WO2019221038A1 - 光学ユニット - Google Patents

光学ユニット Download PDF

Info

Publication number
WO2019221038A1
WO2019221038A1 PCT/JP2019/018860 JP2019018860W WO2019221038A1 WO 2019221038 A1 WO2019221038 A1 WO 2019221038A1 JP 2019018860 W JP2019018860 W JP 2019018860W WO 2019221038 A1 WO2019221038 A1 WO 2019221038A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical unit
support
extension
optical
movable body
Prior art date
Application number
PCT/JP2019/018860
Other languages
English (en)
French (fr)
Inventor
伸司 南澤
Original Assignee
日本電産サンキョー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産サンキョー株式会社 filed Critical 日本電産サンキョー株式会社
Priority to CN201980031515.9A priority Critical patent/CN112105988B/zh
Priority to US17/053,946 priority patent/US11947253B2/en
Priority to JP2020519611A priority patent/JP7237069B2/ja
Publication of WO2019221038A1 publication Critical patent/WO2019221038A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B5/06Swinging lens about normal to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0023Movement of one or more optical elements for control of motion blur by tilting or inclining one or more optical elements with respect to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils

Definitions

  • the present invention relates to an optical unit with a shake correction function mounted on a mobile phone with a camera.
  • an optical unit described in Patent Document 1 As an optical unit with this type of shake correction function, an optical unit described in Patent Document 1 can be cited.
  • This optical unit has a function of correcting pitching (vertical shake) and yawing (lateral shake).
  • the optical unit 100 is provided with the gimbal mechanism 30 using the corners of the optical module 10 and the corners of the rectangular tubular body 210 of the fixed body 20.
  • the rectangular movable frame 32 is disposed between the rectangular second frame 42 of the optical module 10 and the rectangular frame 25 fixed to the rectangular tubular body 210, and the first corner 321 of the movable frame 32 and The third corner portion 323 facing this is supported by two corresponding corner portions of the rectangular frame 25 so as to be swingable, and the second corner portion 322 of the movable frame 32 and the fourth corner portion 324 facing this.
  • a structure in which the remaining two corners corresponding to the second frame 42 are supported so as to be swingable is employed.
  • a gimbal mechanism as a mechanism for correcting pitching and yawing is arranged so as to surround the entire side surface of a movable body including the optical module. Therefore, there is a problem that miniaturization is hindered in the direction (side surface side) intersecting the optical axis direction.
  • An object of the present invention is to realize downsizing of an optical unit including a shake correction driving mechanism that drives a movable body including an optical module around the first axis and the second axis.
  • an optical unit includes a movable body including an optical module, a fixed body that holds the movable body in a displaceable state, and a first that intersects the optical axis direction of the optical module.
  • a first support portion that supports the movable body so as to be swingable around an axis is provided, and is supported by a member on the fixed body so as to be swingable around a second axis that intersects the optical axis direction and the first axis direction.
  • a gimbal mechanism having a second support portion, and a shake correction drive mechanism for driving the movable body around the first axis and the second axis, and the gimbal mechanism is a subject of the optical module.
  • a gimbal frame portion disposed on one side of the side and the opposite side of the subject, and a first support portion extension portion extending from the gimbal frame portion in the optical axis direction and having the first support portion.
  • Previous Comprising a second support portion extending portion for having the second support portion extends in the direction of the optical axis from the gimbal frame portion, characterized in that.
  • the gimbal frame portion is disposed on one side of the subject side of the optical module and the opposite side of the subject. That is, since the gimbal mechanism does not surround the entire periphery of the side surface of the movable body including the optical module, the first support portion extension portion and the second support portion extension portion exist around the side surface. Therefore, it is possible to reduce the size in the direction (side surface side) intersecting the optical axis direction as compared with the conventional gimbal mechanism.
  • the gimbal mechanism includes a first support portion that supports the movable body so as to be swingable around the first axis, and is fixed around the second axis that intersects the optical axis direction and the first axis direction.
  • this support structure increases the degree of freedom of arrangement of the shake correction drive mechanism that drives the movable body around the first axis and the second axis, thereby increasing the overall size. Without increasing the size of the magnetic circuit, the driving torque can be improved and the power consumption can be reduced.
  • the gimbal frame portion is plate-shaped in the optical unit.
  • the gimbal frame portion has a plate shape, it is possible to reduce the size in the optical axis direction.
  • At least one of the first support portion extension portion and the second support portion extension portion is plate-shaped.
  • the first support portion extension portion and the second support portion extension portion is plate-like, it is further reduced in size in a direction (side surface side) intersecting the optical axis direction. Can be realized.
  • the first support portion is fixed to an inner side of the first support portion extension portion facing the movable body and is in contact with and supported by a member on the movable body side. Is a convex curved surface
  • the second support portion is fixed to the outside of the second support portion extending portion facing the fixed body, and the portion supported by contact with the member on the fixed body is a convex curved surface. It is preferable that
  • the first support portion and the second support portion of the gimbal mechanism are formed by the convex curved surface, the gimbal mechanism, the movable body, and the member on the fixed body side can be assembled. Easy.
  • the movable body further includes an outer portion positioned outside the first support portion extending portion, and the first support portion faces the outer portion.
  • the portion that is fixed to the outside of the extension portion for the support portion and is in contact with and supports the outer portion is a convex curved surface
  • the second support portion faces the fixed body of the extension portion for the second support portion. It is preferable that the portion fixed to the outer side and supported by contact with the member on the fixed body side is a convex curved surface.
  • the first support portion and the second support portion of the gimbal mechanism are formed by the convex curved surface, the gimbal mechanism, the movable body, and the member on the fixed body side can be assembled. Easy.
  • the movable body further includes an outer portion positioned outside the first support portion extending portion, and the outer portion includes a fixed convex portion.
  • the support portion is formed on the outer side of the first support portion extension portion facing the convex portion, the portion that contacts and supports the convex portion is a concave spherical surface, and the second support portion is It is preferable that the portion of the second support extension portion fixed to the outer side facing the fixed body and supported by contacting the member on the fixed body side is a convex curved surface.
  • the first support part of the gimbal mechanism is formed by the concave spherical surface and the second support part is formed by the convex curved surface, the gimbal mechanism, the movable body, and the fixed body side Assembling with other members is easy.
  • the present invention further includes a projecting portion fixed to the member on the movable body side in the optical unit, wherein the first support portion is opposed to the projecting portion of the movable body.
  • the portion formed inside the portion and supporting the convex portion in contact with the convex portion is a concave spherical surface, and the second support portion is fixed to the outside of the second support portion extension portion facing the fixed body.
  • the portion supported in contact with the member on the fixed body side is preferably a convex curved surface.
  • the first support part of the gimbal mechanism is formed by the concave spherical surface and the second support part is formed by the convex curved surface, the gimbal mechanism, the movable body, and the fixed body side Assembling with other members is easy.
  • the extension portion for the first support portion is set to an angle displaced inward so that the extension angle with respect to the gimbal frame portion is in elastic contact with the member on the movable body side.
  • the extension portion for the second support portion is preferably set such that the extension angle with respect to the gimbal frame portion is displaced outward so as to elastically contact the member on the fixed body side.
  • first support portion extension portion and the second support portion extension portion elastically contact the movable body side member and the fixed body side member according to the extension angle, Strong support and smooth swinging of the first support portion and the second support portion can be easily realized.
  • the extension portion for the first support portion is set to an angle displaced outward so that the extension angle with respect to the gimbal frame portion elastically contacts the member on the movable body side.
  • the extension portion for the second support portion is preferably set such that the extension angle with respect to the gimbal frame portion is displaced outward so as to elastically contact the member on the fixed body side.
  • first support portion extension portion and the second support portion extension portion elastically contact the movable body side member and the fixed body side member according to the extension angle, Strong support and smooth swinging of the first support portion and the second support portion can be easily realized.
  • the gimbal frame portion in the optical unit, includes a first extending portion extending in the first axial direction around the optical axis and a second extending in the second axial direction. It is preferable that the extending portion is formed in an X shape.
  • the gimbal frame portion includes the first extending portion extending in the first axial direction around the optical axis and the second extending portion extending in the second axial direction. It is formed in an X shape. As described above, since the gimbal frame portion is X-shaped, the swing of the gimbal mechanism around the first axis and the second axis can be smoothly performed.
  • the gimbal mechanism may be formed of a metal plate, and bend the first extending portion and the second extending portion of the X-shaped gimbal frame portion. It is preferable that an extension part and the extension part for the second support part are formed.
  • the gimbal mechanism is formed of a metal plate, and further, the first support portion extension portion is formed by bending the first extension portion and the second extension portion of the X-shaped gimbal frame portion. And since the extension part for said 2nd support parts is formed, manufacture of a gimbal mechanism is easy.
  • a gap between the second extending portion and the movable body is larger than a gap between the first extending portion and the movable body.
  • the gimbal frame portion is configured so that the height of the tip end portion of the first extension portion in the optical axis direction is lower than the height of the tip end portion of the second extension portion in the optical axis direction. It is preferable that it is formed so as to be in a position close to.
  • the distal end portion of the first extending portion is located closer to the movable body than the distal end portion of the second extending portion, and the object side in the optical axis direction of the first extending portion or A movable region (movable gap) on one side of the opposite side of the subject is widened.
  • the tip of the first extension is located at a lower position in the optical axis direction than the tip of the second extension, and the gimbal frame has a bent shape.
  • the distal end portion of the first extending portion and the distal end portion of the second extending portion are not flush with the movable body. Due to this difference in position, the movable gap of the movable body in the optical axis direction can be easily provided, and further miniaturization in the optical axis direction can be realized.
  • the gimbal frame portion is disposed on a subject side of the optical module, and an opening is formed in a central portion of the gimbal frame portion on the light incident portion side of the optical module. Is preferable.
  • the gimbal frame portion has an opening and is disposed on the subject side of the optical module. Accordingly, it is possible to assemble the movable body including the optical module in a state where the gimbal mechanism is attached to the fixed body side, and thus the assembling work is facilitated.
  • the shake correction drive mechanism has a wiring for supplying power for driving. However, the wiring can be drawn from the opposite side to the subject, and the wiring is simplified.
  • the shake correction drive mechanism is configured by a pair of a coil and a magnet, one of the coil and the magnet is disposed on the fixed body side, and the other is disposed on the movable body side. It is preferable.
  • the shake correction drive mechanism is configured by a pair of a coil and a magnet, and one of the coil and the magnet is disposed on the fixed body side, and the other is disposed on the movable body side.
  • the gimbal mechanism in the optical unit, may be extended to a portion connected to the first support portion extension portion of the gimbal frame portion rather than a surface formed by the gimbal frame portion. It is preferable that a first receding portion for reducing the height in the extending direction of the installation portion is provided.
  • the gimbal mechanism is configured such that a portion of the gimbal frame portion connected to the first support portion extension portion moves in the extension direction.
  • the first retracting portion is provided in the connecting portion of the gimbal frame portion.
  • the movable body is a part corresponding to the first support part extension part and the second support part extension part, and a part along the gimbal frame part. It is preferable that a second receding portion that recedes in the same direction as the first receding portion is provided.
  • the movable body moves in the optical axis direction through the movement of the gimbal frame portion, so that a space for enabling the movement is in the optical axis direction. Necessary for the corresponding area around the movable body.
  • the movable body is a part corresponding to the first support part extension part and the second support part extension part, and the second receding part is located along the gimbal frame part. Is provided. By this second retreating portion, it is possible to reduce a space (a corresponding region in the optical axis direction) for enabling movement in the optical axis direction. As a result, it is possible to reduce the size of the optical unit in the optical axis direction.
  • the movable body has a rectangular shape when viewed from the optical axis direction, and the second receding portion is provided at a corner of the movable body.
  • the corner portion of the movable body When the movable body has the rectangular shape, the corner portion of the movable body often has a structure that moves most in the optical axis direction during shake correction by the shake correction drive mechanism. According to this aspect, since the second retreating portion is provided at the corner of the movable body, the downsizing can be effectively realized.
  • the movable body further includes an intermediate frame body that holds the optical module rotatably around the optical axis and is supported by the first support portion.
  • the optical module can be rotated around the optical axis.
  • the optical module can be moved around an axis other than the first axis and the second axis.
  • the intermediate frame body further includes a flat plate portion disposed on one side of the subject side of the optical module and the opposite side of the subject, and extends from the flat plate portion in the optical axis direction.
  • a side plate portion provided along the first support portion extension portion and the second support portion extension portion, and a portion where the flat plate portion is connected to the side plate portion; It is preferable to include a third retreating part that retreats in the same direction as the part.
  • the intermediate frame moves through the movement of the gimbal frame portion, in other words, the “connected portion” moves in the optical axis direction. Space is required in a corresponding region around the intermediate frame in the optical axis direction.
  • the intermediate frame is provided with the third retracted portion at the connecting portion. By this third retreating portion, it is possible to reduce a space (a corresponding region in the optical axis direction) for enabling movement in the optical axis direction. As a result, it is possible to reduce the size of the optical unit in the optical axis direction.
  • an optical unit including a shake correction drive mechanism that drives a movable body including an optical module around the first axis and the second axis.
  • FIG. 5 is a diagram illustrating the first embodiment of the present invention and is a perspective view illustrating the outer casing of the optical unit.
  • FIG. 5 is a diagram illustrating the first embodiment of the present invention, and is an exploded perspective view illustrating the optical unit into a fixed body, a gimbal mechanism, and a movable body.
  • FIG. 3 is a diagram illustrating the first embodiment of the present invention, and is an oblique perspective view from behind obliquely representing the optical unit into a set of a fixed body, a gimbal mechanism, and an intermediate frame.
  • FIG. 5 is a diagram illustrating the first embodiment of the present invention, and is a perspective view illustrating a gimbal mechanism, an intermediate frame, a first bearing portion, a second bearing portion, and an elastic member of the optical unit.
  • FIG. 3 is a diagram illustrating the first embodiment of the present invention, and is a view taken along arrow B in FIG. 2 illustrating a gimbal mechanism, an intermediate frame, a first bearing portion, a second bearing portion, and an elastic member of the optical unit.
  • FIG. 3 is a diagram illustrating the first embodiment of the present invention, and is a view taken along an arrow A in FIG. 2 illustrating a gimbal mechanism, an intermediate frame, a first bearing portion, a second bearing portion, and an elastic member of the optical unit.
  • Embodiment 1 of this invention is a perspective view from the diagonal back showing the intermediate frame body of an optical unit, a holder frame, an elastic member, and a 1st bearing part.
  • Embodiment 1 of this invention is a disassembled perspective view from the diagonally back showing the intermediate frame body of an optical unit, a holder frame, an elastic member, and a 1st bearing part.
  • Embodiment 2 of this invention is a perspective view which permeate
  • Embodiment 2 of this invention It is a figure which shows Embodiment 2 of this invention, and is a front view which permeate
  • Embodiment 3 of this invention is a perspective view which disassembles and represents the whole optical unit. It is a figure which shows Embodiment 3 of this invention, and is a perspective view which disassembles and represents an optical unit into a fixed body, a gimbal mechanism, and a movable body. It is a figure which shows Embodiment 3 of this invention, and is a perspective view showing the gimbal mechanism of an optical unit, an intermediate frame, a 1st bearing part, a 2nd bearing part, and an elastic member. It is a figure which shows Embodiment 3 of this invention, and is B arrow view in FIG.
  • FIG. 20 showing the gimbal mechanism of an optical unit, an intermediate frame, a 1st bearing part, a 2nd bearing part, and an elastic member.
  • Embodiment 4 of this invention is a perspective view which disassembles and represents the whole optical unit.
  • Embodiment 4 of this invention and is a perspective view which disassembles and represents an optical unit into a fixed body, a gimbal mechanism, and a movable body.
  • FIG. 4 shows Embodiment 4 of this invention, and is a perspective view showing the gimbal mechanism of an optical unit, an intermediate frame, a 1st bearing part, a 2nd bearing part, an elastic member, and an optical module.
  • FIG. 25 is a diagram illustrating the fourth embodiment of the present invention, and is a view as viewed in the direction of arrow B in FIG. 24 illustrating the gimbal mechanism, the intermediate frame, the first bearing portion, the second bearing portion, the elastic member, and the optical module of the optical unit.
  • Embodiment 5 of this invention and is a perspective view which decomposes
  • Embodiment 5 of this invention and is a perspective view which disassembles and represents an optical unit into a fixed body, a gimbal mechanism, and a movable body.
  • Embodiment 5 of this invention is a perspective view showing the gimbal mechanism of an optical unit, an intermediate frame, a 1st bearing part, a 2nd bearing part, and an elastic member. It is a figure which shows Embodiment 5 of this invention, and the B arrow view in FIG. 28 showing the gimbal mechanism of an optical unit, an intermediate frame, a 1st bearing part, a 2nd bearing part, and an elastic member. It is a figure which shows Embodiment 6 of this invention, and is a principal part expanded longitudinal cross-sectional view of the part of a 1st support part.
  • Embodiment 7 of this invention It is a figure which shows Embodiment 7 of this invention, and is a principal part expanded longitudinal cross-sectional view of the part of a 1st support part. It is a figure which shows Embodiment 8 of this invention, and is a principal part expanded longitudinal cross-sectional view of the part of a 1st support part.
  • Embodiment 1 shown in FIGS. 1 to 12, Embodiment 2 shown in FIGS. 13 to 17, Embodiment 3 shown in FIGS. 18 to 21, and FIGS. Embodiment 8 shown, Embodiment 5 shown in FIGS. 26 to 29, Embodiment 6 shown in FIG. 30, Embodiment 7 shown in FIG. 31, and Embodiment 8 shown in FIG. Will be described in detail with reference to these drawings.
  • an outline of the overall configuration of the optical unit will be described first with reference to FIGS.
  • a specific configuration of the optical unit according to Embodiment 1 of the present invention will be described in detail with reference to FIGS.
  • the operation mode of the optical unit according to the first embodiment of the present invention will be described separately for pitching and yawing correction and rolling correction, and the operation and effect of the optical unit according to the first embodiment of the present invention will be referred to.
  • the optical unit 1 includes a movable body 5 including an optical module 3 and a movable body 5 that is displaceable at least in a pitching (vertical shake) direction Y and a yawing (lateral shake) direction X.
  • a fixed body 7 to be held and a first support portion 19 that supports the movable body 5 so as to be swingable around a first axis L1 intersecting the optical axis direction Z of the optical module 3 are provided.
  • a gimbal mechanism 21A provided with a second support portion 20 that is swingably supported by a member on the side of the fixed body 7 around a second axis L2 that intersects the direction of the axis L1, and a movable body 5 around the first axis L1 and the second And a shake correction drive mechanism 23 for driving around the axis L2.
  • the gimbal mechanism 21A extends in the optical axis direction Z from the gimbal frame portion 25A disposed on one side of the subject side + Z of the optical module 3 and the opposite side -Z of the subject, and the gimbal frame portion 25A.
  • a first support portion extension portion 27 having the first support portion 19; a second support portion extension portion 29 extending from the gimbal frame portion 25A in the optical axis direction Z and having the second support portion 20; It has.
