WO2014184992A1 - 蛍光体および当該蛍光体を用いた発光装置、ならびに当該発光装置を備える投影装置および車両 - Google Patents

蛍光体および当該蛍光体を用いた発光装置、ならびに当該発光装置を備える投影装置および車両 Download PDF

Info

Publication number
WO2014184992A1
WO2014184992A1 PCT/JP2014/001502 JP2014001502W WO2014184992A1 WO 2014184992 A1 WO2014184992 A1 WO 2014184992A1 JP 2014001502 W JP2014001502 W JP 2014001502W WO 2014184992 A1 WO2014184992 A1 WO 2014184992A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phosphor
emitting device
light emitting
mgsi
Prior art date
Application number
PCT/JP2014/001502
Other languages
English (en)
French (fr)
Inventor
奥山 浩二郎
白石 誠吾
充 新田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2015516299A priority Critical patent/JP5861047B2/ja
Publication of WO2014184992A1 publication Critical patent/WO2014184992A1/ja
Priority to US14/748,274 priority patent/US9523034B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24-F21S41/28
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/08Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing coloured light, e.g. monochromatic; for reducing intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present disclosure relates to a phosphor including an Sr 3 MgSi 2 O 8 type crystal as a base crystal, and a light-emitting device using the phosphor.
  • the present disclosure also relates to a projection device and a vehicle including the light emitting device.
  • white LEDs have been widely used from the viewpoint of energy saving.
  • a blue light emitting element for example, a blue LED chip
  • a part of light emitted from the blue LED chip are color-converted by a phosphor, and the blue light from the blue LED chip and the light emitted from the phosphor are mixed.
  • White light is created.
  • the white LED As the white LED, the combination of a blue LED chip and a yellow phosphor is the mainstream, but because of its high color rendering and color reproducibility, LEDs in the near ultraviolet to blue-violet region, blue phosphor, and green phosphor Also, white LEDs that combine three types of phosphors, red phosphors, have been developed.
  • LD laser diode
  • a blue phosphor As a blue phosphor, a phosphor represented by Sr 3 MgSi 2 O 8 : Eu 2+ (SMS phosphor) is known, and its use as a blue phosphor of a white LED has been studied (Patent Document 1). reference).
  • the present disclosure aims to increase the quantum efficiency of light emission of the SMS phosphor.
  • the phosphor according to the phosphor of the present disclosure includes Sr 3 MgSi 2 O 8 type crystal and SrMgSiO 4 type crystal as a base crystal, and Eu 2+ , or Eu 2+ and Mn 2+ as an emission center.
  • the quantum efficiency of light emission of the SMS phosphor can be increased.
  • FIG. 1 Cross-sectional schematic diagram illustrating an example of a light-emitting device according to Embodiment 2 of the present disclosure
  • Schematic which shows the structural example of the projection apparatus which concerns on Embodiment 3 of this indication.
  • Schematic which shows the structural example of the color wheel of the projector of FIG.
  • Schematic which shows the structural example of the blue light emission part of the color wheel of FIG.
  • Schematic which shows the structural example of the vehicle which concerns on Embodiment 4 of this indication.
  • Schematic which shows the structural example of the wavelength conversion member of the headlight of FIG.
  • One embodiment of the present disclosure is a phosphor that includes an Sr 3 MgSi 2 O 8 type crystal and an SrMgSiO 4 type crystal as a base crystal, and Eu 2+ , or Eu 2+ and Mn 2+ as an emission center.
  • the phosphor may include Eu 2+ as the emission center and not include Mn 2+ .
  • the host crystal of the phosphor has the general formula Sr 3 + j Mg 1 + k Si 2 + m O 8 + n (0 ⁇ j ⁇ 1.0, 0 ⁇ k ⁇ 1.0, 0 ⁇ m ⁇ 1.0, It may have a composition represented by 0 ⁇ n ⁇ 4.0).
  • Another embodiment of the present disclosure is a light emitting device having a phosphor layer containing the above phosphor.
  • the light-emitting device further includes a semiconductor light-emitting element that emits light having a peak wavelength in a wavelength range of 380 nm to 420 nm, and the phosphor of the phosphor layer is a semiconductor light-emitting element. It may be one that absorbs at least part of the emitted light and emits light having a peak wavelength in a longer wavelength range than the absorbed light.
  • the semiconductor light emitting element may have a light emitting layer composed of a gallium nitride-based compound semiconductor.
  • Another embodiment of the present disclosure is a projection device including the above light-emitting device.
  • the projection apparatus further includes an image generation unit that generates an image using light from the light-emitting device, and an emission optical system that emits the image generated by the image generation unit. Also good.
  • Still another embodiment of the present disclosure is a vehicle including the light emitting device described above.
  • the vehicle may include a headlight including the light emitting device and an emission optical system that irradiates light from the light emitting device forward.
  • Embodiment 1 is a phosphor containing Sr 3 MgSi 2 O 8 type crystal and SrMgSiO 4 type crystal as a base crystal and Eu 2+ , or Eu 2+ and Mn 2+ as an emission center.
  • the host crystal is a mixed crystal of Sr 3 MgSi 2 O 8 and SrMgSiO 4 (that is, Sr 3 MgSi 4 in one particle).
  • Sr 3 MgSi 2 O 8 Eu 2+ type phosphor in which the base crystal is composed of a single phase of Sr 3 MgSi 2 O 8 type crystal by having 2 O 8 type crystal phase and SrMgSiO 4 type crystal phase) It was found that the quantum efficiency of light emission can be increased.
  • the fact that two types of crystals, Sr 3 MgSi 2 O 8 type crystal and SrMgSiO 4 type crystal, are contained in the host crystal of the phosphor can be confirmed by measuring the X-ray diffraction pattern of the phosphor, for example. it can.
  • the abundance ratio between the Sr 3 MgSi 2 O 8 type crystal and the SrMgSiO 4 type crystal is not particularly limited.
  • the composition of the host crystal of the phosphor is not particularly limited as long as Sr 3 MgSi 2 O 8 type crystal and SrMgSiO 4 type crystal are included.
  • the host crystal of the phosphor has the general formula Sr 3 + j Mg 1 + k Si 2 + m O 8 + n (0 ⁇ j ⁇ 1.0, 0 ⁇ k ⁇ 1.0, 0 ⁇ m ⁇ 1.0, 0 ⁇ N ⁇ 4.0).
  • quantum efficiency becomes very high.
  • the host crystal of the phosphor has a composition represented by Sr 3 + j Mg 1 + j Si 2 + j O 8 + 4j (0 ⁇ j ⁇ 1.0).
  • the phosphor of the present embodiment includes Eu 2+ as the emission center and can further include Mn 2+ . That is, the phosphor of the present embodiment may contain Mn 2+ as the emission center or may not contain Mn 2+ .
  • the emission center is Eu 2+
  • the phosphor emits blue light
  • the emission center contains both Eu 2+ and Mn 2+
  • the phosphor can emit red light as well as blue light. It is. That is, if without the case and Mn 2+ containing Mn 2+ and In as a luminescent center, although the application and the nature of the phosphor are different, can be any case improve the luminous efficiency.
  • the content of Eu in the phosphor is not particularly limited as long as the phosphor can emit light, and is, for example, 0.1 atomic% or more and 10 atomic% or less with respect to Sr. At this time, when the Eu content in the phosphor is 0.5 atomic% or more and 9 atomic% or less with respect to Sr, the luminous efficiency is particularly high.
  • the content of Mn in the phosphor is not particularly limited as long as the phosphor can emit light, and is, for example, 0.1 atomic percent or more and 20 atomic percent or less with respect to Mg.
  • strontium raw material of the phosphor of the present embodiment a strontium compound that can be converted into strontium oxide by firing, such as strontium hydroxide, strontium carbonate, strontium nitrate, strontium halide, or strontium oxalate with high purity (for example, purity 99% or more) Alternatively, high purity (purity 99% or more) strontium oxide can be used.
  • magnesium raw material examples include magnesium compounds that can be converted to magnesium oxide by firing, such as magnesium hydroxide, magnesium carbonate, magnesium nitrate, magnesium halide, magnesium oxalate, or basic magnesium carbonate with high purity (for example, purity 99% or more) or High purity (for example, 99% or more purity) magnesium oxide can be used.
  • magnesium compounds that can be converted to magnesium oxide by firing such as magnesium hydroxide, magnesium carbonate, magnesium nitrate, magnesium halide, magnesium oxalate, or basic magnesium carbonate with high purity (for example, purity 99% or more) or High purity (for example, 99% or more purity) magnesium oxide can be used.
