WO2014185302A1 - β-Ga2O3系単結晶の育成方法、並びにβ-Ga2O3系単結晶基板及びその製造方法 - Google Patents

β-Ga2O3系単結晶の育成方法、並びにβ-Ga2O3系単結晶基板及びその製造方法 Download PDF

Info

Publication number
WO2014185302A1
WO2014185302A1 PCT/JP2014/062193 JP2014062193W WO2014185302A1 WO 2014185302 A1 WO2014185302 A1 WO 2014185302A1 JP 2014062193 W JP2014062193 W JP 2014062193W WO 2014185302 A1 WO2014185302 A1 WO 2014185302A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
crystal
seed
growing
seed crystal
Prior art date
Application number
PCT/JP2014/062193
Other languages
English (en)
French (fr)
Inventor
公祥 輿
信也 渡辺
Original Assignee
株式会社タムラ製作所
株式会社光波
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タムラ製作所, 株式会社光波 filed Critical 株式会社タムラ製作所
Priority to EP14797616.1A priority Critical patent/EP2998419A4/en
Priority to US14/890,723 priority patent/US9915009B2/en
Priority to CN201480026184.7A priority patent/CN105229208B/zh
Publication of WO2014185302A1 publication Critical patent/WO2014185302A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/34Edge-defined film-fed crystal-growth using dies or slits
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/36Single-crystal growth by pulling from a melt, e.g. Czochralski method characterised by the seed, e.g. its crystallographic orientation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides

Definitions

  • the present invention relates to a method cultivation of ⁇ -Ga 2 O 3 single crystal, as well as to ⁇ -Ga 2 O 3 system single crystal substrate and a manufacturing method thereof.
  • Patent Document 1 a method of growing a Ga 2 O 3 single crystal by an EFG method is known (see, for example, Patent Document 1). According to the method described in Patent Document 1, a Ga 2 O 3 single crystal is grown from a contact portion with a seed crystal while gradually expanding the width downward, that is, while expanding a shoulder. A wide plate-like crystal can be obtained.
  • Patent Document 1 has a problem that the Ga 2 O 3 single crystal is easily twinned in the step of expanding the shoulder.
  • a wide plate-like seed crystal is used in order to omit the step of expanding the shoulder, there is a strong possibility that a part of the Ga 2 O 3 crystal to be grown is polycrystallized and the crystal quality is deteriorated.
  • one object of the present invention is to provide a method for growing ⁇ -Ga 2 O 3 system single crystal can be obtained ⁇ -Ga 2 O 3 single crystal having high crystal quality flat . Further, another object is to provide a method for producing a ⁇ -Ga 2 O 3 system single crystal substrate from being a ⁇ -Ga 2 O 3 single crystal grown by growing method described above. Further, another object is to develop new ⁇ -Ga 2 O 3 single crystal with been ⁇ -Ga 2 O 3 single crystal grown by growing method described above the seed (seed crystals), the substrate An object of the present invention is to provide a method for manufacturing a ⁇ -Ga 2 O 3 -based single crystal substrate to be processed. Another object is to provide a ⁇ -Ga 2 O 3 -based single crystal substrate manufactured by these manufacturing methods.
  • one embodiment of the present invention provides the following [1] to [6] ⁇ -Ga 2 O 3 single crystal growth methods.
  • [1] a step of contacting a plate-shaped seed crystal Ga 2 O 3 KeiTorueki, pulling the seed crystal, the crystal of the seed said Ga 2 O 3 KeiTorueki evaporant adhered to the main surface of the crystal
  • a plate-like ⁇ -Ga 2 O 3 single crystal having a main surface intersecting with the (100) plane so as not to take over information, and growing the ⁇ -Ga 2 O 3 single crystal
  • the ⁇ -Ga 2 O 3 single crystal is a flat single crystal having a (101) plane, a ( ⁇ 201) plane, or a (001) plane as a main surface. Method for growing ⁇ -Ga 2 O 3 single crystal.
  • another aspect of the present invention provides a method for producing a ⁇ -Ga 2 O 3 -based single crystal substrate of the following [7] and [8].
  • [8] A step of processing the ⁇ -Ga 2 O 3 single crystal according to any one of [1] to [3] into a second seed crystal, and a second process using the second seed crystal.
  • another aspect of the present invention provides the following [9] and [10] ⁇ -Ga 2 O 3 based single crystal substrates.
  • According to the present invention can provide a method for growing ⁇ -Ga 2 O 3 system single crystal can be obtained ⁇ -Ga 2 O 3 single crystal having high crystal quality flat. Further, it is possible to provide a method of manufacturing a ⁇ -Ga 2 O 3 system single crystal substrate from being a ⁇ -Ga 2 O 3 single crystal grown by growing method described above. Further, a ⁇ -Ga 2 O 3 single crystal grown by the above-described growth method is used as a seed (seed crystal) to grow a new ⁇ -Ga 2 O 3 single crystal and process it into a substrate. A method for manufacturing a Ga 2 O 3 -based single crystal substrate can be provided. In addition, a ⁇ -Ga 2 O 3 single crystal substrate manufactured by these manufacturing methods can be provided.
  • FIG. 1 is a vertical sectional view of a part of the EFG crystal manufacturing apparatus according to the present embodiment.
  • FIG. 2 is a perspective view showing a state during growth of a ⁇ -Ga 2 O 3 based single crystal.
  • FIG. 3 shows a unit cell of a ⁇ -Ga 2 O 3 based crystal.
  • FIG. 4A shows a step of growing the ⁇ -Ga 2 O 3 based single crystal according to the first embodiment.
  • FIG. 4B shows a step of growing the ⁇ -Ga 2 O 3 based single crystal according to the first embodiment.
  • FIG. 4C shows a step of growing the ⁇ -Ga 2 O 3 based single crystal according to the first embodiment.
  • FIG. 4A shows a step of growing the ⁇ -Ga 2 O 3 based single crystal according to the first embodiment.
  • FIG. 4B shows a step of growing the ⁇ -Ga 2 O 3 based single crystal according to the first embodiment.
  • FIG. 4C shows a step of growing the ⁇
  • FIG. 5A shows a step of growing a ⁇ -Ga 2 O 3 single crystal without performing necking as a comparative example.
  • FIG. 5B shows a step of growing a ⁇ -Ga 2 O 3 single crystal without performing necking as a comparative example.
  • FIG. 5C shows a step of growing a ⁇ -Ga 2 O 3 single crystal without performing necking as a comparative example.
  • FIG. 6A is a cross-sectional view perpendicular to the b-axis of a ⁇ -Ga 2 O 3 single crystal having a (001) principal plane orientation.
  • FIG. 6B is a cross-sectional view perpendicular to the b-axis of a ⁇ -Ga 2 O 3 single crystal having a (001) principal plane orientation.
  • FIG. 6C is a cross-sectional view perpendicular to the b-axis of a ⁇ -Ga 2 O 3 single crystal having a principal surface with a (001) plane orientation.
  • FIG. 7A is a cross-sectional view perpendicular to the b-axis of a ⁇ -Ga 2 O 3 single crystal having a principal surface with a plane orientation of ( ⁇ 201).
  • FIG. 7B is a cross-sectional view perpendicular to the b-axis of a ⁇ -Ga 2 O 3 single crystal whose principal surface has a plane orientation of ( ⁇ 201).
  • FIG. 7C is a cross-sectional view perpendicular to the b-axis of a ⁇ -Ga 2 O 3 single crystal having a principal surface with a plane orientation of ( ⁇ 201).
  • FIG. 8 is a flowchart showing an example of a manufacturing process of the ⁇ -Ga 2 O 3 single crystal substrate according to the first embodiment.
  • FIG. 9 is a photograph of a ⁇ -Ga 2 O 3 single crystal substrate manufactured from the ⁇ -Ga 2 O 3 single crystal according to the first embodiment.
  • FIG. 10A shows a step of growing a ⁇ -Ga 2 O 3 based single crystal according to the second embodiment.
  • FIG. 10B shows a step of growing the ⁇ -Ga 2 O 3 based single crystal according to the second embodiment.
  • FIG. 10C shows a step of growing a ⁇ -Ga 2 O 3 based single crystal according to the second embodiment.
  • FIG. 11 shows a modification of the step of growing the ⁇ -Ga 2 O 3 single crystal according to the second embodiment.
  • FIG. 12A shows a step of growing a ⁇ -Ga 2 O 3 based single crystal according to the third embodiment.
  • FIG. 12B shows a step of growing a ⁇ -Ga 2 O 3 based single crystal according to the third embodiment.
  • FIG. 12C shows a step of growing a ⁇ -Ga 2 O 3 based single crystal according to the third embodiment.
  • FIG. 13A shows a step of growing a ⁇ -Ga 2 O 3 based single crystal according to the fourth embodiment.
  • FIG. 13B shows a step of growing a ⁇ -Ga 2 O 3 based single crystal according to the fourth embodiment.
  • FIG. 13C shows a step of growing a ⁇ -Ga 2 O 3 based single crystal according to the fourth embodiment.
  • FIG. 14A shows a step of growing a ⁇ -Ga 2 O 3 based single crystal according to the fourth embodiment.
  • FIG. 14B shows a step of growing a ⁇ -Ga 2 O 3 single crystal according to the fourth embodiment.
  • FIG. 14C shows a step of growing a ⁇ -Ga 2 O 3 single crystal according to the fourth embodiment.
  • FIG. 1 is a vertical sectional view of a part of the EFG crystal manufacturing apparatus according to the present embodiment.
  • the EFG crystal manufacturing apparatus 10 includes a crucible 13 that receives a Ga 2 O 3 melt 12, a die 14 that has a slit 14 a installed in the crucible 13, and a crucible 13 that excludes an opening 14 b of the slit 14 a.
  • a lid 15 that closes the upper surface, a seed crystal holder 21 that holds a plate-like ⁇ -Ga 2 O 3 -based seed crystal (hereinafter referred to as “seed crystal”) 20, and a seed crystal holder 21 that can be moved up and down.
  • seed crystal a plate-like ⁇ -Ga 2 O 3 -based seed crystal
  • the crucible 13 contains a Ga 2 O 3 melt 12 obtained by dissolving Ga 2 O 3 powder.
  • the crucible 13 is made of a metal material such as iridium having heat resistance that can accommodate the Ga 2 O 3 melt 12.
  • the die 14 has a slit 14a for raising the Ga 2 O 3 melt 12 by capillary action.
  • the lid 15 prevents the high-temperature Ga 2 O 3 melt 12 from evaporating from the crucible 13 and further prevents the vapor of the Ga 2 O 3 melt 12 from adhering to a portion other than the upper surface of the slit 14a. .
  • FIG. 2 is a perspective view showing a state during growth of a ⁇ -Ga 2 O 3 based single crystal.
  • the main surface 20 a is a main surface of the plate-like seed crystal 20, and the side surface 20 b is a surface that intersects the main surface 20 a of the plate-like seed crystal 20.
  • the main surface 26a is the main surface of the plate-like portion of the ⁇ -Ga 2 O 3 single crystal 25, and the side surface 26b is on the main surface 26a of the plate-like portion of the ⁇ -Ga 2 O 3 single crystal 25. It is a crossing surface.
  • the crystal orientation of the ⁇ -Ga 2 O 3 single crystal 25 is equal to the crystal orientation of the seed crystal 20, for example, the main surface 20a of the seed crystal 20 and the main surface 26a of the ⁇ -Ga 2 O 3 single crystal 25 are parallel.
  • the side surface 20b of the seed crystal 20 and the side surface 26b of the ⁇ -Ga 2 O 3 based single crystal 25 are parallel.
  • a ⁇ -Ga 2 O 3 -based substrate is formed by cutting a flat plate portion of the grown ⁇ -Ga 2 O 3 -based single crystal 25, the desired main surface of the ⁇ -Ga 2 O 3 -based substrate
  • the plane orientation of the main surface 26a of the ⁇ -Ga 2 O 3 single crystal 25 is made to coincide with the orientation.
  • the plane orientation of the main surface 26a is set to (101).
  • the direction perpendicular to the growth direction of the ⁇ -Ga 2 O 3 single crystal 25 and parallel to the main surface 26a is the width direction w, and the width parallel to the thickness direction of the plate-like ⁇ -Ga 2 O 3 single crystal 25
  • a direction orthogonal to the direction w is defined as a thickness direction t.
  • the ⁇ -Ga 2 O 3 based single crystal 25 and the seed crystal 20 are a ⁇ -Ga 2 O 3 single crystal, or Cu, Ag, Zn, Cd, Al, In, Si, Ge, Sn, Mg, Nb, Fe. It is a ⁇ -Ga 2 O 3 single crystal to which an element such as is added.
  • FIG. 3 shows a unit cell of a ⁇ -Ga 2 O 3 based crystal.
  • a unit cell 2 in FIG. 3 is a unit cell of a ⁇ -Ga 2 O 3 based crystal.
  • the ⁇ -Ga 2 O 3 single crystal has a strong cleaving property in the (100) plane, and twins having the (100) plane as a twin plane (symmetric plane) are likely to occur in the course of crystal growth. Therefore, in order to cut out as large as possible substrates from ⁇ -Ga 2 O 3 single crystal 25, so as to be parallel to the growth direction (100) plane is ⁇ -Ga 2 O 3 single crystal 25, beta-Ga 2 It is preferable to grow the O 3 single crystal 25 in the b-axis direction.
  • the ⁇ -Ga 2 O 3 single crystal 25 is grown in a nitrogen atmosphere or a mixed atmosphere of nitrogen and oxygen.
  • the seed crystal 20 is lowered, and the inside of the slit 14a of the die 14 is brought into contact with the Ga 2 O 3 melt 12 that has been raised to the opening 14b by capillary action.
  • a plate-like ⁇ -Ga 2 O 3 single crystal 25 is grown.
  • the crystal information such as the crystal orientation of the evaporated substance of the Ga 2 O 3 melt 12 adhering to the seed crystal 20 is not carried over to the flat part of the ⁇ -Ga 2 O 3 single crystal 25. Then, a ⁇ -Ga 2 O 3 single crystal 25 is grown. Since the crystal orientation of the evaporant attached to the seed crystal 20 is different from the crystal orientation of the seed crystal 20, the crystal information from the seed crystal 20 of the ⁇ -Ga 2 O 3 single crystal 25 and the crystal from the evaporant are crystallized. This is because the crystal orientation of the portion where information is attracted is different and polycrystallization or twinning of the ⁇ -Ga 2 O 3 single crystal 25 occurs.
  • 4A to 4C show a process of growing the ⁇ -Ga 2 O 3 based single crystal according to the first embodiment.
  • 4A to 4C are side views seen from a direction parallel to the width direction w.
  • a tabular seed crystal 20 that does not contain twins is prepared.
  • the width in the width direction w of the seed crystal 20 is set to the width direction w of the die 14. It is preferable that the width is equal to or greater than the width (the width in the longitudinal direction of the die 14).
  • the seed crystal 20 is lowered to approach the Ga 2 O 3 melt 12 on the surface of the die 14.
  • the evaporated material 23 of the Ga 2 O 3 melt 12 is attached to the seed crystal 20.
  • the descending speed of the seed crystal 20 is, for example, 5 mm / min.
  • the seed crystal 20 is brought into contact with the Ga 2 O 3 melt 12 and then pulled up.
  • the standby time until the seed crystal 20 is pulled after contacting the seed crystal 20 with the Ga 2 O 3 melt 12 is preferably long to some extent in order to stabilize the temperature and prevent thermal shock, for example, 1 min or more.