  • a rolling support mechanism 9 (FIGS. 5 and 8) that supports the movable body 5 so as to be rotatable around the optical axis L of the optical module 3 with respect to the fixed body 7, and the movable body 5 as the optical axis.
  • a rolling drive mechanism 11 (FIGS. 2 and 5) that rotates around L.
  • the rolling support mechanism 9 includes a plurality of rolling support mechanisms 9 on the circumference C (FIG. 8) having a predetermined radius around the optical axis L between the movable body 5 and the fixed body 7 in the directions X and Y intersecting the optical axis L. It is configured by including an elastic member 13 that is disposed at a location and supports the movable body 5 so as to be rotatable around the optical axis L.
  • the elastic member 13 is configured by a plate spring 13 (using the same reference numeral as the elastic member) that is bent and deformed around the optical axis L.
  • an intermediate frame 15A is provided between the movable body 5 and the fixed body 7 to connect the movable body 5 in a state in which movement (rotation) in the rolling direction R is allowed.
  • plate spring 13 is being fixed to the 1st to-be-fixed part 16 formed in 15 A of intermediate frames.
  • the other end 13 b of the leaf spring 13 is fixed to a second fixed portion 18 formed on a holder frame 17 that holds the optical module 3 and moves integrally with the optical module 3.
  • the leaf spring 13 is fixed to the first fixed portion 16 and the second fixed portion 18 by bonding, fitting, locking, or the like between them.
  • the gimbal frame portion 25A is disposed at + Z on the subject side of the optical module 3, and an opening 30 is formed in the central portion of the gimbal frame portion 25A on the light incident portion side of the optical module 3. ing.
  • the rolling drive mechanism 11 and the shake correction drive mechanism 23 are configured by pairs of coils 31A, 31B, and 31C and magnets 33A, 33B, and 33C, and the coils 31A, 31B, and 31C are attached.
  • a coil mounting frame 35 is provided. Magnets 33A, 33B, and 33C are attached to holder frame 17 (FIGS. 5 and 6).
  • a first bearing member 37 that receives and engages the first support portion 19 is provided to the intermediate frame 15A. Furthermore, a second bearing member 38 that receives and engages the second support portion 20 is provided on the inner surface side of the pair of corner portions of the outer casing 39 of the fixed body 7.
  • the optical unit 1 ⁇ / b> A is an optical unit having correction functions for pitching (vertical shake), yawing (lateral shake), and rolling (shake around the optical axis L) of the optical module 3.
  • the optical module 3 is used as, for example, a thin camera mounted on a camera-equipped mobile phone, a tablet PC, or the like.
  • the actuator unit that holds the optical module 3 and corrects the pitching direction Y, yawing direction X, and rolling direction R generated in the optical module 3 is the main configuration of the optical unit 1A.
  • a specific configuration of the optical unit 1A will be described in detail.
  • the movable body 5 holds the optical module 3 and three sets of magnets 33 ⁇ / b> A, 33 ⁇ / b> B, and 33 ⁇ / b> C for holding the optical module 3 and for detecting and correcting pitching, yawing and rolling.
  • the holder frame 17 to be attached is provided as an example.
  • the optical module 3 includes a lens 3a on the subject side + Z, and includes an optical device and the like for imaging inside a rectangular housing 3b.
  • the holder frame 17 is a rectangular frame member provided so as to surround the remaining four surfaces excluding the front surface on which the lens 3a of the optical module 3 is provided and the rear surface on the opposite side.
  • Two sets of magnets 33A and 33B for detecting and correcting pitching and yawing and a pair of magnets 33C for detecting and correcting rolling are attached to these outer surfaces using the three surfaces of the holder frame 17. .
  • the fixed body 7 is assembled in the outer casing 39 and the outer casing 39, and includes three sets of coils 31 ⁇ / b> A, 31 ⁇ / b> B, and 31 ⁇ / b> C for correcting pitching, yawing and rolling.
  • the coil mounting frame 35 to be attached and the second bearing member 38 attached to the inner surface of the corner portion of the outer casing 39 in the second axis L2 direction are configured as an example.
  • the outer casing 39 has a structure in which a window 41 is provided on the front surface that is the subject side + Z and the rear surface that is the opposite side -Z is open, and is a rectangular container member that is slightly larger than the optical module 3. is there.
  • the coil mounting frame 35 has a rectangular frame-shaped flat plate portion 43 having an opening at the center on the subject side + Z, and on the opposite side ⁇ Z to the subject side along the optical axis direction Z along the three sides of the flat plate portion 43. It is configured by forming three coil attachment plates 44 bent by 90 °. Two sets of coils 31A and 31B for pitching correction and yawing correction and a set of coils 31C for rolling correction are mounted on the inner surfaces of the three coil mounting plates 44.
  • the shake correction drive mechanism 23 includes a pair of a correction coil 31A and a magnet 33A and a pair of a correction coil 31B and a magnet 33B for correcting the posture of the movable body 5. Pitching and yawing of the movable body 5 are corrected by a pair of the correction coils 31A and 31B and the magnets 33A and 33B.
  • the rolling drive mechanism 11 includes a pair of a rolling correction coil 31C and a rolling detection and correction magnet 33C. Based on the later-described shake detection result of the optical unit 1A, the shake correction drive mechanism 23 and the rolling drive mechanism 11 act so as to correct the shake. That is, a current is passed through each of the coils 31A, 31B, and 31C so as to move the movable body 5 in a direction that cancels the shake of the optical unit 1A.
  • a pattern substrate in which a coil is taken as a pattern into the substrate wiring is employed.
  • a winding coil instead of such a pattern substrate.
  • ⁇ Detection of shake of optical unit> three magnetic sensors (Hall elements) 45A, 45B, and 45C that detect changes in magnetic flux density are provided in the vicinity of the three sets of coils 31A, 31B, and 31C.
  • This magnetic sensor (Hall element) 45A, 45B, 45C is an optical module in the optical unit from the change of the magnetic flux density by each pair of magnets 33A, 33B, 33C for detecting and correcting pitching, yawing and rolling.
  • the shake of the movable body 5 provided with is detected. Based on the detection result, the shake correction drive mechanism 23 and the rolling drive mechanism 11 act so as to correct the shake.
  • the second bearing member 38 is a block-shaped member having a trapezoidal cross section that is long in the optical axis direction Z, and a concave portion 38a that receives and engages with the second support portion 20 is formed on the inner surface thereof.
  • the intermediate frame 15A is a member formed by bending a metal flat plate provided so as to wrap the holder frame 17 from the subject side + Z (FIG. 6).
  • the intermediate frame 15A has a rectangular frame-shaped flat plate portion 49A having an opening 50 whose central portion is largely opened in a rectangular shape on the subject side + Z.
  • the intermediate frame 15A has a structure in which four side plate portions 51 bent at 90 ° to the opposite side ⁇ Z to the subject side along the optical axis direction Z are provided at the corner portion of the flat plate portion 49A.
  • each of the four side plate portions 51 is cut out in a rectangular shape, and a cutout portion 55 is also formed at a portion of the holder frame 17 facing these cutout portions 53 in the assembled state.
  • the four cutout portions 53 formed at the tips of the four side plate portions 51 of the intermediate frame 15 ⁇ / b> A serve as the first fixed portion 16, and the corresponding four cutout portions 55 of the holder frame 17. Is the second fixed portion 18. Accordingly, the one end 13 a of the elastic member 13 constituted by a leaf spring is configured to be locked and fixed to the notch 53.
  • the one end portion 13a and the other end portion 13b of the elastic member 13 are formed in a rectangular plate shape as an example, but in addition, various other types such as a disc shape, a sphere shape, a rod shape, and the like. It is possible to form in the shape.
  • a rectangular flat plate-like first bearing member 37 is attached to the outer surface of the side plate portion 51 located in the first axis L1 direction as an example.
  • a concave portion 37a that receives and engages the first support portion 19 is formed.
  • a notch portion 57 is also provided in a portion from the four corners of the flat plate portion 49A of the intermediate frame 15A to the roots of the four side plate portions 51. The notch 57 is provided to ensure a necessary swing angle ( ⁇ 6 ° to 10 ° as an example) around a first axis L1 and a second axis L2 of a gimbal mechanism 21A described later.
  • the elastic member 13 is disposed at at least three locations obtained by equally dividing a circumference C (FIG. 8) having a predetermined radius centered on the optical axis L.
  • the elastic member 13 constituted by a metal leaf spring as an example at four locations obtained by dividing the circumference C around the optical axis L into four portions by 90 °. There are four.
  • the equal division does not require strictly equal division, and is used in the sense that almost equal division may be used.
  • the plate spring 13 is fixed to the first fixed portion 16 and the second fixed portion 18 and assembled between the intermediate frame 15A and the holder frame 17 so that the plate thickness direction is the light of the movable body 5. It is arranged so as to face the rotation direction around the axis L, that is, the rolling direction R.
  • the rolling direction R in “the direction of the plate thickness is directed to the rotation direction around the optical axis L of the optical module 3, that is, the rolling direction R” means the rolling that strictly changes from moment to moment in this specification. It does not require that the direction R is correctly pointed. Specifically, as long as the function of supporting the optical module 3 so as to be rotatable around the optical axis L does not become unstable, the direction has a width, and the thickness direction is somewhat in the rolling direction within the width range. It may be inclined from R.
  • the leaf spring 13 is configured such that the first length A in the direction Z along the optical axis is larger than the second length B in the radial direction intersecting the optical axis L. Is formed.
  • the first length A is set to 3 to 4 times the second length B.
  • the free bending portion 13c between the one end portion 13a and the other end portion 13b of the leaf spring 13 is formed in a U-shape as an example, and the first length A is increased as described above. Accordingly, the plate spring 13 can be smoothly bent and deformed, and the rigidity with respect to the movement in the optical axis direction Z is increased.
  • the second length B of the leaf spring 13 is also set wider than the plate thickness of the leaf spring 13, and the rigidity with respect to the radial movement that is the spring width direction is increased.
  • plate spring 13 may be other shapes, such as V shape, I shape, or N shape other than U-shape like embodiment of illustration. In the case of I-shape and N-shape, the positions of the one end portion 13a and the other end portion 13b are located on the opposite side in the direction along the optical axis (the direction of the first length A).
  • the gimbal mechanism 21 ⁇ / b> A is a mechanism having a spring property formed by bending a metal flat plate material.
  • the gimbal mechanism 21 ⁇ / b> A includes, for example, a gimbal frame portion 25 ⁇ / b> A provided on the subject side + Z and an optical axis direction Z from four corner portions of the gimbal frame portion 25 ⁇ / b> A
  • the first support portion extension portion 27 and the second support portion extension portion 29 formed by being bent by 90 ° are provided.
  • the first support part extension part 27 and the second support part extension part 29 do not necessarily have to be plate-like, and only a part thereof is formed in a plate shape to provide springiness. You may make it show.
  • one of the first support portion extension portion 27 and the second support portion extension portion 29 may have a shape other than a plate shape (for example, a rod shape or the like).
  • the first support portion 19 is provided on the inner surface of the first support portion extending portion 27 facing the movable body 5.
  • the 1st support part 19 is comprised by the metal member by which the part which contacts and supports the concave spherical surface recessed part 37a of the 1st bearing member 37 used as the member by the side of the movable body 5 is formed in the convex curve. Yes.
  • the first support portion 19 has a convex portion formed by pressing or the like on the first support portion extension portion 27. Or it is attached by welding directly to the extension part 27 for 1st support parts.
  • the second support portion 20 is provided on the outer surface of the second support portion extending portion 29 facing the fixed body 7.
  • the second support portion 20 is configured by a metal member having a convex curved surface at a portion that comes into contact with and supports the concave spherical concave portion 38a of the second bearing member 38 that is a member on the fixed body 7 side. Yes.
  • the second support portion 20 has a convex portion formed on the second support portion extension portion 29 by a press or the like. Or it is attached by welding directly to the extension part 27 for 1st support parts.
  • the first support portion extension portion 27 in the state of the gimbal frame portion 25 ⁇ / b> A alone, is movable at an extension angle ⁇ with respect to the gimbal frame portion 25 ⁇ / b> A. It is set to an angle ( ⁇ ⁇ 90 °) displaced inward so as to be in elastic contact with the first bearing member 37 serving as a member on the body 5 side (FIG. 9).
  • the second support member extension portion 29 is a second bearing member whose extension angle ⁇ with respect to the gimbal frame portion 25A is a member on the fixed body 7 side.
  • the gimbal frame portion 25A has a rectangular frame-shaped base frame 24A in which a circular opening 30 is formed at the center, and extends in the first axis L1 direction from the four corners of the base frame 24A around the optical axis L.
  • the first extending portion 26 and the second extending portion 28 extending in the second axis L2 direction are formed in an X shape.
  • the gimbal mechanism 21A is formed of a metal plate in the first embodiment, and the first extending portion 26 and the second extending portion 28 of the X-shaped gimbal frame portion 25A are formed long in the extending direction.
  • the first support portion extension portion 27 and the second support portion extension portion 29 are formed by bending these tip portions.
  • the gimbal frame portion 25 ⁇ / b> A is formed such that the gap between the second extension portion 28 and the movable body 5 is larger than the gap between the first extension portion 26 and the movable body 5. ing.
  • the height H1 in the optical axis direction Z of the distal end portion of the first extending portion 26 is changed to the optical axis direction Z of the distal end portion of the second extending portion 28. It is formed so as to be lower than the height H 2, that is, close to the movable body 5.
  • the movable region (movable gap) of the subject side + Z in the optical axis direction Z formed at the tip of the first extending portion 26 is widened, and the movable gap of the movable body 5 in the optical axis direction Z can be easily provided. It is possible.
  • the structure of the optical unit 1A according to the first embodiment is as described above, and its specific configuration is organized and described below.
  • An intermediate frame 15 is provided between the movable body 5 and the fixed body 7 to connect the movable body 5 in a state where the movable body 5 is allowed to move in the rolling direction.
  • the movable body 5 includes a holder frame 17 that holds the optical module 3 and attaches magnets 33A, 33B, and 33C for detecting and correcting pitching, yawing and rolling.
  • the fixed body 7 is assembled in the outer casing 39, the coil mounting frame 35 to which the coils 31A, 31B, and 31C for correcting pitching, yawing and rolling are attached, and the second axis L2 of the outer casing 39.
  • the intermediate frame 15 includes a first bearing member 37 on which the first support portion 19 of the gimbal mechanism 21 is supported.
  • the coil mounting frame 35 is a magnetic sensor (Hall element) that detects camera shake of the optical unit 1A from the change in magnetic flux density by each pair of magnets 33A, 33B, and 33C for detecting and correcting pitching, yawing and rolling. ) 45A, 45B, 45C.
  • the elastic member 13 is disposed between the holder frame 17 and the intermediate frame 15.
  • the optical unit 1A capable of correcting the pitching, yawing and rolling of the optical module 3 is arranged efficiently, and the new gimbal mechanism 21 and the elastic member 13 are adopted. Enables compact and easy manufacturing.
  • (A) Correction of pitching and yawing When shake occurs in the optical unit 1A in both the pitching direction Y and the yawing direction X or in any one direction, the shake is detected by a shake detection sensor (gyroscope) (not shown). Based on this, the shake correction drive mechanism 23 is driven. Alternatively, the shake of the optical unit 1A may be detected from the change of the magnetic flux density by each pair of the magnetic sensors (Hall elements) 45A and 45B and the magnets 33A and 33B for detecting and correcting pitching and yawing. . Based on the detection result of the shake, the shake correction drive mechanism 23 operates to correct the shake. That is, a current is passed through each of the coils 31A and 31B so as to move the movable body 5 in a direction that cancels the shake of the optical unit 1A, thereby correcting the shake.
  • a current is passed through each of the coils 31A and 31B so as to move the movable body 5 in a direction that cancels the shake of the
  • a voice coil motor constituted by a pair of coils 31A, 31B, 31C and magnets 33A, 33B, 33C, such as a shake correction drive mechanism 23 and a rolling drive mechanism. It is not limited to. It is possible to use a stepping motor, a piezo element or the like as another driving source.
  • the shake correction is canceled by the posture return mechanism using the magnetic spring and the spring property of the elastic member 13, respectively. Return to the initial position.
  • the posture return mechanism has a structure that utilizes a magnetic attractive force generated between a magnetic body and a magnet separately disposed on the fixed body 7 side and the movable body 5 side.
  • the magnetic attractive force acts to maintain the initial position posture, and when the shake causes a deviation from the initial position, the magnetic attractive force becomes the original initial position posture.
  • the magnetic body and the magnet are arranged so as to work in the direction of returning to the position.
  • the optical unit 1A According to the optical unit 1A according to the first embodiment configured as described above, it is like an expensive bearing conventionally provided on the opposite side -Z of the subject of the optical module 3 by the support structure by the elastic member 13. Use of a support member can be omitted. Further, since the space corresponding to the bearings can be saved, the optical unit 1A can be downsized in the optical axis direction Z. Further, since the space between the optical module 3 and the outer casing 39 can be reduced by adopting the gimbal mechanism 21A formed by bending a flat plate material, the directions X and Y intersecting the optical axis of the optical unit 1A can be reduced. It will be able to plan.
  • the optical module 3 is protected from an external impact (dropping, collision, etc.) in the optical axis direction Z by the elastic structure of the bent structure portion, and the risk of the optical module 3 falling off from the opposite side -Z from the subject is reduced. The effect is obtained.
  • the presence of the flat plate portion 49A of the intermediate frame 15A also acts to protect the optical module 3 from external impacts.
  • the optical unit 1B according to Embodiment 2 of the present invention is an embodiment in which the gimbal frame portion 25B of the gimbal mechanism 21B is disposed on the opposite side -Z to the subject in the optical axis direction Z. Accordingly, the flat plate portion 49B of the intermediate frame 15B is also disposed on the opposite side -Z to the subject in the optical axis direction Z.
  • Other configurations are basically the same as those of the optical unit 1A according to the first embodiment. Therefore, in the following description, the description of the same configuration as that of the first embodiment will be omitted, and the configuration and arrangement of the gimbal mechanism 21B and the intermediate frame 15B different from those of the first embodiment will be mainly described.
  • the gimbal mechanism 21B is formed by bending a metal flat plate material as in the first embodiment. That is, the gimbal frame portion 25B provided on the opposite side -Z from the subject, the first support portion extension portion 27 formed by bending 90 ° in the optical axis direction Z from the four corner portions of the gimbal frame portion 25B, and the first 2 extending part 29 for support parts, and comprising.
  • the gimbal frame portion 25B of the second embodiment is not provided with the opening 30 provided in the gimbal frame portion 25A of the first embodiment.
  • the size of the base frame 24B is small, and the lengths of the first extending portion 26 and the second extending portion 28 are long, which is a gimbal frame portion 25B.
  • the intermediate frame 15B is formed by bending a metal flat plate material as in the first embodiment, and includes a flat plate portion 49B provided on the opposite side -Z of the subject, and the flat plate portion 49B. And four side plate portions 51 formed by being bent 90 ° in the optical axis direction Z from the four corner portions. Note that a rectangular opening 50B that is slightly larger than the base frame 24B of the gimbal frame portion 25B is formed at the center portion of the flat plate portion 49B of the intermediate frame 15B of the second embodiment.
  • Extending portions 59 extending in the radial direction about the optical axis L are formed at the four corner portions of the flat plate portion 49B, and four side plate portions 51 are provided from the tip of the extending portion 59 toward the subject side + Z. It is formed to extend.
  • the notch 55 formed in the holder frame 17 and the end of the side plate 51 of the intermediate frame 15B are formed.
  • the notch 53 is located on the subject side + Z, and is attached in a state where the one end 13a and the other end 13b of the elastic member 13 are located on the subject side + Z.
  • the operation mode of the optical unit 1B according to the second embodiment configured as described above is basically the same as the operation mode of the optical unit 1A according to the first embodiment.
  • the optical unit 1B according to the present embodiment configured as described above exhibits the same functions and effects as the optical unit 1A of the first embodiment, and intersects the optical axis direction Z and the optical axis of the optical unit 1B.
  • the directions X and Y can be reduced in size.
  • the optical module 3 is protected from an external impact (dropping, collision, etc.) in the optical axis direction Z by the elastic structure of the bent structure portion, and the risk of the optical module 3 falling off from the opposite side -Z from the subject is reduced. The effect is obtained. Further, the presence of the flat plate portion 49B of the intermediate frame 15B also acts to protect the optical module 3 from external impacts.
  • the optical unit 1C according to the third embodiment of the present invention basically has the same configuration as the optical unit 1A according to the first embodiment, and is intended to further reduce the size of the optical unit 1C in the optical axis direction Z.
  • the first retreating portion 61 is provided for the gimbal frame portion 25C. Therefore, in the following description, the same configurations as those of the first embodiment are represented by using the same reference numerals in the drawings, the description thereof is omitted, and the configuration is unique to the third embodiment different from the first embodiment.
  • the configuration of the first retreating part 61 and its operation and effect will be mainly described.
