WO2014188872A1 - 一液型オルガノポリシロキサンゲル組成物及びその硬化方法 - Google Patents

一液型オルガノポリシロキサンゲル組成物及びその硬化方法 Download PDF

Info

Publication number
WO2014188872A1
WO2014188872A1 PCT/JP2014/062232 JP2014062232W WO2014188872A1 WO 2014188872 A1 WO2014188872 A1 WO 2014188872A1 JP 2014062232 W JP2014062232 W JP 2014062232W WO 2014188872 A1 WO2014188872 A1 WO 2014188872A1
Authority
WO
WIPO (PCT)
Prior art keywords
sio
complex
mol
composition
group
Prior art date
Application number
PCT/JP2014/062232
Other languages
English (en)
French (fr)
Inventor
池野 正行
松田 剛
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2015518181A priority Critical patent/JPWO2014188872A1/ja
Publication of WO2014188872A1 publication Critical patent/WO2014188872A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/06Crosslinking by radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a one-part organopolysiloxane gel composition, and more particularly to a one-part organopolysiloxane gel composition having good long-term storage stability at room temperature and a curing method thereof.
  • Addition reaction curing type organopolysiloxane composition that obtains a cured product by addition reaction (hydrosilylation reaction) to the catalyst contains various addition reaction control agents along with platinum-based catalysts to suppress the progress of curing due to addition reaction at room temperature.
  • Patent Document 1 US Pat. No. 3,445,420
  • Patent Document 2 US Pat. No. 3,453,234
  • Patent Document 3 U.S. Pat. No. 4,061,609
  • the above reaction control agent when using an organohydrogenpolysiloxane having a monofunctional unit represented by the formula: H (CH 3 ) 2 SiO 0.5 , that is, having SiH at the molecular chain end, the above reaction control agent is used. Even if it mix
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2004-204255.
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2004-204255.
  • it has a defect that a decomposition product of the organic peroxide remains in the cured product.
  • the subject of the present invention is a composition containing a combination of an organohydrogenpolysiloxane having SiH at the molecular chain terminal and an alkenyl group-containing organopolysiloxane having a branched structure, Even when an inorganic filler is blended in, a one-component organopolysiloxane gel composition that effectively suppresses the addition reaction at room temperature and maintains storage stability over a long period of time, and cures at a temperature of 50 ° C. or lower It is an object of the present invention to provide a curing method.
  • the present invention (A) R 2 SiO unit: 80.0 to 97.0 mol%, RSiO 1.5 unit: 1.0 to 10.0 mol%, (CH 3 ) 2 (CH 2 ⁇ CH) SiO 0.5 unit: 0.1 To 4.0 mol%, and (CH 3 ) 3 SiO 0.5 unit: 0.5 to 10 mol% [provided that the total of these units is 100 mol%, and in each of the units representing these units, R Is a methyl group, a phenyl group, or a group represented by the formula: RfCH 2 CH 2 — (Rf is a perfluoroalkyl group having or not having an etheric oxygen atom in the chain).
  • a plurality of R contained in one molecule are the same or different, organopolysiloxane: 100 parts by mass, (B) Formula: H (R 1 ) 2 SiO 0.5 [Wherein, R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group other than an alkenyl group.
  • the composition can contain an inorganic filler and a reaction control agent.
  • the light-irradiated composition is applied to a desired location and cured at a temperature of 50 ° C. or lower.
  • a method for curing a one-pack type organopolysiloxane gel composition is provided.
  • the present invention has an organohydrogenpolysiloxane having a hydrogen atom at the end of a molecular chain bonded to a silicon atom, and an aliphatic unsaturated group bonded to a silicon atom, which could not be stored for a long period of time at room temperature.
  • a one-pack type organopolysiloxane gel composition containing a branched structure organopolysiloxane and a platinum-based catalyst that promotes the addition reaction, and even when an inorganic filler is further added to the composition,
  • the light-irradiated composition is applied to a desired portion and cured, so that a portion not exposed to light is 50 ° C. or less.
  • the composition can be cured uniformly at a temperature, that is, once the composition is irradiated with light in a specific region (200 to 500 nm) once, then the composition Irrespective of whether or not light energy is radiated from the outside world (that is, whether the composition is placed in a dark part where no light is exposed from the outside world or in a bright part where light (for example, visible light to ultraviolet light) is applied) Regardless, it can be uniformly cured at a temperature of 50 ° C. or lower.
  • (A) Vinyl group-containing branched organopolysiloxane The (A) component organopolysiloxane is used as the main agent (base polymer) of the composition of the present invention.
  • the R 2 SiO unit preferably R (CH 3 ) SiO units
  • RSiO 1.5 units 1.0 to 10.0 mol%
  • the R may be the same or different, and is a methyl group, a phenyl group, or a formula: RfCH 2 CH 2 — (Rf is a perfluoroalkyl group having or not having an etheric oxygen atom in the chain). It is a group represented.
  • the perfluoroalkyl group for Rf preferably has 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms when it does not have an etheric oxygen atom in the chain.
  • Examples thereof include groups represented by the formula: CF 3 —, C 4 F 9 —, C 6 F 13 — and the like.
  • Rf has an etheric oxygen atom in the chain
  • R ′ is a perfluoroalkyl group having 1 to 4 carbon atoms
  • R ′′ and R ′ ′′ are independently a perfluoroalkylene group having 1 to 3 carbon atoms
  • p is 0 to It is an integer of 10.
  • R ′ is a perfluoroalkyl group having 1 to 4 carbon atoms
  • R ′′ and R ′ ′′ are independently a perfluoroalkylene group having 1 to 3 carbon atoms
  • p is 0 to It is an integer of 10.
  • (A) the above formula in the component: trifunctional unit represented by RSiO 1.5 is, (A) a component of organopolysiloxane assumed branched structure, and low-temperature characteristics and rapid curing in the compositions of the present invention It is an important unit for providing performance. As described above, the content of this unit is 1.0 to 10.0 mol%, preferably 1.5 to 10.0 mol%, and the content is less than 1.0 mol% (A ) Since the linear structure of the component is increased, the above-mentioned properties and performance are not sufficiently imparted. Conversely, when the content exceeds 10.0 mol%, it is difficult to control the viscosity.
  • the monofunctional unit represented by the above formula: (CH 3 ) 2 (CH 2 ⁇ CH) SiO 0.5 and the formula: (CH 3 ) 3 SiO 0.5 is a unit that becomes a terminal group.
  • the former content is 0.1 to 4.0 mol%, preferably 0.5 to 3.0 mol%, and if the content is less than 0.1 mol%, the curing property by addition reaction is poor. On the contrary, if it exceeds 4.0 mol%, there arises a problem that the heat resistance of the cured product is inferior.
  • the content of the latter is 0.5 to 10 mol%, preferably 0.8 to 8 mol%, and the total content of the former and the latter is trifunctional represented by the above formula: RSiO 1.5 It is naturally determined based on the content of the unit (that is, the ratio of the branched structure in the component (A)).
  • the organopolysiloxane of component (A) can be produced by a known method. For example, by a method in which chlorosilanes corresponding to each unit are mixed at a required molar ratio and subjected to cohydrolysis and condensation, or by an equilibration reaction of a polysiloxane and / or a cyclic siloxane compound having the structure of each unit. Manufactured.
  • the organopolysiloxane of component (A) preferably has a viscosity at 25 ° C. in the range of usually 300 to 10,000 mPa ⁇ s. This viscosity is a value measured by a rotational viscometer (hereinafter the same).
