WO2014190737A1 - 多联机系统制热时的回油方法 - Google Patents

多联机系统制热时的回油方法 Download PDF

Info

Publication number
WO2014190737A1
WO2014190737A1 PCT/CN2013/089830 CN2013089830W WO2014190737A1 WO 2014190737 A1 WO2014190737 A1 WO 2014190737A1 CN 2013089830 W CN2013089830 W CN 2013089830W WO 2014190737 A1 WO2014190737 A1 WO 2014190737A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil return
opening degree
indoor
oil
outdoor
Prior art date
Application number
PCT/CN2013/089830
Other languages
English (en)
French (fr)
Inventor
黄春
宋培刚
刘合心
陈泽彬
刘群波
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to EP13886136.4A priority Critical patent/EP3006845B1/en
Priority to US14/893,351 priority patent/US10094599B2/en
Priority to AU2013391135A priority patent/AU2013391135C1/en
Priority to CA2913664A priority patent/CA2913664C/en
Priority to ES13886136T priority patent/ES2701173T3/es
Publication of WO2014190737A1 publication Critical patent/WO2014190737A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • F25B2313/02533Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the control of an air conditioner, and in particular to a method for oil return when heating a multi-line system. Background technique
  • the heating operation In the existing multi-line system heating operation, due to the low flow rate of the refrigerant in the main air pipe and the stopped inner air pipe, the oil is easily stored in the pipe section, causing the compressor to have oil shortage, causing insufficient lubrication and lightness. The compressor is malfunctioning and the compressor is damaged. In order to ensure the reliability of the system, the heating operation must be carried out for a certain period of time.
  • the multi-line system usually uses the oil return method in the heating operation to switch the four-way wide commutation to the cooling mode, and relies on the liquid refrigerant to bring back the lubricating oil stored in the pipe section.
  • the indoor unit acts as an evaporator. At this time, the indoor will stop heating; and after the oil return is completed, the internal machine will still be in a low pressure state for a period of time (ie, the establishment of high pressure requires a period of time). It can be established after the time), so the heating can not be effectively performed during the oil return operation and before the high pressure is established in the initial stage of the heating operation. Therefore, this oil return method makes the use comfort of the multiple mechanism hot.
  • the technical problem to be solved by the present invention is to provide a method for returning oil during heating of a multi-line system, which can ensure the reliability of the system while ensuring the continuous heating effect of the system. Improve user comfort.
  • the present invention provides a method for returning oil during heating of a multi-line system, wherein the multi-line system includes an outdoor unit and a plurality of indoor unit units connected in parallel, and the outdoor unit includes compression
  • the four-way width is not reversed, and the operating frequency f0 of the compressor is adjusted to a preset first oil return frequency fl, and all the The opening degree so of the indoor throttle element is adjusted to a preset oil return opening degree;
  • step S4 Determine whether the system is abnormal according to the measured system operating parameters and preset system operating parameters. If yes, Go to step S4, if no, go to step S5;
  • step S4 exiting the oil return operation, after the time t1, adjusting the operating frequency f0 of the compressor to a preset second oil return frequency f2, and adjusting the opening degree SO of all the indoor throttle elements to a preset
  • the oil return opening degree wherein, f2 ⁇ fl, detecting the operating parameters of the system during the oil returning process, and judging whether the system operation is abnormal according to the measured system operating parameters and the preset system operating parameters, and if so, exiting the oil returning operation, If no, go to step S5;
  • f2 > l/2fmax, where fmax is the highest operating frequency of the compressor. In one of the embodiments, 3HZ ⁇ f 1 - f2 ⁇ 7HZ.
  • the step of adjusting the operating frequency f0 of the compressor to the first oil return frequency fl includes:
  • adjusting the operating frequency f0 of the compressor is the first oil return frequency fl;
  • the step of adjusting the opening SO of all the indoor throttle elements to a preset oil return opening comprises:
  • the opening degree SO of the indoor throttle element of the indoor unit is adjusted to a preset first oil return opening S1, wherein SI >70 Smax, the Smax is the maximum of the indoor throttle element Opening degree
  • the opening degree SO of the indoor throttle element of the indoor unit is compared with the preset second return opening S2. If S0 ⁇ S2, the indoor throttle element of the indoor unit is opened. The degree SO is adjusted to the second oil return opening S2, and if S0>S2, the opening degree SO of the indoor throttle element of the indoor unit is not adjusted, wherein S2>80 Smax, the Smax is the indoor The maximum opening of the throttle element.
  • the system operating parameter is one or more of a high pressure, an exhaust temperature, and a low pressure of the system during a return operation.
  • tl > 10 min.
  • the oil returning method further comprises the step of adjusting the speed of the outdoor fan, comprising: detecting a high pressure and a low pressure of the system during the oil returning operation;
  • the rotation speed of the outdoor fan is increased.
  • the oil returning method further includes the step of adjusting an opening of the outdoor throttling element, comprising:
  • the oil return method further includes the following steps:
  • the oil returning method in the heating process of the multi-line system takes into consideration both the oil returning effect and the system reliability, and ensures the system reliability while ensuring the system continuous heating effect. , improve user comfort.
  • FIG. 1 is a system diagram of a multi-line system in one embodiment of the present invention.
  • FIG. 2 is a flow chart of a method of returning oil when heating a multi-line system in one embodiment of the present invention.
  • the multi-line system in this embodiment includes an outdoor unit 10 and a plurality of indoor units 20 connected in parallel, and the outdoor unit 10 includes a compressor 11, a gas-liquid separator 12, and an oil separator. 13.
  • the outdoor heat exchanger 15, the outdoor throttle element 16, the indoor heat exchanger 21 and the indoor throttle element 22 are connected by a pipe to form a refrigerant circuit.
  • the outdoor throttle element 16 and the indoor throttle element 22 in this embodiment are both electronically expanded.
  • the oil returning method in the heating process of the multi-line system in this embodiment includes the following steps:
  • Step S1 during the heating operation, when the oil return operation is required, the four-way width 14 is not reversed, and the operating frequency f0 of the compressor 11 is adjusted to a preset first oil return frequency fl,
  • the opening degree SO of the indoor throttle element 22 of all the indoor unit units 20 is adjusted to a preset oil return opening degree.
  • the compressor 11 operates at the first oil return frequency fl to ensure that the refrigerant flow rate in the system reaches a certain speed, which can drive the flow of lubricating oil in the system to ensure the oil return effect.