  • the gimbal mechanism 21C has an extension portion of the first support portion extending from the surface formed by the gimbal frame portion 25C to a portion connected to the first support portion extension portion 27 of the gimbal frame portion 25C.
  • a first retreating portion 61 is provided to reduce the height in the installation direction (Z direction). Specifically, the tip end portion of the first extending portion 26 extending from the base frame 24C of the gimbal frame portion 25C toward the outside of the first axis L1 is bent and inclined toward the opposite side ⁇ Z to the subject. To do. As a result, the first retracting portion 61 is formed, and the position of the connection side with the first support portion extending portion 27 is positioned on the opposite side -Z to the subject with respect to the surface formed by the gimbal frame portion 25C. .
  • the gimbal frame portion 25C is a molded product or a thick substrate member that cannot be bent
  • these corner portions are simply cut obliquely and chamfered, and are substantially octagonal when viewed from the optical axis direction Z.
  • the ceiling of the outer casing 39 is located at a position facing the tip of the first extending portion 26 where the first retracting portion 61 of the gimbal frame portion 25C is formed.
  • the outer casing 39 may be configured such that the top surface portion 63 is omitted.
  • the angle at which the tip of the first extending portion 26 is bent is such that when the gimbal frame portion 25C is inclined and the first retreating portion 61 approaches the top surface portion 63 of the outer casing 39, the first retreating portion 61 is in the outer casing.
  • the angle is set so as not to collide with the back surface of the top surface portion 63 of 39.
  • the angle at which the distal end portion of the first extending portion 26 is bent is such that the gimbal frame portion 25C is inclined and the first retracted portion 61 is on the subject side (+ Z
  • the first retracting portion 61 is set at an angle that does not protrude from the surface of the outer casing 39 on the subject side when moving in the direction).
  • the first receding portion 61 forms the first receding portion 61 by forming a recessed portion by bending the distal end portion of the first extending portion 26 in an L shape inward or curving inward. It is also possible to do.
  • the optical unit 1C according to the present embodiment configured as described above exhibits the same functions and effects as the optical unit 1A according to the first embodiment, and intersects the optical axis direction Z and the optical axis of the optical unit 1C.
  • the directions X and Y can be reduced in size.
  • by providing the first retracting portion 61 it is possible to further reduce the size of the optical unit 1C in the optical axis direction Z.
  • the optical unit 1D according to the fourth embodiment of the present invention basically has the same configuration as the optical unit 1A according to the first embodiment, and is intended to further reduce the size of the optical unit 1D in the optical axis direction Z.
  • the first retracting portion 61 is provided for the gimbal frame portion 25C
  • the second retracting portion 65 is provided for the housing 3b of the optical module 3 along the inner surface of the gimbal frame portion 25C. Therefore, in the following description, the same configurations as those of the first and third embodiments are denoted by the same reference numerals in the drawings, and the description thereof is omitted.
  • the configuration of the second retreating portion 65 which is the configuration, and its operation and effect will be mainly described.
  • the first retracting portion 61 described in the third embodiment is provided for the gimbal mechanism 21C, and the first supporting portion extending portion 27 and the second supporting portion are provided for the movable body 5.
  • a second retreating portion 65 that retreats in the same direction as the first retreating portion 61 is provided at a portion corresponding to the extending portion 29 and along the gimbal frame portion 25C. Specifically, when viewed from the optical axis direction Z with respect to the housing 3b of the optical module 3 that faces the distal end portion of the first extending portion 26 and the distal end portion of the second extending portion 28 of the gimbal frame portion 25C.
  • a second retreating portion 65 configured by an inclined surface is provided by chamfering the corner portion of the housing 3b of the rectangular optical module 3 as an example.
  • the second retracting portion 65 can be provided on the entire periphery of the edge portion including the subject side + Z corner of the housing 3b of the optical module 3.
  • the second retreating portion 65 is not limited to the inclined surface, but is a stepped portion in which a corresponding portion of the housing 3b of the optical module 3 is recessed in an L shape on the opposite side -Z to the subject or a curved recessed portion. It is also possible to configure the second retracting portion 65. Further, the optical unit 1 including only the second retracting portion 65 by omitting the first retracting portion 61 may be used.
  • the optical unit 1D according to the present embodiment exhibits the same functions and effects as the optical unit 1A according to the first embodiment, and the optical axis direction Z and the optical axis of the optical unit 1D The size of the intersecting directions X and Y can be reduced.
  • the optical unit 1D can be further miniaturized in the optical axis direction Z.
  • the optical unit 1 can be reduced in size in the optical axis direction Z at the portion where the second retracting portion 65 exists. The effect
  • the optical unit 1E according to Embodiment 5 of the present invention basically has the same configuration as the optical unit 1A according to Embodiment 1, and is intended to further reduce the size of the optical unit 1E in the optical axis direction Z.
  • the first retracting portion 61 is provided for the gimbal frame portion 25C
  • the third retracting portion 67 is provided for the intermediate frame 15E. Therefore, in the following description, the same configurations as those in the first and third embodiments are represented by using the same reference numerals in the drawings, and the description thereof is omitted.
  • the configuration of the third receding portion 67, and its operation and effect will be mainly described.
  • the optical module 3 is held rotatably around the optical axis L via the elastic member 13 and is supported by the first support portion 19 via the first bearing member 37. It has.
  • the basic configuration of the intermediate frame 15E is the same as that of the intermediate frame 15A in the optical unit 1A according to the first embodiment, and thus detailed description thereof is omitted here.
  • the intermediate frame 15E extends from the flat plate portion 49E to the subject side + Z of the optical module 3, and extends from the flat plate portion 49E to the opposite side -Z of the subject in the optical axis direction Z.
  • the first support portion extension portion 27 and the second support portion extension portion 29 are provided with side plate portions 51 respectively.
  • the first connecting portion 66 extending outward in the first axis L1 direction and the second connecting portion 68 extending outward in the second axis L2 direction, in which the flat plate portion 49E is connected to the side plate portion 51, are the same as the first retracting portion 61.
  • a third receding portion 67 that recedes in the direction is provided.
  • the first retreating part 61 it is bent and tilted to the opposite side ⁇ Z to the subject.
  • the third receding portion 67 is formed, and the position of the connection side with the side plate portion 51 is positioned on the opposite side ⁇ Z to the subject with respect to the surface formed by the gimbal frame portion 25C.
  • the intermediate frame 15E of the fifth embodiment is a molded product that cannot be bent or a thick-walled substrate member, these corner portions are simply inclined. It is also possible to form the third receding portion 67 by cutting it into chamfers and forming a substantially octagonal shape when viewed from the optical axis direction Z.
  • each of the first connection portion 66 and the second connection portion 68 in which the third retracted portion 67 of the intermediate frame 15E is formed as shown in FIGS. 26 and 27, in this embodiment as well as in Embodiment 3, each of the first connection portion 66 and the second connection portion 68 in which the third retracted portion 67 of the intermediate frame 15E is formed.
  • the top surface portion 63 of the outer casing 39 exists at a position facing the front end portion or all of the front end portion, the outer casing 39 may be configured such that the top surface portion 63 is omitted.
  • the angle at which the distal ends of the first connection portion 66 and the second connection portion 68 are bent is such that the intermediate frame body 15E is inclined and the first connection portion 66 or the second connection portion 68 approaches the top surface portion 63 of the outer casing 39.
  • the first connecting portion 66 and the second connecting portion 68 are set to an angle that does not protrude from the surface of the top surface portion 63 of the outer casing 39.
  • the third receding portion 67 like the first receding portion 61, is recessed by bending the leading ends of the first connecting portion 66 and the second connecting portion 68 inwardly into an L shape, or curving inwardly. It is also possible to form the third receding portion 67 by forming the portion.
  • first retracting portion 61 It is also possible to omit the first retracting portion 61 and to provide the optical unit 1 having only the third retracting portion 67. Further, the second retracting portion 65 is provided, and the second retracting portion 65 and the third retracting portion are provided. The optical unit 1 including the portion 67 may be used, or the optical unit 1 including all of the first retracting portion 61, the second retracting portion 65, and the third retracting portion 67 may be used.
  • the optical unit 1E according to the present embodiment configured as described above exhibits the same functions and effects as the optical unit 1A according to the first embodiment, and intersects the optical axis direction Z and the optical axis of the optical unit 1E.
  • the directions X and Y can be reduced in size.
  • the optical unit 1E can be further miniaturized in the optical axis direction Z.
  • the optical unit 1 in which the first retracting portion 61 is omitted and only the third retracting portion 67 is provided it contributes to the miniaturization of the optical unit 1 in the optical axis direction Z in the portion where the third retracting portion 67 exists. The effect of obtaining is obtained. Further, in the case of the optical unit 1 including the second retracting portion 65 in addition to the third retracting portion 67, the operation and effect when the second retracting portion 65 is provided due to the presence of the intermediate frame 15E is not so great.
  • the housing 3b of the optical module 3 is completely accommodated in the opening 50 of the intermediate frame 15E so that the flat plate portion 49E of the intermediate frame 15E and the surface of the object side + Z in the housing 3b of the optical module 3 are In the case of a configuration that is flush with the surface, the function and effect provided with the second retreating portion 65 become more prominent.
  • An optical unit 1F according to Embodiment 6 of the present invention basically has the same configuration as the optical unit 1A according to Embodiment 1, and the structure of the first support portion 19 is different from that of Embodiment 1. Therefore, in the following description, the same configuration as that of the first embodiment is represented by using the same reference numerals in the drawings, the description thereof is omitted, and a specific configuration of the sixth embodiment different from the first embodiment is mainly described. I will explain.
  • the movable body 5 includes an outer portion 70 outside the first support extension portion 27.
  • the outer portion 70 is provided at a portion corresponding to the first support portion extension portion 27 of the holder frame 17 of the movable body 5 so as to surround the first support portion extension portion 27 from the outside. Yes.
  • the outer portion 70 and the holder frame 17 are bonded and integrated by an adhesive 72, but can also be formed by integral molding.
  • the first support portion 19 is fixed to the outside of the first support portion extending portion 27 that faces the outer portion 70 of the movable body 5. As described above, the first support portion 19 is different from the above-described embodiments in that the first support portion 19 is fixed not to the inside of the first support portion extending portion 27 but to the outside. A portion of the first support portion 19 that is in contact with and supports the outer portion on the movable body 5 side is a convex curved surface, and this is the same as in the above embodiment. In the sixth embodiment, the first support portion 19 is fixed by welding in a state in which the sphere 74 is housed in a hole 76 formed at a corresponding position of the first support portion extending portion 27.
  • a first bearing member 37 is fixed to a portion of the outer portion 70 that contacts the convex curved surface of the first support portion 19.
  • the concave portion 37a of the first bearing member 37 is a concave spherical surface as in the first embodiment. Since the 2nd support part 20 is the same as the said embodiment, the description is abbreviate
  • the sixth embodiment as in the first embodiment, since the first support portion 19 and the second support portion 20 of the gimbal mechanism 21 are formed by convex curved surfaces, the gimbal mechanism 21, the movable body 5, and the fixed body. Assembly with the 7-side member is easy. Moreover, since the 1st support part 19 is being fixed to the outer side of the extension part 27 for 1st support parts, the variation of the structure of the gimbal mechanism 21 increases, and a freedom degree improves in the design of the optical unit 1F.
  • the first support portion extension portion 27 has an extension angle ⁇ with respect to the gimbal frame portion 25A. It is set to an angle ( ⁇ > 90 °) displaced outward so as to elastically contact the member.
  • the 1st support part 19 contacts the 1st bearing member 37 by the side of the movable body 5 elastically.
  • the second support portion 20 is in elastic contact with the second bearing member 38. That is, since both are in elastic contact with each other, a strong support and a smooth rocking are possible with a high pressure applied to the contact portions of the two so that there is little fear of dropping off.
  • An optical unit 1G according to Embodiment 7 of the present invention basically has the same configuration as the optical unit 1F according to Embodiment 6, and the structure of the first support portion 19 is different from that of Embodiment 6. Therefore, in the following description, the same configuration as that of the sixth embodiment is represented by using the same reference numerals in the drawings, the description thereof is omitted, and the specific configuration of the seventh embodiment different from the sixth embodiment is mainly described. I will explain.
  • the movable body 5 includes an outer portion 70 on the outer side from the first support portion extending portion 27 as in the sixth embodiment. ing.
  • a convex portion 84 is fixed to the outer portion 70.
  • the convex portion 84 is welded and fixed in a state of being accommodated in a hole portion 86 provided at a corresponding position of the metal plate 80.
  • the metal plate 80 is bonded to the outer portion 70. Thereby, the convex portion 84 is fixed to the outer portion 70 via the metal plate 80.
  • the convex part 84 consists of a spherical body, and the front-end
  • the first support portion 19 is formed outside the first support portion extending portion 27, which faces the convex portion 84 of the movable body 5. Unlike the sixth embodiment, the first support portion 19 is a concave spherical surface 88 that is in contact with and supports the convex portion 84. That is, the concave spherical surface 88 of the first support portion 19 corresponds to the concave portion 37a of the first bearing member 37 in the sixth embodiment. Since the 2nd support part 20 is the same as the said embodiment, the description is abbreviate
  • the seventh embodiment since the first support portion 19 of the gimbal mechanism 21 is formed by the concave spherical surface 88 and the second support portion 20 is formed by the convex curved surface, the gimbal mechanism 21, the movable body 5, and the fixed body. Assembly with the 7-side member is easy. Moreover, since the 1st support part 19 is formed in the outer side of the extension part 27 for 1st support parts as the concave spherical surface 88, the variation of the structure of the gimbal mechanism 21 increases, and the freedom degree in the design of the optical unit 1G is increased. improves.
  • the first support portion extension portion 27 in the state of the gimbal frame portion 25A alone, has an extension angle ⁇ with respect to the gimbal frame portion 25A. It is set to an angle ( ⁇ > 90 °) displaced outward so as to elastically contact the member. Thereby, the 1st support part 19 contacts the convex part 84 of the movable body 5 elastically.
  • the second support portion 20 is in elastic contact with the second bearing member 38. That is, since both are in elastic contact with each other, a strong support and a smooth rocking are possible with a high pressure applied to the contact portions of the two so that there is little fear of dropping off.
  • the optical unit 1H according to the eighth embodiment of the present invention basically has the same configuration as the optical unit 1G according to the seventh embodiment, and the structure of the first support portion 19 is different from that of the seventh embodiment. Therefore, in the following description, the same configuration as that of the seventh embodiment is represented by using the same reference numerals in the drawings, and the description thereof is omitted.
  • the specific configuration of the eighth embodiment, which is different from the seventh embodiment, is mainly described. I will explain.
  • the movable body 5 does not include the outer portion 70 of the seventh embodiment.
  • a convex portion 94 is fixed to a portion of the movable body 5 inside the first support portion extending portion 27.
  • the convex portion 94 is welded and fixed in a state where the convex portion 94 is accommodated in a hole portion 96 provided at a corresponding position of the metal plate 90.
  • the metal plate 90 is bonded to the movable body 5. Thereby, the convex portion 94 is fixed to the movable body 5 via the metal plate 90.
  • the convex part 94 consists of a spherical body, and the tip part is a convex curved surface.
  • the first support portion 19 is formed inside the first support portion extending portion 27, which faces the convex portion 94 of the movable body 5. As in the seventh embodiment, the first support portion 19 is in contact with the convex portion 94 and supported by a concave spherical surface 98. That is, the concave spherical surface 98 of the first support portion 19 corresponds to the concave portion 37a of the first bearing member 37 in the sixth embodiment. Since the 2nd support part 20 is the same as the said embodiment, the description is abbreviate
  • the first support portion 19 of the gimbal mechanism 21 is formed by the concave spherical surface 98
  • the second support portion 20 is formed by the convex curved surface.
  • the movable body 5 and the member on the fixed body 7 side can be easily assembled.
  • the first support portion 19 is formed as a concave spherical surface 98 inside the first support portion extending portion 27, the number of variations in the structure of the gimbal mechanism 21 increases, and the degree of freedom in designing the optical unit 1G is increased. improves.
  • the first support portion extension portion 27 has an extension angle ⁇ with respect to the gimbal frame portion 25A. It is set to an angle ( ⁇ ⁇ 90 °) displaced inward so as to be elastically contacted with the convex portion 94 as the member.
  • the first support portion 19 is in elastic contact with the convex portion 94 of the movable body 5.
  • the second support portion 20 is in elastic contact with the second bearing member 38. That is, since both are in elastic contact with each other, a strong support and a smooth rocking are possible with a high pressure applied to the contact portions of the two so that there is little fear of dropping off.
  • the optical unit 1 according to the present invention is basically configured to have the above-described configuration. However, the partial configuration may be changed or omitted without departing from the gist of the present invention. Of course it is possible.
  • the number of elastic members 13 is four at 90 ° intervals in the first and second embodiments, but may be three at 120 ° intervals, five at 72 ° intervals, etc. It is also possible to arrange the elastic members 13 in a number of five or more.
  • the elastic member 13 when a thin plate spring is used as the elastic member 13, it is possible to secure a necessary elastic force by using a plurality of plate springs. In this case, the orientations of the overlapping leaf springs are staggered in the optical axis direction Z, and the fixing (locking) positions of the leaf springs are distributed between the subject side + Z and the subject opposite side -Z in the optical axis direction Z. If arranged in this manner, a more uniform force around the optical axis L without twisting acts on the holder frame 17 and the intermediate frame 15.
  • the optical module 3 is not limited to the camera module described in the embodiment, and may be another module such as a laser irradiation module or an optical sensor module.
  • the shape of the holder frame 17 and the coil attachment frame 35 can be made to match the shape of the optical module 3.
  • the swing direction of the gimbal mechanism 21 is tilted to ⁇ 45 ° with respect to the swing around the first axis L1 inclined at + 45 ° passing through the opposite corner portions of the gimbal frame portion 25 in the first and second embodiments.
  • the first axis L1 and the second axis L2 are set in a vertical direction of ⁇ 0 ° as the pitching direction Y and a horizontal direction of ⁇ 90 ° as the yawing direction X. It is also possible to set.
  • the shake of the optical unit 1A is detected from the change in magnetic flux density by each pair of magnetic sensors (Hall elements) 45A, 45B, 45C and magnets 33A, 33B, 33C.
  • the gimbal frame portion 25B includes the first retracting portion 61 provided in the third embodiment, the second retracting portion 65 provided in the fourth embodiment, and the third retracting portion 67 provided in the fifth embodiment.
  • the present invention can also be applied to the optical unit 1B according to the second embodiment disposed on the opposite side -Z to the subject in the direction Z.
  • the second support portion 20 is fixed to the outer side of the second support portion extending portion 29 facing the fixed body 7 and is supported in contact with a member on the fixed body 7 side.
  • the part has been described with a structure having a convex curved surface, it is needless to say that the part is not limited to the above structure.
  • an inner part is provided inside the second support part extension part 29 of the fixed body 7, and the second support part 20 is fixed inside the second support part extension part 29 facing the inner part.
  • the portion of the fixed body 7 that is in contact with and supports the inner portion may have a convex curved surface.
  • SYMBOLS 1 Optical unit, 3 ... Optical module, 3a ... Lens, 3b ... Housing, 5 ... Movable body, 7 ... Fixed body, 9 ... Rolling support mechanism, 11 ... Rolling drive mechanism, 13 ... Elastic member, 13a ... One end part, 13b: other end, 13c: free bending part, 15: intermediate frame, 16: first fixed part, 17: holder frame, 18: second fixed part, 19: first supporting part, 20: second Support part, 21 ... Gimbal mechanism, 23 ... Shake correction drive mechanism, 24 ... Base frame, 25A ... Gimbal frame part, 25B ... Gimbal frame part, 25C ... Gimbal frame part, 26 ...
  • L concave spherical surface
  • L optical axis
  • X ... yawing direction (lateral shake direction), Y ... pitching direction (vertical shake direction), R ... rolling direction (around the optical axis)
  • Z direction along (optical axis)
  • X, Y direction intersecting the optical axis
  • C circumference
  • L1 first axis
  • L2 second axis
  • A first length
  • B second axis
  • A first length
  • B second . 2nd length
  • (alpha) ... Extension angle
  • D ... Polyline
  • E ... Polyline
  • H Height

