WO2021218436A1 - 变频空调的控制方法 - Google Patents

变频空调的控制方法 Download PDF

Info

Publication number
WO2021218436A1
WO2021218436A1 PCT/CN2021/080347 CN2021080347W WO2021218436A1 WO 2021218436 A1 WO2021218436 A1 WO 2021218436A1 CN 2021080347 W CN2021080347 W CN 2021080347W WO 2021218436 A1 WO2021218436 A1 WO 2021218436A1
Authority
WO
WIPO (PCT)
Prior art keywords
air outlet
outlet temperature
frequency
time
compressor
Prior art date
Application number
PCT/CN2021/080347
Other languages
English (en)
French (fr)
Inventor
宋德跃
王海胜
张铭
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021218436A1 publication Critical patent/WO2021218436A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature

Definitions

  • the present invention relates to an air conditioning system, in particular to a control method of an inverter air conditioner.
  • Inverter air conditioners usually refer to air conditioning systems that use inverter compressors.
  • the inverter compressor can adjust its speed by controlling its frequency, thereby changing the cooling or heating capacity of the inverter air conditioner.
  • the inverter air conditioner using inverter control technology can also automatically select heating, cooling and other operating modes according to the ambient temperature, so that the regulated space can quickly reach the target temperature in a short time, and can remain small in the regulated space after reaching the target temperature The temperature difference fluctuates. Therefore, inverter air conditioners can achieve fast, energy-saving, and comfortable temperature control effects, which are becoming more and more widely cited.
  • the frequency conversion air conditioner of the prior art can achieve energy-saving effects by controlling the reduced frequency and the operating time after the reduced frequency.
  • this control method cannot achieve low frequency values under different indoor or outdoor temperatures and automatic changes with operating time.
  • it is easy to cause relatively large fluctuations in indoor temperature and cause user complaints, or due to reduced frequency values It is not suitable to achieve the purpose of energy saving and consumption reduction.
  • the present invention provides a control method of the frequency conversion air conditioner.
  • the control method includes: determining The target air outlet temperature of the indoor unit of the inverter air conditioner; measure the real-time air outlet temperature of the indoor unit; compare the real-time air outlet temperature with the target air outlet temperature; and adjust the compression of the inverter air conditioner based on the comparison result
  • the compressor operates at the adjusted frequency for a predetermined period of time, and after the predetermined period of time has elapsed, the step of measuring the real-time air outlet temperature of the indoor unit is repeated.
  • the minimum frequency of the compressor is determined; the reduced frequency is compared with the minimum frequency. Comparison: if the reduced frequency is greater than the minimum frequency, the compressor operates at the reduced frequency for the predetermined period of time, and if the reduced frequency is less than or equal to the minimum frequency, the compressor The machine operates at the minimum frequency for the predetermined period of time.
  • the target air outlet temperature is the cooling target air outlet temperature
  • the control method includes:
  • the The frequency of the compressor remains unchanged for the predetermined period of time
  • the frequency of the compressor is reduced by a second predetermined frequency value, and the compressor is operated at the reduced frequency for the predetermined period of time.
  • the first predetermined ratio is 15%.
  • the first predetermined frequency value and the second predetermined frequency value are respectively 1 Hz.
  • the target air outlet temperature is the heating target air outlet temperature
  • the control method includes:
  • the frequency of the compressor is increased by a first predetermined frequency value, and the compressor is operated at the increased frequency for the predetermined period of time;
  • the frequency of the compressor is reduced by a second predetermined frequency value, and the compressor is operated at the reduced frequency for the predetermined period of time.
  • the second predetermined ratio is 15%.
  • the first predetermined frequency value and the second predetermined frequency value are respectively 1 Hz.
  • the indoor unit includes one or more.
  • the predetermined time period is 1 minute or 2 minutes.
  • the control method of the inverter air conditioner of the present invention in order to enable the inverter air conditioner to adjust the frequency of the compressor in time according to changes in indoor and outdoor temperature, it is necessary to determine the target output of the indoor unit of the inverter air conditioner.
  • the air outlet temperature is measured, and the real-time air outlet temperature of the indoor unit is measured, and then the real-time air outlet temperature is compared with the target air outlet temperature, and the frequency of the compressor of the inverter air conditioner is adjusted based on the comparison result.
  • the compressor runs at the adjusted frequency for a predetermined period of time, and after the predetermined period of time has elapsed, the step of measuring the real-time air outlet temperature of the indoor unit is repeated.
  • this technical solution can make the real-time air outlet temperature quickly approach the target air outlet temperature and maintain the real-time air outlet temperature near the target air outlet temperature at the same time.
  • the energy consumption of the inverter air conditioner can be reduced by changing the frequency of the compressor.
  • the control method can reduce the energy consumption of the inverter air conditioner as much as possible while maintaining the cooling or heating effect of the inverter air conditioner, thereby improving the energy efficiency ratio of the inverter air conditioner.
  • the frequency of the compressor is adjusted to reduce the frequency, it is necessary to determine the minimum frequency of the compressor and ensure that the compressor runs at a frequency not lower than the minimum frequency in order to protect the compressor from being caused by too low frequency. Damage.
  • the real-time air outlet temperature is higher than the cooling target air outlet temperature, and the ratio of the temperature difference between the real-time air outlet temperature and the cooling target air outlet temperature to the cooling target air outlet temperature is relatively large, for example, More than 15% or other suitable ratios, indicating that the temperature of the regulated space is still quite different from the temperature expected by the user. Therefore, it is necessary to increase the frequency of the compressor appropriately, for example, increase 1Hz or other suitable values to make the real-time The air outlet temperature is faster to approach the cooling target air outlet temperature.
  • the compressor runs at the increased frequency for a predetermined period of time, such as 1 minute or 2 minutes or other suitable time period, and then re-measures the real-time air outlet temperature of the indoor unit.
  • the real-time air outlet temperature is equal to or higher than the cooling target air outlet temperature, but the ratio of the temperature difference between the two to the cooling target air outlet temperature is relatively small, for example, less than or equal to 15% or other suitable ratio, it means The temperature in the conditioning space is already close to the temperature desired by the user, so the frequency of the compressor remains unchanged for a predetermined period of time. If the real-time air outlet temperature is lower than the cooling target air outlet temperature, it means that the real-time air outlet temperature has reached the cooling target air outlet temperature.
  • the frequency of the compressor can be appropriately reduced, such as reducing 1Hz or other suitable frequency values, and running at a reduced frequency for a predetermined period of time, so as to maintain the cooling effect while saving energy and improving the inverter air conditioner Energy efficiency ratio.
  • the ratio of the temperature difference between the real-time air outlet temperature and the heating target air outlet temperature to the heating target air outlet temperature Relatively large, such as greater than 15% or other suitable ratios, indicates that the temperature of the regulated space is still quite different from the temperature expected by the user. Therefore, it is necessary to increase the frequency of the compressor appropriately, for example, increase 1Hz or other suitable values.