  • organopolysiloxane of component (A) are shown below, but are not limited thereto.
  • organopolysiloxanes can be used singly or in combination of two or more.
  • Organohydrogenpolysiloxane (B) The organohydrogenpolysiloxane as the component is Formula: H (R 1 ) 2 SiO 0.5 [Wherein, R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group other than an alkenyl group. ] The compound contains at least two monofunctional diorganohydrogensiloxy units represented by the following formula. That is, this organohydrogenpolysiloxane is one in which hydrogen atoms are bonded to silicon atoms at the ends of at least two molecular chains.
  • R 1 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, and specifically includes, for example, a methyl group, an ethyl group, and a propyl group.
  • Alkyl groups such as butyl groups: cycloalkyl groups such as cyclohexyl groups; aryl groups such as phenyl groups and tolyl groups; aralkyl groups such as benzyl groups and ⁇ -phenylpropyl groups; and carbon atoms of these groups Examples thereof include a chloromethyl group, a 3,3,3-trifluoropropyl group, a 2-cyanoethyl group, etc.
  • a methyl group, a phenyl group, 3 A 3,3-trifluoropropyl group is preferred.
  • organohydrogenpolysiloxane examples include the following average composition formula (2) (H) m (R 2 ) n SiO (4-mn) / 2 (2) And at least two units represented by the formula: H (R 1 ) 2 SiO 0.5 (R 1 is as described above) in one molecule.
  • a plurality of R 2 are independently the same unsubstituted or substituted monovalent hydrocarbon group as defined above for R 1 .
  • two R ⁇ 2 > may form a lower alkylene group together.
  • R 2 is an unsubstituted or substituted monovalent hydrocarbon group, examples thereof include the same groups as R 1 above. Among them, a methyl group, a phenyl group, and a 3,3,3-trifluoropropyl group are preferable.
  • the lower alkylene group formed by combining two R 2 groups include an ethylene group, a trimethylene group, a methylmethylene group, a tetramethylene group, and a hexamethylene group.
  • M is a number of 0 ⁇ m ⁇ 2
  • n is a number of 0 ⁇ n ⁇ 3
  • 0 ⁇ m + n ⁇ 3 preferably 0.001 ⁇ m ⁇ 0.5, 0.8 ⁇ n ⁇ 2.2 and 1 ⁇ m + n ⁇ 2.4.
  • the organohydrogenpolysiloxane represented by the above average composition formula (2) should contain at least two units represented by the formula: H (R 1 ) 2 SiO 0.5 in one molecule.
  • the structure is not particularly limited, and may be a linear or branched structure.
  • the organohydrogenpolysiloxane preferably has 2 or more, preferably 3 or more SiH groups in the molecule.
  • the upper limit of the number of SiH groups is preferably 20 or less, particularly 10 or less.
  • the organohydrogenpolysiloxane of component (B) has a viscosity at 25 ° C. of 1,000 mPa ⁇ s or less, usually 0.1 to 1,000 mPa ⁇ s, particularly in that synthesis is easy. Particularly preferred is 0.5 to 500 mPa ⁇ s.
  • the component (B) is a linear organohydrogenpolysiloxane
  • the following general formula (3) (In the formula, R 1 and R 2 are as described above, x and y are the same or different 0 or a positive number, and x + y is a number satisfying the viscosity.) Can be expressed as
  • branched organohydrogenpolysiloxane as a branching source, a unit represented by the formula: R 2 SiO 1.5 (R 2 is as described above), a unit represented by the formula: SiO 2 , or The following structural formula (4) (Wherein R 2 is as described above.) What has a unit etc. which are represented by these can be mentioned.
  • organohydrogenpolysiloxane of the component (B) of the present invention are shown below, but are not limited thereto.
  • organohydrogenpolysiloxanes can be used singly or in combination of two or more.
  • the blending ratio of the component (B) in the composition of the present invention is such that the obtained cured product has good physical properties such as heat resistance and mechanical strength, and is required not to foam during curing.
  • the number of hydrogen atoms bonded to the silicon atom contained in the component (B) is 0.5 to 4.0, especially 0.8, per vinyl group contained in the organopolysiloxane of the component (A).
  • the ratio is preferably 8 to 3.0.
  • Platinum catalyst ( ⁇ -diketone platinum complex or platinum complex having a cyclic diene compound as a ligand)
  • the platinum-based catalyst of the component (C) is blended in order to promote the addition reaction between the vinyl group in the component (A) and the SiH in the component (B) and obtain a cured product of the composition of the present invention.
  • it is a component, it is an important component that imparts good long-term storage stability of the composition of the present invention at room temperature and enables it as a one-pack type organopolysiloxane gel composition.
  • Examples of the component (C) include a ⁇ -diketone platinum complex or a platinum complex having a cyclic diene compound as a ligand.
  • ⁇ -diketone platinum complex for example, trimethyl (acetylacetonate) platinum complex, trimethyl (2,4-pentanedionate) platinum complex, trimethyl (3,5-heptanedionate) platinum complex, trimethyl ( Methylacetoacetate) platinum complex, bis (2,4-pentanedionate) platinum complex, bis (2,4-hexanedionate) platinum complex, bis (2,4-heptanedionate) platinum complex, bis (3,3 5-heptanedionate) platinum complex, bis (1-phenyl-1,3-butanedionate) platinum complex, bis (1,3-diphenyl-1,3-propanedionate) platinum complex, and the like.
  • platinum complexes having a cyclic diene compound as a ligand include, for example, (1,5-cyclooctadienyl) dimethylplatinum complex, (1,5-cyclooctadienyl) diphenylplatinum complex, (1,5 -Cyclooctadienyl) dipropylplatinum complex, (2,5-norboradiene) dimethylplatinum complex, (2,5-norboradiene) diphenylplatinum complex, (cyclopentadienyl) dimethylplatinum complex, (methylcyclopentadienyl) diethyl Platinum complex, (trimethylsilylcyclopentadienyl) diphenylplatinum complex, (methylcycloocta-1,5-dienyl) diethylplatinum complex, (cyclopentadienyl) trimethylplatinum complex, (cyclopentadienyl) ethyld
  • the content of the component (C) may be an effective amount as a catalyst.
  • the amount of platinum metal is preferably 1 to 1,000 ppm, more preferably 5 to 500 ppm. If the amount is too small, curing may be slow, and if too large, it may be economically disadvantageous.
  • An inorganic filler can be blended in the composition of the present invention.
  • the inorganic filler include fumed silica, precipitated silica, crystalline silica, hollow filler, silsesquioxane, fumed titanium dioxide, magnesium oxide, zinc oxide, iron oxide, aluminum hydroxide, magnesium carbonate, and calcium carbonate.
  • Inorganic fillers such as zinc carbonate, layered mica, carbon black, diatomaceous earth, and glass fibers, and organosilicon compounds such as organoalkoxysilane compounds, organochlorosilane compounds, organosilazane compounds, and low molecular weight siloxane compounds. And the like and the like surface-treated filler.
  • the blending amount of the inorganic filler is 0 to 20 parts by weight with respect to 100 parts by weight of component (A), particularly 0.5 to 10 parts by weight, and more preferably 1 to 5 parts by weight when blended. is there. Moreover, silicone rubber powder, silicone resin powder, etc. can be mix
  • the composition of the present invention is first irradiated with 200 to 500 nm ultraviolet rays upon curing, but the reaction is performed to improve workability until the ultraviolet irradiated composition is applied to a desired location.
  • a control agent is not limited as long as it can control the activity of the platinum catalyst for the hydrosilylation reaction, and a known reaction control agent can be used, and examples thereof include acetylene compounds and maleic acid derivatives.
