WO2016141791A1 - 混合动力制冷系统及其控制方法 - Google Patents

混合动力制冷系统及其控制方法 Download PDF

Info

Publication number
WO2016141791A1
WO2016141791A1 PCT/CN2016/073229 CN2016073229W WO2016141791A1 WO 2016141791 A1 WO2016141791 A1 WO 2016141791A1 CN 2016073229 W CN2016073229 W CN 2016073229W WO 2016141791 A1 WO2016141791 A1 WO 2016141791A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
indoor
outlet
flow control
control valve
Prior art date
Application number
PCT/CN2016/073229
Other languages
English (en)
French (fr)
Inventor
黄志超
黄桂良
胡荣国
Original Assignee
深圳市艾特网能有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市艾特网能有限公司 filed Critical 深圳市艾特网能有限公司
Publication of WO2016141791A1 publication Critical patent/WO2016141791A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements

Definitions

  • the present invention relates to a refrigeration system, and more particularly to a hybrid refrigeration system and a control method thereof.
  • the hybrid power refrigeration system only involves a hybrid power system consisting of a fixed capacity compressor and different refrigerant pumps.
  • the start and stop and capacity control methods of the pump are as follows:
  • the start and stop of the refrigerant pump is determined according to conditions such as indoor load and outdoor temperature;
  • the second is that in the fixed capacity compressor and the variable capacity pump system, the start and stop and capacity adjustment of the refrigerant pump are adjusted according to the superheat degree of the evaporator outlet, or the capacity output of the pump is controlled by the PID method to provide a fixed lift.
  • the degree of twist is small, and the pump needs to provide a high lift to meet the cycle of the system, there is a large energy waste, and the best energy-saving effect is not achieved.
  • the installation position of the outdoor unit is 15m higher than the indoor installation position, the R22 refrigerant liquid itself can provide more than 1.5bar of power under the gravity of the refrigerant liquid, which can meet the needs of the system cycle, without the need to start the refrigerant pump, but the traditional The hybrid system only determines the opening of the refrigerant pump based on the outdoor temperature, resulting in a small increase in the system expansion valve to increase the system resistance, to balance the system, and there is a great waste of energy.
  • the technical problem to be solved by the present invention is to provide a hybrid refrigeration system and a control method thereof against the defects of the prior art.
  • a hybrid power refrigeration system comprising: an indoor evaporator disposed indoors, a compressor connected to the indoor evaporator outlet, and the indoor evaporator a flow control valve connected to the inlet, an indoor fan used in conjunction with the indoor evaporator, and a first control unit;
  • the first control unit is connected to the compressor, the flow control valve and the indoor fan, and is configured to control the capacity output of the indoor fan according to indoor refrigeration demand, according to the outlet superheat of the indoor evaporator Controlling the temperature of the flow control valve, controlling the start and stop and/or capacity output of the compressor according to the indoor refrigeration demand and the pressure difference between the compressor and the compressor;
  • the second control unit is connected to the outdoor fan and the refrigerant pump, and is configured to control a capacity output of the outdoor fan according to an outlet pressure of the outdoor condenser; The capacity output of the refrigerant pump is controlled.
  • a liquid storage device connected between the outdoor condenser and the refrigerant pump is further included.
  • the compressor is a constant capacity compressor or a variable capacity compressor
  • the refrigerant pump is a variable capacity refrigerant pump
  • the first control unit controls the start and stop of the constant capacity compressor according to the indoor refrigeration demand and the pressure difference before and after the compressor;
  • the first control unit controls start-stop and capacity output of the variable-capacity compressor according to the indoor cooling demand and a pressure difference before and after the compressor.
  • a first shutoff valve that sets the inlet of the flow control valve
  • a second shutoff valve that is disposed at the compressor outlet
  • a third shutoff valve that is disposed at the outlet of the refrigerant pump, and is disposed at a fourth shutoff valve of the outdoor condenser inlet.
  • a single-way valve disposed in parallel with the compressor and/or the refrigerant pump is further included.
  • the present invention also provides a control method of a hybrid refrigeration system, comprising the following steps performed by the first control unit: [0018] Sl l: determining indoor refrigeration demand, indoor evaporator superheat, and pressure difference before and after the compressor; [0019] S12: controlling the capacity output of the indoor fan according to indoor refrigeration demand, the flow control valve Start and stop and start and stop of the compressor;
  • S14 controlling start-stop, start-stop, and capacity output of the compressor according to a pressure difference before and after the compressor
  • S21 determining an outlet pressure of the outdoor condenser and a twist of the flow control valve
  • S22 controlling a rotation speed of the outdoor fan according to an outlet pressure of the outdoor condenser
  • S23 controlling the capacity output of the refrigerant pump according to the temperature of the flow control valve.
  • the compressor is a constant capacity compressor or a variable capacity compressor
  • the refrigerant pump is a variable capacity refrigerant pump
  • the first control unit controls the start and stop of the constant capacity compressor according to a pressure difference before and after the compressor;
  • the first control unit controls start-stop and capacity output of the variable-capacity compressor according to a pressure difference value before and after the compressor.
  • the step S11 includes: collecting an indoor ambient temperature, comparing the indoor ambient temperature with a preset temperature value, and calculating a temperature difference between the two to determine the indoor cooling demand;
  • the compressor inlet pressure and the compressor outlet pressure are collected and calculated to determine a pressure differential value before and after the compressor.
  • the step S12 includes: comparing the indoor cooling demand with a preset cooling threshold, and if the indoor cooling demand is greater than or equal to the cooling threshold, controlling the flow control valve and the Compressor starts, and controls a capacity output of the indoor fan; if not, controlling the flow control valve and the compressor to stop working, and maintaining a capacity output of the indoor fan;
  • the step S13 includes: the outlet superheat of the indoor evaporator and a preset superheat threshold range Comparing, if the outlet superheat of the indoor evaporator is less than the superheat threshold range, reducing the twist of the flow control valve; if the outlet superheat of the indoor evaporator is greater than the superheat threshold range, And increasing the twist of the flow control valve; if the outlet superheat of the indoor evaporator is within the superheat threshold range, maintaining the twist of the flow control valve;
