重合体(PC-1)(2g)を塩化メチレン(12mL)に溶解し、アプリケーターを用い市販のPETフィルム上にキャスト製膜した。このフィルムを減圧下(100Pa以下)で加熱し溶剤を除去し、100mm×100mm×厚み約30μmのフィルムサンプルを得た。
〔作製2〕感光体の耐摩耗性評価サンプル作製
 PC共重合体(PC-1)(1g)、及び上記CTM-1(0.67g)をTHF(10mL)に溶解し、アプリケーターを用い市販のPETフィルム上にキャスト製膜した。このフィルムを減圧下(100Pa以下)で加熱し溶剤を除去し、100mm×100mm×厚み約30μmのフィルムサンプルを得た。
〔耐摩耗性の評価〕
 前記〔作製1〕及び〔作製2〕で作製したフィルムのキャスト面の耐摩耗性をスガ摩耗試験機NUS-ISO-3型(スガ試験機社製)を用いて評価した。
 試験条件は4.9Nの荷重をかけた摩耗紙(スガ試験機社製、粒径3μmのアルミナ粒子を含有)をフィルム表面と接触させて2,000回往復運動を行い、質量減少量を測定した。
(電子写真感光体の帯電特性)
 次に、前述の通り製造した電子写真感光体について、電子写真特性を静帯電試験装置CYNTHIA54IM(ジェンテック株式会社製)を用いて測定した。EV(露光感度測定)モード、初期帯電量-700Vの条件で、初期表面電位V(V)、及び光照射(10Lux)5秒後の残留電位(初期残留電位V(V))を測定した。
 これらの評価結果を表1に示す。後述する実施例2~5および比較例1~4についても、PC共重合体(PC-1)の代わりに各例で得られたPC共重合体を用いて、共重合体および感光体の評価サンプルを作製し、同様の評価を行った。それらの結果も表1に示す。
〔実施例2〕
 メカニカルスターラー、撹拌羽根、及び邪魔板を装着した反応容器に、製造例1で得られた原料Z-CF(ビスクロロホーメートオリゴマー、平均量体数は1.02)(155mL)と塩化メチレン(323mL)とを注入した。これに末端封止剤としてp-tert-ブチルフェノール(0.346g)を添加し、十分に混合されるように撹拌した。反応器内の温度が15℃になるまで冷却した後、この溶液に調製した2’,5’-ジメチル-[1,1’;4’,1’’]ターフェニル-4,4’’-ジオール溶液(溶液調製法:2.1Nの水酸化カリウム水溶液122mL(水酸化カリウム16.6g)を調製し、室温(25℃)以下に冷却した後、酸化防止剤としてハイドロサルファイト0.25gを添加し、さらに2’,5’-ジメチル-[1,1’;4’,1’’]ターフェニル-4,4’’-ジオール20.5gを添加し、完全に溶解して調製した)を全量添加し、撹拌しながらトリエチルアミン水溶液(7vol%)を1.8mL添加し、80分間撹拌を継続した。
 得られた反応混合物を塩化メチレン0.36L、水0.03Lで希釈し、洗浄を行った。下層を分離し、さらに水0.15Lで1回、0.03Nの塩酸0.15Lで1回、水0.1Lで3回の順で洗浄を行った。得られた塩化メチレン溶液を、撹拌下60℃~70℃の温水に滴下投入し、得られた析出物をろ過、乾燥することにより下記構造のPC共重合体(PC-2)を得た。
 PC共重合体(PC-2)の20℃における還元粘度[ηSP/C]は1.21dL/gであり、構造は、NMRにおいて、下記の繰り返し単位及び組成からなるPC共重合体であることが確認された。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
 a=Ar/(Ar+Ar)= 0.40
 b=Ar/(Ar+Ar)= 0.60
〔実施例3〕
 メカニカルスターラー、撹拌羽根、及び邪魔板を装着した反応容器に、製造例1で得られた原料Z-CF(ビスクロロホーメートオリゴマー、平均量体数は1.02)(155mL)と塩化メチレン(332mL)とを注入した。これに末端封止剤としてp-tert-ブチルフェノール(0.369g)を添加し、十分に混合されるように撹拌した。反応器内の温度が15℃になるまで冷却した後、この溶液に調製した3,3’’-ジメチル-4,4’’-ジヒドロキシ-p-ターフェニル溶液(溶液調製法:2.1Nの水酸化カリウム水溶液122mL(水酸化カリウム16.6g)を調製し、室温(25℃)以下に冷却した後、酸化防止剤としてハイドロサルファイト0.18gを添加し、さらに3,3’’-ジメチル-4,4’’-ジヒドロキシ-p-ターフェニル20.5gを添加し、完全に溶解して調製した)を全量添加し、撹拌しながらトリエチルアミン水溶液(7vol%)を1.8mL添加し、1時間撹拌を継続した。
 得られた反応混合物を塩化メチレン0.36L、水0.03Lで希釈し、洗浄を行った。下層を分離し、さらに水0.15Lで1回、0.03Nの塩酸0.15Lで1回、水0.1Lで3回の順で洗浄を行った。得られた塩化メチレン溶液を、撹拌下60℃~70℃の温水に滴下投入し、得られた析出物をろ過、乾燥することにより下記構造のPC共重合体(PC-3)を得た。
 PC共重合体(PC-3)の20℃における還元粘度[ηSP/C]は1.21dL/gであり、構造は、構造はNMRにおいて、下記の繰り返し単位及び組成からなるPC共重合体であることが確認された。
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
