WO2019011094A1 - 空调强力制冷控制方法 - Google Patents

空调强力制冷控制方法 Download PDF

Info

Publication number
WO2019011094A1
WO2019011094A1 PCT/CN2018/090711 CN2018090711W WO2019011094A1 WO 2019011094 A1 WO2019011094 A1 WO 2019011094A1 CN 2018090711 W CN2018090711 W CN 2018090711W WO 2019011094 A1 WO2019011094 A1 WO 2019011094A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
tgr
powerful cooling
indoor
temperature
Prior art date
Application number
PCT/CN2018/090711
Other languages
English (en)
French (fr)
Inventor
邱嵩
魏菡
王淼
姜菲
高波
申伟杰
苗清波
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2019011094A1 publication Critical patent/WO2019011094A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the invention relates to a refrigeration device, in particular to a method for controlling air conditioning strong cooling.
  • Air conditioners are commonly used household appliances in daily life. Air conditioners generally have a cooling and heating mode. When the ambient temperature is high, air conditioning is used to reduce the indoor temperature.
  • Chinese Patent No. 200810026874.9 discloses a method for rapid cooling/heating control of an air conditioner, wherein the main purpose is to detect the temperature value of the room to control the fan to accelerate the operation of the large air volume.
  • the rapid change of indoor temperature is also affected by the external environment temperature.
  • the temperature of the external environment directly affects the temperature change of the indoor temperature, and the above patented technology cannot control the air conditioner according to different environmental temperatures. Operating in an excellent state, only increasing the wind speed and compression power, on the one hand will consume a large amount of electrical energy, on the other hand, the comfort of the air conditioner is greatly reduced, resulting in poor user experience.
  • the invention provides a powerful cooling control method for an air conditioner, which realizes that the air conditioner can quickly cool down and improve user experience, and at the same time, reduce energy consumption.
  • Step 1 After the air conditioner is started, when the detected outdoor ambient temperature Twh is greater than the set reference temperature value Tq, the powerful cooling mode is started;
  • the method further includes: Step 5: After the indoor ambient temperature Tnh is lower than the set cooling temperature value, the powerful cooling mode ends, and the air conditioner operates according to the normal cooling mode.
  • Step 6 In the normal cooling mode of the air conditioner, when the user manually touches the powerful cooling button on the remote controller, the air conditioner operates in the powerful cooling mode.
  • the advantages and positive effects of the present invention are: by detecting the temperature of the outdoor environment at the time of starting up, after determining that the outdoor ambient temperature is higher than the reference temperature value, the powerful cooling mode is automatically started, at this time, Judging the indoor and outdoor environmental temperature difference, using the difference to reasonably control the operating frequency of the inverter compressor, the frequency calculation of the inverter compressor adds the indoor and outdoor temperature difference, which can be closer to the actual perception of the user, and can be more efficient.
  • Realizing indoor rapid cooling and cooling compared with the prior art, only increasing the wind speed and compressor power, the operating frequency of the inverter compressor is combined with the temperature difference between indoor and outdoor, and can satisfy the courier cooling to the maximum extent.
  • FIG. 1 is a flow chart of an embodiment of an air conditioning powerful cooling control method according to the present invention.
  • Step 1 After the air conditioner is started, when the detected outdoor ambient temperature Twh is greater than the set reference temperature value Tq, the powerful cooling mode is started. Specifically, during the startup process of the air conditioner, if it is detected that the ambient temperature is higher than the set reference temperature value Tq, the forced cooling mode is automatically started to achieve a rapid decrease in the indoor ambient temperature. Preferably, the cooling capacity is higher due to the air conditioning startup phase. Weak, the wind blown from the air conditioner indoor unit is still hot air, and even the temperature of the air blown by the air conditioner is higher than the indoor temperature.