  • the degree of cure retarding effect of the compound varies greatly depending on its chemical structure. Therefore, the amount of addition should be adjusted to an optimum amount for each of the compounds to be used, but 0.0001 to 10 parts by weight, particularly 0.001 to 3 parts by weight, per 100 parts by weight of component (A). It is preferable that
  • composition should also contain a creep hardening inhibitor, a plasticizer, a heat-resistant additive, a thixotropic agent, a pigment, a dye, an antifungal agent, etc., as long as the object of the present invention is not impaired. Can do.
  • the addition-curable organopolysiloxane gel composition of the present invention can be prepared by mixing the above components according to a conventional method.
  • the composition of the present invention is cured by irradiating the composition with ultraviolet rays of 200 to 500 nm to enhance the catalytic activity of the component (C), and then coating the composition with the enhanced catalytic activity on a desired site.
  • ultraviolet rays 200 to 500 nm
  • coating the composition with the enhanced catalytic activity on a desired site By potting, even a portion that is not exposed to light from the outside (that is, regardless of the presence or absence of light energy irradiation from the outside) can be uniformly cured at 50 ° C. or less.
  • the lamp that irradiates ultraviolet rays is not particularly limited as long as it can supply ultraviolet rays having a wavelength of 200 to 500 nm, and examples thereof include a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, a xenon lamp, a metal halide lamp, and an ultraviolet LED lamp.
  • the amount of UV irradiation varies depending on the type and amount of the catalyst used, the UV intensity of 10 to 1,000 mW / cm 2 , especially 20 to 400 mW / cm 2 , is 0.5 seconds to 5 minutes, especially 1 second to 1 minute. It is preferable to irradiate to a certain extent.
  • the composition irradiated with ultraviolet rays in this way is applied to a desired location by means of coating, potting, etc., and left in an air atmosphere of 50 ° C. or lower, preferably 10 to 40 ° C.
  • it is usually cured in 2 to 120 minutes, particularly 10 to 60 minutes, depending on the temperature, including a portion that has not been exposed to light energy such as ultraviolet rays. From this point, it is preferable to apply the composition irradiated with ultraviolet rays to a desired location within 10 minutes, particularly within 2 minutes after ultraviolet irradiation.
  • composition A was quickly poured into the container shown in FIG.
  • the container is a glass petri dish having a diameter of 25 mm and a depth of 15 mm, and an aluminum plate 1 having a diameter of 15 mm and a thickness of 0.3 mm is installed in the center of the glass petri dish via a spacer 2 having a height of 1 mm.
  • the hardness of the reaction solution (composition A) after standing at 25 ° C. for 24 hours was measured according to the JIS K2220 (1/4 cone) consistency test method, and was 58.
  • composition B filled in the glass syringe was irradiated with 100 mW / cm 2 for 50 seconds using an SP-V type ultraviolet irradiator (USHIO) equipped with a uniform irradiation optical unit.
  • This composition B was still liquid.
  • the curability of this reaction solution (Composition B) was immediately measured with ARES-RFS manufactured by TA Instruments at 30 ° C. in the dark and at an excitation frequency of 10 Hz.
  • the complex elastic modulus at that time was 199 Pa.
  • the reaction solution (composition B) was quickly poured into the container shown in FIG. 1, and after standing at 25 ° C. for 1 hour, the cured state of the composition B was observed. The whole was cured uniformly including the part that was not hit.
  • the hardness of this reaction solution (Composition B) after standing at 25 ° C. for 24 hours was measured according to the JIS K2220 (1/4 corn) consistency test method and found to be 130.
  • Example 3 Implemented except that 0.06 parts by mass of an isooctane solution containing 1% by mass of (methylcyclopentadienyl) trimethylplatinum as a platinum atom content was used in place of the bis (2,4-pentanedionate) platinum complex.
  • Composition C was prepared according to Example 1. Composition C was allowed to stand at 40 ° C. for 1 month in a closed system in a container and in the dark, but the composition did not thicken at all. Further, the composition C filled in the glass syringe was irradiated with 100 mW / cm 2 for 50 seconds using an SP-V type ultraviolet irradiator (USHIO) equipped with a uniform irradiation optical unit.
  • USHIO SP-V type ultraviolet irradiator
  • composition C was still liquid.
  • the curability of this reaction solution (Composition C) was immediately measured with ARES-RFS manufactured by TA Instruments at 30 ° C. in the dark and at an excitation frequency of 10 Hz.
  • the complex elastic modulus at that time was 2,430 Pa.
  • the reaction solution (composition C) was quickly poured into the container shown in FIG. 1, and after standing at 25 ° C. for 1 hour, the cured state of the composition C was observed. The whole was cured uniformly including the part that was not hit.
  • the hardness of the reaction solution (composition C) after standing at 25 ° C. for 24 hours was measured according to the JIS K2220 (1/4 cone) consistency test method and found to be 58.
  • Example 4 Composition D was mixed uniformly as in Example 1 except that 2 parts by weight of hydrophobic silica having a specific surface area of 170 m 2 / g which was surface-treated with hexamethyldisilazane and had a trimethylsilyl group on the surface was added. Got. Composition D was allowed to stand at 40 ° C. for 1 month in a closed system in a container and in the dark, but the composition did not thicken at all. Further, the composition D filled in the glass syringe was irradiated with 100 mW / cm 2 for 50 seconds using an SP-V type ultraviolet irradiator (USHIO) equipped with a uniform irradiation optical unit. This composition D was still liquid.
  • USHIO SP-V type ultraviolet irradiator
  • composition D The curability of this reaction solution (Composition D) was immediately measured with ARES-RFS manufactured by TA Instruments at 30 ° C. in the dark and at an excitation frequency of 10 Hz. The complex elastic modulus at that time was 2,460 Pa. Further, the reaction solution (composition D) was quickly poured into the container shown in FIG. 1, and after standing at 25 ° C. for 1 hour, the cured state of the composition D was observed. The whole was cured uniformly including the part that was not hit. The hardness of the reaction solution (composition D) after standing at 25 ° C. for 24 hours was measured according to the JIS K2220 (1/4 cone) consistency test method, and found to be 56.
  • Composition E was prepared according to Example 1. Composition E gelled after sealing in the container at 25 ° C. for 4 hours.
  • Example 2 The composition A of Example 1 was poured into the container shown in FIG. 1, and then irradiated with 100 mW / cm 2 for 50 seconds using the ultraviolet irradiation device used in Example 1. As a result of observing the cured state of the composition A after standing at 25 ° C. for 1 hour, the portion covered with the aluminum plate (not exposed to light) was uncured. The ultraviolet irradiation part on the upper part of the aluminum plate was hardened.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 (A)R2SiO単位:80.0~97.0モル%、RSiO1.5単位:1.0~10.0モル%、(CH32(CH2=CH)SiO0.5単位:0.1~4.0モル%、及び(CH33SiO0.5単位:0.5~10モル%からなるオルガノポリシロキサン、 (B)式:H(R12SiO0.5 で表される単位を1分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン、 (C)β-ジケトン白金錯体又は環状ジエン化合物を配位子にもつ白金錯体 を含有してなる一液型オルガノポリシロキサンゲル組成物。 本発明は、長期保存安定性を付与すると共に、該組成物に200~500nmの光を照射した後に、光照射組成物を所望の箇所に適用し、硬化させることで、光の当たらない部分も50℃以下の温度で均一に硬化させることができるものである。