  • europium raw material a high-purity (for example, 99% or more) europium hydroxide, europium carbonate, europium nitrate, europium halide, europium oxalate, or a europium compound that can be converted to europium oxide by firing or a high-purity (for example, purity 99). % Or more) of europium oxide.
  • a high-purity for example, 99% or more
  • europium hydroxide for example, 99% or more
  • europium carbonate for example, europium carbonate, europium nitrate, europium halide, europium oxalate, or a europium compound that can be converted to europium oxide by firing or a high-purity (for example, purity 99). % Or more) of europium oxide.
  • silicon raw material various oxide raw materials can be used.
  • fluoride for example, aluminum fluoride
  • chloride for example, calcium chloride
  • the phosphor is produced by mixing and firing the above raw materials.
  • the raw material may be mixed by wet mixing in a solution or dry mixing of a dry powder.
  • a medium stirring mill, a planetary mill, a vibration mill, a jet mill, a V-type mixer, a stirrer, or the like can be used.
  • the mixing ratio of the raw materials, shifting the composition of Sr 3 MgSi 2 O 8, Sr 3 MgSi 2 O 8 type crystalline and SrMgSiO 4 type crystal can be adjusted to produce. Even if the base crystal is out of the composition of Sr 3 + j Mg 1 + j Si 2 + j O 8 + 4j , the above two types of crystal phases can be formed.
  • Sr 3 + j Mg 1 + j Si 2 + j O 8 + 4j (0 ⁇ j ⁇ 1.0) or a composition including a range close thereto [eg, Sr 3 + j Mg 1 + k Si 2 + m O 8 + n (0 ⁇ j ⁇ 1.0, 0 ⁇ k ⁇ 1.0, 0 ⁇ m ⁇ 1.0, 0 ⁇ n ⁇ 4.0)] is adjusted.
  • the mixing ratio of the raw materials is not particularly limited as long as Sr 3 MgSi 2 O 8 type crystals and SrMgSiO 4 type crystals are formed.
  • Calcination of the mixed powder is performed for about 1 to 50 hours in a temperature range of 1100 to 1500 ° C. in a reducing atmosphere (for example, in a nitrogen-hydrogen mixed gas atmosphere).
  • the furnace used for firing may be an industrially used furnace, and a continuous or batch type electric furnace or gas furnace such as a pusher furnace may be used.
  • a raw material such as hydroxide, carbonate, nitrate, halide, oxalate or the like that can be converted into an oxide by firing is calcined in the temperature range of 800 to 1400 ° C. before the main firing. preferable.
  • the obtained phosphor powder is pulverized again using a ball mill, a jet mill or the like, and further washed or classified as necessary to adjust the particle size distribution and fluidity of the phosphor powder.
  • the quantum efficiency of light emission at is increased. Therefore, if the phosphor of this embodiment is used in a light emitting device, the efficiency of the light emitting device can be improved.
  • the second embodiment is a light emitting device having a phosphor layer containing the phosphor of the first embodiment.
  • light emitting devices include light sources for projection devices such as projectors and head-up displays that use light emitting diodes (LEDs) or semiconductor laser diodes (LDs) and phosphors; headlight light sources for vehicles; spotlights and ceilings.
  • LEDs light emitting diodes
  • LDs semiconductor laser diodes
  • Light sources for white LED lighting such as lights and vehicle room lamps; flash light sources for imaging devices such as digital cameras, mobile phones and smartphones; monitors for personal computers (PCs), notebook personal computers, televisions, personal digital assistants (PDA), backlight light sources for liquid crystal display devices such as smartphones, tablet PCs, mobile phones, and the like, and sensors, sensitizers, plasma display panels (PDP), etc. that use phosphors.
  • PCs personal computers
  • PDA personal digital assistants
  • LCD display devices such as smartphones, tablet PCs, mobile phones, and the like
  • FIG. 1 is a schematic cross-sectional view illustrating an example of a light-emitting device according to Embodiment 2.
  • the light emitting device 10 has a phosphor layer including a resin 12 and a phosphor 11 dispersed in the resin 12, and further includes a semiconductor light emitting element 13.
  • the semiconductor light emitting element 13 is fixed to the substrate 17 through a die bond 15. Further, the semiconductor light emitting element 13 is electrically connected to the electrode 14 by a bonding wire 16.
  • the semiconductor light emitting element 13 emits light (near ultraviolet to blue violet region) having a peak wavelength in a wavelength range of, for example, 380 nm to 420 nm.
  • the semiconductor light emitting element 13 for example, a semiconductor light emitting element having a light emitting layer made of a gallium nitride compound semiconductor can be used.
  • the semiconductor light emitting element 13 is, for example, an LD or an LED.
  • the phosphor 11 absorbs at least part of the light emitted by the semiconductor light emitting element 13 and emits light having a peak wavelength within a longer wavelength range than the absorbed light.
  • the phosphor 11 includes the phosphor of the first embodiment as a blue phosphor, and further includes a yellow phosphor. By using the mixture of the phosphor of Embodiment 1 and the yellow phosphor as the phosphor 11, the light emitting device 10 emits white light by mixing blue light and yellow light.
  • the phosphor 11 is not limited to the above, and for example, a mixture of the phosphor of Embodiment 1 as a blue phosphor, a green phosphor, and a red phosphor can also be used. Known yellow phosphors, green phosphors, and red phosphors can be used, for example.
  • the light-emitting device can be configured as a light-emitting device that emits a color other than white by using only the phosphor of Embodiment 1 or in combination with phosphors of other colors.
  • the light emitting device 10 may have a filter that blocks light having a wavelength of 420 nm or less.
  • the light emitting device of the second embodiment is configured to include an ultraviolet ray generator and a phosphor layer containing the phosphor of the first embodiment, and the phosphor is caused to emit light by the ultraviolet rays generated from the ultraviolet light emitter. You can also.
  • Embodiment 3 is a projection apparatus provided with the light-emitting device of Embodiment 2 described above.
  • the projection device is, for example, a projector or a head-up display.
  • FIG. 2 is a schematic diagram illustrating a configuration example of the projection apparatus 20 according to the third embodiment.
  • the projection device 20 includes a light emitting device 22 that forms a light source unit, an image generation unit 24, and an emission optical system 26.
  • the light-emitting device of Embodiment 2 is used for the light-emitting device 22.
  • the light emitting device 22 includes, for example, an excitation light source and a color wheel 30.
  • a semiconductor light emitting element for example, LD, LED, etc.
  • the semiconductor light emitting element for example, a semiconductor light emitting element having a light emitting layer made of a gallium nitride compound semiconductor can be used.
  • FIG. 3 is a schematic diagram illustrating a configuration example of the color wheel 30.
  • the color wheel 30 has a disk shape and is rotatable.
  • the color wheel 30 includes a blue light emitting unit 32, a red light emitting unit 34, and a green light emitting unit 36 that receive light from the excitation light source and output blue light, red light, and green light, respectively.
  • FIG. 4 is a schematic diagram illustrating a configuration example of the blue light emitting unit 32.
  • the blue light emitting unit 32 includes a phosphor layer including a matrix 42 and the phosphor 40 according to the first embodiment that is dispersed in the matrix 42 and emits blue light.
  • the matrix 42 may be an inorganic material or an organic material.
  • the matrix 42 is, for example, resin, glass, ZnO crystal, ceramic, or the like.
  • each of the red light emitting unit 34 and the green light emitting unit 36 has a phosphor layer including a matrix and a red phosphor and a green phosphor dispersed in the matrix.
  • Each of these phosphors absorbs part of the light emitted by the semiconductor light emitting element, and emits blue light, red light, and green light having a peak wavelength within a longer wavelength range than the absorbed light.
  • the color wheel 30 includes light emitting units other than the blue light emitting unit 32, the red light emitting unit 34, and the green light emitting unit 36 (for example, a white light emitting unit, a yellow light emitting unit, a cyan light emitting unit, and a magenta light emitting unit). You may have.
  • the light emitting device 22 may have a condenser lens between the excitation light source and the color wheel 30.