  • the refrigerant In the evaporator, the refrigerant cannot be completely evaporated into gas, and the refrigerant coming out of the evaporator has a liquid state. In part, in the process of returning the refrigerant from the indoor unit to the outdoor unit, the liquid refrigerant is still evaporating and absorbing heat, and the return air temperature is lower than the evaporation temperature. The purpose of this is to consider the mutual solubility of the compressor oil and the liquid refrigerant. Well, the more liquid refrigerant, the more fluid the compressor oil is, the more compressor oil will be brought back to the compressor as the refrigerant flows.
  • the inverter air conditioner In the first 5 minutes after the start of the conventional inverter compressor, the inverter air conditioner is in an incompletely open state, and the operating frequency of the inverter compressor is even lower than the frequency of the fixed-frequency air conditioner compressor (the frequency is the power supply frequency). 50 or 60 Hz), the normal frequency conversion air conditioner needs to run the oil return frequency after starting, in order to prevent the problem that the frequency of the inverter compressor rises too fast during startup, resulting in poor return of the refrigeration oil, which results in a significant reduction in the cooling effect during the start-up phase.
  • the starting mode of the inverter compressor In the initial stage of startup, optimize the starting mode of the inverter compressor, increase the opening degree of the expansion valve during the starting time of the inverter compressor, and increase the opening degree of the electronic expansion valve to ensure that the return air temperature of the inverter compressor is lower than the setting.
  • the return air value is determined, and the refrigerant of the air conditioner evaporator returns to the inverter compressor always has liquid, which ensures the liquid level of the refrigerating oil of the inverter compressor.
  • Twh>Tq+10 Twh>Tq+10
  • a -0.07
  • the measurement of the operating frequency of the inverter compressor increases the indoor and outdoor temperature difference, so that on the one hand, the inverter compressor can be operated at the optimal working frequency for effective forced cooling, and on the other hand, the user can be avoided. If the temperature is too fast, the body comfort will be reduced, and the user's actual perception can be improved to optimize the user's sense of body and improve the user experience. At the same time, a better energy efficiency ratio can be obtained.
  • Step 4 Dynamically controlling the inverter compressor to operate at the operating frequency f calculated in step 3. Specifically, the inverter compressor can perform dynamic control operation according to the operating frequency f calculated in real time in step 3. Compared with the conventional technology, the inverter compressor can be directly operated at full load, and on the one hand, the energy consumption can be reduced, and the energy efficiency ratio can be improved. On the one hand, it can achieve better user experience under the premise of satisfying rapid cooling.
  • Step 5 When the indoor ambient temperature Tnh is lower than the set cooling temperature value, the powerful cooling mode ends, and the air conditioner operates in the normal cooling mode.
  • the air conditioner is configured with a remote controller, and the remote controller is provided with a powerful cooling button for starting the air conditioning powerful cooling mode; the method further includes: step 6, in the air conditioning normal cooling mode, when the user manually touches the powerful remote control on the remote controller Press the button and the air conditioner operates in the powerful cooling mode.
  • the advantages and positive effects of the present invention are: by detecting the temperature of the outdoor environment at the time of starting up, after determining that the outdoor ambient temperature is higher than the reference temperature value, the powerful cooling mode is automatically started, at this time, Judging the indoor and outdoor environmental temperature difference, using the difference to reasonably control the operating frequency of the inverter compressor, the frequency calculation of the inverter compressor adds the indoor and outdoor temperature difference, which can be closer to the actual perception of the user, and can be more efficient.
  • Realizing indoor rapid cooling and cooling compared with the prior art, only increasing the wind speed and compressor power, the operating frequency of the inverter compressor is combined with the temperature difference between indoor and outdoor, and can satisfy the courier cooling to the maximum extent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调强力制冷控制方法,包括:步骤1、空调启动后,当检测到的室外环境温度Twh大于设定参考温度值Tq时,启动强力制冷模式;步骤2、强力制冷模式下,检测室内环境温度Tnh,并计算室内外温差ΔT=Twh-Tnh;步骤3、根据公式f=-a*ΔT 2+b*ΔT+c计算空调中变频压缩机的工作频率f;步骤4、动态的控制变频压缩机在步骤3计算的工作频率f下运行;其中,当满足条件一:Tq<Twh≤Tq+10时,a=-0.06,b=0.5~0.6,c=80~85;当满足条件二:Twh>Tq+10时,a=-0.07,b=2~2.5,c=50~55。实现空调能够快速降温并提高用户体验性,同时,降低能耗。