Description

一液型オルガノポリシロキサンゲル組成物及びその硬化方法
 本発明は、一液型オルガノポリシロキサンゲル組成物に関し、特に室温において良好な長期保存安定性を有する一液型オルガノポリシロキサンゲル組成物及びその硬化方法に関する。
 従来、ケイ素原子に結合した水素原子(SiH)を有するオルガノハイドロジェンポリシロキサン、ケイ素原子に結合したビニル基等のアルケニル基を有するオルガノポリシロキサン、及び白金系触媒を含み、前記SiHのビニル基等への付加反応(ヒドロシリル化反応)により硬化物を得る付加反応硬化型オルガノポリシロキサン組成物に、白金系触媒と共に、種々の付加反応制御剤を配合し、室温における付加反応による硬化の進行を抑制して長期保存安定性を向上させ、かつ、使用時には加熱によって付加反応を促進させて硬化するようにさせることは周知である。例えば、付加反応制御剤としてアセチレン系化合物(特許文献1:米国特許第3445420号明細書)、スルホキシド化合物(特許文献2:米国特許第3453234号明細書)、又はハイドロパーオキシド化合物(特許文献3:米国特許第4061609号明細書)を配合することが知られている。
 しかし、例えば、式:H(CH32SiO0.5で表される1官能性単位を有する、即ち、分子鎖末端にSiHを有するオルガノハイドロジェンポリシロキサンを使用する場合、上記の反応制御剤を配合しても、組成物の室温における付加反応による硬化の進行を有効に抑制することができないため、組成物の保存安定性が十分ではなかった。更に、上記の分子鎖末端にSiHを有するオルガノハイドロジェンポリシロキサンと、分岐状構造のアルケニル基含有オルガノポリシロキサンとを組み合わせた組成物の場合には、室温における長期保存安定性を図ることが一層困難であった。
 これらの問題を解決するために、ビニル基含有分岐状オルガノポリシロキサンと分子鎖末端にSiHを有するオルガノハイドロジェンポリシロキサンとを含む組成物の室温における付加反応制御剤として、n-ブチルアミン、N,N-ジブチルアミノプロピルアミン、N,N,N,N-テトラメチルエチレンジアミン等のアミン化合物を用いることが提案されている(特許文献4:米国特許第4584361号明細書)。しかし、これらのアミン化合物はその沸点が低いために開放系での保存安定性に劣り、また組成物中に無機充填剤が配合されていると、その無機充填剤表面に吸着されてしまい、その付加反応抑制効果が著しく低下するという欠点を有している。
 また、亜リン酸エステルと有機過酸化物との組み合わせが提案されている(特許文献5:特開2004-204255号公報)。しかし、硬化物中に有機過酸化物の分解物が残存する欠点を有している。
米国特許第3445420号明細書 米国特許第3453234号明細書 米国特許第4061609号明細書 米国特許第4584361号明細書 特開2004-204255号公報
 そこで、本発明の課題は、分子鎖末端にSiHを有するオルガノハイドロジェンポリシロキサンと、分岐状構造のアルケニル基含有オルガノポリシロキサンとの組み合わせを含む組成物の場合であっても、更に、組成物中に無機充填剤が配合されている場合にも、室温における付加反応が有効に抑制され、保存安定性が長期にわたって維持される一液型オルガノポリシロキサンゲル組成物及び50℃以下の温度で硬化させるその硬化方法を提供することにある。
 本発明者らは、上記課題を解決すべく、鋭意検討した結果、本発明を完成させるに至ったものである。
 即ち、本発明は、
(A)R2SiO単位:80.0~97.0モル%、RSiO1.5単位:1.0~10.0モル%、(CH32(CH2=CH)SiO0.5単位:0.1~4.0モル%、及び(CH33SiO0.5単位:0.5~10モル%[但し、これらの単位の合計は100モル%であり、これらの単位を表す前記各単位において、Rはメチル基、フェニル基、又は式:RfCH2CH2-(Rfは鎖中にエーテル結合性酸素原子を有する、又は有しないパーフルオロアルキル基である。)で表される基である。]からなり、1分子中に含まれる複数のRは同一又は異なる、オルガノポリシロキサン:100質量部、
(B)式:H(R12SiO0.5
[式中、R1は独立にアルケニル基以外の非置換又は置換の1価炭化水素基である。]
で表される単位を1分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン:本成分中に含まれるケイ素原子に結合した水素原子の数が、(A)成分のオルガノポリシロキサン中に含まれるビニル基1個当たり、0.5~4.0個となる量、
(C)β-ジケトン白金錯体又は環状ジエン化合物を配位子にもつ白金錯体
を含有してなることを特徴とする一液型オルガノポリシロキサンゲル組成物
を提供する。
 この場合、該組成物に無機充填剤、反応制御剤を含有させることができる。
 また、本発明は、上記一液型オルガノポリシロキサンゲル組成物に200~500nmの光を照射した後、この光照射された組成物を所望の箇所に適用し、50℃以下の温度で硬化させることを特徴とする一液型オルガノポリシロキサンゲル組成物の硬化方法を提供する。
 本発明は、従来、室温における長期間の保存が不可能であったケイ素原子に結合した分子鎖末端に水素原子を有するオルガノハイドロジェンポリシロキサンと、ケイ素原子に結合した脂肪族不飽和基を有する分岐状構造のオルガノポリシロキサン及び付加反応を促進する白金系触媒を含む一液型オルガノポリシロキサンゲル組成物に対し、また、前記組成物に更に無機充填剤が配合された場合であっても、長期保存安定性を付与すると共に、該組成物に200~500nmの光を照射した後に、光照射組成物を所望の箇所に適用し、硬化させることで、光の当たらない部分も50℃以下の温度で均一に硬化させることができる、即ち、組成物に特定領域(200~500nm)の光を、一旦、均一に照射した後であれば、その後、該組成物に外界から光エネルギーを照射する、しないにかかわらず(即ち、該組成物を外界から光の当たらない暗部に設置するか、あるいは光(例えば、可視光~紫外線)の当たる明部に設置するかにかかわらず)、50℃以下の温度で均一に硬化させることができるものである。
実施例、比較例の組成物の硬化性評価に用いた容器の斜視図である。
 以下に、本発明をより詳細に説明する。
(A)ビニル基含有分岐状オルガノポリシロキサン
 (A)成分のオルガノポリシロキサンは、本発明組成物の主剤(ベースポリマー)として使用されるものであり、上記の通り、R2SiO単位(好ましくはR(CH3)SiO単位):80.0~97.0モル%、RSiO1.5単位:1.0~10.0モル%、(CH32(CH2=CH)SiO0.5単位:0.1~4.0モル%、及び(CH33SiO0.5単位:0.5~10モル%(これらの単位の合計は100モル%である)の各単位からなるものである。
 前記Rは同一でも異なってもよく、メチル基、フェニル基、又は式:RfCH2CH2-(Rfは鎖中にエーテル結合性酸素原子を有する、又は有しないパーフルオロアルキル基である。)で表される基である。
 Rfのパーフルオロアルキル基としては、鎖中にエーテル結合性酸素原子を有していない場合には、炭素原子数が好ましくは1~12、更に好ましくは1~8のものがよく、具体的には、例えば、式:CF3-、C49-、C613-等で表される基が挙げられる。
 また、Rfが鎖中にエーテル結合性酸素原子を有している場合には、例えば、下記一般式(1):
  R’O-(R’’O)p-R’’’-    (1)
[式中、R’は炭素原子数1~4のパーフルオロアルキル基であり、R’’及びR’’’は独立に炭素原子数1~3のパーフルオロアルキレン基であり、pは0~10の整数である。]で表される基である。具体的には、下記式で表されるものが挙げられる。
25O-(CF2CF2O)s-CF2
37O-(CF2CF2CF2O)t-CF2CF2
37O-[CF(CF3)CF2O]t-CF(CF3)-
[式中、sは0~4の整数であり、tは0~10の整数である。]
 (A)成分中の上記式:RSiO1.5で表される3官能性単位は、(A)成分のオルガノポリシロキサンを分岐状構造のものとし、かつ、本発明の組成物に低温特性と速硬化性能を付与する上で重要な単位である。この単位の含有量は、上記の通り、1.0~10.0モル%、好ましくは1.5~10.0モル%であり、前記含有量が1.0モル%未満であると(A)成分の直鎖状構造が多くなるため、前記特性及び性能の付与が不十分となり、逆に、10.0モル%を超えると粘度の制御が困難となるという問題が生じる。
 また、上記式:(CH32(CH2=CH)SiO0.5、及び式:(CH33SiO0.5で表される1官能性単位は、いずれも末端基となる単位である。前者の含有量は0.1~4.0モル%、好ましくは0.5~3.0モル%であり、前記含有量が0.1モル%未満であると付加反応による硬化特性が乏しいものになり、逆に4.0モル%を超えると硬化物の耐熱性に劣るという問題が生じる。また、後者の含有量は0.5~10モル%、好ましくは0.8~8モル%であり、前者と後者との合計の含有量は、上記式:RSiO1.5で表される3官能性単位の含有量(即ち、(A)成分中の分岐状構造の割合)に基づき自ずと定まるものである。
 (A)成分のオルガノポリシロキサンは、公知の方法で製造することができる。例えば、上記各単位に対応するクロルシラン類を必要なモル比で混合し、共加水分解及び縮合に供する方法、あるいは、上記各単位の構造を有するポリシロキサン及び/又は環状シロキサン化合物の平衡化反応によって製造される。
 なお、この(A)成分のオルガノポリシロキサンは、25℃における粘度が、通常、300~10,000mPa・sの範囲にあることが好適である。なお、この粘度は回転粘度計による値である(以下、同様)。
 以下に(A)成分のオルガノポリシロキサンの具体例を示すが、これらに限定されるものではない。
[(CH32(CH2=CH)SiO0.5a[(CH33SiO0.5b[(CH32SiO]c[CH3SiO1.5d
[(CH32(CH2=CH)SiO0.5a[(CH33SiO0.5b[(CH32SiO]c[CH3SiO1.5d[Ph2SiO]e
[(CH32(CH2=CH)SiO0.5a[(CH33SiO0.5b[(CH32SiO]c[CH3SiO1.5d[(CH3)PhSiO]f
[(CH32(CH2=CH)SiO0.5a[(CH33SiO0.5b[(CH32SiO]c[PhSiO1.5g
[(CH32(CH2=CH)SiO0.5a[(CH33SiO0.5b[CH3SiO1.5d[(CH3)CF3CH2CH2SiO]h
[(CH32(CH2=CH)SiO0.5a[(CH33SiO0.5b[CH3SiO1.5d[(CH3)C37O-{CF(CF3)CF2O-}iCF(CF3)CH2CH2SiO]j
 上記各式中、a、b、c、d、e、f、g、h及びjは、それぞれ、上記モル比及び上記粘度を満足するように選ばれる正の整数、iは0~10の整数、Phはフェニル基(C65-)を示す。
 これらのオルガノポリシロキサンは、1種単独でも2種以上を組み合わせても使用することができる。
(B)オルガノハイドロジェンポリシロキサン
 (B)成分であるオルガノハイドロジェンポリシロキサンは、
式:H(R12SiO0.5
[式中、R1は独立にアルケニル基以外の非置換又は置換の1価炭化水素基である。]
で表される、1官能性の、ジオルガノハイドロジェンシロキシ単位を1分子中に少なくとも2個含有するものである。即ち、このオルガノハイドロジェンポリシロキサンは、少なくとも2個の分子鎖末端のケイ素原子に水素原子が結合しているものである。
 前記R1は非置換又は置換の、炭素原子数が好ましくは1~12、更に好ましくは1~8の1価炭化水素基であり、具体的には、例えば、メチル基、エチル基、プロピル基、ブチル基等のアルキル基:シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基等のアリール基;ベンジル基、β-フェニルプロピル基等のアラルキル基;及び、これらの基の炭素原子に結合した水素原子の一部又は全部がハロゲン原子、シアノ基等で置換されたクロロメチル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基等が挙げられ、中でもメチル基、フェニル基、3,3,3-トリフルオロプロピル基が好ましい。
 このオルガノハイドロジェンポリシロキサンとしては、例えば、下記平均組成式(2)
  (H)m(R2nSiO(4-m-n)/2      (2)
で表され、かつ、式:H(R12SiO0.5(R1は上記の通り)で表される単位を1分子中に少なくとも2個含有するものである。
 この平均組成式(2)において、複数あるR2は、独立に、前記R1に関する定義と同じ非置換又は置換の1価炭化水素基である。又は、2個のR2同士が一緒になって低級アルキレン基を形成してもよい。
 上記R2が非置換又は置換の1価炭化水素基である場合、上記R1と同じ基が挙げられ、中でもメチル基、フェニル基、3,3,3-トリフルオロプロピル基が好ましい。
 また、2個のR2が一緒になって形成される低級アルキレン基としては、エチレン基、トリメチレン基、メチルメチレン基、テトラメチレン基、ヘキサメチレン基等を挙げることができる。
 また、mは0<m≦2の数、nは0<n≦3の数であり、かつ、0<m+n≦3であり、好ましくは0.001≦m≦0.5、0.8≦n≦2.2、1≦m+n≦2.4である。
 上記平均組成式(2)で表されるオルガノハイドロジェンポリシロキサンは、上記の通り、式:H(R12SiO0.5で表される単位を1分子中に少なくとも2個含有するものであれば、特に制限されず、直鎖状又は分岐状のいずれの構造であってもよい。
 なお、このオルガノハイドロジェンポリシロキサンは、分子中にSiH基を2個以上、好ましくは3個以上有するものが好適である。この場合、SiH基数の上限は、好ましくは20個以下、特に10個以下である。
 また、この(B)成分のオルガノハイドロジェンポリシロキサンは、特に合成が容易である等の点で、25℃における粘度が1,000mPa・s以下、通常、0.1~1,000mPa・s、特に0.5~500mPa・sのものが好ましい。
 この(B)成分が、直鎖状のオルガノハイドロジェンポリシロキサンである場合、例えば、下記一般式(3)
Figure JPOXMLDOC01-appb-C000001