 a=Ar/(Ar+Ar)= 0.41
 b=Ar/(Ar+Ar)= 0.59
〔実施例4〕
 メカニカルスターラー、撹拌羽根、邪魔板を装着した反応容器に、製造例3で得られた原料MpT-CF(ビスクロロホーメートオリゴマー、平均量体数は1.03)(155mL)と塩化メチレン(221mL)を注入した。これに末端封止剤としてp-tert-ブチルフェノール(0.250g)を添加し、十分に混合されるように撹拌した。反応器内の温度が15℃になるまで冷却した後、この溶液に調製したビスフェノールZ溶液(溶液調製法:2.7Nの水酸化カリウム水溶液94mL(水酸化カリウム19.6g)を調製し、室温(25℃)以下に冷却した後、酸化防止剤としてハイドロサルファイト0.17gを添加し、さらにビスフェノールZ19.0gを添加し、完全に溶解して調製した)を全量添加し、撹拌しながらトリエチルアミン水溶液(7vol%)を1.8mL添加し、1時間撹拌を継続した。
 得られた反応混合物を塩化メチレン0.26L、水0.02Lで希釈し、洗浄を行った。下層を分離し、さらに水0.11Lで1回、0.03Nの塩酸0.11Lで1回、水0.11Lで3回の順で洗浄を行った。得られた塩化メチレン溶液を、撹拌下60℃~70℃の温水に滴下投入し、得られた析出物をろ過、乾燥することにより下記構造のPC共重合体(PC-4)を得た。
 PC共重合体(PC-4)の20℃における還元粘度[ηSP/C]は1.21dL/gであり、構造はNMRにおいて、下記の繰り返し単位及び組成からなるPC共重合体であることが確認された。
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
 a=Ar/(Ar+Ar)= 0.51
 b=Ar/(Ar+Ar)= 0.49
〔実施例5〕
 メカニカルスターラー、撹拌羽根、邪魔板を装着した反応容器に、製造例2で得られた原料CZ-CF(ビスクロロホーメートオリゴマー、平均量体数は1.10)(155mL)と塩化メチレン(332mL)を注入した。これに末端封止剤としてp-tert-ブチルフェノール(0.3424g)を添加し、十分に混合されるように撹拌した。反応器内の温度が15℃になるまで冷却した後、この溶液に調製した2’,5’-ジメチル-[1,1’;4’,1’’]ターフェニル-4,4’’-ジオール溶液(溶液調製法:1.9Nの水酸化カリウム水溶液122mL(水酸化カリウム14.7g)を調製し、室温(25℃)以下に冷却した後、酸化防止剤としてハイドロサルファイト0.16gを添加し、さらに2’,5’-ジメチル-[1,1’;4’,1’’]ターフェニル-4,4’’-ジオール18.2gを添加し、完全に溶解して調製した)を全量添加し、撹拌しながらトリエチルアミン水溶液(7vol%)を1.6mL添加し、80分間撹拌を継続した。
 得られた反応混合物を塩化メチレン0.2L、水0.1Lで希釈し、洗浄を行った。下層を分離し、さらに水0.1Lで1回、0.03Nの塩酸0.1Lで1回、水0.1Lで3回の順で洗浄を行った。得られた塩化メチレン溶液を、撹拌下60℃~70℃の温水に滴下投入し、得られた析出物をろ過、乾燥することにより下記構造のPC共重合体(PC-5)を得た。
 PC共重合体(PC-5)の20℃における還元粘度[ηSP/C]は1.21dL/gであり、構造はNMRにおいて、下記の繰り返し単位及び組成からなるPC共重合体であることが確認された。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
 a=Ar/(Ar+Ar)= 0.40
 b=Ar/(Ar+Ar)= 0.60
〔比較例1〕
 メカニカルスターラー、撹拌羽根、邪魔板を装着した反応容器に、製造例1で得られた原料Z-CF(ビスクロロホーメートオリゴマー、平均量体数は1.02)(155mL)と塩化メチレン(332mL)を注入した。これに末端封止剤としてp-tert-ブチルフェノール(0.317g)を添加し、十分に混合されるように撹拌した。反応器内の温度が10℃になるまで冷却した後、この溶液に調製した4,4’’-ジヒドロキシ-p-ターフェニル溶液(溶液調製法:2.1Nの水酸化カリウム水溶液122mL(水酸化カリウム16.6g)を調製し、室温(25℃)以下に冷却した後、酸化防止剤としてハイドロサルファイト0.16gを添加し、さらに4,4’’-ジヒドロキシ-p-ターフェニル18.5gを添加し、完全に溶解して調製した)を全量添加し、撹拌しながらトリエチルアミン水溶液(7vol%)を1.8mL添加し、80分間撹拌を継続した。
 得られた反応混合物を塩化メチレン0.36L、水0.03Lで希釈し、洗浄を行った。下層を分離し、さらに水0.15Lで1回、0.03Nの塩酸0.15Lで1回、水0.15Lで3回の順で洗浄を行った。得られた塩化メチレン溶液を、撹拌下60℃~70℃の温水に滴下投入し、得られた析出物をろ過、乾燥することにより下記構造のPC共重合体(PC-6)を得た。
 PC共重合体(PC-6)の20℃における還元粘度[ηSP/C]は1.17dL/gであり、構造はNMRにおいて、下記の繰り返し単位及び組成からなるPC共重合体であることが確認された。
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
 a=Ar/(Ar+Ar)= 0.42
