WO2012046528A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2012046528A1
WO2012046528A1 PCT/JP2011/070014 JP2011070014W WO2012046528A1 WO 2012046528 A1 WO2012046528 A1 WO 2012046528A1 JP 2011070014 W JP2011070014 W JP 2011070014W WO 2012046528 A1 WO2012046528 A1 WO 2012046528A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
outdoor
indoor
fan
defrosting
Prior art date
Application number
PCT/JP2011/070014
Other languages
English (en)
French (fr)
Inventor
達 永田
一寿 三代
大西 竜太
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to SE1350427A priority Critical patent/SE537196C2/sv
Priority to CN201180048219.3A priority patent/CN103154623B/zh
Priority to US13/824,414 priority patent/US10006690B2/en
Priority to CA2811870A priority patent/CA2811870C/en
Publication of WO2012046528A1 publication Critical patent/WO2012046528A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/004Control mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0293Control issues related to the indoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0294Control issues related to the outdoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to an air conditioner that performs a heating operation and a defrosting operation.
  • Patent Document 1 A conventional air conditioner is disclosed in Patent Document 1.
  • This air conditioner includes an indoor unit arranged indoors and an outdoor unit arranged outdoors.
  • the outdoor unit is provided with a compressor, an outdoor heat exchanger, and an outdoor fan
  • the indoor unit is provided with an indoor heat exchanger and an indoor fan.
  • the compressor operates the refrigeration cycle by circulating the refrigerant.
  • each of the indoor heat exchanger and the outdoor heat exchanger is connected to the refrigerant discharge side of the compressor by a refrigerant pipe via a four-way valve.
  • the other ends of the indoor heat exchanger and the outdoor heat exchanger are connected by a refrigerant pipe via an expansion valve.
  • the outdoor fan is disposed opposite to the outdoor heat exchanger, and promotes heat exchange between the outdoor heat exchanger and outdoor air.
  • the indoor fan takes indoor air into the indoor unit and sends out the air heat-exchanged with the indoor heat exchanger into the room.
  • the refrigerant discharged from the compressor by switching the four-way valve flows through the indoor heat exchanger, the expansion valve, and the outdoor heat exchanger and returns to the compressor.
  • an indoor heat exchanger becomes a high temperature part of a refrigerating cycle
  • an outdoor heat exchanger becomes a low temperature part of a refrigerating cycle.
  • the indoor air is heated by the heat exchange with the indoor heat exchanger, sent out indoors, and the room is heated.
  • the indoor heat exchanger is cooled by exchanging heat with indoor air
  • the outdoor heat exchanger is heated by exchanging heat with outdoor air by driving the outdoor fan.
  • the refrigerant discharged from the compressor by switching the four-way valve flows in the opposite direction to that during heating operation. That is, the refrigerant flows through the outdoor heat exchanger, the expansion valve, and the indoor heat exchanger and returns to the compressor.
  • an outdoor heat exchanger becomes a high temperature part of a refrigerating cycle
  • an indoor heat exchanger becomes a low temperature part of a refrigerating cycle.
  • the indoor air is cooled by heat exchange with the indoor heat exchanger, sent to the room, and the room is cooled.
  • the indoor heat exchanger is heated by exchanging heat with indoor air
  • the outdoor heat exchanger is cooled by exchanging heat with outdoor air by driving the outdoor fan.
  • defrosting operation is performed when the outdoor heat exchanger is frosted during heating operation.
  • the indoor fan and the outdoor fan are stopped, and the refrigerant flows in the same direction as during the cooling operation by switching the four-way valve.
  • This invention aims at providing the air conditioner which can reduce a defrosting defect and can improve usability and reliability.
  • the present invention provides a compressor that operates a refrigeration cycle, an outdoor heat exchanger that is arranged outdoors, an indoor heat exchanger that is arranged indoors, and the outdoor heat exchange of the outdoor air. And an outdoor fan for supplying indoor air to the indoor heat exchanger.
  • the indoor heat exchanger and the outdoor heat are driven by the compressor by driving the indoor fan and the outdoor fan.
  • the refrigerant is circulated through the exchanger in one direction for heating operation, and when the outdoor heat exchanger is frosted, the refrigerant is circulated in the opposite direction to that during the heating operation to stop the indoor fan and the outdoor fan.
  • the indoor fan and the outdoor fan are driven during the heating operation, and the refrigerant discharged from the compressor flows in the order of the indoor heat exchanger and the outdoor heat exchanger and returns to the compressor.
  • an indoor heat exchanger becomes a high temperature part of a refrigerating cycle
  • an outdoor heat exchanger becomes a low temperature part of a refrigerating cycle.
  • the indoor air is heated by the heat exchange with the indoor heat exchanger, sent out indoors, and the room is heated.
  • Defrosting operation is performed when the outdoor heat exchanger is frosted.
  • the indoor fan and the outdoor fan are stopped, and the refrigerant discharged from the compressor flows in the order of the outdoor heat exchanger and the indoor heat exchanger and returns to the compressor.
  • the outdoor heat exchanger becomes the high temperature part of the refrigeration cycle
  • the indoor heat exchanger becomes the low temperature part of the refrigeration cycle
  • the outdoor heat exchanger is heated.
  • the defrosting operation is terminated and the operation is switched to the heating operation.
  • Defrosting operation is performed when the outdoor heat exchanger is not heated sufficiently and the defrosting failure occurs because the defrosting operation is performed for a predetermined period.
  • the outdoor fan is driven to stop the indoor fan, and the refrigerant discharged from the compressor flows in the order of the indoor heat exchanger and the outdoor heat exchanger in the same manner as in the heating operation, and returns to the compressor. .
  • circulates a refrigerating cycle rises.
  • the defrosting operation is resumed, and the refrigerant whose temperature has been raised in the defrosting preparation operation flows through the refrigeration cycle, and the outdoor heat exchanger is defrosted.