Description

空调强力制冷控制方法 技术领域
本发明涉及制冷设备,尤其涉及一种空调强力制冷控制方法。
背景技术
目前,空调是人们日常生活中的常用家用电器,空调一般具有制冷和制热模式,在外界环境温度较高时,利用空调制冷来降低室内的温度。中国专利号200810026874.9公开了一种空调器快速制冷/ 制热控制方法,其中,主要是利用检测室内温度值,来控制风机加速大风量运转。但是,在实际使用过程中发现,对于室内温度的快速改变还受到外界环境温度的影响,外界环境温度的高低直接影响室内温度变化的快慢,而上述专利技术无法根据不同的环境温度控制空调在最优的状态下运行,仅是增大风速和压缩功率,一方面将消耗大量的电能,另一方面空调使用舒适度大打折扣,导致用户体验性较差。
技术问题
如何设计一种能够快速降温以提高用户体验性的空调控制方法是本发明所要解决的技术问题。
技术解决方案
本发明提供了一种空调强力制冷控制方法,实现空调能够快速降温并提高用户体验性,同时,降低能耗。
为达到上述技术目的,本发明采用以下技术方案实现:
一种空调强力制冷控制方法,包括:
步骤1、空调启动后,当检测到的室外环境温度Twh大于设定参考温度值Tq时,启动强力制冷模式;
步骤2、强力制冷模式下,检测室内环境温度Tnh,并计算室内外温差△T=Twh-Tnh;
步骤3、根据公式f=-a*△T 2+b*△T +c计算空调中变频压缩机的工作频率f;
步骤4、动态的控制变频压缩机在步骤3计算的工作频率f下运行;
其中,当满足条件一:Tq<Twh≤Tq+10时,a=-0.06,b=0.5~0.6,c=80~85;
当满足条件二:Twh>Tq+10时,a=-0.07,b=2~2.5,c=50~55。
进一步的,所述步骤2还包括:强力制冷模式下,在变频压缩机启动阶段,增大空调中电子膨胀阀的开度。
进一步的,所述增大空调中电子膨胀阀的开度,具体为:电子膨胀阀初始基准开度为d;判断满足条件一,目标回气过热度范围0~-1,回气过热度Tgr=回气温度Thq-蒸发器盘管温度Tpg,当Tgr≥2或者Tgr≤-3,则电子膨胀阀每10s调整一次,每次阀开度-10;当0<Tgr<2或者-1<Tgr<-3,则电子膨胀阀每30s调整一次,每次阀开度-5,室外风机转速在范围750~800内;判断满足条件二,目标回气过热度范围-1~-2,当Tgr≥1或者Tgr≤-3,则电子膨胀阀每10s调整一次,每次阀开度-10;当-1<Tgr<2或者-2<Tgr<-3,则电子膨胀阀每30s调整一次,每次阀开度-5,室外风机转速在范围800~850内。
进一步的,所述步骤1还包括:空调启动后,空调室内机的室内风机停止转动,并在空调室内机的蒸发器温度低于设定蒸发温度值后,室内风机再开始转动。
进一步的,还包括:步骤5、当室内环境温度Tnh低于设定制冷温度值后,强力制冷模式结束,空调按照普通制冷模式运行。
进一步的,空调配置有遥控器,遥控器设置有用于启动空调强力制冷模式的强力制冷按键;所述方法还包括:
步骤6、在空调普通制冷模式下,当用户人为触动遥控器上的强力制冷按键,空调按照强力制冷模式运行。
有益效果
与现有技术相比,本发明的优点和积极效果是:通过在开机时检测室外环境温度的高低,在判断室外环境温度高于参考温度值后,则自动启动强力制冷模式,此时,再判断室内外环境温度差值,利用该差值来合理的控制变频压缩机的运行频率,变频压缩机的频率计算加入了室内外温度差值,可以更贴近用户的实际感知,也能够更加高效的实现室内快速降温制冷,相比于现有技术中仅是增大风速和压缩机功率来说,变频压缩机的运行频率结合室内外的温度差进行,能够在最大程度满足快递降温的前提下,获得较好的能效比,以降低能耗;并且,在快速降温过程中能够使得用户感到快速降温的同时又不至于温差变化过快而导致体感效果变差,实现空调能够快速降温并提高用户体验性。
附图说明
图1为本发明空调强力制冷控制方法实施例的流程图。
本发明的最佳实施方式
如图1所示,本实施例空调强力制冷控制方法,包括:
步骤1、空调启动后,当检测到的室外环境温度Twh大于设定参考温度值Tq时,启动强力制冷模式。具体的,空调启动过程中,如果检测到外界环境温度较高超过设定参考温度值Tq时,自动启动强制制冷模式,以实现室内环境温度快速下降,优选的,由于空调启动阶段,制冷能力较弱,从空调室内机吹出的风还是热风,甚至,空调吹出的风的温度比室内温度还高,此时,步骤1还包括:空调启动后,空调室内机的室内风机停止转动,空调室外机的室外风机正常运行,并在空调室内机的蒸发器温度低于设定蒸发温度值后,室内风机再开始转动,这样,便可以避免启动阶段用户受热风影响而导致用户体验性降低。
