WO2014192538A1 - 振れ補正機能付き光学ユニット - Google Patents

振れ補正機能付き光学ユニット Download PDF

Info

Publication number
WO2014192538A1
WO2014192538A1 PCT/JP2014/062727 JP2014062727W WO2014192538A1 WO 2014192538 A1 WO2014192538 A1 WO 2014192538A1 JP 2014062727 W JP2014062727 W JP 2014062727W WO 2014192538 A1 WO2014192538 A1 WO 2014192538A1
Authority
WO
WIPO (PCT)
Prior art keywords
corner
optical
shake correction
axis direction
optical module
Prior art date
Application number
PCT/JP2014/062727
Other languages
English (en)
French (fr)
Inventor
南澤伸司
Original Assignee
日本電産サンキョー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産サンキョー株式会社 filed Critical 日本電産サンキョー株式会社
Priority to KR1020157017738A priority Critical patent/KR102195417B1/ko
Priority to US14/763,602 priority patent/US9891444B2/en
Priority to CN201480004591.8A priority patent/CN104919366B/zh
Publication of WO2014192538A1 publication Critical patent/WO2014192538A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils

Definitions

  • the present invention relates to an optical unit with a shake correction function mounted on a mobile phone with a camera or the like.
  • an object of the present invention is to provide an optical unit with a shake correction function that can obtain a large driving force when the optical module is swung.
  • an optical unit with a shake correction function intersects an optical module, a fixed body having a trunk portion surrounding the optical module, and the optical module in the optical axis direction.
  • a gimbal mechanism that supports the optical module so as to be swingable about the first axis, and supports the optical module so as to be swingable about the second axis that intersects the optical axis direction and the first axis, and a side surface of the optical module;
  • a coil and a magnet are provided between a side surface of the body portion and connected to the shake correction driving mechanism that drives the optical module around the first axis and the second axis, and the optical module and the fixed body.
  • a plate spring that defines the posture of the optical module when the shake correction drive mechanism is in a stopped state, and from a direction orthogonal to the optical axis direction.
  • a gimbal mechanism is used for swingably supporting the optical module, and the gimbal mechanism is provided at a position overlapping the shake correction drive mechanism when viewed from a direction orthogonal to the optical axis direction. ing. For this reason, when the optical module is swung, the displacement of the portion where the coil or magnet is arranged in the optical module is small. Therefore, even if the coil and the magnet are brought close to each other, the coil and the magnet are difficult to contact. Therefore, since the coil and the magnet can be brought close to each other, a large driving force can be obtained.
  • the force for returning the optical module to the original posture is small or there is no force for returning the optical module to the original posture.
  • the plate spring is connected to the optical module, the optical module can be reliably returned to the original posture when the driving is stopped.
  • the plate spring is provided at a position overlapping the shake correction drive mechanism. For this reason, when the optical module is swung, the deformation of the plate spring is small because the displacement of the portion where the plate spring is arranged in the optical module is small. Therefore, since the drag force by the plate spring is small, a large swinging force can be applied to the optical module when swinging the optical module. Further, since the deformation of the plate spring is small, the configuration of the plate spring can be simplified.
  • the gimbal mechanism when viewed from a direction orthogonal to the optical axis direction, the gimbal mechanism is provided at a position closer to the center position in the optical axis direction of the shake correction drive mechanism than the plate spring. Is preferred. According to this configuration, when the optical module is swung, the displacement of the portion where the coil or magnet is arranged in the optical module can be reduced. Therefore, since the coil and the magnet can be brought close to each other, a large driving force can be obtained.
  • the gimbal mechanism includes a first corner, a second corner adjacent to the first corner, a third corner spaced from the first corner in the first axis direction, and the second corner.
  • a rectangular movable frame provided around the optical axis with a fourth corner spaced from the corner in the second axis direction, and the first corner and the third corner of the movable frame are attached to the fixed body.
  • the second corner portion and the fourth corner portion of the movable frame support the optical module in a swingable manner.
  • the fixed body has a fixed body side rectangular frame to which the plate spring is connected, and the first corner portion and the third corner portion of the movable frame swing to the fixed body side rectangular frame. It is preferable that it is supported.
  • the gimbal mechanism is configured using the fixed-body-side rectangular frame to which the plate spring is connected, so that it is easy to assemble and the number of components can be reduced.
  • the coil is held by the optical module, and the magnet is held by an inner surface of the body portion. According to this configuration, since the coil lighter than the magnet is provided in the optical module, the drive current for shake correction can be reduced, and the response of shake correction can be improved.
  • the optical module includes an optical component and a holder that holds the optical component.
  • the holder includes an optical component holding portion that holds the optical component, and a diameter of the optical component holding portion. It is preferable that a movable frame arrangement space in which the movable frame is arranged on the outer side in the direction and a coil holding unit that holds the coil used in the shake correction drive mechanism outside the movable frame arrangement space are provided. . According to such a configuration, the gimbal mechanism can be provided inside the outer shape of the holder when viewed from the optical axis direction.
  • the coil is an air-core coil, and the coil holding portion has a convex portion that fits into an opening of the coil. According to such a configuration, the coil can be easily and reliably provided at a predetermined position.
  • the convex portion protrudes from the surface of the coil facing the magnet toward the magnet. According to such a configuration, the coil is not welded to the magnet even when the optical module swings due to an impact or the like or when the optical module is displaced in a direction perpendicular to the optical axis direction. Therefore, damage to the coil can be prevented.
  • the coil holding portion is radially outward of an intermediate position between the first corner and the second corner, radially outer of an intermediate position of the second corner and the third corner, It is preferable to be provided on each of the radially outer side at an intermediate position between the third corner and the fourth corner and on the radially outer side at an intermediate position between the fourth corner and the first corner. . According to such a configuration, since the coil holding portion is provided at an angular position shifted from the corner portion of the movable frame, the outer shape of the holder can be reduced when viewed from the optical axis direction.
  • the fixed body includes a yoke including a barrel-shaped end plate portion projecting radially inward from a front end portion of the trunk portion and the optical axis direction of the trunk portion, and the end plate portion Preferably, an opening is formed with an opening edge positioned radially outward from the surface of the magnet facing the coil when viewed from the optical axis direction. According to such a configuration, it is possible to suppress the lines of magnetic force of the magnet from moving toward the end plate portion of the yoke on the front side in the optical axis direction. Therefore, the strength of the magnetic field linked to the coil can be increased.
  • a nonmagnetic cover is fixed to the end plate portion of the yoke, and the cover includes a frame-shaped front plate portion that overlaps the front surface of the end plate portion in the optical axis direction, and the front plate portion.
  • the cover is non-magnetic, even if a cover is provided, it can suppress that the magnetic force line of a magnet goes to an extra direction. Therefore, the strength of the magnetic field linked to the coil can be increased.
  • a plate-like stopper surrounding the front end portion of the optical module is fixed to the front plate portion when viewed from the front side in the optical axis direction. According to such a configuration, even when the optical module swings due to an impact or the like, or when the optical module is displaced in a direction orthogonal to the optical axis direction, the amount can be limited by the plate-like stopper.
  • the flexible wiring board extended along the 1st direction orthogonal to the said optical axis direction is connected to the rear side edge part of the said optical axis direction of the said optical module,
  • the said flexible wiring board Is a first bending portion bent in an arc shape toward the other side of the first direction at a position on one side of the first direction with respect to a portion overlapping the optical module in the optical axis direction;
  • a band-shaped portion extending from the first curved portion to the other side in the first direction, and the other side of the first direction with respect to a portion of the band-shaped portion that overlaps the optical module in the optical axis direction
  • that slit which is preferably divided into two in the second direction orthogonal to the optical axis direction and the first direction.
  • a swing support portion provided between the first corner portion and the fixed body, and a swing support portion provided between the third corner portion and the fixed body.
  • Each of the portions includes a protrusion provided on one side of the movable frame and the fixed body, and a concave receiving portion that receives the tip side of the protrusion on the other side, and the second corner portion and the
  • the swing support portion provided between the optical module and the swing support portion provided between the fourth corner portion and the optical module are respectively one side of the movable frame and the optical module. It is preferable that a protrusion provided on the other side and a concave receiving part for receiving the tip side of the protrusion on the other side are provided. According to such a configuration, the assembling process can be simplified as compared with a configuration that can swing through the shaft body.
  • the protrusion has a hemispherical tip surface located on the receiving portion side. According to such a configuration, even when the movable frame or the optical module swings to any position, the sliding between the protrusion and the receiving portion is smooth.
  • the protrusion can be formed of, for example, a sphere.
  • the movable frame includes a first connection part that connects the first corner part and the second corner part, a second connection part that connects the second corner part and the third corner part, A third connecting portion that connects the third corner portion and the fourth corner portion, and a fourth connecting portion that connects the fourth corner portion and the first corner portion are elastically deformable, and the first corner Part, the second corner, the third corner, and the fourth corner, depending on the elasticity of the first connecting portion, the second connecting portion, the third connecting portion, and the fourth connecting portion. It is preferable that the protrusion and the receiving portion are in contact with each other with elasticity. According to such a configuration, rattling is unlikely to occur between the protrusion and the receiving portion.
  • the first connecting portion, the second connecting portion, the third connecting portion, and the fourth connecting portion adopt a configuration including a meandering portion that meanders in a direction intersecting the optical axis direction. Can do.
  • any of the plurality of protrusions may employ a configuration provided on the movable frame side. According to such a configuration, the configuration of the gimbal mechanism can be simplified.
  • each of the plurality of protrusions is provided inside the movable frame, and of the plurality of receiving portions, two receiving portions provided at the first corner portion and the third corner portion are The two receiving portions provided at the second corner portion and the fourth corner portion are formed on the inner side of the movable frame so as to protrude from the fixed body side in the optical axis direction. It is preferable that it is formed in a portion that protrudes in the optical axis direction and is located inside the movable frame. According to such a configuration, even when the plurality of protrusions are located in the same plane that intersects the optical axis, the protrusions and the receiving part can be properly brought into contact with each other.
  • the two receiving portions provided at the first corner portion and the third corner portion are in the optical axis direction from one position in the optical axis direction with respect to the movable frame.
  • Two receiving portions provided at the second corner portion and the fourth corner portion in the direction of the optical axis with respect to the movable frame It is preferable that it is formed at a portion that protrudes from the other side position to one side in the optical axis direction and is located inside the movable frame.
  • two receiving portions provided at the first corner portion and the third corner portion are each formed on a plate-like member fixed to the fixed body side, and
  • the two receiving portions provided at the two corners and the fourth corner are each preferably formed on a plate-like member fixed to the optical module side. According to such a configuration, regardless of the structure and material of the fixed body or the optical module, the receiving portion can have a structure excellent in slidability and durability with the protrusion.
  • the fixed body includes two wall surfaces that surround two protrusions provided on the first corner and the third corner, respectively, of the plurality of protrusions from both sides, and the first Two protrusions provided at one corner and the third corner, respectively, and two wall surfaces surrounding both sides in the optical axis direction
  • the optical module includes, among the plurality of protrusions, Two wall surfaces surrounding the two protrusions provided on the second corner and the fourth corner from both sides, respectively, and two protrusions provided on the second corner and the fourth corner It is preferable to have two wall surfaces surrounding each from both sides in the optical axis direction. According to such a configuration, even when an impact is applied, the protrusion is unlikely to come off the receiving portion.
  • a gimbal mechanism is used for swingably supporting the optical module, and the gimbal mechanism is provided at a position overlapping the shake correction drive mechanism when viewed from a direction orthogonal to the optical axis direction. ing. For this reason, when the optical module is swung, the displacement of the portion where the coil or magnet is arranged in the optical module is small. Therefore, even if the coil and the magnet are brought close to each other, the coil and the magnet are difficult to contact. Therefore, since the coil and the magnet can be brought close to each other, a large driving force can be obtained.
  • the force for returning the optical module to the original posture is small or there is no force for returning the optical module to the original posture.
  • the plate spring is connected to the optical module, the optical module can be reliably returned to the original posture when the driving is stopped.
  • the plate spring is provided at a position overlapping the shake correction drive mechanism. For this reason, when the optical module is swung, the deformation of the plate spring is small because the displacement of the portion where the plate spring is arranged in the optical module is small. Therefore, since the drag force by the plate spring is small, a large swinging force can be applied to the optical module when swinging the optical module. Further, since the deformation of the plate spring is small, the configuration of the plate spring can be simplified.
  • rotation around the X axis corresponds to so-called pitching (pitch)
  • rotation around the Y axis corresponds to so-called yawing (roll)
  • Z axis The rotation around corresponds to so-called rolling.
  • + X is attached to one side of the X axis
  • -X is attached to the other side
  • + Y is attached to one side of the Y axis
  • -Y is attached to the other side
  • one side of the Z axis is attached.
  • + Z is attached to the side (opposite to the subject side / optical axis direction rear side)
  • ⁇ Z is attached to the other side (subject side / optical axis direction front side).
  • FIG. 1 is an explanatory view schematically showing a state in which an optical unit with a shake correction function to which the present invention is applied is mounted on an optical device such as a mobile phone.
  • An optical unit 100 (an optical unit with a shake correction function) shown in FIG. 1 is a thin camera used in an optical device 1000 such as a mobile phone with a camera, and is supported by a chassis 2000 (device body) of the optical device 1000. It is mounted with.
  • the optical module 10 including the imaging unit 1 is supported so as to be swingable in the fixed body 20, and a gyroscope mounted on the optical unit 100 or an optical unit is mounted.
  • a shake correction drive mechanism (not shown in FIG.
  • a flexible wiring board 1900 for feeding power to the imaging unit 1 and the shake correction drive mechanism is drawn out from the optical unit 100, and the flexible wiring board 1900 is provided on the main body side of the optical device 1000. It is electrically connected to a higher-level control unit or the like.
  • the flexible wiring board 1900 also has a function of outputting a signal from the imaging unit 1.
  • the lens 1a when viewed from the direction of the optical axis L, the lens 1a is circular, but the optical module 10 is rectangular.
  • FIG. 2 is a perspective view showing an appearance and the like of an optical unit 100 with a shake correction function to which the present invention is applied
