WO2011055753A1 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
WO2011055753A1
WO2011055753A1 PCT/JP2010/069619 JP2010069619W WO2011055753A1 WO 2011055753 A1 WO2011055753 A1 WO 2011055753A1 JP 2010069619 W JP2010069619 W JP 2010069619W WO 2011055753 A1 WO2011055753 A1 WO 2011055753A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
mol
light
range
sms
Prior art date
Application number
PCT/JP2010/069619
Other languages
English (en)
French (fr)
Inventor
稲垣 徹
正人 山内
誠司 野口
福田 晃一
植木 明
Original Assignee
宇部マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部マテリアルズ株式会社 filed Critical 宇部マテリアルズ株式会社
Publication of WO2011055753A1 publication Critical patent/WO2011055753A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/42Fluorescent layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • Sr 3-x MgSi 2 O 8 a light emitting device used as a blue light-emitting source a blue-emitting phosphor represented by a composition formula of Eu x.
  • an AC plasma display panel AC type PDP
  • a cold cathode fluorescent lamp CCFL
  • white LED white light emitting diode
  • the AC type PDP irradiates a blue light emitting phosphor, a green light emitting phosphor and a red light emitting phosphor with vacuum ultraviolet light generated by the discharge of Xe gas, respectively, and emits blue light emitted by exciting each phosphor, A light-emitting device that obtains an image by combining green light and red light.
  • the light emission caused by the discharge of the Xe gas is mainly Xe resonance light emission and Xe 2 molecular light emission.
  • Resonant line emission generates vacuum ultraviolet light having a center wavelength of 146 nm (there is also a document described as 147 nm).
  • vacuum ultraviolet light having a center wavelength of 172 nm (some documents are described as 173 nm) is generated.
  • the CCFL irradiates the blue light emitting phosphor, the green light emitting phosphor and the red light emitting phosphor with ultraviolet light generated by the discharge of the Hg gas and excites each phosphor to emit blue light, green light and red light. It is a light emitting device that obtains white light by mixing light.
  • the wavelength of the ultraviolet light generated by the discharge of Hg gas is 254 nm.
  • a white LED As a white LED, light having a peak in a wavelength range of 350 to 430 nm generated by applying a voltage to a semiconductor is irradiated to a blue light emitting phosphor, a green light emitting phosphor and a red light emitting phosphor, and each phosphor is irradiated with the light.
  • a configuration in which white light is obtained by mixing blue light, green light and red light emitted by excitation is known.
  • Sr 3-x MgSi 2 O 8 phosphor represented by a composition formula of Eu x (hereinafter, SMS phosphor also referred to) and Ba 1-x MgAl 10 O 17 : phosphor represented by a composition formula of Eu x (hereinafter, also referred to as BAM phosphor) is known.
  • SMS phosphor has an advantage that it has a long lifetime compared with the BAM phosphor, with less decrease in emission luminance over time due to irradiation with vacuum ultraviolet light or ultraviolet light.
  • Patent Document 1 describes that part of Mg of the SMS phosphor is replaced with a Group 5 or Group 6 element in order to further prevent a decrease in emission luminance over time due to excitation light irradiation.
  • W is described as an example of the Group 5 and 6 elements.
  • This Patent Document 1 describes that the amount of substitution of W is in the range of 0.003 to 0.006 in terms of the ratio of W to the total mole of Mg and W (W / (Mg + W)).
  • the Eu content is preferably in the range of 0.003 or more and 0.05 or less in terms of Eu with respect to the total moles of Sr and Eu (Eu / (Sr + Eu)).
  • the effect of adding W is confirmed by the light emission luminance by excitation of vacuum ultraviolet light having a wavelength of 146 nm.
  • Patent Document 2 in order to improve the lifetime and luminance characteristics of a silicate phosphor used under vacuum ultraviolet excitation conditions, Cu, Ga, Ge, As, Ag, Cd, In, Sn, Sb are used as the phosphor. , Au, Hg, Tl, Pb, Bi and the like are described.
  • a preferable range of the Eu content of the phosphor described in Patent Document 2 is 0.001 to 0.2 mol with respect to 1 mol of the phosphor, and a preferable amount of the additive element is a molar ratio with respect to Eu. 1 or less.
  • the effect of adding the above elements is confirmed by the luminance of light emitted by excitation of vacuum ultraviolet light having a wavelength of 147 nm.
  • the SMS phosphors described in Patent Documents 1 and 2 are useful as a blue light source by excitation of Xe resonance line emission (vacuum ultraviolet light having a wavelength of 146 nm or 147 nm) emitted by discharge of Xe gas.
  • Xe resonance line emission vacuum ultraviolet light having a wavelength of 146 nm or 147 nm
  • the emission amount of vacuum ultraviolet light having a wavelength of 172 nm due to molecular beam emission increases.
  • the improvement of the light emission luminance by excitation of the vacuum ultraviolet light with a wavelength of 172 nm is desired.
  • the additive elements described in the above-mentioned Patent Documents 1 and 2 are used as they are as UV light having a wavelength of 254 nm, which is used as excitation light for CCFLs, or as wavelength used as excitation light for white LEDs. It has been found that it does not act effectively to improve the emission luminance of the SMS phosphor by excitation of light of 350 to 430 nm.
  • the phosphor is usually arranged as a phosphor layer on the substrate.
  • This phosphor layer is generally formed by applying a phosphor dispersion liquid onto a substrate, drying the coating film, and then baking at a temperature of 300 to 600 ° C. in the atmosphere.
  • Some white LEDs are arranged as a phosphor layer in which a phosphor is dispersed in glass.
  • This phosphor layer is generally formed by baking a dispersion of a phosphor and glass mixture in the atmosphere at a temperature of 300 ° C. or higher to melt the glass. Therefore, the phosphor is required to maintain high emission luminance even after the heat treatment in the air atmosphere.