  • the present invention is characterized in that, in the air conditioner having the above-described configuration, the heating operation is performed for a predetermined period before the defrost preparation operation. According to this configuration, when the defrosting failure occurs during the defrosting operation, the defrosting preparation operation is performed after the heating operation is performed for a predetermined period. Thereby, the indoor temperature fall can be suppressed.
  • the temperature of the indoor heat exchanger rises above a predetermined temperature when a predetermined time has elapsed after the start of the defrost preparation operation or during the defrost preparation operation. In this case, the defrosting operation is restarted.
  • the present invention provides a case where the temperature of the outdoor heat exchanger does not rise above a predetermined temperature even after a predetermined time has elapsed since the start of the defrosting operation or during the defrosting operation Further, when the discharge temperature of the refrigerant of the compressor is lower than a predetermined temperature, it is judged that the defrosting is defective.
  • the defrosting operation is resumed after performing the defrosting preparation operation in which the refrigerant is circulated in the same direction as the heating operation and the outdoor fan is driven to stop the indoor fan when the defrosting is defective.
  • the refrigerant that has been heated in the defrost preparation operation is circulated to resume the defrost operation.
  • circuit diagram which shows the refrigerating cycle of the air conditioner of embodiment of this invention
  • flowchart which shows the operation
  • FIG. 1 is a circuit diagram showing a refrigeration cycle of an air conditioner according to an embodiment.
  • the air conditioner 1 has an indoor unit 10 arranged indoors and an outdoor unit 20 arranged outdoor.
  • a compressor 21 that operates a refrigeration cycle by circulating a refrigerant in the refrigerant pipe 2 is disposed in the outdoor unit 20.
  • a four-way valve 22 connected to the compressor 21, an outdoor heat exchanger 23, an expansion valve 24, and an indoor fan 25 are provided in the outdoor unit 20.
  • An indoor heat exchanger 13 and an indoor fan 15 are provided in the indoor unit 10.
  • One end of the outdoor heat exchanger 23 and the indoor heat exchanger 13 is connected to the compressor 21 via the four-way valve 22 by the refrigerant pipe 2.
  • the other ends of the outdoor heat exchanger 23 and the indoor heat exchanger 13 are connected by the refrigerant pipe 2 via the expansion valve 24.
  • the outdoor fan 25 is disposed opposite to the outdoor heat exchanger 23. Outdoor air is supplied to the outdoor heat exchanger 23 by driving the outdoor fan 25, and heat exchange between the outdoor heat exchanger 23 and the outdoor air is promoted. The air that has exchanged heat with the outdoor heat exchanger 23 is exhausted to the outside through an exhaust port (not shown) that faces the outdoor fan 25 and opens to the outdoor unit 20.
  • the indoor fan 15 and the indoor heat exchanger 13 are arranged in a ventilation passage (not shown) provided in the indoor unit 10. Indoor air flows into the ventilation passage by driving the indoor fan 15 and is supplied to the indoor heat exchanger 13, and the air flowing through the ventilation passage and the indoor heat exchanger 13 are heat-exchanged. The air that has exchanged heat with the indoor heat exchanger 13 is sent out indoors through an outlet (not shown) that opens to the indoor unit 10.
  • the outdoor heat exchanger 23 is attached with an outdoor heat exchanger temperature sensor 26 that detects the temperature of the outdoor heat exchanger 23.
  • the refrigerant pipe 2 on the discharge side of the compressor 21 is provided with a discharge temperature sensor 27 that detects the refrigerant discharge temperature.
  • An indoor heat exchanger temperature sensor 16 that detects the temperature of the indoor heat exchanger 13 is attached to the indoor heat exchanger 13.
  • the indoor fan 15 and the outdoor fan 25 are driven, and the four-way valve 22 is switched as indicated by a solid line in the figure.
  • the refrigerant flows in the direction indicated by the arrow A by driving the compressor 21, and the high-temperature and high-pressure refrigerant compressed by the compressor 21 is condensed while releasing heat in the indoor heat exchanger 13.
  • the high-temperature refrigerant is expanded by the expansion valve 24 to become low-temperature and low-pressure, and is sent to the outdoor heat exchanger 23.
  • the refrigerant flowing into the outdoor heat exchanger 23 evaporates while absorbing heat to become a low-temperature gas refrigerant, and is sent to the compressor 21. Thereby, the refrigerant circulates and the refrigeration cycle is operated.
  • the air heat-exchanged with the indoor heat exchanger 13 which is a high temperature part of the refrigeration cycle is sent out indoors by the indoor fan 15 and the room is heated.
  • the air exchanged with the outdoor heat exchanger 23 that is a low temperature part of the refrigeration cycle is exhausted to the outside by the indoor fan 25.
  • the indoor fan 15 and the outdoor fan 25 are driven, and the four-way valve 4 is switched as indicated by a broken line in the figure.
  • the refrigerant flows in the direction opposite to the arrow A by driving the compressor 21, the indoor heat exchanger 13 becomes the low temperature part of the refrigeration cycle, and the outdoor heat exchanger 23 becomes the high temperature part of the refrigeration cycle.
  • the air heat-exchanged with the indoor heat exchanger 13 is sent out indoors by the indoor fan 15, and the room is cooled.
  • the air exchanged with the outdoor heat exchanger 23 that is a high temperature part of the refrigeration cycle is exhausted to the outside by the indoor fan 25.
  • FIG. 2 is a flowchart showing the detailed operation during the heating operation of the air conditioner 1.
  • the indoor fan 15, the outdoor fan 25, and the compressor 21 are driven in step # 11 to perform the heating operation.
  • circulates to the arrow A direction.
  • step # 12 it is determined whether or not the outdoor heat exchanger 23 has become lower than a predetermined temperature due to frost formation by the detection of the outdoor heat exchanger temperature sensor 26.
  • step # 13 If the outdoor heat exchanger 23 is not lower than the predetermined temperature, the process returns to step # 11, and steps # 11 and # 12 are repeated. When the outdoor heat exchanger 23 becomes cooler than the predetermined temperature, the defrosting operation is performed at step # 13.
  • the indoor fan 15 and the outdoor fan 25 are stopped, and the four-way valve 22 is switched as shown by the broken line in FIG.
  • circulates in the reverse direction to the arrow A direction, and the outdoor heat exchanger 23 becomes a high temperature part of a refrigerating cycle, and is heated up.