 b=Ar/(Ar+Ar)= 0.58
〔比較例2〕
 メカニカルスターラー、撹拌羽根、邪魔板を装着した反応容器に、製造例4で得られた原料PCOCH(ビスクロロホーメートオリゴマー、平均量体数は2.70)(155mL)と塩化メチレン(322mL)を注入した。これに末端封止剤としてp-tert-ブチルフェノール(0.165g)を添加し、十分に混合されるように撹拌した。反応器内の温度が15℃になるまで冷却した後、この溶液に調製した2,5-ビス(4-ヒドロキシフェニル)-3,6-ジメチルピラジン溶液(溶液調製法:1.0Nの水酸化カリウム水溶液122mL(水酸化カリウム7.6g)を調製し、室温(25℃)以下に冷却した後、酸化防止剤としてハイドロサルファイト0.08gを添加し、さらに2,5-ビス(4-ヒドロキシフェニル)-3,6-ジメチルピラジン9.4gを添加し、完全に溶解して調製した)を全量添加し、撹拌しながらトリエチルアミン水溶液(7vol%)を0.8mL添加し、1時間撹拌を継続した。
 得られた反応混合物を塩化メチレン0.36L、水0.03Lで希釈し、洗浄を行った。下層を分離し、さらに水0.15Lで1回、0.03Nの塩酸0.15Lで1回、水0.15Lで3回の順で洗浄を行った。得られた塩化メチレン溶液を、撹拌下60℃~70℃の温水に滴下投入し、得られた析出物をろ過、乾燥することにより下記構造のPC共重合体(PC-7)を得た。
 PC共重合体(PC-7)の20℃における還元粘度[ηSP/C]は1.19dL/gであり、構造はNMRにおいて、下記の繰り返し単位及び組成からなるPC共重合体であることが確認された。
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
 a=Ar/(Ar+Ar)= 0.15
 b=Ar/(Ar+Ar)= 0.85
〔比較例3〕
 メカニカルスターラー、撹拌羽根、邪魔板を装着した反応容器に、製造例1で得られた原料Z-CF(ビスクロロホーメートオリゴマー、平均量体数は1.02)(155mL)と塩化メチレン(332mL)を注入した。これに末端封止剤としてp-tert-ブチルフェノール(0.293g)を添加し、十分に混合されるように撹拌した。反応器内の温度が15℃になるまで冷却した後、この溶液に調製した4,4’’-ビフェノール溶液(溶液調製法:2.1Nの水酸化カリウム水溶液122mL(水酸化カリウム16.6g)を調製し、室温(25℃)以下に冷却した後、酸化防止剤としてハイドロサルファイト0.12gを添加し、さらに4,4’’-ビフェノール13.16gを添加し、完全に溶解して調製した)を全量添加し、撹拌しながらトリエチルアミン水溶液(7vol%)を1.8mL添加し、1時間撹拌を継続した。
 得られた反応混合物を塩化メチレン0.36L、水0.03Lで希釈し、洗浄を行った。下層を分離し、さらに水0.15Lで1回、0.03Nの塩酸0.15Lで1回、水0.15Lで3回の順で洗浄を行った。得られた塩化メチレン溶液を、撹拌下60℃~70℃の温水に滴下投入し、得られた析出物をろ過、乾燥することにより下記構造のPC共重合体(PC-8)を得た。
 PC共重合体(PC-8)の20℃における還元粘度[ηSP/C]は1.21dL/gであり、構造はNMRにおいて、下記の繰り返し単位及び組成からなるPC共重合体であることが確認された。
Figure JPOXMLDOC01-appb-C000057
〔比較例4〕
 特許3155828の実施例1に従い、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)含量が85%、2,5-ビス(4-ヒドロキシフェニル)-3,6-ジメチルピラジン含量が15%であるPC共重合体(PC-9)を以下の通り製造した。
 2,2-ビス(4-ヒドロキシフェニル)プロパン74gを、6%水酸化ナトリウム水溶液550mLに溶解し、塩化メチレン250mLを加えた。得られた溶液を攪拌しながら、冷却下、ホスゲンガスを950mL/分の割合で15分間吹き込んだ。この反応液を静置して有機層を分離し、重合度が2~4であり、分子末端にクロロフォルメート基を有する2,2-ビス(4-ヒドロキシフェニル)プロパンのオリゴマーの塩化メチレン溶液を得た。 
 得られたオリゴマー溶液に、末端停止剤として少量のp-tert-ブチルフェノールと塩化メチレンを加えて全量を720mLとした後、2,5-ビス(4-ヒドロキシフェニル)-3,6-ジメチルピラジン20gを1.5規定水酸化カリウム水溶液240mLに溶解した溶液と混合し、次いで5%トリエチルアミン水溶液5mLを加えて、室温下で1時間激しく攪拌した。反応生成物に、塩化メチレン1リットルと水1.5リットルを加えて攪拌した後、水層を分離し、更に有機相を0.01規定塩酸で1回、水で3回洗浄した。この有機相をメタノール中に滴下投入し、得られた析出物をろ過、乾燥することにより下記構造のPC共重合体(PC-9)を得た。
 PC共重合体(PC-9)の20℃における還元粘度[ηSP/C]は0.89dL/gであり、構造はNMRにおいて、下記の繰り返し単位及び組成からなるPC共重合体であることが確認された。
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-T000059