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

光学モジュールを備える可動体を第1軸線及び第2軸線周りに駆動する振れ補正用駆動機構を備える光学ユニットの小型化を実現する。 光学モジュール3を備える可動体5と、可動体を変位可能に保持する固定体7と、光軸L方向と交差する第1軸線L1周りに揺動可能に可動体を支持する第1支持部19と光軸方向Z及び第1軸線方向と交差する第2軸線L2周りに固定体側の部材に揺動可能に支持される第2支持部20を備えるジンバル機構21と、可動体を第1軸線周り及び第2軸線周りに駆動する振れ補正用駆動機構23を備え、ジンバル機構21は、被写体側と被写体の反対側の内の一方に配置されるジンバルフレーム部25と、該フレーム部25から光軸方向Zに延設されて第1支持部を有する第1支持部用延設部27と、第2支持部を有する第2支持部用延設部29を備える。

Description

光学ユニット
 本発明は、カメラ付き携帯電話機等に搭載される振れ補正機能付きの光学ユニットに関するものである。
 この種の振れ補正機能付きの光学ユニットとして、特許文献1に記載されている光学ユニットが挙げられる。この光学ユニットは、ピッチング(縦振れ)やヨーイング(横振れ)の補正を行う機能を備えている。 
 具体的には、光学ユニット100は、光学モジュール10の角および固定体20の角筒状胴部210の角を利用してジンバル機構30を設けてある。すなわち、光学モジュール10の矩形の第2枠42と、角筒状胴部210に固定した矩形枠25との間に矩形の可動枠32を配置し、かかる可動枠32の第1角部321およびこれと対向する第3角部323が矩形枠25の対応する二つの角部に揺動可能に支持された構造とし、可動枠32の第2角部322およびこれと対向する第4角部324が第2枠42の対応する残りの二つの角部を揺動可能に支持された構造が採用されている。
特開2014-6522号公報
 従来の上記光学ユニットは、ピッチングやヨーイングの補正を行う機構としてのジンバル機構は、光学モジュールを備える可動体の側面周囲の全体を囲って配置されている。そのため光軸方向と交差する方向(側面側)についての小型化の妨げとなるという問題がある。
 本発明の目的は、光学モジュールを備える可動体を第1軸線周り及び第2軸線周りに駆動する振れ補正用駆動機構を備える光学ユニットの小型化を実現することにある。
 上記課題を解決するため、本発明に係る光学ユニットは、光学モジュールを備える可動体と、前記可動体を変位可能な状態で保持する固定体と、前記光学モジュールの光軸方向と交差する第1軸線周りに揺動可能に前記可動体を支持する第1支持部を備えるとともに、前記光軸方向及び前記第1軸線方向と交差する第2軸線周りに前記固定体側の部材に揺動可能に支持される第2支持部を備えるジンバル機構と、前記可動体を前記第1軸線周り及び前記第2軸線周りに駆動する振れ補正用駆動機構と、を備え、前記ジンバル機構は、前記光学モジュールの被写体側と被写体の反対側の内の一方側に配置されるジンバルフレーム部と、前記ジンバルフレーム部から前記光軸方向に延設されて前記第1支持部を有する第1支持部用延設部と、前記ジンバルフレーム部から前記光軸方向に延設されて前記第2支持部を有する第2支持部用延設部と、を備える、ことを特徴とする。
 本態様によれば、前記ジンバルフレーム部は、前記光学モジュールの被写体側と被写体の反対側の内の一方側に配置される。即ち、ジンバル機構は光学モジュールを備える可動体の側面周囲の全体を囲わないので、側面周囲に存在するのは前記第1支持部用延設部と前記第2支持部用延設部である。従って、従来のジンバル機構よりも光軸方向と交差する方向(側面側)の小型化を実現できる。 
 また、前記ジンバル機構は、前記第1軸線周りに揺動可能に前記可動体を支持する第1支持部を備え、前記光軸方向及び前記第1軸線方向と交差する第2軸線周りに前記固定体側の部材に揺動可能に支持される第2支持部を備える構造である。この支持構造によって、前記小型化を図れることに加えて、可動体を前記第1軸線周り及び第2軸線周りに駆動する振れ補正用駆動機構の配置の自由度が増し、全体のサイズを大型化せずに磁気回路を大きくすることが可能となり、以って駆動トルクの向上や消費電力の低減を図ることができる。
 本発明は、上記光学ユニットにおいて更に、前記ジンバルフレーム部は板状であることが好ましい。
 本態様によれば、ジンバルフレーム部は板状であるので、光軸方向についても小型化を図れる。
 本発明は、上記光学ユニットにおいて更に、前記第1支持部用延設部と前記第2支持部用延設部の少なくとも一方は板状である、ことが好ましい。
 本態様によれば、前記第1支持部用延設部と前記第2支持部用延設部の少なくとも一方は板状であるので、光軸方向と交差する方向(側面側)の一層の小型化を実現できる。
 本発明は、上記光学ユニットにおいて更に、前記第1支持部は、前記第1支持部用延設部の前記可動体に対向する内側に固定され、前記可動体側の部材と接触して支持する部分は凸曲面であり、前記第2支持部は、前記第2支持部用延設部の前記固定体に対向する外側に固定され、前記固定体側の部材と接触して支持される部分は凸曲面である、ことが好ましい。
 本態様によれば、前記ジンバル機構の前記第1支持部及び前記第2支持部は前記凸曲面によって形成されているので、前記ジンバル機構と前記可動体及び前記固定体側の部材との組付けが容易である。
 本発明は、上記光学ユニットにおいて更に、前記可動体は、前記第1支持部用延設部より外側に位置する外側部位を備え、前記第1支持部は、前記外側部位に対向する前記第1支持部用延設部の外側に固定され、前記外側部位と接触して支持する部分は凸曲面であり、前記第2支持部は、前記第2支持部用延設部の前記固定体に対向する外側に固定され、前記固定体側の部材と接触して支持される部分は凸曲面である、ことが好ましい。
 本態様によれば、前記ジンバル機構の前記第1支持部及び前記第2支持部は前記凸曲面によって形成されているので、前記ジンバル機構と前記可動体及び前記固定体側の部材との組付けが容易である。
 本発明は、上記光学ユニットにおいて更に、前記可動体は、前記第1支持部用延設部より外側に位置する外側部位を備え、前記外側部位には固定された凸部を備え、前記第1支持部は、前記凸部と対向する、前記第1支持部用延設部の外側に形成され、前記凸部と接触して支持する部分は凹球面であり、前記第2支持部は、前記第2支持部用延設部の前記固定体に対向する外側に固定され、前記固定体側の部材と接触して支持される部分は凸曲面である、ことが好ましい。
 本態様によれば、前記ジンバル機構の前記第1支持部は前記凹球面で形成され、前記第2支持部は前記凸曲面によって形成されているので、前記ジンバル機構と前記可動体及び前記固定体側の部材との組付けが容易である。
 本発明は、上記光学ユニットにおいて更に、前記可動体側の部材に固定された凸部を備え、前記第1支持部は、前記可動体の前記凸部と対向する、前記第1支持部用延設部の内側に形成され、前記凸部と接触して支持する部分は凹球面であり、前記第2支持部は、前記第2支持部用延設部の前記固定体に対向する外側に固定され、前記固定体側の部材と接触して支持される部分は凸曲面である、ことが好ましい。
 本態様によれば、前記ジンバル機構の前記第1支持部は前記凹球面で形成され、前記第2支持部は前記凸曲面によって形成されているので、前記ジンバル機構と前記可動体及び前記固定体側の部材との組付けが容易である。
 本発明は、上記光学ユニットにおいて更に、前記第1支持部用延設部は、前記ジンバルフレーム部に対する延設角度が前記可動体側の部材に弾性接触するよう内側に変位した角度に設定されており、前記第2支持部用延設部は、前記ジンバルフレーム部に対する延設角度が前記固定体側の部材に弾性接触するよう外側に変位した角度に設定されている、ことが好ましい。
 本態様によれば、前記第1支持部用延設部及び第2支持部用延設部は、前記延設角度により、弾性的に可動体側の部材と固定体側の部材に接触するので、第1支持部と第2支持部の強固な支持と円滑な揺動とを容易に実現することができる。
 本発明は、上記光学ユニットにおいて更に、前記第1支持部用延設部は、前記ジンバルフレーム部に対する延設角度が前記可動体側の部材に弾性接触するよう外側に変位した角度に設定されており、前記第2支持部用延設部は、前記ジンバルフレーム部に対する延設角度が前記固定体側の部材に弾性接触するよう外側に変位した角度に設定されている、ことが好ましい。
 本態様によれば、前記第1支持部用延設部及び第2支持部用延設部は、前記延設角度により、弾性的に可動体側の部材と固定体側の部材に接触するので、第1支持部と第2支持部の強固な支持と円滑な揺動とを容易に実現することができる。
 本発明は、上記光学ユニットにおいて更に、前記ジンバルフレーム部は、前記光軸を中心にして前記第1軸線方向に延在する第1延在部と、前記第2軸線方向に延在する第2延在部によってX字状に形成されている、ことが好ましい。
 本態様によれば、前記ジンバルフレーム部は、前記光軸を中心にして前記第1軸線方向に延在する第1延在部と、前記第2軸線方向に延在する第2延在部によってX字状に形成されている。このようにジンバルフレーム部がX字状であるので、第1軸線周り及び第2軸線周りのジンバル機構の揺動を円滑に行える。
 本発明は、上記光学ユニットにおいて更に、前記ジンバル機構は、金属板で形成され、X字状のジンバルフレーム部の第1延在部と第2延在部を折り曲げることによって前記第1支持部用延設部及び前記第2支持部用延設部が形成されている、ことが好ましい。
 本態様によれば、前記ジンバル機構は、金属板で形成され、更にX字状のジンバルフレーム部の第1延在部と第2延在部を折り曲げることによって前記第1支持部用延設部及び前記第2支持部用延設部が形成されているので、ジンバル機構の製造が容易である。
 本発明は、上記光学ユニットにおいて更に、前記ジンバルフレーム部は、前記第2延在部と前記可動体の隙間は、前記第1延在部と前記可動体の隙間よりも大きい、ことが好ましい。 
 別の言い方をすると、前記ジンバルフレーム部は、前記第1延在部の先端部の光軸方向の高さが前記第2延在部の先端部の光軸方向の高さより低くて前記可動体に対して近い位置となるように形成されていることが好ましい。
 本態様によれば、第1延在部の先端部は第2延在部の先端部より可動体に対して近い位置に位置しており、第1延在部の光軸方向の被写体側あるいは被写体の反対側の内の一方側の可動領域(可動ギャップ)が広くなっている。またこれに伴い、第1延在部の先端部は第2延在部の先端部より光軸方向の低い位置に位置していて、ジンバルフレーム部は折り曲げられた形状を有しているため、第1延在部の先端部と第2延在部の先端部は可動体に対して面一な形状ではない。この位置の違いにより、光軸方向における可動体の可動ギャップを容易に設けることができ、光軸方向の一層の小型化を実現できる。
 本発明は、上記光学ユニットにおいて更に、前記ジンバルフレーム部は、前記光学モジュールの被写体側に配置され、前記光学モジュールの入光部側のジンバルフレーム部の中央部には開口部が形成されている、ことが好ましい。
 本態様によれば、前記ジンバルフレーム部は、開口部を有して前記光学モジュールの被写体側に配置されている。これにより、ジンバル機構を固定体側に取り付けた状態で光学モジュールを備える可動体を組み付けることが可能となり、以って、組付け作業が容易になる。 
 また、前記振れ補正用駆動機構は駆動用の電力供給のための配線を有するが、この配線を被写体と反対側から引き出す構造にすることが可能となり、配線の引き回しがシンプルになる。
 本発明は、上記光学ユニットにおいて更に、前記振れ補正用駆動機構は、コイルと磁石の対で構成され、前記コイルと磁石の一方が前記固定体側に配置され、他方が前記可動体側に配置されている、ことが好ましい。
 本態様によれば、前記振れ補正用駆動機構は、コイルと磁石の対で構成され、前記コイルと磁石の一方が前記固定体側に配置され、他方が前記可動体側に配置されている。これにより、光軸方向における小型化を実現することができる。
 本発明は、上記光学ユニットにおいて更に、前記ジンバル機構は、前記ジンバルフレーム部の前記第1支持部用延設部とつながる部分に、該ジンバルフレーム部の作る面よりも前記第1支持部用延設部の延設の方向における高さを低める第1後退部が設けられていることが好ましい。
 前記振れ補正駆動機構による振れ補正に際して、前記ジンバル機構は、前記ジンバルフレーム部の前記第1支持部用延設部とつながる部分が前記延設の方向に移動する。言い換えると、前記「つながる部分」は前記光軸方向に移動するので、その移動を可能にするためのスペースが前記光軸方向における前記ジンバル機構周辺の対応する領域に必要となる。 
 本態様によれば、前記ジンバルフレーム部の前記つながる部分に、前記第1後退部が設けられている。この第1後退部によって、前記光軸方向への移動を可能にするためのスペース(前記光軸方向における対応する領域)の縮小が可能となる。これにより光学ユニットの光軸方向における小型化を進めることが可能となる。
 本発明は、上記光学ユニットにおいて更に、前記可動体は、前記第1支持部用延設部と第2支持部用延設部に対応する部位であって、前記ジンバルフレーム部に沿う部分に、前記第1後退部と同方向に後退する第2後退部が設けられていることが好ましい。
 前記振れ補正駆動機構による振れ補正に際して、前記可動体は、前記ジンバルフレーム部の前記移動を介して前記光軸方向に移動するので、その移動を可能にするためのスペースが前記光軸方向における前記可動体周辺の対応する領域に必要となる。 
 本態様によれば、前記可動体は、前記第1支持部用延設部と第2支持部用延設部に対応する部位であって、前記ジンバルフレーム部に沿う部分に、前記第2後退部が設けられている。この第2後退部によって、前記光軸方向への移動を可能にするためのスペース(前記光軸方向における対応する領域)の縮小が可能となる。これにより光学ユニットの光軸方向における小型化を進めることが可能となる。
 本発明は、上記光学ユニットにおいて更に、前記可動体は、前記光軸方向から見て矩形状であり、前記第2後退部は、前記可動体の角部に設けられていることが好ましい。
 前記可動体が前記矩形状である場合、前記振れ補正駆動機構による振れ補正に際して、前記可動体の前記角部が前記光軸方向に最も大きく移動する構造となる場合が多い。 
 本態様によれば、前記第2後退部が前記可動体の角部に設けられているので、前記小型化を効果的に実現することができる。
 本発明は、上記光学ユニットにおいて更に、前記可動体は、前記光学モジュールを前記光軸周りに回転可能に保持し、且つ前記第1支持部に支持される中間枠体を備えることが好ましい。
 本態様によれば、前記可動体は前記中間枠体を備えるので、光学モジュールを前記光軸周りに回転させることができる。言い換えると光学モジュールを前記第1軸線や第2軸線とは別の軸線周りに移動させることができる。これにより、光学モジュールのローリング補正を行うことが可能となる。
 本発明は、上記光学ユニットにおいて更に、前記中間枠体は、前記光学モジュールの被写体側と被写体の反対側の内の一方側に配置される平板部と、前記平板部から前記光軸方向に延設されて前記第1支持部用延設部と前記第2支持部用延設部に沿ってそれぞれ位置する側板部と、前記平板部が前記側板部につながる部分に設けられ、前記第1後退部と同方向に後退する第3後退部とを備えることが好ましい。
 前記振れ補正駆動機構による振れ補正に際して、前記中間枠体は、前記ジンバルフレーム部の前記移動を介して、言い換えると、前記「つながる部分」が前記光軸方向に移動するので、その移動を可能にするためのスペースが前記光軸方向における前記中間枠体周辺の対応する領域に必要となる。 
 本態様によれば、前記中間枠体は、前記つながる部分に前記第3後退部が設けられている。この第3後退部によって、前記光軸方向への移動を可能にするためのスペース(前記光軸方向における対応する領域)の縮小が可能となる。これにより光学ユニットの光軸方向における小型化を進めることが可能となる。
 本発明によれば、光学モジュールを備える可動体を第1軸線周り及び第2軸線周りに駆動する振れ補正用駆動機構を備える光学ユニットの小型化を実現することができる。