(式中、R1及びR2は上記の通りであり、x及びyは同一又は異なる0又は正数であり、x+yは上記粘度を満足する数である。)
で表すことができる。
 また、分岐状のオルガノハイドロジェンポリシロキサンとしては、分岐源として、式:R2SiO1.5(R2は上記の通りである)で表される単位、式:SiO2で表される単位、又は下記構造式(4)
Figure JPOXMLDOC01-appb-C000002

(式中、R2は上記の通りである。)
で表される単位等を有するものを挙げることができる。
 本発明の(B)成分のオルガノハイドロジェンポリシロキサンの具体例を以下に示すが、これらに限定されるものではない。
 分子鎖両末端がジメチルハイドロジェンシロキシ基で停止されたジメチルポリシロキサン、分子鎖両末端がジメチルハイドロジェンシロキシ基で停止されたメチルフェニルポリシロキサン、分子鎖両末端がジメチルハイドロジェンシロキシ基で停止されたジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端がジメチルハイドロジェンシロキシ基で停止されたジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端がジメチルハイドロジェンシロキシ基で停止されたジメチルシロキサン・メチルハイドロジェンシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端がジメチルハイドロジェンシロキシ基で停止されたジメチルシロキサン・メチルトリフルオロプロピルシロキサン共重合体、式:R1 3SiO0.5で示されるシロキサン単位と式:R1 2HSiO0.5で示されるシロキサン単位と式:SiO2で示されるシロキサン単位からなるオルガノポリシロキサン共重合体、式:R1 2HSiO0.5で示されるシロキサン単位と式:SiO2で示されるシロキサン単位からなるオルガノポリシロキサン共重合体、式:R1 2HSiO0.5で示されるシロキサン単位と式:R1SiO1.5で示されるシロキサン単位からなるオルガノポリシロキサン共重合体、式:R1 2HSiO0.5で示されるシロキサン単位と式:R1 2SiOで示されるシロキサン単位と式:R1SiO1.5で示されるシロキサン単位からなるオルガノポリシロキサン共重合体(前記各式中、R1は前記の通りである)。
 これらのオルガノハイドロジェンポリシロキサンは、1種単独でも2種以上を組み合わせても使用することができる。
 本発明の組成物中の(B)成分の配合割合は、得られる硬化物の耐熱性、機械的強度等の物理的性質が良好であり、硬化時に発泡しないことが必要である点から、本(B)成分中に含まれるケイ素原子に結合した水素原子の数が、上記(A)成分のオルガノポリシロキサン中に含まれるビニル基1個当たり、0.5~4.0個、特に0.8~3.0個となる割合であるのが好ましい。
(C)白金系触媒(β-ジケトン白金錯体又は環状ジエン化合物を配位子にもつ白金錯体)
 (C)成分の白金系触媒は、上記(A)成分中のビニル基と上記(B)成分中のSiHとの付加反応を促進し、本発明組成物の硬化物を得るために配合される成分であるが、本発明組成物の室温での良好な長期保存安定性を付与し、一液型オルガノポリシロキサンゲル組成物として可能ならしめる重要な成分である。
 この(C)成分としては、例えば、β-ジケトン白金錯体又は環状ジエン化合物を配位子にもつ白金錯体が挙げられる。
 ここで、β-ジケトン白金錯体としては、例えば、トリメチル(アセチルアセトナート)白金錯体、トリメチル(2,4-ペンタンジオネート)白金錯体、トリメチル(3,5-ヘプタンジオネート)白金錯体、トリメチル(メチルアセトアセテート)白金錯体、ビス(2,4-ペンタンジオナート)白金錯体、ビス(2,4-ヘキサンジオナート)白金錯体、ビス(2,4-ヘプタンジオナート)白金錯体、ビス(3,5-ヘプタンジオナート)白金錯体、ビス(1-フェニル-1,3-ブタンジオナート)白金錯体、ビス(1,3-ジフェニル-1,3-プロパンジオナート)白金錯体等が挙げられる。
 また、環状ジエン化合物を配位子に持つ白金錯体としては、例えば、(1,5-シクロオクタジエニル)ジメチル白金錯体、(1,5-シクロオクタジエニル)ジフェニル白金錯体、(1,5-シクロオクタジエニル)ジプロピル白金錯体、(2,5-ノルボラジエン)ジメチル白金錯体、(2,5-ノルボラジエン)ジフェニル白金錯体、(シクロペンタジエニル)ジメチル白金錯体、(メチルシクロペンタジエニル)ジエチル白金錯体、(トリメチルシリルシクロペンタジエニル)ジフェニル白金錯体、(メチルシクロオクタ-1,5-ジエニル)ジエチル白金錯体、(シクロペンタジエニル)トリメチル白金錯体、(シクロペンタジエニル)エチルジメチル白金錯体、(シクロペンタジエニル)アセチルジメチル白金錯体、(メチルシクロペンタジエニル)トリメチル白金錯体、(メチルシクロペンタジエニル)トリヘキシル白金錯体、(トリメチルシリルシクロペンタジエニル)トリメチル白金錯体、(ジメチルフェニルシリルシクロペンタジエニル)トリフェニル白金錯体、(シクロペンタジエニル)ジメチルトリメチルシリルメチル白金錯体等が挙げられる。
 本発明に用いられるオルガノポリシロキサンゲル組成物において、(C)成分の含有量は、触媒としての有効量であればよいが、例えば、(A)成分及び(B)成分の合計質量に対して、好ましくは白金金属として1~1,000ppmとなる量、より好ましくは5~500ppmの範囲である。前記配合量が少なすぎると硬化が遅くなることがあり、多すぎると経済的に不利になることがある。
[その他の成分]
 本発明の組成物には無機充填剤を配合することができる。無機充填剤としては、例えば、ヒュームドシリカ、沈降性シリカ、結晶性シリカ、中空フィラー、シルセスキオキサン、ヒュームド二酸化チタン、酸化マグネシウム、酸化亜鉛、酸化鉄、水酸化アルミニウム、炭酸マグネシウム、炭酸カルシウム、炭酸亜鉛、層状マイカ、カーボンブラック、ケイ藻土、ガラス繊維等の無機充填剤、及びこれらの充填剤をオルガノアルコキシシラン化合物、オルガノクロロシラン化合物、オルガノシラザン化合物、低分子量シロキサン化合物等の有機ケイ素化合物により表面処理した充填剤等が挙げられる。
 無機充填剤の配合量は、(A)成分100質量部に対して0~20質量部であり、特に配合する場合は0.5~10質量部が好ましく、より好ましくは1~5質量部である。
 また、シリコーンゴムパウダーやシリコーンレジンパウダーなどを配合することができる。
 更に、本発明の組成物は、後述する通り、硬化に当たってまず200~500nmの紫外線を照射するが、紫外線が照射された組成物を所望の箇所に適応するまでの作業性を向上させるために反応制御剤を用いることが好ましい。反応制御剤としては、ヒドロシリル化反応に対する白金系触媒の活性を制御できるものであれば制限されず、公知の反応制御剤を用いることができ、例えばアセチレン系化合物、マレイン酸誘導体などが挙げられる。当該化合物による硬化遅延効果の度合いは、その化学構造によって大きく異なる。従って、その添加量は、使用する化合物の個々について最適な量に調整すべきであるが、(A)成分100質量部に対して0.0001~10質量部、特に0.001~3質量部であることが好ましい。
 なお、更に、この組成物には、本発明の目的を損なわない範囲において、クリープハードニング防止剤、可塑剤、耐熱添加剤、チクソ性付与剤、顔料、染料、防かび剤なども配合することができる。
 本発明の付加硬化型オルガノポリシロキサンゲル組成物は、上記各成分を常法に準じて混合することにより調製することができる。
 本発明組成物の硬化方法は、上記組成物に200~500nmの紫外線を照射して、(C)成分の触媒活性を高めた後に、触媒活性が高められた組成物を所望の箇所にコーティングやポッティングすることで、外部から光が当たらない部分であっても(即ち、外界からの光エネルギー照射の有無にかかわらず)、50℃以下で均一に硬化させることができる。
 紫外線照射するランプは、波長が200~500nmの紫外線を供給できるものなら特に制限されず、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、キセノンランプ、メタルハライドランプ、紫外線LEDランプ等が挙げられる。