  • the compressor runs at the increased frequency for a predetermined period of time, such as 1 minute or 2 minutes or other suitable time period, and then re-measures the real-time air outlet temperature of the indoor unit.
  • the real-time air outlet temperature is lower than or equal to the heating target air outlet temperature, but the ratio of the temperature difference between the two to the heating target air outlet temperature is relatively small, for example, less than or equal to 15% or other suitable ratios, It means that the temperature in the regulated space is close to the temperature expected by the user, so the frequency of the compressor remains unchanged for a predetermined period of time. If the real-time air outlet temperature is higher than the heating target air outlet temperature, it means that the real-time air outlet temperature has reached the heating target air outlet temperature. In this case, the frequency of the compressor can be appropriately reduced, such as reducing 1Hz or other appropriate frequency value, and running at a reduced frequency for a predetermined period of time, so as to maintain the heating effect while saving energy and increasing the frequency conversion. Energy efficiency ratio of air conditioning.
  • Figure 1 is a schematic diagram of an example inverter air conditioner system with cooling and heating functions
  • Figure 2 is a flow chart of the control method of the inverter air conditioner of the present invention.
  • FIG. 3 is a flowchart of the first embodiment of the control method of the inverter air conditioner of the present invention.
  • Fig. 4 is a flowchart of the second embodiment of the control method of the inverter air conditioner of the present invention.
  • the present invention provides a control method of the inverter air conditioner.
  • the control method includes: determining the target air outlet temperature of the indoor unit of the inverter air conditioner; measuring the real-time air outlet temperature of the indoor unit; comparing the real-time air outlet temperature with the target air outlet temperature; and adjusting the frequency of the compressor of the inverter air conditioner based on the comparison result,
  • the compressor runs at the adjusted frequency for a predetermined period of time, and after the predetermined period of time has elapsed, the step of measuring the real-time air outlet temperature of the indoor unit is repeated.
  • the inverter air conditioners mentioned herein include, but are not limited to, central air conditioners using inverter compressors, split type air conditioners, window air conditioners, and the like.
  • the form of the "indoor unit” includes, but is not limited to, the part of the ceiling type, wall type, cabinet type, or window type air conditioner that extends into the room.
  • the number of indoor units may be one or more.
  • the control method of the present invention is applied to each indoor unit.
  • the inverter air conditioner mentioned in this article can only have a cooling function, or it can have a cooling and heating function.
  • the compressor frequency is appropriately controlled up and down based on the real-time change of the air outlet temperature of the indoor unit, which not only exerts the advantages of the inverter air conditioner, but also achieves energy saving. the goal of.
  • Fig. 1 is a schematic diagram of an exemplary inverter air conditioner system.
  • the inverter air conditioner 1 includes an inverter compressor 11, a four-way valve 12, a first heat exchanger 13, an electronic expansion valve 14, a second heat exchanger 15, and a gas-liquid separator 16.
  • the inverter compressor 11, the four-way valve 12, the first heat exchanger 13 and the electronic expansion valve 14 are usually placed in the outdoor unit or outdoor unit of the inverter air conditioner (which is generally arranged in an outdoor environment), and the second heat exchange
  • the device 15 is usually placed in an indoor unit (which is generally arranged indoors or in a room).
  • the first heat exchanger 13 and the second heat exchanger 15 may include, but are not limited to, a finned coil heat exchanger and a plate heat exchanger, respectively.
  • the inverter air conditioner 1 can perform cooling and heating cycles. For example, as shown in Figure 1, in the refrigeration cycle, inside the four-way valve 12, the d port and the c port of the four-way valve 12 are connected, the e port and the s port are connected, and both the d port and the c port are connected with The e port and the s port are not connected.
  • the first heat exchanger 13 acts as a condenser
  • the second heat exchanger 15 acts as an evaporator.
  • the inverter air conditioner receives the refrigeration command
  • the inverter compressor 11 starts to start
  • the refrigerant such as R134a
  • the communicating d-port and c-port enter the first heat exchanger 13 (which acts as a condenser).
  • the high-temperature and high-pressure gas refrigerant is condensed into a high-temperature and high-pressure liquid refrigerant by transferring heat to the external environment.
  • the high-temperature and high-pressure liquid refrigerant becomes a low-temperature and low-pressure liquid refrigerant through the throttling and pressure reduction effect of the electronic expansion valve 14.
  • the low-temperature and low-pressure liquid refrigerant flows into the second heat exchanger 15 (which serves as an evaporator), and is evaporated into a low-temperature and low-pressure gas refrigerant by absorbing the heat of the indoor air in the evaporator 15, and the indoor air is thereby cooled.
  • the low-temperature and low-pressure gas refrigerant enters the gas-liquid separator 16 through the e-port and the s-port communicating with each other of the four-way valve 12.
  • the gas refrigerant after gas-liquid separation flows back to the inverter compressor 11.
  • a complete refrigeration cycle can be completed, and such a refrigeration cycle can be performed uninterruptedly in order to achieve the target refrigeration temperature.
  • the first heat exchanger 13 serves as an evaporator
  • the second heat exchanger 15 serves as a condenser.
  • the inverter air conditioner receives a heating command
  • the inverter compressor 11 starts to start, and the refrigerant (such as R134a) that can circulate in the inverter air conditioner system is compressed by the inverter compressor 11 and then passes through the four-way valve 12 in the form of high temperature and high pressure gas.
  • the d-port and the e-port that communicate with each other enter the second heat exchanger 15 (which serves as a condenser).
  • the high-temperature and high-pressure gas refrigerant is condensed into a high-temperature and high-pressure liquid refrigerant by transferring heat to the indoor air, and the indoor air is heated and raised.
  • the high-temperature and high-pressure liquid refrigerant becomes a low-temperature and low-pressure liquid refrigerant through the throttling and pressure reduction effect of the electronic expansion valve 14.
  • the low-temperature and low-pressure liquid refrigerant flows into the first heat exchanger 13 (which serves as an evaporator), and is evaporated in the first heat exchanger 13 into a low-temperature and low-pressure gas refrigerant by absorbing heat from the outdoor environment.
  • the low-temperature and low-pressure gas refrigerant enters the gas-liquid separator 16 through the c-port and the s-port that are communicated with each other of the four-way valve 12.
  • the gas refrigerant after gas-liquid separation flows back to the inverter compressor 11.
  • a complete heating cycle can be completed, and such a heating cycle can be performed uninterruptedly in order to achieve the target heating temperature.
  • Fig. 2 is a flow chart of the control method of the inverter air conditioner of the present invention.
  • the control method of the inverter air conditioner includes steps S1, S2, S3, and S4.
  • step S1 the control method needs to determine the target air outlet temperature of the indoor unit of the inverter air conditioner. If there are multiple indoor units, determine the target air outlet temperature of each indoor unit.
  • the target air outlet temperature can be either the cooling target air outlet temperature in the cooling mode, or the heating target air outlet temperature in the heating mode.
  • the real-time air outlet temperature of the indoor unit is measured. Similarly, if there are multiple indoor units, measure the real-time air outlet temperature of each indoor unit.