  • heat exchange between the outdoor heat exchanger 23 and the outdoor air is suppressed by stopping the outdoor fan 25, and the outdoor heat exchanger 23 can be efficiently heated.
  • the stop of the indoor fan 15 can prevent the low temperature air from being sent into the room.
  • Step # 14 it is determined whether or not the outdoor heat exchanger 23 has been heated to a temperature higher than a predetermined temperature by the detection of the outdoor heat exchanger temperature sensor 26. If the outdoor heat exchanger 23 has not been heated above the predetermined temperature, the process proceeds to step # 15. In step # 15, it is determined whether or not a predetermined time has elapsed since the defrosting operation was started. When a predetermined time has elapsed after the start of the defrosting operation, it is determined that the defrosting is defective and the process proceeds to step # 17. If the predetermined time has not elapsed since the start of the defrosting operation, the process proceeds to step # 16.
  • step # 16 it is determined whether or not the refrigerant discharge temperature has fallen below a predetermined temperature (20 ° C. in the present embodiment) by detection of the discharge temperature sensor 27. If the refrigerant discharge temperature is lower than the predetermined temperature, it is determined that the defrosting is defective and the process proceeds to step # 17. If the refrigerant discharge temperature is not lower than the predetermined temperature, the process returns to step # 14, and steps # 14 to # 16 are repeated. If the outdoor heat exchanger 23 is heated above the predetermined temperature in step # 14, it is determined that the defrosting is completed, and the process returns to step # 11 and steps # 11 to # 14 are repeated.
  • step # 18 the process waits until the heating operation started in step # 17 is performed for a predetermined time (6 minutes in the present embodiment).
  • the outdoor heat exchanger 23 is suppressed from rising in temperature by outdoor low-temperature air, and the temperature of the refrigerant flowing through the refrigeration cycle is lowered. For this reason, the temperature of the refrigerant flowing through the refrigeration cycle can be raised by heating operation.
  • the indoor temperature drop can be suppressed by performing the heating operation for a predetermined time after the defrosting operation.
  • step # 19 When the heating operation is performed for a predetermined time, the process proceeds to step # 19, and the defrost preparation operation is performed.
  • the indoor fan 13 In the defrost preparation operation, the indoor fan 13 is stopped from the heating operation state. That is, the four-way valve 22 is switched as indicated by the solid line in FIG. 1, and the compressor 21 and the outdoor fan 25 are driven to stop the indoor fan 15. Thereby, a refrigerant
  • heat exchange between the indoor heat exchanger 13 in the high temperature part of the refrigeration cycle and the indoor air can be suppressed, and the temperature of the refrigerant can be raised compared to that during the heating operation.
  • step # 20 it is determined whether or not a predetermined time (3 minutes in the present embodiment) has elapsed since the start of the defrost preparation operation. If the predetermined time has not elapsed since the start of the defrost preparation operation, the process proceeds to step # 21.
  • step # 21 it is determined whether or not the indoor heat exchanger 13 has been heated above a predetermined temperature by the detection of the indoor heat exchanger temperature sensor 16 (56 ° C. or higher in this embodiment). If the indoor heat exchanger 13 has not been heated above the predetermined temperature, steps # 20 and # 21 are repeated.
  • step # 20 If a predetermined time has elapsed since the start of the defrost preparation operation in step # 20, or if the indoor heat exchanger 13 has been heated to a temperature higher than the predetermined temperature in step # 21, the process returns to step # 13.
  • the defrosting operation is resumed. Thereby, the refrigerant
  • the pressure when R410A is used as the refrigerant corresponds to 3.5 MPa-abs. For this reason, even if the time lag until switching to the defrosting operation after detecting the temperature rise of the indoor heat exchanger 13 and the temperature measurement error of the indoor heat exchanger temperature sensor 16 are taken into consideration, the pressure is safe within the specification range. .
  • the discharge temperature of the compressor 21 is used as a reference for determining that the temperature of the indoor heat exchanger 13 has been raised.
  • the pressure detected by the indoor heat exchanger temperature sensor 16 is used.
  • the defrosting operation is resumed by circulating the refrigerant heated in the defrosting preparation operation.
  • the defrosting failure at the time of restarting the defrosting operation is reduced, the room can be heated to the heating operation at an early stage, and the failure of the outdoor unit 20 due to the growth of frost can be prevented. Therefore, the usability and reliability of the air conditioner 1 can be improved.
  • step # 17 since the heating operation is performed for a predetermined period in step # 17 before the defrost preparation operation, the temperature drop in the room can be suppressed.
  • steps # 17 and # 18 may be omitted, and the defrost preparation operation may be performed immediately when the defrost is poor. Thereby, the temperature of a refrigerant
  • coolant can be raised more rapidly and a defrost operation can be restarted rapidly.
  • step # 20 when the predetermined time has elapsed since the start of the defrost preparation operation (step # 20), the process proceeds to step # 13. Therefore, the defrost preparation operation is resumed until the refrigerant is sufficiently heated. Can be made.
  • step # 21 when the temperature of the indoor heat exchanger 13 rises above a predetermined temperature during the defrost preparation operation (step # 21), the process moves to step # 13, so that the defrost operation can be restarted quickly.
  • step # 15 when the temperature of the outdoor heat exchanger 23 does not rise above the predetermined temperature even after a predetermined time has elapsed since the start of the defrosting operation (step # 15), or the refrigerant is discharged from the compressor 21 during the defrosting operation.
  • step # 16 when the temperature is lower than the predetermined temperature (step # 16), it is determined that the defrosting is poor, so the defrosting can be easily determined and the defrosting operation can be terminated.
  • the present invention can be used for an air conditioner that performs heating operation and defrosting operation.