 
〔評価結果〕
 表1に実施例1~5および比較例1~4の評価結果を示す。
 実施例1~5と、比較例1~4とを比較すると、実施例1~5のPC共重合体では、良好な耐摩耗性、及び有機溶剤への安定な溶解性が確認された。さらに、実施例1~5のPC共重合体は、樹脂物性(降伏応力、マルテンス硬度、及び弾性仕事率)が良好であり、透明性にも優れていた。
 例えば、実施例1では、ビスフェノールZの二価芳香族基を有する低量体オリゴマー(原料Z-CF)と、2,5-ビス(4-ヒドロキシフェニル)-3,6-ジメチルピラジンモノマーとを、本明細書に記載の製造法で反応させる事で、ビスフェノールZに由来する繰り返し単位Bと、2,5-ビス(4-ヒドロキシフェニル)-3,6-ジメチルピラジンに由来する繰り返し単位Aとの共重合比(モル%)が、繰り返し単位B:繰り返し単位A=58:42であるPC共重合体(PC-1)を得る事ができた。還元粘度も1.22[dL/g]であった。
 このような実施例1のPC共重合体(PC-1)は、ビスフェノールZの二価芳香族基を有する低量体数のビスクロロホーメートオリゴマーと、ビフェノールモノマーとを反応させて得られたポリカーボネート共重合体(例えば特開2011-26574の実施例10等)と比較しても、評価結果に示すように、感光体の摩耗に関連する降伏応力及び弾性仕事率が良好であり、かつ感光体のトナーフィルミングに関連するマルテンス硬度についても良好であった。さらに、実施例1のPC共重合体(PC-1)は、剛直なターフェニル骨格を比較的高い割合で含むにもかかわらず、有機溶媒への溶液性にも優れ、結晶化による溶液白濁化も抑制でき、電子写真感光体用途でも良好な耐摩耗性、及び電子写真特性を有していた。
 比較例1のPC共重合体については、実施例1~5と同様、耐摩耗性が良好である事が確認されたが、THFへの溶解性が悪くほとんど不溶であった。比較例2~4のPC共重合体については、実施例1~5と比較すると、樹脂物性及び耐摩耗性が悪く、その影響が感光体評価でも現れており、感光体の耐摩耗性が悪化してしまった。そのため、近年の高耐久マシンでは耐摩耗性が十分でないことがわかった。
 以上より、実施例1~5のPC共重合体は、優れた樹脂物性、高い耐摩耗性、及び優れた有機溶剤への溶解性を有する事が分かった。また、実施例1~5は、感光体評価でも、耐摩耗性及び電気特性ともに良好な結果を示していた。
 本発明のポリカーボネート共重合体は、電子写真感光体の感光層用バインダー樹脂として好適に利用できる。また、本発明の電子写真感光体を用いて作られた感光体ドラムは、複写機、およびレーザープリンター等のプリンター等の電気機器に好適に使用できる。