  • an object of the present invention is to provide an SMS phosphor that exhibits high emission luminance even after heat treatment in an air atmosphere by excitation with vacuum ultraviolet light with a wavelength of 172 nm, ultraviolet light with a wavelength of 254 nm, and light with a wavelength of 350 to 430 nm.
  • the object of the present invention is to provide a light emitting device with high emission brightness using an SMS phosphor as a blue light source.
  • SMS phosphor represented by a composition formula of Eu x, of W and / or Pb with respect to the improvement of emission luminance after heat treatment in an air atmosphere It is found that the addition is effective, except that the Eu content (x value in the composition formula) and the optimum value of the addition amount of W and / or Pb differ depending on the wavelength of the excitation light.
  • the addition amount of Pb within the following range, an SMS phosphor exhibiting high emission luminance can be obtained by excitation with vacuum ultraviolet light with a wavelength of 172 nm, ultraviolet light with a wavelength of 254 nm, or light with a wavelength of 350 to 430 nm. This was confirmed and the present invention was completed.
  • the present invention is a light emitting device including an excitation light source that emits vacuum ultraviolet light including light having a wavelength of 172 nm and a phosphor that emits blue light when excited by vacuum ultraviolet light from the excitation light source.
  • phosphor is, Sr 3-x MgSi 2 O 8: is represented by a composition formula of Eu x, x is a value in the range of 0.0090 ⁇ 0.025, W relative to 1 mol of the phosphor And / or a light emitting device which is a phosphor containing Pb in an amount ranging from 0.00010 to 0.040 mol.
  • the present invention is also a light emitting device comprising: an excitation light source that emits ultraviolet light including light having a wavelength of 254 nm; and a phosphor that emits blue light when excited by ultraviolet light from the excitation light source.
  • phosphor, Sr 3-x MgSi 2 O 8: is represented by a composition formula of Eu x, x is in the range from 0.025 to 0.040 W and / or Pb with respect to 1 mol of the phosphor 0
  • the present invention further relates to a light emitting device comprising: an excitation light source that emits light having a peak in a wavelength range of 350 to 430 nm; and a phosphor that emits blue light when excited by light from the excitation light source.
  • phosphor is, Sr 3-x MgSi 2 O 8: is represented by a composition formula of Eu x, x is a value in the range of 0.0090 ⁇ 0.040, W and the phosphor 1 mole
  • a light emitting device which is a phosphor containing Pb in an amount in the range of 0.00010 to 0.040 mol.
  • the SMS phosphor used in the present invention has a higher emission luminance than the commercially available BAM phosphor after heat treatment at a temperature of 500 ° C. in an air atmosphere, as is apparent from the results of Examples described later. Therefore, the light emitting device of the present invention has a higher emission luminance of blue light than a conventional light emitting device using a BAM phosphor, or a blue light emitting device compared to a conventional light emitting device using a BAM phosphor. Even if the emission luminance is equal, the amount of phosphor used can be reduced.
  • FIG. 3 is a cross-sectional view of an example of a white light emitting diode according to the present invention.
  • SMS phosphor used in the present invention the basic composition formula Sr 3-x MgSi 2 O 8 : represented by Eu x.
  • the SMS phosphor generally has a merwinite crystal structure. SMS phosphors in which a part of Sr is substituted with Ca or Ba are known, but the SMS phosphor used in the present invention does not substantially contain Ca or Ba substituted with Sr. It is preferable.
  • substantially not containing Ca or Ba means that the content of Ca and Ba is 0.01 mol or less per mol of the phosphor.
  • the SMS phosphor used in the present invention contains W and / or Pb.
  • the Eu content of the SMS phosphor and the addition amount of W and / or Pb vary depending on the application of the SMS phosphor, that is, the wavelength of light that excites the SMS phosphor.
  • the SMS phosphor for the light emitting device using the Xe gas under discharge as the excitation light source such as the AC type PDP, that is, the excitation for the vacuum ultraviolet light including the light emission with a wavelength of 172 nm has the Eu content in 1 mol of the phosphor. Is in the range of 0.0090 to 0.025 mol (that is, x in the composition formula is in the range of 0.0090 to 0.025), and W and / or Pb is 0 with respect to 1 mol of the phosphor. Contained in an amount ranging from 0.0010 to 0.040 mol.
  • the SMS phosphor for vacuum ultraviolet light whose excitation light includes light having a wavelength of 172 nm has an Eu content in the range of 0.010 to 0.025 mol, particularly 0.010 to 0.023 mol, in 1 mol of the phosphor.
  • the phosphor is in the range of 0.025 mol, particularly in the range of 0.010 to 0.023 mol, and contains Pb in an amount in the range of 0.00050 to 0.040 mol with respect to 1 mol of the phosphor. Is preferred.
  • the Eu content in 1 mol of the phosphor is 0.025.
  • x in the composition formula is in the range of 0.025 to 0.040
  • W and / or Pb is 0.00010 to 1 mol of the phosphor. Contained in an amount in the range of 0.0075 mol.
  • the Eu content in 1 mol of the phosphor is in the range of 0.025 to 0.040 mol, particularly in the range of 0.028 to 0.040 mol.
  • a phosphor containing W in an amount in the range of 0.00075 to 0.0075 mol with respect to 1 mol of the phosphor, or the Eu content in 1 mol of the phosphor is 0.025 to 0.005.
  • the phosphor is in the range of 040 mol, particularly 0.028 to 0.040 mol, and contains Pb in an amount in the range of 0.00075 to 0.0075 mol with respect to 1 mol of the phosphor. preferable.
  • An SMS phosphor for a light-emitting device using a semiconductor in which a voltage is applied to an excitation light source such as a white LED, that is, an excitation phosphor with light having a wavelength of 350 to 430 nm, has an Eu content of 0.0090 to 1 mol of the phosphor. It is in the range of 0.040 mol (that is, x in the composition formula is in the range of 0.0090 to 0.040), and W and / or Pb is 0.00010 to 0 with respect to 1 mol of the phosphor. Contained in an amount in the range of .040 moles.