  • FIGS. 2A and 2B are perspective views when the optical unit is viewed from the subject side. It is a disassembled perspective view of an optical unit.
  • 3A and 3B are explanatory views showing a cross-sectional configuration of the optical unit 100 with a shake correction function to which the present invention is applied.
  • FIGS. 3A and 3B are an XZ cross-sectional view of the optical unit and a YZ of the optical unit. It is sectional drawing.
  • FIG. 4 is an exploded perspective view when the optical unit 100 with a shake correction function to which the present invention is applied is further disassembled.
  • the optical unit 100 of the present embodiment includes a fixed body 20, an optical module 10, and a gimbal mechanism 30 that supports the optical module 10 so as to be displaceable with respect to the fixed body 20. And a shake correction drive mechanism 500 that generates a magnetic drive force that causes the optical module 10 to be displaced relative to the fixed body 20 between the optical module 10 and the fixed body 20.
  • the fixed body 20 includes an upper case 1200.
  • the upper case 1200 includes a rectangular tubular body 1210 (body) surrounding the optical module 10, and the other side of the rectangular tubular body 1210 in the Z-axis direction ⁇ And a rectangular frame-shaped end plate portion 1220 projecting radially inward from the end portion of Z.
  • An opening 1221 is formed in the end plate portion 1220.
  • the rectangular tubular body 1210 has a rectangular frame-shaped flange 1218 that extends radially outward on the opposite side (+ Z side) to the subject side (side on which the optical axis L extends), And a rectangular tube portion 1219 extending from the outer edge of the rectangular frame-shaped flange portion 1218 to one side + Z in the Z-axis direction.
  • the shake correction drive mechanism 500 is a magnetic drive mechanism using a plate-like magnet 1520 and a coil 1560.
  • the coil 1560 is held by the optical module 10
  • the magnet 1520 is held by the inner surfaces of the four side plate portions 1211 of the rectangular tubular body 1210 of the upper case 1200.
  • the magnet 1520 is magnetized with different poles on the outer surface side and the inner surface side.
  • the magnet 1520 is divided into two in the optical axis direction, and is magnetized so that the magnetic poles located on the coil 1560 side are different. For this reason, the upper and lower long side portions of the coil 1560 are used as effective sides.
  • the four magnets 1520 have the same magnetization pattern on the outer surface side and the inner surface side. For this reason, magnets 1520 adjacent in the circumferential direction are not attracted to each other, so that assembly and the like are easy.
  • the upper case 1200 is made of a magnetic material and functions as a yoke for the magnet 1520.
  • the end plate portion 1220 of the upper case 1200 is formed with an opening portion 1221 having an opening edge positioned radially outward from the surface facing the coil 1560 of the magnet 1520 when viewed from the optical axis L direction. It is possible to prevent the magnetic lines of force of the magnet 1520 from heading toward the end plate portion 1220 of the upper case 1200 (yoke) on the front side in the axis L direction.
  • the optical module 10 includes an imaging unit 1, a holder 1110 that holds a lens 1a (optical component) of the imaging unit 1, and a circuit module 1090 that is fixed to one end in the Z-axis direction + Z of the holder 1110. is doing.
  • the holder 1110 constitutes the outer peripheral portion of the optical module 10, and generally includes a cylindrical optical component holding portion 1120 that holds the lens 1 a, and one end in the Z-axis direction + Z end of the optical component holding portion 1120. And a thick flange portion 1130 that expands in diameter.
  • the holder 1110 is formed with a through hole 1111 penetrating the optical component holding portion 1120 and the flange portion 1130, and the through hole 1111 has a portion located inside the flange portion 1130 inside the optical component holding portion 1120. The diameter is larger than the position.
  • the holder 1110 holds the movable frame arrangement space 1140 in which the movable frame 32 of the gimbal mechanism 30 is arranged and the coil 1560 outside the movable frame arrangement space 1140 on the outer side in the radial direction of the optical component holding unit 1120.
  • a coil holding portion 1150 is provided.
  • the coil holding portion 1150 is composed of portions that are erected from the outer edge of the flange portion 1130 toward the other side ⁇ Z in the Z-axis direction outside the movable frame arrangement space 1140 in the radial direction, and is formed at four locations in the circumferential direction.
  • the coil holding portion 1150 includes a plate-like portion 1151 rising from the outer edge of the flange portion 1130 toward the other side ⁇ Z in the Z-axis direction, and a convex portion 1152 projecting radially outward from the plate-like portion 1151.
  • the coil 1560 is an air-core coil, and is bonded to the coil holding portion 1150 with the projection 1152 fitted in the opening. In this state, the convex portion 1152 partially protrudes from the outer surface of the coil 1560 (the surface facing the magnet 1520).
  • a flexible wiring board 1900 is connected to one end in the Z-axis direction + Z end of the optical module 10 (one end in the Z-axis direction + Z end of the circuit module 1090). Yes.
  • the flexible wiring board 1900 extends along the Y-axis direction and is drawn out to the outside of the optical unit 100.
  • a connector 1990 is connected to the end of the flexible wiring board 1900 outside the optical unit 100, and power is supplied to the coil 1560 via the connector 1990 and the flexible wiring board 1900.
  • the imaging result of the imaging element 1b is output via the flexible wiring board 1900 and the connector 1990.
  • the fixed body 20 has a rectangular lower case 1400 that covers one side + Z of the upper case 1200 in the Z-axis direction.
  • the lower case 1400 includes a rectangular bottom plate portion 1420 and a columnar portion 1410 that protrudes from the four corners of the bottom plate portion 1420 toward the other side ⁇ Z in the Z-axis direction.
  • the flange portion 1218 of the upper case 1200 comes into contact with the columnar portion 1410. Therefore, the upper case 1200 and the lower case 1400 can be fixed by fastening the flange portion 1218 and the columnar portion 1410 with screws.
  • a side plate portion 1440 is provided on one side + X in the X-axis direction and on the other side -Y in the Y-axis direction.
  • the fixed body 20 has a cover 1600 and a plate-like stopper 1700 on the other side -Z in the Z-axis direction.
  • the cover 1600 is a non-magnetic metal plate, and includes a rectangular frame-shaped front plate portion 1610 that overlaps the surface on the other side ⁇ Z of the end plate portion 1220 of the upper case 1200, and an inner edge of the front plate portion 1610.
  • a square tube that protrudes toward one side + Z in the Z-axis direction (the rear side in the optical axis direction) through the opening 1221 of the upper case 1200 and surrounds the end of the one side + Z in the Z-axis direction of the optical module 10.
  • a rectangular frame-shaped rear plate portion 1630 projecting radially inward from one end in the Z-axis direction + Z end of the tubular portion 1620.
  • the fixed body 20 has a plate-like stopper 1700 fixed to the front plate portion 1610 of the cover 1600, and the plate-like stopper 1700 is provided at the end of the other side ⁇ Z of the optical module 10 in the Z-axis direction.
  • a window 1710 through which the other side -Z end of the optical module 10 in the Z-axis direction passes is formed. It is larger than the outer diameter of the end of the other side -Z of the module 10 in the Z-axis direction. Therefore, the movable range in the X-axis direction and the movable range in the Y-axis direction of the optical module 10 are defined by the plate-like stopper 1700.
  • an opening 1421 is formed in the bottom plate portion 1420 of the lower case 1400, and the flexible wiring board 1900 connected to the one side + Z end of the optical module 10 in the Z-axis direction is The optical unit 100 is pulled out through the opening 1421.
  • the flexible printed circuit board 1900 is connected to the end of one side + Z in the Z-axis direction with respect to the optical module 10, first, it is pulled out to one side + Y in the Y-axis direction (first direction).
  • the lower case 1400 is drawn to the outside from the opening 1421 of the bottom plate portion 1420 and further extends to one side + Y in the Y-axis direction.
  • the flexible printed circuit board 1900 has a circle toward the other side -Y in the Y-axis direction at the position of one side + Y in the Y-axis direction with respect to the portion overlapping with one side + Z in the Z-axis direction with respect to the optical module 10.
  • a second bending portion 1920 is provided that is bent in an arc shape toward one side + Y in the Y-axis direction at an end located on the other side ⁇ Y in the Y-axis direction with respect to a portion overlapping on the side + Z.
  • the first bending portion 1910 and the second bending portion 1920 are curved with the same radius of curvature.
  • the flexible wiring board 1900 includes a first bending portion 1910, a strip-like portion 1930, and a second bending portion 1920 that are divided into two in the X-axis direction (second direction) by a slit 1950 extending along the Y-axis direction. Branched.
  • FIG. 5 is a perspective view of a gimbal mechanism or the like of the optical unit 100 with a shake correction function to which the present invention is applied.
  • FIGS. 5 (a), 5 (b), 5 (c), and 5 (d) show the gimbal mechanism in the holder.
  • FIG. 6 is an exploded perspective view of the gimbal mechanism and the like of the optical unit 100 with a shake correction function to which the present invention is applied.
  • FIG. 7 is an explanatory view showing a planar configuration of members used in the gimbal mechanism of the optical unit 100 with a shake correction function to which the present invention is applied, and FIGS. 7A and 7B are provided with receiving portions.
  • the holder, the movable frame, and the fixed body side rectangular frame are shown side by side from the left side to the right side in the drawing.
  • the optical module 10 in order to correct camera shake, the optical module 10 is swingably supported on a first axis L1 intersecting with the optical axis L direction, and the optical module 10 is supported in the optical axis L direction and in the first direction. Since it is necessary to swingably support the second axis L2 intersecting with the axis L1, a gimbal mechanism described below with reference to FIGS. 5 to 7 is provided between the optical module 10 and the fixed body 20. 30 is configured.
  • the gimbal mechanism 30 shown in FIGS. 5 to 7 is fixed to the holder 1110 of the optical module 10, the rectangular movable frame 32, and the upper case 1200 (fixed body 20) by welding or bonding.
  • a rectangular frame 25 (fixed body side rectangular frame) is used.
  • the movable frame 32 has a first corner 321, a second corner 322, a third corner 323, and a fourth corner 324 around the optical axis L, and the first corner 321 and the first corner 321 Between the corner portion 322, between the second corner portion 322 and the third corner portion 323, between the third corner portion 323 and the fourth corner portion 324, and between the fourth corner portion 324 and the first corner portion 321.
  • 1st connection part 326 (1st side part), 2nd connection part 327 (2nd side part), 3rd connection part 328 (3rd side part), and 4th connection part 329 (4th side part) )have.
  • a metal sphere 38 is fixed inside the first corner 321, the second corner 322, the third corner 323, and the fourth corner 324 of the movable frame 32 by welding or the like, and the sphere Reference numeral 38 constitutes protrusions 38a and 38b that direct the hemispherical convex surface radially inward. Accordingly, the plurality of protrusions 38a and 38b are all located in the same plane (XY plane) intersecting the optical axis L.
  • first connecting portion 326, the second connecting portion 327, the third connecting portion 328, and the fourth connecting portion 329 are meandering portions 326a that are curved in the direction orthogonal to the extending direction and the Z-axis direction. 327a, 328a, 329a.
  • a cover 1600 is fixed to the end plate portion 1220 of the upper case 1200 (fixed body 20), and welding, adhesion, or the like is applied to one side + Z surface of the rear plate portion 1630 of the cover 1600 in the Z-axis direction.
  • the rectangular frame 25 is fixed.
  • the rectangular frame 25 has a first corner 251, a second corner 252, a third corner 253, and a fourth corner 254 around the optical axis L, and the first corner 251 and the second corner 252. Between the second corner 252 and the third corner 253, between the third corner 253 and the fourth corner 254, and between the fourth corner 254 and the first corner 251.
  • a first side 256, a second side 257, a third side 258, and a fourth side 259 are provided.
  • first side portion 256 and the first connecting portion 326 extend in the Y-axis direction on one side + X in the X-axis direction
  • third side portion 258 and the third connecting portion 328 are the other side in the X-axis direction. It extends in the Y-axis direction on the side -X.
  • the second side portion 257 and the second connection portion 327 extend in the X-axis direction at one side + Y in the Y-axis direction
  • fourth side portion 259 and the fourth connection portion 329 are the other side in the Y-axis direction.
  • -Y extends in the X-axis direction.
  • first corner portions 251 and 321 are positioned on one side + X in the X-axis direction and the other side ⁇ Y in the Y-axis direction
  • second corner portions 252 and 322 are positioned on one side in the X-axis direction + X and Y-axis.
  • the third corners 253 and 323 are located on the other side in the X-axis direction -X and one side + Y in the Y-axis direction
  • fourth corners 254 and 324 are in the X-axis direction.
  • the rectangular frame 25 is a support plate that protrudes from the first corner 251 and the third corner 253 (one side in the optical axis L direction) to one side in the Z axis direction + Z (the other side in the optical axis L direction).
  • the support plate portion 255 has wall surfaces 255a and 255b that are opposed on both sides in the circumferential direction, and a space between the wall surfaces 255a and 255b is a recess that opens outward in the radial direction. Further, between the wall surfaces 255a and 255b, the radially inner side is closed by the wall surface 255d.
  • an L-shaped plate-like member 33 is fixed between the wall surfaces 255a and 255b, and the plate-like member 33 is at the same height as the coil holding portion 1150 in the Z-axis direction. is there.
  • the plate-like member 33 is bent in the radially outward direction at the first plate portion 331 extending in the Z-axis direction and the one side + Z end portion of the first plate portion 331 in the Z-axis direction.
  • the first plate portion 331 is fixed to the wall surface 255d and the wall surfaces 255a and 255b of the support plate portion 255 formed on the rectangular frame 25.
  • the first corner portion 251 and the third corner portion 253 of the rectangular frame 25 include the second plate portion 332 of the plate-like member 33, the wall surface 255d and the wall surfaces 255a and 255b of the support plate portion 255, and the support plate portion 255.
  • a concave portion that is surrounded by the wall surface 255c and opens outward in the radial direction is formed, and the first plate portion 331 of the plate-like member 33 is located inside the concave portion in the radial direction.
  • a receiving portion 280 recessed in a hemispherical shape is formed on the radially outer surface of the first plate portion 331.
  • a concave portion 1160 is formed on one side in the X-axis direction + X and one side in the Y-axis direction + Y, and the other side in the X-axis direction -X and the other side in the Y-axis direction -Y.
  • the recess 1160 is formed at the same height as the coil holding part 1150 in the Z-axis direction.
  • the concave portion 1160 has both frames surrounded by wall surfaces 1161 and 1162, and one side + Z in the Z-axis direction is closed by the wall surface 1163. Further, the radially inner side of the recess 1160 is closed by the outer surface of the optical component holding unit 1120.
  • a plate-like member 34 bent into an L-shape is fixed inside the recess 1160, and the plate-like member 34 is at the same height as the coil holding portion 1150 in the Z-axis direction.
  • the plate member 34 is bent outward in the radial direction at the first plate portion 341 extending in the Z-axis direction and the other side -Z end of the first plate portion 341 in the Z-axis direction.
  • the first plate portion 341 is fixed to the wall surfaces 1161 and 1162 of the recess 1160 and the outer surface of the optical component holding portion 1120.
  • the holder 1110 is formed with a recess that is surrounded by the wall surfaces 1161, 1162, and 1163 of the holder 1110 and the second plate portion 342 of the plate-like member 34 and opens outward in the radial direction.
  • the first plate portion 341 of the plate-like member 34 is located on the radially inner side.
  • a receiving portion 480 that is recessed in a hemispherical shape is formed on the radially outer surface of the first plate portion 341.
  • the optical module 10 is swingably supported around the first axis L1 intersecting the optical axis L direction, and the optical module 10 is optically supported. It is supported so as to be swingable around the second axis L2 intersecting the axis L direction and the first axis L1.
  • the swing support portion between the first corner portion 321 of the movable frame 32 and the first corner portion 251 of the rectangular frame 25, and the third corner portion 323 of the movable frame 32 and the third corner of the rectangular frame 25 is positioned inside the first corner portion 321 and the third corner portion 323 of the movable body 32, so that the protrusion 38 a is a receiving portion. 280 is supported.
  • the first corner portion 321 and the third corner portion 323 located on the first axis L1 in the movable frame 32 swing to the first corner portion 251 and the third corner portion 253 of the rectangular frame 25 (fixed body 20). Supported as possible.
  • the swing support portion between the second corner portion 322 of the movable frame 32 and the holder 1110 and the swing support portion between the fourth corner portion 324 of the movable frame 32 and the holder 1110 are provided on the holder 1110.