  • the evaporant 23 on the bottom surface of the seed crystal 20 melts in the Ga 2 O 3 melt 12 when the seed crystal 20 contacts the Ga 2 O 3 melt 12.
  • the width in the thickness direction t is narrowed (necking) while the ⁇ -Ga 2 O 3 single crystal 25 is grown.
  • the growth of the portion 25b that inherits the crystal information of the evaporant 23 on the main surface 20a of the ⁇ -Ga 2 O 3 system single crystal 25 is interrupted in the vicinity of the seed crystal 20, and the portion that inherits the crystal information of the seed crystal 20 Only 25a continues to grow.
  • the width in the thickness direction t of the ⁇ -Ga 2 O 3 single crystal 25 it is preferable to narrow the width in the thickness direction t of the ⁇ -Ga 2 O 3 single crystal 25 by 100 ⁇ m (one side 50 ⁇ m) or more.
  • the width in the width direction w of the seed crystal 20 is equal to or greater than the width in the width direction w of the die 14, the evaporant 23 on the side surface 20 b of the seed crystal 20 does not contact the Ga 2 O 3 melt 12. Crystal information of the evaporant 23 is not carried over to the ⁇ -Ga 2 O 3 single crystal 25.
  • the evaporant 23 on the side surface 20b of the seed crystal 20 comes into contact with the Ga 2 O 3 melt 12, when necking in the width direction w is not performed, the evaporant 23 on the side surface 20b of the seed crystal 20
  • the growth of the portion that has inherited the crystal information is not interrupted, but since the shoulder expansion in the width direction w is not performed in the subsequent process, the volume of this portion does not increase, and this does not cause a big problem.
  • Necking in the present embodiment is performed by controlling the temperature of the shape of the free surface (meniscus) of the Ga 2 O 3 melt 12 pulled up to the seed crystal 20 by surface tension. Specifically, the narrower the width, the higher the temperature of the Ga 2 O 3 melt 12 is increased.
  • the temperature of the surface intersecting the thickness direction t of the Ga 2 O 3 -based melt 12 is set to the width direction.
  • the seed crystal 20 is pulled up in a state where the temperature is higher than the surface temperature intersecting w.
  • evaporant is deposited on the flat portion of the ⁇ -Ga 2 O 3 single crystal 25.
  • the main purpose is to prevent the inclusion of the portion 25b that inherits the crystal information of 23.
  • the shoulder is expanded in the thickness direction t while the ⁇ -Ga 2 O 3 single crystal 25 is grown. At this time, the shoulder is not expanded in the width direction w of the ⁇ -Ga 2 O 3 single crystal 25.
  • the seed crystal 20 is pulled up while gradually lowering the temperature, and shoulder expansion is started.
  • the thickness is increased until the thickness of the ⁇ -Ga 2 O 3 single crystal 25 becomes equal to the width of the die 14 in the short direction.
  • Spread shoulder in direction t It is preferable that the temperature is gradually lowered until shoulder expansion starts on the entire surface intersecting the thickness direction t.
  • the temperature is decreased at 1 ° C./min, After the increase rate exceeds 2000 mg / min, the temperature decrease rate is changed to 0.15 ° C./min and lowered by 5 ° C., and then the temperature is kept constant.
  • the temperature is lowered at 1 ° C./min, After the increase rate exceeds 2400 mg / min, the temperature decrease rate is changed to 0.15 ° C./min and lowered by 5 ° C., and then the temperature is kept constant.
  • the growth of the ⁇ -Ga 2 O 3 single crystal 25 is continued until the desired size is reached. Since the growth of at least the portion 25b that inherits the crystal information of the evaporant 23 on the main surface 20a of the seed crystal 20 is interrupted before the shoulder expansion, the flat plate formed after the shoulder expansion of the ⁇ -Ga 2 O 3 based single crystal 25 The shaped portion contains no or almost no portion that inherits the crystal information of the evaporant 23.
  • FIGS. 5A to 5C show a process of growing a ⁇ -Ga 2 O 3 single crystal without performing necking as a comparative example.
  • the seed crystal 20 is lowered to approach the Ga 2 O 3 melt 12 on the surface of the die 14.
  • the evaporated material 23 of the Ga 2 O 3 melt 12 is attached to the seed crystal 20.
  • the seed crystal 20 is brought into contact with the Ga 2 O 3 melt 12 and then pulled up.
  • necking is not performed.
  • the growth of the portion 25b that inherits the crystal information of the evaporant 23 of the ⁇ -Ga 2 O 3 single crystal 25 is not interrupted.
  • the shoulder is expanded in the thickness direction t while the ⁇ -Ga 2 O 3 single crystal 25 is grown.
  • the portion 25b is included in the flat portion of the ⁇ -Ga 2 O 3 single crystal 25. Therefore, compared with the case of the present embodiment shown in FIG. 4C, the volume of the portion 25a is reduced, and when the substrate is cut out from the ⁇ -Ga 2 O 3 based single crystal 25, the diameter of the substrate is reduced. End up.
  • FIG. 6A to 6C are cross-sectional views perpendicular to the b-axis of the ⁇ -Ga 2 O 3 -based single crystal 25 in which the surface orientation of the main surface 26a is (001).
  • FIG. 6A is a cross-sectional view of the ⁇ -Ga 2 O 3 -based single crystal 25 before shoulder expansion.
  • FIG. 6B is a cross-sectional view of the ⁇ -Ga 2 O 3 -based single crystal 25 after the shoulders are expanded in the thickness direction t as in the present embodiment.
  • FIG. 6C is a cross-sectional view of the ⁇ -Ga 2 O 3 -based single crystal 25 after expanding the shoulder in the width direction w as a comparative example.
  • the (100) plane including the corner of the contour before the shoulder expansion tends to be a twin plane. 6B and 6C, the (100) plane extending from the square corner shown in FIG.
  • the volume of the portion separated from the central body by the twin plane 27 is greater when the shoulder is expanded in the thickness direction t than when the shoulder is expanded in the width direction w. Is small.
  • a substrate is cut out from the ⁇ -Ga 2 O 3 based single crystal 25
  • the portion including the twin plane 27 is cut out, it cannot be used as the substrate.
  • the ⁇ -Ga 2 O 3 single crystal 25 whose shoulder is widened in the width direction w shown in FIG. Recognize.
  • FIG. 7A to 7C are cross-sectional views perpendicular to the b-axis of the ⁇ -Ga 2 O 3 -based single crystal 25 in which the surface orientation of the main surface 26a is ( ⁇ 201).
  • FIG. 7A is a cross-sectional view of the ⁇ -Ga 2 O 3 -based single crystal 25 before shoulder expansion.
  • FIG. 7B is a cross-sectional view of the ⁇ -Ga 2 O 3 -based single crystal 25 after the shoulders are expanded in the thickness direction t as in the present embodiment.
  • FIG. 7C is a cross-sectional view of the ⁇ -Ga 2 O 3 -based single crystal 25 after expanding the shoulder in the width direction w as a comparative example.
  • the thickness direction t is larger than that when the shoulder is widened in the width direction w.
  • the shoulder is widened, the volume of the portion separated from the central body by the twin plane 27 becomes smaller. That is, the volume of the portion that cannot be cut out as a substrate can be reduced, and the volume of the portion that can be cut out as a substrate can be increased.
  • a ⁇ -Ga 2 O 3 single crystal 25 having a main surface parallel to the b-axis as in the (001) plane, ( ⁇ 201) plane, (101) is grown in the b-axis direction.
  • FIG. 8 is a flowchart showing an example of a manufacturing process of a ⁇ -Ga 2 O 3 based single crystal substrate. Hereinafter, this flowchart will be described.
  • annealing is performed for the purpose of relaxing thermal strain and improving electrical characteristics during the growth of the single crystal (Ste S1).
  • the atmosphere is preferably a nitrogen atmosphere, but may be another inert atmosphere such as argon or helium.
  • the annealing holding temperature is preferably 1400 to 1600 ° C.
  • the annealing time at the holding temperature is preferably about 6 to 10 hours.
  • step S2 cutting is performed using a diamond blade (step S2).
  • the ⁇ -Ga 2 O 3 single crystal 25 is fixed to the carbon stage via thermal wax.
  • a ⁇ -Ga 2 O 3 single crystal 25 fixed on a carbon stage is set in a cutting machine, and cutting is performed.
  • the blade particle size is preferably about # 200 to # 600 (specified by JISB4131), and the cutting speed is preferably about 6 to 10 mm per minute.
  • heat is applied to remove the ⁇ -Ga 2 O 3 single crystal 25 from the carbon stage.
  • the edge of the ⁇ -Ga 2 O 3 single crystal 25 is processed into a round shape using an ultrasonic processing machine or a wire electric discharge machine (step S3). It is also possible to form an orientation flat at a desired location on the edge.
  • the ⁇ -Ga 2 O 3 single crystal 25 processed into a round shape is sliced to a thickness of about 1 mm by a multi-wire saw to obtain a ⁇ -Ga 2 O 3 single crystal substrate (step S4).
  • slicing can be performed at a desired offset angle.
  • the wire saw is preferably a fixed abrasive type.
  • the slicing speed is preferably about 0.125 to 0.3 mm per minute.
  • annealing is performed on the ⁇ -Ga 2 O 3 single crystal substrate for the purpose of relaxing the processing strain, improving the electrical characteristics, and improving the transparency (step S5).
  • Annealing is performed in an oxygen atmosphere when the temperature is raised, and annealing is performed while switching to a nitrogen atmosphere while the temperature is maintained after the temperature is raised.
  • the atmosphere during the temperature holding may be another inert atmosphere such as argon or helium.
  • the holding temperature is preferably 1400 to 1600 ° C.
  • the edge of the ⁇ -Ga 2 O 3 single crystal substrate is chamfered (beveled) at a desired angle (step S6).
  • the ⁇ -Ga 2 O 3 single crystal substrate is ground using a diamond grinding wheel until a desired thickness is obtained (step S7).
  • the grain size of the grindstone is preferably about # 800 to 1000 (specified by JISB4131).
  • the ⁇ -Ga 2 O 3 single crystal substrate is polished using a polishing platen and diamond slurry until the desired thickness is reached (step S8).
  • the polishing surface plate is preferably made of a metal or glass material.
  • the particle size of the diamond slurry is preferably about 0.5 ⁇ m.
  • the ⁇ -Ga 2 O 3 single crystal substrate is polished until flatness at the atomic level is obtained (step S9).
  • the polishing cloth is preferably made of nylon, silk fiber, urethane or the like. It is preferable to use colloidal silica for the slurry.
  • the average roughness of the main surface of the ⁇ -Ga 2 O 3 single crystal substrate after the CMP process is about Ra 0.05 to 0.1 nm.
  • FIG. 9 is a photograph of the ⁇ -Ga 2 O 3 single crystal substrate 40 manufactured from the ⁇ -Ga 2 O 3 single crystal 25 by the above process. Since the ⁇ -Ga 2 O 3 single crystal substrate 40 does not contain twins and has excellent flatness on the main surface, the “ ⁇ -Ga 2 O 3 single crystal substrate 40 under the transparent ⁇ -Ga 2 O 3 single crystal substrate 40 is visible. No discontinuity or distortion is observed in the characters of 2 O 3 ′′.
  • a seed crystal is cut out from the grown ⁇ -Ga 2 O 3 single crystal 25, a new ⁇ -Ga 2 O 3 single crystal is grown using the seed crystal, and the new ⁇ -Ga 2 O 3 A ⁇ -Ga 2 O 3 single crystal substrate may be manufactured from the single crystal.
  • the seed crystal 20 and the ⁇ -Ga 2 O 3 single crystal 25 are separated, and ⁇ -Ga 2 O
  • the 3- system single crystal 25 is cut with a width of 20 to 40 mm along a direction perpendicular to the growth direction.
  • the ⁇ -Ga 2 O 3 single crystal 25 is fixed to the carbon stage via thermal wax.
  • a ⁇ -Ga 2 O 3 single crystal 25 fixed to a carbon stage is set in a cutting machine, and cutting is performed using a diamond blade.
  • the particle size of the diamond blade is preferably about # 200 to # 600 (specified by JISB4131), and the cutting speed is preferably about 6 to 10 mm per minute.
  • the separated seed crystal 20 and the ⁇ -Ga 2 O 3 single crystal 25 cut at a width of 20 to 40 mm along the direction perpendicular to the growth direction are removed from the carbon stage by heating.
  • Each of the ⁇ -Ga 2 O 3 single crystals 25 cut to a width of 20 to 40 mm becomes a new seed crystal (hereinafter referred to as a second seed crystal).
  • a new ⁇ -Ga 2 O 3 single crystal (hereinafter referred to as a second ⁇ -Ga 2 O 3 single crystal) using a second seed crystal by a normal single crystal growth method, for example, a normal EFG method. Called).
  • a normal single crystal growth method for example, a normal EFG method. Called.
  • the second ⁇ -Ga 2 O 3 single crystal is grown without expanding the shoulder in the width direction. It is preferable.
  • the second embodiment is different from the first embodiment in a method for preventing a flat portion of a ⁇ -Ga 2 O 3 system single crystal from including a portion that inherits crystal information of an evaporant. . Note that the description of the same points as in the first embodiment will be omitted or simplified.