  • the step S14 includes: comparing a pressure difference value before and after the compressor with a preset pressure difference threshold range; if the pressure difference value is smaller than the pressure difference threshold range, controlling the constant capacity compressor to stop Working or reducing the capacity output of the variable capacity compressor; if the pressure difference is greater than the differential pressure threshold range, controlling the fixed capacity compressor to start or increase the capacity output of the variable capacity compressor; a pressure difference value within the pressure difference threshold range, controlling the constant capacity compressor to start or maintain a capacity output of the variable capacity compressor
  • the step S22 includes: comparing an outlet pressure of the outdoor condenser with a preset pressure threshold range, and if an outlet pressure of the outdoor condenser is less than the preset pressure threshold range, Decrease the rotation speed of the outdoor fan; if the outlet pressure of the outdoor condenser is greater than the preset pressure threshold range, increase the rotation speed of the outdoor fan; if the outlet pressure of the outdoor condenser is in the Maintaining the speed of the outdoor fan within a preset pressure threshold range;
  • the step S23 includes: comparing the mobility of the flow control valve with a preset threshold threshold range, and if the mobility of the flow control valve is less than the threshold threshold range, reducing the a capacity output of the refrigerant pump; if the temperature of the flow control valve is greater than the threshold range, increasing a capacity output of the refrigerant pump; if the flow control valve is at the temperature Within the threshold range, the capacity output of the refrigerant pump is maintained.
  • the present invention has the following advantages:
  • the indoor fan, the compressor and the flow control valve are independently controlled by the first control unit, and the second control unit is used for the outdoor fan and the refrigerant pump.
  • the compressor and refrigerant pump provide power to the refrigeration system, independent control according to their respective conditions, no need to switch modes, avoid fluctuations in cooling capacity during mode switching To achieve effective energy saving; the capacity output of the refrigerant pump is controlled according to the twist of the flow control valve to avoid energy waste.
  • Embodiment 1 is a schematic structural view of a hybrid refrigeration system in Embodiment 1 of the present invention.
  • Embodiment 2 is another schematic structural view of a hybrid refrigeration system in Embodiment 1 of the present invention.
  • Embodiment 3 is another schematic structural view of a hybrid refrigeration system in Embodiment 1 of the present invention.
  • Embodiment 4 is another schematic structural view of a hybrid refrigeration system in Embodiment 1 of the present invention.
  • Embodiment 1 of the present invention is another schematic structural view of a hybrid refrigeration system in Embodiment 1 of the present invention.
  • FIG. 6 is another schematic structural view of a hybrid refrigeration system according to Embodiment 1 of the present invention.
  • FIG. 7 is a flow chart showing a control method of the hybrid refrigeration system in Embodiment 2 of the present invention.
  • step S12 of FIG. 7 is a flow chart of step S12 of FIG. 7.
  • step S13 of FIG. 7 is a flow chart of step S13 of FIG. 7.
  • step S14 of FIG. 7 is a flow chart of step S14 of FIG. 7.
  • step S22 of FIG. 7 is a flow chart of step S22 of FIG. 7.
  • step S23 of FIG. 7 is a flow chart of step S23 of FIG. 7.
  • FIGS. 1 to 6 illustrate a hybrid refrigeration system in the present embodiment.
  • the hybrid refrigeration system includes an indoor evaporator 10 disposed indoors, a compressor 11 connected to an outlet of the indoor evaporator 10, and an indoor evaporator 1
  • a flow control valve 12 connected to the inlet, an indoor fan 13 for use with the indoor evaporator 10, and a first control unit 14.
  • the first control unit 14 is connected to the compressor 11, the flow control valve 12, and the indoor fan 13, for controlling the capacity output of the indoor fan 13 according to the indoor cooling demand, and controlling the flow control valve according to the outlet superheat of the indoor evaporator 10.
  • the twist of 12 controls the start-stop and/or capacity output of the compressor 11 in accordance with the indoor refrigeration demand and the differential pressure before and after the compressor 11.
  • the first control unit 14 uses the PID control method or the P control method to independently control the capacity output of the indoor fan 13 according to the corresponding control condition, the mobility of the flow control valve 12, and the start and stop of the compressor 11, or Stop and capacity output.
  • the compressor 11 may be a constant capacity compressor 11 or a variable capacity compressor 11, and if it is a constant capacity compressor 11 , a constant capacity compressor is controlled according to the indoor refrigeration demand and the pressure difference between the compressor 11 and the front and rear of the compressor 11 . If the variable capacity compressor 11 is a variable capacity compressor 11, the start and stop and capacity output of the variable capacity compressor 11 are controlled according to the indoor refrigeration demand and the pressure difference between the compressor 11 and before and after the compressor 11.
  • start and stop of the compressor 11 is determined according to the pressure difference before and after the compressor 11, and when the pressure difference before and after the compressor 11 is less than the preset pressure difference threshold range or is 0, the compressor 11 is stopped, and The magnitude of the control differential pressure controls the starting of the fixed capacity compressor 11 or the variable capacity compressor 11 and its capacity output.
  • the hybrid refrigeration system further includes an outdoor condenser 16 disposed outside the outlet of the compressor 11 disposed outside, an outdoor fan 17 for use with the outdoor condenser 16, and condensation with the outside.
  • the refrigerant pump 18 and the second control unit 15 are connected to each other, and the outlet of the refrigerant pump 18 is connected to the flow control valve 12; the first control unit 14 is communicatively connected to the second control unit 15.
  • the second control unit 15 is connected to the outdoor fan 17 and the refrigerant pump 18 for controlling the capacity output of the outdoor fan 17 according to the outlet pressure of the outdoor condenser 16; controlling the capacity output of the refrigerant pump 18 according to the temperature of the flow control valve 12. .
  • the refrigerant pump 18 acts as the power of the outlet of the outdoor condenser 16 to the inlet of the indoor evaporator 10, and cooperates with the flow control valve 12 to balance the flow of the refrigeration system, that is, the indoor refrigeration demand; when the flow control valve 12 approaches or reaches At maximum, the refrigeration system cannot meet the required flow rate of the refrigeration system, and the capacity output of the refrigerant pump 18 is controlled according to the temperature of the flow control valve 12 to achieve energy saving effect.
  • the hybrid refrigeration system further includes a liquid storage device 19 connected between the outdoor condenser 16 and the refrigerant pump 18 for storing refrigerant.