  • the plate-like member 34 is positioned inside the second corner portion 322 and the fourth corner portion 324 of the movable frame 32, so that the protrusion 38 b is supported by the receiving portion 480.
  • the second corner portion 322 and the fourth corner portion 324 located on the second axis L2 in the movable frame 32 support the holder 1110 (optical module 10) in a swingable manner.
  • the optical module 10 is supported by the fixed body 20 through the movable frame 32 used for the gimbal mechanism 30 so as to be swingable about the first axis L1, and swings about the second axis L2. Supported as possible. Further, both the movable frame 32 and the plate-like members 33 and 34 are at the same height as the coil holding portion 1150. For this reason, the gimbal mechanism 30 is provided at a position overlapping the shake correction drive mechanism 500 when viewed from a direction orthogonal to the optical axis L direction. In particular, in this embodiment, the gimbal mechanism 30 is provided at a position overlapping the center of the shake correction drive mechanism 500 in the Z-axis direction when viewed from a direction orthogonal to the optical axis L direction.
  • the movable frame 32 is made of a metal material or the like having a spring property, and does not bend downward due to the weight of the optical module 10, but has a spring property that can absorb the impact when an impact is applied from the outside. Have. Further, the movable frame 32 can be elastically deformed inward and outward by the first connecting portion 326, the second connecting portion 327, the third connecting portion 328, and the fourth connecting portion 329, respectively.
  • the protrusions 38a and 38b and the receiving portions 280 and 480 are in elastic contact with each other. Therefore, rattling does not occur between the protrusions 38a, 38b and the receiving portions 280, 480.
  • the optical module 10 of the present embodiment includes a plate spring 70 that is connected to the optical module 10 and the fixed body 20 and defines the posture of the optical module 10 when the shake correction drive mechanism 500 is in a stopped state.
  • the plate spring 70 is a spring member obtained by processing a metal plate into a predetermined shape, and includes a rectangular frame-shaped fixed body side connecting portion 71, an annular movable body side connecting portion 72, and a fixed body side connecting portion 71. It has a leaf spring portion 73 for connecting the movable body side connecting portion 72.
  • the leaf spring portion 73 extends from the corner portion of the fixed body side connecting portion 71 to the movable body side connecting portion 72 while being folded back from one side in the circumferential direction to the other side.
  • the fixed body side connecting portion 71 is fixed to the other side ⁇ Z surface of the rectangular frame 25 in the Z axis direction
  • the movable body side connecting portion 72 is the other side of the optical component holding portion 1120 of the holder 1110 in the Z axis direction. It is fixed to the end face 1121 of ⁇ Z by welding or adhesion.
  • an annular convex portion 1123 is formed along the inner edge on the other side ⁇ Z end surface 1121 of the optical component holding portion 1120 in the Z-axis direction, and the convex portion 1123 is movable radially outward.
  • the body side connecting portion 72 is in a fitted state.
  • the plate spring 70 is also provided at a position overlapping the shake correction drive mechanism 500 when viewed from the direction orthogonal to the optical axis L direction.
  • the gimbal mechanism 30 when viewed from a direction orthogonal to the optical axis L direction, the gimbal mechanism 30 is provided at a position overlapping the center of the shake correction drive mechanism 500 in the Z-axis direction, whereas the plate spring 70 is provided. Is located on the other side ⁇ Z in the Z-axis direction from a position overlapping the center of the shake correction drive mechanism 500 in the Z-axis direction. Therefore, when viewed from a direction orthogonal to the optical axis L direction, the gimbal mechanism 30 is provided at a position closer to the center position of the shake correction drive mechanism 500 in the optical axis L direction than the plate spring 70.
  • a portion of the flexible wiring board 1900 that overlaps with one side + Z in the Z-axis direction of the optical module 10 is placed on one side + Z in the Z-axis direction.
  • a photo reflector 590 is mounted toward the camera.
  • a reflection plate 1490 is formed at a position facing the photo reflector 590 on the other side ⁇ Z surface in the Z-axis direction of the bottom plate portion 1420 of the lower case 1400.
  • the reflection plate 1490 is a block-shaped metal part and has a large dimension (thickness) in the Z-axis direction. Accordingly, since the distance between the photo reflector 590 and the reflection plate 1490 is short, the detection sensitivity is high.
  • the optical module 10 swings around the first axis L1 or the second axis L2, and the camera shake is corrected.
  • the optical module 10 swings around the first axis L1 and swings around the second axis L2, and the camera shake is corrected.
  • the second photo reflector 590 detects the distance (displacement) from the optical module 10, and the shake correction drive mechanism 500 is controlled based on the detection result of the photo reflector 590.
  • the rectangular movable frame 32 is disposed between the optical module 10 and the rectangular tubular body 1210 of the fixed body 20, and the first corner of the movable frame 32 is arranged.
  • the second corner portion 322 and the fourth corner portion 324 of the movable frame 32 support the optical module 10 so as to be swingable. It is as a structure. Therefore, even when the optical module 10 is swingably supported by the gimbal mechanism 30 with respect to the fixed body 20, the first of the movable frame 32 is between the side surface of the optical module 10 and the side surface of the fixed body 20. It is possible to secure a space for arranging the shake correction drive mechanism 500 and the like in the vicinity of the connecting portion 326, the second connecting portion 327, the third connecting portion 328, and the fourth connecting portion 329.
  • the gimbal mechanism 30 is provided at a position overlapping the shake correction drive mechanism 500 when viewed from the direction orthogonal to the optical axis L direction. For this reason, when the optical module 10 is swung, since the displacement of the portion where the coil 1560 and the magnet 1520 are arranged in the optical module 10 is small, even if the coil 1560 and the magnet 1520 are brought close to each other, the coil 1560 and the magnet 1520 Is difficult to touch. Therefore, since the coil 1560 and the magnet 1520 can be brought close to each other, a large driving force can be obtained.
  • the force for returning the optical module 10 to the original posture is small or there is no force for returning the optical module 10 to the original posture. Since the plate spring 70 is connected to the fixed body 20 and the driving is stopped, the optical module 10 can be reliably returned to the original posture. Further, when viewed from a direction orthogonal to the optical axis L direction, the plate spring 70 is provided at a position overlapping the shake correction drive mechanism 500. For this reason, when the optical module 10 is swung, since the displacement of the portion where the plate spring 70 is arranged in the optical module 10 is small, the deformation of the plate spring 70 is small.
  • the drag force caused by the plate spring 70 is small, a large swinging force can be applied to the optical module 10 when the optical module 10 is swung. Further, since the deformation of the plate spring 70 is small, the configuration of the plate spring 70 can be simplified.
  • the gimbal mechanism 30 when viewed from a direction orthogonal to the optical axis L direction, the gimbal mechanism 30 is provided at a position closer to the center position of the shake correction drive mechanism 500 in the optical axis L direction than the plate spring 70. For this reason, when the optical module 10 is swung, the displacement of the portion where the coil 1560 and the magnet 1520 are arranged in the optical module 10 can be reduced. Therefore, since the coil 1560 and the magnet 1520 can be brought close to each other, a large driving force can be obtained.
  • the fixed body 20 comprises the gimbal mechanism 30 using the rectangular frame 25 (fixed body side rectangular frame) to which the plate-like spring 70 is connected, it is easy to assemble and the number of parts can be reduced. .
  • the coil 1560 is held by the optical module 10, and the magnet 1520 is held on the inner surface of the rectangular tubular body 1210 of the fixed body 20. For this reason, since the coil 1560 that is lighter than the magnet 1520 is provided in the optical module 10, the drive current for shake correction can be reduced, and the response of shake correction can be improved.
  • the holder 1110 includes an optical component holding unit 1120, a movable frame arrangement space 1140 in which the movable frame 32 is arranged on the outer side in the radial direction of the optical component holding unit 1120, and a coil 1560.
  • a coil holding portion 1150 that is held outside the 1140 is provided.
  • the gimbal mechanism 30 can be provided inside the outer shape of the holder 1110 when viewed from the optical axis L direction.
  • the coil 1560 is an air-core coil, and the coil holding portion 1150 has a convex portion 1152 that fits into the opening of the coil 1560. Therefore, the coil 1560 can be easily and reliably provided at a predetermined position.
  • the convex portion 1152 protrudes from the surface of the coil 1560 facing the magnet 1520 toward the magnet 1520. Therefore, the coil 1560 does not contact the magnet 1520 even when the optical module 10 swings due to an impact or the like, or when the optical module 10 is displaced in a direction orthogonal to the optical axis L direction. Therefore, damage to the coil 1560 can be prevented.
  • the coil holding portion 1150 is provided on the radially outer side of the intermediate position between the first connecting portion 326, the second connecting portion 327, the third connecting portion 328 and the fourth connecting portion 329 of the movable frame 32. Accordingly, since the coil holding portion 1150 is provided at an angular position shifted from the first corner portion 321, the second corner portion 322, the third corner portion 323, and the fourth corner portion 324 of the movable frame 32, when viewed from the optical axis L direction. The outer shape of the holder 1110 can be reduced.
  • the end plate portion 1220 of the upper case 1200 is formed with an opening portion 1221 having an opening edge positioned radially outward from the surface facing the coil 1560 of the magnet 1520 when viewed from the optical axis L direction. It is possible to prevent the magnetic lines of force of the magnet 1520 from heading toward the end plate portion 1220 of the upper case 1200 (yoke) on the front side in the axis L direction. Therefore, the strength of the magnetic field linked to the coil 1560 can be increased.
  • a nonmagnetic cover 1600 is fixed to the end plate portion 1220 of the upper case 1200, and the cover 1600 passes through the opening 1221 of the upper case 1200 from the inner edge of the front plate portion 1610 that overlaps the end plate portion 1220. It has a cylindrical portion 1620 that protrudes toward the rear side in the L direction and surrounds the front end portion of the optical module 10 in the optical axis L direction. Accordingly, it is possible to suppress dust and the like from entering the inside. Further, since the cover 1600 is non-magnetic, even if the cover 1600 is provided, the magnetic lines of force of the magnet 1520 can be prevented from moving in an extra direction. Therefore, the strength of the magnetic field linked to the coil 1560 can be increased.
  • a plate-like stopper 1700 surrounding the front end portion of the optical module 10 in the optical axis L direction is fixed to the front plate portion 1610 of the cover 1600 when viewed from the front side in the optical axis L direction. Therefore, even when the optical module 10 swings due to an impact or the like, or when the optical module 10 is displaced in a direction orthogonal to the optical axis direction, the amount can be limited by the plate-like stopper 1700. Further, the plate-like stopper 1700 is separated from the swing center of the optical module 10 in order to limit the displacement of the optical module 10 by contact with the front end of the optical module 10 in the optical axis L direction. For this reason, compared with the case where the displacement of the optical module 10 is limited by the contact between the coil 1560 and the magnet 1520, etc., the displacement tolerance is less likely to be affected by the mounting accuracy of the components. it can.
  • the flexible wiring board 1900 connected to the optical module 10 includes a first bending portion 1910 and a second bending portion 1920 that are bent in an arc shape in the middle of the portion extending along the Y direction. Even if the optical module 10 swings in the Y direction, the flexible wiring board 1900 does not apply a large drag to the optical module 10. Further, the first bending portion 1910 and the second bending portion 1920 are bent in opposite directions, and the first bending portion 1910 and the second bending portion 1920 are bent with the same curvature radius. Therefore, when the optical module 10 swings in the Y direction, the drag applied to the optical module 10 can be canceled out by the first bending portion 1910 and the second bending portion 1920.
  • the flexible wiring board 1900 includes a first bending portion 1910, a belt-like portion 1930, and a second bending portion 1920 in the X direction (second direction) by a slit 1950 extending along the Y direction (first direction). It is branched into two. Therefore, even if the optical module 10 swings in the X direction, the flexible wiring board 1900 does not apply a large drag to the optical module 10.
  • the gimbal mechanism 30 has a structure in which the projecting portions 38a and 38b are supported by the concave receiving portions 280 and 480, so that the assembly process is simplified as compared with a configuration in which the projection can be rocked via the shaft body. can do. Moreover, since the protrusions 38a and 38b have hemispherical tip surfaces located on the receiving portions 280 and 480, the protrusions 38a and 38b can be protruded even when the movable frame 32 and the optical module 10 are swung. The sliding of 38a and the receiving parts 280 and 480 is smooth.
  • the protrusions 38a, 38b and the receiving portions 280, 480 are in elastic contact. Therefore, rattling is unlikely to occur between the protrusions 38a, 38b and the receiving portions 280, 480.
  • the plurality of protrusions 38a and 38b are all provided on the movable frame 32 side. Further, the plurality of protrusions 38a and 38b are all located in the same plane that intersects the optical axis L. Therefore, the configuration of the gimbal mechanism 30 can be simplified.
  • the receiving portions 280 and 480 are respectively formed on plate-like members 33 and 34 that are separate from the fixed body 20 and the holder 1110. Therefore, regardless of the structure and material of the fixed body 20 and the holder 1110 of the optical module 10, the receiving portions 280 and 480 can have a structure excellent in slidability and durability with the protrusions 38a and 38b.
  • the protrusions 38 a provided on the first corner portion 321 and the third corner portion 323 of the movable frame 32 are the wall surfaces 255 a, 255 b, 255 c on the fixed body 20 side and the second plate portion 332 ( Surrounded by a wall). Further, the protrusions 38b provided on the second corner portion 322 and the fourth corner portion 324 of the movable frame 32 are the wall surfaces 1161, 1162, 1163 on the optical module side and the second plate portion 342 (wall surface of the plate member 34). ) Is surrounded by Therefore, even if an impact is applied, the protrusions 38a and 38b are unlikely to be detached from the receiving portions 280 and 480.
  • the present invention may be applied to the optical unit 100 used in a thin digital camera or the like.
  • the optical unit 100 with a shake correction function to which the present invention is applied is fixed in a device having vibration at regular intervals, such as a refrigerator, in addition to a mobile phone, a digital camera, etc. It can also be used for a service that can obtain information inside the refrigerator when going out, for example, when shopping. In such a service, since it is a camera system with a posture stabilization device, a stable image can be transmitted even if the refrigerator vibrates.
  • the guardian or the like can observe the image in a remote place to ensure the safety of the child.
  • a clear image can be taken even if there is vibration during movement without being aware of the camera.
  • a GPS is installed in addition to the camera module, the location of the target person can be acquired at the same time. In the event of an accident, the location and situation can be confirmed instantly.
  • the optical unit 100 with a shake correction function to which the present invention is applied is mounted at a position where the front can be photographed in an automobile, it can be used as a drive recorder.
  • the optical unit 100 with a shake correction function to which the present invention is applied is mounted at a position where the front of the vehicle can be photographed, and peripheral images are automatically photographed at regular intervals and automatically transferred to a predetermined server. Also good. Further, by distributing this image in conjunction with traffic jam information such as a road traffic information communication system, the traffic jam status can be provided in more detail.
  • the optical unit 100 with a shake correction function to which the present invention is applied may be applied to shake correction of an optical device that emits light, such as a laser pointer, a portable or vehicle-mounted projection display device, or a direct-view display device. Good. Further, it may be used for observation without using an auxiliary fixing device such as a tripod for observation at a high magnification such as an astronomical telescope system or a binoculars system. In addition, by using a sniper rifle or a gun barrel such as a tank, the posture can be stabilized against vibration at the time of triggering, so that the accuracy of hitting can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