  • the Eu content in 1 mol of the phosphor is in the range of 0.025 to 0.040 mol, particularly in the range of 0.028 to 0.040 mol, It is a phosphor containing W in an amount in the range of 0.00075 to 0.0075 mol per mol of the phosphor, or the Eu content in 1 mol of the phosphor is 0.025 to 0.040 mol
  • the phosphor is preferably in the range of 0.028 to 0.040 mol and containing Pb in an amount of 0.00075 to 0.0075 mol per mol of the phosphor.
  • the above-mentioned SMS phosphor is manufactured by mixing Sr source powder, Mg source powder, Si source powder, Eu source powder, and W source powder and / or Pb source powder, and firing the obtained powder mixture. Can do.
  • Each raw material powder of Sr source powder, Mg source powder, Si source powder, Eu source powder, W source powder and Pb source powder may be an oxide powder, hydroxide, halide, carbonate ( (Including basic carbonates), nitrates, oxalates and the like, powders of compounds that generate oxides by heating.
  • the raw material powders may be used alone or in combination of two or more.
  • Each raw material powder preferably has a purity of 99% by mass or more.
  • the blending ratio of the Sr source powder, Mg source powder, Si source powder and Eu source powder is the ratio at which the SMS phosphor is generated.
  • Mg source powder, Si source powder and Eu source powder is the ratio at which the SMS phosphor is generated.
  • Si is in the range of 1.9 to 2.1 mol.
  • the flux is preferably a halide, and particularly preferably a chlorine compound.
  • a flux it is preferable to use a chlorine compound powder as a part of the raw material powder.
  • a strontium chlorine compound powder it is preferable to use a strontium chlorine compound powder.
  • the amount of flux added is preferably such that the total amount of strontium and europium in the powder mixture is 3 mol, and the amount of halogen is in the range of 0.0001 to 0.5 mol, preferably 0.02 to 0.00. It is particularly preferable that the amount be in the range of 5 mol.
  • Either a dry mixing method or a wet mixing method can be adopted as a method for mixing raw material powders.
  • a rotating ball mill, a vibrating ball mill, a planetary mill, a paint shaker, a rocking mill, a rocking mixer, a bead mill, a stirrer, or the like can be used.
  • the solvent water, lower alcohols such as ethanol and isopropyl alcohol can be used.
  • Calcination of the powder mixture is performed in an atmosphere of a reducing gas composed of 0.5 to 5.0% by volume of hydrogen and 99.5 to 95.0% by volume of an inert gas.
  • inert gases include argon and nitrogen.
  • the firing temperature is generally in the range of 900 to 1300 ° C.
  • the firing time is generally in the range of 0.5 to 100 hours.
  • the powder mixture is subjected to 0.5 to 0.5 ° C. in an air atmosphere at a temperature of 600 to 850 ° C. before firing in a reducing gas atmosphere. It is preferable to calcine for 100 hours.
  • the SMS phosphor obtained by firing may be subjected to classification treatment, acid cleaning treatment with a mineral acid such as hydrochloric acid or nitric acid, and baking treatment as necessary.
  • FIG. 1 is a perspective view of an example of an AC type PDP according to the present invention.
  • the AC type PDP is a light emitting device that uses Xe gas with an excitation light source under discharge and uses vacuum ultraviolet light including light emission with a wavelength of 172 nm as excitation light.
  • the plasma display panel includes a front plate 20 and a back plate 30 which are arranged to face each other via a discharge space 10 filled with a discharge gas containing Xe gas.
  • a mixed gas of Xe gas and Ne gas is usually used as the discharge gas filled in the discharge space 10.
  • the concentration of the Xe gas in the mixed gas is a concentration at which molecular beam emission is caused by the discharge of the Xe gas, and is generally in the range of 10 to 30% by volume, preferably in the range of 15 to 25% by volume.
  • the front plate 20 includes a transparent glass substrate 21, a discharge electrode 25 comprising two column electrodes 24a and 24b formed on the surface of the transparent glass substrate 21 on the back plate side, a dielectric layer 26 covering the discharge electrode, and a dielectric It consists of a dielectric protective layer 27 formed on the surface of the layer.
  • the two column electrodes 24 a and 24 b constituting the discharge electrode 25 are each composed of a transparent electrode 22 and a bus electrode 23.
  • the transparent electrode 22 is generally made of a conductive metal oxide film such as an ITO (indium tin oxide) film or a tin oxide film.
  • the dielectric layer 26 is made of low-melting glass.
  • the dielectric protective layer 27 is made of a magnesium oxide film.
  • the back plate 30 includes a transparent glass substrate 31, an address electrode 32 formed on the surface of the transparent glass substrate 31 on the front plate side, a dielectric layer 33 that covers the address electrode 32, and a surface on the surface of the dielectric layer 33.
  • the barrier ribs 34 are formed in stripes, and include a blue light emitting phosphor 35B, a green light emitting phosphor 35G, and a red light emitting phosphor 35R filled between the barrier ribs 34.
  • the address electrode 32 is generally composed of a single phase metal film such as aluminum, copper and silver, or a laminated metal film such as chromium / copper / chromium.
  • the dielectric layer 33 and the partition wall 34 are made of low melting point glass.
  • the blue light emitting phosphor 35B is made of an SMS phosphor for vacuum ultraviolet light in which the excitation light includes light having a wavelength of 172 nm.
  • the Xe gas in the discharge space 10 is discharged to generate vacuum ultraviolet light having a wavelength of 146 nm and a wavelength of 172 nm. Irradiates the SMS phosphor 35B, the green light emitting phosphor 35G, and the red light emitting phosphor 35R provided on the back plate 30 to excite those phosphors, and to produce visible light of the three primary colors of blue, green, and red. Light is emitted, and an image is formed by a combination of these.
  • FIG. 2 is a cross-sectional view of an example CCFL according to the present invention.
  • the CCFL is a light emitting device that uses Hg gas with an excitation light source under discharge and uses ultraviolet light including light emission with a wavelength of 254 nm as excitation light.