  • step S3 the real-time air outlet temperature corresponding to each indoor unit is compared with the target air outlet temperature.
  • step S4 the frequency of the compressor of the inverter air conditioner is adjusted based on the comparison result, the compressor is operated at the adjusted frequency for a predetermined period of time, and after the predetermined period of time has elapsed, the step of measuring the real-time air outlet temperature of the indoor unit is repeatedly executed .
  • the predetermined time period mentioned herein is determined according to actual conditions, such as 1 minute or 2 minutes. The appropriate period of time should neither cause too much fluctuation in the indoor temperature nor allow the compressor frequency to remain in a state of adjustment.
  • Fig. 3 is a flowchart of the first embodiment of the control method of the inverter air conditioner of the present invention.
  • the inverter air conditioner operates in the cooling mode.
  • the control method determines the cooling target air outlet temperature T t1 of the indoor unit, and measures the real-time air outlet temperature T i of the indoor unit (step S11).
  • the control method compares the real-time air outlet temperature T i with the 115% cooling target air outlet temperature T t1 .
  • T i is greater than 115% T t1 , it means that T i is not only greater than T t1 , but the ratio of the temperature difference between T i and T t1 to T t1 is greater than the first predetermined ratio of 15%.
  • the first predetermined ratio may be reselected according to changes in the indoor temperature, for example, 10% or other suitable ratios. This scenario shows that the real-time air outlet temperature T i of the indoor unit and the cooling target air outlet temperature T t1 have a relatively large gap. Therefore, in order to reach the cooling target air outlet temperature T t1 more quickly, the control method proceeds to step S13, Increase the frequency of the compressor.
  • the amplitude of the frequency increase can be adjusted according to the accuracy of the indoor and outdoor temperature range, such as 2 Hz or other suitable frequency values.
  • the compressor operates at the increased frequency f i for a predetermined period of time, such as 1 minute or 2 minutes or other suitable period of time. After the predetermined time period has elapsed, the control method re-implements the step of measuring the real-time air outlet temperature T i of the indoor unit and the subsequent steps, or the control method ends after receiving a cooling stop or shutdown instruction.
  • step S14 it is determined in step S14 whether T i is greater than or equal to T t1 and less than or equal to 115% T t1 . If yes, this means that the real-time air outlet temperature T i is close to the cooling target air outlet temperature T t1 , so the control method proceeds to step S15, maintaining the previous frequency f 0 of the compressor unchanged, and also for a predetermined period of time, for example, 1 minute Or 2 minutes or other suitable time period. After the predetermined time period has elapsed, the control method re-implements the step of measuring the real-time air outlet temperature T i of the indoor unit and the subsequent steps, or the control method ends after receiving a cooling stop or shutdown instruction.
  • step S14 if the answer to the comparison result in step S14 is "No", it means that T i is less than T t1 , that is, the real-time air outlet temperature T i has reached the cooling target air outlet temperature T t1 .
  • the control method proceeds to step S16 to appropriately reduce the frequency of the compressor so as to maintain the desired cooling effect and reduce the energy consumption of the inverter air conditioner.
  • the frequency of the compressor is reduced by a second predetermined frequency value of 1 Hz.
  • the second predetermined frequency value is 2 Hz or other suitable frequency value.
  • the control method In order to ensure the safe operation of the compressor, in step S17, the control method also needs to compare the reduced frequency f i with the minimum frequency f min of the compressor. If the reduced frequency f i is greater than the minimum frequency f min of the compressor, the compressor operates at the reduced frequency f i (step S18) and continues for a predetermined period of time, such as 1 minute or 2 minutes or other suitable time periods . After the predetermined time period has elapsed, the control method re-implements the step of measuring the real-time air outlet temperature T i of the indoor unit and the subsequent steps, or the control method ends after receiving a cooling stop or shutdown instruction.
  • a predetermined period of time such as 1 minute or 2 minutes or other suitable time periods
  • the compressor runs at the minimum frequency f min (step S19) and continues for a predetermined time period, such as 1 minute or 2 minutes or other suitable time periods.
  • a predetermined time period such as 1 minute or 2 minutes or other suitable time periods.
  • Fig. 4 is a flowchart of the second embodiment of the control method of the inverter air conditioner of the present invention.
  • the inverter air conditioner operates in the heating mode.
  • the control method determines the heating target air outlet temperature T t2 of the indoor unit, and measures the real-time air outlet temperature T i of the indoor unit (step S21).
  • the control method compares the real-time air outlet temperature T i with the 85% heating target air outlet temperature T t2 .
  • T i is less than 85% of T t2 , it means that T i is not only less than T t2 , but the ratio of the temperature difference between T i and T t2 (whichever is absolute value) to T t2 is greater than the second predetermined ratio of 15%.
  • the second predetermined ratio may be re-selected according to changes in the indoor temperature, for example, 10% or other suitable ratios.
  • the amplitude of the frequency increase can be adjusted according to the accuracy of the indoor and outdoor temperature range, such as 2 Hz or other suitable frequency values.
  • the compressor operates at the increased frequency f i for a predetermined period of time, such as 1 minute or 2 minutes or other suitable period of time. After the predetermined time period has elapsed, the control method re-implements the step of measuring the real-time air outlet temperature T i of the indoor unit and the subsequent steps, or the control method ends after receiving a heating stop or shutdown instruction.
  • step S24 it is determined in step S24 whether T i is greater than or equal to 85% T t2 and less than or equal to T t2 . If yes, this means that the real-time air outlet temperature T i is close to the heating target air outlet temperature T t2 , so the control method proceeds to step S25, maintaining the previous frequency f 0 of the compressor unchanged, and also for a predetermined period of time, such as 1 Minutes or 2 minutes or other suitable time period. After the predetermined time period has elapsed, the control method re-implements the step of measuring the real-time air outlet temperature T i of the indoor unit and the subsequent steps, or the control method ends after receiving a heating stop or shutdown instruction.
  • step S24 if the answer to the comparison result in step S24 is "No", it means that T i is greater than T t2 , that is, the real-time air outlet temperature T i has reached the heating target air outlet temperature T t2 .
  • the control method proceeds to step S26 to appropriately reduce the frequency of the compressor so as to maintain the desired heating effect and reduce the energy consumption of the inverter air conditioner.
  • the frequency of the compressor is reduced by a second predetermined frequency value of 1 Hz.
  • the second predetermined frequency value is 2 Hz or other suitable frequency value.
  • step S27 the control method also needs to compare the reduced frequency f i with the minimum frequency f min of the compressor. If the reduced frequency f i is greater than the minimum frequency f min of the compressor, the compressor runs at the reduced frequency f i (step S28) and continues for a predetermined period of time, such as 1 minute or 2 minutes or other suitable time periods . After the predetermined time period has elapsed, the control method re-implements the step of measuring the real-time air outlet temperature T i of the indoor unit and the subsequent steps, or the control method ends after receiving a heating stop or shutdown instruction.
  • the compressor operates at the minimum frequency f min (step S29) and continues for a predetermined period of time, such as 1 minute or 2 minutes or other suitable time periods.
  • a predetermined period of time such as 1 minute or 2 minutes or other suitable time periods.