Abstract

 冷凍サイクルを運転する圧縮機21と、室外に配される室外熱交換器23と、室内に配される室内熱交換器13と、室外の空気を室外熱交換器23に供給する室外ファン25と、室内の空気を室内熱交換器13に供給する室内ファン15とを備え、室内ファン15及び室外ファン25を駆動して室内熱交換器13及び室外熱交換器23に一方向に冷媒を流通させて暖房運転を行うとともに、室外熱交換器23の着霜時に冷媒を暖房運転時と逆方向に流通させて室内ファン15及び室外ファン25を停止した除霜運転を行う空気調和機1において、除霜運転による除霜不良時に冷媒を暖房運転と同じ方向に流通させて室外ファン25を駆動して室内ファン15を停止した除霜準備運転を所定期間行った後に、除霜運転を再開した。

Description

空気調和機
 本発明は、暖房運転を行うとともに除霜運転を行う空気調和機に関する。
 従来の空気調和機は特許文献1に開示されている。この空気調和機は室内に配される室内機と室外に配される室外機とを備えている。室外機には圧縮機、室外熱交換器及び室外ファンが配され、室内機には室内熱交換器及び室内ファンが配される。圧縮機は冷媒を流通させて冷凍サイクルを運転する。
 圧縮機の冷媒吐出側には四方弁を介して室内熱交換器及び室外熱交換器の一端がそれぞれ冷媒管により接続される。室内熱交換器及び室外熱交換器の他端は膨張弁を介して冷媒管により接続される。室外ファンは室外熱交換器に対向配置され、室外熱交換器と室外の空気との熱交換を促進する。室内ファンは室内の空気を室内機に取り込んで室内熱交換器と熱交換した空気を室内に送出する。
 暖房運転時には四方弁の切り替えによって圧縮機から吐出された冷媒は室内熱交換器、膨張弁、室外熱交換器を流通して圧縮機に戻る。これにより、室内熱交換器が冷凍サイクルの高温部となり、室外熱交換器が冷凍サイクルの低温部となる。室内の空気は室内熱交換器との熱交換により昇温して室内に送出され、室内の暖房が行われる。この時、室内熱交換器は室内の空気と熱交換して降温され、室外熱交換器は室外ファンの駆動によって室外の空気と熱交換して昇温される。
 冷房運転時には四方弁の切り替えによって圧縮機から吐出された冷媒は暖房運転時と逆方向に流通する。即ち、冷媒は室外熱交換器、膨張弁、室内熱交換器を流通して圧縮機に戻る。これにより、室外熱交換器が冷凍サイクルの高温部となり、室内熱交換器が冷凍サイクルの低温部となる。室内の空気は室内熱交換器との熱交換により降温して室内に送出され、室内の冷房が行われる。この時、室内熱交換器は室内の空気と熱交換して昇温され、室外熱交換器は室外ファンの駆動によって室外の空気と熱交換して降温される。
 また、暖房運転時に室外熱交換器が着霜すると除霜運転が行われる。除霜運転時には室内ファン及び室外ファンが停止され、四方弁の切り替えによって冷媒が冷房運転時と同じ方向に流通する。これにより、室外熱交換器が冷凍サイクルの高温部となるため、室外熱交換器を除霜することができる。
特開2010-181036号公報(第4頁-第6頁、第1図)
 しかしながら、上記従来の空気調和機によると、寒冷地等で室外機を設置した屋外が著しく低温になると、除霜運転時に圧縮機から吐出された高温の冷媒の熱が外気に奪われて室外熱交換器の昇温が抑制される。特に、屋外で強風が吹き荒れるような状況では室外ファンが強風により回転し、室外熱交換器の昇温が更に抑制される。
 このため、除霜運転を所定時間行っても室外熱交換器が所望の温度まで上昇しないため、着霜が残留した除霜不良が発生する。これにより、短時間で除霜運転が繰り返し行われて除霜不良が繰り返されるため、室内が暖房されずに空気調和機の使用性が悪くなる問題があった。また、除霜不良によって室外熱交換器に残留した霜が成長して室外機が氷に覆われて故障し、空気調和機の信頼性が低下する問題もあった。
 本発明は、除霜不良を低減して使用性及び信頼性を向上できる空気調和機を提供することを目的とする。
 上記目的を達成するために本発明は、冷凍サイクルを運転する圧縮機と、室外に配される室外熱交換器と、室内に配される室内熱交換器と、室外の空気を前記室外熱交換器に供給する室外ファンと、室内の空気を前記室内熱交換器に供給する室内ファンとを備え、前記室内ファン及び前記室外ファンを駆動して前記圧縮機により前記室内熱交換器及び前記室外熱交換器に一方向に冷媒を流通させて暖房運転を行うとともに、前記室外熱交換器の着霜時に冷媒を前記暖房運転時と逆方向に流通させて前記室内ファン及び前記室外ファンを停止した除霜運転を行う空気調和機において、前記除霜運転による除霜不良時に冷媒を前記暖房運転と同じ方向に流通させて前記室内ファンを停止した除霜準備運転を所定期間行った後に、前記除霜運転を再開することを特徴としている。
 この構成によると、暖房運転時には室内ファン及び室外ファンが駆動され、圧縮機から吐出される冷媒が室内熱交換器、室外熱交換器の順に流通して圧縮機に戻る。これにより、室内熱交換器が冷凍サイクルの高温部になるとともに室外熱交換器が冷凍サイクルの低温部になる。室内の空気は室内熱交換器との熱交換により昇温して室内に送出され、室内の暖房が行われる。
 室外熱交換器が着霜すると除霜運転が行われる。除霜運転時には室内ファン及び室外ファンが停止され、圧縮機から吐出される冷媒が室外熱交換器、室内熱交換器の順に流通して圧縮機に戻る。これにより、室外熱交換器が冷凍サイクルの高温部になるとともに室内熱交換器が冷凍サイクルの低温部になり、室外熱交換器が昇温される。除霜運転を所定期間行って室外熱交換器が所望の温度に昇温されると除霜運転を終了し、暖房運転に切り換えられる。
 除霜運転を所定期間行って室外熱交換器が十分昇温されずに除霜不良になると、除霜準備運転が行われる。除霜準備運転では室外ファンを駆動して室内ファンが停止され、圧縮機から吐出される冷媒が暖房運転時と同じように室内熱交換器、室外熱交換器の順に流通して圧縮機に戻る。これにより、冷凍サイクルを流通する冷媒の温度が上昇する。そして、除霜運転が再開され、除霜準備運転で昇温された冷媒が冷凍サイクルを流通して室外熱交換器が除霜される。