光学モジュールを揺動させる際、大きな駆動力を得ることのできる振れ補正機能付き光学ユニットを提供すること。光学ユニット(100)では、光学モジュール(10)と固定体(20)の角筒状胴部(1210)との間に矩形の可動枠(32)を配置し、かかる可動枠(32)が固定体(20)に揺動可能に支持された構造とし、可動枠(32)が光学モジュール(10)を揺動可能に支持している構造としてある。かかる可動枠(32)を用いたジンバル機構(30)は、光軸L方向に対して直交する方向からみたとき、振れ補正用駆動機構(500)と重なる位置に設けられている。光学モジュール(10)と固定体(20)とに板状バネ(70)を接続し、駆動を停止した際、光学モジュール(10)を確実に元の姿勢に戻す。板状バネ(70)も、光軸L方向に対して直交する方向からみたとき、振れ補正用駆動機構(500)と重なる位置に設けられている。

Description

振れ補正機能付き光学ユニット
 本発明は、カメラ付き携帯電話機等に搭載される振れ補正機能付き光学ユニットに関するものである。
 近年、携帯電話機は、撮影用の光学ユニットが搭載された光学機器として構成されている。かかる光学ユニットにおいては、ユーザーの手振れによる撮影画像の乱れを抑制するために、光学モジュールを揺動させて振れを補正する構成が提案されている。かかる振れ補正を行うには、光学モジュールを固定体に対して揺動可能に支持する必要がある。そこで、光学モジュールをピボットで支持するとともに、光学モジュールと固定体とを板状バネで接続した構成が提案されている(特許文献1参照)。
特開2009-288769号公報
 ピボットを中心に光学モジュールを揺動させる構成の場合、ピボットから離間した位置に振れ補正用駆動機構を構成するコイルと磁石とを配置する必要がある。そのため、ピボットを中心に光学モジュールが揺動した際、光学モジュールにおいてコイルや磁石が配置された部分の変位が大きい。従って、コイルと磁石とが当接しないように、コイルと磁石とを大きく離間した位置に配置せざるを得ないため、駆動力が小さいという問題点がある。
 以上の問題点に鑑みて、本発明の課題は、光学モジュールを揺動させる際、大きな駆動力を得ることのできる振れ補正機能付き光学ユニットを提供することにある。
 上記課題を解決するために、本発明に係る振れ補正機能付き光学ユニットは、光学モジュールと、該光学モジュールの周りを囲む胴部を備えた固定体と、前記光学モジュールを光軸方向に交差する第1軸線周りに揺動可能に支持するとともに、前記光学モジュールを前記光軸方向および前記第1軸線に交差する第2軸線周りに揺動可能に支持するジンバル機構と、前記光学モジュールの側面と前記胴部の側面との間にコイルおよび磁石を備え、前記光学モジュールを前記第1軸線周りおよび前記第2軸線周りに駆動する振れ補正用駆動機構と、前記光学モジュールと前記固定体とに接続して前記振れ補正用駆動機構が停止状態にあるときの前記光学モジュールの姿勢を規定する板状バネと、を有し、前記光軸方向に対して直交する方向からみたとき、前記ジンバル機構および前記板状バネは、前記振れ補正用駆動機構と重なる位置に設けられていることを特徴とする。
 本発明では、光学モジュールを揺動可能に支持するにあたってジンバル機構が用いられているとともに、光軸方向に対して直交する方向からみたとき、ジンバル機構が振れ補正用駆動機構と重なる位置に設けられている。このため、光学モジュールを揺動させた際、光学モジュールにおいてコイルや磁石が配置された部分の変位が小さいので、コイルと磁石とを近接させてもコイルと磁石とが接触しにくい。それ故、コイルと磁石とを近接させることができるので、大きな駆動力を得ることができる。また、ジンバル機構の場合、駆動を停止した際、光学モジュールを元の姿勢に戻す力が小さいか、あるいは光学モジュールを元の姿勢に戻す力がないが、本発明では、光学モジュールと固定体とに板状バネを接続したため、駆動を停止した際、光学モジュールを確実に元の姿勢に戻すことができる。また、光軸方向に対して直交する方向からみたとき、板状バネは振れ補正用駆動機構と重なる位置に設けられている。このため、光学モジュールを揺動させた際、光学モジュールにおいて板状バネが配置された部分の変位が小さいので、板状バネの変形が小さい。それ故、板状バネによる抗力が小さいので、光学モジュールを揺動させる際、光学モジュールに大きな揺動力を加えることができる。また、板状バネの変形が小さいので、板状バネの構成を簡素化することができる。
 本発明において、光軸方向に対して直交する方向からみたとき、前記ジンバル機構は、前記板状バネより、前記振れ補正用駆動機構の光軸方向の中央位置に近い位置に設けられていることが好ましい。かかる構成によれば、光学モジュールを揺動させた際、光学モジュールにおいてコイルや磁石が配置された部分の変位を小さくすることができる。それ故、コイルと磁石とを近接させることができるので、大きな駆動力を得ることができる。
 本発明において、前記ジンバル機構は、第1角部、該第1角部と隣り合う第2角部、前記第1角部から前記第1軸線方向で離間する第3角部、および前記第2角部から前記第2軸線方向で離間する第4角部を光軸周りに備えた矩形の可動枠を備え、前記可動枠の前記第1角部および前記第3角部は、前記固定体に揺動可能に支持され、前記可動枠の前記第2角部および前記第4角部は、前記光学モジュールを揺動可能に支持していることが好ましい。かかる構成によれば、ジンバル機構によって、光学モジュールを固定体に対して揺動可能に支持した場合でも、光学モジュールの側面と固定体の側面との間に振れ補正用駆動機構等を配置するスペースを確保することができる。
 本発明において、前記固定体は、前記板状バネが接続された固定体側矩形枠を有し、前記可動枠の前記第1角部および前記第3角部は、前記固定体側矩形枠に揺動可能に支持されていることが好ましい。かかる構成によれば、板状バネが接続された固定体側矩形枠を利用してジンバル機構を構成するので、組み立てを行いやすいとともに、部品点数を削減することができる。
 本発明において、前記コイルは、前記光学モジュールに保持され、前記磁石は、前記胴部の内面に保持されていることが好ましい。かかる構成によれば、磁石より軽量なコイルを光学モジュールに設けるので、振れ補正のための駆動電流が小さく済むとともに、振れ補正の応答性を向上することができる。
 本発明において、前記光学モジュールは、光学部品と、該光学部品を保持するホルダと、を有し、前記ホルダには、前記光学部品を保持する光学部品保持部と、該光学部品保持部の径方向外側で前記可動枠が配置される可動枠配置空間と、前記振れ補正用駆動機構に用いたコイルを前記可動枠配置空間の外側で保持するコイル保持部と、が設けられていることが好ましい。かかる構成によれば、光軸方向からみたとき、ホルダの外形より内側にジンバル機構を設けることができる。
 本発明において、前記コイルは空芯コイルであり、前記コイル保持部は、前記コイルの開口部に嵌る凸部を有していることが好ましい。かかる構成によれば、コイルを容易かつ確実に所定位置に設けることができる。
 本発明において、前記凸部は、前記コイルの前記磁石に対向する面から当該磁石に向けて突出していることが好ましい。かかる構成によれば、衝撃等によって、光学モジュールが揺動した場合や光学モジュールが光軸方向に直交する方向に変位した場合でも、コイルが磁石に溶接しない。それ故、コイルの損傷を防止することができる。
 本発明において、前記コイル保持部は、前記第1角部と前記第2角部との中間位置の径方向外側、前記第2角部と前記第3角部との中間位置の径方向外側、前記第3角部と前記第4角部との中間位置の径方向外側、および前記第4角部と前記第1角部との中間位置に径方向外側の各々に設けられていることが好ましい。かかる構成によれば、可動枠の角部からずれた角度位置にコイル保持部を設けるので、光軸方向からみたとき、ホルダの外形を小さくすることができる。
 本発明において、前記固定体は、前記胴部および該胴部の前記光軸方向の前側端部から径方向内側に張り出した枠状の端板部を備えたヨークを有し、前記端板部には、光軸方向からみたとき前記磁石の前記コイルと対向する面より径方向外側に開口縁が位置する開口部が形成されていることが好ましい。かかる構成によれば、光軸方向の前側において磁石の磁力線がヨークの端板部の側に向かうことを抑制することができる。それ故、コイルに鎖交する磁界の強度を大とすることができる。
 本発明において、前記ヨークの前記端板部には非磁性のカバーが固定され、前記カバーは、前記端板部の前記光軸方向の前側の面に重なる枠状の前板部と、該前板部の内縁から前記開口部を通って前記光軸方向の後側に向けて突出して前記光学モジュールの前記光軸方向の前側端部の周りを囲む筒部と、を有していることが好ましい。かかる構成によれば、塵等が内部に侵入することを抑制することができる。また、カバーは非磁性であるため、カバーを設けても、磁石の磁力線が余計な方向に向かうことを抑制することができる。それ故、コイルに鎖交する磁界の強度を大とすることができる。
 本発明において、前記前板部には、前記光軸方向の前側からみたときに前記光学モジュールの前記前側端部の周りを囲む板状ストッパが固定されていることが好ましい。かかる構成によれば、衝撃等によって、光学モジュールが揺動した場合や光学モジュールが光軸方向に直交する方向に変位した場合でも、その量を板状ストッパによって制限することができる。
 本発明において、前記光学モジュールの前記光軸方向の後側端部には前記光軸方向に対して直交する第1方向に沿って延在するフレキシブル配線基板が接続されており、前記フレキシブル配線基板は、前記光学モジュールに対して前記光軸方向で重なる部分に対して前記第1方向の一方側の位置で当該第1方向の他方側に向けて円弧状に折り曲げられた第1湾曲部と、該第1湾曲部から前記第1方向の前記他方側に延在する帯状部と、該帯状部において前記光学モジュールに対して前記光軸方向で重なる部分に対して前記第1方向の前記他方側に位置する端部で前記第1方向の前記一方側に向けて円弧状に折り曲げられた第2湾曲部と、が設けられ、かつ、前記第1湾曲部、前記帯状部および前記第2湾曲部は、前記第1方向に沿って延在するスリットによって、前記光軸方向および前記第1方向に直交する第2方向において2つに分岐されていることが好ましい。
 本発明では、前記ジンバル機構において、前記第1角部と前記固定体との間に設けられた揺動支持部、および前記第3角部と前記固定体との間に設けられた揺動支持部は各々、前記可動枠および前記固定体のうちの一方側に設けられた突部と、他方側で当該突部の先端側を受ける凹状の受け部とを備え、前記第2角部と前記光学モジュールとの間に設けられた揺動支持部、および前記第4角部と前記光学モジュールとの間に設けられた揺動支持部は各々、前記可動枠および前記光学モジュールのうちの一方側に設けられた突部と、他方側で当該突部の先端側を受ける凹状の受け部と、を備えていることが好ましい。かかる構成によれば、軸体を介して揺動可能にした構成と比較して組み立て工程を簡素化することができる。
 本発明において、前記突部は、前記受け部側に位置する先端面が半球状であることが好ましい。かかる構成によれば、可動枠や光学モジュールが揺動していずれの姿勢になったときでも、突部と受け部との摺動がスムーズである。
 この場合、前記突部は、例えば、球体により構成することができる。
 本発明において、前記可動枠は、前記第1角部と前記第2角部とを連結する第1連結部、前記第2角部と前記第3角部とを連結する第2連結部、前記第3角部と前記第4角部とを連結する第3連結部、および前記第4角部と前記第1角部とを連結する第4連結部が弾性変形可能であり、前記第1角部、前記第2角部、前記第3角部および前記第4角部のいずれにおいても、前記第1連結部、前記第2連結部、前記第3連結部および前記第4連結部の弾性によって、前記突部と前記受け部とが弾性をもって接していることが好ましい。かかる構成によれば、突部と受け部との間でガタツキが発生しにくい。
 この場合、前記第1連結部、前記第2連結部、前記第3連結部、および前記第4連結部は、光軸方向に交差する方向に蛇行する蛇行部を備えている構成を採用することができる。
 本発明において、前記複数の突部はいずれも、前記可動枠の側に設けられている構成を採用することができる。かかる構成によれば、ジンバル機構の構成を簡素化することができる。
 本発明において、前記複数の突部はいずれも、前記光軸に交差する同一平面内に位置していることが好ましい。かかる構成によれば、ジンバル機構の構成を簡素化することができる。
 本発明において、前記複数の突部はいずれも、前記可動枠の内側に設けられ、前記複数の受け部のうち、前記第1角部および前記第3角部に設けられた2つの受け部は、前記固定体側から光軸方向に突出して前記可動枠の内側に位置する部分に形成され、前記第2角部および前記第4角部に設けられた2つの受け部は、前記光学モジュール側から光軸方向に突出して前記可動枠の内側に位置する部分に形成されていることが好ましい。かかる構成によれば、複数の突部が光軸に交差する同一平面内に位置する場合でも、突部と受け部とを適正に当接させることができる。
 本発明において、前記複数の受け部のうち、前記第1角部および前記第3角部に設けられた2つの受け部は、前記可動枠に対して光軸方向の一方側位置から光軸方向の他方側に突出して前記可動枠の内側に位置する部分に形成され、前記第2角部および前記第4角部に設けられた2つの受け部は、前記可動枠に対して光軸方向の他方側位置から光軸方向の一方側に突出して前記可動枠の内側に位置する部分に形成されていることが好ましい。
 本発明において、前記複数の受け部のうち、前記第1角部および前記第3角部に設けられた2つの受け部は各々、前記固定体側に固定された板状部材に形成され、前記第2角部および前記第4角部に設けられた2つの受け部は各々、前記光学モジュール側に固定された板状部材に形成されていることが好ましい。かかる構成によれば、固定体や光学モジュールの構造や材質にかかわらず、受け部を突部との摺動性や耐久性に優れた構造とすることができる。
 本発明において、前記固定体は、前記複数の突部のうち、前記第1角部および前記第3角部に設けられた2つの突部を各々、両脇から囲む2つの壁面と、前記第1角部および前記第3角部に設けられた2つの突部を各々、前記光軸方向の両側から囲む2つの壁面と、を有し、前記光学モジュールは、前記複数の突部のうち、前記第2角部および前記第4角部に設けられた2つの突部を各々、両脇から囲む2つの壁面と、前記第2角部および前記第4角部に設けられた2つの突部を各々、前記光軸方向の両側から囲む2つの壁面と、を有していることが好ましい。かかる構成によれば、衝撃が加わっても、突部が受け部から外れにくい。
 本発明では、光学モジュールを揺動可能に支持するにあたってジンバル機構が用いられているとともに、光軸方向に対して直交する方向からみたとき、ジンバル機構が振れ補正用駆動機構と重なる位置に設けられている。このため、光学モジュールを揺動させた際、光学モジュールにおいてコイルや磁石が配置された部分の変位が小さいので、コイルと磁石とを近接させてもコイルと磁石とが接触しにくい。それ故、コイルと磁石とを近接させることができるので、大きな駆動力を得ることができる。また、ジンバル機構の場合、駆動を停止した際、光学モジュールを元の姿勢に戻す力が小さいか、あるいは光学モジュールを元の姿勢に戻す力がないが、本発明では、光学モジュールと固定体とに板状バネを接続したため、駆動を停止した際、光学モジュールを確実に元の姿勢に戻すことができる。また、光軸方向に対して直交する方向からみたとき、板状バネは振れ補正用駆動機構と重なる位置に設けられている。このため、光学モジュールを揺動させた際、光学モジュールにおいて板状バネが配置された部分の変位が小さいので、板状バネの変形が小さい。それ故、板状バネによる抗力が小さいので、光学モジュールを揺動させる際、光学モジュールに大きな揺動力を加えることができる。また、板状バネの変形が小さいので、板状バネの構成を簡素化することができる。
本発明を適用した振れ補正機能付きの光学ユニットを携帯電話機等の光学機器に搭載した様子を模式的に示す説明図である。 本発明を適用した振れ補正機能付きの光学ユニットの外観等を示す斜視図である。 本発明を適用した振れ補正機能付きの光学ユニットの断面構成を示す説明図である。 本発明を適用した振れ補正機能付きの光学ユニットをさらに細かく分解したときの分解斜視図である。 本発明を適用した振れ補正機能付きの光学ユニットのジンバル機構等の斜視図である。 本発明を適用した振れ補正機能付きの光学ユニットのジンバル機構等の分解斜視図である。 本発明を適用した振れ補正機能付きの光学ユニットのジンバル機構に用いた部材の平面構成を示す説明図である。
1 撮像ユニット
1a レンズ(光学部品)
10 光学モジュール
20 固定体
25 矩形枠(固定体側矩形枠)
30 ジンバル機構
32 可動枠
38 球体
38a、38b 突部
100 光学ユニット
280、480 受け部
321 第1角部
322 第2角部
323 第3角部
324 第4角部
500 振れ補正用駆動機構
1110 ホルダ
1120 光学部品保持部
1150 コイル保持部
1152 コイル保持部の凸部
1200 上ケース
1210 角筒状胴部(胴部)
1220 端板部
1221 開口部
1520 磁石
1560 コイル
1600 カバー
1610 前板部
1620 筒部
1700 板状ストッパ
1900 フレキシブル配線基板
1910 第1湾曲部
1920 第2湾曲部
1930 帯状部
1950 スリット
 以下、本発明を実施するための形態について、図面を参照しながら説明する。なお、以下の説明においては、撮像ユニットの手振れを防止するための構成を例示する。また、以下の説明では、互いに直交する3方向を各々X軸、Y軸、Z軸とし、光軸L(レンズ光軸/光学素子の光軸)に沿う方向をZ軸とする。また、以下の説明では、各方向の振れのうち、X軸周りの回転は、いわゆるピッチング(縦揺れ)に相当し、Y軸周りの回転は、いわゆるヨーイング(横揺れ)に相当し、Z軸周りの回転は、いわゆるローリングに相当する。また、X軸の一方側には+Xを付し、他方側には-Xを付し、Y軸の一方側には+Yを付し、他方側には-Yを付し、Z軸の一方側(被写体側とは反対側/光軸方向後側)には+Zを付し、他方側(被写体側/光軸方向前側)には-Zを付して説明する。