  • the refrigerant may be a phase change refrigerant, which utilizes a phase change refrigerant to evaporate heat, and a condensation heat release principle to achieve energy exchange.
  • the hybrid refrigeration system further includes a first section for setting an inlet of the flow control valve 12.
  • the hybrid refrigeration system further includes a one-way valve 20 disposed in parallel with the compressor 11 and/or the refrigerant pump 18. It will be appreciated that the arrangement of the single-way valve 20 can be conducted in the system without the use of the compressor 11 and/or the refrigerant pump 18, such that the refrigerant passes directly through the single-way valve 20 to avoid passage through the compressor 11 and/or refrigerant. Pump 18 causes an increase in drag, which in turn leads to wasted energy.
  • FIG. 7 shows a control method of the hybrid refrigeration system in the present embodiment.
  • the hybrid refrigeration system includes the following steps performed by the first control unit 14:
  • S11 determining the indoor cooling demand CFrl, the outlet superheat degree SHrl of the indoor evaporator 10, and the pressure difference ⁇ before and after the compressor 11.
  • the compressor 11 may be a constant capacity compressor 11 or a variable capacity compressor 11, and the refrigerant pump 18 is a variable capacity refrigerant pump 18.
  • step S11 includes the following steps: The first control unit 14 collects the indoor ambient temperature T1, compares the indoor ambient temperature T1 with the preset temperature value Tset1, and calculates the temperature difference between the two to determine the indoor cooling demand CFrl. .
  • the first control unit 14 collects the first outlet temperature T2 and/or the first outlet pressure P1 of the outlet of the indoor evaporator 10, and calculates the outlet superheat degree SHrl of the indoor evaporator 10 based on the calculation formula of the superheat degree.
  • the outlet superheat degree SHrl of the indoor evaporator 10 can be calculated.
  • the first control unit 14 collects the compressor 11 inlet pressure P 2 and the compressor 11 outlet pressure P3, and calculates to determine the pressure difference ⁇ before and after the compressor 11.
  • step S12 The first control unit 14 controls the capacity output of the indoor fan 13, the start and stop of the flow rate control valve 12, and the start and stop of the compressor 11 in accordance with the indoor cooling demand CFrl.
  • step S12 includes the following steps: Comparing the indoor cooling demand CFrl with a preset cooling threshold CFsetl, and if the indoor cooling demand CFrl is greater than or equal to the cooling threshold CFset1, controlling the flow control valve 12 and the compressor 11 Start up and control the capacity output of the indoor fan 13; if not, control the flow control valve 12 and the compressor 11 to stop operating, and maintain the capacity output of the indoor fan 13. [0068] and / or
  • step S13 The first control unit 14 controls the temperature Xrl of the flow control valve 12 in accordance with the outlet superheat degree SHrl of the indoor evaporator 10.
  • step S13 includes the following steps: Comparing the outlet superheat SHrl of the indoor evaporator 10 with a preset superheat threshold range SHsetl, if the outlet superheat SHrl of the indoor evaporator 10 is smaller than the superheat threshold range SHsetl, Then, the twist Xrl of the flow control valve 12 is reduced; if the outlet superheat SHrl of the indoor evaporator 10 is greater than the superheat threshold range SHset1, the twist Xrl of the flow control valve 12 is increased; if the outlet superheat of the indoor evaporator 10 is exceeded When the SHrl is within the superheat threshold range SHset1, the temperature Xrl of the flow control valve 12 is maintained.
  • S14 The first control unit 14 controls the start-stop, start-stop, and capacity output of the compressor 11 according to the differential pressure ⁇ before and after the compressor 11. Specifically, the first control unit 14 controls the start and stop of the constant capacity compressor 11 based on the differential pressure ⁇ before and after the compressor 11; or the first control unit 14 controls the variable capacity compressor 11 based on the differential pressure ⁇ before and after the compressor 11 Start and stop and capacity output. As shown in FIG.
  • step S14 includes the following steps: comparing the pressure difference ⁇ before and after the compressor 11 with a preset pressure difference threshold Pset 1 range; if the pressure difference ⁇ is smaller than the pressure difference threshold range, controlling the constant capacity compressor 11 stops working or reduces the capacity output of the variable capacity compressor 11; if the pressure difference ⁇ is greater than the differential pressure threshold range Pset1, the controlled constant capacity compressor 11 starts or increases the capacity output of the variable capacity compressor 11; ⁇ is within the differential pressure threshold range Pset1, and the constant capacity compressor 11 is controlled to start maintaining the capacity output of the variable capacity compressor 11.
  • control method of the hybrid refrigeration system further includes the following steps performed by the second control unit 15:
  • the second control unit 15 determines the outlet pressure P4 of the outdoor condenser 16 and the twist of the flow control valve 12 Xrl
  • step S22 The second control unit 15 controls the rotation speed of the outdoor fan 17 based on the outlet pressure P4 of the outdoor condenser 16.
  • step S22 includes the following steps: Comparing the outlet pressure P4 of the outdoor condenser 16 with a preset pressure threshold range Pset2, if the outlet pressure P4 of the outdoor condenser 16 is less than a preset pressure threshold range Pset2 , the rotation speed of the outdoor fan 17 is reduced; if the outlet pressure P4 of the outdoor condenser 16 is greater than the preset pressure threshold range Pset2, the rotation speed of the outdoor fan 17 is increased; if the outlet pressure P4 of the outdoor condenser 16 is preset Within the pressure threshold range Pset2, the rotational speed of the outdoor fan 17 is maintained.
  • step S23 The second control unit 15 controls the capacity output of the refrigerant pump 18 based on the twist Xrl of the flow rate control valve 12. As shown in FIG. 12, step S23 includes the following steps: Comparing the twist Xrl of the flow control valve 12 with a preset threshold threshold range Xsetl, if the twist Xrl of the flow control valve 12 is less than the threshold threshold range Xsetl, then subtracting The capacity output of the small refrigerant pump 18; if the temperature Xrl of the flow control valve 12 is greater than the threshold threshold range Xsetl, the capacity output of the refrigerant pump 18 is increased; if the temperature Xrl of the flow control valve 12 is within the threshold range Within Xset1, the capacity output of the refrigerant pump 18 is maintained.
  • the first control unit 14 controls the indoor fan 13, the compressor 11 or the flow control valve 12 by using the PID control method or the P control method, and the PID control method or the P control method is adopted by the second control unit 15.
  • the control of the outdoor fan 17 and the refrigerant pump 18 does not affect each other, that is, there is no order between them, and the control is independently controlled according to the respective control conditions, and there is no need to switch between the compressor mode, the pump module and the pump mode, and avoid The cooling capacity fluctuates during mode switching.