  • 10A to 10C show a process of growing a ⁇ -Ga 2 O 3 single crystal according to the second embodiment.
  • 10A to 10C are side views seen from a direction parallel to the width direction w.
  • a seed crystal 20 similar to that of the first embodiment is prepared.
  • the seed crystal 20 is lowered, and one main surface 20a near the bottom is brought into contact with the edge of the die 14 and melted. Subsequently, the same processing is performed on the other main surface 20a. As a result, the evaporant 23 on the main surface 20a near the bottom of the seed crystal 20 is removed.
  • the seed crystal 20 is brought into contact with the Ga 2 O 3 melt 12 on the surface of the die 14 and then pulled up. At this time, since the evaporant 23 on the main surface 20a near the bottom of the seed crystal 20 is removed, the evaporant 23 on the main surface 20a of the seed crystal 20 is transferred to the ⁇ -Ga 2 O 3 based single crystal 25. The portion that inherits the crystal information is not formed.
  • the evaporated material 23 on the side surface 20b of the seed crystal 20 may not be removed.
  • the evaporant 23 on the side surface 20 b of the seed crystal 20 does not contact the Ga 2 O 3 melt 12. Crystal information of the evaporant 23 is not carried over to the ⁇ -Ga 2 O 3 single crystal 25.
  • the portion in which the crystal information of the evaporant 23 is taken over by the ⁇ -Ga 2 O 3 single crystal 25 is not increase, which is not a big problem.
  • the shoulder is expanded in the thickness direction t while the ⁇ -Ga 2 O 3 single crystal 25 is grown. At this time, the shoulder is not expanded in the width direction w of the ⁇ -Ga 2 O 3 single crystal 25.
  • the growth of the ⁇ -Ga 2 O 3 single crystal 25 is continued until the desired size is reached. Since at least a portion inheriting the crystal information of the evaporant 23 on the main surface 20a of the seed crystal 20 is not formed, the plate-like portion formed after the shoulder expansion of the ⁇ -Ga 2 O 3 based single crystal 25 is The part which inherited 23 crystal information is not included at all or almost.
  • the method of making a ⁇ -Ga 2 O 3 system single crystal substrate from the ⁇ -Ga 2 O 3 single crystal 25 is the same as the first embodiment.
  • the ⁇ -Ga 2 O 3 single crystal 25 is processed into a second seed crystal, and the second ⁇ -Ga 2 O 3 single crystal grown using the second seed crystal is transformed into ⁇ -Ga 2 O.
  • the method for manufacturing the 3- system single crystal substrate is also the same as in the first embodiment.
  • FIG. 11 shows a modification of the step of growing the ⁇ -Ga 2 O 3 single crystal according to the second embodiment.
  • the evaporant 23 on the main surface 20 a near the bottom of the seed crystal 20 is removed using a specialized tool 28.
  • the instrument 28 is composed of, for example, two linear members, and the seed crystal 20 is lowered to bring the principal surfaces 20a on both sides near the bottom into contact with the edges of the instrument 28 and melt.
  • the evaporant 23 on the main surface 20a near the bottom of the seed crystal 20 is removed. Subsequent steps are the same as those in the second embodiment.
  • the third embodiment is different from the first embodiment in the method for preventing the flat portion of the ⁇ -Ga 2 O 3 system single crystal from including a portion that inherits the crystal information of the evaporated material. . Note that the description of the same points as in the first embodiment will be omitted or simplified.
  • 12A to 12C show a process of growing a ⁇ -Ga 2 O 3 based single crystal according to the third embodiment.
  • 12A to 12C are side views seen from a direction parallel to the width direction w.
  • a seed crystal 20 similar to that of the first embodiment is prepared.
  • the die 29 of the present embodiment has a convex shape in which a portion including the opening 29b of the slit 29a on the upper surface protrudes, and the width of the convex portion 29c in the thickness direction t is the thickness of the seed crystal 20. It is below the width in the vertical direction t.
  • the seed crystal 20 is lowered to approach the Ga 2 O 3 melt 12 on the surface of the die 29.
  • the evaporated material 23 of the Ga 2 O 3 melt 12 is attached to the seed crystal 20.
  • the seed crystal 20 is brought into contact with the Ga 2 O 3 melt 12 on the surface of the convex portion 29c and then pulled up.
  • the width in the thickness direction t of the convex portion 29c is equal to or smaller than the width in the thickness direction t of the seed crystal 20, and the seed crystal 20 contacts only the Ga 2 O 3 melt 12 on the surface of the convex portion 29c. Therefore, the evaporant 23 on the main surface 20 a of the seed crystal 20 does not contact the Ga 2 O 3 melt 12. For this reason, the ⁇ -Ga 2 O 3 single crystal 25 is not formed with a portion that inherits the crystal information of the evaporant 23 on the main surface 20a of the seed crystal 20.
  • the evaporant 23 on the side surface 20 b of the seed crystal 20 does not contact the Ga 2 O 3 melt 12.
  • the crystal information of the evaporant 23 is not inherited by the ⁇ -Ga 2 O 3 single crystal 25.
  • the portion in which the crystal information of the evaporant 23 is taken over by the ⁇ -Ga 2 O 3 single crystal 25 since the shoulder expansion in the width direction w is not performed in the subsequent process, the volume of this portion does not increase, which is not a big problem.
  • the shoulder is expanded in the thickness direction t while the ⁇ -Ga 2 O 3 single crystal 25 is grown.
  • the pulling speed and temperature are controlled, and the ⁇ -Ga 2 O 3 single crystal 25 is grown also from the Ga 2 O 3 melt 12 in the regions on both sides of the convex portion 29 c on the surface of the die 29.
  • the shoulder of the ⁇ -Ga 2 O 3 single crystal 25 is not widened in the width direction w.
  • the growth of the ⁇ -Ga 2 O 3 single crystal 25 is continued until the desired size is reached. Since at least a portion inheriting the crystal information of the evaporant 23 on the main surface 20a of the seed crystal 20 is not formed, the plate-like portion formed after the shoulder expansion of the ⁇ -Ga 2 O 3 based single crystal 25 is The part which inherited 23 crystal information is not included at all or almost.
  • the method of making a ⁇ -Ga 2 O 3 system single crystal substrate from the ⁇ -Ga 2 O 3 single crystal 25 is the same as the first embodiment.
  • the ⁇ -Ga 2 O 3 single crystal 25 is processed into a second seed crystal, and the second ⁇ -Ga 2 O 3 single crystal grown using the second seed crystal is transformed into ⁇ -Ga 2 O.
  • the method for manufacturing the 3- system single crystal substrate is also the same as in the first embodiment.
  • the fourth embodiment is different from the first embodiment in a method for preventing a flat portion of a ⁇ -Ga 2 O 3 system single crystal from including a portion that inherits crystal information of an evaporant. . Note that the description of the same points as in the first embodiment will be omitted or simplified.
  • FIGS. 14A to 14C show a process of growing a ⁇ -Ga 2 O 3 based single crystal according to the fourth embodiment.
  • 13A to 13C and FIGS. 14A to 14C are side views seen from a direction parallel to the width direction w.
  • a seed crystal 20 similar to that of the first embodiment is prepared.
  • the die 30 of the present embodiment has a slit 30a.
  • the die 30 preferably has a plurality of slits 30a for reasons described later.
  • the seed crystal 20 is lowered to approach the Ga 2 O 3 melt 12 on the surface of the die 30.
  • the evaporated material 23 of the Ga 2 O 3 melt 12 is attached to the seed crystal 20.
  • the seed crystal 20 is brought into contact with the Ga 2 O 3 melt 12 on the surface of the die 30.
  • the evaporated material 23 on one main surface 20 a of the seed crystal 20 is slid to a position where it does not contact the die 30. . At this time, it is preferable to slide the seed crystal 20 almost horizontally.
  • the seed crystal 20 is pulled up. At this time, crystals grow from the evaporated material 23 on the main surface 20a in contact with the die 30 to form a portion 25b that inherits the crystal information of the evaporated material 23, but on the main surface 20a that does not contact the die 30. Crystals do not grow from the evaporant 23.
  • the distance for pulling up the seed crystal 20 is several millimeters, for example.
  • the position where the portion 25b does not contact the die 30 (evaporant 23 on the other main surface 20a of the seed crystal 20).
  • the seed crystal 20 is pulled up.
  • the growth of the portion 25b is interrupted.
  • the distance which pulls up the seed crystal 20 is several millimeters, for example.
  • the die 30 is slid up to the vicinity of the center in the thickness direction t and then lifted to grow the ⁇ -Ga 2 O 3 -based single crystal 25 while increasing the thickness direction t.
  • Spread your shoulders Note that the shoulder of the ⁇ -Ga 2 O 3 single crystal 25 is not widened in the width direction w.
  • the growth of the ⁇ -Ga 2 O 3 single crystal 25 is continued until the desired size is reached. Since at least a portion inheriting the crystal information of the evaporant 23 on the main surface 20a of the seed crystal 20 is not formed, the plate-like portion formed after the shoulder expansion of the ⁇ -Ga 2 O 3 based single crystal 25 is The part which inherited 23 crystal information is not included at all or almost.
  • the seed crystal 20 is positioned directly above the slit 30a in order to efficiently grow the crystal when the seed crystal 20 is pulled up.
  • the slits 30a are arranged in a wide range, and the die 30 preferably has a plurality of slits 30a.
  • the seed crystal 20 may be positioned immediately above the at least one slit 30a.
  • the seed crystal 20 is separated from the surface of the die 30, and the crystal grows from the evaporant 23 on both main surfaces 20a of the seed crystal 20. Even in the case where the seed crystal 20 is slid to a position where the evaporant 23 on the one main surface 20a deviates from the region directly above the die 30, the die 30 is processed as shown in FIG. 14B. It is possible to interrupt the crystal growth of the portion that has inherited the information of the evaporant 23 at a position deviated from the region directly above the region.
  • the seed crystal 20 is pulled up at least once at a position where the vaporized material 23 on one main surface 20a of the seed crystal 20 deviates from the region directly above the die 30, and the other main surface 20a is further pulled.
  • the seed crystal 20 may be pulled up at least once at a position where the upper evaporant 23 deviates from the region directly above the die 30.
  • the method of making a ⁇ -Ga 2 O 3 system single crystal substrate from the ⁇ -Ga 2 O 3 single crystal 25 is the same as the first embodiment.
  • the ⁇ -Ga 2 O 3 single crystal 25 is processed into a second seed crystal, and the second ⁇ -Ga 2 O 3 single crystal grown using the second seed crystal is transformed into ⁇ -Ga 2 O.
  • the method for manufacturing the 3- system single crystal substrate is also the same as in the first embodiment.
  • a flat ⁇ -Ga 2 O 3 system single unit is used so that crystal information of the evaporated material 23 of the Ga 2 O 3 melt 12 adhering to the seed crystal 20 is not inherited.
  • the crystal 25 it is possible to suppress twinning and polycrystallization of the flat plate-like portion formed after the shoulder expansion of the ⁇ -Ga 2 O 3 based single crystal 25. Therefore, it is possible to produce a large ⁇ -Ga 2 O 3 system single crystal substrate of the area from the ⁇ -Ga 2 O 3 single crystal 25.
  • the ⁇ -Ga 2 O 3 single crystal 25 having the main surface 26a intersecting with the (100) plane having a strong cleavage is expanded by extending the shoulder of the ⁇ -Ga 2 O 3 single crystal only in the thickness direction t.
  • the volume of the part divided by the twin planes generated by shoulder expansion can be reduced, and the volume of the part that can be cut out as a substrate can be increased. Therefore, a large number of ⁇ -Ga 2 O 3 single crystal substrates can be cut out from the ⁇ -Ga 2 O 3 single crystal 25.
  • a ⁇ -Ga 2 O 3 single crystal is grown using the EFG method
  • other growth methods may be used.
  • a pulling-down method such as a micro PD (pulling-down) method may be used.
  • a ⁇ -Ga 2 O 3 single crystal may be grown by applying a die having a slit like the die 14 of this embodiment to the Bridgman method.
  • the method development of ⁇ -Ga 2 O 3 system single crystal can be obtained crystal quality high tabular ⁇ -Ga 2 O 3 single crystal, and the ⁇ -Ga 2 O 3 system single crystal substrate and a manufacturing method thereof provide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 結晶品質の高い平板状のβ-Ga系単結晶を得ることができるβ-Ga系単結晶の育成方法、並びにβ-Ga系単結晶基板及びその製造方法を提供する。 一実施の形態において、平板状の種結晶20をGa系融液12に接触させる工程と、種結晶20を引き上げ、種結晶20の主面に付着したGa系融液12の蒸発物23の結晶情報を引き継がないように、(100)面と交わる主面26aを有する平板状のβ-Ga系単結晶25を成長させる工程と、を含み、β-Ga系単結晶25を成長させるときに、厚さ方向tにのみβ-Ga系単結晶25の肩を広げる、β-Ga系単結晶25の育成方法を提供する。