步骤2、强力制冷模式下,检测室内环境温度Tnh,并计算室内外温差△T=Twh-Tnh。具体的,通过计算室内外温差△T的大小,用于步骤3中计算变频压缩机的运行频率。优选的,步骤2还包括:强力制冷模式下,在变频压缩机启动阶段,增大空调中电子膨胀阀的开度,具体的,电子膨胀阀初始基准开度为d;判断满足条件一,目标回气过热度范围0~-1,回气过热度Tgr=回气温度Thq-蒸发器盘管温度Tpg,当Tgr≥2或者Tgr≤-3,则电子膨胀阀每10s调整一次,每次阀开度-10;当0<Tgr<2或者-1<Tgr<-3,则电子膨胀阀每30s调整一次,每次阀开度-5,室外风机转速在范围750~800内;判断满足条件二,目标回气过热度范围-1~-2,当Tgr≥1或者Tgr≤-3,则电子膨胀阀每10s调整一次,每次阀开度-10;当-1<Tgr<2或者-2<Tgr<-3,则电子膨胀阀每30s调整一次,每次阀开度-5,室外风机转速在范围800~850内;通过以上控制电子膨胀阀开度的方式,可以使得流入蒸发器的冷媒流量偏大,在蒸发器中冷媒不能全部蒸发为气体,从蒸发器出来的冷媒还有液态的部分,冷媒在从室内机流回到室外机的过程中,液态冷媒还在蒸发吸热,回气温度就会低于蒸发温度,这样做的目的就是考虑到压缩机油与液态冷媒的互溶性好,所以液态冷媒越多,增加了压缩机油的流动性,就会有越多的压缩机油随着制冷剂的流动被带回压缩机。常规变频压缩机在启动后前5分钟内,其实,变频空调是处在一个未完全开启的状态,变频压缩机的运行频率甚至会低于定频空调压缩机运行的频率(该频率为供电频率50或60Hz),普通变频空调启动之后需要运行回油频率,目的是为了防止启动时变频压缩机频率上升过快导致冷冻油回流不畅的问题,这导致刚开机运行阶段的制冷效果大打折扣,通过在启动初期,优化变频压缩机的启动方式,加大膨胀阀在变频压缩机启动时间内的开度,增大电子膨胀阀的开度过程中,确保变频压缩机的回气温度低于设定回气值,并使得空调蒸发器回到变频压缩机的冷媒始终有液体,保证了变频压缩机冷冻油液面高度,通过以上措施,节省至少5分钟启动时间,提高强制制冷的效果。
步骤3、根据公式f=-a*△T 2+b*△T +c计算空调中变频压缩机的工作频率f。具体的,当满足条件一:Tq<Twh≤Tq+10时,a=-0.06,b=0.5~0.6,c=80~85;
当满足条件二:Twh>Tq+10时,a=-0.07,b=2~2.5,c=50~55。具体的,变频压缩机运行频率的计量,增加了了室内外温度差值,这样,一方面可以确保变频压缩机以最佳的工作频率运行进行有效的强制制冷,另一方面也可以避免用户因降温过快而导致身体舒适感下降,可以更贴近用户的实际感知优化用户体感,提高用户体验性,同时,可以获得更优的能效比。
步骤4、动态的控制变频压缩机在步骤3计算的工作频率f下运行。具体的,变频压缩机能够根据步骤3实时计算的工作频率f进行动态的控制运行,相比于常规技术直接将变频压缩机以满负荷运转相比,一方面可以减低能耗提高能效比,另一方面可以在满足快速制冷的前提下获得更优的用户体验性。
步骤5、当室内环境温度Tnh低于设定制冷温度值后,强力制冷模式结束,空调按照普通制冷模式运行。
进一步的,空调配置有遥控器,遥控器设置有用于启动空调强力制冷模式的强力制冷按键;所述方法还包括:步骤6、在空调普通制冷模式下,当用户人为触动遥控器上的强力制冷按键,空调按照强力制冷模式运行。
与现有技术相比,本发明的优点和积极效果是:通过在开机时检测室外环境温度的高低,在判断室外环境温度高于参考温度值后,则自动启动强力制冷模式,此时,再判断室内外环境温度差值,利用该差值来合理的控制变频压缩机的运行频率,变频压缩机的频率计算加入了室内外温度差值,可以更贴近用户的实际感知,也能够更加高效的实现室内快速降温制冷,相比于现有技术中仅是增大风速和压缩机功率来说,变频压缩机的运行频率结合室内外的温度差进行,能够在最大程度满足快递降温的前提下,获得较好的能效比,以降低能耗;并且,在快速降温过程中能够使得用户感到快速降温的同时又不至于温差变化过快而导致体感效果变差,实现空调能够快速降温并提高用户体验性。