Abstract

一种混合动力制冷系统及其控制方法,该系统包括设置于室内的室内蒸发器(10)、与室内蒸发器(10)出口相连的压缩机(11)、与室内蒸发器(10)入口相连的流量控制阀(12)、与室内蒸发器(10)配合使用的室内风机(13)以及第一控制部(14);还包括设置于室外的与压缩机(11)出口相连的室外冷凝器(16)、与室外冷凝器(16)配合使用的室外风机(17)、与室外冷凝器(16)相连的制冷剂泵(18)以及第二控制部(15),制冷剂泵(18)出口与流量控制阀(12)相连;第一控制部(14)与第二控制部(15)通讯相连。在该混合动力制冷系统及其控制方法的制冷过程中可有效避免能源浪费,以实现节能的目的。

Description

混合动力制冷系统及其控制方法 技术领域
[0001] 本发明涉及制冷系统, 尤其涉及一种混合动力制冷系统及其控制方法。
背景技术
[0002] 当前混合动力制冷系统中只涉及到定容量压缩机和不同制冷剂泵组成的混合动 力系统, 其中泵的启停及容量控制方法有以下几种:
[0003] 其一是在定容量压缩机和定容量泵系统中, 制冷剂泵的启停是根据室内负荷和 室外温度等条件来确定;
[0004] 其二是在定容量压缩机和变容量泵系统中, 制冷剂泵的启停和容量调节根据蒸 发器出口过热度来调节, 或者通过 PID方法控制泵的容量输出来提供固定的扬程
[0005] 上述方案都是根据室外温度判定, 控制不同模式 (如压缩机模式、 压泵模式、 泵模式) 的切换, 一个模式到另一个模式都需要有个最小停机吋间, 一般会控 制在 3分钟, 这个切换过程导致制冷能力有较大的波动, 机房温度波动也较大。 而制冷剂泵的启停也是根据室外环境温度或室内外温差来决定, 即使系统不需 要幵启泵的运行, 只要室外温度达到, 系统就会幵启泵, 有吋甚至会存在系统 节流部件的幵度很小, 而泵需要提供很高的扬程来满足系统的循环, 存在较大 的能源浪费, 达不到最佳节能的效果。 例如, 在室外机组的安装位置比室内安 装位置高 15m, R22制冷剂液体本身的重力作用下就能提供 1.5bar以上的动力, 可以满足系统循环的需要, 不需要幵启制冷剂泵, 但传统的混合动力系统只根 据室外温度确定制冷剂泵的幵启, 导致系统膨胀阀的幵度很小增加系统阻力, 来平衡系统, 存在能源的极大浪费。
技术问题
[0006] 本发明要解决的技术问题在于, 针对现有技术的缺陷, 提供一种混合动力制冷 系统及其控制方法。
问题的解决方案 技术解决方案
[0007] 本发明解决其技术问题所采用的技术方案是: 一种混合动力制冷系统, 包括设 置于室内的室内蒸发器、 与所述室内蒸发器出口相连的压缩机、 与所述室内蒸 发器入口相连的流量控制阀、 与所述室内蒸发器配合使用的室内风机以及第一 控制部;
[0008] 还包括设置于室外的与所述压缩机出口相连的室外冷凝器、 与所述室外冷凝器 配合使用的室外风机、 与所述室外冷凝器相连的制冷剂泵以及第二控制部, 所 述制冷剂泵出口与所述流量控制阀相连; 第一控制部与第二控制部通讯相连;
[0009] 所述第一控制部与所述压缩机、 所述流量控制阀及所述室内风机相连, 用于根 据室内制冷需求控制所述室内风机的容量输出, 根据室内蒸发器的出口过热度 控制所述流量控制阀的幵度, 根据室内制冷需求和所述压缩机前后的压差值控 制所述压缩机的启停和 /或容量输出;
[0010] 所述第二控制部与所述室外风机和所述制冷剂泵相连, 用于根据所述室外冷凝 器的出口压力控制所述室外风机的容量输出; 根据所述流量控制阀的幵度控制 所述制冷剂泵的容量输出。
[0011] 优选地, 还包括连接在所述室外冷凝器与所述制冷剂泵之间的储液装置。
[0012] 优选地, 所述压缩机为定容量压缩机或变容量压缩机, 所述制冷剂泵为变容量 制冷剂泵;
[0013] 所述第一控制部根据所述室内制冷需求和所述压缩机前后的压差值控制所述定 容量压缩机的启停; 或者
[0014] 所述第一控制部根据所述室内制冷需求和所述压缩机前后的压差值控制所述变 容量压缩机的启停和容量输出。
[0015] 优选地, 还包括设置所述流量控制阀入口的第一截止阀、 设置在所述压缩机出 口的第二截止阀、 设置在所述制冷剂泵出口的第三截止阀以及设置在所述室外 冷凝器入口的第四截止阀。
[0016] 优选地, 还包括与所述压缩机和 /或所述制冷剂泵并联设置的单向导通阀。
[0017] 本发明还提供一种混合动力制冷系统的控制方法, 包括第一控制部执行的如下 步骤: [0018] Sl l:确定室内制冷需求、 室内蒸发器的出口过热度、 压缩机前后的压差值; [0019] S12: 根据室内制冷需求控制所述室内风机的容量输出、 所述流量控制阀的启 停和所述压缩机的启停;
[0020] S13:根据室内蒸发器的出口过热度控制所述流量控制阀的幵度;
[0021] S14:根据所述压缩机前后的压差值控制所述压缩机的启停、 或启停和容量输出
[0022] 还包括第二控制部执行的如下步骤:
[0023] S21:确定室外冷凝器的出口压力和流量控制阀的幵度;
[0024] S22:根据所述室外冷凝器的出口压力控制所述室外风机的转速;
[0025] S23:根据所述流量控制阀的幵度控制所述制冷剂泵的容量输出。
[0026] 优选地, 所述压缩机为定容量压缩机或变容量压缩机, 所述制冷剂泵为变容量 制冷剂泵;
[0027] 所述第一控制部根据所述压缩机前后的压差值控制所述定容量压缩机的启停; 或者
[0028] 所述第一控制部根据所述压缩机前后的压差值控制所述变容量压缩机的启停和 容量输出。
[0029] 优选地, 所述步骤 S11包括: 采集室内环境温度, 并将所述室内环境温度与预 设温度值进行比较, 计算两者温度差值以确定所述室内制冷需求;
[0030] 采集室内蒸发器出口的第一出口温度和 /或第一出口压力, 计算以确定所述室 内蒸发器的出口过热度;
[0031] 采集所述压缩机入口压力和压缩机出口压力, 计算以确定所述压缩机前后的压 差值。
[0032] 优选地, 所述步骤 S12包括: 将所述室内制冷需求与预设的制冷阈值比较, 若 所述室内制冷需求大于或等于所述制冷阈值, 则控制所述流量控制阀和所述压 缩机启动, 并控制所述室内风机的容量输出; 若否, 则控制所述流量控制阀和 所述压缩机停止工作, 并维持所述室内风机的容量输出;
[0033] 和 /或
[0034] 所述步骤 S13包括: 将所述室内蒸发器的出口过热度与预设的过热度阈值范围 比较, 若所述室内蒸发器的出口过热度小于所述过热度阈值范围, 则减小所述 流量控制阀的幵度; 若所述室内蒸发器的出口过热度大于所述过热度阈值范围 , 则增大所述流量控制阀的幵度; 若所述室内蒸发器的出口过热度在所述过热 度阈值范围之内, 则维持所述流量控制阀的幵度;