 (撮影用の光学ユニットの全体構成)
 図1は、本発明を適用した振れ補正機能付きの光学ユニットを携帯電話機等の光学機器に搭載した様子を模式的に示す説明図である。
 図1に示す光学ユニット100(振れ補正機能付き光学ユニット)は、カメラ付き携帯電話機等の光学機器1000に用いられる薄型カメラであって、光学機器1000のシャーシ2000(機器本体)に支持された状態で搭載される。かかる光学ユニット100では、撮影時に光学機器1000に手振れ等の振れが発生すると、撮像画像に乱れが発生する。そこで、本形態の光学ユニット100には、後述するように、撮像ユニット1を備えた光学モジュール10を固定体20内で揺動可能に支持するとともに、光学ユニット100に搭載したジャイロスコープ、あるいは光学機器1000の本体側に搭載したジャイロスコープ等の振れ検出センサによって手振れを検出した結果に基づいて、撮像ユニット1を揺動させる振れ補正用駆動機構(図1では図示せず)が設けられている。また、光学ユニット100には、撮像ユニット1や振れ補正用駆動機構への給電等行うためのフレキシブル配線基板1900が引き出されており、かかるフレキシブル配線基板1900は、光学機器1000の本体側に設けられた上位の制御部等に電気的に接続されている。また、フレキシブル配線基板1900は、撮像ユニット1から信号を出力する機能も担っている。本形態において、光軸Lの方向からみたとき、レンズ1aは円形であるが、光学モジュール10は角形である。
 (光学ユニット100の概略構成)
 図2は、本発明を適用した振れ補正機能付きの光学ユニット100の外観等を示す斜視図であり、図2(a)、(b)は、光学ユニットを被写体側からみたときの斜視図、および光学ユニットの分解斜視図である。図3は、本発明を適用した振れ補正機能付きの光学ユニット100の断面構成を示す説明図であり、図3(a)、(b)は、光学ユニットのXZ断面図、および光学ユニットのYZ断面図である。図4は、本発明を適用した振れ補正機能付きの光学ユニット100をさらに細かく分解したときの分解斜視図である。
 図2、図3および図4において、本形態の光学ユニット100は、固定体20と、光学モジュール10と、光学モジュール10が固定体20に対して変位可能に支持された状態とするジンバル機構30と、光学モジュール10と固定体20との間で光学モジュール10を固定体20に対して相対変位させる磁気駆動力を発生させる振れ補正用駆動機構500とを有している。
 固定体20は上ケース1200を備えており、上ケース1200は、光学モジュール10の周りを囲む角筒状胴部1210(胴部)と、角筒状胴部1210のZ軸方向の他方側-Zの端部から径方向内側に張り出した矩形枠状の端板部1220とを備えている。端板部1220には開口部1221が形成されている。上ケース1200において、角筒状胴部1210は、被写体側(光軸Lが延在している側)とは反対側(+Z側)で径方向外側に広がる矩形枠状のフランジ部1218と、矩形枠状のフランジ部1218の外縁からZ軸方向の一方側+Zに延在した角筒部1219とを有している。
 (振れ補正用駆動機構500の構成)
 振れ補正用駆動機構500は、板状の磁石1520とコイル1560とを利用した磁気駆動機構である。ここで、コイル1560は、光学モジュール10に保持され、磁石1520は、上ケース1200の角筒状胴部1210の4つの側板部1211の内面に保持されている。本形態において、磁石1520は、外面側および内面側が異なる極に着磁されている。また、磁石1520は、光軸方向に2つに分割されており、コイル1560の側に位置する磁極が異なるように着磁されている。このため、コイル1560は、上下の長辺部分が有効辺として利用される。なお、4つの磁石1520は、外面側および内面側に対する着磁パターンが同一である。このため、周方向で隣り合う磁石1520同士が吸着し合うことがないので、組み立て等が容易である。
 ここで、上ケース1200は磁性材料から構成されており、磁石1520に対するヨークとして機能する。また、上ケース1200の端板部1220には、光軸L方向からみたとき磁石1520のコイル1560と対向する面より径方向外側に開口縁が位置する開口部1221が形成されているため、光軸L方向の前側において磁石1520の磁力線が上ケース1200(ヨーク)の端板部1220の側に向かうことを抑制することができる。
 (光学モジュール10の構成)
 光学モジュール10は、撮像ユニット1と、撮像ユニット1のレンズ1a(光学部品)を保持するホルダ1110と、ホルダ1110のZ軸方向の一方側+Zの端部に固定された回路モジュール1090とを有している。
 ホルダ1110は、光学モジュール10の外周部分を構成しており、概ね、レンズ1aを保持する筒状の光学部品保持部1120と、光学部品保持部1120のZ軸方向の一方側+Zの端部で拡径する肉厚のフランジ部1130とを有している。ホルダ1110には、光学部品保持部1120およびフランジ部1130を貫通する貫通穴1111が形成されており、貫通穴1111は、フランジ部1130の内側に位置する部分が、光学部品保持部1120の内側に位置する部分より大径になっている。
 また、ホルダ1110には、光学部品保持部1120の径方向外側には、ジンバル機構30の可動枠32が配置された可動枠配置空間1140と、コイル1560を可動枠配置空間1140の外側で保持するコイル保持部1150とが設けられている。コイル保持部1150は、可動枠配置空間1140の径方向外側でフランジ部1130の外縁からZ軸方向の他方側-Zに向けて起立した部分からなり、周方向の4個所に形成されている。コイル保持部1150は、フランジ部1130の外縁からZ軸方向の他方側-Zに向けて起立した板状部1151と、板状部1151から径方向外側に突出した凸部1152からなる。ここで、コイル1560は、空芯コイルであり、開口部に凸部1152が嵌った状態で、コイル保持部1150に接着されている。この状態で、凸部1152は、コイル1560の外面(磁石1520と対向する面)から一部が突出している。
 このように構成した光学モジュール10において、光学モジュール10のZ軸方向の一方側+Zの端部(回路モジュール1090のZ軸方向の一方側+Zの端部)にはフレキシブル配線基板1900が接続されている。フレキシブル配線基板1900は、Y軸方向に沿って延在し、光学ユニット100の外部まで引き出されている。光学ユニット100の外部において、フレキシブル配線基板1900の端部にはコネクタ1990が接続されており、コネクタ1990およびフレキシブル配線基板1900を介してコイル1560への給電が行われる。また、撮像素子1bでの撮像結果は、フレキシブル配線基板1900およびコネクタ1990を介して出力される。
 (固定体20の詳細構成)
 固定体20は、上ケース1200のZ軸方向の一方側+Zを覆う矩形の下ケース1400を有している。下ケース1400は、矩形の底板部1420と、底板部1420の4つの角からZ軸方向の他方側-Zに向けて突出した柱状部1410とを備えており、下ケース1400を覆うように上ケース1200を被せると、上ケース1200のフランジ部1218が柱状部1410に当接する。従って、フランジ部1218と柱状部1410とをネジによって止めることにより、上ケース1200と下ケース1400とを固定することができる。なお、下ケース1400において、X軸方向の一方側+XおよびY軸方向の他方側-Yには側板部1440が設けられている。
 また、固定体20は、Z軸方向の他方側-Zにカバー1600および板状ストッパ1700を有している。カバー1600は、非磁性の金属板であり、上ケース1200の端板部1220のZ軸方向の他方側-Zの面に重なる矩形枠状の前板部1610と、前板部1610の内縁から上ケース1200の開口部1221を通ってZ軸方向の一方側+Z(光軸方向の後側)に向けて突出して光学モジュール10のZ軸方向の一方側+Zの端部の周りを囲む角筒状の筒部1620と、筒部1620のZ軸方向の一方側+Zの端部から径方向内側に張り出した矩形枠状の後板部1630とを有している。
 また、固定体20は、カバー1600の前板部1610に固定された板状ストッパ1700を有しており、板状ストッパ1700は、光学モジュール10のZ軸方向の他方側-Zの端部の周りを囲んでいる。より具体的には、板状ストッパ1700の中央には、光学モジュール10のZ軸方向の他方側-Zの端部が貫通した窓1710が形成されており、かかる窓1710の内径寸法は、光学モジュール10のZ軸方向の他方側-Zの端部の外径寸法より大である。従って、光学モジュール10のX軸方向における可動範囲およびY軸方向における可動範囲は、板状ストッパ1700によって規定されている。
 (フレキシブル配線基板1900の構成)
 本形態の光学ユニット100において、下ケース1400の底板部1420には、開口部1421が形成されており、光学モジュール10のZ軸方向の一方側+Zの端部に接続されたフレキシブル配線基板1900は、開口部1421を介して光学ユニット100の外部に引き出されている。
 ここで、フレキシブル配線基板1900は、光学モジュール10に対してZ軸方向の一方側+Zの端部に接続された後、まず、Y軸方向(第1方向)の一方側+Yに引き出され、その後、下ケース1400の底板部1420の開口部1421から外部に引き出されて、さらに、Y軸方向の一方側+Yに延在している。その間、フレキシブル配線基板1900には、光学モジュール10に対してZ軸方向の一方側+Zで重なる部分に対してY軸方向の一方側+Yの位置でY軸方向の他方側-Yに向けて円弧状に折り曲げられた第1湾曲部1910と、第1湾曲部1910からY軸方向の他方側-Yに延在する帯状部1930と、帯状部1930において光学モジュール10に対してZ軸方向の一方側+Zで重なる部分に対してY軸方向の他方側-Yに位置する端部でY軸方向の一方側+Yに向けて円弧状に折り曲げられた第2湾曲部1920とが設けられている。ここで、第1湾曲部1910と第2湾曲部1920とは同一の曲率半径をもって湾曲している。
 また、フレキシブル配線基板1900は、第1湾曲部1910、帯状部1930および第2湾曲部1920は、Y軸方向に沿って延在するスリット1950によって、X軸方向(第2方向)において2つに分岐されている。
 (ジンバル機構30の構成)
 図5は、本発明を適用した振れ補正機能付きの光学ユニット100のジンバル機構等の斜視図であり、図5(a)、(b)、(c)、(d)は、ホルダにジンバル機構を設けた状態の斜視図、ホルダから可動枠や固定体側矩形枠を分離させた状態の斜視図、ホルダから固定体側矩形枠を分離させた状態の斜視図、および固定体側矩形枠の第1角部の斜視図である。図6は、本発明を適用した振れ補正機能付きの光学ユニット100のジンバル機構等の分解斜視図である。図7は、本発明を適用した振れ補正機能付きの光学ユニット100のジンバル機構に用いた部材の平面構成を示す説明図であり、図7(a)、(b)は、受け部を備えた板状部材と可動枠との平面的な位置関係を示す説明図、および受け部を備えた板状部材を可動枠から外した状態の平面的な構成を示す説明図である。なお、図7では、図面に向かって左側から右側に向かってホルダ、可動枠および固定体側矩形枠を並べて示してある。
 本形態の光学ユニット100において、手振れを補正するには、光学モジュール10を光軸L方向に交差する第1軸線L1に揺動可能に支持するとともに、光学モジュール10を光軸L方向および第1軸線L1に交差する第2軸線L2周りに揺動可能に支持する必要があるため、光学モジュール10と固定体20との間には、図5~図7を参照して以下に説明するジンバル機構30が構成されている。
 本形態では、図5~図7に示すジンバル機構30を構成するにあたって、光学モジュール10のホルダ1110、矩形の可動枠32、および上ケース1200(固定体20)に溶接や接着等により固定された矩形枠25(固定体側矩形枠)を用いる。
 本形態において、可動枠32は、光軸L周りに第1角部321、第2角部322、第3角部323および第4角部324を有しており、第1角部321と第2角部322との間、第2角部322と第3角部323との間、第3角部323と第4角部324との間、および第4角部324と第1角部321との間に第1連結部326(第1辺部)、第2連結部327(第2辺部)、第3連結部328(第3辺部)および第4連結部329(第4辺部)を有している。
 ここで、可動枠32の第1角部321、第2角部322、第3角部323および第4角部324の内側には金属製の球体38が溶接等によって固定されており、かかる球体38は、径方向内側に半球状の凸面を向ける突部38a、38bを構成している。従って、複数の突部38a、38bはいずれも、光軸Lに交差する同一平面内(XY面内)に位置している。
 本形態において、第1連結部326、第2連結部327、第3連結部328および第4連結部329は、各々の延在方向およびZ軸方向に対して直交する方向に湾曲した蛇行部326a、327a、328a、329aを有している。
 また、上ケース1200(固定体20)の端板部1220にはカバー1600が固定されているとともに、カバー1600の後板部1630のZ軸方向の一方側+Zの面には、溶接や接着等により矩形枠25が固定されている。矩形枠25は、光軸L周りに第1角部251、第2角部252、第3角部253および第4角部254を有しており、第1角部251と第2角部252との間、第2角部252と第3角部253との間、第3角部253と第4角部254との間、および第4角部254と第1角部251との間に第1辺部256、第2辺部257、第3辺部258および第4辺部259を有している。
 ここで、第1辺部256および第1連結部326は、X軸方向の一方側+XでY軸方向に延在し、第3辺部258および第3連結部328は、X軸方向の他方側-XでY軸方向に延在している。また、第2辺部257および第2連結部327は、Y軸方向の一方側+YでX軸方向に延在し、第4辺部259および第4連結部329は、Y軸方向の他方側-YでX軸方向に延在している。従って、第1角部251、321は、X軸方向の一方側+XかつY軸方向の他方側-Yに位置し、第2角部252、322は、X軸方向の一方側+XかつY軸方向の一方側+Yに位置し、第3角部253、323は、X軸方向の他方側-XかつY軸方向の一方側+Yに位置し、第4角部254、324は、X軸方向の他方側-XかつY軸方向の他方側-Yに位置している。
 また、矩形枠25は、第1角部251および第3角部253(光軸L方向の一方側)からZ軸方向の一方側+Z(光軸L方向の他方側)に突出した支持板部255を有している。本形態において、支持板部255は、周方向の両脇で対向する壁面255a、255bを有しており、壁面255a、255bの間は、径方向外側に向かって開口する凹部になっている。また、壁面255a、255bの間は、径方向内側が壁面255dによって塞がれている。
 ここで、壁面255a、255bの間には、L字形状に折り曲げられた板状部材33が固定されており、板状部材33は、Z軸方向において、コイル保持部1150と同じ高さ位置にある。本形態において、板状部材33は、Z軸方向に延在する第1板部331と、第1板部331のZ軸方向の一方側+Zの端部で径方向外側に向けて折れ曲がった第2板部332とを有しており、第1板部331が矩形枠25に形成された支持板部255の壁面255dおよび壁面255a、255bに固定されている。従って、矩形枠25の第1角部251および第3角部253には、板状部材33の第2板部332と、支持板部255の壁面255dおよび壁面255a、255bと、支持板部255の壁面255cによって周囲が囲まれて径方向外側に向けて開口する凹部が形成され、かかる凹部の径方向内側に板状部材33の第1板部331が位置する。本形態では、第1板部331の径方向外側の面には半球状に凹んだ受け部280が形成されている。
 また、光学モジュール10に用いたホルダ1110において、Z軸方向の一方側+Z(光軸L方向の他方側)からZ軸方向の他方側-Z(光軸L方向の一方側)に向けて突出した光学部品保持部1120の外周側において、X軸方向の一方側+XかつY軸方向の一方側+Y、およびX軸方向の他方側-XかつY軸方向の他方側-Yには凹部1160が形成されており、Z軸方向において、凹部1160は、コイル保持部1150と同じ高さ位置にある。
 凹部1160は、両枠が壁面1161、1162で囲まれ、Z軸方向の一方側+Zは壁面1163で塞がれている。また、凹部1160の径方向内側は、光学部品保持部1120の外面で塞がれている。
 ここで、凹部1160の内側には、L字形状に折り曲げられた板状部材34が固定されており、板状部材34は、Z軸方向において、コイル保持部1150と同じ高さ位置にある。本形態において、板状部材34は、Z軸方向に延在する第1板部341と、第1板部341のZ軸方向の他方側-Zの端部で径方向外側に向けて折れ曲がった第2板部342とを有しており、第1板部341が凹部1160の壁面1161、1162、および光学部品保持部1120の外面に固定されている。従って、ホルダ1110には、ホルダ1110の壁面1161、1162、1163と、板状部材34の第2板部342とによって周囲が囲まれて径方向外側に向けて開口する凹部が形成され、かかる凹部の径方向内側に板状部材34の第1板部341が位置する。本形態では、第1板部341の径方向外側の面には半球状に凹んだ受け部480が形成されている。
 このように構成した矩形枠25、可動枠32、およびホルダ1110を用いて、光学モジュール10を光軸L方向に交差する第1軸線L1周りに揺動可能に支持するとともに、光学モジュール10を光軸L方向および第1軸線L1に交差する第2軸線L2周りに揺動可能に支持する。