  • the opening degree SO of the indoor throttle element 22 of all the indoor unit units 20 is adjusted to the oil return opening degree, which not only ensures that the high pressure is not excessively high when the system returns to oil operation, but also ensures the flow rate of the refrigerant in the air tubes of all the indoor unit units. Lifting, thereby promoting the flow of lubricating oil in the air pipe of each indoor unit.
  • the step of adjusting the operating frequency f0 of the compressor 11 to the first oil return frequency fl comprises: comparing the operating frequency f0 with the first oil return frequency fl;
  • adjusting the operating frequency f0 of the compressor 11 is the first oil return frequency fl;
  • the step of adjusting the opening degree S0 of the indoor throttle element 22 of the indoor unit 20 to a preset oil return opening degree comprises:
  • the opening degree S0 of the indoor throttle element 22 of the indoor unit 20 is adjusted to a first oil return opening S1, wherein SI > 70 Smax , the Smax is the maximum of the indoor throttle element 22
  • the opening degree is such that the oil stored in the pipe section of the shutdown indoor unit 20 participates in the refrigerant circulation to realize the oil return.
  • the opening degree S0 of the indoor throttle element 22 of the indoor unit 20 is compared with the second return opening S2. If S0 ⁇ S2, the indoor throttle element 22 of the indoor unit 20 is The opening degree SO is adjusted to the second oil return opening degree S2. If S0 > S2, the opening degree SO of the indoor throttle element 22 of the indoor unit 20 is not adjusted, wherein S2 > 80 Smax, the Smax is The maximum opening of the indoor throttle element.
  • the opening degree of the indoor throttle element 22 of the starting indoor unit 20 is adjusted to be more than 80% of the maximum opening degree, and if the original opening degree is already the maximum opening degree, it is no longer opened; the indoor throttle element of the indoor unit 20 of the shutdown unit is stopped. 22 is adjusted to more than 70% of the original opening degree, which can ensure the flow rate of the refrigerant in all the indoor unit 20 to promote the flow of lubricating oil in the air pipe of each indoor unit 20, and ensure the high pressure during the system return operation. Not too high, the protection system runs smoothly.
  • Step S2 detecting system operating parameters.
  • the operating parameter of the system is a high system during the oil return operation One or more of the pressure value, exhaust temperature, and low pressure value.
  • Step S3 Determine whether the system is abnormal according to the measured system operating parameters and the preset system operating parameters. For example, if the high pressure during the oil return operation (the high pressure is the pressure of the pipe section between the compressor 11 and the oil separator detected by the high pressure sensor, the same applies below) is greater than or equal to the set high pressure (3.85 MPa in this embodiment) Or the exhaust gas temperature is greater than the set exhaust gas temperature (105 °C in this embodiment), or low pressure (low pressure is the pressure of the pipe section between the gas-liquid separator 12 and the suction port of the compressor 11 detected by the low-pressure sensor) The same as below) is smaller than the set value (0.168 MPa in this embodiment), and it can be judged that the system is operating abnormally. If it is abnormal, go to step S4, if it is not abnormal, go to step S5.
  • Step S4 exiting the oil return operation (that is, adjusting the operating frequency of the compressor 11 to the normal frequency f0, and adjusting the opening degree of the indoor throttle element 22 of each of the indoor unit units 20 to the normal opening degree SO), the elapsed time After t1 (preferably, 5 min ⁇ tl ⁇ 15 min), the operating frequency f0 of the compressor 11 is adjusted to a preset second oil return frequency f2 while adjusting the indoor section of each of the indoor unit units 20
  • the opening degree SO of the flow element 22 is a preset oil return opening degree, where f2 ⁇ fl.
  • the maximum operating frequency fmax of the compressor 11 is 80 Hz
  • the first oil return frequency fl is 50 HZ
  • the second oil return frequency f2 is used after tl, and f2 is still greater than 40 Hz. .
  • the operating parameters of the system are detected, and whether the system operation is abnormal according to the measured system operating parameters and the preset system operating parameters is determined. If yes, the oil return operation is exited. If no, the process proceeds to step S5.
  • Step S5 detecting the oil return time, when the oil return time reaches the set oil return time t2, the oil return ends.
  • the oil return time t2 is controlled to ensure the oil return effect while taking into account the system reliability.
  • t2 is 4 min.
  • the oil returning method in the heating process of the multi-line system in the embodiment further includes the step of adjusting the rotation speed of the outdoor fan 17, which comprises:
  • the saturation temperature of the high pressure is >50 °C and the low pressure corresponds to the saturation temperature >12 °C, the rotation speed of the outdoor fan 17 is lowered;
  • the speed of the outdoor fan 17 is increased if the high temperature corresponds to a saturation temperature of ⁇ 40 °C and the low pressure corresponds to a saturation temperature of ⁇ 0 °C.
  • the operation adjustment of the outdoor fan 17 ensures the low pressure of the system while taking into account the high pressure.
  • the control method is as described in the technical solution, so that the control system parameters are within a reasonable range while returning the oil, and the reliability and system of the system during the return oil operation are guaranteed. Thermal effect.
  • the oil returning method in the heating process of the multi-line system of the embodiment further includes the step of adjusting the opening degree of the outdoor throttle element 16, including
  • Determining the degree of superheat of the outdoor unit i.e., the difference between the air tube temperature of the outdoor unit 10 and the liquid tube temperature of the outdoor unit 10;
  • the outdoor throttling element 16 adjusts the opening degree according to the superheat degree of the outdoor unit. As described in the technical solution, it is ensured that the refrigerant maintains a proper superheat degree after passing through the outdoor heat exchanger 15 in the oil returning process, and does not return a large amount of liquid refrigerant to the compressor 11 Causes a liquid hammer to damage the compressor 11.
  • the oil returning method in the heating process of the multi-line system in the embodiment further includes the following steps: during the heating operation, monitoring the downtime of the shutdown indoor unit, when the downtime reaches the preset
  • the opening degree of the indoor throttle element of the shutdown indoor unit is sequentially increased to the oil return opening
  • the time t3 such as lOmin
  • the indoor unit of the shutdown is The opening of the indoor throttling element is restored to the original opening.
  • the oil stored in the pipe section of the shutdown indoor unit is involved in the refrigerant circulation to achieve oil return.
  • the oil returning method in the heating process of the multi-line system takes into consideration both the oil returning effect and the system reliability, and ensures the system heating reliability while improving the system reliability. User comfort.