Claims (6)

  1. 一种空调强力制冷控制方法,其特征在于,包括:
    步骤1、空调启动后,当检测到的室外环境温度Twh大于设定参考温度值Tq时,启动强力制冷模式;
    步骤2、强力制冷模式下,检测室内环境温度Tnh,并计算室内外温差△T=Twh-Tnh;
    步骤3、根据公式f=-a*△T 2+b*△T +c计算空调中变频压缩机的工作频率f;
    步骤4、动态的控制变频压缩机在步骤3计算的工作频率f下运行;
    其中,当满足条件一:Tq<Twh≤Tq+10时,a=-0.06,b=0.5~0.6,c=80~85;
    当满足条件二:Twh>Tq+10时,a=-0.07,b=2~2.5,c=50~55。
  2. 根据权利要求1所述的空调强力制冷控制方法,其特征在于,所述步骤2还包括:强力制冷模式下,在变频压缩机启动阶段,增大空调中电子膨胀阀的开度。
  3. 根据权利要求2所述的空调强力制冷控制方法,其特征在于,所述增大空调中电子膨胀阀的开度,具体为:电子膨胀阀初始基准开度为d;
    判断满足条件一,目标回气过热度范围0~-1,回气过热度Tgr=回气温度Thq-蒸发器盘管温度Tpg,当Tgr≥2或者Tgr≤-3,则电子膨胀阀每10s调整一次,每次阀开度-10;当0<Tgr<2或者-1<Tgr<-3,则电子膨胀阀每30s调整一次,每次阀开度-5,室外风机转速在范围750~800内;
    判断满足条件二,目标回气过热度范围-1~-2,当Tgr≥1或者Tgr≤-3,则电子膨胀阀每10s调整一次,每次阀开度-10;当-1<Tgr<2或者-2<Tgr<-3,则电子膨胀阀每30s调整一次,每次阀开度-5,室外风机转速在范围800~850内。
  4. 根据权利要求1所述的空调强力制冷控制方法,其特征在于,所述步骤1还包括:空调启动后,空调室内机的室内风机停止转动,并在空调室内机的蒸发器温度低于设定蒸发温度值后,室内风机再开始转动。
  5. 根据权利要求1所述的空调强力制冷控制方法,其特征在于,还包括:
    步骤5、当室内环境温度Tnh低于设定制冷温度值后,强力制冷模式结束,空调按照普通制冷模式运行。
  6. 根据权利要求1所述的空调强力制冷控制方法,其特征在于,空调配置有遥控器,遥控器设置有用于启动空调强力制冷模式的强力制冷按键;所述方法还包括:
    步骤6、在空调普通制冷模式下,当用户人为触动遥控器上的强力制冷按键,空调按照强力制冷模式运行。
PCT/CN2018/090711 2017-07-12 2018-06-11 空调强力制冷控制方法 WO2019011094A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710565419.5A CN107514734B (zh) 2017-07-12 2017-07-12 空调强力制冷控制方法
CN201710565419.5 2017-07-12

Publications (1)

Publication Number Publication Date
WO2019011094A1 true WO2019011094A1 (zh) 2019-01-17

Family

ID=60722255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090711 WO2019011094A1 (zh) 2017-07-12 2018-06-11 空调强力制冷控制方法