 より具体的には、可動枠32の第1角部321と矩形枠25の第1角部251との揺動支持部、および可動枠32の第3角部323と矩形枠25の第3角部253との揺動支持部では、矩形枠25に設けた板状部材33が可動体32の第1角部321および第3角部323の内側に位置することにより、突部38aが受け部280で支持される。その結果、可動枠32において第1軸線L1上に位置する第1角部321および第3角部323が矩形枠25(固定体20)の第1角部251および第3角部253に揺動可能に支持される。
 より具体的には、可動枠32の第2角部322とホルダ1110との揺動支持部、および可動枠32の第4角部324とホルダ1110との揺動支持部では、ホルダ1110に設けた板状部材34が、可動枠32の第2角部322および第4角部324の内側に位置することにより、突部38bが受け部480で支持される。その結果、可動枠32において第2軸線L2上に位置する第2角部322および第4角部324は、ホルダ1110(光学モジュール10)を揺動可能に支持する。
 このようにして、光学モジュール10は、ジンバル機構30に用いた可動枠32を介して、固定体20に第1軸線L1周りに揺動可能に支持されるとともに、第2軸線L2周りに揺動可能に支持される。また、可動枠32および板状部材33、34はいずれも、コイル保持部1150と同じ高さ位置にある。このため、光軸L方向に対して直交する方向からみたとき、ジンバル機構30は、振れ補正用駆動機構500と重なる位置に設けられている。特に本形態では、光軸L方向に対して直交する方向からみたとき、ジンバル機構30は、振れ補正用駆動機構500のZ軸方向の中心と重なる位置に設けられている。
 ここで、可動枠32は、バネ性を有する金属材料等で構成されており、光学モジュール10の自重では下方に撓まないが、外部から衝撃が加わった際、衝撃を吸収可能なバネ性を有している。また、可動枠32は、第1連結部326、第2連結部327、第3連結部328および第4連結部329が各々、内側および外側に弾性変形可能である。このため、第1角部321、第2角部322、第3角部323および第4角部324のいずれにおいても、第1連結部326、第2連結部327、第3連結部328および第4連結部329の弾性によって、突部38a、38bと受け部280、480とが弾性をもって接している。従って、突部38a、38bと受け部280、480との間にガタつきが発生しない。
 (板状バネ70の構成)
 本形態の光学モジュール10は、光学モジュール10と固定体20とに接続して、振れ補正用駆動機構500が停止状態にあるときの光学モジュール10の姿勢を規定する板状バネ70を有している。本形態において、板状バネ70は、金属板を所定形状に加工したバネ部材であり、矩形枠状の固定体側連結部71と、円環状の可動体側連結部72と、固定体側連結部71と可動体側連結部72とを連結する板バネ部73とを有している。本形態において、板バネ部73は、固定体側連結部71の角部分から周方向の一方側から他方側に折り返しながら可動体側連結部72まで延在している。
 ここで、固定体側連結部71は、矩形枠25のZ軸方向の他方側-Zの面に固定され、可動体側連結部72は、ホルダ1110の光学部品保持部1120のZ軸方向の他方側-Zの端面1121に溶接や接着等により固定されている。本形態において、光学部品保持部1120のZ軸方向の他方側-Zの端面1121には、内縁に沿って円環状の凸部1123が形成されており、かかる凸部1123の径方向外側に可動体側連結部72が嵌った状態にある。
 ここで、板状バネ70も、光軸L方向に対して直交する方向からみたとき、振れ補正用駆動機構500と重なる位置に設けられている。但し、光軸L方向に対して直交する方向からみたとき、ジンバル機構30は、振れ補正用駆動機構500のZ軸方向の中心と重なる位置に設けられているのに対して、板状バネ70は、振れ補正用駆動機構500のZ軸方向の中心と重なる位置よりZ軸方向の他方側-Zに位置する。従って、光軸L方向に対して直交する方向からみたとき、ジンバル機構30は、板状バネ70より、振れ補正用駆動機構500の光軸L方向の中央位置に近い位置に設けられている。
 (フォトリフレクタ590の構成)
 図3(b)に示すように、本形態の光学ユニット100では、フレキシブル配線基板1900のうち、光学モジュール10のZ軸方向の一方側+Zで重なる部分には、Z軸方向の一方側+Zに向けてフォトリフレクタ590が実装されている。また、下ケース1400の底板部1420のZ軸方向の他方側-Zの面には、フォトリフレクタ590と対向する位置に反射板1490が形成されている。本形態において、反射板1490は、ブロック状の金属部品であり、Z軸方向の寸法(厚さ)が大である。従って、フォトリフレクタ590と反射板1490との距離が短いので、検出感度が高い。
 (振れ補正用駆動機構500等の構成および基本動作)
 本形態の光学ユニット100において、図1に示す光学機器1000が振れると、かかる振れはジャイロスコープ等によって検出され、制御用IC(図示せず)は、振れ補正用駆動機構500を制御する。すなわち、ジャイロスコープで検出した振れを打ち消すような駆動電流を空芯コイル560に供給する。その際、4つの空芯コイル560のうちの一部に通電し、他の空芯コイル560には通電しない。または、4つの空芯コイル560の全てに通電するが、4つの空芯コイル560に供給する電流バランスを制御する。その結果、光学モジュール10は、第1軸線L1周りまたは第2軸線L2周りに揺動し、手振れが補正される。あるいは、光学モジュール10は、第1軸線L1周りに揺動するとともに、第2軸線L2周りに揺動し、手振れが補正される。その際、第2フォトリフレクタ590は、光学モジュール10との距離(変位)を検出し、振れ補正用駆動機構500は、フォトリフレクタ590での検出結果に基づいて制御される。
 (本形態の主な効果)
 以上説明したように、本形態の光学ユニット100では、光学モジュール10と固定体20の角筒状胴部1210との間に矩形の可動枠32を配置し、かかる可動枠32の第1角部321および第3角部323が固定体20に揺動可能に支持された構造とし、可動枠32の第2角部322および第4角部324が光学モジュール10を揺動可能に支持している構造としてある。このため、ジンバル機構30によって、光学モジュール10を固定体20に対して揺動可能に支持した場合でも、光学モジュール10の側面と固定体20の側面との間のうち、可動枠32の第1連結部326、第2連結部327、第3連結部328および第4連結部329の近傍に振れ補正用駆動機構500等を配置するスペースを確保することができる。
 また、本形態では、光軸L方向に対して直交する方向からみたとき、ジンバル機構30が振れ補正用駆動機構500と重なる位置に設けられている。このため、光学モジュール10を揺動させた際、光学モジュール10においてコイル1560や磁石1520が配置された部分の変位が小さいので、コイル1560と磁石1520とを近接させてもコイル1560と磁石1520とが接触しにくい。それ故、コイル1560と磁石1520とを近接させることができるので、大きな駆動力を得ることができる。また、ジンバル機構30の場合、駆動を停止した際、光学モジュール10を元の姿勢に戻す力が小さいか、あるいは光学モジュール10を元の姿勢に戻す力がないが、本形態では、光学モジュール10と固定体20とに板状バネ70を接続したため、駆動を停止した際、光学モジュール10を確実に元の姿勢に戻すことができる。また、光軸L方向に対して直交する方向からみたとき、板状バネ70は振れ補正用駆動機構500と重なる位置に設けられている。このため、光学モジュール10を揺動させた際、光学モジュール10において板状バネ70が配置された部分の変位が小さいので、板状バネ70の変形が小さい。それ故、板状バネ70による抗力が小さいので、光学モジュール10を揺動させる際、光学モジュール10に大きな揺動力を加えることができる。また、板状バネ70の変形が小さいので、板状バネ70の構成を簡素化することができる。
 また、光軸L方向に対して直交する方向からみたとき、ジンバル機構30は、板状バネ70より、振れ補正用駆動機構500の光軸L方向の中央位置に近い位置に設けられている。このため、光学モジュール10を揺動させた際、光学モジュール10においてコイル1560や磁石1520が配置された部分の変位を小さくすることができる。それ故、コイル1560と磁石1520とを近接させることができるので、大きな駆動力を得ることができる。
 また、固定体20は、板状バネ70が接続された矩形枠25(固定体側矩形枠)を利用してジンバル機構30を構成するので、組み立てを行いやすいとともに、部品点数を削減することができる。
 また、コイル1560は、光学モジュール10に保持され、磁石1520は、固定体20の角筒状胴部1210の内面に保持されている。このため、磁石1520より軽量なコイル1560を光学モジュール10に設けるので、振れ補正のための駆動電流が小さく済むとともに、振れ補正の応答性を向上することができる。
 さらに、光学モジュール10において、ホルダ1110には、光学部品保持部1120と、光学部品保持部1120の径方向外側で可動枠32が配置される可動枠配置空間1140と、コイル1560を可動枠配置空間1140の外側で保持するコイル保持部1150とが設けられている。このため、光軸L方向からみたとき、ホルダ1110の外形より内側にジンバル機構30を設けることができる。また、コイル1560は空芯コイルであり、コイル保持部1150は、コイル1560の開口部に嵌る凸部1152を有している。従って、コイル1560を容易かつ確実に所定位置に設けることができる。また、凸部1152は、コイル1560の磁石1520に対向する面から磁石1520に向けて突出している。それ故、衝撃等によって、光学モジュール10が揺動した場合や光学モジュール10が光軸L方向に直交する方向に変位した場合でも、コイル1560が磁石1520に接触しない。それ故、コイル1560の損傷を防止することができる。
 また、コイル保持部1150は、可動枠32の第1連結部326、第2連結部327、第3連結部328および第4連結部329の中間位置の径方向外側に設けられている。従って、可動枠32の第1角部321、第2角部322、第3角部323および第4角部324からずれた角度位置にコイル保持部1150を設けるので、光軸L方向からみたとき、ホルダ1110の外形を小さくすることができる。
 また、上ケース1200の端板部1220には、光軸L方向からみたとき磁石1520のコイル1560と対向する面より径方向外側に開口縁が位置する開口部1221が形成されているため、光軸L方向の前側において磁石1520の磁力線が上ケース1200(ヨーク)の端板部1220の側に向かうことを抑制することができる。それ故、コイル1560に鎖交する磁界の強度を大とすることができる。
 また、上ケース1200の端板部1220には非磁性のカバー1600が固定され、カバー1600は、端板部1220に重なる前板部1610の内縁から上ケース1200の開口部1221を通って光軸L方向の後側に向けて突出して光学モジュール10の光軸L方向の前側端部の周りを囲む筒部1620を有している。従って、塵等が内部に侵入することを抑制することができる。また、カバー1600は非磁性であるため、カバー1600を設けても、磁石1520の磁力線が余計な方向に向かうことを抑制することができる。それ故、コイル1560に鎖交する磁界の強度を大とすることができる。
 また、カバー1600の前板部1610には、光軸L方向の前側からみたときに光学モジュール10の光軸L方向の前側端部の周りを囲む板状ストッパ1700が固定されている。従って、衝撃等によって、光学モジュール10が揺動した場合や光学モジュール10が光軸方向に直交する方向に変位した場合でも、その量を板状ストッパ1700によって制限することができる。また、板状ストッパ1700は、光学モジュール10の光軸L方向の前側端部との当接によって光学モジュール10の変位を制限するため、光学モジュール10の揺動中心から離間している。このため、コイル1560と磁石1520との当接等によって光学モジュール10の変位を制限する場合に比して、部品の取り付け精度等の影響を受けにくいので、変位許容量を精度よく設定することができる。
 また、光学モジュール10に接続されたフレキシブル配線基板1900は、Y方向に沿って延在する部分の途中に円弧状に折り曲げられた第1湾曲部1910および第2湾曲部1920を備えている。光学モジュール10がY方向に揺動しても、フレキシブル配線基板1900が光学モジュール10に大きな抗力を加えない。また、第1湾曲部1910および第2湾曲部1920は逆向きで湾曲し、しかも、第1湾曲部1910と第2湾曲部1920とは同一の曲率半径をもって湾曲している。従って、光学モジュール10がY方向に揺動した際、第1湾曲部1910と第2湾曲部1920とにおいて、光学モジュール10に加える抗力を相殺することができる。また、フレキシブル配線基板1900は、第1湾曲部1910、帯状部1930および第2湾曲部1920は、Y方向(第1方向)に沿って延在するスリット1950によって、X方向(第2方向)において2つに分岐されている。従って、光学モジュール10がX方向に揺動しても、フレキシブル配線基板1900が光学モジュール10に大きな抗力を加えない。
 また、ジンバル機構30では、突部38a、38bを凹状の受け部280、480が支持している構造であるため、軸体を介して揺動可能にした構成と比較して組み立て工程を簡素化することができる。しかも、突部38a、38bは、受け部280、480側に位置する先端面が半球状であるため、可動枠32や光学モジュール10が揺動していずれの姿勢になったときでも、突部38aと受け部280、480との摺動がスムーズである。また、可動枠32の弾性によって、突部38a、38bと受け部280、480とが弾性をもって接している。従って、突部38a、38bと受け部280、480との間でガタツキが発生しにくい。
 また、複数の突部38a、38bはいずれも、可動枠32の側に設けられている。また、複数の突部38a、38bはいずれも、光軸Lに交差する同一平面内に位置している。従って、ジンバル機構30の構成を簡素化することができる。
 また、受け部280、480は各々、固定体20やホルダ1110とは別体の板状部材33、34に形成されている。従って、固定体20や光学モジュール10のホルダ1110の構造や材質にかかわらず、受け部280、480を突部38a、38bとの摺動性や耐久性に優れた構造とすることができる。
 また、可動枠32の第1角部321、および第3角部323に設けられた突部38aは、固定体20側の壁面255a、255b、255cおよび板状部材33の第2板部332(壁面)によって周りが囲まれている。また、可動枠32の第2角部322、および第4角部324に設けられた突部38bは、光学モジュール側の壁面1161、1162、1163および板状部材34の第2板部342(壁面)によって周りが囲まれている。従って、衝撃が加わっても、突部38a、38bが受け部280、480から外れにくい。
 [光学ユニット100の他の構成例]
 上記実施の形態では、カメラ付き携帯電話機に用いる光学ユニット100に本発明を適用した例を説明したが、薄型のデジタルカメラ等に用いる光学ユニット100に本発明を適用してもよい。また、本発明を適用した振れ補正機能付きの光学ユニット100は、携帯電話機やデジタルカメラ等の他、冷蔵庫等、一定間隔で振動を有する装置内に固定し、遠隔操作可能にしておくことで、外出先、たとえば買い物の際に、冷蔵庫内部の情報を得ることができるサービスに用いることもできる。かかるサービスでは、姿勢安定化装置付きのカメラシステムであるため、冷蔵庫の振動があっても安定な画像を送信可能である。また、本装置を児童、学生のかばん、ランドセルあるいは帽子等の、通学時に装着するデバイスに固定してもよい。この場合、一定間隔で、周囲の様子を撮影し、あらかじめ定めたサーバへ画像を転送すると、この画像を保護者等が、遠隔地において観察することで、子供の安全を確保することができる。かかる用途では、カメラを意識することなく移動時の振動があっても鮮明な画像を撮影することができる。また、カメラモジュールのほかにGPSを搭載すれば、対象者の位置を同時に取得することも可能となり、万が一の事故の発生時には、場所と状況の確認が瞬時に行える。さらに、本発明を適用した振れ補正機能付き光学ユニット100を自動車において前方が撮影可能な位置に搭載すれば、ドライブレコーダーとして用いることができる。また、本発明を適用した振れ補正機能付き光学ユニット100を自動車において前方が撮影可能な位置に搭載して、一定間隔で自動的に周辺の画像を撮影し、決められたサーバに自動転送してもよい。また、道路交通情報通信システム等の渋滞情報と連動させて、この画像を配信することで、渋滞の状況をより詳細に提供することができる。かかるサービスによれば、自動車搭載のドライブレコーダーと同様に事故発生時等の状況を、意図せずに通りがかった第三者が記録し状況の検分に役立てることも可能である。また、自動車の振動に影響されることなく鮮明な画像を取得できる。かかる用途の場合、電源をオンにすると、制御部に指令信号が出力され、かかる指令信号に基づいて、振れ制御が開始される。
 また、本発明を適用した振れ補正機能付きの光学ユニット100は、レーザポインタ、携帯用や車載用の投射表示装置や直視型表示装置等、光を出射する光学機器の振れ補正に適用してもよい。また、天体望遠鏡システムあるいは双眼鏡システム等、高倍率での観察において三脚等の補助固定装置を用いることなく観察するのに用いてもよい。また、狙撃用のライフル、あるいは戦車等の砲筒とすることで、トリガ時の振動に対して姿勢の安定化が図れるので、命中精度を高めることができる。