Claims (17)

  1.  ポリカーボネート共重合体であって、
     前記ポリカーボネート共重合体は、下記一般式(1)で表される繰り返し単位Aと、下記一般式(2)で表される繰り返し単位Bとを有し、かつ、下記一般式(1A)で表されるビスクロロホーメートオリゴマー及び下記一般式(2A)で表されるビスクロロホーメートオリゴマーの少なくとも一方を原料として得られ、
     前記一般式(1A)で表されるビスクロロホーメートオリゴマーの平均量体数nが1.0以上1.3以下であり、
     前記一般式(2A)で表されるビスクロロホーメートオリゴマーの平均量体数nが1.0以上1.3以下である、
     ポリカーボネート共重合体。
    Figure JPOXMLDOC01-appb-C000001

     
    (前記一般式(1)中、Arは、下記一般式(3)で表される基であり、
     前記一般式(2)中、Arは、下記一般式(4)で表される基である。)
    Figure JPOXMLDOC01-appb-C000002

     
    [前記一般式(3)及び(4)中、
     R11~R18及びR21~R28は、それぞれ独立に、水素原子もしくは置換基であり、
     置換基としてのR11~R18及びR21~R28は、それぞれ独立に、
      無置換の炭素数1~2のアルキル基、
      無置換の炭素数1~2のフルオロアルキル基、
      無置換の炭素数1~2のアルコキシ基であり、
     R19及びR20は、それぞれ独立に、水素原子もしくは置換基であり、
     置換基としてのR19及びR20は、それぞれ独立に、
      無置換の炭素数1~2のアルキル基であり、
     X及びXは、それぞれ独立に、
     CR100または窒素原子であり、
     R100は、
      水素原子、または
      無置換の炭素数1~2のアルキル基であり、
     Xは、
      -CR-で表される基、
      置換もしくは無置換の炭素数5~6のシクロアルキリデン基、
      置換もしくは無置換の炭素数7~10のビシクロ炭化水素ジイル基、または
      置換もしくは無置換の炭素数10~16のトリシクロ炭化水素ジイル基であり、
     R及びRは、それぞれ独立に、水素原子もしくは置換基であり、
     置換基としてのR及びRは、それぞれ独立に、
      無置換の炭素数1~3のアルキル基、
      無置換の炭素数1~3のフルオロアルキル基、または
      置換もしくは無置換の環形成炭素数6~12のアリール基であり、
     ただし、R19及びR20が水素原子である場合、R11~R14のいずれか1つ以上は置換基であり、かつR15~R18のいずれか1つ以上は置換基であり、
     R11~R18が水素原子である場合、R19及びR20は置換基である。]
    Figure JPOXMLDOC01-appb-C000003

     
    [前記一般式(1A)中、Arは、前記一般式(3)で表される基であり、nは、平均量体数を表し、
     前記一般式(2A)中、Arは、前記一般式(4)で表される基であり、nは、平均量体数を表す。]
  2.  請求項1に記載のポリカーボネート共重合体において、
     Ar/(Ar+Ar)で表される存在比は、30モル%以上55モル%以下であり、
     Ar/(Ar+Ar)で表される存在比は、45モル%以上70モル%以下である、
     ポリカーボネート共重合体。
  3.  請求項1または請求項2に記載のポリカーボネート共重合体において、
     前記一般式(1)中、Arは、
      2,5-ビス(4-ヒドロキシフェニル)-3,6-ジメチルピラジン、
      2’,5’-ジメチル-[1,1’;4’,1’’]ターフェニル-4,4’’-ジオール、及び
      3,3’’-ジメチル-4,4’’-ジヒドロキシ-p-ターフェニルのいずれかから誘導される2価の基である、
     ポリカーボネート共重合体。
  4.  請求項1から請求項3のいずれか一項に記載のポリカーボネート共重合体において、
     前記一般式(2)中、Arは、下記一般式(4A)で表される基である、
     ポリカーボネート共重合体。
    Figure JPOXMLDOC01-appb-C000004