Abstract

本发明涉及一种变频空调的控制方法。该控制方法包括:确定变频空调的室内机的目标出风口温度;测量室内机的实时出风口温度;比较实时出风口温度与目标出风口温度;并且基于比较结果调整变频空调的压缩机的频率,压缩机以调整后的频率运行预定时间段,在经过预定时间段后,重复执行测量室内机的实时出风口温度的步骤。通过基于出风口温度的实时变化不断对压缩机的频率作出相应的调整,该技术方案能够使实时出风口温度迅速接近目标出风口温度并且将实时出风口温度维持在目标出风口温度附近,同时又能通过改变压缩机的频率来降低变频空调的能耗。

Description

变频空调的控制方法 技术领域
本发明涉及空调系统,具体地涉及变频空调的控制方法。
背景技术
变频空调通常是指使用变频压缩机的空调系统。变频压缩机能够通过控制其频率来调节其转速,从而改变变频空调的制冷或制热能力。运用变频控制技术的变频空调还可根据环境温度自动选择制热、制冷等运转方式,使受调节空间在短时间内迅速达到目标温度,并且在达到目标温度后能够在受调节空间内维持较小的温差波动。因此,变频空调能够实现快速、节能和舒适控温效果,从而得到越来越广泛的引用。
现有技术的变频空调可以通过控制降低频率和降低频率后运行的时间来实现节能效果。然而,这种控制方法无法做到在不同的室内或者室外温度下实现低频率值和随着运行时间自动变化,结果就是容易引起室内温度比较大的波动而造成用户抱怨,或者由于降低的频率值不合适而不能达到节能降耗的目的。
相应地,本领域需要一种新的技术方案来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决变频空调不能根据室内外温度的变化及时调整压缩机的频率的技术问题,本发明提供一种变频空调的控制方法,所述控制方法包括:确定所述变频空调的室内机的目标出风口温度;测量所述室内机的实时出风口温度;比较所述实时出风口温度与所述目标出风口温度;并且基于比较结果调整所述变频空调的压缩机的频率,所述压缩机以调整后的频率运行预定时间段,在经过所述预定时间段后,重复执行测量所述室内机的实时出风口温度的步骤。
在上述变频空调的控制方法的优选技术方案中,在调整所述压缩机的频率为降低所述频率的情况下:确定所述压缩机的最小频率;将降低后的频率与所述最小频率进行比较:如果所述降低后的频率大于所述最小频 率,所述压缩机以所述降低后的频率运行所述预定时间段,如果所述降低后的频率小于等于所述最小频率,所述压缩机以所述最小频率运行所述预定时间段。
在上述变频空调的控制方法的优选技术方案中,当所述变频空调在制冷模式下运行时,所述目标出风口温度为制冷目标出风口温度,所述控制方法包括:
当所述实时出风口温度高于所述制冷目标出风口温度时,并且当所述实时出风口温度和所述制冷目标出风口温度之间的温度差值与所述制冷目标出风口温度之比大于第一预定比值时,将所述压缩机的频率增加第一预定频率值,并且所述压缩机以增加后的频率运行所述预定时间段;
当所述实时出风口温度高于或等于所述制冷目标出风口温度时,并且当所述温度差值与所述制冷目标出风口温度之比小于或等于所述第一预定比值时,所述压缩机的频率保持不变并持续所述预定时间段;并且
当所述实时出风口温度低于所述制冷目标出风口温度时,将所述压缩机的频率降低第二预定频率值,并且所述压缩机以降低后的频率运行所述预定时间段。
在上述变频空调的控制方法的优选技术方案中,所述第一预定比值为15%。
在上述变频空调的控制方法的优选技术方案中,所述第一预定频率值和第二预定频率值分别为1Hz。
在上述变频空调的控制方法的优选技术方案中,当所述变频空调在制热模式下运行时,所述目标出风口温度为制热目标出风口温度,所述控制方法包括:
当所述实时出风口温度低于所述制热目标出风口温度时,并且当所述实时出风口温度和所述制热目标出风口温度之间的温度差值与所述制热目标出风口温度之比大于第二预定比值时,将所述压缩机的频率增加第一预定频率值,并且所述压缩机以增加后的频率运行所述预定时间段;
当所述实时出风口温度低于或等于所述制热目标出风口温度时,并且当所述温度差值与所述制热目标出风口温度之比小于或等于所述第二预定比值时,所述压缩机的频率保持不变并持续所述预定时间段;并且
当所述实时出风口温度高于所述制热目标出风口温度时,将所述压缩机的频率降低第二预定频率值,并且所述压缩机以降低后的频率运行所述预定时间段。
在上述变频空调的控制方法的优选技术方案中,所述第二预定比值为15%。
在上述变频空调的控制方法的优选技术方案中,所述第一预定频率值和第二预定频率值分别为1Hz。
在上述变频空调的控制方法的优选技术方案中,所述室内机包括一个或多个。
在上述变频空调的控制方法的优选技术方案中,所述预定时间段为1分钟或2分钟。
本领域技术人员能够理解的是,在本发明变频空调的控制方法的技术方案中,为了使变频空调能够根据室内外温度的变化及时调整压缩机的频率,需要确定变频空调的室内机的目标出风口温度,并且测量室内机的实时出风口温度,然后对实时出风口温度与目标出风口温度进行比较,并且基于比较结果调整变频空调的压缩机的频率。压缩机以调整后的频率运行预定时间段,在经过预定时间段后,重复执行测量室内机的实时出风口温度的步骤。通过基于出风口温度的实时变化不断对压缩机的频率作出相应的调整,该技术方案能够使实时出风口温度迅速接近目标出风口温度并且将实时出风口温度维持在目标出风口温度附近,同时又能通过改变压缩机的频率来降低变频空调的能耗。换言之,该控制方法在维持变频空调的制冷或制热效果的同时,还能够尽量降低变频空调的能耗,从而提高变频空调的能效比。
优选地,在调整压缩机的频率为降低频率的情况下,需要确定压缩机的最小频率,并且保证压缩机以不低于最小频率的频率运行,以便保护压缩机免受因频率过低所造成的损害。