Country Status (2)

Country Link
CN (1) CN107514734B (zh)
WO (1) WO2019011094A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112066582A (zh) * 2020-08-13 2020-12-11 珠海格力电器股份有限公司 一种直接蒸发式磁悬浮系统及具有它的空调器

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107514734B (zh) * 2017-07-12 2019-09-03 青岛海尔空调器有限总公司 空调强力制冷控制方法
CN108488988A (zh) * 2018-03-29 2018-09-04 广东美的制冷设备有限公司 空调器制冷控制方法、空调器及存储介质
CN108759022A (zh) * 2018-03-31 2018-11-06 青岛海尔空调器有限总公司 制热模式下空调的控制方法
CN108397878A (zh) * 2018-03-31 2018-08-14 青岛海尔空调器有限总公司 制热模式下空调的控制方法
CN108548287A (zh) * 2018-03-31 2018-09-18 青岛海尔空调器有限总公司 制热模式下空调的控制方法
CN108758995A (zh) * 2018-03-31 2018-11-06 青岛海尔空调器有限总公司 制冷模式下空调的控制方法
CN108444069A (zh) * 2018-03-31 2018-08-24 青岛海尔空调器有限总公司 制冷模式下空调的控制方法
CN108548303A (zh) * 2018-03-31 2018-09-18 青岛海尔空调器有限总公司 制冷模式下空调的控制方法
CN108944334B (zh) * 2018-07-06 2021-11-23 苏州新同创汽车空调有限公司 一种车载空调温度控制方法
CN109210699B (zh) * 2018-09-10 2020-11-27 青岛海尔空调器有限总公司 空调防冻结保护的控制方法
CN109323418B (zh) * 2018-09-30 2021-08-20 广东美的制冷设备有限公司 空调控制方法和装置及空调系统、设备和存储介质
CN111207495B (zh) * 2018-11-05 2021-09-28 奥克斯空调股份有限公司 一种提升空调制冷能力的方法以及使用该方法的空调
CN109595767A (zh) * 2018-11-15 2019-04-09 奥克斯空调股份有限公司 一种空调器的控制方法及空调器
CN110500747B (zh) * 2019-08-30 2021-10-29 郑州海尔空调器有限公司 空调器的控制方法
CN112648719A (zh) * 2019-10-11 2021-04-13 珠海格力电器股份有限公司 一种空调制冷控制方法及空调设备
CN111023398A (zh) * 2019-12-26 2020-04-17 宁波奥克斯电气股份有限公司 一种空调器及其控制方法
CN111981654B (zh) * 2020-08-19 2021-12-21 海信(山东)空调有限公司 空调能效寻优的控制方法
CN112283993B (zh) * 2020-10-15 2021-12-07 珠海格力电器股份有限公司 一种制冷控制方法、装置及制冷设备
CN113007860A (zh) * 2021-04-19 2021-06-22 宁波奥克斯电气股份有限公司 一种低压保护控制方法、装置及空调器
CN113865066B (zh) * 2021-10-14 2022-10-25 珠海格力电器股份有限公司 变频空调的控制方法、装置和空调
CN114211929B (zh) * 2021-11-25 2023-11-28 三一重机有限公司 空调控制方法、空调控制系统及作业机械