     
    (前記一般式(4A)中、R21~R28は、それぞれ独立に、前記一般式(4)におけるR21~R28と同義である。)
  5.  請求項1から請求項4のいずれか一項に記載のポリカーボネート共重合体において、
     R11~R18及びR21~R28は、それぞれ独立に、
      水素原子、または
      無置換の炭素数1~2のアルキル基である
     ポリカーボネート共重合体。
  6.  請求項1から請求項5のいずれか一項に記載のポリカーボネート共重合体において、
     前記ポリカーボネート共重合体がTHFに対して、固形分濃度10質量%で溶解し、その溶液のHAZE値が3%以下である、
     ポリカーボネート共重合体。
  7.  請求項1から請求項6のいずれか一項に記載のポリカーボネート共重合体において、
     前記ポリカーボネート共重合体は、引張試験において、引張速度1mm/minでの降伏応力が70%以上である、
     ポリカーボネート共重合体。
  8.  請求項1から請求項7のいずれか一項に記載のポリカーボネート共重合体において、
     前記ポリカーボネート共重合体は、ナノインデンテーション試験において、荷重を0.6Nに設定した場合のマルテンス硬度が160MPa以上である、
     ポリカーボネート共重合体。
  9.  請求項1から請求項8のいずれか一項に記載のポリカーボネート共重合体において、
     前記ポリカーボネート共重合体は、インデンテーション試験において、荷重を0.6Nに設定した場合の弾性仕事率が46%以上である、
     ポリカーボネート共重合体。
  10.  請求項1から請求項9のいずれか一項に記載のポリカーボネート共重合体において、
     前記ポリカーボネート共重合体2gを塩化メチレンに溶解しPETフィルム上にキャスト製膜して得たフィルムサンプルのキャスト面に、500gの荷重をかけた摩耗輪を接触させて2000回転させた後の前記フィルムサンプルの質量減少量が3.0mg以下である、
     ポリカーボネート共重合体。
  11.  請求項1から請求項10のいずれか一項に記載のポリカーボネート共重合体において、
     前記一般式(1)で表される繰り返し単位A及び前記一般式(2)で表される繰り返し単位Bのいずれかが連続して2つ並んで構成される構造単位AA、BB、AB、及びBAをそれぞれ2連子と定義した場合、
     AA、BB、AB、及びBAで表される合計4種の2連子の合計モル数に対するAAで表される2連子のモル数の百分率は、5モル%以下である、
     ポリカーボネート共重合体。
  12.  請求項1から請求項10のいずれか一項に記載のポリカーボネート共重合体において、
     前記一般式(1)で表される繰り返し単位A及び前記一般式(2)で表される繰り返し単位Bのいずれかが連続して3つ並んで構成される構造単位ABA、BAA、AAA、AAB、BBA、BAB、ABB、及びBBBをそれぞれ3連子と定義した場合、
     ABA、BAA、AAA、AAB、BBA、BAB、ABB、及びBBBで表される合計8種の3連子の合計モル数に対するAAAで表される3連子のモル数の百分率は、3モル%以下である、
     ポリカーボネート共重合体。
  13.  下記(CS1)、(CS2)又は(CS3)の合成反応でポリカーボネート共重合体を製造する、ポリカーボネート共重合体の製造方法。
    (CS1)下記一般式(1A)で表されるビスクロロホーメートオリゴマーと、下記一般式(6)で表される二価フェノール性化合物とを酸結合剤存在下で界面重縮合させる。
    (CS2)下記一般式(2A)で表されるビスクロロホーメートオリゴマーと、下記一般式(5)で表される二価フェノール性化合物とを酸結合剤存在下で界面重縮合させる。
    (CS3)下記一般式(1A)で表されるビスクロロホーメートオリゴマーと、下記一般式(2A)で表されるビスクロロホーメートオリゴマーとを混合し、下記一般式(1A)で表されるビスクロロホーメートオリゴマー及び下記一般式(2A)で表されるビスクロロホーメートオリゴマーの混合物を、下記一般式(5)で表される二価フェノール性化合物または下記一般式(6)で表される二価フェノール性化合物を界面重縮合させる。
    Figure JPOXMLDOC01-appb-C000005