Abstract

一种多联机系统制热时的回油方法,包括步骤:S1、将压缩机(11)的运行频率f0调整为预设的第一回油频率f1,同时将所有室内节流元件(22)的开度S0调整为预设的回油开度;S2、检测系统运行参数;S3、判断系统运行是否异常,如果是,转入步骤S4,如果否,转入步骤S5;S4、退出回油运行,将压缩机(11)的运行频率f0调整为预设的第二回油频率f1,判断系统运行是否异常,如果是,退出回油运行,如果否,则转入步骤S5;S5、当回油时间达到了回油时间t2时,回油结束。

Description

多联机系统制热时的回油方法 技术领域
本发明涉及空调器的控制, 特别是涉及一种多联机系统制热时的回油方法。 背景技术
现有多联机系统制热运行时, 由于主气管和停止的内机气管内冷媒流速较低, 该部分 管段内容易存油, 致使压缩机有缺油的隐患, 引起润滑不充分, 轻则导致压缩机运行出现 故障, 重则损坏压缩机。 为了确保系统的可靠性, 制热运行一定时间段必须进行回油运行。
目前多联机系统在制热运行时通常釆用的回油方法是将四通阔换向切换至制冷模式, 依靠液态冷媒将管段中存有的润滑油带回。 但使用这种回油方法回油运行时, 室内机充当 蒸发器角色, 此时, 室内将停止供热; 而且完成回油后内机仍将有一段时间处于低压状态 (即高压的建立需要一段时间后才能建立起来), 所以在回油运行时和制热运行初期高压 建立之前这段时间都不能有效制热, 因此这种回油方法使多联机制热时的使用舒适性变 差。 为了解决此问题, 有的釆用不切换四通阔, 增大压缩机运行频率和增大内机节流元件 步数的回油方法, 虽然此种回油方法可以减小回油对制热舒适性的影响, 但是回油时对系 统运行影响较大。 发明内容
针对上述现有技术现状, 本发明所要解决的技术问题在于, 提供一种多联机系统制热 时的回油方法, 该回油方法可以在确保系统可靠性的同时, 保证系统持续制热效果, 提高 用户使用舒适性。
为了解决上述技术问题, 本发明所提供的一种多联机系统制热时的回油方法, 所述多 联机系统包括室外机单元和多个相并联的室内机单元, 所述室外机单元包括压缩机、 四通 阔、 室外换热器、 室外节流元件和室外风机, 所述室内机单元包括室内换热器和室内节流 元件, 所述回油方法包括如下步骤:
51、 制热运行过程中, 当需要进行回油运行时, 所述四通阔不换向, 将所述压缩机的 运行频率 f0调整为预设的第一回油频率 fl, 同时将所有所述室内节流元件的开度 so调整 为预设的回油开度;
52、 检测系统运行参数;
53、根据测得的系统运行参数和预设的系统运行参数判断系统运行是否异常,如果是, 转入步骤 S4, 如果否, 转入步骤 S5;
S4、 退出回油运行, 经过时间 tl后, 将所述压缩机的运行频率 f0调整为预设的第二 回油频率 f2, 同时将所有所述室内节流元件的开度 SO调整为预设的回油开度, 其中, f2 <fl, 回油过程中检测系统运行参数, 并根据测得的系统运行参数和预设的系统运行参数 判断系统运行是否异常, 如果是, 退出回油运行, 如果否, 则转入步骤 S5;
S5、 检测回油时间, 当回油时间达到设定的回油时间 t2时, 回油结束。
在其中一个实施例中, f2>l/2fmax, 其中, fmax为所述压缩机的最高运行频率。 在其中一个实施例中, 3HZ < f 1 - f2 < 7HZ。
在其中一个实施例中, 将所述压缩机的运行频率 f0调整为所述第一回油频率 fl的步 骤包括:
将所述运行频率 f0与所述第一回油频率 fl进行比较;
如果 f0 <fl, 则调整所述压缩机的运行频率 f0为所述第一回油频率 fl;
如果 f0 > fl , 则不调整所述压缩机的运行频率 f0。
在其中一个实施例中, 将所有所述室内节流元件的开度 SO调整为预设的回油开度的 步骤包括:
判断各所述室内机单元是否停机;
如果是,则将该室内机单元的室内节流元件的开度 SO调整为预设的第一回油开度 S1, 其中, SI >70 Smax, 所述 Smax为所述室内节流元件的最大开度;
如果否, 则将该室内机单元的室内节流元件的开度 SO与预设的第二回油开度 S2进行 比较, 如果 S0<S2, 则将该室内机单元的室内节流元件的开度 SO调整为所述第二回油开 度 S2, 如果 S0>S2, 则不调整该室内机单元的室内节流元件的开度 SO, 其中, S2> 80 Smax, 所述 Smax为所述室内节流元件的最大开度。
在其中一个实施例中, 所述系统运行参数为回油运行过程中系统的高压、 排气温度、 低压中的一个或多个。
在其中一个实施例中, tl>10min。
在其中一个实施例中, 3min<t2<5min。