 また本発明は、上記構成の空気調和機において、前記除霜準備運転の前に前記暖房運転を所定期間行うことを特徴としている。この構成によると、除霜運転で除霜不良になると、暖房運転が所定期間行われた後に除霜準備運転が行われる。これにより、室内の温度低下を抑制することができる。
 また本発明は、上記構成の空気調和機において、前記除霜準備運転を開始して所定時間が経過した場合、または前記除霜準備運転中に前記室内熱交換器の温度が所定温度よりも上昇した場合に前記除霜運転を再開したことを特徴としている。
 また本発明は、上記構成の空気調和機において、前記除霜運転を開始して所定時間が経過しても前記室外熱交換器の温度が所定温度よりも上昇しない場合、または前記除霜運転中に前記圧縮機の冷媒の吐出温度が所定温度よりも低下した場合に除霜不良と判断したことを特徴としている。
 本発明によると、除霜不良時に冷媒を暖房運転と同じ方向に流通させて室外ファンを駆動して室内ファンを停止した除霜準備運転を所定期間行った後に、除霜運転を再開するので、除霜準備運転で昇温された冷媒を流通させて除霜運転が再開される。これにより、除霜運転の再開時の除霜不良が低減され、早期に暖房運転に移行して室内を暖房できるとともに室外機の故障を防止することができる。従って、空気調和機の使用性及び信頼性を向上することができる。
本発明の実施形態の空気調和機の冷凍サイクルを示す回路図 本発明の実施形態の空気調和機の暖房運転時の動作を示すフローチャート
 以下に本発明の実施形態を図面を参照して説明する。図1は一実施形態の空気調和機の冷凍サイクルを示す回路図である。空気調和機1は室内に配される室内機10と室外に配される室外機20とを有している。空気調和機1は冷媒管2内に冷媒を流通させて冷凍サイクルを運転する圧縮機21が室外機20内に配される。
 室外機20内には圧縮機21に接続される四方弁22、室外熱交換器23、膨張弁24、室内ファン25が設けられる。室内機10内には室内熱交換器13、室内ファン15が設けられる。圧縮機21には四方弁22を介して室外熱交換器23及び室内熱交換器13の一端が冷媒管2により接続される。室外熱交換器23及び室内熱交換器13の他端は膨張弁24を介して冷媒管2により接続される。
 室外ファン25は室外熱交換器23に対向配置される。室外ファン25の駆動によって室外の空気が室外熱交換器23に供給され、室外熱交換器23と室外の空気との熱交換が促進される。室外熱交換器23と熱交換した空気は室外ファン25に面して室外機20に開口する排気口(不図示)を介して外部に排気される。
 室内ファン15及び室内熱交換器13は室内機10に設けた送風通路(不図示)内に配される。室内ファン15の駆動によって室内の空気が送風通路に流入して室内熱交換器13に供給され、送風通路を流通する空気と室内熱交換器13とが熱交換される。室内熱交換器13と熱交換した空気は室内機10に開口する吹出口(不図示)を介して室内に送出される。
 室外熱交換器23には室外熱交換器23の温度を検知する室外熱交換器温度センサ26が取り付けられる。また、圧縮機21の吐出側の冷媒管2には冷媒の吐出温度を検知する吐出温度センサ27が設けられる。室内熱交換器13には室内熱交換器13の温度を検知する室内熱交換器温度センサ16が取り付けられる。
 暖房運転時には室内ファン15及び室外ファン25が駆動され、四方弁22が図中、実線で示すように切り替えられる。これにより、圧縮機21の駆動によって矢印Aに示す方向に冷媒が流通し、圧縮機21により圧縮された高温高圧の冷媒は室内熱交換器13で放熱しながら凝縮する。
 高温の冷媒は膨張弁24で膨張して低温低圧となり、室外熱交換器23に送られる。室外熱交換器23に流入する冷媒は吸熱しながら蒸発して低温のガス冷媒となり、圧縮機21に送られる。これにより、冷媒が循環して冷凍サイクルが運転される。冷凍サイクルの高温部となる室内熱交換器13と熱交換した空気が室内ファン15により室内に送出され、室内の暖房が行われる。また、冷凍サイクルの低温部となる室外熱交換器23と熱交換した空気が室内ファン25により外部に排気される。
 冷房運転時には室内ファン15及び室外ファン25が駆動され、四方弁4が図中、破線で示すように切り替えられる。これにより、圧縮機21の駆動によって矢印Aと逆方向に冷媒が流通し、室内熱交換器13が冷凍サイクルの低温部となるとともに室外熱交換器23が冷凍サイクルの高温部となる。室内熱交換器13と熱交換した空気が室内ファン15により室内に送出され、室内の冷房が行われる。また、冷凍サイクルの高温部となる室外熱交換器23と熱交換した空気が室内ファン25により外部に排気される。
 図2は空気調和機1の暖房運転時の詳細な動作を示すフローチャートである。暖房運転の開始の指示があると、ステップ#11で室内ファン15、室外ファン25及び圧縮機21を駆動して暖房運転が行われる。これにより、冷媒が矢印A方向に流通する。ステップ#12では室外熱交換器温度センサ26の検知によって室外熱交換器23が着霜のために所定温度よりも低温になったか否かが判断される。
 室外熱交換器23が所定温度よりも低温になっていない場合はステップ#11に戻り、ステップ#11、#12が繰り返される。室外熱交換器23が所定温度よりも低温になると、ステップ#13で除霜運転が行われる。
 除霜運転は室内ファン15及び室外ファン25が停止され、四方弁22が図1の破線に示すように切り換えられる。これにより、冷媒が矢印A方向と逆方向に流通し、室外熱交換器23が冷凍サイクルの高温部となって昇温される。この時、室外ファン25の停止によって室外熱交換器23と室外の空気との熱交換が抑制され、室外熱交換器23を効率よく昇温することができる。また、室内ファン15の停止によって低温の空気の室内への送出を防止することができる。