  • CCFL is a glass tube 41 that is a glass member, a discharge gas filled in the internal space 42 of the glass tube 41, a phosphor layer 43 formed on the inner wall surface of the glass tube 41, and the longitudinal direction of the glass tube 41. It consists of a pair of electrodes 44a, 44b provided at both ends, and conductive lines 45a, 45b for electrically connecting the electrodes 44a, 44b and an external power source (not shown).
  • the phosphor layer 43 includes an SMS phosphor for ultraviolet light in which the excitation light includes light having a wavelength of 254 nm, a green light-emitting phosphor, and a red light-emitting phosphor.
  • ultraviolet light having a wavelength of 254 nm is generated by the discharge of the Hg gas filled in the internal space 42, and this ultraviolet light is applied to the phosphor layer 43. Irradiation is performed to excite the phosphors of each color to emit blue, green and red visible light, and white color is generated by mixing the emitted light.
  • FIG. 3 is a cross-sectional view of an example of a white LED according to the present invention.
  • the white LED is a light-emitting device that uses excitation light as a semiconductor to which a voltage is applied, and uses excitation light that has a peak in a wavelength range of 350 to 430 nm generated by the semiconductor.
  • a white LED includes a substrate 51, a semiconductor 53 fixed on the substrate 51 with an adhesive 52, a pair of electrodes 54a and 54b formed on the substrate, a semiconductor 53 and electrodes 54a and 54b.
  • Electrode wires 55a and 55b Electrically connected lead wires 55a and 55b, a resin layer 56 covering the semiconductor 53, a phosphor layer 57 provided on the resin layer 56, and a light reflecting material covering the periphery of the resin layer 56 and the phosphor layer 57 58, and conductive lines 59a and 59b for electrically connecting the electrodes 54a and 54b and an external power source (not shown).
  • the semiconductor 53 an AlGaN-based semiconductor can be given.
  • the material of the resin layer 56 include a silicone resin.
  • the phosphor layer 57 a layer in which the SMS phosphor for excitation by light having a wavelength of 350 to 430 nm, a green light-emitting phosphor, and a red light-emitting phosphor are dispersed in a transparent resin such as glass or silicone resin is used. be able to.
  • the white LED of FIG. 3 when a voltage is applied to the electrodes 54a and 54b, light having a peak in the wavelength range of 350 to 430 nm is generated from the semiconductor 53, and this light irradiates the phosphor layer 57. Is excited to emit visible light of blue, green and red, and white color is generated by mixing the emitted light.
  • SrCO 3 powder (purity: 99.99 mass%, average particle diameter 2.73Myuemu), basic MgCO 3 powder (4MgCO 3 ⁇ Mg (OH) 2 ⁇ 4H 2 O powder, 99.99 wt% purity, mean particle size 11 .08 ⁇ m), SiO 2 powder (purity 99.9% by mass, average particle size 3.87 ⁇ m), Eu 2 O 3 powder (purity 99.9% by mass, average particle size 2.71 ⁇ m), WO 3 powder (purity 99).
  • Each raw material powder of 0.9 mass% and an average particle diameter of 7 ⁇ m is adjusted to have a molar ratio of Sr: Mg: Si: Eu: W of 2.985: 1: 2.000: 0.015: 0.0010. Weighed out.
  • the average particle diameter of each raw material powder is a value measured by a laser diffraction scattering method.
  • Each weighed raw material powder was put into a ball mill together with 750 mL of pure water, wet mixed for 24 hours, and then water was removed by heating to obtain a powder mixture.
  • the obtained powder mixture was put into an alumina crucible, calcined at a temperature of 800 ° C. for 3 hours in an air atmosphere, and then allowed to cool to room temperature, and then in a mixed gas atmosphere of 2 volume% hydrogen-98 volume% argon.
  • the powder was fired at a temperature of 1200 ° C. for 3 hours to obtain a powder fired product.
  • the obtained powder fired product was sieved wet with a sieve made of polyamide having an opening of 20 ⁇ m to remove coarse particles, and then dried.
  • an SMS phosphor containing 0.015 mol of Eu and 0.0010 mol of W with respect to 1 mol of the phosphor was manufactured.
  • Example 2 Except that each raw material powder was weighed so that the molar ratio of Sr: Mg: Si: Eu: W was 2.985: 1: 2.000: 0.015: 0.0050, the same as in Example 1. Thus, an SMS phosphor containing 0.015 mol of Eu and 0.0050 mol of W with respect to 1 mol of the phosphor was manufactured.
  • Example 3 Except that each raw material powder was weighed so that the molar ratio of Sr: Mg: Si: Eu: W was 2.980: 1: 2.000: 0.020: 0.0010, the same as in Example 1. Thus, an SMS phosphor containing 0.020 mol of Eu and 0.0010 mol of W with respect to 1 mol of the phosphor was manufactured.
  • Example 4 Except that each raw material powder was weighed so that the molar ratio of Sr: Mg: Si: Eu: W was 2.980: 1: 2.000: 0.020: 0.0050, the same as in Example 1. Thus, an SMS phosphor containing 0.020 mol of Eu and 0.0050 mol of W with respect to 1 mol of the phosphor was manufactured.
  • Example 5 Except that each raw material powder was weighed so that the molar ratio of Sr: Mg: Si: Eu: W was 2.970: 1: 2.000: 0.030: 0.0010, the same as in Example 1. Thus, an SMS phosphor containing 0.030 mol of Eu and 0.0010 mol of W with respect to 1 mol of the phosphor was manufactured.
  • Example 6 Except that each raw material powder was weighed so that the molar ratio of Sr: Mg: Si: Eu: W was 2.970: 1: 2.000: 0.030: 0.0050, the same as in Example 1. Thus, an SMS phosphor containing 0.030 mol of Eu and 0.0050 mol of W with respect to 1 mol of the phosphor was manufactured.