 紫外線照射量は、使用する触媒の種類や量により異なるが、10~1,000mW/cm2、特に20~400mW/cm2の紫外線強度を0.5秒~5分、特に1秒~1分程度照射することが好ましい。
 次いで、このように紫外線照射された組成物を所望の箇所にコーティング、ポッティング等の手段で適用し、50℃以下、好ましくは10~40℃の大気雰囲気下に放置する。これにより、所望の箇所に適用された後に、紫外線等の光エネルギーが当たらなかった部分も含めて、温度にもよるが、通常2~120分、特に10~60分で硬化する。かかる点から、紫外線照射された組成物は、紫外線照射後、10分以内、特に2分以内に所望の箇所に適用することが好ましい。
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
[実施例1]
 (A)(CH32(CH2=CH)SiO0.5単位/(CH33SiO0.5単位/(CH32SiO単位/CH3SiO1.5単位=0.83モル%/1.16モル%/96.05モル%/1.96モル%のモル比を有し、25℃における粘度が800mPa・sのオルガノポリシロキサン100質量部に、(B)ケイ素原子に結合した水素原子(SiH)の含有量が0.13質量%であり、末端がジメチルハイドロジェンシロキシ基で停止されたジメチルポリシロキサン8質量部((B)中のSiHの数/(A)中のビニル基の数=0.86)、(C)ビス(2,4-ペンタンジオナート)白金錯体を白金原子含有量として0.4質量%含有する酢酸-2-(2-ブトキシエトキシ)エチル溶液0.14質量部(白金金属原子重量として、(A)+(B)の合計量に対して5ppm)を均一に混合して粘度600mPa・sの組成物Aを得た。
 組成物Aは容器内の密閉系かつ暗所にて40℃で1ヶ月間放置したが、組成物が増粘することは全くなかった。
 また、ガラス製注射器に充填した組成物Aに均一照射光学ユニットを装着したSP-V型紫外線照射器(USHIO製)を用いて100mW/cm2、50秒間照射した。この組成物Aはまだ液体であった。この反応液(組成物A)の硬化性を直ちにTAインスツルメント社製ARES-RFSにて、30℃、暗所、加振周波数10Hzで測定したところ30分で完全硬化した。その際の複素弾性率は2,410Paであった。
 また、上記反応液(組成物A)を図1に示した容器(1はアルミニウム板、2はスペーサーを示す)に素早く注入し、25℃で1時間放置後、組成物Aの硬化状態を観察した結果、アルミニウム板に覆われた(光が当たらない)部分を含めて全体が均一に硬化していた。上記容器は、直径25mm、深さ15mmのガラスシャーレであり、直径15mm、厚み0.3mmのアルミニウム板1が高さ1mmのスペーサー2を介してガラスシャーレ中央部に設置されている。
 なお、この反応液(組成物A)の25℃,24時間放置後の硬さを、JIS K2220(1/4コーン)稠度試験法に準じて測定した結果、58であった。
[実施例2]
 (A)(CH32(CH2=CH)SiO0.5単位/(CH33SiO0.5単位/(C652SiO単位/(CH32SiO単位/CH3SiO1.5単位=0.66モル%/0.75モル%/1.97モル%/95.14モル%/1.48モル%のモル比を有し、25℃における粘度が1,800mPa・sのオルガノポリシロキサン100質量部、末端がトリメチルシロキシ基で封鎖された、25℃における粘度が700mPa・sである、ジフェニルシロキサン単位を3モル%含有するジメチルシロキサン・ジフェニルシロキサン共重合体75質量部、(B1)ケイ素原子に結合した水素原子の含有量が0.068重量%であり、末端がジメチルハイドロジェンシロキシ基で停止されたジメチルポリシロキサン5.7質量部、(B2)ケイ素原子に結合した水素原子の含有量が0.033質量%であり、末端の50%がジメチルハイドロジェンシロキシ基で停止され、残部の末端がトリメチルシロキシ基で封鎖されたジメチルポリシロキサン16.4質量部((B1)+(B2)中のSiHの数/(A)中のビニル基の数=0.9)、(C)ビス(2,4-ペンタンジオナート)白金錯体を白金原子含有量として0.4質量%含有する酢酸-2-(2-ブトキシエトキシ)エチル溶液0.25質量部(白金金属原子重量として、(A)+(B)の合計量に対して5ppm)を均一に混合して粘度960mPa・sの組成物Bを得た。
 組成物Bは容器内の密閉系かつ暗所にて40℃で1ヶ月間放置したが、組成物が増粘することは全くなかった。
 また、ガラス製注射器に充填した組成物Bに均一照射光学ユニットを装着したSP-V型紫外線照射器(USHIO製)を用いて100mW/cm2、50秒間照射した。この組成物Bはまだ液体であった。この反応液(組成物B)の硬化性を直ちにTAインスツルメント社製ARES-RFSにて、30℃、暗所、加振周波数10Hzで測定したところ50分で完全硬化した。その際の複素弾性率は199Paであった。
 また、上記反応液(組成物B)を図1に示した容器に素早く注入し、25℃で1時間放置後、組成物Bの硬化状態を観察した結果、アルミニウム板に覆われた(光が当たらない)部分を含めて全体が均一に硬化していた。
 なお、この反応液(組成物B)の25℃,24時間放置後の硬さを、JIS K2220(1/4コーン)稠度試験法に準じて測定した結果、130であった。
[実施例3]
 ビス(2,4-ペンタンジオナート)白金錯体の替わりに、(メチルシクロペンタジエニル)トリメチル白金錯体を白金原子含有量として1質量%含有するイソオクタン溶液0.06質量部を使用した以外は実施例1に従い、組成物Cを調製した。
 組成物Cは容器内の密閉系かつ暗所にて40℃で1ヶ月間放置したが、組成物が増粘することは全くなかった。
 また、ガラス製注射器に充填した組成物Cに均一照射光学ユニットを装着したSP-V型紫外線照射器(USHIO製)を用いて100mW/cm2、50秒間照射した。この組成物Cはまだ液体であった。この反応液(組成物C)の硬化性を直ちにTAインスツルメント社製ARES-RFSにて、30℃、暗所、加振周波数10Hzで測定したところ30分で完全硬化した。その際の複素弾性率は2,430Paであった。
 また、上記反応液(組成物C)を図1に示した容器に素早く注入し、25℃で1時間放置後、組成物Cの硬化状態を観察した結果、アルミニウム板に覆われた(光が当たらない)部分を含めて全体が均一に硬化していた。
 なお、この反応液(組成物C)の25℃,24時間放置後の硬さを、JIS K2220(1/4コーン)稠度試験法に準じて測定した結果、58であった。
[実施例4]
 ヘキサメチルジシラザンを用いて表面処理され、表面にトリメチルシリル基を有する比表面積170m2/gの疎水性シリカ2質量部を追加した以外は、実施例1と同じに均一に混合して組成物Dを得た。
 組成物Dは容器内の密閉系かつ暗所にて40℃で1ヶ月間放置したが、組成物が増粘することは全くなかった。
 また、ガラス製注射器に充填した組成物Dに均一照射光学ユニットを装着したSP-V型紫外線照射器(USHIO製)を用いて100mW/cm2、50秒間照射した。この組成物Dはまだ液体であった。この反応液(組成物D)の硬化性を直ちにTAインスツルメント社製ARES-RFSにて、30℃、暗所、加振周波数10Hzで測定したところ30分で完全硬化した。その際の複素弾性率は2,460Paであった。
 また、上記反応液(組成物D)を図1に示した容器に素早く注入し、25℃で1時間放置後、組成物Dの硬化状態を観察した結果、アルミニウム板に覆われた(光が当たらない)部分を含めて全体が均一に硬化していた。
 なお、この反応液(組成物D)の25℃,24時間放置後の硬さを、JIS K2220(1/4コーン)稠度試験法に準じて測定した結果、56であった。
[比較例1]
 ビス(2,4-ペンタンジオナート)白金錯体の替わりに、塩化白金酸/1,3-ジビニルテトラメチルジシロキサン錯体(白金原子含有量:1質量%)0.06質量部を使用した以外は実施例1に従い、組成物Eを調製した。
 組成物Eは容器内の密閉化で25℃,4時間後にはゲル化した。
[比較例2]
 実施例1の組成物Aを図1に示した容器に注入してから、実施例1で使用した紫外線照射装置を用いて100mW/cm2、50秒間照射した。25℃で1時間放置後、組成物Aの硬化状態を観察した結果、アルミニウム板に覆われた(光が当たらない)部分は未硬化であった。アルミニウム板上部の紫外線照射部は硬化していた。
 1 アルミニウム板
 2 スペーサー