  • the light emitting device 22 may have a relay lens for collecting and emitting the light from the color wheel 30.
  • the light emitting device 22 may have a rod lens.
  • the light that has passed through the color wheel is emitted from the light emitting device 22, and the image generating unit 24 generates an image using the light from the light emitting device 22.
  • the image generation unit 24 includes, for example, a spatial light modulator (SLM) such as a digital micromirror device (DMD).
  • SLM spatial light modulator
  • DMD digital micromirror device
  • the emission optical system 26 emits the image generated by the image generation unit 24.
  • the emission optical system 26 includes, for example, a projection lens including a plurality of lenses.
  • the emitted image is projected on a wall, a screen, a window glass (for example, an automobile windshield, an aircraft windshield), etc., outside the projection apparatus 20.
  • a window glass for example, an automobile windshield, an aircraft windshield, etc.
  • Projector 20 may have a filter (for example, a filter that blocks light having a wavelength of 420 nm or less).
  • a filter for example, a filter that blocks light having a wavelength of 420 nm or less.
  • Other configurations of the projection device 20 may be in accordance with known techniques, and may include optical members such as lenses, mirrors, and prisms other than those described above as necessary.
  • a projector such as a highly efficient projector and a head-up display.
  • Embodiment 4 is a vehicle provided with the light-emitting device of Embodiment 2 described above.
  • the vehicle is, for example, an automobile, a motorcycle, a railway vehicle, a streetcar, a construction vehicle, an agricultural vehicle, or the like.
  • FIG. 5 is a schematic diagram illustrating a configuration example of a vehicle 50 using the light-emitting device of Embodiment 2 as a headlight.
  • the vehicle 50 includes a headlight 52 that includes the light-emitting device of the above-described second embodiment and an emission optical system that irradiates light from the light-emitting device forward.
  • FIG. 6 is a schematic diagram showing a configuration example of the headlight 52.
  • the headlight 52 includes an excitation light source 60, a wavelength conversion member 62, and an emission optical system 64 that emits light from the wavelength conversion member 62 forward.
  • the excitation light source 60 for example, a semiconductor light emitting element (for example, LD, LED, etc.) that emits light having a peak wavelength within a wavelength range of 380 nm to 420 nm is used.
  • a semiconductor light emitting element for example, a semiconductor light emitting element having a light emitting layer made of a gallium nitride compound semiconductor can be used.
  • the excitation light source 60 may include an optical fiber that guides light from the semiconductor light emitting element.
  • the wavelength conversion member 62 receives the excitation light from the excitation light source 60 and emits light having a longer wavelength than the excitation light.
  • the wavelength conversion member 62 includes a phosphor layer including a matrix 74 and the phosphor 70 and the yellow phosphor 72 according to the first embodiment that emit blue light and are dispersed in the matrix 74.
  • the matrix 74 may be an inorganic material or an organic material.
  • the matrix 74 is, for example, glass, ZnO crystal, ceramic, or the like.
  • Each of the phosphors 70 and 72 absorbs part of the light emitted by the semiconductor light emitting element, and emits blue light and yellow light having a peak wavelength in a wavelength range longer than the absorbed light. White light is generated by mixing blue light and yellow light.
  • the combination of fluorescent substance is not restricted above, For example, the combination of the fluorescent substance of Embodiment 1, red fluorescent substance, and green fluorescent substance may be sufficient.
  • the emission optical system 64 emits the light from the wavelength conversion member 62 forward.
  • the exit optical system includes, for example, a reflector and an exit lens.
  • the headlight 52 may have a filter (for example, a filter that blocks light having a wavelength of 420 nm or less).
  • a filter for example, a filter that blocks light having a wavelength of 420 nm or less.
  • the configuration of the vehicle 50 other than the headlight 52 may follow a known technique.
  • the vehicle of the fourth embodiment can include the light-emitting device of the second embodiment as in-vehicle lighting, instrument backlights, and the like.
  • the mixture was dried at 150 ° C. for 10 hours, and the dried powder was calcined at 1100 ° C. for 4 hours in the air.
  • This calcined product was baked at 1200 to 1400 ° C. for 4 hours in a mixed gas of 98% by volume of nitrogen and 2% by volume of hydrogen to obtain a phosphor.
  • the X-ray diffraction pattern of the obtained phosphor was measured using an X-ray diffraction measurement apparatus (RINT2100, Rigaku, Cu—K ⁇ ray).
  • the main peak of the SrMgSiO 4 type crystal with respect to the diffraction intensity b detected from 2 ⁇ 31.8 ° to 32.8 °, which is the main peak of the Sr 3 MgSi 2 O 8 type crystal, from the obtained X-ray diffraction pattern
  • the emission spectrum of the produced phosphor under blue-violet light irradiation (405 nm excitation) was measured using a spectrofluorometer (FP-6500 manufactured by JASCO Corporation).
  • Table 1 shows the composition ratio and X-ray diffraction intensity ratio a of the prepared phosphor. Table 1 shows the photon number ratios obtained from the measurement results of the emission spectrum. This photon number ratio is a relative value with respect to sample number 1.
  • samples marked with * are comparative examples, and samples not marked with * are examples.
  • each phosphor sample of the example excluding sample number 7 has high quantum efficiency of light emission.
  • the quantum number ratio of each sample shown in Table 1 includes non-luminous SrMgSiO 4 : Eu, the more the SrMgSiO 4 crystal is, the smaller the emission volume in the phosphor. Therefore, the volume ratio between Sr 3 MgSi 2 O 8 and SrMgSiO 4 was calculated, and the quantum number ratio per unit volume of Sr 3 MgSi 2 O 8 : Eu actually emitted is also shown in Table 1. Looking at this, the phosphor of the sample No. 1 is a single crystal of Sr 3 MgSi 2 O 8 to, including the Sample No.
  • the practicality is high when the X-ray diffraction intensity ratio a is 0.01 ⁇ a ⁇ 0.18, and the higher is the X-ray diffraction intensity ratio a. Is when 0.03 ⁇ a ⁇ 0.06.
  • the high practicality is that the host crystal of the phosphor has a general formula of Sr 3 + j Mg 1 + k Si 2 + m O 8 + n (0 ⁇ j ⁇ 1.0, 0 ⁇ k ⁇ 1.0, 0 ⁇ m ⁇ 1.0). , 0 ⁇ n ⁇ 4.0).
  • a phosphor prepared in the same manner as Sample Nos. 1 to 4 and dimethyl silicone resin were kneaded using a three-roll kneader to obtain a mixture.
  • the mixture is filled in a mold, degassed by vacuum defoaming, and then bonded to a 600 ⁇ m square gallium nitride semiconductor light emitting device (peak wavelength: 405 nm) wired on the substrate, and preheated at 150 ° C. for 10 minutes. Went. After removing the mold, heat curing was performed at 150 ° C. for 4 hours to obtain a light emitting device as shown in FIG.
  • the weight ratio of the phosphor in the mixture of phosphor and resin was 50 weight percent.
  • the luminous efficiency was measured by applying a current of 500 mA to the samples of Examples and Comparative Examples with a pulse width of 30 ms, and measuring blue light emission with a total luminous flux measurement system (HM ⁇ 300 mm).
  • Table 2 shows the phosphor sample numbers used in the manufactured light-emitting device and the light-emitting efficiency of the light-emitting device sample.
  • the luminous efficiency is a relative value with respect to the sample number 12; in Table 2, samples marked with * are comparative examples, and samples not marked with * are examples.
  • the light emitting devices of the examples have high luminous efficiency.
  • a light-emitting device having a phosphor layer containing the phosphor of the present disclosure is highly efficient and is useful in various applications.
  • a light source for a projection device a headlight light source for a vehicle, a light source for white LED illumination, a flashlight light source for an imaging device, a liquid crystal using a light emitting diode (LED) or a semiconductor laser diode (LD) and a phosphor. It can be used for applications such as a backlight light source for display devices, and sensors, sensitizers, plasma display panels (PDPs), etc. that use phosphors.
  • PDPs plasma display panels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Multimedia (AREA)