  • Example 7 Except that each raw material powder was weighed so that the molar ratio of Sr: Mg: Si: Eu: W was 2.965: 1: 2.000: 0.035: 0.0010, the same as in Example 1. Thus, an SMS phosphor containing 0.035 mol of Eu and 0.0010 mol of W with respect to 1 mol of the phosphor was manufactured.
  • Example 8 Except that each raw material powder was weighed so that the molar ratio of Sr: Mg: Si: Eu: W was 2.965: 1: 2.000: 0.035: 0.0050, the same as in Example 1. Thus, an SMS phosphor containing 0.035 mol of Eu and 0.0050 mol of W with respect to 1 mol of the phosphor was manufactured.
  • SMS phosphors manufactured in Examples 1 to 8 and Comparative Examples 1 to 4 and the commercially available BAM phosphors were put in an alumina crucible, respectively, and heat-treated at a temperature of 500 ° C. for 1 hour in an air atmosphere, and then released to room temperature. Chilled. Each phosphor after being allowed to cool was irradiated with light having a wavelength of 146 nm, a wavelength of 172 nm, a wavelength of 254 nm, and a wavelength of 405 nm to excite the phosphor, and the emission luminance of blue light emitted from the phosphor was measured.
  • Excimer lamps for each wavelength were used as light sources having a wavelength of 146 nm and a wavelength of 172 nm, respectively.
  • a xenon lamp was used as a light source having a wavelength of 254 nm and a wavelength of 405 nm, and the light was split into light having a wavelength of 254 nm and a wavelength of 405 nm using a spectroscope.
  • Table 1 shows the measurement results of the emission luminance.
  • the emission luminance is a relative value with the emission intensity of a commercially available BAM phosphor as 100.
  • the SMS phosphors containing W of Examples 1 to 4 have higher emission luminance due to excitation of vacuum ultraviolet light having a wavelength of 172 nm, compared to the SMS phosphor containing no W (Comparative Example 1). .
  • the SMS phosphor has less decrease in emission luminance over time than the BAM phosphor. Therefore, the SMS phosphor containing W of Examples 1 to 4 is particularly useful for a blue light source of a light emitting device using Xe gas under discharge as an excitation light source.
  • the SMS phosphors containing W of Examples 5 to 8 have higher emission luminance due to excitation of ultraviolet light having a wavelength of 254 nm, compared to the SMS phosphor containing no W (Comparative Example 4). Therefore, the SMS phosphor containing W of Examples 5 to 8 is particularly useful for a blue light source of a light emitting device using Hg gas under discharge as an excitation light source.
  • the SMS phosphor containing W in Examples 1 and 3 was compared with the SMS phosphor containing no W (Comparative Example 4), although the amount of Eu as an activation component of the SMS phosphor was small.
  • the emission luminance by excitation of light having a wavelength of 405 nm is equivalent, and the SMS phosphors containing W in Examples 2 and 4 to 8 are all compared with the SMS phosphor containing no W (Comparative Example 4).
  • the emission luminance due to excitation of light having a wavelength of 405 nm is high. Therefore, the SMS phosphors containing W of Examples 1 to 8 are blue light emitting devices using a semiconductor that exhibits light emission having a peak in the wavelength range of 350 to 430 nm when a voltage is applied to the excitation light source. Useful as a luminescence source.
  • SrCO 3 powder (purity: 99.99 mass%, average particle diameter 2.73Myuemu), basic MgCO 3 powder (4MgCO 3 ⁇ Mg (OH) 2 ⁇ 4H 2 O powder, 99.99 wt% purity, mean particle size 11 .08 ⁇ m), SiO 2 powder (purity 99.9% by mass, average particle size 3.87 ⁇ m), Eu 2 O 3 powder (purity 99.9% by mass, average particle size 2.71 ⁇ m), PbCl 2 powder (purity 98). (Mass%, average particle diameter 30 ⁇ m) Each raw material powder is weighed so that the molar ratio of Sr: Mg: Si: Eu: Pb is 2.990: 1: 2.000: 0.010: 0.0010. did. The average particle diameter of each raw material powder is a value measured by a laser diffraction scattering method.
  • Each weighed raw material powder was put into a ball mill together with 750 mL of pure water, wet mixed for 24 hours, and then water was removed by heating to obtain a powder mixture.
  • the obtained powder mixture was put in an alumina crucible, calcined at 800 ° C. for 3 hours in an air atmosphere, then allowed to cool to room temperature, and then 1200 ° C. in a mixed gas atmosphere of 2 vol% hydrogen-98 vol% argon.
  • the powder was fired at a temperature of 3 ° C. for 3 hours to obtain a powder fired product.
  • the obtained powder fired product was sieved wet with a sieve made of polyamide having an opening of 20 ⁇ m to remove coarse particles, and then dried.
  • an SMS phosphor containing 0.010 mol Eu and 0.0010 mol Pb with respect to 1 mol of the phosphor was manufactured.
  • Example 10 Except that each raw material powder was weighed so that the molar ratio of Sr: Mg: Si: Eu: Pb was 2.990: 1: 2.000: 0.010: 0.0050, it was the same as Example 9. Thus, an SMS phosphor containing 0.010 mol Eu and 0.0050 mol Pb with respect to 1 mol of the phosphor was manufactured.
  • Example 11 Except that each raw material powder was weighed so that the molar ratio of Sr: Mg: Si: Eu: Pb was 2.990: 1: 2.000: 0.010: 0.0100, the same as in Example 9 Thus, an SMS phosphor containing 0.010 mol of Eu and 0.0100 mol of Pb with respect to 1 mol of the phosphor was manufactured.
  • Example 12 Except that each raw material powder was weighed so that the molar ratio of Sr: Mg: Si: Eu: Pb was 2.990: 1: 2.000: 0.010: 0.0300, the same as in Example 9 Thus, an SMS phosphor containing 0.010 mol of Eu and 0.0300 mol of Pb with respect to 1 mol of the phosphor was manufactured.