优选地,在制冷模式下,如果实时出风口温度高于制冷目标出风口温度,并且实时出风口温度和制冷目标出风口温度之间的温度差值与制冷目标出风口温度之比值比较大,例如大于15%或其它合适的比值,说明受调节空间的温度与用户期望的温度之间的差距还比较大,因此需要适当地增加压缩机的频率,例如增加1Hz或其它合适的值,以便使实时出风口温度更快地接近制冷目标出风口温度。压缩机以该增加后的频率运行并持续预定的时 间段,例如1分钟或2分钟或其它合适的时间段,然后再重新测量室内机的实时出风口温度。如果实时出风口温度等于或高于制冷目标出风口温度,但是这二者之间的温度差值与制冷目标出风口温度之比比较小,例如小于或等于15%或其它合适的比值,说明受调节空间内的温度已经接近用户期望的温度,因此压缩机的频率维持不变并持续预定的时间段。如果实时出风口温度低于制冷目标出风口温度,说明实时出风口温度已经达到制冷目标出风口温度。在这种情况下,压缩机的频率可被适当地降低,例如降低1Hz或其它合适的频率值,并以降低的频率运行预定时间段,以便在维持制冷效果的同时还是节省能源,提高变频空调的能效比。
优选地,在制热模式下,如果实时出风口温度低于制热目标出风口温度,并且实时出风口温度和制热目标出风口温度之间的温度差值与制热目标出风口温度之比值比较大,例如大于15%或其它合适的比值,说明受调节空间的温度与用户期望的温度之间的差距还比较大,因此需要适当地增加压缩机的频率,例如增加1Hz或其它合适的值,以便使实时出风口温度更快地接近制热目标出风口温度。压缩机以该增加后的频率运行并持续预定的时间段,例如1分钟或2分钟或其它合适的时间段,然后再重新测量室内机的实时出风口温度。如果实时出风口温度低于或等于制热目标出风口温度,但是这二者之间的温度差值与制热目标出风口温度之比比较小,例如小于或等于15%或其它合适的比值,说明受调节空间内的温度已经接近用户期望的温度,因此压缩机的频率维持不变并持续预定的时间段。如果实时出风口温度高于制热目标出风口温度,说明实时出风口温度已经达到制热目标出风口温度。在这种情况下,压缩机的频率可被适当地降低,例如降低1Hz或其它合适的频率值,并以降低的频率运行预定时间段,以便在维持制热效果的同时还是节省能源,提高变频空调的能效比。
附图说明
下面参照附图来描述本发明的优选实施方式,附图中:
图1是具有制冷和制热功能的示例变频空调的系统的示意图;
图2是本发明变频空调的控制方法的流程图;
图3是本发明变频空调的控制方法的第一实施例的流程图;
图4是本发明变频空调的控制方法的第二实施例的流程图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
为了解决现有变频空调的在室内外温度变化的情况下不能及时作出反应以便在维持制冷、制热效果的同时又能降低能耗的技术问题,本发明提供一种变频空调的控制方法。该控制方法包括:确定变频空调的室内机的目标出风口温度;测量室内机的实时出风口温度;比较实时出风口温度与目标出风口温度;并且基于比较结果调整变频空调的压缩机的频率,压缩机以调整后的频率运行预定时间段,在经过预定时间段后,重复执行测量室内机的实时出风口温度的步骤。
在一种或多种实施例中,本文中所提及的变频空调包括但不限于使用变频压缩机的中央空调、分体式空调、窗式空调等。相应地,“室内机”的形式包括但不限于吊顶式、壁式、柜式、或窗式空调的伸入到室内的部分。可选地,室内机的数量可以是一个,也可以是多个。在具有多个室内机的情况下,每个室内机都适用本发明的控制方法。本文中所提及的变频空调可以只具有制冷功能,也可以具有制冷和制热功能。在不影响整个系统制冷或制热效果的情况下,通过基于室内机的出风口温度的实时变化来适当对压缩机频率进行升、降频控制,既发挥了变频空调的优势,又可以达到节能的目的。
图1是一种示例变频空调的系统的示意图。如图1所示,该变频空调1包括变频压缩机11、四通阀12、第一换热器13、电子膨胀阀14、第二换热器15、和气液分离器16。变频压缩机11、四通阀12、第一换热器13和电子膨胀阀14通常被置于变频空调的室外机或室外单元(其一般被布置在室外环境中)中,而第二换热器15通常被置于室内机(其一般被布置在室内或房间内)中。在一种或多种实施例中,第一换热器13和第二换热器15可分别包括但不限于翅片盘管式换热器和板式换热器。借助四通阀12,该变频空调1可进行制冷和制热循环。例如,如图1所示,在制冷循环中,在四通阀12的内部,四通阀12的d端口和c端口连通,e端口和s端口连通,而d端口和c端口二者则与e端口和s端口都不相通。相反,在制热循环中,四通阀12的四个端口 c、d、e、s通过切换后,d端口和e端口连通,c端口和s端口连通,而d端口和e端口二者都与c端口和s端口不相通。
在制冷循环中,第一换热器13充当冷凝器,而第二换热器15充当蒸发器。当变频空调接收到制冷指令时,变频压缩机11开始启动,可在变频空调的系统内循环的冷媒(例如R134a)被变频压缩机11压缩后以高温高压的气体形式经由四通阀12的相互连通的d端口和c端口进入第一换热器13(其充当冷凝器)。在第一换热器13中,高温高压的气体冷媒通过向外界环境传递热量而被冷凝成高温高压的液体冷媒。高温高压的液体冷媒经过电子膨胀阀14的节流降压作用而变成低温低压的液体冷媒。低温低压的液体冷媒流入到第二换热器15(其充当蒸发器)中,并且在蒸发器15中通过吸收室内空气的热量而被蒸发成低温低压的气体冷媒,室内空气因此被冷却降温。低温低压的气体冷媒经过四通阀12的相互连通的e端口和s端口而进入到气液分离器16中。经过气液分离的气体冷媒又流回到变频压缩机11中。一个完整的制冷循环得以完成,并且这样的制冷循环可不间断地进行,以便实现目标制冷温度。
在制热循环中,第一换热器13充当蒸发器,而第二换热器15充当冷凝器。当变频空调接收到制热指令时,变频压缩机11开始启动,可在变频空调的系统内循环的冷媒(例如R134a)被变频压缩机11压缩后以高温高压的气体形式经由四通阀12的相互连通的d端口和e端口进入第二换热器15(其充当冷凝器)。在第二换热器15中,高温高压的气体冷媒通过向室内空气传递热量而被冷凝成高温高压的液体冷媒,同时室内空气被加热升温。高温高压的液体冷媒经过电子膨胀阀14的节流降压作用而变成低温低压的液体冷媒。低温低压的液体冷媒流入到第一换热器13(其充当蒸发器)中,并且在第一换热器13中通过吸收室外环境的热量而被蒸发成低温低压的气体冷媒。低温低压的气体冷媒经过四通阀12的相互连通的c端口和s端口而进入到气液分离器16中。经过气液分离的气体冷媒又流回到变频压缩机11中。一个完整的制热循环得以完成,并且这样的制热循环可不间断地进行,以便实现目标制热温度。