Description

β-Ga2O3系単結晶の育成方法、並びにβ-Ga2O3系単結晶基板及びその製造方法
 本発明は、β-Ga系単結晶の育成方法、並びにβ-Ga系単結晶基板及びその製造方法に関する。
 従来、EFG法によりGa単結晶を成長させる方法が知られている(例えば、特許文献1参照)。特許文献1に記載された方法によれば、Ga単結晶を種結晶との接触部分から下方向に徐々に幅を広げながら、すなわち肩を広げながら成長させることにより、種結晶よりも幅の大きな平板状の結晶を得ることができる。
特開2006-312571号公報
 しかし、特許文献1に開示された方法には、肩を広げる工程においてGa単結晶が双晶化し易いという問題がある。また、肩を広げる工程を省くために幅の広い平板状の種結晶を用いる場合、成長させるGa結晶の一部の多結晶化や、結晶品質の低下が発生するおそれが強い。
 したがって、本発明の目的の1つは、結晶品質の高い平板状のβ-Ga系単結晶を得ることができるβ-Ga系単結晶の育成方法を提供することである。また、他の目的は、前述の育成方法により育成されたβ-Ga系単結晶からのβ-Ga系単結晶基板の製造方法を提供することにある。また、他の目的は、前述の育成方法により育成されたβ-Ga系単結晶をシード(種結晶)に用いて新たなβ-Ga系単結晶を育成し、基板に加工する、β-Ga系単結晶基板の製造方法を提供することにある。また、他の目的は、これらの製造方法により製造されたβ-Ga系単結晶基板を提供することにある。
 本発明の一態様は、上記目的を達成するために、下記[1]~[6]のβ-Ga系単結晶の育成方法を提供する。
[1]平板状の種結晶をGa系融液に接触させる工程と、前記種結晶を引き上げ、前記種結晶の主面に付着した前記Ga系融液の蒸発物の結晶情報を引き継がないように、(100)面と交わる主面を有する平板状のβ-Ga系単結晶を成長させる工程と、を含み、前記β-Ga系単結晶を成長させるときに、厚さ方向にのみβ-Ga系単結晶の肩を広げる、β-Ga系単結晶の育成方法。
[2]前記β-Ga系単結晶をb軸方向に成長させる、前記[1]に記載のβ-Ga系単結晶の育成方法。
[3]前記β-Ga系単結晶は、(101)面、(-201)面、又は(001)面を主面とする平板状の単結晶である、前記[2]に記載のβ-Ga系単結晶の育成方法。
[4]厚さ方向のネッキングにより、前記蒸発物の結晶情報を引き継がないように前記β-Ga系単結晶を成長させる、前記[1]~[3]のいずれか1項に記載のβ-Ga系単結晶の育成方法。
[5]前記種結晶の底部近傍の前記主面上の前記蒸発物を除去した後に前記種結晶を前記Ga系融液に接触させることにより、前記蒸発物の結晶情報を引き継がないように前記β-Ga系単結晶を成長させる、前記[1]~[3]のいずれか1項に記載のβ-Ga系単結晶の育成方法。
[6]前記種結晶の前記主面上の前記蒸発物をGa系融液に接触させずに、前記種結晶を前記Ga系融液に接触させることにより、前記蒸発物の結晶情報を引き継がないように前記β-Ga系単結晶を成長させる、前記[1]~[3]のいずれか1項に記載のβ-Ga系単結晶の育成方法。
 また、本発明の他の態様は、上記目的を達成するために、下記[7]、[8]のβ-Ga系単結晶基板の製造方法を提供する。
[7]前記[1]~[3]のいずれか1項に記載のβ-Ga系単結晶をβ-Ga系単結晶基板に加工する、β-Ga系単結晶基板の製造方法。
[8]前記[1]~[3]のいずれか1項に記載のβ-Ga系単結晶を第2の種結晶に加工する工程と、前記第2の種結晶を用いて第2のβ-Ga系単結晶を育成する工程と、前記第2のβ-Ga系単結晶をβ-Ga系単結晶基板に加工する工程と、を含むβ-Ga系単結晶基板の製造方法。
 また、本発明の他の態様は、上記目的を達成するために、下記[9]、[10]のβ-Ga系単結晶基板を提供する。
[9]前記[7]に記載のβ-Ga系単結晶基板の製造方法により製造されるβ-Ga系単結晶基板。
[10]前記[8]に記載のβ-Ga系単結晶基板の製造方法により製造されるβ-Ga系単結晶基板。
 本発明によれば、結晶品質の高い平板状のβ-Ga系単結晶を得ることができるβ-Ga系単結晶の育成方法を提供することができる。また、前述の育成方法により育成されたβ-Ga系単結晶からのβ-Ga系単結晶基板の製造方法を提供することができる。また、前述の育成方法により育成されたβ-Ga系単結晶をシード(種結晶)に用いて新たなβ-Ga系単結晶を育成し、基板に加工する、β-Ga系単結晶基板の製造方法を提供することができる。また、これらの製造方法により製造されたβ-Ga系単結晶基板を提供することができる。
図1は、本実施の形態に係るEFG結晶製造装置の一部の垂直断面図である。 図2は、β-Ga系単結晶の成長中の様子を表す斜視図である。 図3は、β-Ga系結晶の単位格子を示す。 図4Aは、第1の実施の形態に係るβ-Ga系単結晶を成長させる工程を表す。 図4Bは、第1の実施の形態に係るβ-Ga系単結晶を成長させる工程を表す。 図4Cは、第1の実施の形態に係るβ-Ga系単結晶を成長させる工程を表す。 図5Aは、比較例としてネッキングを行なわずにβ-Ga系単結晶を成長させる工程を表す。 図5Bは、比較例としてネッキングを行なわずにβ-Ga系単結晶を成長させる工程を表す。 図5Cは、比較例としてネッキングを行なわずにβ-Ga系単結晶を成長させる工程を表す。 図6Aは、主面の面方位が(001)であるβ-Ga系単結晶のb軸に垂直な断面図である。 図6Bは、主面の面方位が(001)であるβ-Ga系単結晶のb軸に垂直な断面図である。 図6Cは、主面の面方位が(001)であるβ-Ga系単結晶のb軸に垂直な断面図である。 図7Aは、主面の面方位が(-201)であるβ-Ga系単結晶のb軸に垂直な断面図である。 図7Bは、主面の面方位が(-201)であるβ-Ga系単結晶のb軸に垂直な断面図である。 図7Cは、主面の面方位が(-201)であるβ-Ga系単結晶のb軸に垂直な断面図である。 図8は、第1の実施の形態に係るβ-Ga系単結晶基板の製造工程の一例を表すフローチャートである。 図9は、第1の実施の形態に係るβ-Ga系単結晶から製造されたβ-Ga系単結晶基板の写真である。 図10Aは、第2の実施の形態に係るβ-Ga系単結晶を成長させる工程を表す。 図10Bは、第2の実施の形態に係るβ-Ga系単結晶を成長させる工程を表す。 図10Cは、第2の実施の形態に係るβ-Ga系単結晶を成長させる工程を表す。 図11は、第2の実施の形態に係るβ-Ga系単結晶を成長させる工程の変形例を表す。 図12Aは、第3の実施の形態に係るβ-Ga系単結晶を成長させる工程を表す。 図12Bは、第3の実施の形態に係るβ-Ga系単結晶を成長させる工程を表す。 図12Cは、第3の実施の形態に係るβ-Ga系単結晶を成長させる工程を表す。 図13Aは、第4の実施の形態に係るβ-Ga系単結晶を成長させる工程を表す。 図13Bは、第4の実施の形態に係るβ-Ga系単結晶を成長させる工程を表す。 図13Cは、第4の実施の形態に係るβ-Ga系単結晶を成長させる工程を表す。 図14Aは、第4の実施の形態に係るβ-Ga系単結晶を成長させる工程を表す。 図14Bは、第4の実施の形態に係るβ-Ga系単結晶を成長させる工程を表す。 図14Cは、第4の実施の形態に係るβ-Ga系単結晶を成長させる工程を表す。
〔第1の実施の形態〕
 図1は、本実施の形態に係るEFG結晶製造装置の一部の垂直断面図である。このEFG結晶製造装置10は、Ga系融液12を受容するルツボ13と、このルツボ13内に設置されたスリット14aを有するダイ14と、スリット14aの開口部14bを除くルツボ13の上面を閉塞する蓋15と、平板状のβ-Ga系種結晶(以下、「種結晶」という)20を保持する種結晶保持具21と、種結晶保持具21を昇降可能に支持するシャフト22とを有する。
 ルツボ13は、Ga系粉末を溶解させて得られたGa系融液12を収容する。ルツボ13は、Ga系融液12を収容しうる耐熱性を有するイリジウム等の金属材料からなる。
 ダイ14は、Ga系融液12を毛細管現象により上昇させるためのスリット14aを有する。
 蓋15は、ルツボ13から高温のGa系融液12が蒸発することを防止し、さらにスリット14aの上面以外の部分にGa系融液12の蒸気が付着することを防ぐ。
 図2は、β-Ga系単結晶の成長中の様子を表す斜視図である。
 主面20aは、平板状の種結晶20の主面であり、側面20bは、平板状の種結晶20の主面20aに交わる面である。主面26aは、β-Ga系単結晶25の平板状の部分の主面であり、側面26bは、β-Ga系単結晶25の平板状の部分の主面26aに交わる面である。
 β-Ga系単結晶25の結晶方位は種結晶20の結晶方位と等しく、例えば、種結晶20の主面20aとβ-Ga系単結晶25の主面26aは平行であり、種結晶20の側面20bとβ-Ga系単結晶25の側面26bは平行である。
 成長させたβ-Ga系単結晶25の平板状の部分を切り出してβ-Ga系基板を形成する場合は、β-Ga系基板の所望の主面の面方位にβ-Ga系単結晶25の主面26aの面方位を一致させる。例えば、(101)面を主面とするβ-Ga系基板を形成する場合は、主面26aの面方位を(101)とする。
 β-Ga系単結晶25の成長方向に垂直かつ主面26aに平行な方向を幅方向w、平板状のβ-Ga系単結晶25の厚さ方向に平行な、幅方向wに直交する方向を厚さ方向tとする。
 β-Ga系単結晶25及び種結晶20は、β-Ga単結晶、又は、Cu、Ag、Zn、Cd、Al、In、Si、Ge、Sn、Mg、Nb、Fe等の元素が添加されたβ-Ga単結晶である。
 図3は、β-Ga系結晶の単位格子を示す。図3中の単位格子2がβ-Ga系結晶の単位格子である。β-Ga系結晶は単斜晶系に属するβ-ガリア構造を有し、不純物を含まないβ-Ga結晶の典型的な格子定数はa=12.23Å、b=3.04Å、c=5.80Å、α=γ=90°、β=103.8°である。
 β-Ga系単結晶は、(100)面における劈開性が強く、結晶成長の肩広げの過程で(100)面を双晶面(対称面)とする双晶が生じやすい。そのため、β-Ga系単結晶25からなるべく大きな基板を切り出すために、(100)面がβ-Ga系単結晶25の成長方向に平行になるように、β-Ga系単結晶25をb軸方向に成長させることが好ましい。
 以下に、本実施の形態のβ-Ga系単結晶25の育成方法の一例について述べる。
 例えば、β-Ga系単結晶25の育成は、窒素雰囲気又は窒素と酸素の混合雰囲気下で行われる。
 まず、種結晶20を下降させて、ダイ14のスリット14a内を毛細管現象により開口部14bまで上昇したGa系融液12に接触させる。次に、Ga系融液12と接触した種結晶20を引き上げることにより、平板状のβ-Ga系単結晶25を成長させる。
 このとき、β-Ga系単結晶25の平板状の部分に、種結晶20に付着したGa系融液12の蒸発物の結晶方位等の結晶情報が引き継がれないように、β-Ga系単結晶25を成長させる。種結晶20に付着した蒸発物の結晶方位は、種結晶20の結晶方位と異なるため、β-Ga系単結晶25の種結晶20から結晶情報を引き継いだ部分と、蒸発物から結晶情報をひきついだ部分との結晶方位が異なり、β-Ga系単結晶25の多結晶化や双晶化が起きるためである。
 図4A~4Cは、第1の実施の形態に係るβ-Ga系単結晶を成長させる工程を表す。図4A~4Cは、幅方向wに平行な方向から視た側面図である。
 まず、双晶を含まない平板状の種結晶20を用意する。本実施の形態では、後述するように、β-Ga系単結晶25の幅方向wの肩広げを行わないため、種結晶20の幅方向wの幅が、ダイ14の幅方向wの幅(ダイ14の長手方向の幅)以上であることが好ましい。
 そして、図4Aに示されるように、種結晶20を降下させてダイ14の表面のGa系融液12に近づける。ここで、種結晶20には、Ga系融液12の蒸発物23が付着している。種結晶20の降下速度は、例えば、5mm/minである。
 次に、図4Bに示されるように、種結晶20をGa系融液12に接触させた後、引き上げる。種結晶20をGa系融液12に接触させた後の引き上げるまでの待機時間は、温度をより安定させて熱衝撃を防ぐために、ある程度長いことが好ましく、例えば、1min以上である。なお、種結晶20の底面上の蒸発物23は、種結晶20がGa系融液12に接触する際にGa系融液12中に溶融する。
 種結晶20を引き上げる際には、β-Ga系単結晶25を成長させながら、厚さ方向tの幅を狭める(ネッキング)。これにより、β-Ga系単結晶25の主面20a上の蒸発物23の結晶情報を引き継いだ部分25bの成長が種結晶20付近で途切れ、種結晶20の結晶情報を引き継いだ部分25aのみが成長を続ける。