在其中一个实施例中, 所述的回油方法还包括调整所述室外风机转速的步骤, 包括: 回油运行过程中检测系统的高压和低压;
如果高压对应的饱和温度 >50°C且低压对应饱和温度 >12°C时, 降低所述室外风机的转 如果高压对应的饱和温度 <40 °C且低压对应饱和温度 <0 °C时, 提高所述室外风机的转 速。
在其中一个实施例中, 所述的回油方法还包括调整所述室外节流元件的开度的步骤, 包括:
判断室外机过热度的大小;
如果室外机过热度 > 2°C , 则降低所述室外节流元件的开度;
如果 _ 1 °C <室外机过热度 < TC , 则维持所述室外节流元件的开度;
如果室外机过热度 < - rc , 则增大所述室外节流元件的开度。
在其中一个实施例中, 所述的回油方法还包括如下步骤:
在制热运行过程中, 监测停机室内机单元的停机时间, 当停机时间达到预设的停机时 间时, 将所述停机室内机单元的室内节流元件的开度逐次增大至所述回油开度, 经过时间 t3后, 将所述停机室内机单元的室内节流元件的开度恢复至原有开度。
与现有技术相比, 本发明所提供的多联机系统制热时的回油方法, 兼顾了回油效果和 系统可靠性两方面, 在确保系统可靠性的同时, 保证了系统持续制热效果, 提高了用户使 用舒适性。 附图说明
图 1为本发明其中一个实施例中的多联机系统的系统图;
图 2为本发明其中一个实施例中的多联机系统制热时的回油方法的流程图。
以上各图中, 10、 室外机单元; 11、 压缩机; 12、 气液分离器; 13、 油分离器; 14、 四通阔; 15、 室外换热器; 16、 室外节流元件; 17、 室外风机; 20、 室内机单元; 21、 室 内换热器; 22、 室内节流元件。 具体实施方式
下面参考附图并结合实施例对本发明进行详细说明。 需要说明的是, 在不冲突的情况 下, 以下各实施例及实施例中的特征可以相互组合。
实施例一
如图 1所示, 本实施例中的多联机系统包括室外机单元 10和多个相并联的室内机单 元 20, 所述室外机单元 10包括压缩机 11、 气液分离器 12、 油分离器 13、 四通阔 14、 室 外换热器 15、 室外节流元件 16和室外风机 17 , 所述室内机单元 20包括室内换热器 21和 室内节流元件 22, 所述压缩机 11、所述气液分离器 12、所述油分离器 13、所述四通阔 14、 所述室外换热器 15、 所述室外节流元件 16、 所述室内换热器 21和室内节流元件 22通过 管道连接组成制冷剂循环回路。 本实施例中的所述室外节流元件 16和所述室内节流元件 22均为电子膨胀阔。
如图 2所示, 本实施例中的多联机系统制热时的回油方法包括以下步骤:
步骤 Sl、 制热运行过程中, 当需要进行回油运行时, 所述四通阔 14不换向, 将所述 压缩机 11 的运行频率 f0调整为预设的第一回油频率 fl , 同时将所有所述室内机单元 20 的所述室内节流元件 22的开度 SO调整为预设的回油开度。 压缩机 11在第一回油频率 fl 下工作可以保证系统中冷媒流动速度达到某一速度, 该流速可以带动系统中润滑油的流 动, 保证回油效果。 将所有所述室内机单元 20的所述室内节流元件 22的开度 SO调整为 回油开度, 既保证系统回油运行时高压不致过高, 又保证所有室内机单元气管内冷媒流速 的提升, 从而推动各室内机单元气管管道内润滑油的流动。
优选地, 将所述压缩机 11的运行频率 f0调整为所述第一回油频率 fl的步骤包括: 将所述运行频率 f0与所述第一回油频率 fl进行比较;
如果 f0 < fl , 则调整所述压缩机 11的运行频率 f0为所述第一回油频率 fl;
如果 f0 > fl , 则不调整所述压缩机 11的运行频率 f0。
优选地, 将所有所述室内机单元 20的所述室内节流元件 22的开度 S0调整为预设的 回油开度的步骤包括:
判断各所述室内机单元 20是否停机;
如果是,则将该室内机单元 20的室内节流元件 22的开度 S0调整为第一回油开度 S1 , 其中, SI > 70 Smax , 所述 Smax为所述室内节流元件 22的最大开度, 以使停机室内机 单元 20管段中存油参与冷媒循环实现回油。
如果否, 则将该室内机单元 20的室内节流元件 22的开度 S0与第二回油开度 S2进行 比较, 如果 S0 < S2, 则将该室内机单元 20的室内节流元件 22的开度 SO调整为所述第二 回油开度 S2, 如果 S0 > S2, 则不调整该室内机单元 20的室内节流元件 22的开度 SO, 其 中, S2 > 80 Smax, 所述 Smax为所述室内节流元件的最大开度。