[0035] 和 /或
[0036] 所述步骤 S 14包括: 将所述压缩机前后的压差值与预设的压差阈值范围比较; 若所述压差值小于所述压差阈值范围, 控制定容量压缩机停止工作或减小变容 量压缩机的容量输出; 若所述压差值大于所述压差阈值范围, 控制所述定容量 压缩机启动或增大所述变容量压缩机的容量输出; 若所述压差值在所述压差阈 值范围之内, 控制所述定容量压缩机启动或维持所述变容量压缩机的容量输出
[0037] 优选地, 所述步骤 S22包括: 将所述室外冷凝器的出口压力与预设的压力阈值 范围比较, 若所述室外冷凝器的出口压力小于所述预设的压力阈值范围, 则减 小所述室外风机的转速; 若所述室外冷凝器的出口压力大于所述预设的压力阈 值范围, 则增大所述室外风机的转速; 若所述室外冷凝器的出口压力在所述预 设的压力阈值范围之内, 则维持所述室外风机的转速;
[0038] 和 /或
[0039] 所述步骤 S23包括: 将所述流量控制阀的幵度与预设的幵度阈值范围比较, 若 所述流量控制阀的幵度小于所述幵度阈值范围, 则减小所述制冷剂泵的容量输 出; 若所述流量控制阀的幵度大于所述幵度阈值范围, 则增大所述制冷剂泵的 容量输出; 若所述流量控制阀的幵度在所述幵度阈值范围之内, 则维持所述制 冷剂泵的容量输出。
发明的有益效果
有益效果
[0040] 本发明与现有技术相比具有如下优点: 实施本发明, 通过第一控制部对室内风 机、 压缩机和流量控制阀进行独立控制, 采用第二控制部对室外风机和制冷剂 泵进行独立控制, 压缩机和制冷剂泵给制冷系统提供动力吋根据其各自条件独 立控制, 无需进行模式切换, 避免模式切换过程中出现导致制冷能力出现波动 , 实现有效节能; 制冷剂泵的容量输出根据流量控制阀的幵度进行控制, 避免 能源浪费。
对附图的简要说明
附图说明
[0041] 下面将结合附图及实施例对本发明作进一步说明, 附图中:
[0042] 图 1是本发明实施例 1中混合动力制冷系统的一结构示意图。
[0043] 图 2是本发明实施例 1中混合动力制冷系统的另一结构示意图。
[0044] 图 3是本发明实施例 1中混合动力制冷系统的另一结构示意图。
[0045] 图 4是本发明实施例 1中混合动力制冷系统的另一结构示意图。
[0046] 图 5是本发明实施例 1中混合动力制冷系统的另一结构示意图。
[0047] 图 6是本发明实施例 1中混合动力制冷系统的另一结构示意图。
[0048] 图 7是本发明实施例 2中混合动力制冷系统的控制方法的流程图。
[0049] 图 8是图 7中步骤 S12的流程图。
[0050] 图 9是图 7中步骤 S 13的流程图。
[0051] 图 10是图 7中步骤 S14的流程图。
[0052] 图 11是图 7中步骤 S22的流程图。
[0053] 图 12是图 7中步骤 S23的流程图。
[0054] 图中: 10、 室内蒸发器; 11、 压缩机; 12、 流量控制阀; 13、 室内风机; 14、 第一控制部; 15、 第二控制部; 16、 室外冷凝器; 17、 室外风机; 18、 制冷剂 泵; 19、 储液装置; 20、 单向导通阀; 21、 第一截止阀; 22、 第二截止阀; 23 、 第三截止阀; 24、 第四截止阀。
本发明的实施方式
[0055] 为了对本发明的技术特征、 目的和效果有更加清楚的理解, 现对照附图详细说 明本发明的具体实施方式。
[0056] 实施例 1
[0057] 图 1-图 6示出本实施例中的混合动力制冷系统。 该混合动力制冷系统包括设置 于室内的室内蒸发器 10、 与室内蒸发器 10出口相连的压缩机 11、 与室内蒸发器 1 0入口相连的流量控制阀 12、 与室内蒸发器 10配合使用的室内风机 13以及第一控 制部 14。 具体地, 第一控制部 14与压缩机 11、 流量控制阀 12及室内风机 13相连 , 用于根据室内制冷需求控制室内风机 13的容量输出, 根据室内蒸发器 10的出 口过热度控制流量控制阀 12的幵度, 根据室内制冷需求和压缩机 11前后的压差 值控制压缩机 11的启停和 /或容量输出。 可以理解地, 第一控制部 14采用 PID控制 方法或 P控制方法, 对根据相应的控制条件独立控制室内风机 13的容量输出、 流 量控制阀 12的幵度和压缩机 11的启停、 或启停和容量输出。
[0058] 具体地, 压缩机 11可以为定容量压缩机 11或变容量压缩机 11, 若为定容量压缩 机 11吋, 根据室内制冷需求和压缩机 11前后的压差值控制定容量压缩机 11的启 停; 若为变容量压缩机 11, 根据室内制冷需求和压缩机 11前后的压差值控制变 容量压缩机 11的启停和容量输出。 可以理解地, 根据压缩机 11前后的压差值确 定压缩机 11的启停, 当压缩机 11前后的压差值小于预设的压差阈值范围或为 0吋 , 停止压缩机 11运行, 并控制压差值的大小控制定容量压缩机 11启动或变容量 压缩机 11启动及其容量输出。
[0059] 如图 1-图 6所示, 该混合动力制冷系统还包括设置于室外的与压缩机 11出口相 连的室外冷凝器 16、 与室外冷凝器 16配合使用的室外风机 17、 与室外冷凝器 16 相连的制冷剂泵 18以及第二控制部 15, 制冷剂泵 18出口与流量控制阀 12相连; 第一控制部 14与第二控制部 15通讯相连。 第二控制部 15与室外风机 17和制冷剂 泵 18相连, 用于根据室外冷凝器 16的出口压力控制室外风机 17的容量输出; 根 据流量控制阀 12的幵度控制制冷剂泵 18的容量输出。 可以理解地, 制冷剂泵 18 作为室外冷凝器 16出口到室内蒸发器 10入口的动力, 配合流量控制阀 12以平衡 制冷系统的流量, 即室内制冷需求; 当流量控制阀 12幵度接近或达到最大吋, 制冷系统不能满足制冷系统所需流量, 根据流量控制阀 12的幵度控制制冷剂泵 1 8的容量输出, 以达到节能效果。
[0060] 如图 3-图 6所示, 该混合动力制冷系统还包括连接在室外冷凝器 16与制冷剂泵 1 8之间用于存储冷媒的储液装置 19。 可以理解地, 该冷媒可以是相变制冷剂, 利 用相变制冷剂蒸发吸热, 冷凝放热原理以实现能量交换。