Abstract

 蛍光体は、母体結晶としてSrMgSi型結晶とSrMgSiO型結晶とを含み、かつ発光中心としてEu2+、またはEu2+およびMn2+を含む。あるいは、蛍光体は、母体結晶としてSrMgSi型結晶とSrMgSiO型結晶とを含み、かつ発光中心としてEu2+を含みMn2+を含まない。発光装置(10)は、その蛍光体を含む蛍光体層を有する。投影装置および車両は、その発光装置(10)を備える。

Description

蛍光体および当該蛍光体を用いた発光装置、ならびに当該発光装置を備える投影装置および車両
 本開示は、母体結晶としてSrMgSi型結晶を含む蛍光体、および当該蛍光体を用いた発光装置に関する。本開示はまた、当該発光装置を備える、投影装置および車両に関する。
 近年、省エネルギーの観点から白色LEDが広く用いられるようになってきている。一般的な白色LEDでは、青色発光素子(例えば青色LEDチップ)と青色LEDチップからの発光の一部を蛍光体で色変換し、青色LEDチップからの青色光と蛍光体からの発光とを混色して白色光が作り出されている。
 白色LEDとしては、青色LEDチップと黄色蛍光体との組み合わせが主流であるが、演色性、色再現性等が高いことから、近紫外から青紫色領域のLEDと、青色蛍光体、緑色蛍光体および赤色蛍光体の3種類の蛍光体とを組み合わせた白色LEDの開発も行われている。
 また、プロジェクタ光源や車両用ヘッドライト光源等、高い発光エネルギーが要求される用途では、近紫外から青紫色領域のレーザーダイオード(LD)と蛍光体とを組み合わせた光源の開発が行われている。
 青色蛍光体としては、SrMgSi:Eu2+で表される蛍光体(SMS蛍光体)が知られており、白色LEDの青色蛍光体として用いることが検討されている(特許文献1参照)。
国際公開第2012-033122号
 しかしながら、このような従来の技術では、SMS蛍光体の発光の量子効率が低いという問題があり、その結果、高効率の発光装置を構成することが困難であった。そこで本開示は、SMS型蛍光体の発光の量子効率を高めることを目的とする。
 本開示の蛍光体に係る蛍光体は、母体結晶としてSrMgSi型結晶とSrMgSiO型結晶とを含み、かつ発光中心としてEu2+、またはEu2+およびMn2+を含む。
 本開示の蛍光体によれば、SMS型蛍光体の発光の量子効率を高めることができる。
本開示の実施形態2に係る発光装置の一例を示す断面模式図 本開示の実施形態3に係る投影装置の構成例を示す概略図 図2の投影装置のカラーホイールの構成例を示す概略図 図3のカラーホイールの青色発光部の構成例を示す概略図 本開示の実施形態4に係る車両の構成例を示す概略図 図5のヘッドライトの構成例を示す概略図 図6のヘッドライトの波長変換部材の構成例を示す概略図
 以下、特定の実施形態を挙げて本発明を詳細に説明するが、当然ながら本発明はこれらの実施形態に限定されるものでなく、本発明の技術的範囲を逸脱しない範囲で適宜変更して実施することができる。
 本開示の一実施形態は、母体結晶としてSrMgSi型結晶とSrMgSiO型結晶とを含み、かつ発光中心としてEu2+、またはEu2+およびMn2+を含む蛍光体である。当該実施態様では、蛍光体が、発光中心としてEu2+を含みMn2+を含まなくてもよい。
 当該実施形態の一態様では、蛍光体が、Cu-Kα線で測定したX線回折パターンにおいて、2θ=22°以上23°以下、2θ=30.6°以上31.7°以下、および2θ=31.8°以上32.8°以下に回折ピークを有し、かつ2θ=28°以上30.4°以下および2θ=34°以上35.5°以下に回折ピークを有するものであってもよい。
 当該実施形態の一態様では、蛍光体についてCu-Kα線で測定したX線回折パターンにおいて、SrMgSi型結晶に由来する2θ=31.8°以上32.8°以下に存在する最大の回折ピークの強度bと、SrMgSiO4型結晶に由来する2θ=34°以上35.5°以下に存在する最大の回折ピークの強度cとの比a(a=c/b)が、0.01≦a≦0.18であってもよい。
 当該実施形態の一態様では、蛍光体の母体結晶が、一般式Sr3+jMg1+kSi2+m8+n(0<j≦1.0、0<k≦1.0、0<m≦1.0、0<n≦4.0)で表される組成を有するものであってもよい。
 本開示の別の実施形態は、上記の蛍光体を含む蛍光体層を有する発光装置である。
 当該実施形態の一態様では、上記の発光装置は、380nm以上420nm以下の波長範囲内にピーク波長を有する光を放つ半導体発光素子をさらに有し、蛍光体層の蛍光体が、半導体発光素子が放つ光の少なくとも一部を吸収し、吸収した光よりも長い波長範囲内にピーク波長を有する光を放つものであってもよい。
 当該実施形態の一態様では、半導体発光素子が、窒化ガリウム系化合物半導体で構成した発光層を有するものであってもよい。
 本開示のまた別の実施形態は、上記の発光装置を備える投影装置である。
 当該実施形態の一態様では、投影装置が、上記の発光装置からの光を用いて画像を生成する画像生成部と、画像生成部が生成した画像を出射する出射光学系とをさらに備えていてもよい。
 本開示のさらにまた別の実施形態は、上記の発光装置を備える車両である。
 当該実施形態の一態様では、車両は、上記の発光装置と上記の発光装置からの光を前方に照射する出射光学系とを含む、ヘッドライトを備えていてもよい。
 (実施形態1)
 実施形態1は、母体結晶としてSrMgSi型結晶とSrMgSiO型結晶とを含み、かつ発光中心としてEu2+、またはEu2+およびMn2+を含む蛍光体である。
 本発明者らが鋭意検討した結果、SrMgSi:Eu2+型蛍光体において、母体結晶をSrMgSiとSrMgSiOとの混晶(すなわち、1粒子中にSrMgSi型結晶相とSrMgSiO型結晶相が存在する)とすることにより、母体結晶がSrMgSi型結晶の単一相からなるSrMgSi:Eu2+型蛍光体よりも、発光の量子効率を高めることができることを見出した。
 蛍光体の母体結晶中に、SrMgSi型結晶とSrMgSiO型結晶の2種類の結晶が含まれることは、例えば、蛍光体のX線回折パターンを測定することにより確認することができる。本実施形態の蛍光体は、例えば、Cu-Kα線でX線回折パターンを測定した場合には、2θ=22°以上23°以下、2θ=30.6°以上31.7°以下、および2θ=31.8°以上32.8°以下に回折ピークを有する。これらは、SrMgSi型結晶に由来するものである。加えて、2θ=28°以上30.4°以下および2θ=34°以上35.5°以下に回折ピークを有する。これらは、SrMgSiO型結晶に由来するものである。