 ネッキングにより部分25bの成長を効果的に途切れさせるためには、β-Ga系単結晶25のの厚さ方向tの幅を100μm(片側50μm)以上狭めることが好ましい。
 なお、幅方向wのネッキングは行わなくてもよい。種結晶20の幅方向wの幅がダイ14の幅方向wの幅以上である場合は、種結晶20の側面20b上の蒸発物23がGa系融液12に接触しないため、この蒸発物23の結晶情報はβ-Ga系単結晶25に引き継がれない。また、種結晶20の側面20b上の蒸発物23がGa系融液12に接触した場合は、幅方向wのネッキングを行わない場合、種結晶20の側面20b上の蒸発物23の結晶情報を引き継いだ部分の成長は途切れないが、後の工程において幅方向wの肩広げを行わないため、この部分の体積が増加することはなく、大きな問題にはならない。
 本実施の形態におけるネッキングは、表面張力により種結晶20に引き上げられるGa系融液12の自由表面(メニスカス)の形状を、温度を調整して制御することにより行われる。具体的には、Ga系融液12の温度を高くするほど、幅の狭まりが大きくなる。
 本実施の形態においては、厚さ方向tのネッキングを行い、幅方向wのネッキングをまったく又はほとんど行わないため、Ga系融液12の厚さ方向tに交わる面の温度を幅方向wに交わる面の温度よりも高くした状態で、種結晶20を引き上げる。
 通常、単結晶のネッキングは、種結晶の欠陥に起因する転位の発生を防ぐために行われるが、本実施の形態においては、β-Ga系単結晶25の平板状の部分に蒸発物23の結晶情報を引き継いだ部分25bが含まれることを防止することを主な目的としている。
 続けて、図4Cに示されるように、β-Ga系単結晶25を成長させながら、厚さ方向tに肩を広げる。このとき、β-Ga系単結晶25の幅方向wには肩を広げない。
 このとき、温度を徐々に下げながら種結晶20を引き上げて肩広げを開始し、例えば、β-Ga系単結晶25の厚さがダイ14の短手方向の幅と等しくなるまで厚さ方向tに肩を広げる。なお、厚さ方向tに交わる面全体で肩広げが始まるまで温度を徐々に下げ続けることが好ましい。
 例えば、厚さ6mmの種結晶20を用いて平板状の部分の厚さが12mmであるβ-Ga系単結晶25を育成する場合は、1℃/minで温度を下げ、質量の増加速度が2000mg/minを超えた後、温度の降下速度を0.15℃/minに変更して5℃下げ、その後温度を一定に保つ。また、厚さ12mmの種結晶20を用いて平板状の部分の厚さが18mmであるβ-Ga系単結晶25を育成する場合は、1℃/minで温度を下げ、質量の増加速度が2400mg/minを超えた後、温度の降下速度を0.15℃/minに変更して5℃下げ、その後温度を一定に保つ。
 その後、所望の大きさになるまでβ-Ga系単結晶25の育成を続ける。少なくとも種結晶20の主面20a上の蒸発物23の結晶情報を引き継ぐ部分25bの成長が肩広げ前に途切れているため、β-Ga系単結晶25の肩広げ後に形成される平板状の部分は、蒸発物23の結晶情報を引き継いだ部分をまったく又はほとんど含まない。
 図5A~5Cは、比較例としてネッキングを行なわずにβ-Ga系単結晶を成長させる工程を表す。
 まず、図5Aに示されるように、種結晶20を降下させてダイ14の表面のGa系融液12に近づける。ここで、種結晶20には、Ga系融液12の蒸発物23が付着している。
 次に、図5Bに示されるように、種結晶20をGa系融液12に接触させた後、引き上げる。種結晶20を引き上げる際には、ネッキングを行わない。このため、β-Ga系単結晶25の蒸発物23の結晶情報を引き継いだ部分25bの成長が途切れない。
 続けて、図5Cに示されるように、β-Ga系単結晶25を成長させながら、厚さ方向tに肩を広げる。このとき、部分25bの成長が続いているため、β-Ga系単結晶25の平板状の部分に部分25bが含まれる。このため、図4Cに示される本実施の形態の場合と比較して、部分25aの体積が小さくなり、β-Ga系単結晶25から基板を切り出す場合、基板の径が小さくなってしまう。
 以下に、幅方向wにはβ-Ga系単結晶25の肩を広げずに、厚さ方向tにのみ肩を広げる理由を説明する。
 図6A~6Cは、主面26aの面方位が(001)であるβ-Ga系単結晶25のb軸に垂直な断面図である。ここで、図6Aは、肩広げ前のβ-Ga系単結晶25の断面図である。図6Bは、本実施の形態のように厚さ方向tに肩を広げた後のβ-Ga系単結晶25の断面図である。図6Cは、比較例としての幅方向wに肩を広げた後のβ-Ga系単結晶25の断面図である。
 (001)面はb軸に平行であるため、主面26aの面方位が(001)である平板状のβ-Ga系単結晶25をb軸方向に成長させて形成することができる。β-Ga系単結晶25をb軸方向に成長させる場合、成長方向に沿って劈開性の強い(100)面が存在する。
 β-Ga系単結晶25の肩を広げた場合、肩広げ前の輪郭の角部を含む(100)面が双晶面となりやすい。図6B、6Cの例では、図6Aに示される四角形の角部から延びる(100)面が双晶面27となる。
 図6B、6Cに示されるように、幅方向wに肩を広げた場合よりも、厚さ方向tに肩を広げた場合の方が、双晶面27により中央の本体と分けられる部分の体積が小さい。β-Ga系単結晶25から基板を切り出す場合、双晶面27を含んだ部分を切り出すと基板として用いることができない。このため、図6Cに示される幅方向wに肩を広げたβ-Ga系単結晶25には、使用できない部分が多く、切り出し可能な部分の体積は肩広げによりほとんど増加しないことがわかる。一方、図6Bに示される厚さ方向tに肩を広げたβ-Ga系単結晶25には、使用できない部分が少なく、肩広げにより切り出し可能な部分の体積が大きく増加することがわかる。
 図7A~7Cは、主面26aの面方位が(-201)であるβ-Ga系単結晶25のb軸に垂直な断面図である。ここで、図7Aは、肩広げ前のβ-Ga系単結晶25の断面図である。図7Bは、本実施の形態のように厚さ方向tに肩を広げた後のβ-Ga系単結晶25の断面図である。図7Cは、比較例としての幅方向wに肩を広げた後のβ-Ga系単結晶25の断面図である。
 (-201)面はb軸に平行であるため、主面26aの面方位が(-201)である平板状のβ-Ga系単結晶25をb軸方向に成長させて形成することができる。β-Ga系単結晶25をb軸方向に成長させる場合、成長方向に沿って劈開性の強い(100)面が存在する。
 図7B、7Cの例では、図7Aに示される四角形の角部から延びる(100)面が双晶面27となる。図7B、7Cに示されるように、幅方向wに肩を広げた場合よりも、厚さ方向tに肩を広げた場合の方が、双晶面27により中央の本体と分けられる部分(基板として切り出すことのできない部分)の体積が小さい。
 また、図6、図7で示されるような、主面26aの面方位が(001)、(-201)である場合と同様に、主面26aの面方位が(101)である場合も、(101)面がb軸に平行であるため、平板状のβ-Ga系単結晶25をb軸方向に成長させて形成することができる。そして、幅方向wにβ-Ga系単結晶25の肩を広げた場合よりも、厚さ方向tに肩を広げた場合の方が、双晶面27により中央の本体と分けられる部分(基板として切り出すことのできない部分)の体積が小さくなる。
 なお、β-Ga系単結晶25をb軸方向に成長させる場合、主面26aが(100)面と交わるならば、幅方向wに肩を広げた場合よりも、厚さ方向tに肩を広げた場合の方が、双晶面27により中央の本体と分けられる部分の体積が小さくなる。すなわち、基板として切り出すことのできない部分の体積を減らし、基板として切り出すことのできる部分の体積を増やすことができる。ただし、双晶面27となる(100)面を成長方向であるb軸に平行にして、β-Ga系単結晶25から切り出すことのできる部分の体積をより大きくするために、(001)面、(-201)面、(101)のようにb軸に平行な面を主面とするβ-Ga系単結晶25をb軸方向に成長させることが好ましい。
 次に、育成したβ-Ga系単結晶25からβ-Ga系単結晶基板を製造する方法の一例について述べる。
 図8は、β-Ga系単結晶基板の製造工程の一例を表すフローチャートである。以下、このフローチャートを用いて説明する。
 まず、例えば、平板状の部分の厚さが18mmのβ-Ga系単結晶25を育成した後、単結晶育成時の熱歪緩和と電気特性の向上を目的とするアニールを行う(ステップS1)。雰囲気は窒素雰囲気が好ましいが、アルゴンやヘリウム等の他の不活性雰囲気でもよい。アニール保持温度は1400~1600℃の温度が好ましい。保持温度でのアニール時間は6~10時間程度が好ましい。
 次に、種結晶20とβ-Ga系単結晶25の分離を行うため、ダイヤモンドブレードを用いて切断を行う(ステップS2)。まず、カーボン系のステージに熱ワックスを介してβ-Ga系単結晶25を固定する。切断機にカーボン系ステージに固定されたβ-Ga系単結晶25をセッティングし、切断を行う。ブレードの粒度は#200~#600(JISB4131による規定)程度であることが好ましく、切断速度は毎分6~10mmくらいが好ましい。切断後は、熱をかけてカーボン系ステージからβ-Ga系単結晶25を取外す。
 次に、超音波加工機やワイヤー放電加工機を用いてβ-Ga系単結晶25の縁を丸形に加工する(ステップS3)。また、縁の所望の場所にオリエンテーションフラットを形成することも可能である。
 次に、マルチワイヤーソーにより、丸形に加工されたβ-Ga系単結晶25を1mm程度の厚さにスライスし、β-Ga系単結晶基板を得る(ステップS4)。この工程において、所望のオフセット角にてスライスを行うことができる。ワイヤーソーは固定砥粒方式のものを用いることが好ましい。スライス速度は毎分0.125~0.3mm程度が好ましい。
 次に、加工歪緩和、及び電気特性向上、透過性向上を目的とするアニールをβ-Ga系単結晶基板に施す(ステップS5)。昇温時には酸素雰囲気でのアニールを行い、昇温後に温度を保持する間は窒素雰囲気に切替えてアニールを行う。温度を保持する間の雰囲気はアルゴンやヘリウム等の他の不活性雰囲気でも良い。保持温度は1400~1600℃が好ましい。
 次に、β-Ga系単結晶基板のエッジに所望の角度にて面取り(べベル)加工を施す(ステップS6)。
 次に、ダイヤモンドの研削砥石を用いて、所望の厚さになるまでβ-Ga系単結晶基板を研削する(ステップS7)。砥石の粒度は#800~1000(JISB4131による規定)程度であることが好ましい。
 次に、研磨定盤とダイヤモンドスラリーを用いて、所望の厚さになるまでβ-Ga系単結晶基板を研磨する(ステップS8)。研磨定盤は金属系やガラス系の材質のものが好ましい。ダイヤモンドスラリーの粒径は0.5μm程度が好ましい。
 次に、ポリシングクロスとCMP(Chemical Mechanical Polishing)用のスラリーを用いて、原子レベルの平坦性が得られるまでβ-Ga系単結晶基板を研磨する(ステップS9)。ポリッシングクロスはナイロン、絹繊維、ウレタン等の材質のものが好ましい。スラリーにはコロイダルシリカを用いることが好ましい。CMP工程後のβ-Ga系単結晶基板の主面の平均粗さはRa0.05~0.1nmくらいである。
 図9は、上記の工程によりβ-Ga系単結晶25から製造されたβ-Ga系単結晶基板40の写真である。β-Ga系単結晶基板40は双晶を含まず、また、主面の平坦性に優れるため、透けて見えるβ-Ga系単結晶基板40の下の“β-Ga”の文字に途切れや歪みが見られない。
 なお、育成したβ-Ga系単結晶25から種結晶を切り出し、その種結晶を用いて新たなβ-Ga系単結晶を成長させ、その新たなβ-Ga系単結晶からβ-Ga系単結晶基板を製造してもよい。次に、その方法の一例について述べる。
 例えば、平板状の部分の厚さが18mmのβ-Ga系単結晶25を育成した後、種結晶20とβ-Ga系単結晶25を分離し、β-Ga系単結晶25を育成方向に垂直な方向に沿って20~40mmの幅で切断する。まず、カーボン系のステージに熱ワックスを介してβ-Ga系単結晶25を固定する。切断機にカーボン系ステージに固定されたβ-Ga系単結晶25をセッティングし、ダイヤモンドブレードを用いて切断を行う。ダイヤモンドブレードの粒度は#200~#600(JISB4131による規定)程度であることが好ましく、切断速度は毎分6~10mmくらいが好ましい。切断後は、分離された種結晶20と育成方向に垂直な方向に沿って20~40mmの幅で切断されたβ-Ga系単結晶25をカーボン系ステージから熱をかけて取外す。20~40mmの幅で切断されたβ-Ga系単結晶25の各々が新たな種結晶(以下、第2の種結晶と呼ぶ)となる。