Claims (24)

  1.  光学モジュールと、
     該光学モジュールの周りを囲む胴部を備えた固定体と、
     前記光学モジュールを光軸方向に交差する第1軸線周りに揺動可能に支持するとともに、前記光学モジュールを前記光軸方向および前記第1軸線に交差する第2軸線周りに揺動可能に支持するジンバル機構と、
     前記光学モジュールの側面と前記胴部の側面との間にコイルおよび磁石を備え、前記光学モジュールを前記第1軸線周りおよび前記第2軸線周りに駆動する振れ補正用駆動機構と、
     前記光学モジュールと前記固定体とに接続して前記振れ補正用駆動機構が停止状態にあるときの前記光学モジュールの姿勢を規定する板状バネと、
     を有し、
     前記光軸方向に対して直交する方向からみたとき、前記ジンバル機構および前記板状バネは、前記振れ補正用駆動機構と重なる位置に設けられていることを特徴とする振れ補正機能付き光学ユニット。
  2.  光軸方向に対して直交する方向からみたとき、前記ジンバル機構は、前記板状バネより、前記振れ補正用駆動機構の光軸方向の中央位置に近い位置に設けられていることを特徴とする請求項1に記載の振れ補正機能付き光学ユニット。
  3.  前記ジンバル機構は、第1角部、該第1角部と隣り合う第2角部、前記第1角部から前記第1軸線方向で離間する第3角部、および前記第2角部から前記第2軸線方向で離間する第4角部を光軸周りに備えた矩形の可動枠を備え、
     前記可動枠の前記第1角部および前記第3角部は、前記固定体に揺動可能に支持され、
     前記可動枠の前記第2角部および前記第4角部は、前記光学モジュールを揺動可能に支持していることを特徴とする請求項1または2に記載の振れ補正機能付き光学ユニット。
  4.  前記固定体は、前記板状バネが接続された固定体側矩形枠を有し、
     前記可動枠の前記第1角部および前記第3角部は、前記固定体側矩形枠に揺動可能に支持されていることを特徴とする請求項1乃至3の何れか一項に記載の振れ補正機能付き光学ユニット。
  5.  前記コイルは、前記光学モジュールに保持され、
     前記磁石は、前記胴部の内面に保持されていることを特徴とする請求項1乃至4の何れか一項に記載の振れ補正機能付き光学ユニット。
  6.  前記光学モジュールは、光学部品と、該光学部品を保持するホルダと、を有し、
     前記ホルダには、前記光学部品を保持する光学部品保持部と、該光学部品保持部の径方向外側で前記可動枠が配置される可動枠配置空間と、前記振れ補正用駆動機構に用いたコイルを前記可動枠配置空間の外側で保持するコイル保持部と、が設けられていることを特徴とする請求項5に記載の振れ補正機能付き光学ユニット。
  7.  前記コイルは空芯コイルであり、
     前記コイル保持部は、前記コイルの開口部に嵌る凸部を有していることを特徴とする請求項6に記載の振れ補正機能付き光学ユニット。
  8.  前記凸部は、前記コイルの前記磁石に対向する面から当該磁石に向けて突出していることを特徴とする請求項7に記載の振れ補正機能付き光学ユニット。
  9.  前記コイル保持部は、前記第1角部と前記第2角部との中間位置の径方向外側、前記第2角部と前記第3角部との中間位置の径方向外側、前記第3角部と前記第4角部との中間位置の径方向外側、および前記第4角部と前記第1角部との中間位置に径方向外側の各々に設けられていることを特徴とする請求項8に記載の振れ補正機能付き光学ユニット。
  10.  前記固定体は、前記胴部および該胴部の前記光軸方向の前側端部から径方向内側に張り出した枠状の端板部を備えたヨークを有し、
     前記端板部には、光軸方向からみたとき前記磁石の前記コイルと対向する面より径方向外側に開口縁が位置する開口部が形成されていることを特徴とする請求項5乃至9の何れか一項に記載の振れ補正機能付き光学ユニット。
  11.  前記ヨークの前記端板部には非磁性のカバーが固定され、
     前記カバーは、前記端板部の前記光軸方向の前側の面に重なる枠状の前板部と、該前板部の内縁から前記開口部を通って前記光軸方向の後側に向けて突出して前記光学モジュールの前記光軸方向の前側端部の周りを囲む筒部と、を有していることを特徴とする請求項10に記載の振れ補正機能付き光学ユニット。
  12.  前記前板部には、前記光軸方向の前側からみたときに前記光学モジュールの前記前側端部の周りを囲む板状ストッパが固定されていることを特徴とする請求項11に記載の振れ補正機能付き光学ユニット。
  13.  前記光学モジュールの前記光軸方向の後側端部には前記光軸方向に対して直交する第1方向に沿って延在するフレキシブル配線基板が接続されており、
     前記フレキシブル配線基板は、前記光学モジュールに対して前記光軸方向で重なる部分に対して前記第1方向の一方側の位置で当該第1方向の他方側に向けて円弧状に折り曲げられた第1湾曲部と、該第1湾曲部から前記第1方向の前記他方側に延在する帯状部と、該帯状部において前記光学モジュールに対して前記光軸方向で重なる部分に対して前記第1方向の前記他方側に位置する端部で前記第1方向の前記一方側に向けて円弧状に折り曲げられた第2湾曲部と、が設けられ、かつ、前記第1湾曲部、前記帯状部および前記第2湾曲部は、前記第1方向に沿って延在するスリットによって、前記光軸方向および前記第1方向に直交する第2方向において2つに分岐されていることを特徴とする請求項1乃至12の何れか一項に記載の振れ補正機能付き光学ユニット。
  14.  前記ジンバル機構において、
     前記第1角部と前記固定体との間に設けられた揺動支持部、および前記第3角部と前記固定体との間に設けられた揺動支持部は各々、前記可動枠および前記固定体のうちの一方側に設けられた突部と、他方側で当該突部の先端側を受ける凹状の受け部と、を備え、
     前記第2角部と前記光学モジュールとの間に設けられた揺動支持部、および前記第4角部と前記光学モジュールとの間に設けられた揺動支持部は各々、前記可動枠および前記光学モジュールのうちの一方側に設けられた突部と、他方側で当該突部の先端側を受ける凹状の受け部と、を備えていることを特徴とする請求項1乃至13の何れか一項に記載の振れ補正機能付き光学ユニット。
  15.  前記突部は、前記受け部側に位置する先端面が半球状であることを特徴とする請求項14に記載の振れ補正機能付き光学ユニット。
  16.  前記突部は、球体により構成されていることを特徴とする請求項15に記載の振れ補正機能付き光学ユニット。
  17.  前記可動枠は、前記第1角部と前記第2角部とを連結する第1連結部、前記第2角部と前記第3角部とを連結する第2連結部、前記第3角部と前記第4角部とを連結する第3連結部、および前記第4角部と前記第1角部とを連結する第4連結部が弾性変形可能であり、
     前記第1角部、前記第2角部、前記第3角部および前記第4角部のいずれにおいても、
    前記第1連結部、前記第2連結部、前記第3連結部および前記第4連結部の弾性によって、前記突部と前記受け部とが弾性をもって接していることを特徴とする請求項14乃至16の何れか一項に記載の振れ補正機能付き光学ユニット。
  18.  前記第1連結部、前記第2連結部、前記第3連結部、および前記第4連結部は、光軸方向に交差する方向に蛇行する蛇行部を備えていることを特徴とする請求項17に記載の振れ補正機能付き光学ユニット。
  19.  前記複数の突部はいずれも、前記可動枠の側に設けられていることを特徴とする請求項14乃至18の何れか一項に記載の振れ補正機能付き光学ユニット。
  20.  前記複数の突部はいずれも、前記光軸に交差する同一平面内に位置していることを特徴とする請求項19に記載の振れ補正機能付き光学ユニット。
  21.  前記複数の突部はいずれも、前記可動枠の内側に設けられ、
     前記複数の受け部のうち、前記第1角部および前記第3角部に設けられた2つの受け部は、前記固定体側から光軸方向に突出して前記可動枠の内側に位置する部分に形成され、前記第2角部および前記第4角部に設けられた2つの受け部は、前記光学モジュール側から光軸方向に突出して前記可動枠の内側に位置する部分に形成されていることを特徴とする請求項19または20に記載の振れ補正機能付き光学ユニット。
  22.  前記複数の受け部のうち、前記第1角部および前記第3角部に設けられた2つの受け部は、前記可動枠に対して光軸方向の一方側位置から光軸方向の他方側に突出して前記可動枠の内側に位置する部分に形成され、前記第2角部および前記第4角部に設けられた2つの受け部は、前記可動枠に対して光軸方向の他方側位置から光軸方向の一方側に突出して前記可動枠の内側に位置する部分に形成されていることを特徴とする請求項21に記載の振れ補正機能付き光学ユニット。
  23.  前記複数の受け部のうち、前記第1角部および前記第3角部に設けられた2つの受け部は各々、前記固定体側に固定された板状部材に形成され、前記第2角部および前記第4角部に設けられた2つの受け部は各々、前記光学モジュール側に固定された板状部材に形成されていることを特徴とする請求項21または22に記載の振れ補正機能付き光学ユニット。
  24.  前記固定体は、前記複数の突部のうち、前記第1角部および前記第3角部に設けられた2つの突部を各々、両脇から囲む2つの壁面と、前記第1角部および前記第3角部に設けられた2つの突部を各々、前記光軸方向の両側から囲む2つの壁面と、を有し、
     前記光学モジュールは、前記複数の突部のうち、前記第2角部および前記第4角部に設けられた2つの突部を各々、両脇から囲む2つの壁面と、前記第2角部および前記第4角部に設けられた2つの突部を各々、前記光軸方向の両側から囲む2つの壁面と、を有していることを特徴とする請求項14乃至23の何れか一項に記載の振れ補正機能付き光学ユニット。
PCT/JP2014/062727 2013-05-30 2014-05-13 振れ補正機能付き光学ユニット WO2014192538A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157017738A KR102195417B1 (ko) 2013-05-30 2014-05-13 흔들림 보정 기능이 부착된 광학 유닛
US14/763,602 US9891444B2 (en) 2013-05-30 2014-05-13 Optical unit with shake correction function
CN201480004591.8A CN104919366B (zh) 2013-05-30 2014-05-13 带抖动修正功能的光学单元