本発明の実施形態1を示す図で、光学ユニットの外部ケーシングを透過して表す斜視図。 本発明の実施形態1を示す図で、光学ユニットの外部ケーシングを透過して表す正面図。 本発明の実施形態1を示す図で、光学ユニットの外部ケーシングを透過して表す図2中のA矢視図。 本発明の実施形態1を示す図で、光学ユニットの外部ケーシングを透過して表す図2中のB矢視図。 本発明の実施形態1を示す図で、光学ユニット全体を分解して示す斜視図。 本発明の実施形態1を示す図で、光学ユニットを固定体とジンバル機構と可動体に分解して表す斜視図。 本発明の実施形態1を示す図で、光学ユニットを固定体とジンバル機構及び中間枠体の組とに分解して表す斜め後方からの斜視図。 本発明の実施形態1を示す図で、光学ユニットのジンバル機構、中間枠体、第1軸受部、第2軸受部及び弾性部材を表す斜視図。 本発明の実施形態1を示す図で、光学ユニットのジンバル機構、中間枠体、第1軸受部、第2軸受部及び弾性部材を表す図2中のB矢視図。 本発明の実施形態1を示す図で、光学ユニットのジンバル機構、中間枠体、第1軸受部、第2軸受部及び弾性部材を表す図2中のA矢視図。 本発明の実施形態1を示す図で、光学ユニットの中間枠体、ホルダ枠、弾性部材及び第1軸受部を表す斜め後方からの斜視図。 本発明の実施形態1を示す図で、光学ユニットの中間枠体、ホルダ枠、弾性部材及び第1軸受部を表す斜め後方からの分解斜視図。 本発明の実施形態2を示す図で、光学ユニットの外部ケーシングを透過して表す斜視図。 本発明の実施形態2を示す図で、光学ユニットの外部ケーシングを透過して表す正面図。 本発明の実施形態2を示す図で、光学ユニット全体を分解して表す斜視図。 本発明の実施形態2を示す図で、光学ユニットを固定体と可動体とジンバル機構とに分解して表す斜視図。 本発明の実施形態2を示す図で、光学ユニットの固定体と可動体を分解して表す斜め後方からの斜視図。 本発明の実施形態3を示す図で、光学ユニット全体を分解して表す斜視図。 本発明の実施形態3を示す図で、光学ユニットを固定体とジンバル機構と可動体に分解して表す斜視図。 本発明の実施形態3を示す図で、光学ユニットのジンバル機構、中間枠体、第1軸受部、第2軸受部及び弾性部材を表す斜視図。 本発明の実施形態3を示す図で、光学ユニットのジンバル機構、中間枠体、第1軸受部、第2軸受部及び弾性部材を表す図20中のB矢視図。 本発明の実施形態4を示す図で、光学ユニット全体を分解して表す斜視図。 本発明の実施形態4を示す図で、光学ユニットを固定体とジンバル機構と可動体に分解して表す斜視図。 本発明の実施形態4を示す図で、光学ユニットのジンバル機構、中間枠体、第1軸受部、第2軸受部、弾性部材及び光学モジュールを表す斜視図。 本発明の実施形態4を示す図で、光学ユニットのジンバル機構、中間枠体、第1軸受部、第2軸受部、弾性部材及び光学モジュールを表す図24中のB矢視図。 本発明の実施形態5を示す図で、光学ユニット全体を分解して表す斜視図。 本発明の実施形態5を示す図で、光学ユニットを固定体とジンバル機構と可動体に分解して表す斜視図。 本発明の実施形態5を示す図で、光学ユニットのジンバル機構、中間枠体、第1軸受部、第2軸受部及び弾性部材を表す斜視図。 本発明の実施形態5を示す図で、光学ユニットのジンバル機構、中間枠体、第1軸受部、第2軸受部及び弾性部材を表す図28中のB矢視図。 本発明の実施形態6を示す図で、第1支持部の部分の要部拡大縦断面図。 本発明の実施形態7を示す図で、第1支持部の部分の要部拡大縦断面図。 本発明の実施形態8を示す図で、第1支持部の部分の要部拡大縦断面図。
 以下、本発明の光学ユニットを図1~図12に表す実施形態1と、図13~図17に表す実施形態2と、図18~図21に表す実施形態3と、図22~図25に表す実施形態4と、図26~図29に表す実施形態5と、図30に表す実施形態6と、図31に表す実施形態7と、図32に表す実施形態8と、の八つの実施形態を例にとって、これらの図面に基づいて詳細に説明する。 
 尚、以下の説明では最初に図1~図7に基づいて実施形態1を例にとって光学ユニットの全体構成の概略について説明する。次に、図8~図12に基づいて本発明の実施形態1に係る光学ユニットの具体的構成について詳細に説明する。 
 続いて、本発明の実施形態1に係る光学ユニットの作動態様をピッチング及びヨーイングの補正とローリングの補正に分けて説明し、本発明の実施形態1に係る光学ユニットの作用、効果に言及する。 
 次に、図13~図17に基づいて本発明の実施形態2に係る光学ユニットの具体的構成を前記実施形態1との相違点を中心に説明し、本発明の実施形態2に係る光学ユニットの作動態様と作用、効果に言及する。次に、図18~図21に基づいて本発明の実施形態3に係る光学ユニットの具体的構成と、その変形例の構成を実施形態1との相違点を中心に説明し、本発明の実施形態3に係る光学ユニットの作用、効果に言及する。 
 次に、図22~図25に基づいて本発明の実施形態4に係る光学ユニットの具体的構成と、その変形例の構成を実施形態1との相違点を中心に説明し、本発明の実施形態4に係る光学ユニットの作用、効果に言及する。次に、図26~図29に基づいて本発明の実施形態5に係る光学ユニットの具体的構成と、その変形例の構成を実施形態1との相違点を中心に説明し、本発明の実施形態5に係る光学ユニットの作用、効果に言及する。 
 次に、図30に基づいて本発明の実施形態6に係る第1支持部の具体的構成を実施形態1との相違点を中心に説明する。次に、図31に基づいて本発明の実施形態7に係る第1支持部の具体的構成を実施形態1と実施形態6との相違点を中心に説明する。次に、図32に基づいて本発明の実施形態8に係る第1支持部の具体的構成を実施形態1と実施形態7との相違点を中心に説明する。 
 更に、これら八つの実施形態とは部分的構成を異にする本発明の他の実施形態について言及する。
[実施形態1]
光学ユニットの全体構成の概略(図1~図7参照)
 本発明に係る実施形態1の光学ユニット1は、光学モジュール3を備える可動体5と、該可動体5を少なくともピッチング(縦振れ)方向Yとヨーイング(横振れ)方向Xに変位可能な状態で保持する固定体7と、光学モジュール3の光軸方向Zと交差する第1軸線L1周りに揺動可能に可動体5を支持する第1支持部19を備えると共に、光軸方向Z及び第1軸線L1方向と交差する第2軸線L2周りに固定体7側の部材に揺動可能に支持される第2支持部20を備えるジンバル機構21Aと、可動体5を第1軸線L1周り及び第2軸線L2周りに駆動する振れ補正用駆動機構23と、を備えている。 
 そして、ジンバル機構21Aは、光学モジュール3の被写体側+Zと被写体の反対側-Zの内の一方側に配置されるジンバルフレーム部25Aと、ジンバルフレーム部25Aから光軸方向Zに延設されて第1支持部19を有する第1支持部用延設部27と、ジンバルフレーム部25Aから光軸方向Zに延設されて第2支持部20を有する第2支持部用延設部29と、を備えている。
 また、本実施形態1では固定体7に対して可動体5を光学モジュール3の光軸L周りに回転可能に支持するローリング支持機構9(図5、図8)と、可動体5を光軸L周りに回動させるローリング駆動機構11(図2、図5)と、を備えている。 
 また、ローリング支持機構9は、光軸Lと交差する方向X、Yにおける可動体5と固定体7との間であって光軸L周りにおける所定半径の円周C(図8)上の複数箇所に配置され、可動体5を光軸L周りに回転可能に支持する弾性部材13を備えることによって構成されている。
 また、本実施形態1では図8に表したように、弾性部材13は、光軸L周りに撓み変形する板バネ13(弾性部材と同じ符号を用いる)によって構成されている。また、本実施形態では可動体5と固定体7の間に可動体5のローリング方向Rの移動(回転)を許容した状態で両者を接続する中間枠体15Aが設けられている。 
 そして、板バネ13の一端部13aは、中間枠体15Aに形成される第1被固定部16に固定されている。板バネ13の他端部13bは、光学モジュール3を保持して光学モジュール3と一体に移動するホルダ枠17に形成される第2被固定部18に固定されている。尚、板バネ13の第1被固定部16及び第2被固定部18への固定は、両者の接着、嵌合、係止等によって行われている。
 また、本実施形態1では、ジンバルフレーム部25Aは、光学モジュール3の被写体側の+Zに配置され、光学モジュール3の入光部側のジンバルフレーム部25Aの中央部には開口部30が形成されている。 
 この他、本実施形態1ではローリング駆動機構11と振れ補正用駆動機構23は、コイル31A,31B,31Cと磁石33A,33B,33Cの対で構成されており、コイル31A,31B,31Cを取り付けるためのコイル取付けフレーム35が設けられている。また、磁石33A,33B,33Cは、ホルダ枠17に取り付けられている(図5、図6)。 
 更に、本実施形態1では、第1支持部19を受け入れて係合する第1軸受部材37が中間枠体15Aに対して設けられている。更に、第2支持部20を受け入れて係合する第2軸受け部材38が固定体7の外部ケーシング39の一対のコーナー部の内面側に設けられている。
(2)光学ユニットの具体的構成(図1~図12参照)
 本実施形態1に係る光学ユニット1Aは、光学モジュール3のピッチング(縦振れ)、ヨーイング(横振れ)及びローリング(光軸L周りの振れ)の補正機能を備えた光学ユニットである。光学モジュール3は、例えばカメラ付携帯電話機やタブレット型PC等に搭載される薄型カメラ等として用いられる。光学モジュール3を保持して光学モジュール3に生じたピッチング方向Y、ヨーイング方向X及びローリング方向Rの補正を行うアクチュエーター部分が光学ユニット1Aの主要な構成になっている。以下、光学ユニット1Aの具体的構成について詳述する。
<可動体>
 可動体5は、図5及び図6に表したように、光学モジュール3と、光学モジュール3を保持すると共にピッチング、ヨーイング及びローリングの検出用及び補正用の三組の磁石33A、33B、33Cを取り付けるホルダ枠17と、を備えることによって一例として構成されている。 
 光学モジュール3は、被写体側+Zにレンズ3aを備え、矩形筐体状のハウジング3bの内部に撮像を行うための光学機器等が内蔵されている。ホルダ枠17は、光学モジュール3のレンズ3aが設けられる前面と、反対側の後面を除く、残りの4面を取り囲むように設けられる矩形枠状の部材である。ホルダ枠17の3面を利用してピッチング及びヨーイング検出用及び補正用の二組の磁石33A、33Bと、ローリング検出用及び補正用の一組の磁石33Cがこれらの外面側に取り付けられている。
<固定体>
 固定体7は、図5及び図6に表したように、外部ケーシング39と、外部ケーシング39内に組付けられると共に、ピッチング、ヨーイング及びローリングの補正用の三組のコイル31A、31B、31Cを取り付けるコイル取付け用フレーム35と、外部ケーシング39の第2軸線L2方向のコーナー部の内面に取付けられる第2軸受け部材38と、を備えることによって一例として構成されている。 
 外部ケーシング39は、被写体側+Zとなる前面に窓部41を有し、被写体と反対側-Zとなる後面が開放されている構造であり、光学モジュール3より一回り大きな矩形容器状の部材である。
<コイル取付けフレーム>
 コイル取付けフレーム35は、被写体側+Zに中央部が開口された矩形枠状の平板部43を有し、該平板部43の3辺に光軸方向Zに沿うよう、被写体と反対側-Zに90°折り曲げた3枚のコイル取付け板44を形成することによって構成されている。 
 これら3枚のコイル取付け板44の内面には、ピッチング補正用及びヨーイング補正用の二組のコイル31A、31Bと、ローリング補正用の一組のコイル31Cが取り付けられている。
<振れ補正用駆動機構、ローリング駆動機構>
 振れ補正用駆動機構23は、可動体5の姿勢を補正するための、補正用コイル31Aと磁石33Aの対、及び補正用コイル31Bと磁石33Bとの対により構成されている。これらの補正用コイル31A,31Bと磁石33A,33Bの対により可動体5のピッチングとヨーイングの補正が行われる。 
 ローリング駆動機構11は、ローリングの補正用コイル31Cとローリング検出用及び補正用の磁石33Cとの対により構成されている。 
 光学ユニット1Aの後述する振れの検出結果に基づいて、振れ補正用駆動機構23及びローリング駆動機構11がその振れを補正するように作用する。即ち、光学ユニット1Aの前記振れを打ち消す方向に可動体5を動かすように各コイル31A、31B、31Cに電流が流される。
 本実施形態1ではコイル31A、31B、31Cとしてコイルをパターンとして基板配線内に取り込んだパターン基板(コイル基板)を採用している。尚、コイル31A、31B、31Cとしては、このようなパターン基板に代えて巻線コイルを使用することも可能である。
<光学ユニットの振れの検出>
 また、三組のコイル31A、31B、31Cの近傍には、磁束密度の変化を検出する3つの磁気センサー(ホール素子)45A、45B、45Cが各別に設けられている。 
 この磁気センサー(ホール素子)45A、45B、45Cは、ピッチング、ヨーイング及びローリングの検出用及び補正用の磁石33A、33B、33Cとの各対により、その磁束密度の変化から、光学ユニットにおける光学モジュールを備える可動体5の振れを検出する。この検出結果に基づいて振れ補正用駆動機構23及びローリング駆動機構11がその振れを補正するように作用する。
 このうちコイル31Aの近傍に設けられる磁気センサー45Aの近くにはコイル31Aの温度変化を検出し、検出した温度変化に基づいて各磁気センサー45A、45B、45Cの検出値の補正に利用するサーミスター47が設けられている。 
 また、第2軸受部材38は、光軸方向Zに長い台形断面のブロック状の部材で、その内面には、第2支持部20を受け入れて係合する凹部38aが形成されている。
<中間枠体>
 中間枠体15Aは、ホルダ枠17を被写体側+Zから包むように設けられる金属製の平板を折り曲げて形成される部材である(図6)。 
 中間枠体15Aは、被写体側+Zに中央部が矩形状に大きく開口された開口部50を有する矩形枠状の平板部49Aを有する。中間枠体15Aは、平板部49Aのコーナー部に光軸方向Zに沿うよう被写体と反対側-Zに90°折り曲げた4枚の側板部51を設けた構造である。
 また、4枚の側板部51の先端の一部は矩形状に切り欠かれており、組み付けられた状態でこれらの切欠き部53と対向するホルダ枠17の部位にも切欠き部55が形成されている(図5、図11)。 
 そして、中間枠体15Aの4枚の側板部51の先端に形成されている4つの切欠き部53が第1被固定部16になっており、ホルダ枠17の対応する4つの切欠き部55が第2被固定部18になっている。従って、板バネによって構成される弾性部材13の一端部13aが切欠き部53に係止され固定されるように構成されている。 
 尚、本実施形態1では、弾性部材13の一端部13aと他端部13bは、一例として矩形板状に形成されているが、この他、円板状、球体状、棒状等、他の種々の形状に形成することが可能である。
 また、4枚の側板部51のうち、第1軸線L1方向に位置する側板部51の外面には、一例として矩形平板状の第1軸受部材37が取り付けられている。第1軸受部材37の更に外面には、第1支持部19を受け入れて係合する凹部37aが形成されている。 
 この他、中間枠体15Aの平板部49Aにおける四方のコーナー部から4枚の側板部51の付け根にかけての部分にも切欠き部57が設けられている。この切欠き部57は、後述するジンバル機構21Aの第1軸線L1周りと第2軸線L2周りの必要な揺動角度(一例として±6°~10°)を確保するために設けられている。
<弾性部材>
 弾性部材13は、光軸Lを中心とする所定半径の円周C(図8)を等分割した少なくとも3か所に配置されている。本実施形態では、図5と図11に表したように、光軸Lを中心とする円周Cを90°ずつ4分割した4か所に一例として金属製の板バネによって構成した弾性部材13を4つ設けている。 
 ここで、等分割とは厳密に等しく分割されていることまでは要しないで、ほぼ等分割でもよい意味で使われている。 
 また、板バネ13は、第1被固定部16と第2被固定部18に固定されて中間枠体15Aとホルダ枠17の間に組み付けられた状態で板厚の方向が可動体5の光軸L周りの回転方向、即ちローリング方向Rに向くように配置されている。
 ここで、「板厚の方向が光学モジュール3の光軸L周りの回転方向、即ちローリング方向Rに向く」における「ローリング方向Rに向く」とは、本明細書では厳密に時々刻々変化するローリング方向Rを正確に向いていることを要しない。具体的には、光学モジュール3を光軸L周りに回転可能に支持する機能が不安定にならない範囲で、その向きには幅があり、その幅の範囲で多少、板厚の方向がローリング方向Rから傾いていても構わない。
 また、図6から図10に表したように、板バネ13は、光軸に沿う方向Zの第1長さAが光軸Lと交差する半径方向の第2長さBより大きくなるように形成されている。図示の実施形態では、第1長さAを第2長さBの3~4倍の長さに設定されている。 
 また、本実施形態1では板バネ13の一端部13aと他端部13bの間の自由撓み部13cを一例としてU字形状に形成しており、その第1長さAを前述のように長くとって、板バネ13の円滑な撓み変形を可能にすると共に、光軸方向Zの動きに対する剛性を高くしている。
 また、板バネ13の第2長さBも、板バネ13の板厚に比べて幅広に設定しており、バネ幅方向となる半径方向の動きに対する剛性を高くしている。 
 尚、板バネ13の自由撓み部13cの形状は、図示の実施形態のようなU字形状の他、V字形状、I字形状あるいはN字形状等、他の形状であっても構わない。I字形状及びN字形状の場合は、一端部13aと他端部13bの位置が光軸の沿う方向(第1長さAの方向)において反対側に位置することになる。
<ジンバル機構>
 図6から図10に表したように、ジンバル機構21Aは、金属製平板材料を折り曲げることによって形成されるバネ性を兼ね備えた機構である。具体的には、ジンバル機構21Aは、図9及び図10に表したように、一例として被写体側+Zに設けられるジンバルフレーム部25Aと、ジンバルフレーム部25Aの四方のコーナー部から光軸方向Zに90°折り曲げられて形成される第1支持部用延設部27と、第2支持部用延設部29と、を備えることによって構成されている。 
 尚、第1支持部用延設部27と第2支持部用延設部29については、必ずしもその全部が板状でなくてもよく、その一部のみを板状に形成してバネ性を発揮させるようにしてもよい。また、第1支持部用延設部27と第2支持部用延設部29の一方を板状以外の他の形状(例えばロッド形状等)にすることも可能である。
 また、第1支持部用延設部27の可動体5に対向する内側の面に第1支持部19が設けられている。第1支持部19は、可動体5側の部材となる第1軸受部材37の凹球面状の凹部37aと接触して支持する部分が凸曲面に形成されている金属製の部材によって構成されている。第1支持部19は、一例として第1支持部用延設部27にプレス等で凸部が形成されている。または、第1支持部用延設部27に直接、溶接することによって取り付けられている。 