 次に、通常の単結晶育成方法、例えば通常のEFG法により第2の種結晶を用いて新たなβ-Ga系単結晶(以下、第2のβ-Ga系単結晶と呼ぶ)を育成する。ただし、上述の種結晶20を用いたβ-Ga系単結晶25の育成と同様に、幅方向の肩広げを行わずに第2のβ-Ga系単結晶を育成することが好ましい。
 次に、上述のβ-Ga系単結晶25からβ-Ga系単結晶基板を製造する方法と同様の方法により、育成した第2のβ-Ga系単結晶からβ-Ga系単結晶基板を製造する。
〔第2の実施の形態〕
 第2の実施の形態は、β-Ga系単結晶の平板状の部分に蒸発物の結晶情報を引き継いだ部分が含まれることを防止する方法において、第1の実施の形態と異なる。なお、第1の実施の形態と同様の点については、説明を省略又は簡略化する。
 図10A~10Cは、第2の実施の形態に係るβ-Ga系単結晶を成長させる工程を表す。図10A~10Cは、幅方向wに平行な方向から視た側面図である。
 まず、第1の実施の形態と同様の種結晶20を用意する。
 そして、図10Aに示されるように、種結晶20を降下させて、その底部近傍の一方の主面20aをダイ14の縁に接触させて溶かす。続けて、他方の主面20aについても同様の処理を行う。その結果、種結晶20の底部近傍の主面20a上の蒸発物23が除去される。
 次に、図10Bに示されるように、種結晶20をダイ14の表面のGa系融液12に接触させた後、引き上げる。このとき、種結晶20の底部近傍の主面20a上の蒸発物23が除去されているため、β-Ga系単結晶25に、種結晶20の主面20a上の蒸発物23の結晶情報を引き継いだ部分が形成されない。
 なお、種結晶20の側面20b上の蒸発物23は除去しなくてもよい。種結晶20の幅方向wの幅がダイ14の幅方向wの幅以上である場合は、種結晶20の側面20b上の蒸発物23がGa系融液12に接触しないため、この蒸発物23の結晶情報はβ-Ga系単結晶25に引き継がれない。また、種結晶20の側面20b上の蒸発物23がGa系融液12に接触する場合は、β-Ga系単結晶25にこの蒸発物23の結晶情報を引き継いだ部分が形成されるが、後の工程において幅方向wの肩広げを行わないため、この部分の体積が増加することはなく、大きな問題にならない。
 続けて、図10Cに示されるように、β-Ga系単結晶25を成長させながら、厚さ方向tに肩を広げる。このとき、β-Ga系単結晶25の幅方向wには肩を広げない。
 その後、所望の大きさになるまでβ-Ga系単結晶25の育成を続ける。少なくとも種結晶20の主面20a上の蒸発物23の結晶情報を引き継いだ部分が形成されないため、β-Ga系単結晶25の肩広げ後に形成される平板状の部分は、蒸発物23の結晶情報を引き継いだ部分をまったく又はほとんど含まない。
 β-Ga系単結晶25からβ-Ga系単結晶基板を作製する方法については、第1の実施の形態と同様である。また、β-Ga系単結晶25を第2の種結晶に加工し、第2の種結晶を用いて育成した第2のβ-Ga系単結晶からβ-Ga系単結晶基板を製造する方法についても、第1の実施の形態と同様である。
 図11は、第2の実施の形態に係るβ-Ga系単結晶を成長させる工程の変形例を表す。
 この変形例においては、図11に示されるように、専門の器具28を用いて種結晶20の底部近傍の主面20a上の蒸発物23を除去する。器具28は、例えば、2本の線状の部材からなり、種結晶20を降下させて底部近傍の両側の主面20aを器具28の縁に接触させて溶かす。その結果、種結晶20の底部近傍の主面20a上の蒸発物23が除去される。その後の工程は、上記第2の実施の形態と同様である。
〔第3の実施の形態〕
 第3の実施の形態は、β-Ga系単結晶の平板状の部分に蒸発物の結晶情報を引き継いだ部分が含まれることを防止する方法において、第1の実施の形態と異なる。なお、第1の実施の形態と同様の点については、説明を省略又は簡略化する。
 図12A~12Cは、第3の実施の形態に係るβ-Ga系単結晶を成長させる工程を表す。図12A~12Cは、幅方向wに平行な方向から視た側面図である。
 まず、第1の実施の形態と同様の種結晶20を用意する。本実施の形態のダイ29は、上面のスリット29aの開口部29bを含む部分が突出した凸形状を有し、この凸形状の凸部分29cの厚さ方向tの幅は、種結晶20の厚さ方向tの幅以下である。
 そして、図12Aに示されるように、種結晶20を降下させてダイ29の表面のGa系融液12に近づける。ここで、種結晶20には、Ga系融液12の蒸発物23が付着している。
 次に、図12Bに示されるように、種結晶20を凸部分29cの表面のGa系融液12に接触させた後、引き上げる。このとき、凸部分29cの厚さ方向tの幅は、種結晶20の厚さ方向tの幅以下であり、種結晶20は凸部分29cの表面のGa系融液12にのみ接触するため、種結晶20の主面20a上の蒸発物23はGa系融液12に接触しない。このため、β-Ga系単結晶25に、種結晶20の主面20a上の蒸発物23の結晶情報を引き継いだ部分が形成されない。
 なお、種結晶20の幅方向wの幅がダイ29の幅方向wの幅以上である場合は、種結晶20の側面20b上の蒸発物23もGa系融液12に接触しないため、この蒸発物23の結晶情報はβ-Ga系単結晶25に引き継がれない。また、種結晶20の側面20b上の蒸発物23がGa系融液12に接触する場合は、β-Ga系単結晶25にこの蒸発物23の結晶情報を引き継いだ部分が形成されるが、後の工程において幅方向wの肩広げを行わないため、この部分の体積が増加することはなく、大きな問題にならない。
 続けて、図12Cに示されるように、β-Ga系単結晶25を成長させながら、厚さ方向tに肩を広げる。このとき、引き上げ速度や温度を制御し、ダイ29の表面の凸部29cの両側の領域のGa系融液12からもβ-Ga系単結晶25を成長させる。なお、β-Ga系単結晶25の幅方向wには肩を広げない。
 その後、所望の大きさになるまでβ-Ga系単結晶25の育成を続ける。少なくとも種結晶20の主面20a上の蒸発物23の結晶情報を引き継いだ部分が形成されないため、β-Ga系単結晶25の肩広げ後に形成される平板状の部分は、蒸発物23の結晶情報を引き継いだ部分をまったく又はほとんど含まない。
 β-Ga系単結晶25からβ-Ga系単結晶基板を作製する方法については、第1の実施の形態と同様である。また、β-Ga系単結晶25を第2の種結晶に加工し、第2の種結晶を用いて育成した第2のβ-Ga系単結晶からβ-Ga系単結晶基板を製造する方法についても、第1の実施の形態と同様である。
〔第4の実施の形態〕
 第4の実施の形態は、β-Ga系単結晶の平板状の部分に蒸発物の結晶情報を引き継いだ部分が含まれることを防止する方法において、第1の実施の形態と異なる。なお、第1の実施の形態と同様の点については、説明を省略又は簡略化する。
 図13A~13C、図14A~14Cは、第4の実施の形態に係るβ-Ga系単結晶を成長させる工程を表す。図13A~13C、図14A~14Cは、幅方向wに平行な方向から視た側面図である。
 まず、第1の実施の形態と同様の種結晶20を用意する。本実施の形態のダイ30は、スリット30aを有する。ダイ30は、後述する理由により、複数のスリット30aを有することが好ましい。
 そして、図13Aに示されるように、種結晶20を降下させてダイ30の表面のGa系融液12に近づける。ここで、種結晶20には、Ga系融液12の蒸発物23が付着している。
 そして、図13Bに示されるように、種結晶20をダイ30の表面のGa系融液12に接触させる。
 次に、図13Cに示されるように、種結晶20をダイ30の表面に接触させた状態で、種結晶20の一方の主面20a上の蒸発物23がダイ30に接触しない位置までスライドさせる。このとき、種結晶20をほぼ水平にスライドさせることが好ましい。
 次に、図14Aに示されるように、種結晶20を引き上げる。このとき、ダイ30に接触する主面20a上の蒸発物23からは結晶が成長し、蒸発物23の結晶情報を引き継いだ部分25bが形成されるが、ダイ30に接触しない主面20a上の蒸発物23からは結晶が成長しない。ここで、種結晶20を引き上げる距離は、例えば、数ミリである。
 次に、図14Bに示されるように、図13Cに示される工程におけるスライド方向と反対の方向に、部分25bがダイ30に接触しない位置(種結晶20の他方の主面20a上の蒸発物23がダイ30の真上の領域から外れる位置)まで種結晶20をスライドさせた後、種結晶20を引き上げる。これより、部分25bの成長が途切れる。このとき、種結晶20をほぼ水平にスライドさせることが好ましい。また、種結晶20を引き上げる距離は、例えば、数ミリである。
 次に、図14Cに示されるように、ダイ30の厚さ方向tの中心近傍の上方までスライドさせた後、引き上げ、β-Ga系単結晶25を成長させながら、厚さ方向tに肩を広げる。なお、β-Ga系単結晶25の幅方向wには肩を広げない。
 その後、所望の大きさになるまでβ-Ga系単結晶25の育成を続ける。少なくとも種結晶20の主面20a上の蒸発物23の結晶情報を引き継いだ部分が形成されないため、β-Ga系単結晶25の肩広げ後に形成される平板状の部分は、蒸発物23の結晶情報を引き継いだ部分をまったく又はほとんど含まない。
 図14A~14Cに示される工程において、種結晶20を引き上げる際に、結晶を効率的に成長させるために、種結晶20がスリット30aの真上に位置することが好ましい。このため、スリット30aが広い範囲で配置されていることが好ましく、ダイ30は、複数のスリット30aを有することが好ましい。この場合、種結晶20は、少なくとも1つのスリット30aの真上に位置すればよい。
 なお、図13Cに示される種結晶20をスライドさせる工程の前に種結晶20がダイ30の表面から離れており、種結晶20の両方の主面20a上の蒸発物23から結晶が成長している場合であっても、一方の主面20a上の蒸発物23がダイ30の真上の領域から外れる位置まで種結晶20をスライドさせることにより、図14Bに示される工程のように、ダイ30の真上の領域から外れた位置の蒸発物23の情報を引き継いだ部分の結晶成長を途切れさせることができる。
 すなわち、本実施の形態においては、種結晶20の一方の主面20a上の蒸発物23がダイ30の真上の領域から外れる位置で少なくとも一度種結晶20を引き上げ、さらに、他方の主面20a上の蒸発物23がダイ30の真上の領域から外れる位置で少なくとも一度種結晶20を引き上げればよい。
 β-Ga系単結晶25からβ-Ga系単結晶基板を作製する方法については、第1の実施の形態と同様である。また、β-Ga系単結晶25を第2の種結晶に加工し、第2の種結晶を用いて育成した第2のβ-Ga系単結晶からβ-Ga系単結晶基板を製造する方法についても、第1の実施の形態と同様である。
(実施の形態の効果)
 上記第1~4の実施の形態によれば、種結晶20に付着したGa系融液12の蒸発物23の結晶情報を引き継がないように平板状のβ-Ga系単結晶25を成長させることにより、β-Ga系単結晶25の肩広げ後に形成される平板状の部分の双晶化、多結晶化を抑えることができる。そのため、β-Ga系単結晶25から面積の大きいβ-Ga系単結晶基板を製造することができる。
 また、劈開性の強い(100)面と交わる主面26aを有するβ-Ga系単結晶25を、厚さ方向tにのみβ-Ga系単結晶の肩を広げることにより、肩広げによって生じる双晶面によって分けられる部分の体積を小さくし、基板として切り出し可能な部分の体積を増やすことができる。そのため、β-Ga系単結晶25から多くの枚数のβ-Ga系単結晶基板を切り出すことができる。
 以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。例えば、上記実施の形態においては、EFG法を用いてβ-Ga系単結晶を育成する例を示したが、他の育成方法を用いてもよい。例えば、マイクロPD(pulling-down)法等の引き下げ法を用いてもよい。また、ブリッジマン法に本実施の形態のダイ14のようなスリットを有するダイを適用し、β-Ga系単結晶を育成してもよい。
 また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。
 結晶品質の高い平板状のβ-Ga系単結晶を得ることができるβ-Ga系単結晶の育成方法、並びにβ-Ga系単結晶基板及びその製造方法を提供する。
12…Ga系融液、20…種結晶、23…蒸発物、25…β-Ga系単結晶、t…厚さ方向、w…幅方向
 