这样, 开机室内机单元 20的室内节流元件 22开度调节至最大开度的 80%以上, 若原 有开度已为最大开度则不再开大; 停机室内机单元 20的室内节流元件 22调大到原有开度 的 70%以上, 既能保证所有室内机单元 20气管内冷媒流速的提升从而推动各室内机单元 20气管管道内润滑油的流动, 又保证系统回油运行时高压不至过高, 保护系统平稳运行。
步骤 S2、检测系统运行参数。 优选地, 所述系统运行参数为回油运行过程中系统的高 压值、 排气温度、 低压值中的一个或多个。
步骤 S3、根据测得的系统运行参数和预设的系统运行参数判断系统运行是否异常。 例 如,若回油运行过程中高压(高压为由高压传感器检测得到的压缩机 11排气至油分离器之 间管段的压力, 以下相同)大于等于设定的高压(本实施例为 3.85Mpa ); 或排气温度大于 设定的排气温度(本实施例为 105 °C ), 或低压(低压为由低压传感器检测得到的气液分离 器 12至压缩机 11吸气口之间管段的压力,以下相同)小于设定值(本实施例为 0.168MPa ), 即可判断系统运行异常。 如果异常, 转入步骤 S4, 如果不异常, 转入步骤 S5。
步骤 S4、 退出回油运行(即将压缩机 11的运行频率调整为正常频率 f0 , 将各所述室 内机单元 20的所述室内节流元件 22的开度调整为正常开度 SO ), 经过时间 tl (优选地, 5min < tl < 15 min )后, 将所述压缩机 11的运行频率 f0调整为预设的第二回油频率 f2, 同时调整各所述室内机单元 20的所述室内节流元件 22的开度 SO为预设的回油开度, 其 中, f2 < fl。 优选地, f2 > l /2fmax, 其中, fmax为所述压缩机 11的最高运行频率。 例如, 如压缩机 11的最高运行频率 fmax为 80HZ, 第一回油频率 fl为 50 HZ, 若回油过程中系 统参数异常回油退出, tl后使用第二回油频率 f2, f2仍大于 40HZ。 回油过程中检测系统 运行参数, 并根据测得的系统运行参数和预设的系统运行参数判断系统运行是否异常, 如 果是, 退出回油运行, 如果否, 则转入步骤 S5。
步骤 S5、 检测回油时间, 当回油时间达到设定的回油时间 t2时, 回油结束。 才艮据回 油运行时检测到的系统参数控制回油时间 t2, 保证回油效果的同时兼顾系统可靠性。 优选 地, 3min < t2 < 5min。 进一步的, t2为 4min。
实施例二
与实施例一不同的是, 本实施例中的多联机系统制热时的回油方法还包括调整所述室 外风机 17转速的步骤, 包括:
回油运行过程中检测系统的高压和低压;
如果高压对应的饱和温度 >50 °C且低压对应饱和温度 >12 °C时, 降低所述室外风机 17 的转速;
如果高压对应的饱和温度 <40 °C且低压对应饱和温度 <0 °C时, 提高所述室外风机 17的 转速。
室外风机 17 的运行调节在保证系统低压的同时兼顾高压, 控制方法如技术方案中所 述, 使得回油的同时控制系统参数在合理的范围之内, 保证回油运行时系统的可靠性和制 热效果。 实施例三
与实施例一不同的是, 本实施例中的多联机系统制热时的回油方法还包括调整所述室 外节流元件 16的开度的步骤, 包括
判断室外机过热度(即室外机单元 10的气管温度与室外机单元 10液管温度之差) 的 大小;
如果室外机过热度 > 2°C , 则降低所述室外节流元件 16的开度;
如果 _ 1 °C <室外机过热度 < 2°C , 则维持所述室外节流元件 16的开度;
如果室外机过热度 < - 1 °C , 则增大所述室外节流元件 16的开度。
室外节流元件 16根据室外机过热度调节开度, 如技术方案中所述, 保证回油过程中 冷媒经过室外换热器 15之后仍保持合适的过热度, 不至于大量液态冷媒返回压缩机 11造 成液击损坏压缩机 11。
实施例四
与实施例一不同的是, 本实施例中的多联机系统制热时的回油方法还包括如下步骤: 在制热运行过程中, 监测停机室内机单元的停机时间, 当停机时间达到预设的停机时 间 (如 lh )时, 将所述停机室内机单元的室内节流元件的开度逐次增大至回油开度, 经过 时间 t3 (如 lOmin )后, 将所述停机室内机单元的室内节流元件的开度恢复至原有开度。 使停机室内机单元管段中存油参与冷媒循环实现回油。
综上, 本发明实施例所提供的多联机系统制热时的回油方法, 兼顾了回油效果和系统 可靠性两方面, 在确保系统可靠性的同时, 保证了系统持续制热效果, 提高了用户使用舒 适性。
以上所述实施例仅表达了本发明的几种实施方式, 其描述较为具体和详细, 但并不能 因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干变形和改进, 这些都属于本发明的保护范 围。 因此, 本发明专利的保护范围应以所附权利要求为准。