 また、第2支持部用延設部29の固定体7に対向する外側の面に第2支持部20が設けられている。第2支持部20は、固定体7側の部材となる第2軸受部材38の凹球面状の凹部38aと接触して支持する部分が凸曲面に形成されている金属製の部材によって構成されている。第2支持部20は、一例として第2支持部用延設部29にプレス等で凸部が形成されている。または、第1支持部用延設部27に直接、溶接することによって取り付けられている。
 また、図9及び図10に表したように、ジンバルフレーム部25A単体の状態で、本実施形態1では、第1支持部用延設部27は、ジンバルフレーム部25Aに対する延設角度αが可動体5側の部材となる第1軸受部材37に弾性接触するよう内側に変位した角度(α<90°)に設定されている(図9)。 
 また、ジンバルフレーム部25A単体の状態で、本実施形態1では、第2支持部用延設部29は、ジンバルフレーム部25Aに対する延設角度αが固定体7側の部材となる第2軸受部材38に弾性接触するよう外側に変位した角度(α>90°)に設定されている(図10)。 
 これにより、第1支持部19は第1軸受部材37と弾性的に接触し、第2支持部20は第2軸受部材38と弾性的に接触するので、即ちいずれも弾性的に接触するので、両者の接点部に与圧が掛かって脱落の虞の少ない強固な支持と円滑な揺動とが可能になっている。
 ジンバルフレーム部25Aは、中央に円形の開口部30が形成された矩形枠状のベースフレーム24Aと、ベースフレーム24Aの四方のコーナー部から光軸Lを中心にして第1軸線L1方向に延在する第1延在部26と、第2軸線L2方向に延在する第2延在部28と、を備えてX字状に形成されている。 
 また、ジンバル機構21Aは、本実施形態1では金属板によって形成されており、X字状のジンバルフレーム部25Aの第1延在部26と第2延在部28を延設方向に長く形成して、これらの先端部を折り曲げることによって第1支持部用延設部27と第2支持部用延設部29が形成されている。
 また、図6及び図8に表したように、ジンバルフレーム部25Aは、第2延在部28と可動体5の隙間は、第1延在部26と可動体5の隙間よりも大きく形成されている。言い換えると、ジンバルフレーム部25Aは、折れ線D、Eで折り曲げることによって第1延在部26の先端部の光軸方向Zの高さH1が第2延在部28の先端部の光軸方向Zの高さH2より低くなるように、即ち、可動体5に対して近い位置になるように形成されている。 
 これにより、第1延在部26先端に形成される光軸方向Zにおける被写体側+Zの可動領域(可動ギャップ)が広くなり、光軸方向Zにおける可動体5の可動ギャップを容易に設けることが可能になっている。
 本実施形態1に係る光学ユニット1Aの構造は上記の通りであるが、その具合的な構成を整理して以下に記載する。 
 可動体5と固定体7の間に可動体5のローリング方向の移動を許容した状態で両者を接続する中間枠体15が設けられている。 
 可動体5は、光学モジュール3を保持すると共にピッチング、ヨーイング及びローリングの検出用及び補正用の磁石33A、33B、33Cを取り付けるホルダ枠17を備えている。 
 固定体7は、外部ケーシング39と、外部ケーシング39内に組付けられると共にピッチング、ヨーイング及びローリングの補正用のコイル31A、31B、31Cを取り付けるコイル取付けフレーム35と、外部ケーシング39の第2軸線L2方向のコーナー部の内面に取り付けられ、ジンバル機構21の第2支持部20が支持される第2軸受部材38とを備える。 
 中間枠体15は、ジンバル機構21の第1支持部19が支持される第1軸受け部材37を備える。 
 コイル取付けフレーム35は、ピッチング、ヨーイング及びローリングの検出用及び補正用の磁石33A、33B、33Cとの各対により、その磁束密度の変化から、光学ユニット1Aの手振れを検出する磁気センサー(ホール素子)45A、45B、45Cを備える。 
 そして、弾性部材13は、ホルダ枠17と中間枠体15との間に配置されている。
 本構造によれば、光学モジュール3のピッチングの補正とヨーイングの補正とローリングの補正を行うことができる光学ユニット1Aを、効率的な部品の配置と、新規なジンバル機構21と弾性部材13の採用によってコンパクトかつ容易に製造することが可能になる。
(3)光学ユニットの作動態様
 次に、このようにして構成される本実施形態1に係る光学ユニット1Aの作動態様をピッチング及びヨーイングの補正とローリングの補正に分けて説明する。
(A)ピッチング及びヨーイングの補正
 光学ユニット1Aにピッチング方向Yとヨーイング方向Xの両方向又はいずれか一方向に振れが発生すると、図示しない振れ検出センサ(ジャイロスコープ)によって振れを検出し、その結果に基づいて振れ補正用駆動機構23を駆動させる。或いは、磁気センサー(ホール素子)45A、45Bとピッチング及びヨーイングの検出用及び補正用の磁石33A、33Bとの各対により、その磁束密度の変化から、光学ユニット1Aの振れを検出してもよい。 
 この振れの検出結果に基づいて、振れ補正用駆動機構23がその振れを補正するように作用する。即ち、光学ユニット1Aの前記振れを打ち消す方向に可動体5を動かすように各コイル31A、31Bに電流が流され、これにより振れが補正される。
(B)ローリングの補正
 光学ユニット1AにローリングR方向に振れが発生すると、磁気センサー(ホール素子)45Cとローリング検出用及び補正用の磁石33Cとの対により、その磁束密度の変化から、光学ユニット1AのローリングR方向の振れが検出される。 
 この振れの検出結果に基づいて、ローリング駆動機構11がその振れを補正するように作用する。即ち、光学ユニット1Aの前記振れを打ち消す方向に可動体5を動かすように各コイル31Cに電流が流され、これによりローリングR方向の振れが補正される。
 振れを補正する動作のための駆動源としては、振れ補正用駆動機構23及びローリング駆動機構のようなコイル31A、31B、31Cと磁石33A、33B、33Cとの各対により構成されるボイスコイルモーターに限定されない。他の駆動源としてステッピングモーターやピエゾ素子等を利用したものを使用することも可能である。 
 ピッチング方向Y、ヨーイング方向X、ローリング方向Rの振れ補正後、駆動源への電力の提供が停止されると、磁気バネによる姿勢復帰機構と、弾性部材13のバネ性によりそれぞれ振れ補正が解除された初期位置の状態に戻る。 
 ここで姿勢復帰機構は、図示は省くが、固定体7側と可動体5側に別々に配設された磁性体と磁石の間に生じる磁気吸引力を利用する構造である。前記振れのない初期位置の姿勢にあるとき、前記磁気吸引力はその初期位置の姿勢を保持するように作用し、前記振れにより初期位置からずれると前記磁気吸引力は、元の初期位置の姿勢に戻す方向に働くように前記磁性体と前記磁石が配置されている。
 このようにして構成される本実施形態1に係る光学ユニット1Aによれば、弾性部材13による支持構造により、従来、光学モジュール3の被写体の反対側-Zに設けられていた高価なベアリングのような支持部材の使用を省略することができる。また、ベアリングが設けられていた分のスペースが節約できるから、光学ユニット1Aの光軸方向Zの小型化が図れるようになる。 
 また、平板材料を折り曲げて形成したジンバル機構21Aの採用により光学モジュール3と外部ケーシング39間のスペースを小さくすることができるので、光学ユニット1Aの光軸と交差する方向X、Yの小型化が図れるようになる。
 更に、本実施形態1の場合には、光学モジュール3とホルダ枠17を固定体7から取り外す際、被写体と反対側-Zに、これらの取り外しを妨げる部材が存在していないから、そのまま被写体と反対側-Zに光学モジュール3とホルダ枠17のみを引き抜くことができる。従って、メンテナンス性にも優れている。
 また、ジンバル機構21Aのジンバルフレーム部25Aの第1延在部26と第1支持部用延設部27との折り曲げ構造部分、及び第2延在部28と第2支持部用延設部29との折り曲げ構造部分の弾力構造によって、光学モジュール3を光軸方向Zの外部衝撃(落下、衝突等)から守り、被写体と反対側-Zからの光学モジュール3の脱落の虞を低減させるという作用、効果が得られる。更に、中間枠体15Aの平板部49Aの存在も光学モジュール3を外部衝撃から守る作用をしている。
[実施形態2]
(1)光学ユニットの具体的構成(図13~図17参照)
 本発明の実施形態2に係る光学ユニット1Bは、ジンバル機構21Bのジンバルフレーム部25Bを光軸方向Zにおける被写体と反対側-Zに配置した実施形態である。これに伴い、中間枠体15Bの平板部49Bも光軸方向Zにおける被写体と反対側-Zに配置されている。 
 尚、その他の構成については基本的に実施形態1に係る光学ユニット1Aと同様である。従って、以下の説明では実施形態1と同様の構成については説明を省略し、実施形態1と異なるジンバル機構21Bと中間枠体15Bの構成と配置を中心に説明する。
 即ち、本実施形態2では、ジンバル機構21Bは実施形態1と同様、金属製平板材料を折り曲げることによって形成されている。即ち、被写体と反対側-Zに設けられるジンバルフレーム部25Bと、ジンバルフレーム部25Bの四方のコーナー部から光軸方向Zに90°折り曲げて形成される第1支持部用延設部27と第2支持部用延設部29と、を備えることによって構成されている。 
 尚、本実施形態2のジンバルフレーム部25Bには、実施形態1のジンバルフレーム部25Aに設けられていた開口部30は設けられていない。実施形態1に比べてベースフレーム24Bの大きさが小さく、第1延在部26と第2延在部28の長さが長いジンバルフレーム部25Bになっている。
 また、本実施形態2では中間枠体15Bは、実施形態1と同様、金属製平板材料を折り曲げることによって形成されており、被写体の反対側-Zに設けられる平板部49Bと、平板部49Bの四方のコーナー部から光軸方向Zに90°折り曲げられて形成される4枚の側板部51と、を備えることによって構成されている。 
 尚、本実施形態2の中間枠体15Bの平板部49Bには、中央部にジンバルフレーム部25Bのベースフレーム24Bより一回り大きな矩形状の開口部50Bが形成されている。平板部49Bの四方のコーナー部には光軸Lを中心に半径方向に延びる延在部59が形成されていて、延在部59の先端から被写体側+Zに向けて4枚の側板部51が延びるように形成されている。
 そして、ジンバル機構21Bと中間枠体15Bのこのような配置に伴って、本実施形態2ではホルダ枠17に形成される切欠き部55と、中間枠体15Bの側板部51の先端に形成される切欠き部53は、被写体側+Zに位置しており、弾性部材13の一端部13aと他端部13bが被写体側+Zに位置する状態で取り付けられている。
(2)光学ユニットの作動態様
 このようにして構成される本実施形態2に係る光学ユニット1Bの作動態様は、実施形態1に係る光学ユニット1Aの作動態様と基本的に同様である。光学モジュール3と一体に移動するホルダ枠17に取り付けられるピッチングとヨーイングの検出用及び補正用の二組の磁石33A、33Bと、固定状態で設けられるコイル取付けフレーム35に取り付けられるピッチングとヨーイング補正用の二組のコイル31A、31Bと、の相対位置の変化に基づいてピッチング方向Yとヨーイング方向Xの振れの補正が実行される。 
 同様に、ホルダ枠17に取り付けられるローリング検出用及び補正用の一組の磁石33Cと、コイル取付けフレーム35に取り付けられるローリング補正用の一組のコイル31Cと、の相対位置の変化に基づいてローリング方向Rの振れの補正が実行される。
 そして、ピッチング方向Yとヨーイング方向Xの振れの補正後、駆動源への電力の供給が停止されると、前記姿勢復帰機構の磁気吸引力によって元の初期位置の状態に戻る。 
 また、ローリング方向Rの振れの補正後、駆動源への電力の供給が停止されると、弾性部材13の自由撓み部13cのバネ性が発揮されて弾性部材13も元の状態に戻る。
 そして、このようにして構成される本実施形態に係る光学ユニット1Bによっても実施形態1の光学ユニット1Aと同様の作用、効果が発揮されて光学ユニット1Bの光軸方向Zと光軸と交差する方向X、Yの小型化が図れるようになる。
 また、ジンバル機構21Bのジンバルフレーム部25Bの第1延在部26と第1支持部用延設部27との折り曲げ構造部分、及び第2延在部28と第2支持部用延設部29との折り曲げ構造部分の弾力構造によって、光学モジュール3を光軸方向Zの外部衝撃(落下、衝突等)から守り、被写体と反対側-Zからの光学モジュール3の脱落の虞を低減させるという作用、効果が得られる。更に、中間枠体15Bの平板部49Bの存在も光学モジュール3を外部衝撃から守る作用している。
[実施形態3](図18~図21参照)
 本発明の実施形態3に係る光学ユニット1Cは、基本的に実施形態1に係る光学ユニット1Aと同様の構成を有しており、光学ユニット1Cの光軸方向Zにおける一層の小型化を図るための構成として、ジンバルフレーム部25Cに対して第1後退部61を設けた実施形態である。 
 従って、以下の説明では実施形態1と同様の構成については、図面中、同一の符号を使用して表すことでその説明を省略し、実施形態1と異なる本実施形態3の特有の構成である第1後退部61の構成と、その作用、効果を中心にして説明する。
 本実施形態3では、ジンバル機構21Cには、ジンバルフレーム部25Cの第1支持部用延設部27とつながる部分に、ジンバルフレーム部25Cの作る面よりも第1支持部用延設部の延設の方向(Z方向)における高さを低める第1後退部61が設けられている。 
 具体的には、ジンバルフレーム部25Cのベースフレーム24Cから第1軸線L1の外方に向けて延びる第1延在部26の先端部を、被写体と反対側-Zに折り曲げて傾斜させた状態にする。これにより、第1後退部61を形成して、第1支持部用延設部27との接続辺の位置をジンバルフレーム部25Cの作る面に対して被写体と反対側-Zに位置させている。
 また、ジンバルフレーム部25Cが曲げ加工ができない成形品や厚肉の基板部材等である場合には、これらの角部を単に斜めにカットして面取りし、光軸方向Zから見て略八角形状にすることで第1後退部61を形成することも可能である。 
 また、図18及び図19に表すように、本実施形態ではジンバルフレーム部25Cの第1後退部61が形成される第1延在部26の先端部と対向する位置に、外部ケーシング39の天面部63が存在しているが、該天面部63を省略した構成の外部ケーシング39とすることも可能である。
 また、第1延在部26の先端部を曲げる角度は、ジンバルフレーム部25Cが傾いて第1後退部61が外部ケーシング39の天面部63に接近したときに、第1後退部61が外部ケーシング39の天面部63の裏面に衝突しない角度に設定する。 
 尚、天面部63自体を設けない構成の外部ケーシング39にした場合は、第1延在部26の先端部を曲げる角度は、ジンバルフレーム部25Cが傾いて第1後退部61が被写体側(+Z方向)に移動したときに、第1後退部61が外部ケーシング39の被写体側の表面から飛び出ない角度に設定する。
 この他、第1後退部61は、第1延在部26の先端部を内側にL字状に折り曲げる、あるいは内側に湾曲させる等して凹陥部を形成することによって第1後退部61を形成することも可能である。
 そして、このようにして構成される本実施形態に係る光学ユニット1Cによっても実施形態1に係る光学ユニット1Aと同様の作用、効果が発揮されて光学ユニット1Cの光軸方向Zと光軸と交差する方向X、Yの小型化が図れるようになる。 
 また、本実施形態3によれば、第1後退部61を設けたことで光学ユニット1Cの光軸方向Zの一層の小型化が図れるようになる。
[実施形態4](図22~図25参照)
 本発明の実施形態4に係る光学ユニット1Dは、基本的に実施形態1に係る光学ユニット1Aと同様の構成を有しており、光学ユニット1Dの光軸方向Zにおける一層の小型化を図るための構成として、ジンバルフレーム部25Cに対して第1後退部61を設けると共に、ジンバルフレーム部25Cの内面に沿う光学モジュール3のハウジング3bに対して第2後退部65を設けた実施形態である。 
 従って、以下の説明では実施形態1と実施形態3と同様の構成については、図面中、同一の符号を使用して表すことでその説明を省略し、実施形態1と異なる本実施形態4の特有の構成である第2後退部65の構成と、その作用、効果を中心にして説明する。
 本実施形態4では、ジンバル機構21Cに対して実施形態3で述べた第1後退部61が設けられると共に、可動体5に対して、第1支持部用延設部27と第2支持部用延設部29に対応する部位であって、ジンバルフレーム部25Cに沿う部分に、第1後退部61と同方向に後退する第2後退部65が設けられている。 
 具体的には、ジンバルフレーム部25Cの第1延在部26の先端部及び第2延在部28の先端部に対向する、光学モジュール3のハウジング3bに対して、光軸方向Zから見て矩形状の光学モジュール3のハウジング3bの角部を一例として斜めにカットする面取りを施すことによって傾斜面によって構成される第2後退部65が設けられている。
 また、第2後退部65は、光学モジュール3のハウジング3bの被写体側+Zの角部を含むエッジ部分の全周に設けることも可能である。 
 また、第2後退部65は、前記傾斜面に限らず、光学モジュール3のハウジング3bの該当する部分を被写体と反対側-ZにL字状に凹陥させた段差部や湾曲させた凹陥部によって第2後退部65を構成することも可能である。 