[0061] 如图 1-图 6所示, 该混合动力制冷系统还包括设置流量控制阀 12入口的第一截 止阀 21、 设置在压缩机 11出口的第二截止阀 22、 设置在制冷剂泵 18出口的第三 截止阀 23以及设置在室外冷凝器 16入口的第四截止阀 24。 可以理解地, 通过第 一截止阀 21和第二截止阀 22、 第三截止阀 23和第四截止阀 24的设置, 可实现对 制冷系统的室内和室外独立控制, 以满足用户的使用需求。
[0062] 如图 2、 图 3、 图 5和图 6所示, 该混合动力制冷系统还包括与压缩机 11和 /或制 冷剂泵 18并联设置的单向导通阀 20。 可以理解地, 单向导通阀 20的设置可在系 统无需使用压缩机 11和 /或制冷剂泵 18吋导通, 使得冷媒直接通过单向导通阀 20 从而避免通过压缩机 11和 /或制冷剂泵 18, 导致阻力增加, 进而导致能源浪费。
[0063] 实施例 2
[0064] 图 7示出本实施例中的混合动力制冷系统的控制方法。 该混合动力制冷系统包 括第一控制部 14执行的如下步骤:
[0065] S11:确定室内制冷需求 CFrl、 室内蒸发器 10的出口过热度 SHrl、 压缩机 11前后 的压差值 ΔΡ。 本实施例中, 压缩机 11可以为定容量压缩机 11或变容量压缩机 11 , 所述制冷剂泵 18为变容量制冷剂泵 18。
[0066] 具体地, 步骤 S11包括如下步骤: 第一控制部 14采集室内环境温度 Tl, 并将室 内环境温度 T1与预设温度值 Tsetl进行比较, 计算两者温度差值以确定室内制冷 需求 CFrl。 第一控制部 14采集室内蒸发器 10出口的第一出口温度 T2和 /或第一出 口压力 Pl, 根据过热度计算公式计算以确定室内蒸发器 10的出口过热度 SHrl。 具体地, 通过采集室内蒸发器 10出口两点的第一出口温度 Tl、 或两点的第一出 口压力 Pl、 或同吋采集任一点的第一出口温度 Τ2和 /或第一出口压力 Pl, 均可计 算得到室内蒸发器 10的出口过热度 SHrl。 第一控制部 14采集压缩机 11入口压力 P 2和压缩机 11出口压力 P3, 计算以确定压缩机 11前后的压差值 ΔΡ。
[0067] S12: 第一控制部 14根据室内制冷需求 CFrl控制室内风机 13的容量输出、 流量 控制阀 12的启停和压缩机 11的启停。 如图 8所示, 步骤 S12包括如下步骤: 将室 内制冷需求 CFrl与预设的制冷阈值 CFsetl比较, 若所述室内制冷需求 CFrl大于或 等于制冷阈值 CFsetl , 则控制流量控制阀 12和压缩机 11启动, 并控制室内风机 13 的容量输出; 若否, 则控制流量控制阀 12和压缩机 11停止工作, 并维持室内风 机 13的容量输出。 [0068] 和 /或
[0069] S13:第一控制部 14根据室内蒸发器 10的出口过热度 SHrl控制流量控制阀 12的幵 度 Xrl。 如图 9所示, 步骤 S13包括如下步骤: 将室内蒸发器 10的出口过热度 SHrl 与预设的过热度阈值范围 SHsetl比较, 若室内蒸发器 10的出口过热度 SHrl小于 过热度阈值范围 SHsetl , 则减小流量控制阀 12的幵度 Xrl ; 若室内蒸发器 10的出 口过热度 SHrl大于过热度阈值范围 SHsetl , 则增大流量控制阀 12的幵度 Xrl ; 若 室内蒸发器 10的出口过热度 SHrl在过热度阈值范围 SHsetl之内, 则维持流量控 制阀 12的幵度 Xrl。
[0070] 和 /或
[0071] S14:第一控制部 14根据压缩机 11前后的压差值 ΔΡ控制压缩机 11的启停、 或启停 和容量输出。 具体地, 第一控制部 14根据压缩机 11前后的压差值 ΔΡ控制定容量 压缩机 11的启停; 或者第一控制部 14根据压缩机 11前后的压差值 ΔΡ控制变容量 压缩机 11的启停和容量输出。 如图 10所示, 步骤 S14包括如下步骤: 将压缩机 11 前后的压差值 ΔΡ与预设的压差阈值 Pset 1范围比较; 若压差值 ΔΡ小于压差阈值范 围, 控制定容量压缩机 11停止工作或减小变容量压缩机 11的容量输出; 若压差 值 ΔΡ大于压差阈值范围 Psetl , 控制定容量压缩机 11启动或增大变容量压缩机 11 的容量输出; 若压差值 ΔΡ在压差阈值范围 Psetl之内, 控制定容量压缩机 11启动 维持变容量压缩机 11的容量输出。
[0072] 该混合动力制冷系统的控制方法还包括第二控制部 15执行的如下步骤:
[0073] S21:第二控制部 15确定室外冷凝器 16的出口压力 P4和流量控制阀 12的幵度 Xrl
[0074] S22:第二控制部 15根据室外冷凝器 16的出口压力 P4控制室外风机 17的转速。 如 图 11所示, 步骤 S22包括如下步骤: 将室外冷凝器 16的出口压力 P4与预设的压力 阈值范围 Pset2比较, 若所述室外冷凝器 16的出口压力 P4小于预设的压力阈值范 围 Pset2, 则减小室外风机 17的转速; 若室外冷凝器 16的出口压力 P4大于预设的 压力阈值范围 Pset2, 则增大室外风机 17的转速; 若室外冷凝器 16的出口压力 P4 在预设的压力阈值范围 Pset2之内, 则维持室外风机 17的转速。
[0075] 和 /或 [0076] S23:第二控制部 15根据流量控制阀 12的幵度 Xrl控制制冷剂泵 18的容量输出。 如图 12所示, 步骤 S23包括如下步骤: 将流量控制阀 12的幵度 Xrl与预设的幵度 阈值范围 Xsetl比较, 若流量控制阀 12的幵度 Xrl小于幵度阈值范围 Xsetl , 则减 小制冷剂泵 18的容量输出; 若流量控制阀 12的幵度 Xrl大于幵度阈值范围 Xsetl , 则增大制冷剂泵 18的容量输出; 若流量控制阀 12的幵度 Xrl在幵度阈值范围 Xsetl 之内, 则维持制冷剂泵 18的容量输出。
[0077] 可以理解地, 第一控制部 14采用 PID控制方法或 P控制方法对室内风机 13、 压缩 机 11或流量控制阀 12的控制、 以及第二控制部 15采用 PID控制方法或 P控制方法 对室外风机 17和制冷剂泵 18的控制互不影响力, 即相互之间无先后顺序, 根据 各自的控制条件独立控制, 无需进行压缩机模式、 压泵模块和泵模式之间的切 换, 避免模式切换过程中导致制冷能力波动。
[0078] 本发明是通过一个具体实施例进行说明的, 本领域技术人员应当明白, 在不脱 离本发明范围的情况下, 还可以对本发明进行各种变换和等同替代。 另外, 针 对特定情形或具体情况, 可以对本发明做各种修改, 而不脱离本发明的范围。 因此, 本发明不局限于所公幵的具体实施例, 而应当包括落入本发明权利要求 范围内的全部实施方式。