图2是本发明变频空调的控制方法的流程图。如图2所示,该变频空调的控制方法包括步骤S1、S2、S3、和S4。在步骤S1中,该控制方法需要确定变频空调的室内机的目标出风口温度。如果室内机有多个,就确定每 个室内机的目标出风口温度。目标出风口温度既可以是制冷模式下的制冷目标出风口温度,也可以是制热模式下的制热目标出风口温度。在步骤S2中,测量室内机的实时出风口温度。同样地,如果有多个室内机,就测量每个室内机的实时出风口温度。然后在步骤S3中,比较对应每个室内机的实时出风口温度和目标出风口温度。在步骤S4中,基于比较结果调整变频空调的压缩机的频率,压缩机以调整后的频率运行预定时间段,并且在经由该预定时间段后,重复执行测量室内机的实时出风口温度的步骤,以便根据室内外温度的变化,对压缩机的频率作出及时的调整,既能够保证制冷和制热效果,又能达到节能的目的。在一种或多种实施例中,本文所提及的预定时间段根据实际情况进行确定,例如1分钟或2分钟。合适的时间段应该是既不会造成室内温度太大的波动,也不会让压缩机的频率一直处于调整的状态。
图3是本发明变频空调的控制方法的第一实施例的流程图。在该第一实施例中,变频空调在制冷模式下运行。如图3所示,在变频空调收到制冷指令后,该控制方法确定室内机的制冷目标出风口温度T t1,并且测量室内机的实时出风口温度T i(步骤S11)。在步骤S12中,该控制方法将实时出风口温度T i与115%制冷目标出风口温度T t1进行比较。如果T i大于115%T t1,这意味着T i不仅大于T t1,而且T i和T t1之间的温度差值与T t1之比大于第一预定比值15%。替代地,第一预定比值可以根据室内温度的变化重新选择,例如10%或其它合适的比值。这种情景说明室内机的实时出风口温度T i与制冷目标出风口温度T t1之间的差距比较大,因此为了更迅速地达到制冷目标出风口温度T t1,该控制方法前进到步骤S13,增加压缩机的频率。在一种或多种实施例中,增加频率的方式为在先前频率f 0的基础上增加第一预定频率值,例如1Hz。因此,增加后的频率f i=f 0+1。替代地,频率增加的幅度可以根据室内外温度范围精度进行调节,例如2Hz或其它合适的频率值。压缩机以该增加后的频率f i运行预定时间段,例如1分钟或2分钟或其它合适的时间段。在经过该预定时间段后,该控制方法重新实施测量室内机的实时出风口温度T i的步骤及后续的步骤,或者在收到停止制冷或关机指令后,该控制方法结束。
如图3所示,如果T i不大于115%T t1,则在步骤S14中确定T i是否大于等于T t1并且小于等于115%T t1。如果是,这说明实时出风口温度T i已经接近制冷目标出风口温度T t1,因此控制方法前进到步骤S15,维持压缩机的先前频率f 0不变,并且也持续预定时间段,例如1分钟或2分钟或其它合适的时间 段。在经过该预定时间段后,该控制方法重新实施测量室内机的实时出风口温度T i的步骤和后续的步骤,或者在收到停止制冷或关机指令后,该控制方法结束。
继续参考图3,如果步骤S14中的比较结果的答案为“否”,说明T i已小于T t1,即实时出风口温度T i已经达到制冷目标出风口温度T t1。在这种情况下,该控制方法前进到步骤S16,适当降低压缩机的频率,以便既能够维持期望的制冷效果,又能降低变频空调的能耗。在一种或多种实施例中,压缩机的频率被降低第二预定频率值1Hz。替代地,第二预定频率值为2Hz或其它合适的频率值。降低后的频率为f i=f 0-1。为了确保压缩机运行安全,在步骤S17中,该控制方法还需对降低后的频率f i与压缩机的最小频率f min进行比较。如果降低后的频率f i大于压缩机的最小频率f min,压缩机就以降低后的频率f i运行(步骤S18),并且持续预定时间段,例如1分钟或2分钟或其它合适的时间段。在经过该预定时间段后,该控制方法重新实施测量室内机的实时出风口温度T i的步骤和后续的步骤,或者在收到停止制冷或关机指令后,该控制方法结束。如果降低后的频率f i小于等于压缩机的最小频率f min,压缩机就以最小频率f min运行(步骤S19),并且持续预定时间段,例如1分钟或2分钟或其它合适的时间段。在经过该预定时间段后,该控制方法重新实施测量室内机的实时出风口温度T i的步骤和后续的步骤,或者在收到停止制冷或关机指令后,该控制方法结束。
图4是本发明变频空调的控制方法的第二实施例的流程图。在该第二实施例中,变频空调在制热模式下运行。如图4所示,在变频空调收到制热指令后,该控制方法确定室内机的制热目标出风口温度T t2,并且测量室内机的实时出风口温度T i(步骤S21)。在步骤S22中,该控制方法将实时出风口温度T i与85%制热目标出风口温度T t2进行比较。如果T i小于85%T t2,这意味着T i不仅小于T t2,而且T i和T t2之间的温度差值(取其绝对值)与T t2之比大于第二预定比值15%。替代地,第二预定比值可以根据室内温度的变化重新选择,例如10%或其它合适的比值。这种情景说明室内机的实时出风口温度T i与制热目标出风口温度T t2之间还存在较大的差距,因此为了更迅速地达到制热目标出风口温度T t2,该控制方法前进到步骤S23,增加压缩机的频率。在一种或多种实施例中,增加频率的方式为在先前频率f 0的基础上增加第一预定频率值,例如1Hz。因此,增加后的频率f i=f 0+1。替代地,频率增加的幅 度可以根据室内外温度范围精度进行调节,例如2Hz或其它合适的频率值。压缩机以该增加后的频率f i运行预定时间段,例如1分钟或2分钟或其它合适的时间段。在经过该预定时间段后,该控制方法重新实施测量室内机的实时出风口温度T i的步骤及后续的步骤,或者在收到停止制热或关机指令后,该控制方法结束。