Claims (7)

  1.  (A)R2SiO単位:80.0~97.0モル%、RSiO1.5単位:1.0~10.0モル%、(CH32(CH2=CH)SiO0.5単位:0.1~4.0モル%、及び(CH33SiO0.5単位:0.5~10モル%[但し、これらの単位の合計は100モル%であり、これらの単位を表す前記各単位において、Rはメチル基、フェニル基、又は式:RfCH2CH2-(Rfは鎖中にエーテル結合性酸素原子を有する、又は有しないパーフルオロアルキル基である。)で表される基である。]からなり、1分子中に含まれる複数のRは同一又は異なる、オルガノポリシロキサン:100質量部、
    (B)式:H(R12SiO0.5
    [式中、R1は独立にアルケニル基以外の非置換又は置換の1価炭化水素基である。]
    で表される単位を1分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン:本成分中に含まれるケイ素原子に結合した水素原子の数が、(A)成分のオルガノポリシロキサン中に含まれるビニル基1個当たり、0.5~4.0個となる量、
    (C)β-ジケトン白金錯体又は環状ジエン化合物を配位子にもつ白金錯体
    を含有してなることを特徴とする一液型オルガノポリシロキサンゲル組成物。
  2.  (A)成分が、下記式で示されるいずれかのオルガノポリシロキサンである請求項1記載の組成物。
    [(CH32(CH2=CH)SiO0.5a[(CH33SiO0.5b[(CH32SiO]c[CH3SiO1.5d
    [(CH32(CH2=CH)SiO0.5a[(CH33SiO0.5b[(CH32SiO]c[CH3SiO1.5d[Ph2SiO]e
    [(CH32(CH2=CH)SiO0.5a[(CH33SiO0.5b[(CH32SiO]c[CH3SiO1.5d[(CH3)PhSiO]f
    [(CH32(CH2=CH)SiO0.5a[(CH33SiO0.5b[(CH32SiO]c[PhSiO1.5g
    [(CH32(CH2=CH)SiO0.5a[(CH33SiO0.5b[CH3SiO1.5d[(CH3)CF3CH2CH2SiO]h
    [(CH32(CH2=CH)SiO0.5a[(CH33SiO0.5b[CH3SiO1.5d[(CH3)C37O-{CF(CF3)CF2O-}iCF(CF3)CH2CH2SiO]j
    (但し、aは0.1~4.0モル%、bは0.5~10モル%、c、e、fは合計で80.0~97.0モル%、h、jはそれぞれ80.0~97.0モル%、d、gはそれぞれ1.0~10.0モル%であり、かつ、上記各式のオルガノポリシロキサンが25℃における粘度300~10,000mPa・sの範囲となるようにa、b、c、d、e、f、g、h、jが選択される。iは0~10の整数である。)
  3.  (B)成分が、下記平均組成式(2)
      (H)m(R2nSiO(4-m-n)/2      (2)
    (式中、複数あるR2は、独立に、非置換又は置換の1価炭化水素基であるか、又は、2個のR2同士が一緒になって炭素数2~4の低級アルキレン基を形成してもよい。mは0<m<2の数、nは0<n<3の数であり、かつ、0<m+n≦3である。)
    で表され、かつ、式:H(R12SiO0.5(R1は上記の通り)で表される単位を1分子中に少なくとも2個含有するものである請求項1又は2記載の組成物。
  4.  (C)成分が、トリメチル(アセチルアセトナート)白金錯体、トリメチル(2,4-ペンタンジオネート)白金錯体、トリメチル(3,5-ヘプタンジオネート)白金錯体、トリメチル(メチルアセトアセテート)白金錯体、ビス(2,4-ペンタンジオナート)白金錯体、ビス(2,4-ヘキサンジオナート)白金錯体、ビス(2,4-ヘプタンジオナート)白金錯体、ビス(3,5-ヘプタンジオナート)白金錯体、ビス(1-フェニル-1,3-ブタンジオナート)白金錯体、ビス(1,3-ジフェニル-1,3-プロパンジオナート)白金錯体、(1,5-シクロオクタジエニル)ジメチル白金錯体、(1,5-シクロオクタジエニル)ジフェニル白金錯体、(1,5-シクロオクタジエニル)ジプロピル白金錯体、(2,5-ノルボラジエン)ジメチル白金錯体、(2,5-ノルボラジエン)ジフェニル白金錯体、(シクロペンタジエニル)ジメチル白金錯体、(メチルシクロペンタジエニル)ジエチル白金錯体、(トリメチルシリルシクロペンタジエニル)ジフェニル白金錯体、(メチルシクロオクタ-1,5-ジエニル)ジエチル白金錯体、(シクロペンタジエニル)トリメチル白金錯体、(シクロペンタジエニル)エチルジメチル白金錯体、(シクロペンタジエニル)アセチルジメチル白金錯体、(メチルシクロペンタジエニル)トリメチル白金錯体、(メチルシクロペンタジエニル)トリヘキシル白金錯体、(トリメチルシリルシクロペンタジエニル)トリメチル白金錯体、(ジメチルフェニルシリルシクロペンタジエニル)トリフェニル白金錯体、(シクロペンタジエニル)ジメチルトリメチルシリルメチル白金錯体から選択される請求項1~3のいずれか1項記載の組成物。
  5.  更に、無機充填剤を含有する請求項1~4のいずれか1項記載の組成物。
  6.  更に、反応制御剤を含有する請求項1~5のいずれか1項記載の組成物。
  7.  請求項1~6のいずれか1項記載の一液型オルガノポリシロキサンゲル組成物に200~500nmの光を照射した後、この光照射された組成物を所望の箇所に適用し、50℃以下の温度で硬化させることを特徴とする一液型オルガノポリシロキサンゲル組成物の硬化方法。
PCT/JP2014/062232 2013-05-22 2014-05-07 一液型オルガノポリシロキサンゲル組成物及びその硬化方法 WO2014188872A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015518181A JPWO2014188872A1 (ja) 2013-05-22 2014-05-07 一液型オルガノポリシロキサンゲル組成物及びその硬化方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-107755 2013-05-22
JP2013107755 2013-05-22