Claims

权利要求书
[权利要求 1] 一种混合动力制冷系统, 其特征在于, 包括设置于室内的室内蒸发器
(10) 、 与所述室内蒸发器 (10) 出口相连的压缩机 (11) 、 与所述 室内蒸发器 (10) 入口相连的流量控制阀 (12) 、 与所述室内蒸发器
(10) 配合使用的室内风机 (13) 以及第一控制部 (14) ; 还包括设置于室外的与所述压缩机 (11) 出口相连的室外冷凝器 (16 ) 、 与所述室外冷凝器 (16) 配合使用的室外风机 (17) 、 与所述室 外冷凝器 (16) 相连的制冷剂泵 (18) 以及第二控制部 (15) , 所述 制冷剂泵 (18) 出口与所述流量控制阀 (12) 相连; 第一控制部 (14 ) 与第二控制部 (15) 通讯相连;
所述第一控制部 (14) 与所述压缩机 (11) 、 所述流量控制阀 (12) 及所述室内风机 (13) 相连, 用于根据室内制冷需求控制所述室内风 机 (13) 的容量输出, 根据室内蒸发器 (10) 的出口过热度控制所述 流量控制阀 (12) 的幵度, 根据室内制冷需求和所述压缩机 (11) 前 后的压差值控制所述压缩机 (11) 的启停和 /或容量输出;
所述第二控制部 (15) 与所述室外风机 (17) 和所述制冷剂泵 (18) 相连, 用于根据所述室外冷凝器 (16) 的出口压力控制所述室外风机 (17) 的容量输出; 根据所述流量控制阀 (12) 的幵度控制所述制冷 剂泵 (18) 的容量输出。
[权利要求 2] 根据权利要求 1所述的混合动力制冷系统, 其特征在于, 还包括连接 在所述室外冷凝器 (16) 与所述制冷剂泵 (18) 之间的储液装置 (19
[权利要求 3] 根据权利要求 1或 2所述的混合动力制冷系统, 其特征在于, 所述压缩 机 (11) 为定容量压缩机 (11) 或变容量压缩机 (11) , 所述制冷剂 泵 (18) 为变容量制冷剂泵 (18) ;
所述第一控制部 (14) 根据所述室内制冷需求和所述压缩机 (11) 前 后的压差值控制所述定容量压缩机 (11) 的启停; 或者
所述第一控制部 (14) 根据所述室内制冷需求和所述压缩机 (11) 前 后的压差值控制所述变容量压缩机 (11) 的启停和容量输出。
[权利要求 4] 根据权利要求 3所述的混合动力制冷系统, 其特征在于, 还包括设置 所述流量控制阀 (12) 入口的第一截止阀 (21)、 设置在所述压缩机 ( 11) 出口的第二截止阀 (22)、 设置在所述制冷剂泵 (18) 出口的第三 截止阀 (23)以及设置在所述室外冷凝器 (16) 入口的第四截止阀 (24)
[权利要求 5] 根据权利要求 3所述的混合动力制冷系统, 其特征在于, 还包括与所 述压缩机 (11) 和 /或所述制冷剂泵 (18) 并联设置的单向导通阀 (2
[权利要求 6] 根据权利要求 1-5任一项所述的混合动力制冷系统的控制方法, 其特 征在于, 包括第一控制部 (14) 执行的如下步骤:
S11:确定室内制冷需求、 室内蒸发器 (10) 的出口过热度、 压缩机 ( 11) 前后的压差值;
S12: 根据室内制冷需求控制所述室内风机 (13) 的容量输出、 所述 流量控制阀 (12) 的启停和所述压缩机 (11) 的启停;
S13:根据室内蒸发器 (10) 的出口过热度控制所述流量控制阀 (12) 的幵度;
S 14:根据所述压缩机 (11) 前后的压差值控制所述压缩机 (11) 的启 停、 或启停和容量输出;
还包括第二控制部 (15) 执行的如下步骤:
S21:确定室外冷凝器 (16) 的出口压力和流量控制阀 (12) 的幵度; S22:根据所述室外冷凝器 (16) 的出口压力控制所述室外风机 (17) 的转速;
S23:根据所述流量控制阀 (12) 的幵度控制所述制冷剂泵 (18) 的容 量输出。
[权利要求 7] 根据权利要求 6所述的混合动力制冷系统的控制方法, 其特征在于, 所述第一控制部 (14) 根据所述压缩机 (11) 前后的压差值控制所述 定容量压缩机 (11) 的启停; 或者
所述第一控制部 (14) 根据所述压缩机 (11) 前后的压差值控制所述 变容量压缩机 (11) 的启停和容量输出。
[权利要求 8] 根据权利要求 7所述的混合动力制冷系统的控制方法, 其特征在于, 所述步骤 S11包括: 采集室内环境温度, 并将所述室内环境温度与预 设温度值进行比较, 计算两者温度差值以确定所述室内制冷需求; 采集室内蒸发器 (10) 出口的第一出口温度和 /或第一出口压力, 计 算以确定所述室内蒸发器 (10) 的出口过热度; 采集所述压缩机 (11) 入口压力和压缩机 (11) 出口压力, 计算以确 定所述压缩机 (11) 前后的压差值。
[权利要求 9] 根据权利要求 8所述的混合动力制冷系统的控制方法, 其特征在于, 所述步骤 S12包括: 将所述室内制冷需求与预设的制冷阈值比较, 若 所述室内制冷需求大于或等于所述制冷阈值, 则控制所述流量控制阀 (12) 和所述压缩机 (11) 启动, 并控制所述室内风机 (13) 的容量 输出; 若否, 则控制所述流量控制阀 (12) 和所述压缩机 (11) 停止 工作, 并维持所述室内风机 (13) 的容量输出; 和 /或
所述步骤 S13包括: 将所述室内蒸发器 (10) 的出口过热度与预设的 过热度阈值范围比较, 若所述室内蒸发器 (10) 的出口过热度小于所 述过热度阈值范围, 则减小所述流量控制阀 (12) 的幵度; 若所述室 内蒸发器 (10) 的出口过热度大于所述过热度阈值范围, 则增大所述 流量控制阀 (12) 的幵度; 若所述室内蒸发器 (10) 的出口过热度在 所述过热度阈值范围之内, 则维持所述流量控制阀 (12) 的幵度; 和 /或
所述步骤 S14包括: 将所述压缩机 (11) 前后的压差值与预设的压差 阈值范围比较; 若所述压差值小于所述压差阈值范围, 控制定容量压 缩机 (11) 停止工作或减小变容量压缩机 (11) 的容量输出; 若所述 压差值大于所述压差阈值范围, 控制所述定容量压缩机 (11) 启动或 增大所述变容量压缩机 (11) 的容量输出; 若所述压差值在所述压差 阈值范围之内, 控制所述定容量压缩机 (11) 启动或维持所述变容量 压缩机 (11) 的容量输出。
[权利要求 10] 根据权利要求 6-9任一项所述的混合动力制冷系统的控制方法, 其特 征在于,
所述步骤 S22包括: 将所述室外冷凝器 (16) 的出口压力与预设的压 力阈值范围比较, 若所述室外冷凝器 (16) 的出口压力小于所述预设 的压力阈值范围, 则减小所述室外风机 (17) 的转速; 若所述室外冷 凝器 (16) 的出口压力大于所述预设的压力阈值范围, 则增大所述室 外风机 (17) 的转速; 若所述室外冷凝器 (16) 的出口压力在所述预 设的压力阈值范围之内, 则维持所述室外风机 (17) 的转速; 和 /或
所述步骤 S23包括: 将所述流量控制阀 (12) 的幵度与预设的幵度阈 值范围比较, 若所述流量控制阀 (12) 的幵度小于所述幵度阈值范围 , 则减小所述制冷剂泵 (18) 的容量输出; 若所述流量控制阀 (12) 的幵度大于所述幵度阈值范围, 则增大所述制冷剂泵 (18) 的容量输 出; 若所述流量控制阀 (12) 的幵度在所述幵度阈值范围之内, 则维 持所述制冷剂泵 (18) 的容量输出。
PCT/CN2016/073229 2015-03-10 2016-02-02 混合动力制冷系统及其控制方法 WO2016141791A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510104865.7A CN104776633B (zh) 2015-03-10 2015-03-10 混合动力制冷系统及其控制方法
CN201510104865.7 2015-03-10