    [前記一般式(1A)及び(5)において、Arは、下記一般式(3)で表される基であり、前記一般式(2A)及び(6)において、Arは、下記一般式(4)で表される基であり、
     前記一般式(1A)中、nは平均量体数を表し、1.0以上1.3以下であり、
     前記一般式(2A)中、nは平均量体数を表し、1.0以上1.3以下である、]
    Figure JPOXMLDOC01-appb-C000006

     
    [前記一般式(3)及び(4)中、
     R11~R18及びR21~R28は、それぞれ独立に、水素原子もしくは置換基であり、
     置換基としてのR11~R18及びR21~R28は、それぞれ独立に、
      無置換の炭素数1~2のアルキル基、
      無置換の炭素数1~2のフルオロアルキル基、
      無置換の炭素数1~2のアルコキシ基であり、
     R19及びR20は、それぞれ独立に、水素原子もしくは置換基であり、
     置換基としてのR19及びR20は、それぞれ独立に、
      無置換の炭素数1~2のアルキル基であり、
     X及びXは、それぞれ独立に、
     CR100または窒素原子であり、
     R100は、
      水素原子、または
      無置換の炭素数1~2のアルキル基であり、
     Xは、
      -CR-で表される基、
      置換もしくは無置換の炭素数5~6のシクロアルキリデン基、
      置換もしくは無置換の炭素数7~10のビシクロ炭化水素ジイル基、または
      置換もしくは無置換の炭素数10~16のトリシクロ炭化水素ジイル基であり、
     R及びRは、それぞれ独立に、水素原子もしくは置換基であり、
     置換基としてのR及びRは、それぞれ独立に、
      無置換の炭素数1~3のアルキル基、
      無置換の炭素数1~3のフルオロアルキル基、または
      置換もしくは無置換の環形成炭素数6~12のアリール基であり、
     ただし、R19及びR20が水素原子である場合、R11~R14のいずれか1つ以上は置換基であり、かつR15~R18のいずれか1つ以上は置換基であり、
     R11~R18が水素原子である場合、R19及びR20は置換基である。]
  14.  請求項1から請求項12のいずれか一項に記載のポリカーボネート共重合体と、有機溶剤とを含む、塗工液。
  15.  請求項1から請求項12のいずれか一項に記載のポリカーボネート共重合体を含む、電子写真感光体。
  16.  基板と、
     前記基板上に設けられた感光層と、を有し、
     前記感光層は、請求項1から請求項12のいずれか一項に記載のポリカーボネート共重合体を含む、電子写真感光体。
  17.  請求項15または請求項16に記載の電子写真感光体を有する、電気機器。
PCT/JP2021/014162 2020-04-01 2021-04-01 ポリカーボネート共重合体、塗工液、電子写真感光体、ポリカーボネート共重合体の製造方法、および電気機器 WO2021201226A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022512701A JPWO2021201226A1 (ja) 2020-04-01 2021-04-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-065655 2020-04-01
JP2020065655 2020-04-01

Publications (1)

Publication Number Publication Date
WO2021201226A1 true WO2021201226A1 (ja) 2021-10-07

Family

ID=77928126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014162 WO2021201226A1 (ja) 2020-04-01 2021-04-01 ポリカーボネート共重合体、塗工液、電子写真感光体、ポリカーボネート共重合体の製造方法、および電気機器

Country Status (3)

Country Link
JP (1) JPWO2021201226A1 (ja)
TW (1) TW202146522A (ja)
WO (1) WO2021201226A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104835A (ja) * 1985-11-01 1987-05-15 Idemitsu Petrochem Co Ltd ピラジン環を有するポリカ−ボネ−トおよびその製造方法
JPH05163339A (ja) * 1991-12-17 1993-06-29 Idemitsu Kosan Co Ltd ポリカーボネート共重合体とその製造法及びこれを用いた電子写真感光体
JPH0656982A (ja) * 1992-08-11 1994-03-01 Idemitsu Kosan Co Ltd ポリカーボネート共重合体とその製造法及びそれを用いた電子写真感光体
JPH08328285A (ja) * 1995-05-30 1996-12-13 Canon Inc 電子写真感光体、及び該感光体を用いた電子写真装置
JPH0943873A (ja) * 1995-07-26 1997-02-14 Canon Inc 電子写真感光体、及び該感光体を有する電子写真装置
JPH1138648A (ja) * 1997-07-15 1999-02-12 Canon Inc 電子写真感光体、プロセスカートリッジ及び電子写真装置
WO2010150888A1 (ja) * 2009-06-26 2010-12-29 出光興産株式会社 ビスクロロホーメート化合物の製造方法、低量体数ポリカーボネートオリゴマー、及びビスクロロホーメート化合物含有溶液
JP2011026574A (ja) * 2009-06-26 2011-02-10 Idemitsu Kosan Co Ltd ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
WO2013125229A1 (ja) * 2012-02-22 2013-08-29 出光興産株式会社 ポリカーボネート共重合体
WO2014192633A1 (ja) * 2013-05-27 2014-12-04 出光興産株式会社 ポリカーボネート共重合体、それを用いた塗工液、成形体、および電子写真感光体