 SrMgSi型結晶とSrMgSiO型結晶との存在比は、特に制限はないが、例えば、一つの態様では、本実施形態の蛍光体についてCu-Kα線で測定したX線回折パターンにおいて、SrMgSi型結晶に由来する2θ=31.8°以上32.8°以下に存在する最大の回折ピークの強度bと、SrMgSiO型結晶に由来する2θ=34°以上35.5°以下に存在する最大の回折ピークの強度cとの比a(a=c/b)が、0.01≦a≦0.18である。このとき、量子効率が非常に高くなる。また、当該比aが0.03≦a≦0.06の場合には、量子効率が特に高くなる。
 蛍光体の母体結晶の組成は、SrMgSi型結晶とSrMgSiO型結晶とが含まれている限り特に制限はない。例えば、一つの態様では、蛍光体の母体結晶が、一般式Sr3+jMg1+kSi2+m8+n(0<j≦1.0、0<k≦1.0、0<m≦1.0、0<n≦4.0)で表される組成を有する。このとき、量子効率が非常に高くなる。また例えば、一つの態様では、蛍光体の母体結晶が、Sr3+jMg1+jSi2+j8+4j(0<j≦1.0)で表される組成を有する。
 本実施形態の蛍光体は、発光中心としてEu2+含み、さらにMn2+を含むことができる。すなわち、本実施形態の蛍光体は、発光中心としてMn2+を含んでいてもよく、また、Mn2+を含んでいなくてもよい。発光中心がEu2+の場合には蛍光体は青色発光し、発光中心がEu2+とMn2+の両方を含む場合には、蛍光体は、青色発光のみならず赤色発光するという二重発光が可能である。すなわち、発光中心としてMn2+を含む場合とMn2+を含まない場合とでは、蛍光体の用途および性質が異なるが、何れの場合も発光効率を向上させることができる。
 蛍光体中のEuの含有量については、蛍光体が発光し得る限り特に制限はなく、例えば、Srに対して、0.1原子%以上10原子%以下である。このとき、蛍光体中のEuの含有量がSrに対して、0.5原子%以上9原子%以下であると、発光効率が特に高くなる。蛍光体中のMnの含有量についても、蛍光体が発光し得る限り特に制限はなく、例えば、Mgに対して0.1原子%以上20原子%以下である。
 次に本実施形態の蛍光体の製造方法の一例について説明する。
 本実施形態の蛍光体のストロンチウム原料としては、高純度(例えば純度99%以上)の水酸化ストロンチウム、炭酸ストロンチウム、硝酸ストロンチウム、ハロゲン化ストロンチウム若しくはシュウ酸ストロンチウムなど、焼成により酸化ストロンチウムになりうるストロンチウム化合物かまたは高純度(純度99%以上)の酸化ストロンチウムを用いることができる。
 マグネシウム原料としては、高純度(例えば純度99%以上)の水酸化マグネシウム、炭酸マグネシウム、硝酸マグネシウム、ハロゲン化マグネシウム、シュウ酸マグネシウム若しくは塩基性炭酸マグネシウムなど、焼成により酸化マグネシウムになりうるマグネシウム化合物かまたは高純度(例えば純度99%以上)の酸化マグネシウムを用いることができる。
 ユーロピウム原料としては、高純度(例えば純度99%以上)の水酸化ユーロピウム、炭酸ユーロピウム、硝酸ユーロピウム、ハロゲン化ユーロピウム若しくはシュウ酸ユーロピウムなど焼成により酸化ユーロピウムになりうるユーロピウム化合物かまたは高純度(例えば純度99%以上)の酸化ユーロピウムを用いることができる。
 シリコン原料については、様々な酸化物原料を用いることができる。
 また、反応を促進するために、フッ化物(例えばフッ化アルミニウム等)や塩化物(例えば塩化カルシウム等)を少量添加することが好ましい。
 蛍光体の製造は、上記の原料を混合し、焼成して行うが、原料の混合方法としては、溶液中での湿式混合でも乾燥粉体の乾式混合でもよく、工業的に通常用いられるボールミル、媒体撹拌ミル、遊星ミル、振動ミル、ジェットミル、V型混合機、攪拌機等を用いることができる。
 原料混合の際には、原料の混合比を、SrMgSiという組成からずらし、SrMgSi型結晶とSrMgSiO型結晶とが生成するように調整する。母材結晶がSr3+jMg1+jSi2+j8+4jという組成を外れていても、上記2種の結晶相が形成し得るため、本実施形態の蛍光体を得るための簡単な方法としては、Sr3+jMg1+jSi2+j8+4j(0<j≦1.0)で表される組成またはそれに近い範囲を含む組成〔例えば、Sr3+jMg1+kSi2+m8+n(0<j≦1.0、0<k≦1.0、0<m≦1.0、0<n≦4.0)で表される組成〕になるように原料の混合比を調整する。なお、原料の混合比は、SrMgSi型結晶とSrMgSiO型結晶とが生成する限り特に限定されない。
 混合粉体の焼成は、還元性雰囲気下(例えば、窒素-水素混合ガス雰囲気下等)1100~1500℃の温度範囲で1~50時間程度行う。
 焼成に用いる炉は工業的に通常用いられる炉を用いることができ、プッシャー炉等の連続式またはバッチ式の電気炉やガス炉を用いることができる。
 原料として水酸化物、炭酸塩、硝酸塩、ハロゲン化物、シュウ酸塩など焼成により酸化物になりうるものを使用した場合、本焼成の前に800~1400℃の温度範囲にて仮焼することが好ましい。
 得られた蛍光体粉末を、ボールミル、ジェットミルなどを用いて再度粉砕し、さらに必要に応じて洗浄あるいは分級することにより、蛍光体粉末の粒度分布および流動性を調整することができる。
 本実施形態の蛍光体においては、母体結晶がSrMgSi型結晶の単一相からなるSrMgSi:Eu2+型蛍光体に比べ、SrMgSi型結晶中での発光の量子効率が高くなる。したがって、本実施形態の蛍光体を発光装置に使用すれば、発光装置の効率を改善することができる。
 (実施形態2)
 実施形態2は、上述の実施形態1の蛍光体を含む蛍光体層を有する発光装置である。発光装置の例としては、発光ダイオード(LED)または半導体レーザーダイオード(LD)と蛍光体とを利用する、プロジェクタ、ヘッドアップディスプレイなどの投影装置用の光源;車両用ヘッドライト光源;スポットライト、シーリングライト、車両用ルームランプなどの白色LED照明用の光源;デジタルカメラ、携帯電話機、スマートフォンなどの撮像装置用のフラッシュライト光源;パーソナルコンピュータ(PC)用モニター、ノート型パーソナルコンピュータ、テレビ、携帯情報端末(PDA)、スマートフォン、タブレットPC、携帯電話などの液晶ディスプレイ装置用のバックライト光源等、および、蛍光体を利用する、センサー、増感器、プラズマディスプレイパネル(PDP)等が挙げられる。