 また、第1後退部61を省略して第2後退部65のみを備える光学ユニット1とすることも可能である。
 そして、このようにして構成される本実施形態に係る光学ユニット1Dによっても、実施形態1に係る光学ユニット1Aと同様の作用、効果が発揮されて光学ユニット1Dの光軸方向Zと光軸と交差する方向X、Yの小型化が図れるようになる。 
 また、本実施形態4によれば、第1後退部61と第2後退部65を設けたことで光学ユニット1Dの光軸方向Zの更に一層の小型化が図れるようになる。尚、第1後退部61を省略して第2後退部65のみを備える光学ユニット1とした場合には、第2後退部65の存在部分において光学ユニット1の光軸方向Zの小型化に寄与するという作用、効果が得られる。
[実施形態5](図26~図29参照)
 本発明の実施形態5に係る光学ユニット1Eは、基本的に実施形態1に係る光学ユニット1Aと同様の構成を有しており、光学ユニット1Eの光軸方向Zにおける一層の小型化を図るための構成として、ジンバルフレーム部25Cに対して第1後退部61を設けると共に、中間枠体15Eに対して第3後退部67を設けた実施形態である。 
 従って、以下の説明では実施形態1と実施形態3と同様の構成については、図面中、同一の符号を使用して表すことでその説明を省略し、実施形態1と異なる本実施形態5の特有の構成である第3後退部67の構成と、その作用、効果を中心にして説明する。
 本実施形態5では、光学モジュール3を、弾性部材13を介して光軸L周りに回転可能に保持し、且つ第1軸受部材37を介して第1支持部19に支持される中間枠体15Eを備えている。 
 尚、中間枠体15Eの基本的な構成は、実施形態1に係る光学ユニット1Aにおける中間枠体15Aと同様であるので、ここでの詳細な説明は省略する。
 更に、本実施形態5では、中間枠体15Eは、光学モジュール3の被写体側+Zに配置される平板部49Eと、平板部49Eから光軸方向Zの被写体と反対側-Zに延設されて第1支持部用延設部27と第2支持部用延設部29に沿ってそれぞれ位置する側板部51と、を実施形態1に係る中間枠体15Aと同様に備えている。平板部49Eが側板部51につながる、第1軸線L1方向外方に延びる第1接続部66と、第2軸線L2方向外方に延びる第2接続部68には、第1後退部61の同方向に後退する第3後退部67が設けられている。
 具体的には、第1支持部用延設部27と第2支持部用延設部29に沿って延びる側板部51とつながる第1接続部66と第2接続部68の先端部またはその全部を、第1後退部61と同様、被写体と反対側-Zに折り曲げて傾斜させた状態にする。これにより、第3後退部67を形成して、側板部51との接続辺の位置をジンバルフレーム部25Cの作る面に対して被写体と反対側-Zに位置させいる。
 また、前記実施形態3のジンバルフレーム部25Cと同様、本実施形態5の中間枠体15Eが曲げ加工ができない成形品や厚肉の基板部材等である場合には、これらの角部を単に斜めにカットして面取りし、光軸方向Zから見て略八角形状にすることで第3後退部67を構成することも可能である。 
 また、図26及び図27に表すように、本実施形態でも実施形態3と同様、中間枠体15Eの第3後退部67が形成される第1接続部66と第2接続部68のそれぞれの先端部またはその全部と対向する位置に、外部ケーシング39の天面部63が存在しているが、天面部63を省略した構成の外部ケーシング39とすることも可能である。
 また、第1接続部66と第2接続部68の先端部を曲げる角度は、中間枠体15Eが傾いて第1接続部66または第2接続部68が外部ケーシング39の天面部63に接近したときに、第1接続部66と第2接続部68が外部ケーシング39の天面部63の表面から飛び出さない角度に設定する。 
 この他、第3後退部67は、第1後退部61と同様、第1接続部66と第2接続部68の先端部を内側にL字状に折り曲げる、あるいは内側に湾曲させる等して凹陥部を形成することによって第3後退部67を形成することも可能である。
 また、第1後退部61を省略して第3後退部67のみを備える光学ユニット1とすることも可能であり、更に前記第2後退部65を設けて、第2後退部65と第3後退部67を備えた光学ユニット1にする、あるいは第1後退部61と第2後退部65と第3後退部67のすべてを備えた光学ユニット1とすることも可能である。
 そして、このようにして構成される本実施形態に係る光学ユニット1Eによっても実施形態1に係る光学ユニット1Aと同様の作用、効果が発揮されて光学ユニット1Eの光軸方向Zと光軸と交差する方向X、Yの小型化が図れるようになる。 
 また、本実施形態5によれば、第1後退部61と第3後退部67を設けたことで光学ユニット1Eの光軸方向Zの更に一層の小型化が図れるようになる。
 また、第1後退部61を省略して第3後退部67のみを備える光学ユニット1の場合には、第3後退部67の存在部分において光学ユニット1の光軸方向Zの小型化に寄与し得るという作用、効果が得られる。 
 また、第3後退部67に加えて第2後退部65を備える光学ユニット1の場合には、中間枠体15Eの存在により第2後退部65を備えた場合の作用、効果はそれほど大きくはないと考えられるが、光学モジュール3のハウジング3bが中間枠体15Eの開口部50内に完全に収まって中間枠体15Eの平板部49Eと、光学モジュール3のハウジング3bにおける被写体側+Zの表面とが面一であるような構成の場合には、前記第2後退部65を備える作用、効果が更に顕著に現れるようになる。
[実施形態6](図30参照)
 本発明の実施形態6に係る光学ユニット1Fは、基本的に実施形態1に係る光学ユニット1Aと同様の構成を有しており、第一支持部19の構造が実施形態1と異なる。従って、以下の説明では実施形態1と同様の構成については、図面中、同一の符号を使用して表すことでその説明を省略し、実施形態1と異なる本実施形態6の特有の構成を中心にして説明する。 
 本実施形態6に係る光学ユニット1Fにおいては、図30に表したように、可動体5は、第1支持部用延設部27より外側に外側部位70を備えている。ここでは、外側部位70は、可動体5のホルダ枠17の第1支持部用延設部27に対応する部位において、該第1支持部用延設部27を外側から囲うように設けられている。外側部位70とホルダ枠17とは、本実施形態では接着剤72により接着されて一体化されているが、一体成形により形成することも可能なものである。
 そして、第1支持部19は、可動体5の外側部位70に対向する第1支持部用延設部27の外側に固定されている。このように、第1支持部19は、第1支持部用延設部27の内側ではなく、外側に固定されている点が前記各実施形態と異なる。第1支持部19の可動体5側の前記外側部位と接触して支持する部分は凸曲面であり、この点は前記実施形態と同じである。本実施形態6では、第1支持部19は、球体74を第1支持部用延設部27の対応する位置に形成した穴部76に収めた状態で溶接固定されている。外側部位70の第1支持部19の前記凸曲面と接触する部位には第1軸受部材37が固定されている。第1軸受部材37の凹部37aは実施形態1と同様に凹球面である。 
 第2支持部20は、前記実施形態と同じであるので、その説明は省略する。
 本実施形態6によれば、実施形態1と同様に、ジンバル機構21の第1支持部19及び第2支持部20は凸曲面によって形成されているので、ジンバル機構21と可動体5及び固定体7側の部材との組付けが容易である。また、第1支持部19は、第1支持部用延設部27の外側に固定されているので、ジンバル機構21の構造のバリエーションが増え、光学ユニット1Fの設計において自由度が向上する。
 また、図30に表したように、ジンバルフレーム部25A単体の状態で、本実施形態6では、第1支持部用延設部27は、ジンバルフレーム部25Aに対する延設角度αが可動体5側の部材に弾性接触するよう外側に変位した角度(α>90°)に設定されている。 
 これにより、第1支持部19は可動体5側の第1軸受部材37と弾性的に接触する。第2支持部20は、上記の通り、第2軸受部材38と弾性的に接触する。即ち、いずれも弾性的に接触するので、両者の接点部に与圧が掛かって脱落の虞の少ない強固な支持と円滑な揺動とが可能になっている。
[実施形態7](図31参照)
 本発明の実施形態7に係る光学ユニット1Gは、基本的に実施形態6に係る光学ユニット1Fと同様の構成を有しており、第1支持部19の構造が実施形態6と異なる。従って、以下の説明では実施形態6と同様の構成については、図面中、同一の符号を使用して表すことでその説明を省略し、実施形態6と異なる本実施形態7の特有の構成を中心にして説明する。 
 本実施形態7に係る光学ユニット1Gにおいては、図31に表したように、可動体5は、第1支持部用延設部27より外側に、実施形態6と同様に、外側部位70を備えている。そして、外側部位70には、凸部84が固定されている。凸部84は、金属板80の対応する位置に設けた穴部86に収めた状態で溶接固定されている。金属板80は外側部位70に接着されている。これにより、凸部84は金属板80を介して外側部位70に固定されている。凸部84は球体より成り、その先端部は凸曲面である。
 第1支持部19は、可動体5の凸部84に対向する、第1支持部用延設部27の外側に形成されている。第1支持部19は、実施形態6と異なり、凸部84と接触して支持する部分は凹球面88である。即ち、第1支持部19の凹球面88は、実施形態6における第1軸受部材37の凹部37aに相当する。 
 第2支持部20は、前記実施形態と同じであるので、その説明は省略する。
 本実施形態7によれば、ジンバル機構21の第1支持部19は凹球面88で形成され、第2支持部20は凸曲面によって形成されているので、ジンバル機構21と可動体5及び固定体7側の部材との組付けが容易である。また、第1支持部19は、第1支持部用延設部27の外側に凹球面88として形成されているので、ジンバル機構21の構造のバリエーションが増え、光学ユニット1Gの設計において自由度が向上する。
 また、図31に表したように、ジンバルフレーム部25A単体の状態で、本実施形態7では、第1支持部用延設部27は、ジンバルフレーム部25Aに対する延設角度αが可動体5側の部材に弾性接触するよう外側に変位した角度(α>90°)に設定されている。 
 これにより、第1支持部19は可動体5の凸部84と弾性的に接触する。第2支持部20は、上記の通り、第2軸受部材38と弾性的に接触する。即ち、いずれも弾性的に接触するので、両者の接点部に与圧が掛かって脱落の虞の少ない強固な支持と円滑な揺動とが可能になっている。
[実施形態8](図32参照)
 本発明の実施形態8に係る光学ユニット1Hは、基本的に実施形態7に係る光学ユニット1Gと同様の構成を有しており、第1支持部19の構造が実施形態7と異なる。従って、以下の説明では実施形態7と同様の構成については、図面中、同一の符号を使用して表すことでその説明を省略し、実施形態7と異なる本実施形態8の特有の構成を中心にして説明する。 
 本実施形態8に係る光学ユニット1Hにおいては、図32に表したように、可動体5は実施形態7の外側部位70は備えていない。可動体5の第1支持部用延設部27より内側の部位に凸部94が固定されている。凸部94は、金属板90の対応する位置に設けた穴部96に収めた状態で溶接固定されている。金属板90は可動体5に接着されている。これにより、凸部94は金属板90を介して可動体5に固定されている。凸部94は球体より成り、その先端部は凸曲面である。
 第1支持部19は、可動体5の凸部94に対向する、第1支持部用延設部27の内側に形成されている。第1支持部19は、実施形態7と同様に、凸部94と接触して支持する部分は凹球面98である。即ち、第1支持部19の凹球面98は、実施形態6における第1軸受部材37の凹部37aに相当する。 
 第2支持部20は、前記実施形態と同じであるので、その説明は省略する。
 本実施形態8によれば、実施形態7と同様に、ジンバル機構21の第1支持部19は凹球面98で形成され、第2支持部20は凸曲面によって形成されているので、ジンバル機構21と可動体5及び固定体7側の部材との組付けが容易である。また、第1支持部19は、第1支持部用延設部27の内側に凹球面98として形成されているので、ジンバル機構21の構造のバリエーションが増え、光学ユニット1Gの設計において自由度が向上する。
 また、図32に表したように、ジンバルフレーム部25A単体の状態で、本実施形態8では、第1支持部用延設部27は、ジンバルフレーム部25Aに対する延設角度αが可動体5側の部材となる凸部94に弾性接触するよう内側に変位した角度(α<90°)に設定されている。 
 これにより、第1支持部19は可動体5の凸部94と弾性的に接触する。第2支持部20は、上記の通り、第2軸受部材38と弾性的に接触する。即ち、いずれも弾性的に接触するので、両者の接点部に与圧が掛かって脱落の虞の少ない強固な支持と円滑な揺動とが可能になっている。
[他の実施形態]
 本発明に係る光学ユニット1は、以上述べたような構成を有することを基本とするものであるが、本願発明の要旨を逸脱しない範囲内での部分的構成の変更や省略等を行うことも勿論可能である。
 例えば、弾性部材13の数は、実施形態1及び実施形態2では90°間隔で4つ設けたが、120°間隔で3つ配置してもよいし、72°間隔で5つ配置する等、弾性部材13を5つ以上の数、配置することも可能である。また、弾性部材13として板厚の薄い板バネを使用する場合には、板バネを複数枚重ねて使用することで必要な弾性力を確保するようにすることも可能である。そして、この場合には重ね合わせる板バネの向きを光軸方向Zに互い違いにして板バネの固定(係止)位置を光軸方向Zの被写体側+Zと被写体と反対側-Zとに分散させるように配置すれば、ホルダ枠17と中間枠体15に捩じれのない、より均等な光軸L周りの力が作用するようになる。
 また、光学モジュール3としては、実施形態で述べたカメラモジュールに限らず、レーザー照射モジュールや光センサーモジュール等、他のモジュールであってもよい。また、光学モジュール3が円筒形状等、他の形状である場合には、ホルダ枠17とコイル取付けフレーム35等の形状を光学モジュール3の形状に合わせた形状にすることが可能である。 
 また、ジンバル機構21の揺動方向は、実施形態1及び実施形態2ではジンバルフレーム部25の対向するコーナー部を通る+45°に傾いた第1軸線L1周りの揺動と、-45°に傾いた第2軸線L2周りの揺動とに設定したが、ピッチング方向Yとなる±0°の垂直方向と、ヨーイング方向Xとなる±90°の水平方向に第1軸線L1と第2軸線L2を設定することも可能である。
 また、実施形態1及び実施形態2では、光学ユニット1Aの振れは、磁気センサー(ホール素子)45A、45B、45Cと磁石33A、33B、33Cとの各対により、その磁束密度の変化から検出する構成であるが、この構成に限定されない。例えば、特許文献1に記載されているジャイロスコープ(振れ検出センサ)によって検出する構成にしてもよい。 
 更に、実施形態3で設けた第1後退部61と、実施形態4で設けた第2後退部65と、実施形態5で設けた第3後退部67と、を、ジンバルフレーム部25Bが光軸方向Zにおける被写体と反対側-Zに配置された実施形態2に係る光学ユニット1Bに対して適用することも勿論可能である。
 また、第2支持部20は、上記各実施形態においては、第2支持部用延設部29の固定体7に対向する外側に固定され、固定体7側の部材と接触して支持される部分は凸曲面である構造で説明したが、上記構造に限定されないことは勿論である。 
 例えば、固定体7の第2支持部用延設部29より内側に内側部位を設け、第2支持部20は、前記内側部位に対向する第2支持部用延設部29の内側に固定され、固定体7の前記内側部位と接触して支持する部分は凸曲面である構造でもよい。
 1…光学ユニット、3…光学モジュール、3a…レンズ、3b…ハウジング、 5…可動体、7…固定体、9…ローリング支持機構、11…ローリング駆動機構、 13…弾性部材、13a…一端部、13b…他端部、13c…自由撓み部、 15…中間枠体、16…第1被固定部、17…ホルダ枠、18…第2被固定部、 19…第1支持部、20…第2支持部、21…ジンバル機構、 23…振れ補正用駆動機構、24…ベースフレーム、25A…ジンバルフレーム部、 25B…ジンバルフレーム部、25C…ジンバルフレーム部、 26…第1延在部、27…第1支持部用延設部、 28…第2延在部、29…第2支持部用延設部、30…開口部、 31A…補正用のコイル、31B…補正用のコイル、 31C…ローリング補正用のコイル、33A…磁石、33B…磁石、 33C…ローリング検出用及び補正用の磁石、 35…コイル取付けフレーム、37…第1軸受部材、37a…凹部、 38…第2軸受部材、38a…凹部、39…外部ケーシング、41…窓部、 43…平板部、44…コイル取付け板、 45A、45B、45C…磁気センサー(ホール素子)、47…サーミスター、 49…平板部、50…開口部、51…側板部、53…切欠き部、55…切欠き部、 57…切欠き部、59…延在部、61…第1後退部、63…天面部、 65…第2後退部、66…第1接続部、67…第3後退部、68…第2接続部、 70…外側部位、72…接着剤、74…球体、76…穴部、 80…金属板、84…凸部、86…穴部、88…凹球面、 90…金属板、94…凸部、96…穴部、98…凹球面、 L…光軸、X…ヨーイング方向(横振れ方向)、Y…ピッチング方向(縦振れ方向)、 R…ローリング方向(光軸周りの振れの方向)、Z…光軸(に沿う)方向、 X、Y…光軸と交差する方向、C…円周、L1…第1軸線、L2…第2軸線、 A…第1長さ、B…第2長さ、α…延設角度、D…折れ線、E…折れ線、H…高さ