  • Example 13 Except that each raw material powder was weighed so that the molar ratio of Sr: Mg: Si: Eu: Pb was 2.985: 1: 2.000: 0.015: 0.0010, it was the same as Example 9. Thus, an SMS phosphor containing 0.015 mol of Eu and 0.0010 mol of Pb with respect to 1 mol of the phosphor was manufactured.
  • Example 14 Except that each raw material powder was weighed so that the molar ratio of Sr: Mg: Si: Eu: Pb was 2.985: 1: 2.000: 0.015: 0.0050, it was the same as Example 9. Thus, an SMS phosphor containing 0.015 mol Eu and 0.0050 mol Pb with respect to 1 mol of the phosphor was manufactured.
  • Example 15 Except that each raw material powder was weighed so that the molar ratio of Sr: Mg: Si: Eu: Pb was 2.980: 1: 2.000: 0.020: 0.0010, the same as in Example 9. Thus, an SMS phosphor containing 0.020 mol of Eu and 0.0010 mol of Pb with respect to 1 mol of the phosphor was manufactured.
  • Example 16 Except that each raw material powder was weighed so that the molar ratio of Sr: Mg: Si: Eu: Pb was 2.980: 1: 2.000: 0.020: 0.0050, it was the same as Example 9. Thus, an SMS phosphor containing 0.020 mol of Eu and 0.0050 mol of Pb with respect to 1 mol of the phosphor was manufactured.
  • Example 17 Except that each raw material powder was weighed so that the molar ratio of Sr: Mg: Si: Eu: Pb was 2.980: 1: 2.000: 0.020: 0.0100, the same as in Example 9 Thus, an SMS phosphor containing 0.020 mol of Eu and 0.0100 mol of Pb with respect to 1 mol of the phosphor was manufactured.
  • Example 18 Except that each raw material powder was weighed so that the molar ratio of Sr: Mg: Si: Eu: Pb was 2.980: 1: 2.000: 0.020: 0.0300, the same as in Example 9 Thus, an SMS phosphor containing 0.020 mol of Eu and 0.0300 mol of Pb with respect to 1 mol of the phosphor was manufactured.
  • Example 19 Except that each raw material powder was weighed so that the molar ratio of Sr: Mg: Si: Eu: Pb was 2.970: 1: 2.000: 0.030: 0.0010, it was the same as in Example 9. Thus, an SMS phosphor containing 0.030 mol of Eu and 0.0010 mol of Pb with respect to 1 mol of the phosphor was manufactured.
  • Example 20 Except that each raw material powder was weighed so that the molar ratio of Sr: Mg: Si: Eu: Pb was 2.970: 1: 2.000: 0.030: 0.0050, the same as Example 9 was performed. Thus, an SMS phosphor containing 0.030 mol of Eu and 0.0050 mol of Pb with respect to 1 mol of the phosphor was manufactured.
  • Example 21 Except that each raw material powder was weighed so that the molar ratio of Sr: Mg: Si: Eu: Pb was 2.965: 1: 2.000: 0.035: 0.0010, the same as in Example 9. Thus, an SMS phosphor containing 0.035 mol Eu and 0.0010 mol Pb with respect to 1 mol of the phosphor was manufactured.
  • Example 22 Except that each raw material powder was weighed so that the molar ratio of Sr: Mg: Si: Eu: Pb was 2.965: 1: 2.000: 0.035: 0.0050, the same as in Example 9 Thus, an SMS phosphor containing 0.035 mol of Eu and 0.0050 mol of Pb with respect to 1 mol of the phosphor was manufactured.
  • the SMS phosphors produced in Examples 9 to 22 and Comparative Examples 5 to 9 and the commercially available BAM phosphors were put in an alumina crucible and heated at 500 ° C. for 1 hour in an air atmosphere, and then released to room temperature. Chilled. Each phosphor after being allowed to cool was irradiated with light having a wavelength of 146 nm, a wavelength of 172 nm, a wavelength of 254 nm, and a wavelength of 405 nm to excite the phosphor, and the emission luminance of blue light emitted from the phosphor was measured. The results are shown in Table 2. The emission luminance is a relative value with the emission intensity of a commercially available BAM phosphor as 100.
  • the SMS phosphors containing Pb of Examples 9 to 18 have higher emission luminance due to excitation of vacuum ultraviolet light having a wavelength of 172 nm than the SMS phosphor containing no Pb (Comparative Example 6). .
  • the SMS phosphor has less decrease in emission luminance over time than the BAM phosphor. Therefore, the SMS phosphor containing Pb of Examples 9 to 18 is particularly useful for a blue light source of a light emitting device that excites the phosphor with vacuum ultraviolet light generated by discharge of Xe gas.
  • the SMS phosphors containing Pb of Examples 19 to 22 have higher emission luminance due to excitation of ultraviolet light having a wavelength of 254 nm, compared to the SMS phosphor containing no Pb (Comparative Example 9). Therefore, the SMS phosphor containing Pb of Examples 19 to 22 is particularly useful for a blue light source of a light emitting device using Hg gas under discharge as an excitation light source. Further, the SMS phosphors containing Pb of Examples 9 to 17 were compared with the SMS phosphor containing no Pb (Comparative Example 8), although the amount of Eu as an activation component of the SMS phosphor was small.