Claims

权利要求
1、 一种多联机系统制热时的回油方法, 所述多联机系统包括室外机单元和多个相并 联的室内机单元, 所述室外机单元包括压缩机、 四通阔、 室外换热器、 室外节流元件和室 外风机, 所述室内机单元包括室内换热器和室内节流元件, 其特征在于, 所述回油方法包 括如下步骤:
51、 制热运行过程中, 当需要进行回油运行时, 所述四通阔不换向, 将所述压缩机的 运行频率 f0调整为预设的第一回油频率 fl, 同时将所有所述室内节流元件的开度 so调整 为预设的回油开度;
52、 检测系统运行参数;
53、根据测得的系统运行参数和预设的系统运行参数判断系统运行是否异常,如果是, 转入步骤 S4, 如果否, 转入步骤 S5;
54、 退出回油运行, 经过时间 tl后, 将所述压缩机的运行频率 f0调整为预设的第二 回油频率 f2 , 同时将所有所述室内节流元件的开度 SO调整为预设的回油开度, 其中, f2 <fl, 回油过程中检测系统运行参数, 并根据测得的系统运行参数和预设的系统运行参数 判断系统运行是否异常, 如果是, 退出回油运行, 如果否, 则转入步骤 S5;
S5、 检测回油时间, 当回油时间达到设定的回油时间 t2时, 回油结束。
2、 根据权利要求 1所述的回油方法, 其特征在于, f2 > l/2fmax, 其中, fmax为所述 压缩机的最高运行频率。
3、 根据权利要求 1所述的回油方法, 其特征在于, 3HZ <fl _ f2 < 7HZ。
4、 根据权利要求 1所述的回油方法, 其特征在于, 将所述压缩机的运行频率 f0调整 为所述第一回油频率 fl的步骤包括:
将所述运行频率 f0与所述第一回油频率 fl进行比较;
如果 f0 <fl, 则调整所述压缩机的运行频率 f0为所述第一回油频率 fl;
如果 f0 > fl , 则不调整所述压缩机的运行频率 f0。
5、 根据权利要求 1 所述的回油方法, 其特征在于, 将所有所述室内节流元件的开度 SO调整为预设的回油开度的步骤包括:
判断各所述室内机单元是否停机;
如果是,则将该室内机单元的室内节流元件的开度 SO调整为预设的第一回油开度 S1 , 其中, SI > 70 Smax, 所述 Smax为所述室内节流元件的最大开度;
如果否, 则将该室内机单元的室内节流元件的开度 SO与预设的第二回油开度 S2进行 比较, 如果 S0 < S2, 则将该室内机单元的室内节流元件的开度 SO调整为所述第二回油开 度 S2, 如果 S0 > S2, 则不调整该室内机单元的室内节流元件的开度 SO , 其中, S2 > 80 Smax, 所述 Smax为所述室内节流元件的最大开度。
6、 根据权利要求 1 所述的回油方法, 其特征在于, 所述系统运行参数为回油运行过 程中系统的高压、 排气温度、 低压中的一个或多个。
7、 根据权利要求 1所述的回油方法, 其特征在于, tl > 10min。
8、 根据权利要求 1所述的回油方法, 其特征在于, 3min < t2 < 5min。
9、 根据权利要求 1 所述的回油方法, 其特征在于, 还包括调整所述室外风机转速的 步骤, 包括:
回油运行过程中检测系统的高压和低压;
如果高压对应的饱和温度 >50°C且低压对应饱和温度 >12°C时, 降低所述室外风机的转 速;
如果高压对应的饱和温度 <40°C且低压对应饱和温度 <0°C时, 提高所述室外风机的转 速。
10、 根据权利要求 1所述的回油方法, 其特征在于, 还包括调整所述室外节流元件的 开度的步骤, 包括:
判断室外机过热度的大小;
如果室外机过热度 > 2°C , 则降低所述室外节流元件的开度;
如果 _ 1 °C <室外机过热度 < TC , 则维持所述室外节流元件的开度;
如果室外机过热度 < - rc , 则增大所述室外节流元件的开度。
11、 根据权利要求 1所述的回油方法, 其特征在于, 还包括如下步骤:
在制热运行过程中, 监测停机室内机单元的停机时间, 当停机时间达到预设的停机时 间时, 将所述停机室内机单元的室内节流元件的开度逐次增大至所述回油开度, 经过时间 t3后, 将所述停机室内机单元的室内节流元件的开度恢复至原有开度。
PCT/CN2013/089830 2013-05-27 2013-12-18 多联机系统制热时的回油方法 WO2014190737A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13886136.4A EP3006845B1 (en) 2013-05-27 2013-12-18 Oil return method for multiple air conditioning unit in heating
US14/893,351 US10094599B2 (en) 2013-05-27 2013-12-18 Oil return method for multi-split air conditioning in heating
AU2013391135A AU2013391135C1 (en) 2013-05-27 2013-12-18 Oil return method for multiple air conditioning unit in heating
CA2913664A CA2913664C (en) 2013-05-27 2013-12-18 Oil return method for multiple air conditioning unit in heating
ES13886136T ES2701173T3 (es) 2013-05-27 2013-12-18 Método de retorno de aceite para unidad de acondicionamiento de aire múltiple en calefacción

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310203080.6A CN104180563B (zh) 2013-05-27 2013-05-27 多联机系统制热时的回油方法
CN201310203080.6 2013-05-27

Publications (1)

Publication Number Publication Date
WO2014190737A1 true WO2014190737A1 (zh) 2014-12-04

Family

ID=51961782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089830 WO2014190737A1 (zh) 2013-05-27 2013-12-18 多联机系统制热时的回油方法

Country Status (7)

Country Link
US (1) US10094599B2 (zh)
EP (1) EP3006845B1 (zh)
CN (1) CN104180563B (zh)
AU (1) AU2013391135C1 (zh)
CA (1) CA2913664C (zh)
ES (1) ES2701173T3 (zh)
WO (1) WO2014190737A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106247676A (zh) * 2016-08-16 2016-12-21 广东美的暖通设备有限公司 空调器的控制方法、控制装置和空调器
WO2017053596A1 (en) * 2015-09-24 2017-03-30 Carrier Corporation System and method of controlling an oil flow within a refrigeration system