 以下、実施形態2の発光装置の具体的な構成について図面を参照しながら説明するが、本発明は、以下の構成に限られるものではない。図1は、実施形態2の発光装置の一例を示す断面模式図である。
 発光装置10は、樹脂12と、樹脂12中に分散した蛍光体11とを含む蛍光体層を有し、かつ半導体発光素子13をさらに有する。半導体発光素子13は、ダイボンド15を介して基板17に固定されている。また、半導体発光素子13は、ボンディングワイヤ16により、電極14に電気的に接続されている。電極14に所定の電圧を加えることにより、半導体発光素子13は、例えば、380nm以上420nm以下の波長範囲内にピーク波長を有する光(近紫外~青紫色領域)を放つ。半導体発光素子13には、例えば、窒化ガリウム系化合物半導体で構成した発光層を有する半導体発光素子を用いることができる。半導体発光素子13は、例えば、LD、LEDなどである。蛍光体11は、半導体発光素子13が放つ光の少なくとも一部を吸収し、吸収した光よりも長い波長範囲内にピーク波長を有する光を放つ。蛍光体11は、青色蛍光体として実施形態1の蛍光体を含み、さらに黄色蛍光体を含む。蛍光体11として実施形態1の蛍光体と黄色蛍光体の混合体を用いることで、発光装置10は、青色発光と黄色発光の混色により白色系の光を放つ。蛍光体11は上記に限られず、例えば、青色蛍光体としての実施形態1の蛍光体、緑色蛍光体、および赤色蛍光体の混合体を用いることもできる。黄色蛍光体、緑色蛍光体、および赤色蛍光体は、例えば、公知のものを使用することができる。
 なお、実施形態1の蛍光体のみを使用することによって、あるいは他の色の蛍光体と組み合わせて、発光装置を、白色以外の色を発する発光装置として構成することもできる。
 発光装置10は、420nm以下の波長の光を遮断するフィルタを有していてもよい。
 また、上記の構成以外に、実施形態2の発光装置を、紫外線発生装置と実施形態1の蛍光体を含む蛍光体層とを有する構成とし、当該紫外線発光装置から生じる紫外線により蛍光体を発光させることもできる。
 (実施形態3)
 実施形態3は、上述の実施形態2の発光装置を備える投影装置である。投影装置は、例えば、プロジェクタ、ヘッドアップディスプレイ等である。
 以下、実施形態3の投影装置の具体的な構成について図面を参照しながら説明するが、本発明は、以下の構成に限られるものではない。図2は、実施形態3の投影装置20の構成例を示す概略図である。投影装置20は、光源部を形成する発光装置22と、画像生成部24と、出射光学系26とを含む。
 発光装置22には、実施形態2の発光装置が用いられる。発光装置22は具体的には、例えば、励起光源とカラーホイール30を含む。
 励起光源としては、例えば、380nm以上420nm以下の波長範囲内にピーク波長を有する光を放つ半導体発光素子(例えば、LD、LED等)が用いられる。半導体発光素子には、例えば、窒化ガリウム系化合物半導体で構成した発光層を有する半導体発光素子を用いることができる。
 図3は、カラーホイール30の構成例を示す概略図である。カラーホイール30は、円盤状の形状を有しており、回転可能である。カラーホイール30は、励起光源からの光を受け、青色光、赤色光、および緑色光をそれぞれ出力する、青色発光部32、赤色発光部34、および緑色発光部36を備える。
 図4は、青色発光部32の構成例を示す概略図である。青色発光部32は、マトリクス42と、マトリクス42中に分散し青色発光する実施の形態1の蛍光体40とを含む蛍光体層を有する。マトリクス42は、無機材料であってもよいし、有機材料であってもよい。マトリクス42は、例えば、樹脂、ガラス、ZnO結晶、セラミックなどである。
 赤色発光部34および緑色発光部36もそれぞれ同様に、マトリクスと、当該マトリクス中に分散した赤色蛍光体および緑色蛍光体とを含む蛍光体層を有する。
 これらの蛍光体はそれぞれ、半導体発光素子が放つ光の一部を吸収し、吸収した光よりも長い波長範囲内にピーク波長を有する、青色光、赤色光、および緑色光を放つ。
 なお、カラーホイール30は、青色発光部32、赤色発光部34、および緑色発光部36以外の色の発光部(例えば、白色発光部、黄色発光部、シアン色発光部、マゼンタ色発光部)を有するものであってもよい。
 発光装置22は、励起光源とカラーホイール30との間に集光レンズを有していてもよい。発光装置22は、カラーホイール30からの光を集光して出射するためのリレーレンズを有していてもよい。発光装置22は、ロッドレンズを有していてもよい。
 カラーホイールを通過した光が発光装置22から出射され、この発光装置22からの光を用いて画像生成部24が画像を生成する。画像生成部24は、例えば、デジタルマイクロミラーデバイス(DMD)等の空間光変調器(SLM)を有する。
 出射光学系26は、画像生成部24で生成された画像を出射する。出射光学系26は、例えば、複数のレンズを備える投射レンズを有する。
 出射された画像は、投影装置20外の、壁、スクリーン、ウインドウガラス(例、自動車のフロントガラス、航空機のフロントガラス)などに投影される。
 投影装置20は、フィルタ(例、420nm以下の波長の光を遮断するフィルタ)を有していてもよい。投影装置20のその他の構成は公知技術に従えばよく、必要に応じ、上記以外のレンズ、ミラー、プリズム等の光学部材を有していてもよい。
 本実施形態によれば、高効率のプロジェクタ、ヘッドアップディスプレイ等の投影装置を提供することができる。
 (実施形態4)
 実施形態4は、上述の実施形態2の発光装置を備える車両である。車両は、例えば、自動車、オートバイ、鉄道車両、路面電車、建築車両、農業車両等である。
 以下、実施形態4の車両の具体的な構成について図面を参照しながら説明するが、本発明は、以下の構成に限られるものではない。図5は、実施形態2の発光装置をヘッドライトに用いた車両50の構成例を示す概略図である。車両50は、前述の実施の形態2の発光装置と、当該発光装置からの光を前方に照射する出射光学系とを含むヘッドライト52を備える。
 図6は、ヘッドライト52の構成例を示す概略図である。ヘッドライト52は、励起光源60と、波長変換部材62と、波長変換部材62からの光を前方に出射する出射光学系64とを備える。
 励起光源60としては、例えば、380nm以上420nm以下の波長範囲内にピーク波長を有する光を放つ半導体発光素子(例えば、LD、LED等)が用いられる。半導体発光素子には、例えば、窒化ガリウム系化合物半導体で構成した発光層を有する半導体発光素子を用いることができる。励起光源60は、半導体発光素子からの光を導く光ファイバを備えていてもよい。