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013114583A JP6077939B2 (ja) 2013-05-30 2013-05-30 振れ補正機能付き光学ユニット
JP2013-114583 2013-05-30

Publications (1)

Publication Number Publication Date
WO2014192538A1 true WO2014192538A1 (ja) 2014-12-04

Family

ID=51988575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062727 WO2014192538A1 (ja) 2013-05-30 2014-05-13 振れ補正機能付き光学ユニット

Country Status (5)

Country Link
US (1) US9891444B2 (ja)
JP (1) JP6077939B2 (ja)
KR (1) KR102195417B1 (ja)
CN (1) CN104919366B (ja)
WO (1) WO2014192538A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106324941A (zh) * 2015-07-02 2017-01-11 日本电产三协株式会社 带抖动校正功能光学单元
CN106338873A (zh) * 2015-07-08 2017-01-18 日本电产三协株式会社 线圈单元、线圈单元的制造方法以及拍摄用光学装置

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6691001B2 (ja) * 2015-07-02 2020-04-28 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
JP6742824B2 (ja) * 2015-07-14 2020-08-19 日本電産サンキョー株式会社 振れ補正機能付き光学ユニットおよびその製造方法
JP6637756B2 (ja) * 2015-12-21 2020-01-29 日本電産サンキョー株式会社 振れ補正機能付き光学ユニットおよびその製造方法
CN107092066B (zh) * 2016-02-17 2019-08-27 日本电产三协株式会社 带抖动修正功能的光学单元
CN118295098A (zh) * 2016-04-28 2024-07-05 Lg伊诺特有限公司 透镜驱动机构、相机模块和光学装置
JP6677586B2 (ja) * 2016-06-22 2020-04-08 日本電産サンキョー株式会社 コイルユニットおよび撮影用光学装置
JP6989275B2 (ja) * 2017-03-30 2022-01-05 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
JP2018169497A (ja) * 2017-03-30 2018-11-01 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
JP6921579B2 (ja) * 2017-03-30 2021-08-18 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
JP6869771B2 (ja) * 2017-03-30 2021-05-12 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
CN110521201A (zh) * 2017-04-17 2019-11-29 松下知识产权经营株式会社 相机设备、相机系统和程序
JP6883468B2 (ja) * 2017-05-08 2021-06-09 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
JP6997370B2 (ja) * 2017-05-25 2022-01-17 ミツミ電機株式会社 カメラ用アクチュエータ、カメラモジュール、およびカメラ搭載装置
JP6983550B2 (ja) * 2017-06-29 2021-12-17 日本電産サンキョー株式会社 振れ補正機能付き光学ユニットおよび振れ補正機能付き光学ユニットの製造方法
JP2019028112A (ja) * 2017-07-26 2019-02-21 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
CN113311639B (zh) * 2017-09-27 2023-04-07 富士胶片株式会社 可动辅助装置、图像抖动校正装置及摄像装置
CN115145017B (zh) * 2018-01-25 2023-12-22 台湾东电化股份有限公司 光学系统
JP6951980B2 (ja) * 2018-01-29 2021-10-20 日本電産サンキョー株式会社 重心位置調整部材を備える振れ補正機能付き光学ユニット、および、その重心位置調整部材の固定方法
JP7007215B2 (ja) * 2018-02-27 2022-01-24 日本電産サンキョー株式会社 振れ補正機構付きレーザポインタ
WO2019221038A1 (ja) * 2018-05-15 2019-11-21 日本電産サンキョー株式会社 光学ユニット
JP7057210B2 (ja) * 2018-05-15 2022-04-19 日本電産サンキョー株式会社 光学ユニット
JP2019204033A (ja) * 2018-05-24 2019-11-28 日本電産サンキョー株式会社 振れ補正機能付き光学装置
CN110784625B (zh) * 2018-07-25 2022-04-15 台湾东电化股份有限公司 感光组件驱动机构
US11442287B2 (en) * 2018-11-30 2022-09-13 Nidec Sankyo Corporation Optical unit
JP7269718B2 (ja) * 2018-11-30 2023-05-09 ニデックインスツルメンツ株式会社 光学ユニット
JP7323283B2 (ja) * 2018-11-30 2023-08-08 ニデックインスツルメンツ株式会社 光学ユニット
JP7235558B2 (ja) 2019-03-28 2023-03-08 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
JP7290457B2 (ja) * 2019-04-24 2023-06-13 ニデックインスツルメンツ株式会社 振れ補正機能付き光学ユニット
US20220221734A1 (en) * 2019-05-28 2022-07-14 Lg Innotek Co., Ltd. Camera module
JP7325233B2 (ja) * 2019-06-10 2023-08-14 ニデックインスツルメンツ株式会社 溶接構造体の製造方法および振れ補正機能付き光学ユニット
JP7270473B2 (ja) * 2019-06-14 2023-05-10 ニデックインスツルメンツ株式会社 振れ補正機能付き光学ユニット
JP7267558B2 (ja) 2019-06-14 2023-05-02 ニデックインスツルメンツ株式会社 振れ補正機能付き光学ユニット
JP7325257B2 (ja) * 2019-08-09 2023-08-14 ニデックインスツルメンツ株式会社 振れ補正機能付き光学ユニット
JP7369605B2 (ja) * 2019-11-29 2023-10-26 ニデックインスツルメンツ株式会社 振れ補正機能付き光学ユニット
KR20210090525A (ko) 2020-01-10 2021-07-20 삼성전자주식회사 카메라 모듈 및 그것을 포함하는 전자 장치
JP2021120705A (ja) * 2020-01-30 2021-08-19 日本電産株式会社 振れ補正機能付き光学ユニット
JP7447522B2 (ja) * 2020-02-07 2024-03-12 ニデック株式会社 光学ユニット
JP7447523B2 (ja) * 2020-02-07 2024-03-12 ニデック株式会社 光学ユニット
JP2021139988A (ja) * 2020-03-04 2021-09-16 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
JP7411451B2 (ja) * 2020-03-04 2024-01-11 ニデックインスツルメンツ株式会社 振れ補正機能付き光学ユニット
KR20220015842A (ko) 2020-07-31 2022-02-08 삼성전자주식회사 카메라 모듈 및 이를 포함하는 전자 장치
JP2022057347A (ja) 2020-09-30 2022-04-11 日本電産株式会社 光学ユニット

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139811A (ja) * 2006-11-08 2008-06-19 Nidec Sankyo Corp レンズ駆動装置
JP2011027949A (ja) * 2009-07-24 2011-02-10 Nidec Sankyo Corp 光学ユニット

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4427725B2 (ja) * 2004-03-31 2010-03-10 ソニー株式会社 撮像装置
JP2007093953A (ja) * 2005-09-28 2007-04-12 Ftc:Kk カメラの手振れ補正装置
US8089694B2 (en) * 2007-08-24 2012-01-03 Sony Ericsson Mobile Communications Ab Optical device stabilizer
WO2009133690A1 (ja) * 2008-04-30 2009-11-05 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット及び撮影用光学装置
JP5140572B2 (ja) 2008-04-30 2013-02-06 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
WO2010044223A1 (ja) * 2008-10-14 2010-04-22 日本電産サンキョー株式会社 撮影用光学装置
US8279289B2 (en) * 2008-10-14 2012-10-02 Nidec Sankyo Corporation Optical unit with shake correcting function
JP2012002973A (ja) * 2010-06-16 2012-01-05 Micro Uintekku Kk 手振れ抑制装置
JP6187933B2 (ja) * 2012-10-01 2017-08-30 鎌倉光機株式会社 像安定化装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139811A (ja) * 2006-11-08 2008-06-19 Nidec Sankyo Corp レンズ駆動装置
JP2011027949A (ja) * 2009-07-24 2011-02-10 Nidec Sankyo Corp 光学ユニット

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106324941A (zh) * 2015-07-02 2017-01-11 日本电产三协株式会社 带抖动校正功能光学单元
CN106324941B (zh) * 2015-07-02 2019-08-27 日本电产三协株式会社 带抖动校正功能光学单元
CN106338873A (zh) * 2015-07-08 2017-01-18 日本电产三协株式会社 线圈单元、线圈单元的制造方法以及拍摄用光学装置
CN106338873B (zh) * 2015-07-08 2019-04-09 日本电产三协株式会社 线圈单元、线圈单元的制造方法以及拍摄用光学装置
TWI700877B (zh) * 2015-07-08 2020-08-01 日商日本電產三協股份有限公司 線圈單元、線圈單元之製造方法、及攝影用光學裝置

Also Published As

Publication number Publication date
JP6077939B2 (ja) 2017-02-08
US9891444B2 (en) 2018-02-13
KR102195417B1 (ko) 2020-12-28
US20160170227A1 (en) 2016-06-16
CN104919366A (zh) 2015-09-16
JP2014235188A (ja) 2014-12-15
CN104919366B (zh) 2017-10-24
KR20160013838A (ko) 2016-02-05

Similar Documents

Publication Publication Date Title
JP6077939B2 (ja) 振れ補正機能付き光学ユニット
JP6077938B2 (ja) 振れ補正機能付き光学ユニット
JP6143622B2 (ja) 振れ補正機能付き光学ユニット
JP6412864B2 (ja) 振れ補正機能付き光学ユニット
JP6284742B2 (ja) 振れ補正機能付き光学ユニット
JP5762087B2 (ja) 振れ補正機能付き光学ユニット
JP5893363B2 (ja) 振れ補正機能付き光学ユニット
JP5848052B2 (ja) 振れ補正機能付き光学ユニット
JP6460745B2 (ja) 振れ補正機能付き光学ユニット
WO2012032989A1 (ja) 振れ補正機能付き光学ユニット
JP6483980B2 (ja) 振れ補正機能付き光学ユニット
JP6486046B2 (ja) 振れ補正機能付き光学ユニット
JP6770119B2 (ja) 振れ補正機能付き光学ユニット
JP5755476B2 (ja) 振れ補正機能付き光学ユニット
JP5519390B2 (ja) 振れ補正機能付き光学ユニット
JP2016061956A (ja) 振れ補正機能付き光学ユニット、および振れ補正機能付き光学ユニットの製造方法
JP5604237B2 (ja) 振れ補正機能付き光学ユニット
JP5752978B2 (ja) 振れ補正機能付き光学ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157017738

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14763602

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804711

Country of ref document: EP

Kind code of ref document: A1