  • the emission luminance by excitation of light having a wavelength of 405 nm is equivalent, and the SMS phosphors containing Pb in Examples 18 to 22 are all compared with the SMS phosphor containing no Pb (Comparative Example 8). Luminance is high due to excitation of 405 nm light. Therefore, in the SMS phosphors containing Pb of Examples 9 to 22, the blue color of the light emitting device using a semiconductor that exhibits light emission having a peak in the wavelength range of 350 to 430 nm when a voltage is applied to the excitation light source. Useful as a luminescence source.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

Sr3-xMgSi28:Euxの組成式で示される蛍光体を青色光源に用いた、発光輝度の高い発光装置を提供する。波長172nmの発光を含む真空紫外光の発光を示す励起光源と、該励起光源からの真空紫外光によって励起されて青色光を発光する蛍光体とを備えた発光装置であって、該蛍光体が、Sr3-xMgSi28:Euxの組成式で示され、xが0.0090~0.025の範囲にある値であり、蛍光体1モルに対してW及び/又はPbを0.00010~0.040モルの範囲の量にて含有する蛍光体である発光装置。

Description

発光装置
 本発明は、Sr3-xMgSi28:Euxの組成式で示される青色発光蛍光体を青色発光源として利用する発光装置に関する。
 真空紫外光や紫外光などの光を蛍光体に照射して、蛍光体を励起させることによって可視光を発光させる発光装置としては、交流型プラズマディスプレイパネル(AC型PDP)、冷陰極型蛍光ランプ(CCFL)及び白色発光ダイオード(白色LED)などが知られている。
 AC型PDPは、Xeガスの放電により生成する真空紫外光を、青色発光蛍光体、緑色発光蛍光体及び赤色発光蛍光体にそれぞれ照射して、各蛍光体を励起させることにより発光した青色光、緑色光及び赤色光を組み合わせることによって画像を得る発光装置である。Xeガスの放電により起こる発光は、主にXeの共鳴線発光とXe2の分子線発光である。共鳴線発光では中心波長が146nm(147nmと記載されている文献もある)の真空紫外光が生成する。分子線発光では中心波長が172nm(173nmと記載されている文献もある)の真空紫外光が生成する。
 CCFLは、Hgガスの放電により生成する紫外光を、青色発光蛍光体、緑色発光蛍光体及び赤色発光蛍光体に照射して、各蛍光体を励起させることにより発光した青色光、緑色光及び赤色光の混色によって白色光を得る発光装置である。Hgガスの放電により生成する紫外光は、波長が254nmである。
 白色LEDとしては、半導体に電圧を印加することにより生成した波長350~430nm範囲にピークを有する光を、青色発光蛍光体、緑色発光蛍光体及び赤色発光蛍光体に照射して、各蛍光体を励起させることにより発光した青色光、緑色光及び赤色光の混色によって白色光を得る構成のものが知られている。
 真空紫外光や紫外光などの光によって励起されると青色光を発光する青色発光蛍光体として、Sr3-xMgSi28:Euxの組成式で示される蛍光体(以下、SMS蛍光体とも言う)やBa1-xMgAl1017:Euxの組成式で示される蛍光体(以下、BAM蛍光体とも言う)が知られている。SMS蛍光体はBAM蛍光体と比較して真空紫外光や紫外光の照射による経時的な発光輝度の低下が少なく、長寿命であるという利点がある。
 特許文献1には、励起光の照射による発光輝度の経時的な低下をさらに防止するために、SMS蛍光体のMgの一部を5族及び6族の元素に置換することが記載されていて、その5族及び6族の元素の例としてWが記載されている。この特許文献1には、Wの置換量は、Mg及びWの総モルに対するWの割合(W/(Mg+W))で0.003以上0.006以下の範囲と記載されている。また、Euの含有量はSr及びEuの総モルに対するEuの割合(Eu/(Sr+Eu))で0.003以上0.05以下の範囲が好ましいと記載されている。なお、この特許文献1の実施例では、上記Wの添加効果の確認は、波長146nmの真空紫外光の励起による発光輝度により行なわれている。
 特許文献2には、真空紫外励起条件下で使用される珪酸塩蛍光体の寿命と輝度特性の向上のために、蛍光体にCu、Ga、Ge、As、Ag、Cd、In、Sn、Sb、Au、Hg、Tl、Pb、Biなどの元素を添加することが記載されている。この特許文献2に記載されている蛍光体のEu含有量の好ましい範囲は、蛍光体1モルに対して、0.001~0.2モルであり、添加元素の好ましい量は、Euに対するモル比率で1以下である。なお、この特許文献2の実施例では、上記元素の添加効果の確認は、波長147nmの真空紫外光の励起による発光輝度により行なわれている。
特開2007-314644号公報 特開2006-70187号公報
 特許文献1と2に記載されているSMS蛍光体は、Xeガスの放電により発光するXeの共鳴線発光(波長146nmもしくは147nmの真空紫外光)の励起による青色発光源として有用である。一方、AC型PDPでは、発光輝度を高めるために、パネル内のXeガス充填量を多くして、Xeガスの放電により生成する真空紫外光の量を増加させることが検討されている。パネル内のXeガス充填量を増加すると、分子線発光による波長172nmの真空紫外光の発光量が多くなる。このため、AC型PDP用の蛍光体では、波長172nmの真空紫外光の励起による発光輝度の向上が望まれている。また、SMS蛍光体の用途には、CCFLや白色LEDなどのように、波長146nm以外の光を励起光とする発光装置も多数存在する。しかしながら、本発明者の検討によると、前記特許文献1と2に記載されている添加元素が、そのままCCFLの励起光として利用される波長254nmの紫外光や白色LEDの励起光として利用される波長350~430nmの光の励起によるSMS蛍光体の発光輝度を向上させるのに有効に作用するわけではないことが判明した。