 ステップ#14では室外熱交換器温度センサ26の検知によって室外熱交換器23が所定温度よりも昇温されたか否かが判断される。室外熱交換器23が所定温度よりも昇温されていない場合はステップ#15に移行する。ステップ#15では除霜運転を開始して所定時間経過したか否かが判断される。除霜運転を開始して所定時間経過した場合は除霜不良と判断してステップ#17に移行する。除霜運転を開始して所定時間経過していない場合はステップ#16に移行する。
 ステップ#16では吐出温度センサ27の検知によって冷媒の吐出温度が所定温度(本実施形態では20℃)よりも低下したか否かが判断される。冷媒の吐出温度が所定温度よりも低下した場合は除霜不良と判断してステップ#17に移行する。冷媒の吐出温度が所定温度よりも低下していない場合はステップ#14に戻り、ステップ#14~#16が繰り返される。そして、ステップ#14で室外熱交換器23が所定温度よりも昇温された場合は除霜が完了したと判断し、ステップ#11に戻ってステップ#11~#14が繰り返される。
 ステップ#15、#16で除霜不良と判断されると、ステップ#17で除霜運転を終了して暖房運転が行われる。ステップ#18ではステップ#17で開始した暖房運転が所定時間(本実施形態では6分)だけ行われるまで待機する。除霜不良時には室外熱交換器23が室外の低温の空気によって昇温を抑制され、冷凍サイクルを流通する冷媒の温度が低下する。このため、暖房運転によって冷凍サイクルを流通する冷媒を昇温することができる。また、除霜運転後に暖房運転を所定時間行うことによって室内の温度低下を抑制することができる。
 暖房運転が所定時間だけ行われるとステップ#19に移行し、除霜準備運転が行われる。除霜準備運転は暖房運転の状態から室内ファン13が停止される。即ち、四方弁22が図1の実線で示すように切り換えられ、圧縮機21及び室外ファン25を駆動して室内ファン15が停止される。これにより、冷媒は暖房運転と同じ方向(矢印A方向)に流通し、冷媒の昇温が継続して行われる。この時、室内ファン13を停止することによって冷凍サイクルの高温部の室内熱交換器13と室内の空気との熱交換を抑制し、冷媒を暖房運転時よりも昇温することができる。
 ステップ#20では除霜準備運転を開始してから所定時間(本実施形態では3分)が経過したか否かが判断される。除霜準備運転を開始してから所定時間が経過していない場合はステップ#21に移行する。ステップ#21では室内熱交換器温度センサ16の検知によって室内熱交換器13が所定温度よりも昇温されたか(本実施形態では56℃以上)否かが判断される。室内熱交換器13が所定温度よりも昇温されていない場合はステップ#20、#21が繰り返し行われる。
 ステップ#20の判断で除霜準備運転を開始してから所定時間が経過した場合、またはステップ#21の判断で室内熱交換器13が所定温度よりも昇温された場合はステップ#13に戻り、除霜運転が再開される。これにより、ステップ#17の暖房運転及びステップ#19の除霜準備運転で昇温された冷媒が流通して再度除霜運転を行う。従って、再開された除霜運転によって室外熱交換器23の着霜を確実に除去し、除霜不良を低減することができる。
 尚、ステップ#21で除霜準備運転の終了を判別する室内熱交換器13の温度を56℃とすると、冷媒としてR410Aを用いた場合の圧力が3.5MPa-absに相当する。このため、室内熱交換器13の昇温を検知後に除霜運転に切り替わるまでのタイムラグや室内熱交換器温度センサ16の検温誤差を考慮しても、仕様範囲内の安全な圧力になっている。
 また、室内熱交換器13が昇温されたことを判断する基準として圧縮機21の吐出温度を利用することも考えられる。しかしながら、吐出温度から圧力を予測することは非常に困難であり、圧力が仕様範囲を超えることが考えられる。従って、本実施形態では室内熱交換器温度センサ16の検知温度を用いている。
 本実施形態によると、除霜不良時に冷媒を暖房運転と同じ方向(矢印A方向)に流通させて室外ファン25を駆動して室内ファン15を停止した除霜準備運転を所定期間行った後に、除霜運転を再開するので、除霜準備運転で昇温された冷媒を流通させて除霜運転が再開される。これにより、除霜運転の再開時の除霜不良が低減され、早期に暖房運転に移行して室内を暖房できるとともに、霜の成長による室外機20の故障を防止することができる。従って、空気調和機1の使用性及び信頼性を向上することができる。
 また、除霜準備運転の前にステップ#17で暖房運転を所定期間行うので、室内の温度低下を抑制することができる。尚、ステップ#17、#18を省き、除霜不良時に除霜準備運転を直ちに行うようにしてもよい。これにより、冷媒の温度をより迅速に昇温させることができ、除霜運転を迅速に再開することができる。
 また、除霜準備運転を開始して所定時間が経過した場合(ステップ#20)にステップ#13に移行するので、冷媒が十分昇温されるまで除霜準備運転を行って除霜運転を再開させることができる。
 また、除霜準備運転中に室内熱交換器13の温度が所定温度よりも上昇した場合(ステップ#21)にステップ#13に移行するので、迅速に除霜運転を再開させることができる。
 また、除霜運転を開始して所定時間が経過しても室外熱交換器23の温度が所定温度よりも上昇しない場合(ステップ#15)、または除霜運転中に圧縮機21の冷媒の吐出温度が所定温度よりも低下した場合(ステップ#16)に除霜不良と判断したので、除霜不良を容易に判別して除霜運転を終了することができる。
 本発明によると、暖房運転及び除霜運転を行う空気調和機に利用することができる。
   1  空気調和機
   2  冷媒管
  10  室内機
  13  室内熱交換器
  15  室内ファン
  16  室内熱交換器温度センサ
  20  室外機
  21  圧縮機
  22  四方弁
  23  室外熱交換器
  24  膨張弁
  25  室外ファン
  26  室外熱交換器温度センサ
  27  吐出温度センサ