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101251290A (zh) * 2008-03-19 2008-08-27 珠海格力电器股份有限公司 空调器快速制冷/制热控制方法
US20160201955A1 (en) * 2015-01-12 2016-07-14 Lg Electronics Inc. Air conditioner and method for controlling an air conditioner
CN106705362A (zh) * 2016-12-26 2017-05-24 广东美的制冷设备有限公司 一种低温制冷控制方法、控制器及空调器
CN106765883A (zh) * 2016-11-29 2017-05-31 奥克斯空调股份有限公司 一种变频空调器频率的控制方法
CN107388490A (zh) * 2017-07-12 2017-11-24 青岛海尔空调器有限总公司 空调运行控制方法
CN107514734A (zh) * 2017-07-12 2017-12-26 青岛海尔空调器有限总公司 空调强力制冷控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940008433B1 (ko) * 1991-08-10 1994-09-14 삼성전자 주식회사 냉난방겸용 공기조화기의 제상 제어방법
JPH06185787A (ja) * 1992-12-18 1994-07-08 Fujitsu General Ltd 空気調和機の制御方法
JP2001116329A (ja) * 1999-10-14 2001-04-27 Matsushita Electric Ind Co Ltd 空気調和装置の制御
JP5531112B2 (ja) * 2010-12-13 2014-06-25 日立アプライアンス株式会社 空気調和機、給湯システム
CN102261720B (zh) * 2011-06-24 2013-04-03 宁波奥克斯电气有限公司 直流变频多联外机制冷时冷凝器中部防超温的控制方法
CN103062866A (zh) * 2013-01-04 2013-04-24 广东美的制冷设备有限公司 节能控制方法、系统及空调器
JP6225819B2 (ja) * 2014-05-08 2017-11-08 三菱電機株式会社 空気調和機
CN105091217B (zh) * 2015-07-31 2019-02-05 青岛海尔空调器有限总公司 空调器智能控制方法
CN105091218B (zh) * 2015-07-31 2018-03-20 青岛海尔空调器有限总公司 空调器智能睡眠控制方法
CN106403191B (zh) * 2016-09-30 2020-12-22 广东美的制冷设备有限公司 空调器的控制方法
CN106594961A (zh) * 2016-11-02 2017-04-26 珠海格力电器股份有限公司 空调器的防凝露控制方法及空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101251290A (zh) * 2008-03-19 2008-08-27 珠海格力电器股份有限公司 空调器快速制冷/制热控制方法
US20160201955A1 (en) * 2015-01-12 2016-07-14 Lg Electronics Inc. Air conditioner and method for controlling an air conditioner
CN106765883A (zh) * 2016-11-29 2017-05-31 奥克斯空调股份有限公司 一种变频空调器频率的控制方法
CN106705362A (zh) * 2016-12-26 2017-05-24 广东美的制冷设备有限公司 一种低温制冷控制方法、控制器及空调器
CN107388490A (zh) * 2017-07-12 2017-11-24 青岛海尔空调器有限总公司 空调运行控制方法
CN107514734A (zh) * 2017-07-12 2017-12-26 青岛海尔空调器有限总公司 空调强力制冷控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112066582A (zh) * 2020-08-13 2020-12-11 珠海格力电器股份有限公司 一种直接蒸发式磁悬浮系统及具有它的空调器

Also Published As

Publication number Publication date
CN107514734B (zh) 2019-09-03
CN107514734A (zh) 2017-12-26

Similar Documents

Publication Publication Date Title
WO2019011094A1 (zh) 空调强力制冷控制方法
WO2019011095A1 (zh) 空调运行控制方法
CN109945454B (zh) 空调系统压缩机控制方法、空调控制器和空调
CN1325849C (zh) 一种出风温度恒定的空调器及其控制方法
JP2004101164A (ja) 空気調和機の運転方法およびこれを用いた装置
CN107120809A (zh) 一种空调系统的控制方法、装置及空调系统
CN105042763B (zh) 变频磁悬浮离心式中央空调机组正常运行的控制方法
WO2015032244A1 (zh) 多联机空调的控制方法及多联机空调的控制系统
CN101109592A (zh) 空调器压缩机吸气口温度紧急状态控制方法
KR100378822B1 (ko) 인버터 에어컨의 절전냉방 운전방법
CN106610082A (zh) 空调模式切换的方法和装置
US20070262161A1 (en) Power Saving Apparatus and Method Thereof
TW201104181A (en) Energy saver device and method for cooling and heating apparatus
WO2021223530A1 (zh) 变频空调的控制方法
WO2023207222A1 (zh) 空调器及其控制方法
CN110397985A (zh) 一种空调器及其控制方法
CN108613329B (zh) 一种变频空调及其控制方法
JP3756854B2 (ja) 空気調和機の運転制御装置及びその方法
CN113739350B (zh) 一种低温制热变频控制方法、装置、存储介质和空调器
CN115289639A (zh) 一种氟泵空调的控制方法、装置、设备及介质
KR100488010B1 (ko) 에어컨의 자동제어방법
KR101133617B1 (ko) 인버터 공기조화기 및 그 제어방법
JP2006090567A (ja) 空気調和機
CN114370699B (zh) 空调器制热运行控制方法、控制装置及空调器
KR100557758B1 (ko) 공기 조화기의 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832139

Country of ref document: EP

Kind code of ref document: A1