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104835A (ja) * 1985-11-01 1987-05-15 Idemitsu Petrochem Co Ltd ピラジン環を有するポリカ−ボネ−トおよびその製造方法
JPH05163339A (ja) * 1991-12-17 1993-06-29 Idemitsu Kosan Co Ltd ポリカーボネート共重合体とその製造法及びこれを用いた電子写真感光体
JPH0656982A (ja) * 1992-08-11 1994-03-01 Idemitsu Kosan Co Ltd ポリカーボネート共重合体とその製造法及びそれを用いた電子写真感光体
JPH08328285A (ja) * 1995-05-30 1996-12-13 Canon Inc 電子写真感光体、及び該感光体を用いた電子写真装置
JPH0943873A (ja) * 1995-07-26 1997-02-14 Canon Inc 電子写真感光体、及び該感光体を有する電子写真装置
JPH1138648A (ja) * 1997-07-15 1999-02-12 Canon Inc 電子写真感光体、プロセスカートリッジ及び電子写真装置
WO2010150888A1 (ja) * 2009-06-26 2010-12-29 出光興産株式会社 ビスクロロホーメート化合物の製造方法、低量体数ポリカーボネートオリゴマー、及びビスクロロホーメート化合物含有溶液
JP2011026574A (ja) * 2009-06-26 2011-02-10 Idemitsu Kosan Co Ltd ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
WO2013125229A1 (ja) * 2012-02-22 2013-08-29 出光興産株式会社 ポリカーボネート共重合体
WO2014192633A1 (ja) * 2013-05-27 2014-12-04 出光興産株式会社 ポリカーボネート共重合体、それを用いた塗工液、成形体、および電子写真感光体

Also Published As

Publication number Publication date
TW202146522A (zh) 2021-12-16
JPWO2021201226A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
JP5711902B2 (ja) ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
EP2570447B1 (en) Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body
JP6441793B2 (ja) ポリカーボネート共重合体、それを用いた塗工液、成形体、および電子写真感光体
WO2010150885A1 (ja) ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
JP6530448B2 (ja) ポリカーボネート共重合体の製造方法、ポリカーボネート共重合体、塗工液及び電子写真感光体
JP5680887B2 (ja) ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
WO2012115088A1 (ja) ポリカーボネート共重合体、それを用いた塗工液、電子写真感光体、およびポリカーボネート共重合体の製造方法
JP5349709B1 (ja) ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
JP5014390B2 (ja) ポリカーボネート共重合体、成形体、光学材料および電子写真感光体
JP6634011B2 (ja) ポリカーボネート共重合体、塗工液、電子写真感光体、および電気機器
JP5977762B2 (ja) ポリカーボネート共重合体、並びにそれを用いた塗工液及び電子写真感光体
JP2008133444A (ja) ポリカーボネート共重合体、成形体、光学材料および電子写真感光体
JP5680886B2 (ja) ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
JP4473903B2 (ja) 電子写真感光体用ポリカーボネート共重合体を含む電子写真感光体
WO2021201226A1 (ja) ポリカーボネート共重合体、塗工液、電子写真感光体、ポリカーボネート共重合体の製造方法、および電気機器
WO2021201225A1 (ja) ポリカーボネート共重合体、塗工液、電子写真感光体、ポリカーボネート共重合体の製造方法、および電気機器
JP5405288B2 (ja) ポリカーボネート共重合体、該共重合体からなる成形体および光学材料
JP2008121009A (ja) ポリカーボネート共重合体、その製造方法および電子写真感光体
WO2018116960A1 (ja) ポリカーボネート共重合体、塗工液、電子写真感光体、電子写真装置、及びポリカーボネート共重合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21782256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512701

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21782256

Country of ref document: EP

Kind code of ref document: A1