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104764167B (zh) * 2015-04-21 2018-05-01 珠海格力电器股份有限公司 变频空调压缩机的回油控制方法
CN105066537B (zh) * 2015-07-15 2017-09-29 宁波奥克斯电气股份有限公司 多联机制热回油控制方法
CN105758065B (zh) * 2016-02-29 2019-04-12 青岛海尔空调电子有限公司 一种空调系统回油控制方法
CN106196517B (zh) * 2016-09-30 2019-09-17 广东美的制冷设备有限公司 一拖多空调器控制方法、装置及一拖多空调器
CN106524593B (zh) * 2016-11-08 2019-04-30 广东美的暖通设备有限公司 风冷热泵空调机组及其压缩机的回油控制方法和装置
CN109964086B (zh) * 2016-11-25 2021-03-12 三菱电机株式会社 制冷循环装置
CN106642771A (zh) * 2016-11-29 2017-05-10 珠海格力电器股份有限公司 冷库多联机组的回油控制方法、装置及冷库多联机组
CN106839523B (zh) * 2017-01-16 2019-11-19 珠海格力电器股份有限公司 空调器的回油控制方法和装置
CN106958968B (zh) * 2017-04-17 2023-07-14 珠海格力电器股份有限公司 机组的回油控制方法、装置和系统
CN107218741B (zh) * 2017-05-11 2020-08-18 青岛海尔空调电子有限公司 一种多联机系统回油控制方法
CN107449173B (zh) * 2017-06-21 2019-10-18 广东志高空调有限公司 一种家用多联式变频机回油控制系统的控制方法
CN107575939B (zh) * 2017-09-07 2019-10-25 珠海格力电器股份有限公司 多联机系统及其控制方法
CN107588513B (zh) * 2017-09-15 2020-01-07 广东美的暖通设备有限公司 空调系统、空调系统的控制方法和控制装置
CN107939649B (zh) * 2017-11-10 2019-07-26 广东美的暖通设备有限公司 多联机系统及其压缩机油量调节方法和调节装置
CN108224850A (zh) * 2017-12-29 2018-06-29 广东美的制冷设备有限公司 回油控制方法、装置、空调器和计算机可读存储介质
CN108489150B (zh) * 2018-02-02 2020-06-16 青岛海尔空调电子有限公司 一种多联机回油控制方法及系统
WO2019159721A1 (ja) 2018-02-19 2019-08-22 ダイキン工業株式会社 空気調和装置
CN108870807B (zh) * 2018-03-21 2020-03-24 青岛海信日立空调系统有限公司 多联机系统的回油控制方法和装置、计算机存储介质
CN108716758B (zh) * 2018-05-21 2020-05-19 珠海格力电器股份有限公司 空调机组的控制方法及相关设备
CN108692497B (zh) * 2018-05-29 2019-12-03 珠海格力电器股份有限公司 空调系统的可靠回油方法
CN108981251B (zh) * 2018-06-15 2021-05-04 重庆美的通用制冷设备有限公司 冷水机组的启动控制方法、系统及冷水机组
CN109489210B (zh) * 2018-10-15 2020-12-29 珠海格力电器股份有限公司 多联机系统回油控制方法、装置、回油控制设备及空调
CN109357440B (zh) * 2018-10-26 2019-11-05 宁波奥克斯电气股份有限公司 一种多联机制热回油控制方法及多联机空调器
CN109405216B (zh) * 2018-10-30 2021-03-23 广东美的暖通设备有限公司 空调器的回油控制方法、系统及空调器
CN109539630B (zh) * 2018-11-13 2020-05-29 青岛海尔空调器有限总公司 用于压缩制冷或制热装置的压缩机回油方法
CN109631248B (zh) * 2018-11-16 2021-05-25 青岛海尔空调电子有限公司 一种多联机制冷回油降噪控制方法及系统
CN109813009B (zh) * 2018-12-20 2020-04-28 珠海格力电器股份有限公司 空调系统及其回油控制方法
JP7243313B2 (ja) * 2019-03-12 2023-03-22 株式会社富士通ゼネラル 空気調和装置
CN110296546B (zh) * 2019-07-04 2020-06-30 宁波奥克斯电气股份有限公司 多联机空调器的回油控制方法、回油控制装置及空调器
CN110296547B (zh) * 2019-07-04 2020-04-21 宁波奥克斯电气股份有限公司 一种多联机回油控制方法、系统及空调器
CN110341429B (zh) * 2019-07-30 2020-12-22 青岛海立电机有限公司 驻车空调的回油控制方法
CN111503851B (zh) * 2020-04-29 2021-12-31 广东美的暖通设备有限公司 多联机空调系统的控制方法和装置
CN111623559A (zh) * 2020-06-08 2020-09-04 珠海拓芯科技有限公司 回油控制方法和空调器
CN112710068B (zh) * 2020-12-29 2022-03-08 四川长虹空调有限公司 空调制冷时室外电机转速的控制方法、装置和储存介质
CN112728812B (zh) * 2020-12-31 2022-11-18 浙江中广电器集团股份有限公司 一种多联机系统处于待机状态时的回油控制方法
CN112937256B (zh) * 2021-03-19 2022-12-06 海信空调有限公司 压缩机回油控制方法及装置、驻车空调和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285559A (ja) * 2006-04-14 2007-11-01 Matsushita Electric Ind Co Ltd 空気調和機
JP2011117626A (ja) * 2009-12-01 2011-06-16 Hitachi Appliances Inc 空気調和機
CN102331125A (zh) * 2011-05-24 2012-01-25 宁波奥克斯电气有限公司 直流变频多联机高温制冷时的回油控制方法
CN102338505A (zh) * 2011-09-30 2012-02-01 Tcl空调器(武汉)有限公司 多联机压缩机回油流路及其控制方法
CN102575884A (zh) * 2010-01-25 2012-07-11 三菱重工业株式会社 空气调节机
CN102645057A (zh) * 2012-03-31 2012-08-22 宁波奥克斯电气有限公司 多联式空调机组制热时的回油方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2765391B2 (ja) * 1992-08-26 1998-06-11 ダイキン工業株式会社 空気調和装置の油回収運転制御装置
US5551249A (en) * 1992-10-05 1996-09-03 Van Steenburgh, Jr.; Leon R. Liquid chiller with bypass valves
CN1104605C (zh) * 2000-06-02 2003-04-02 海尔集团公司 一拖多空调器改进的制冷系统
KR20040010740A (ko) * 2002-04-08 2004-01-31 다이킨 고교 가부시키가이샤 냉동장치
KR100468916B1 (ko) * 2002-05-01 2005-02-02 삼성전자주식회사 공기 조화기 및 그 제어 방법
JP4063023B2 (ja) * 2002-09-12 2008-03-19 株式会社デンソー 蒸気圧縮式冷凍機
US7104076B2 (en) * 2004-06-24 2006-09-12 Carrier Corporation Lubricant return schemes for use in refrigerant cycle
CN1892154B (zh) * 2005-07-08 2011-07-13 海尔集团公司 多联机空调的回油控制方法
CN100520208C (zh) * 2006-07-12 2009-07-29 松下电器产业株式会社 多室型空调装置
JP5398159B2 (ja) * 2008-03-28 2014-01-29 三菱重工業株式会社 マルチ形空気調和機の油戻し運転方法およびマルチ形空気調和機
JP6230931B2 (ja) * 2014-02-20 2017-11-15 三菱重工サーマルシステムズ株式会社 マルチ形空気調和機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285559A (ja) * 2006-04-14 2007-11-01 Matsushita Electric Ind Co Ltd 空気調和機
JP2011117626A (ja) * 2009-12-01 2011-06-16 Hitachi Appliances Inc 空気調和機
CN102575884A (zh) * 2010-01-25 2012-07-11 三菱重工业株式会社 空气调节机
CN102331125A (zh) * 2011-05-24 2012-01-25 宁波奥克斯电气有限公司 直流变频多联机高温制冷时的回油控制方法
CN102338505A (zh) * 2011-09-30 2012-02-01 Tcl空调器(武汉)有限公司 多联机压缩机回油流路及其控制方法
CN102645057A (zh) * 2012-03-31 2012-08-22 宁波奥克斯电气有限公司 多联式空调机组制热时的回油方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3006845A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017053596A1 (en) * 2015-09-24 2017-03-30 Carrier Corporation System and method of controlling an oil flow within a refrigeration system
CN106247676A (zh) * 2016-08-16 2016-12-21 广东美的暖通设备有限公司 空调器的控制方法、控制装置和空调器
CN106247676B (zh) * 2016-08-16 2019-03-29 广东美的暖通设备有限公司 空调器的控制方法、控制装置和空调器