Publications (1)

Publication Number Publication Date
WO2016141791A1 true WO2016141791A1 (zh) 2016-09-15

Family

ID=53618255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073229 WO2016141791A1 (zh) 2015-03-10 2016-02-02 混合动力制冷系统及其控制方法

Country Status (2)

Country Link
CN (1) CN104776633B (zh)
WO (1) WO2016141791A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104776633B (zh) * 2015-03-10 2017-05-10 深圳市艾特网能有限公司 混合动力制冷系统及其控制方法
CN107024013B (zh) * 2016-02-01 2019-07-23 珠海格力电器股份有限公司 空调器及其控制方法
WO2017177457A1 (zh) * 2016-04-15 2017-10-19 深圳市艾特网能技术有限公司 一种液冷混合动力制冷系统及其控制方法
CN105910313A (zh) * 2016-04-15 2016-08-31 深圳市艾特网能技术有限公司 一种液冷混合动力制冷系统及其控制方法
CN105783328A (zh) * 2016-04-28 2016-07-20 深圳市艾特网能技术有限公司 混合冷源的混合动力制冷系统及其控制方法
WO2017185298A1 (zh) * 2016-04-28 2017-11-02 深圳市艾特网能技术有限公司 混合冷源的混合动力制冷系统及其控制方法
CN108758920A (zh) * 2018-07-03 2018-11-06 依米康科技集团股份有限公司 一种空调冷媒流量控制系统及其控制方法
CN111609497B (zh) * 2020-05-26 2022-05-03 深圳市艾特网能技术有限公司 自然冷机房空调的控制方法、控制装置及自然冷机房空调

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1776328A (zh) * 2005-12-06 2006-05-24 东南大学 混合动力燃气热泵空调及其操作方法
CN102242984A (zh) * 2010-11-25 2011-11-16 中原工学院 太阳能辅助热机驱动式制冷装置
US20120227429A1 (en) * 2011-03-10 2012-09-13 Timothy Louvar Cooling system
CN203286826U (zh) * 2013-05-13 2013-11-13 艾默生网络能源有限公司 一种机房的制冷控制系统
CN104776633A (zh) * 2015-03-10 2015-07-15 深圳市艾特网能有限公司 混合动力制冷系统及其控制方法
CN204574599U (zh) * 2015-03-10 2015-08-19 深圳市艾特网能有限公司 混合动力制冷系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7658079B2 (en) * 2006-11-22 2010-02-09 Bailey Peter F Cooling system and method
WO2008079118A1 (en) * 2006-12-22 2008-07-03 Carrier Corporation Air conditioning systems and methods having free-cooling pump starting sequences
US8117859B2 (en) * 2006-12-22 2012-02-21 Carrier Corporation Methods and systems for controlling air conditioning systems having a cooling mode and a free-cooling mode
CN101504222B (zh) * 2009-02-19 2011-07-27 艾默生网络能源有限公司 一种空调
DE102009023394A1 (de) * 2009-05-29 2010-12-30 Airbus Deutschland Gmbh Verbesserte Kälteerzeugungsvorrichtung, insbesondere für Flugzeuge
CN203478687U (zh) * 2013-07-30 2014-03-12 新奥科技发展有限公司 一种制冷系统
CN203464396U (zh) * 2013-08-12 2014-03-05 北京雅驿欣科技有限公司 室内装置结构紧凑的多制冷循环节能空调机组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1776328A (zh) * 2005-12-06 2006-05-24 东南大学 混合动力燃气热泵空调及其操作方法
CN102242984A (zh) * 2010-11-25 2011-11-16 中原工学院 太阳能辅助热机驱动式制冷装置
US20120227429A1 (en) * 2011-03-10 2012-09-13 Timothy Louvar Cooling system
CN203286826U (zh) * 2013-05-13 2013-11-13 艾默生网络能源有限公司 一种机房的制冷控制系统
CN104776633A (zh) * 2015-03-10 2015-07-15 深圳市艾特网能有限公司 混合动力制冷系统及其控制方法
CN204574599U (zh) * 2015-03-10 2015-08-19 深圳市艾特网能有限公司 混合动力制冷系统

Also Published As

Publication number Publication date
CN104776633B (zh) 2017-05-10
CN104776633A (zh) 2015-07-15

Similar Documents

Publication Publication Date Title
WO2016141791A1 (zh) 混合动力制冷系统及其控制方法
CN108224702B (zh) 用于中央空调系统的控制方法及装置
CN105627524B (zh) 空调器防冻结控制方法及空调器
WO2019011094A1 (zh) 空调强力制冷控制方法
WO2020062598A1 (zh) 水多联机组运行控制方法、装置、介质和水多联空调系统
WO2018094844A1 (zh) 一种空调系统及控制方法
CN103398446B (zh) 一种提高空调制热制冷效果的方法
JP2014031981A (ja) 二元冷凍装置
WO2021218436A1 (zh) 变频空调的控制方法
CN105042768A (zh) 变频空调机制冷运行时防止室内换热器结霜的控制方法
WO2014029316A1 (zh) 带除霜结构的热泵及其除霜方法
TW201632814A (zh) 空調機
JP4167190B2 (ja) 冷凍システムおよびその運転方法
TW201104181A (en) Energy saver device and method for cooling and heating apparatus
CN110822545A (zh) 变频空调系统及其低频运行的控制方法
WO2021223530A1 (zh) 变频空调的控制方法
JP5633335B2 (ja) 空気調和装置
JP2010236816A (ja) ヒートポンプ式空調機およびヒートポンプ式空調機の制御方法
CN211204223U (zh) 变频空调系统
CN204574599U (zh) 混合动力制冷系统
JP5971964B2 (ja) ターボ冷凍機
JP5920027B2 (ja) 空気調和装置
JP2012107790A (ja) 空気調和装置
JP5754627B2 (ja) 流体冷却方法、及び、流体冷却装置
CN111219818B (zh) 空调系统、空调器和空调器的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761018

Country of ref document: EP

Kind code of ref document: A1