Claims (19)

  1.  光学モジュールを備える可動体と、
     前記可動体を変位可能な状態で保持する固定体と、
     前記光学モジュールの光軸方向と交差する第1軸線周りに揺動可能に前記可動体を支持する第1支持部を備えるとともに、前記光軸方向及び前記第1軸線方向と交差する第2軸線周りに前記固定体側の部材に揺動可能に支持される第2支持部を備えるジンバル機構と、
     前記可動体を前記第1軸線周り及び第2軸線周りに駆動する振れ補正用駆動機構と、を備え、
     前記ジンバル機構は、
      前記光学モジュールの被写体側と被写体の反対側の内の一方側に配置されるジンバルフレーム部と、
      前記ジンバルフレーム部から前記光軸方向に延設されて前記第1支持部を有する第1支持部用延設部と、
      前記ジンバルフレーム部から前記光軸方向に延設されて前記第2支持部を有する第2支持部用延設部と、を備える、
    ことを特徴とする光学ユニット。
  2.  請求項1に記載された光学ユニットにおいて、
     前記ジンバルフレーム部は板状である、ことを特徴とする光学ユニット。
  3.  請求項2に記載された光学ユニットにおいて、
     前記第1支持部用延設部と前記第2支持部用延設部の少なくとも一方は板状である、ことを特徴とする光学ユニット。
  4.  請求項1から3のいずれか一項に記載された光学ユニットにおいて、
     前記第1支持部は、前記第1支持部用延設部の前記可動体に対向する内側に固定され、前記可動体側の部材と接触して支持する部分は凸曲面であり、
     前記第2支持部は、前記第2支持部用延設部の前記固定体に対向する外側に固定され、前記固定体側の部材と接触して支持される部分は凸曲面である、ことを特徴とする光学ユニット。
  5.  請求項1から3のいずれか一項に記載された光学ユニットにおいて、
     前記可動体は、前記第1支持部用延設部より外側に位置する外側部位を備え、
     前記第1支持部は、前記外側部位に対向する前記第1支持部用延設部の外側に固定され、前記外側部位と接触して支持する部分は凸曲面であり、
     前記第2支持部は、前記第2支持部用延設部の前記固定体に対向する外側に固定され、前記固定体側の部材と接触して支持される部分は凸曲面である、ことを特徴とする光学ユニット。
  6.  請求項1から3のいずれか一項に記載された光学ユニットにおいて、
     前記可動体は、前記第1支持部用延設部より外側に位置する外側部位を備え、
     前記外側部位には固定された凸部を備え、
     前記第1支持部は、前記凸部と対向する、前記第1支持部用延設部の外側に形成され、前記凸部と接触して支持する部分は凹球面であり、
     前記第2支持部は、前記第2支持部用延設部の前記固定体に対向する外側に固定され、前記固定体側の部材と接触して支持される部分は凸曲面である、ことを特徴とする光学ユニット。
  7.  請求項1から3のいずれか一項に記載された光学ユニットにおいて、
     前記可動体側の部材に固定された凸部を備え、
     前記第1支持部は、前記可動体の前記凸部と対向する、前記第1支持部用延設部の内側に形成され、前記凸部と接触して支持する部分は凹球面であり、
     前記第2支持部は、前記第2支持部用延設部の前記固定体に対向する外側に固定され、前記固定体側の部材と接触して支持される部分は凸曲面である、ことを特徴とする光学ユニット。
  8.  請求項1から4、7のいずれか一項に記載された光学ユニットにおいて、
     前記第1支持部用延設部は、前記ジンバルフレーム部に対する延設角度が前記可動体側の部材に弾性接触するよう内側に変位した角度に設定されており、
     前記第2支持部用延設部は、前記ジンバルフレーム部に対する延設角度が前記固定体側の部材に弾性接触するよう外側に変位した角度に設定されている、ことを特徴とする光学ユニット。
  9.  請求項5又は6に記載された光学ユニットにおいて、
     前記第1支持部用延設部は、前記ジンバルフレーム部に対する延設角度が前記可動体側の部材に弾性接触するよう外側に変位した角度に設定されており、
     前記第2支持部用延設部は、前記ジンバルフレーム部に対する延設角度が前記固定体側の部材に弾性接触するよう外側に変位した角度に設定されている、ことを特徴とする光学ユニット。
  10.  請求項1から9のいずれか一項に記載された光学ユニットにおいて、
     前記ジンバルフレーム部は、前記光軸を中心にして前記第1軸線方向に延在する第1延在部と、前記第2軸線方向に延在する第2延在部によってX字状に形成されている、ことを特徴とする光学ユニット。
  11.  請求項10に記載された光学ユニットにおいて、
     前記ジンバル機構は、金属板で形成され、X字状のジンバルフレーム部の第1延在部と第2延在部を折り曲げることによって前記第1支持部用延設部及び前記第2支持部用延設部が形成されている、ことを特徴とする光学ユニット。
  12.  請求項10又は11に記載された光学ユニットにおいて、
     前記ジンバルフレーム部は、前記第2延在部と前記可動体の隙間は、前記第1延在部と前記可動体の隙間よりも大きい、ことを特徴とする光学ユニット。
  13.  請求項1から12のいずれか一項に記載された光学ユニットにおいて、
     前記ジンバルフレーム部は、
      前記光学モジュールの被写体側に配置され、
      前記光学モジュールの入光部側のジンバルフレーム部の中央部には開口部が形成されている、ことを特徴とする光学ユニット。
  14.  請求項1から13のいずれか一項に記載された光学ユニットにおいて、
     前記振れ補正用駆動機構は、コイルと磁石の対で構成され、
     前記コイルと磁石の一方が前記固定体側に配置され、他方が前記可動体側に配置されている、ことを特徴とする光学ユニット。
  15.  請求項1から14のいずれか一項に記載された光学ユニットにおいて、
     前記ジンバル機構は、前記ジンバルフレーム部の前記第1支持部用延設部とつながる部分に、該ジンバルフレーム部の作る面よりも前記第1支持部用延設部の延設の方向における高さを低める第1後退部が設けられている、ことを特徴とする光学ユニット。
  16.  請求項1から15のいずれか一項に記載された光学ユニットにおいて、
     前記可動体は、前記第1支持部用延設部と第2支持部用延設部に対応する部位であって、前記ジンバルフレーム部に沿う部分に、前記第1後退部と同方向に後退する第2後退部が設けられている、ことを特徴とする光学ユニット。
  17.  請求項16に記載された光学ユニットにおいて、
     前記可動体は、前記光軸方向から見て矩形状であり、
     前記第2後退部は、前記可動体の角部に設けられている、ことを特徴とする光学ユニット。
  18.  請求項1ら17のいずれか一項に記載された光学ユニットにおいて、
     前記可動体は、前記光学モジュールを前記光軸周りに回転可能に保持し、且つ前記第1支持部に支持される中間枠体を備える、ことを特徴とする光学ユニット。
  19.  請求項18に記載された光学ユニットにおいて、
     前記中間枠体は、
      前記光学モジュールの被写体側と被写体の反対側の内の一方側に配置される平板部と、
      前記平板部から前記光軸方向に延設されて前記第1支持部用延設部と前記第2支持部用延設部に沿ってそれぞれ位置する側板部と、
      前記平板部が前記側板部につながる部分に設けられ、前記第1後退部と同方向に後退する第3後退部と、を備える、ことを特徴とする光学ユニット。
PCT/JP2019/018860 2018-05-15 2019-05-13 光学ユニット WO2019221038A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980031515.9A CN112105988B (zh) 2018-05-15 2019-05-13 光学单元
US17/053,946 US11947253B2 (en) 2018-05-15 2019-05-13 Optical unit
JP2020519611A JP7237069B2 (ja) 2018-05-15 2019-05-13 光学ユニット

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-093806 2018-05-15
JP2018093806 2018-05-15
JP2018-156088 2018-08-23
JP2018156088 2018-08-23

Publications (1)

Publication Number Publication Date
WO2019221038A1 true WO2019221038A1 (ja) 2019-11-21

Family

ID=68540389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018860 WO2019221038A1 (ja) 2018-05-15 2019-05-13 光学ユニット

Country Status (4)

Country Link
US (1) US11947253B2 (ja)
JP (1) JP7237069B2 (ja)
CN (1) CN112105988B (ja)
WO (1) WO2019221038A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586268A (zh) * 2020-05-07 2020-08-25 Oppo广东移动通信有限公司 成像装置及电子设备
CN111586269A (zh) * 2020-05-07 2020-08-25 Oppo广东移动通信有限公司 成像装置及电子设备
CN111586270A (zh) * 2020-05-07 2020-08-25 Oppo广东移动通信有限公司 成像装置及电子设备
EP3842849A1 (en) * 2019-12-26 2021-06-30 Tdk Taiwan Corp. Optical system
CN113238429A (zh) * 2020-01-23 2021-08-10 三星电子株式会社 具有校正功能的光学单元
CN113433767A (zh) * 2020-03-04 2021-09-24 日本电产三协株式会社 带抖动修正功能的光学单元
US20220107479A1 (en) * 2020-10-02 2022-04-07 Nidec Sankyo Corporation Optical unit
US11513421B2 (en) 2020-10-02 2022-11-29 Nidec Sankyo Corporation Optical unit
JP7346284B2 (ja) 2019-12-24 2023-09-19 ニデックインスツルメンツ株式会社 振れ補正機能付き光学ユニット
JP7490799B2 (ja) 2020-04-17 2024-05-27 維沃移動通信有限公司 撮影モジュール及び電子機器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11300802B2 (en) * 2018-11-30 2022-04-12 Nidec Sankyo Corporation Optical unit
JP2022100783A (ja) * 2020-12-24 2022-07-06 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
JP2022165652A (ja) * 2021-04-20 2022-11-01 日本電産サンキョー株式会社 光学ユニット

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011039113A (ja) * 2009-08-06 2011-02-24 Sharp Corp 像振れ補正ユニットおよび当該像振れ補正ユニットを備えた電子機器
JP2014006522A (ja) * 2012-05-31 2014-01-16 Nidec Sankyo Corp 振れ補正機能付き光学ユニット

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107784A (ja) * 2006-09-29 2008-05-08 Fujinon Corp 像ブレ補正ユニット、像ブレ補正装置、撮影装置、及び携帯機器
JP6077939B2 (ja) * 2013-05-30 2017-02-08 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
JP6143622B2 (ja) * 2013-09-25 2017-06-07 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
JP6507628B2 (ja) * 2014-12-24 2019-05-08 ミツミ電機株式会社 アクチュエーター、カメラモジュール及びカメラ搭載装置
JP6623059B2 (ja) * 2015-12-21 2019-12-18 日本電産サンキョー株式会社 可動体の傾き調整方法
JP6637756B2 (ja) * 2015-12-21 2020-01-29 日本電産サンキョー株式会社 振れ補正機能付き光学ユニットおよびその製造方法
JP6709071B2 (ja) * 2016-02-17 2020-06-10 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
CN107092066B (zh) * 2016-02-17 2019-08-27 日本电产三协株式会社 带抖动修正功能的光学单元
JP6800706B2 (ja) * 2016-11-10 2020-12-16 日本電産サンキョー株式会社 光学ユニット
JP2018169497A (ja) * 2017-03-30 2018-11-01 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
US11300802B2 (en) * 2018-11-30 2022-04-12 Nidec Sankyo Corporation Optical unit
JP7235558B2 (ja) * 2019-03-28 2023-03-08 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
JP7237685B2 (ja) * 2019-03-28 2023-03-13 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
JP7270473B2 (ja) * 2019-06-14 2023-05-10 ニデックインスツルメンツ株式会社 振れ補正機能付き光学ユニット
JP7344679B2 (ja) * 2019-06-14 2023-09-14 ニデックインスツルメンツ株式会社 振れ補正機能付き光学ユニット
JP7323428B2 (ja) * 2019-10-30 2023-08-08 ニデックインスツルメンツ株式会社 振れ補正機能付き光学ユニット
KR102254906B1 (ko) * 2020-01-23 2021-05-25 니혼 덴산 산쿄 가부시키가이샤 보정 기능을 구비한 광학 유닛

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011039113A (ja) * 2009-08-06 2011-02-24 Sharp Corp 像振れ補正ユニットおよび当該像振れ補正ユニットを備えた電子機器
JP2014006522A (ja) * 2012-05-31 2014-01-16 Nidec Sankyo Corp 振れ補正機能付き光学ユニット

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7346284B2 (ja) 2019-12-24 2023-09-19 ニデックインスツルメンツ株式会社 振れ補正機能付き光学ユニット
CN113126313A (zh) * 2019-12-26 2021-07-16 台湾东电化股份有限公司 光学系统及光学元件驱动机构
CN113126313B (zh) * 2019-12-26 2023-08-15 台湾东电化股份有限公司 光学系统及光学元件驱动机构
EP3842849A1 (en) * 2019-12-26 2021-06-30 Tdk Taiwan Corp. Optical system
US11947180B2 (en) 2019-12-26 2024-04-02 Tdk Taiwan Corp. Optical system
CN113238429A (zh) * 2020-01-23 2021-08-10 三星电子株式会社 具有校正功能的光学单元
CN113433767A (zh) * 2020-03-04 2021-09-24 日本电产三协株式会社 带抖动修正功能的光学单元
US11442288B2 (en) 2020-03-04 2022-09-13 Nidec Sankyo Corporation Optical unit with shake-correction function
JP7411451B2 (ja) 2020-03-04 2024-01-11 ニデックインスツルメンツ株式会社 振れ補正機能付き光学ユニット
JP7490799B2 (ja) 2020-04-17 2024-05-27 維沃移動通信有限公司 撮影モジュール及び電子機器
CN111586270A (zh) * 2020-05-07 2020-08-25 Oppo广东移动通信有限公司 成像装置及电子设备
CN111586268B (zh) * 2020-05-07 2021-10-15 Oppo广东移动通信有限公司 成像装置及电子设备
CN111586269A (zh) * 2020-05-07 2020-08-25 Oppo广东移动通信有限公司 成像装置及电子设备
CN111586268A (zh) * 2020-05-07 2020-08-25 Oppo广东移动通信有限公司 成像装置及电子设备
US11513421B2 (en) 2020-10-02 2022-11-29 Nidec Sankyo Corporation Optical unit
US20220107479A1 (en) * 2020-10-02 2022-04-07 Nidec Sankyo Corporation Optical unit

Also Published As

Publication number Publication date
CN112105988B (zh) 2022-03-22
US11947253B2 (en) 2024-04-02
US20210223663A1 (en) 2021-07-22
CN112105988A (zh) 2020-12-18
JP7237069B2 (ja) 2023-03-10
JPWO2019221038A1 (ja) 2021-06-17

Similar Documents

Publication Publication Date Title
WO2019221038A1 (ja) 光学ユニット
WO2019221021A1 (ja) 光学ユニット
CN108873562B (zh) 带抖动修正功能的光学单元
JP5769712B2 (ja) 傾き補正ユニット
JP7269718B2 (ja) 光学ユニット
CN108873563B (zh) 带抖动修正功能的光学单元
JP4838754B2 (ja) レンズ駆動装置
JP2009210055A (ja) 板バネおよびレンズ駆動装置
JP2019132908A (ja) 振れ補正機能付き光学ユニット
JP7085940B2 (ja) 駆動装置及び光学ユニット
JP2017016113A (ja) 振れ補正機能付き光学ユニット
KR102401342B1 (ko) 광학 유닛
JP2022055817A (ja) 光学ユニット
JP2006284652A (ja) レンズ駆動装置の製造方法
JP2020166179A (ja) 光学ユニット
WO2020110339A1 (ja) 光学ユニット
WO2020045012A1 (ja) 光学ユニット
JP4375400B2 (ja) 反射鏡支持機構
TW201307937A (zh) 防手震鏡頭對焦模組之共振抑制方法及其結構
JP2021092655A (ja) 振れ補正機能付き光学ユニット
JP3219465B2 (ja) ガルバノミラー
CN214474177U (zh) 光学元件驱动机构
JP2005215503A (ja) レンズ保持機構並びにレンズユニット
JP7360914B2 (ja) 振れ補正機能付き光学ユニット
WO2022004011A1 (ja) 光学ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802506

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519611

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19802506

Country of ref document: EP

Kind code of ref document: A1