Publications (1)

Publication Number Publication Date
WO2014188872A1 true WO2014188872A1 (ja) 2014-11-27

Family

ID=51933435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062232 WO2014188872A1 (ja) 2013-05-22 2014-05-07 一液型オルガノポリシロキサンゲル組成物及びその硬化方法

Country Status (2)

Country Link
JP (1) JPWO2014188872A1 (ja)
WO (1) WO2014188872A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106566253A (zh) * 2015-10-13 2017-04-19 信越化学工业株式会社 加成单组分固化型导热有机硅润滑脂组合物
JP2019108471A (ja) * 2017-12-19 2019-07-04 信越化学工業株式会社 紫外線硬化型樹脂組成物、接着剤および硬化物
WO2021132349A1 (ja) 2019-12-26 2021-07-01 ダウ・東レ株式会社 硬化性オルガノポリシロキサン組成物及びその硬化物、保護剤又は接着剤、並びに電気・電子機器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0940870A (ja) * 1995-07-28 1997-02-10 Three Bond Co Ltd 光硬化型発泡性シロキサン組成物
JPH09124816A (ja) * 1995-10-31 1997-05-13 Three Bond Co Ltd シリコーン発泡体の製造方法
JP2003213132A (ja) * 2002-01-23 2003-07-30 Shin Etsu Chem Co Ltd オルガノポリシロキサンゲル組成物
JP2004204225A (ja) * 2002-12-10 2004-07-22 Shin Etsu Chem Co Ltd 一液型オルガノポリシロキサンゲル組成物
JP2006063142A (ja) * 2004-08-25 2006-03-09 Shin Etsu Chem Co Ltd 一液型オルガノポリシロキサンゲル組成物
JP2013087199A (ja) * 2011-10-18 2013-05-13 Shin-Etsu Chemical Co Ltd 付加硬化型オルガノポリシロキサン組成物の硬化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0940870A (ja) * 1995-07-28 1997-02-10 Three Bond Co Ltd 光硬化型発泡性シロキサン組成物
JPH09124816A (ja) * 1995-10-31 1997-05-13 Three Bond Co Ltd シリコーン発泡体の製造方法
JP2003213132A (ja) * 2002-01-23 2003-07-30 Shin Etsu Chem Co Ltd オルガノポリシロキサンゲル組成物
JP2004204225A (ja) * 2002-12-10 2004-07-22 Shin Etsu Chem Co Ltd 一液型オルガノポリシロキサンゲル組成物
JP2006063142A (ja) * 2004-08-25 2006-03-09 Shin Etsu Chem Co Ltd 一液型オルガノポリシロキサンゲル組成物
JP2013087199A (ja) * 2011-10-18 2013-05-13 Shin-Etsu Chemical Co Ltd 付加硬化型オルガノポリシロキサン組成物の硬化方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106566253A (zh) * 2015-10-13 2017-04-19 信越化学工业株式会社 加成单组分固化型导热有机硅润滑脂组合物
JP2017075202A (ja) * 2015-10-13 2017-04-20 信越化学工業株式会社 付加一液硬化型熱伝導性シリコーングリース組成物
JP2019108471A (ja) * 2017-12-19 2019-07-04 信越化学工業株式会社 紫外線硬化型樹脂組成物、接着剤および硬化物
WO2021132349A1 (ja) 2019-12-26 2021-07-01 ダウ・東レ株式会社 硬化性オルガノポリシロキサン組成物及びその硬化物、保護剤又は接着剤、並びに電気・電子機器
KR20220121847A (ko) 2019-12-26 2022-09-01 다우 도레이 캄파니 리미티드 경화성 오가노폴리실록산 조성물 및 그의 경화물, 보호제 또는 접착제 및 전기·전자 기기

Also Published As

Publication number Publication date
JPWO2014188872A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP3865638B2 (ja) オルガノポリシロキサンゲル組成物
JP5490671B2 (ja) シリコーン樹脂組成物の硬化方法
US5110845A (en) Extrudable curable organosiloxane compositions
US8642674B2 (en) Method for curing addition curable organopolysiloxane composition
JP2749148B2 (ja) 高コンシステンシーのオルガノシロキサンエラストマー組成物
JPH11189724A (ja) 電子モジュール保護用誘電ゲル
TWI724402B (zh) 影像顯示裝置用紫外線硬化型液狀有機聚矽氧烷組成物、其硬化方法、影像顯示裝置構件的貼合方法、及影像顯示裝置
JP5594262B2 (ja) 液状付加硬化型フロロシリコーンゴム組成物及びその成形品
JPH101612A (ja) 硬化性シリコーン組成物
US5270422A (en) Curing catalyst compositions and method for preparing same
WO2014188872A1 (ja) 一液型オルガノポリシロキサンゲル組成物及びその硬化方法
JP4520137B2 (ja) 一液型オルガノポリシロキサンゲル組成物
JP2021042323A (ja) 硬化性シリコーンゲル組成物及びシリコーンゲル硬化物
TWI785555B (zh) 光硬化性矽氧組成物、黏著劑、矽氧硬化物
JP6453730B2 (ja) 硬化性オルガノポリシロキサン組成物
JP2009091403A (ja) 付加硬化型シリコーンゴム組成物及びその硬化方法
EP2639273B1 (en) Silicone Rubber Composition
US20130102739A1 (en) Method for imparting hydrophilicity to silicone rubber
JP3688847B2 (ja) 高い引き裂き強度及びコンシステンシーを持つフッ素化された及びフッ素化されていないポリオルガノシロキサン
JP2000169714A (ja) 硬化性シリコーン組成物
JP2010018754A (ja) 付加反応触媒及び付加硬化型オルガノポリシロキサン組成物
JP2007308581A (ja) 付加硬化型シリコーンゴム組成物の硬化方法及び付加硬化型シリコーンゴム組成物
TW202212478A (zh) 雙液加成硬化型矽酮膠組成物
JP7337470B1 (ja) 紫外線硬化性シリコーン組成物
JP7310035B1 (ja) 紫外線硬化性シリコーン組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015518181

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14801057

Country of ref document: EP

Kind code of ref document: A1