Claims (10)

  1.  平板状の種結晶をGa系融液に接触させる工程と、
     前記種結晶を引き上げ、前記種結晶の主面に付着した前記Ga系融液の蒸発物の結晶情報を引き継がないように、(100)面と交わる主面を有する平板状のβ-Ga系単結晶を成長させる工程と、
     を含み、
     前記β-Ga系単結晶を成長させるときに、厚さ方向にのみβ-Ga系単結晶の肩を広げる、β-Ga系単結晶の育成方法。
  2.  前記β-Ga系単結晶をb軸方向に成長させる、
     請求項1に記載のβ-Ga系単結晶の育成方法。
  3.  前記β-Ga系単結晶は、(101)面、(-201)面、又は(001)面を主面とする平板状の単結晶である、
     請求項2に記載のβ-Ga系単結晶の育成方法。
  4.  厚さ方向のネッキングにより、前記蒸発物の結晶情報を引き継がないように前記β-Ga系単結晶を成長させる、
     請求項1~3のいずれか1項に記載のβ-Ga系単結晶の育成方法。
  5.  前記種結晶の底部近傍の前記主面上の前記蒸発物を除去した後に前記種結晶を前記Ga系融液に接触させることにより、前記蒸発物の結晶情報を引き継がないように前記β-Ga系単結晶を成長させる、
     請求項1~3のいずれか1項に記載のβ-Ga系単結晶の育成方法。
  6.  前記種結晶の前記主面上の前記蒸発物をGa系融液に接触させずに、前記種結晶を前記Ga系融液に接触させることにより、前記蒸発物の結晶情報を引き継がないように前記β-Ga系単結晶を成長させる、
     請求項1~3のいずれか1項に記載のβ-Ga系単結晶の育成方法。
  7.  請求項1~3のいずれか1項に記載のβ-Ga系単結晶をβ-Ga系単結晶基板に加工する、
     β-Ga系単結晶基板の製造方法。
  8.  請求項1~3のいずれか1項に記載のβ-Ga系単結晶を第2の種結晶に加工する工程と、
     前記第2の種結晶を用いて第2のβ-Ga系単結晶を育成する工程と、
     前記第2のβ-Ga系単結晶をβ-Ga系単結晶基板に加工する工程と、
     を含むβ-Ga系単結晶基板の製造方法。
  9.  請求項7に記載のβ-Ga系単結晶基板の製造方法により製造されるβ-Ga系単結晶基板。
  10.  請求項8に記載のβ-Ga系単結晶基板の製造方法により製造されるβ-Ga系単結晶基板。
PCT/JP2014/062193 2013-05-13 2014-05-02 β-Ga2O3系単結晶の育成方法、並びにβ-Ga2O3系単結晶基板及びその製造方法 WO2014185302A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14797616.1A EP2998419A4 (en) 2013-05-13 2014-05-02 METHOD FOR CULTIVATING -Ga2O3 SINGLE CRYSTAL, AND -Ga2O3-SINGLE-CRYSTAL SUBSTRATE AND METHOD FOR PRODUCING SAME
US14/890,723 US9915009B2 (en) 2013-05-13 2014-05-02 Method for growing beta-Ga2O3-based single crystal, and beta-Ga2O3-based single crystal substrate and method for producing same
CN201480026184.7A CN105229208B (zh) 2013-05-13 2014-05-02 β-Ga2O3系单晶的培育方法以及β-Ga2O3系单晶基板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013101428A JP5865867B2 (ja) 2013-05-13 2013-05-13 β−Ga2O3系単結晶の育成方法、並びにβ−Ga2O3系単結晶基板の製造方法
JP2013-101428 2013-05-13

Publications (1)

Publication Number Publication Date
WO2014185302A1 true WO2014185302A1 (ja) 2014-11-20

Family

ID=51898281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062193 WO2014185302A1 (ja) 2013-05-13 2014-05-02 β-Ga2O3系単結晶の育成方法、並びにβ-Ga2O3系単結晶基板及びその製造方法

Country Status (6)

Country Link
US (1) US9915009B2 (ja)
EP (1) EP2998419A4 (ja)
JP (1) JP5865867B2 (ja)
CN (1) CN105229208B (ja)
TW (1) TWI628319B (ja)
WO (1) WO2014185302A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024078704A1 (en) 2022-10-11 2024-04-18 Forschungsverbund Berlin E.V. MELT-GROWN BULK ß-(AlxGa1-x)2O3 SINGLE CRYSTALS AND METHOD FOR PRODUCING BULK ß-(AlxGA1-x)2O3 SINGLE CRYSTALS

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5836999B2 (ja) * 2013-05-14 2015-12-24 株式会社タムラ製作所 β−Ga2O3系単結晶の育成方法、及びβ−Ga2O3系単結晶基板の製造方法
JP5816343B1 (ja) * 2014-06-30 2015-11-18 株式会社タムラ製作所 酸化ガリウム基板及びその製造方法
EP3042986A1 (en) * 2015-01-09 2016-07-13 Forschungsverbund Berlin e.V. Method for growing beta phase of gallium oxide (ß-Ga2O3) single crystals from the melt contained within a metal crucible by controlling the partial pressure of oxygen.
JP6390568B2 (ja) * 2015-09-24 2018-09-19 株式会社Sumco 酸化ガリウム単結晶育成用ルツボおよび酸化ガリウム単結晶の製造方法
CN106521625B (zh) * 2016-12-14 2018-12-28 山东大学 掺四价铬氧化镓晶体及制备方法与应用
JP7147213B2 (ja) * 2018-03-23 2022-10-05 Tdk株式会社 Efg法による単結晶育成用のダイ、efg法による単結晶育成方法及びefg法による単結晶
JP7222669B2 (ja) * 2018-11-16 2023-02-15 株式会社タムラ製作所 単結晶育成方法、種結晶、及び単結晶

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312571A (ja) 2005-05-09 2006-11-16 Koha Co Ltd Ga2O3系結晶の製造方法
JP2013082587A (ja) * 2011-10-11 2013-05-09 Tamura Seisakusho Co Ltd β−Ga2O3系単結晶の成長方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5885344A (en) * 1997-08-08 1999-03-23 Memc Electronic Materials, Inc. Non-dash neck method for single crystal silicon growth
JP3679097B2 (ja) 2002-05-31 2005-08-03 株式会社光波 発光素子
JP2006335616A (ja) * 2005-06-03 2006-12-14 Nippon Light Metal Co Ltd 酸化ガリウム単結晶
CN103781948B (zh) 2011-09-08 2017-11-17 株式会社田村制作所 晶体层叠结构体及其制造方法
JP5491483B2 (ja) 2011-11-15 2014-05-14 株式会社タムラ製作所 β−Ga2O3系単結晶の成長方法
US9539130B2 (en) 2012-10-29 2017-01-10 Cook Medical Technologies Llc Low profile stepped delivery system
JP5788925B2 (ja) 2013-04-04 2015-10-07 株式会社タムラ製作所 β−Ga2O3系単結晶の成長方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312571A (ja) 2005-05-09 2006-11-16 Koha Co Ltd Ga2O3系結晶の製造方法
JP2013082587A (ja) * 2011-10-11 2013-05-09 Tamura Seisakusho Co Ltd β−Ga2O3系単結晶の成長方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2998419A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024078704A1 (en) 2022-10-11 2024-04-18 Forschungsverbund Berlin E.V. MELT-GROWN BULK ß-(AlxGa1-x)2O3 SINGLE CRYSTALS AND METHOD FOR PRODUCING BULK ß-(AlxGA1-x)2O3 SINGLE CRYSTALS

Also Published As

Publication number Publication date
TWI628319B (zh) 2018-07-01
TW201512471A (zh) 2015-04-01
EP2998419A4 (en) 2017-01-11
JP5865867B2 (ja) 2016-02-17
CN105229208A (zh) 2016-01-06
JP2014221692A (ja) 2014-11-27
CN105229208B (zh) 2019-03-19
US9915009B2 (en) 2018-03-13
US20160122899A1 (en) 2016-05-05
EP2998419A1 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2014185302A1 (ja) β-Ga2O3系単結晶の育成方法、並びにβ-Ga2O3系単結晶基板及びその製造方法
EP3045571B1 (en) Method for producing sic single crystal
JP5836999B2 (ja) β−Ga2O3系単結晶の育成方法、及びβ−Ga2O3系単結晶基板の製造方法
EP2857562B1 (en) Sic single-crystal ingot and production method for same
EP2733239B1 (en) Sic single crystal and manufacturing process therefor
KR102654261B1 (ko) Ga2O3계 단결정 기판
CN104878449B (zh) β-Ga2O3基单晶基板
US20130068157A1 (en) Method of manufacturing silicon carbide crystal
KR20160002323A (ko) β-Ga2O3계 단결정 기판
KR101310292B1 (ko) 사파이어 시드 및 그 제조방법과 사파이어 단결정의 제조방법
JP2016117643A (ja) β−Ga2O3系単結晶基板
JP2014224041A (ja) β−Ga2O3系単結晶基板
JP6567865B2 (ja) Ga2O3系単結晶基板
JP2019182744A (ja) Ga2O3系単結晶基板
Koshi et al. Method for cultivating β-Ga 2 O 3-based single crystal, and β-Ga 2 O 3-based single crystal substrate and method for producing same
WO2022202767A1 (ja) Ga2O3系単結晶基板と、Ga2O3系単結晶基板の製造方法
WO2015166996A1 (ja) 単結晶育成方法及び単結晶育成装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480026184.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797616

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14890723

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014797616

Country of ref document: EP