如图4所示,如果T i不小于85%T t2,则在步骤S24中确定T i是否大于等于85%T t2并且小于等于T t2。如果是,这说明实时出风口温度T i已经接近制热目标出风口温度T t2,因此控制方法前进到步骤S25,维持压缩机的先前频率f 0不变,并且也持续预定时间段,例如1分钟或2分钟或其它合适的时间段。在经过该预定时间段后,该控制方法重新实施测量室内机的实时出风口温度T i的步骤和后续的步骤,或者在收到停止制热或关机指令后,该控制方法结束。
继续参考图4,如果步骤S24中的比较结果的答案为“否”,说明T i已大于T t2,即实时出风口温度T i已经达到制热目标出风口温度T t2。在这种情况下,该控制方法前进到步骤S26,适当降低压缩机的频率,以便既能够维持期望的制热效果,又能降低变频空调的能耗。在一种或多种实施例中,压缩机的频率被降低第二预定频率值1Hz。替代地,第二预定频率值为2Hz或其它合适的频率值。降低后的频率为f i=f 0-1。为了确保压缩机运行安全,在步骤S27中,该控制方法还需对降低后的频率f i与压缩机的最小频率f min进行比较。如果降低后的频率f i大于压缩机的最小频率f min,压缩机就以降低后的频率f i运行(步骤S28),并且持续预定时间段,例如1分钟或2分钟或其它合适的时间段。在经过该预定时间段后,该控制方法重新实施测量室内机的实时出风口温度T i的步骤和后续的步骤,或者在收到停止制热或关机指令后,该控制方法结束。如果降低后的频率f i小于等于压缩机的最小频率f min,压缩机就以最小频率f min运行(步骤S29),并且持续预定时间段,例如1分钟或2分钟或其它合适的时间段。在经过该预定时间段后,该控制方法重新实施测量室内机的实时出风口温度T i的步骤和后续的步骤,或者在收到停止制冷或关机指令后,该控制方法结束。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以 对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种变频空调的控制方法,其特征在于,所述控制方法包括:
    确定所述变频空调的室内机的目标出风口温度;
    测量所述室内机的实时出风口温度;
    比较所述实时出风口温度与所述目标出风口温度;并且
    基于比较结果调整所述变频空调的压缩机的频率,所述压缩机以调整后的频率运行预定时间段,在经过所述预定时间段后,重复执行测量所述室内机的实时出风口温度的步骤。
  2. 根据权利要求1所述的变频空调的控制方法,其特征在于,在调整所述压缩机的频率为降低所述频率的情况下:
    确定所述压缩机的最小频率;
    将降低后的频率与所述最小频率进行比较:
    如果所述降低后的频率大于所述最小频率,所述压缩机以所述降低后的频率运行所述预定时间段,如果所述降低后的频率小于等于所述最小频率,所述压缩机以所述最小频率运行所述预定时间段。
  3. 根据权利要求1或2所述的变频空调的控制方法,其特征在于,当所述变频空调在制冷模式下运行时,所述目标出风口温度为制冷目标出风口温度,所述控制方法包括:
    当所述实时出风口温度高于所述制冷目标出风口温度时,并且当所述实时出风口温度和所述制冷目标出风口温度之间的温度差值与所述制冷目标出风口温度之比大于第一预定比值时,将所述压缩机的频率增加第一预定频率值,并且所述压缩机以增加后的频率运行所述预定时间段;
    当所述实时出风口温度高于或等于所述制冷目标出风口温度时,并且当所述温度差值与所述制冷目标出风口温度之比小于或等于所述第一预定比值时,所述压缩机的频率保持不变并持续所述预定时间段;并且
    当所述实时出风口温度低于所述制冷目标出风口温度时,将所述压缩机的频率降低第二预定频率值,并且所述压缩机以降低后的频率运行所述预定时间段。
  4. 根据权利要求3所述的变频空调的控制方法,其特征在于,所述第一预定比值为15%。
  5. 根据权利要求3所述的变频空调的控制方法,其特征在于,所述第一预定频率值和第二预定频率值分别为1Hz。
  6. 根据权利要求1或2所述的变频空调的控制方法,其特征在于,当所述变频空调在制热模式下运行时,所述目标出风口温度为制热目标出风口温度,所述控制方法包括:
    当所述实时出风口温度低于所述制热目标出风口温度时,并且当所述实时出风口温度和所述制热目标出风口温度之间的温度差值与所述制热目标出风口温度之比大于第二预定比值时,将所述压缩机的频率增加第一预定频率值,并且所述压缩机以增加后的频率运行所述预定时间段;
    当所述实时出风口温度低于或等于所述制热目标出风口温度时,并且当所述温度差值与所述制热目标出风口温度之比小于或等于所述第二预定比值时,所述压缩机的频率保持不变并持续所述预定时间段;并且
    当所述实时出风口温度高于所述制热目标出风口温度时,将所述压缩机的频率降低第二预定频率值,并且所述压缩机以降低后的频率运行所述预定时间段。
  7. 根据权利要求6所述的变频空调的控制方法,其特征在于,所述第二预定比值为15%。
  8. 根据权利要求6所述的变频空调的控制方法,其特征在于,所述第一预定频率值和第二预定频率值分别为1Hz。
  9. 根据权利要求1或2所述的变频空调的控制方法,其特征在于,所述室内机包括一个或多个。
  10. 根据权利要求1或2所述的变频空调的控制方法,其特征在于,所述预定时间段为1分钟或2分钟。
PCT/CN2021/080347 2020-04-27 2021-03-12 变频空调的控制方法 WO2021218436A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010344391.4 2020-04-27
CN202010344391.4A CN113639416A (zh) 2020-04-27 2020-04-27 变频空调的控制方法