Also Published As

Publication number Publication date
AU2013391135C1 (en) 2018-04-05
CN104180563B (zh) 2017-06-20
EP3006845B1 (en) 2018-09-19
EP3006845A1 (en) 2016-04-13
ES2701173T3 (es) 2019-02-21
US10094599B2 (en) 2018-10-09
CA2913664A1 (en) 2014-12-04
CN104180563A (zh) 2014-12-03
US20160123635A1 (en) 2016-05-05
CA2913664C (en) 2019-05-28
AU2013391135A1 (en) 2016-01-21
AU2013391135B2 (en) 2017-12-14
EP3006845A4 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
WO2014190737A1 (zh) 多联机系统制热时的回油方法
WO2018068531A1 (zh) 一种空调器的停机控制方法、控制装置以及空调器
WO2018058732A1 (zh) 冷媒泄露保护控制方法、控制器及空调
WO2020062598A1 (zh) 水多联机组运行控制方法、装置、介质和水多联空调系统
JP2009229012A (ja) 冷凍装置
CN109631279A (zh) 多联机空调系统及其启动控制方法
WO2012046528A1 (ja) 空気調和機
JP6033416B2 (ja) 空気調和装置
WO2015037434A1 (ja) 空調装置
CN105465956B (zh) 一种双缸变容空调器的控制方法
WO2016141791A1 (zh) 混合动力制冷系统及其控制方法
JP5642121B2 (ja) 空調装置
WO2020019849A1 (zh) 空调器及其室外机除霜控制方法
JP2012172854A (ja) 空気調和機
JP6053201B2 (ja) 冷凍装置
JP5225442B2 (ja) 空調装置
JP2013190164A (ja) 空調装置
JP4959297B2 (ja) マルチ型空気調和装置
JP2010236816A (ja) ヒートポンプ式空調機およびヒートポンプ式空調機の制御方法
JP2014020730A (ja) 空気調和機
JP2016166710A (ja) 空気調和システム
JP2023065680A (ja) 冷凍サイクル装置
JP6428221B2 (ja) 空気調和機
WO2020073488A1 (zh) 一种控制压缩机切缸的方法、装置及机组、空调系统
WO2019169898A1 (zh) 一种应用电化学压机的空调系统的控制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886136

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14893351

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2913664

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013886136

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013391135

Country of ref document: AU

Date of ref document: 20131218

Kind code of ref document: A