Claims (4)

  1.  冷凍サイクルを運転する圧縮機と、室外に配される室外熱交換器と、室内に配される室内熱交換器と、室外の空気を前記室外熱交換器に供給する室外ファンと、室内の空気を前記室内熱交換器に供給する室内ファンとを備え、前記室内ファン及び前記室外ファンを駆動して前記圧縮機により前記室内熱交換器及び前記室外熱交換器に一方向に冷媒を流通させて暖房運転を行うとともに、前記室外熱交換器の着霜時に冷媒を前記暖房運転時と逆方向に流通させて前記室内ファン及び前記室外ファンを停止した除霜運転を行う空気調和機において、前記除霜運転による除霜不良時に冷媒を前記暖房運転と同じ方向に流通させて前記室外ファンを駆動して前記室内ファンを停止した除霜準備運転を所定期間行った後に、前記除霜運転を再開することを特徴とする空気調和機。
  2.  前記除霜準備運転の前に前記暖房運転を所定期間行うことを特徴とする請求項1に記載の空気調和機。
  3.  前記除霜準備運転を開始して所定時間が経過した場合、または前記除霜準備運転中に前記室内熱交換器の温度が所定温度よりも上昇した場合に前記除霜運転を再開したことを特徴とする請求項1または請求項2に記載の空気調和機。
  4.  前記除霜運転を開始して所定時間が経過しても前記室外熱交換器の温度が所定温度よりも上昇しない場合、または前記除霜運転中に前記圧縮機の冷媒の吐出温度が所定温度よりも低下した場合に除霜不良と判断したことを特徴とする請求項1または請求項2に記載の空気調和機。
PCT/JP2011/070014 2010-10-05 2011-09-02 空気調和機 WO2012046528A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SE1350427A SE537196C2 (sv) 2010-10-05 2011-09-02 Klimatapparat med avfrostningsfunktion
CN201180048219.3A CN103154623B (zh) 2010-10-05 2011-09-02 空调
US13/824,414 US10006690B2 (en) 2010-10-05 2011-09-02 Air conditioner and method for controlling the air conditioner
CA2811870A CA2811870C (en) 2010-10-05 2011-09-02 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-226099 2010-10-05
JP2010226099A JP5053430B2 (ja) 2010-10-05 2010-10-05 空気調和機

Publications (1)

Publication Number Publication Date
WO2012046528A1 true WO2012046528A1 (ja) 2012-04-12

Family

ID=45927525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070014 WO2012046528A1 (ja) 2010-10-05 2011-09-02 空気調和機

Country Status (6)