 波長変換部材62は、励起光源60からの励起光を受けて励起光よりも長波長の光を発する。波長変換部材62は、例えば、図7に示すように、マトリクス74と、マトリクス74中に分散した、青色発光する実施形態1の蛍光体70および黄色蛍光体72とを含む蛍光体層を有する。マトリクス74は、無機材料であってもよいし、有機材料であってもよい。マトリクス74は、例えば、ガラス、ZnO結晶、セラミックなどである。
 蛍光体70および72はそれぞれ、前記半導体発光素子が放つ光の一部を吸収し、吸収した光よりも長い波長範囲内にピーク波長を有する、青色光および黄色光を放つ。青色光と黄色光が混色されることによって白色光が生成する。なお、蛍光体の組み合わせは、上記に限られず、例えば、実施形態1の蛍光体、赤色蛍光体、および緑色蛍光体の組み合わせであってもよい。
 出射光学系64は、波長変換部材62からの光を前方に出射する。出射光学系は、例えば、反射板、および出射レンズを備える。
 ヘッドライト52は、フィルタ(例えば、420nm以下の波長の光を遮断するフィルタ)を有していてもよい。
 ヘッドライト52以外の車両50の構成については、公知技術に従うものであってよい。
 以上の構成によれば、高効率で前方に光を照射する車両を提供することができる。
 また、上記の構成以外に、実施形態4の車両は、実施形態2の発光装置を、車内照明、計器類のバックライト等として含むこともできる。
 以下、実施例および比較例を挙げて本開示の蛍光体を詳細に説明するが、本発明は当該実施例に限定されるものではない。
 (蛍光体試料の作製)
 出発原料として、SrCO(純度99.9%)、Eu(純度99.9%)、MgCO(純度99.9%)、SiO(純度99.9%)を用い、これらを所定の組成になるよう秤量し、ボールミルを用いて純水中で湿式混合した。
 この混合物を150℃で10時間乾燥し、乾燥粉末を大気中1100℃で4時間仮焼成した。この仮焼物を、窒素98体積%と水素2体積%の混合ガス中1200~1400℃で4時間焼成して蛍光体を得た。
 (評価方法)
 得られた蛍光体のX線回折パターンをX線回折測定装置(Rigaku製RINT2100、Cu-Kα線)を用いて測定した。得られたX線回折パターンから、SrMgSi型結晶の主要ピークである2θ=31.8°以上32.8°以下に検出される回折強度bに対する、SrMgSiO型結晶の主要ピークである2θ=34°以上35.5°以下に検出される回折強度cの比率を、X線回折強度比aとして求めた(a=c/b)。
 また、作製した蛍光体について、青紫光照射(405nm励起)下での発光スペクトルを、分光蛍光光度計(日本分光製FP-6500)を用いて測定した。
 作製した蛍光体の組成比およびX線回折強度比aを表1に示す。また、発光スペクトルの測定結果より得られた光量子数比を表1に示す。この光量子数比は試料番号1に対する相対値である。なお、表1において*印を付した試料が比較例、*印を付さなかった試料が実施例である。
Figure JPOXMLDOC01-appb-T000001
 表1より試料番号7を除く実施例の各蛍光体試料は、発光の量子効率が高いことがわかる。
 ここで、表1に示す各試料の量子数比は、非発光であるSrMgSiO:Euも含んでいるため、SrMgSiO結晶が多いものほど、蛍光体中の発光体積が減ることになる。そこで、SrMgSiとSrMgSiOの体積比を算出し、実際に発光しているSrMgSi:Euの、単位体積当たりの量子数比を表1に併記した。これをみると、SrMgSiの単一結晶である試料番号1の蛍光体に対し、試料番号7を含めた、SrMgSiとSrMgSiOとの混晶を形成している試料番号2から試料10番号のすべての実施例の蛍光体において、SrMgSi:Euによる発光の量子数が従来のSMS蛍光体より高くなっていることがわかる。
 蛍光体全体の量子効率の観点から、実用性が高いのは、X線回折強度比aが、0.01≦a≦0.18のときであり、さらに高いのは、X線回折強度比aが、0.03≦a≦0.06のときである。また、実用性が高いのは、蛍光体の母体結晶が、一般式Sr3+jMg1+kSi2+m8+n(0<j≦1.0、0<k≦1.0、0<m≦1.0、0<n≦4.0)で表される組成を有するときである。
 (発光装置の作製)
 試料番号1~4と同様にして作製した蛍光体と、ジメチルシリコーン樹脂とを三本ロール混練機を用いて混練し、混合物を得た。混合物を金型に充填し、真空脱泡で脱泡した後、基板上に配線された600μm角の窒化ガリウム系半導体発光素子(ピーク波長405nm)と貼り合わせ、150℃で10分間の仮加熱硬化を行った。金型を取り外した後、150℃で4時間の加熱硬化を行い、図1に示したような発光装置を得た。なお、蛍光体と樹脂との混合物中の蛍光体の重量比は、50重量パーセントとした。
 発光効率の測定は、実施例および比較例の試料に対し、500mAの電流をパルス幅30msで印加し、青色発光を全光束測定システム(HMφ300mm)で測定した。
 作製した発光装置に使用した蛍光体の試料番号と、発光装置の試料の発光効率を表2に示す。ただし、発光効率は試料番号12に対する相対値であり、表2において*印を付した試料が比較例、*印を付さなかった試料が実施例である。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、実施例の発光装置は発光効率が高い。
 本開示の蛍光体を含む蛍光体層を有する発光装置は、高効率であるため、種々の用途で有用である。具体的には、発光ダイオード(LED)または半導体レーザーダイオード(LD)と蛍光体とを利用する、投影装置用光源、車両用ヘッドライト光源、白色LED照明用光源、撮像装置用フラッシュライト光源、液晶ディスプレイ装置用バックライト光源等、および、蛍光体を利用する、センサー、増感器、プラズマディスプレイパネル(PDP)等の用途に用いることができる。
10 発光装置
11,40,70 蛍光体
12 樹脂
13 半導体発光素子
14 電極
15 ダイボンド
16 ボンディングワイヤ
17 基板
20 投影装置
22 発光装置
24 画像生成部
26,64 出射光学系
30 カラーホイール
32 青色発光部
34 赤色発光部
36 緑色発光部
42,74 マトリクス
50 車両
60 励起光源
62 波長変換部材
52 ヘッドライト
72 黄色蛍光体