Publications (1)

Publication Number Publication Date
WO2021218436A1 true WO2021218436A1 (zh) 2021-11-04

Family

ID=78332300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080347 WO2021218436A1 (zh) 2020-04-27 2021-03-12 变频空调的控制方法

Country Status (2)

Country Link
CN (1) CN113639416A (zh)
WO (1) WO2021218436A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115127268A (zh) * 2022-06-23 2022-09-30 广东芬尼克兹节能设备有限公司 一种热泵机组压缩机频率的控制方法、控制器及热泵系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114383294B (zh) * 2021-12-15 2024-01-23 珠海格力节能环保制冷技术研究中心有限公司 防止室内温度过调的空调控制方法以及空调
CN114264096B (zh) * 2021-12-30 2024-03-12 西安建筑科技大学 一种基于尖点突变模型的除霜控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101968249A (zh) * 2010-09-09 2011-02-09 宁波奥克斯电气有限公司 直流变频压缩机正常运行频率调节方法
CN104697109A (zh) * 2014-12-22 2015-06-10 青岛海尔空调器有限总公司 制冷控制方法、控制装置及变频空调
CN104713196A (zh) * 2014-12-22 2015-06-17 青岛海尔空调器有限总公司 变频空调制冷控制方法、控制装置及变频空调
CN106556112A (zh) * 2016-11-28 2017-04-05 珠海格力电器股份有限公司 压缩机频率调节方法及装置
CN108518806A (zh) * 2018-05-21 2018-09-11 广东美的暖通设备有限公司 运行控制方法、装置、压缩机、空调器和可读存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107023940B (zh) * 2017-03-30 2019-12-03 青岛海尔空调器有限总公司 空调器制热运行的控制方法
CN110986335B (zh) * 2019-11-07 2021-07-06 Tcl空调器(中山)有限公司 一种空调及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101968249A (zh) * 2010-09-09 2011-02-09 宁波奥克斯电气有限公司 直流变频压缩机正常运行频率调节方法
CN104697109A (zh) * 2014-12-22 2015-06-10 青岛海尔空调器有限总公司 制冷控制方法、控制装置及变频空调
CN104713196A (zh) * 2014-12-22 2015-06-17 青岛海尔空调器有限总公司 变频空调制冷控制方法、控制装置及变频空调
CN106556112A (zh) * 2016-11-28 2017-04-05 珠海格力电器股份有限公司 压缩机频率调节方法及装置
CN108518806A (zh) * 2018-05-21 2018-09-11 广东美的暖通设备有限公司 运行控制方法、装置、压缩机、空调器和可读存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115127268A (zh) * 2022-06-23 2022-09-30 广东芬尼克兹节能设备有限公司 一种热泵机组压缩机频率的控制方法、控制器及热泵系统
CN115127268B (zh) * 2022-06-23 2023-07-04 广东芬尼克兹节能设备有限公司 一种热泵机组压缩机频率的控制方法、控制器及热泵系统

Also Published As

Publication number Publication date
CN113639416A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2021218436A1 (zh) 变频空调的控制方法
US10323862B2 (en) Air conditioning unit having dynamic target condensing and evaporating values based on load requirements
US6843067B2 (en) Air conditioner and method for controlling electronic expansion valve of air conditioner
CN110671777B (zh) 一种空调器的控制方法、装置和空调器
CN106091271B (zh) 空调器异音消除方法及装置
US8185247B2 (en) Method and system for controlling compressor
JP5010364B2 (ja) 熱源機およびその制御方法、並びに、熱源システムおよびその運転方法
CN106931545B (zh) 一种热泵喷焓系统及其控制方法、空调器
KR100378822B1 (ko) 인버터 에어컨의 절전냉방 운전방법
WO2016141791A1 (zh) 混合动力制冷系统及其控制方法
CN113883681A (zh) 用于制冷系统的控制方法及制冷系统
WO2022194218A1 (zh) 一拖多空调器的压缩机频率的控制方法及一拖多空调器
WO2021223530A1 (zh) 变频空调的控制方法
JP2012141098A (ja) 熱源システムおよびその制御方法
TW201104181A (en) Energy saver device and method for cooling and heating apparatus
JP5677198B2 (ja) 空冷ヒートポンプチラー
JP2003106615A (ja) 空気調和装置
CN114322220B (zh) 一种空气调节装置及其控制方法
WO2021190104A1 (zh) 压缩机运行频率的控制方法
KR102329030B1 (ko) 자연냉각 기계실 에어컨의 제어 방법, 제어 장치 및 자연냉각 기계실 에어컨
CN111219818B (zh) 空调系统、空调器和空调器的控制方法
JPH09178247A (ja) 多室空気調和機の制御装置
CN117450623B (zh) 压缩机频率控制方法及空调机组
US20220252326A1 (en) Defrosting control method, central controller and heating system
CN114608180B (zh) 一种室外机电子膨胀阀的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796269

Country of ref document: EP

Kind code of ref document: A1