Country Link
US (1) US10006690B2 (ja)
JP (1) JP5053430B2 (ja)
CN (1) CN103154623B (ja)
CA (1) CA2811870C (ja)
SE (1) SE537196C2 (ja)
WO (1) WO2012046528A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5897994B2 (ja) * 2012-06-06 2016-04-06 シャープ株式会社 空気調和機
JP6137461B2 (ja) * 2013-03-29 2017-05-31 株式会社富士通ゼネラル 空気調和機
JP6137462B2 (ja) * 2013-03-29 2017-05-31 株式会社富士通ゼネラル 空気調和機
CN104456859B (zh) * 2013-09-12 2017-09-26 珠海格力电器股份有限公司 空调器及其除霜控制方法和装置
JP6367642B2 (ja) * 2014-07-31 2018-08-01 シャープ株式会社 空気調和機
KR102108616B1 (ko) * 2014-10-07 2020-05-07 버터플라이 네트워크, 인크. 초음파 신호 처리 회로와 관련 장치 및 방법
JP2016161256A (ja) * 2015-03-04 2016-09-05 株式会社富士通ゼネラル 空気調和装置
CA2995799C (en) 2017-02-17 2023-04-04 National Coil Company Reverse cycle defrost refrigeration system and method
CN107166673B (zh) * 2017-06-19 2019-12-27 广东美的暖通设备有限公司 空调器室外风机的控制方法和控制系统
CN111076363A (zh) * 2019-12-24 2020-04-28 珠海格力电器股份有限公司 空调的控制方法、装置、空调系统、存储介质和处理器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413037A (ja) * 1990-04-27 1992-01-17 Fujitsu General Ltd 空気調和機の制御方法
JPH04194539A (ja) * 1990-11-28 1992-07-14 Hitachi Ltd 空気調和機
JPH07120121A (ja) * 1993-10-29 1995-05-12 Daikin Ind Ltd 空気調和装置の運転制御装置
JP2002081713A (ja) * 2000-09-04 2002-03-22 Sanyo Electric Co Ltd 冷凍装置の制御装置
JP2003194438A (ja) * 2001-12-25 2003-07-09 Saginomiya Seisakusho Inc 空気調和機の制御装置及び空気調和機
JP2007155245A (ja) * 2005-12-06 2007-06-21 Sharp Corp 空気調和機

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076668B2 (ja) * 1989-12-28 1995-01-30 ダイキン工業株式会社 蓄熱式空気調和機のファン制御装置
US5257506A (en) * 1991-03-22 1993-11-02 Carrier Corporation Defrost control
JPH0712438A (ja) * 1993-06-23 1995-01-17 Mitsubishi Heavy Ind Ltd ヒートポンプ式空気調和機の除霜方法
KR100210079B1 (ko) * 1996-10-26 1999-07-15 윤종용 공기조화기의 실내기 독립운전장치
JP3888403B2 (ja) * 1997-12-18 2007-03-07 株式会社富士通ゼネラル 空気調和機の制御方法およびその装置
US5927083A (en) * 1998-03-09 1999-07-27 Carrier Corporation Compressor cycle dependent defrost control
US6318095B1 (en) * 2000-10-06 2001-11-20 Carrier Corporation Method and system for demand defrost control on reversible heat pumps
KR100484802B1 (ko) * 2002-07-03 2005-04-22 엘지전자 주식회사 두 개의 압축기를 구비한 공기조화기의 제상운전방법
WO2004048876A1 (ja) * 2002-11-26 2004-06-10 Daikin Industries, Ltd. 対空気用熱交換器及び冷凍装置
JP5363492B2 (ja) * 2008-09-16 2013-12-11 パナソニック株式会社 空気調和装置
JP2010085047A (ja) * 2008-10-01 2010-04-15 Sharp Corp 空気調和機
JP2010181036A (ja) 2009-02-03 2010-08-19 Panasonic Corp 空気調和機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413037A (ja) * 1990-04-27 1992-01-17 Fujitsu General Ltd 空気調和機の制御方法
JPH04194539A (ja) * 1990-11-28 1992-07-14 Hitachi Ltd 空気調和機
JPH07120121A (ja) * 1993-10-29 1995-05-12 Daikin Ind Ltd 空気調和装置の運転制御装置
JP2002081713A (ja) * 2000-09-04 2002-03-22 Sanyo Electric Co Ltd 冷凍装置の制御装置
JP2003194438A (ja) * 2001-12-25 2003-07-09 Saginomiya Seisakusho Inc 空気調和機の制御装置及び空気調和機
JP2007155245A (ja) * 2005-12-06 2007-06-21 Sharp Corp 空気調和機

Also Published As

Publication number Publication date
CN103154623B (zh) 2016-03-23
CA2811870C (en) 2018-05-22
SE1350427A1 (sv) 2013-04-05
US20130180269A1 (en) 2013-07-18
JP2012078065A (ja) 2012-04-19
JP5053430B2 (ja) 2012-10-17
CA2811870A1 (en) 2012-04-12
CN103154623A (zh) 2013-06-12
SE537196C2 (sv) 2015-03-03
US10006690B2 (en) 2018-06-26

Similar Documents

Publication Publication Date Title
JP5053430B2 (ja) 空気調和機
JP5574028B1 (ja) 空気調和装置
KR100821728B1 (ko) 공기 조화 시스템
US10345022B2 (en) Air-conditioning apparatus
US20190154322A1 (en) Refrigeration cycle apparatus
JP2015034655A (ja) 空気調和装置
JP5634071B2 (ja) 空気調和機および空気調和機の除霜運転方法
JP2002107014A (ja) 空気調和機
JP2010210223A (ja) 空気調和機
CN103162384B (zh) 热泵运行的风机控制方法
JP2016017725A (ja) 空気調和機
KR101588205B1 (ko) 공기조화기 및 공기조화기의 제상운전방법
JP2007155299A (ja) 空気調和機
US20170336115A1 (en) Air-conditioning apparatus
JP2006349258A (ja) 空気調和機
KR101203995B1 (ko) 공기조화기 및 그 제상운전방법
JP2014085078A (ja) 空気調和装置
JP2011169475A (ja) 冷凍機及びこの冷凍機が接続された冷凍装置
JP2011127878A (ja) 温水熱源機
JP4269476B2 (ja) 冷凍装置
JP4802602B2 (ja) 空気調和装置
JP2016109372A (ja) 空気調和機
KR100734537B1 (ko) 가스 냉난방 장치의 제상운전 방법 및 이를 수행하기 위한 가스 냉난방 장치
JP2007298218A (ja) 冷凍装置
JP6367642B2 (ja) 空気調和機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180048219.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830461

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13824414

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2811870

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11830461

Country of ref document: EP

Kind code of ref document: A1