Claims (12)

  1.  母体結晶としてSrMgSi型結晶とSrMgSiO型結晶とを含み、かつ発光中心としてEu2+、またはEu2+およびMn2+を含む蛍光体。
  2.  母体結晶としてSrMgSi型結晶とSrMgSiO型結晶とを含み、かつ発光中心としてEu2+を含みMn2+を含まない蛍光体。
  3.  前記蛍光体が、Cu-Kα線で測定したX線回折パターンにおいて、2θ=22°以上23°以下、2θ=30.6°以上31.7°以下、および2θ=31.8°以上32.8°以下に回折ピークを有し、かつ2θ=28°以上30.4°以下および2θ=34°以上35.5°以下に回折ピークを有する請求項1または2に記載の蛍光体。
  4.  前記蛍光体についてCu-Kα線で測定したX線回折パターンにおいて、SrMgSi型結晶に由来する2θ=31.8°以上32.8°以下に存在する最大の回折ピークの強度bと、SrMgSiO型結晶に由来する2θ=34°以上35.5°以下に存在する最大の回折ピークの強度cとの比a(a=c/b)が、0.01≦a≦0.18である請求項1~3のいずれかに記載の蛍光体。
  5.  前記蛍光体の母体結晶が、一般式Sr3+jMg1+kSi2+m8+n(0<j≦1.0、0<k≦1.0、0<m≦1.0、0<n≦4.0)で表される組成を有する請求項1~4のいずれかに記載の蛍光体。
  6.  請求項1~5のいずれかに記載の蛍光体を含む蛍光体層を有する発光装置。
  7.  380nm以上420nm以下の波長範囲内にピーク波長を有する光を放つ半導体発光素子をさらに有し、前記蛍光体層の蛍光体が、前記半導体発光素子が放つ光の少なくとも一部を吸収し、吸収した光よりも長い波長範囲内にピーク波長を有する光を放つ請求項6に記載の発光装置。
  8.  前記半導体発光素子が、窒化ガリウム系化合物半導体で構成した発光層を有する半導体発光素子である請求項7に記載の発光装置。
  9.  請求項6~8のいずれかに記載の発光装置を備える投影装置。
  10.  前記発光装置からの光を用いて画像を生成する画像生成部と、
     前記画像生成部が生成した画像を出射する出射光学系とをさらに備える請求項9に記載の投影装置。
  11.  請求項6~8のいずれかに記載の発光装置を備える車両。
  12.  前記発光装置と前記発光装置からの光を前方に照射する出射光学系とを含む、ヘッドライトを備える請求項11に記載の車両。
PCT/JP2014/001502 2013-05-14 2014-03-17 蛍光体および当該蛍光体を用いた発光装置、ならびに当該発光装置を備える投影装置および車両 WO2014184992A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015516299A JP5861047B2 (ja) 2013-05-14 2014-03-17 蛍光体および当該蛍光体を用いた発光装置、ならびに当該発光装置を備える投影装置および車両
US14/748,274 US9523034B2 (en) 2013-05-14 2015-06-24 Phosphor, light-emitting device including said phosphor, projector, head-up display and vehicle including said light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013102366 2013-05-14
JP2013-102366 2013-05-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/748,274 Continuation US9523034B2 (en) 2013-05-14 2015-06-24 Phosphor, light-emitting device including said phosphor, projector, head-up display and vehicle including said light-emitting device

Publications (1)

Publication Number Publication Date
WO2014184992A1 true WO2014184992A1 (ja) 2014-11-20

Family

ID=51897986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001502 WO2014184992A1 (ja) 2013-05-14 2014-03-17 蛍光体および当該蛍光体を用いた発光装置、ならびに当該発光装置を備える投影装置および車両

Country Status (3)

Country Link
US (1) US9523034B2 (ja)
JP (1) JP5861047B2 (ja)
WO (1) WO2014184992A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016176490A1 (en) * 2015-04-28 2016-11-03 Nitto Denko Corporation Magnesium silicate phosphor compounds and methods of making same
WO2018055849A1 (ja) * 2016-09-26 2018-03-29 パナソニックIpマネジメント株式会社 蛍光体、並びにそれを用いた波長変換部材及び電子装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017028251A (ja) * 2015-07-23 2017-02-02 パナソニックIpマネジメント株式会社 波長変換部材、光源装置、照明装置車両、および波長変換部材の製造方法
KR101897465B1 (ko) 2016-06-30 2018-09-12 주식회사 케이알이엠에스 운전 시 시인성을 향상시키는 자동차 헤드라이트

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078711A1 (ja) * 2006-12-25 2008-07-03 Kyocera Corporation 蛍光体およびその製法ならびに波長変換器、発光装置、照明装置
JP2009238887A (ja) * 2008-03-26 2009-10-15 Kyocera Corp 波長変換器および発光装置ならびに照明装置
JP2010006850A (ja) * 2008-06-24 2010-01-14 Kyocera Corp 波長変換器および発光装置ならびに照明装置
WO2012033122A1 (ja) * 2010-09-07 2012-03-15 宇部マテリアルズ株式会社 青色発光蛍光体及び該青色発光蛍光体を用いた発光装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT410266B (de) * 2000-12-28 2003-03-25 Tridonic Optoelectronics Gmbh Lichtquelle mit einem lichtemittierenden element
JP2006012770A (ja) 2004-05-27 2006-01-12 Hitachi Ltd 発光装置及び該発光装置を用いた画像表示装置
US8013506B2 (en) * 2006-12-12 2011-09-06 Prysm, Inc. Organic compounds for adjusting phosphor chromaticity
JP5004616B2 (ja) 2007-02-26 2012-08-22 京セラ株式会社 蛍光体とその製造方法および波長変換器ならびに発光装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078711A1 (ja) * 2006-12-25 2008-07-03 Kyocera Corporation 蛍光体およびその製法ならびに波長変換器、発光装置、照明装置
JP2009238887A (ja) * 2008-03-26 2009-10-15 Kyocera Corp 波長変換器および発光装置ならびに照明装置
JP2010006850A (ja) * 2008-06-24 2010-01-14 Kyocera Corp 波長変換器および発光装置ならびに照明装置
WO2012033122A1 (ja) * 2010-09-07 2012-03-15 宇部マテリアルズ株式会社 青色発光蛍光体及び該青色発光蛍光体を用いた発光装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016176490A1 (en) * 2015-04-28 2016-11-03 Nitto Denko Corporation Magnesium silicate phosphor compounds and methods of making same
WO2018055849A1 (ja) * 2016-09-26 2018-03-29 パナソニックIpマネジメント株式会社 蛍光体、並びにそれを用いた波長変換部材及び電子装置

Also Published As

Publication number Publication date
US20150291880A1 (en) 2015-10-15
JPWO2014184992A1 (ja) 2017-02-23
US9523034B2 (en) 2016-12-20
JP5861047B2 (ja) 2016-02-16

Similar Documents

Publication Publication Date Title
JP6372764B2 (ja) 発光装置
US8957575B2 (en) Rare earth aluminum garnet type phosphor and light-emitting device using the same
JP5375906B2 (ja) フッ化物蛍光体及びそれを用いた発光装置
US10714661B2 (en) Light-emitting apparatus including phosphor
JP4733535B2 (ja) 酸窒化物蛍光体、酸窒化物蛍光体の製造方法、半導体発光装置、発光装置、光源、照明装置、及び画像表示装置
WO2014080562A1 (ja) 蛍光体、発光デバイス、撮像装置、液晶ディスプレイ装置、照明装置、および車両
JP6206696B1 (ja) 蛍光体および発光装置
TWI491709B (zh) A blue light-emitting phosphor, and a light-emitting device using the blue light-emitting phosphor
JP6308468B2 (ja) 黄色蛍光体、発光デバイス、照明装置、および車両
WO2018008171A1 (ja) 蛍光体および発光装置
JP5861047B2 (ja) 蛍光体および当該蛍光体を用いた発光装置、ならびに当該発光装置を備える投影装置および車両
JP2018203983A (ja) 蛍光体および発光装置
JP5391339B1 (ja) 白色系発光装置
JP2014523952A (ja) 蛍光体前駆体組成物
JP6692053B2 (ja) 蛍光体及び発光装置
JP5870256B2 (ja) 蛍光体および発光装置
JP6839891B2 (ja) 発光装置
US10662376B2 (en) Phosphor that includes crystal phase containing celium
WO2011055753A1 (ja) 発光装置
JP6357107B2 (ja) 蛍光体、発光装置及び照明装置
WO2014203482A1 (ja) 赤色蛍光体材料および発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797311

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015516299

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14797311

Country of ref document: EP

Kind code of ref document: A1