 さらに、AC型PDPやCCFLなどの発光装置において、蛍光体は通常、基体の上に蛍光体層として配置されている。この蛍光体層は、蛍光体の分散液を基体に塗布し、次いでその塗布膜を乾燥した後、大気中にて300~600℃の温度で焼成することにより形成するのが一般的である。また、白色LEDには、蛍光体をガラスに分散させた蛍光体層として配置されているものもある。この蛍光体層は、蛍光体とガラスとの混合物の分散液を大気中にて300℃以上の温度で焼成して、ガラスを溶融させることによって形成するのが一般的である。従って、蛍光体は大気雰囲気中での加熱処理後においても、高い発光輝度を維持することが要求される。
 従って、本発明の目的は、大気雰囲気中での加熱処理後においても、波長172nmの真空紫外光、波長254nmの紫外光及び波長350~430nmの光による励起によって高い発光輝度を示すSMS蛍光体を開発し、SMS蛍光体を青色発光源に用いた発光輝度の高い発光装置を提供することにある。
 本発明者は、Sr3-xMgSi28:Euxの組成式で示されるSMS蛍光体においては、大気雰囲気中での加熱処理後の発光輝度の向上に対してW及び/又はPbの添加が有効であること、但し、励起光の波長によって、Euの含有量(組成式のx値)とW及び/又はPbの添加量の最適値が異なることを見出し、Euの含有量とW及び/又はPbの添加量とを下記の範囲とすることによって、波長172nmの真空紫外光、波長254nmの紫外光又は波長350~430nmの光による励起によって高い発光輝度を示すSMS蛍光体が得られることを確認して、本発明を完成させた。
 すなわち、本発明は、波長172nmの発光を含む真空紫外光の発光を示す励起光源と、該励起光源からの真空紫外光によって励起されて青色光を発光する蛍光体とを備えた発光装置であって、該蛍光体が、Sr3-xMgSi28:Euxの組成式で示され、xが0.0090~0.025の範囲にある値であり、蛍光体1モルに対してW及び/又はPbを0.00010~0.040モルの範囲の量にて含有する蛍光体である発光装置にある。
 本発明はまた、波長254nmの発光を含む紫外光の発光を示す励起光源と、該励起光源からの紫外光によって励起されて青色光を発光する蛍光体とを備えた発光装置であって、該蛍光体が、Sr3-xMgSi28:Euxの組成式で示され、xが0.025~0.040の範囲にあり、蛍光体1モルに対してW及び/又はPbを0.00010~0.0075モルの範囲の量にて含有する蛍光体である発光装置にもある。
 本発明はさらに、波長350~430nmの範囲にピークを有する光の発光を示す励起光源と、該励起光源からの光によって励起されて青色光を発光する蛍光体とを備えた発光装置であって、該蛍光体が、Sr3-xMgSi28:Euxの組成式で示され、xが0.0090~0.040の範囲にある値であり、蛍光体1モルに対してW及び/又はPbを0.00010~0.040モルの範囲の量にて含有する蛍光体である発光装置にもある。
 本発明で用いるSMS蛍光体は、後述の実施例の結果から明らかなように大気雰囲気中での500℃の温度で加熱処理した後の、発光輝度が市販のBAM蛍光体よりも高い。従って、本発明の発光装置は、従来のBAM蛍光体を用いた発光装置と比較して青色光の発光輝度が大きい、あるいは、従来のBAM蛍光体を用いた発光装置と比較して青色光の発光輝度が同等であっても、蛍光体の使用量を少なくすることができる。
本発明に従う、交流型プラズマディスプレイパネルの一例の斜視図である。 本発明に従う、冷陰極型蛍光ランプの一例の断面図である。 本発明に従う、白色発光ダイオードの一例の断面図である。
 本発明で用いるSMS蛍光体は、基本組成式がSr3-xMgSi28:Euxで示される。SMS蛍光体は、一般にメルウィナイト結晶構造を有する。SMS蛍光体としては、Srの一部をCaやBaで置換したものも知られているが、本発明で用いるSMS蛍光体は、Srに置換したCaやBaを実質的に含有しないものであることが好ましい。ここで、CaやBaを実質的に含有しないとは、Ca及びBaの含有量が蛍光体1モル当たりの含有量として0.01モル以下であることを意味する。
 本発明で用いるSMS蛍光体は、W及び/又はPbを含む。SMS蛍光体のEu含有量及びW及び/又はPbの添加量は、SMS蛍光体の用途、すなわちSMS蛍光体を励起させる光の波長によって異なる。
 AC型PDPのように励起光源に放電下にあるXeガスを用いる発光装置用、すなわち波長172nmの発光を含む真空紫外光による励起用のSMS蛍光体は、蛍光体1モル中のEu含有量が0.0090~0.025モルの範囲にあり(すなわち、組成式のxが0.0090~0.025の範囲にある値にあり)、蛍光体1モルに対してW及び/又はPbを0.00010~0.040モルの範囲の量にて含有する。
 励起光が波長172nmの発光を含む真空紫外光用のSMS蛍光体は、蛍光体1モル中のEu含有量が0.010~0.025モルの範囲、特に0.010~0.023モルの範囲にあり、蛍光体1モルに対してWを0.00075~0.0075モルの範囲の量にて含有する蛍光体であるか、蛍光体1モル中のEu含有量が0.0090~0.025モルの範囲、特に0.010~0.023モルの範囲にあり、蛍光体1モルに対してPbを0.00050~0.040モルの範囲の量にて含有する蛍光体であることが好ましい。
 CCFLのように励起光源に放電下にあるHgガスを用いる発光装置用、すなわち波長254nmの発光を含む紫外光による励起用のSMS蛍光体は、蛍光体1モル中のEu含有量が0.025~0.040モルの範囲にあり(すなわち、組成式のxが0.025~0.040の範囲にある値にあり)、蛍光体1モルに対してW及び/又はPbを0.00010~0.0075モルの範囲の量にて含有する。
 励起光が波長254nmの発光を含む紫外光用のSMS蛍光体は、蛍光体1モル中のEu含有量が0.025~0.040モルの範囲、特に0.028~0.040モルの範囲にあり、蛍光体1モルに対してWを0.00075~0.0075モルの範囲の量にて含有する蛍光体であるか、蛍光体1モル中のEu含有量が0.025~0.040モルの範囲、特に0.028~0.040モルの範囲にあり、蛍光体1モルに対してPbを0.00075~0.0075モルの範囲の量にて含有する蛍光体であることが好ましい。
 白色LEDのように励起光源に電圧が印加された半導体を用いる発光装置用、すなわち波長350~430nmの光による励起用のSMS蛍光体は、蛍光体1モル中のEu含有量が0.0090~0.040モルの範囲にあり(すなわち、組成式のxが0.0090~0.040の範囲にある値にあり)、蛍光体1モルに対してW及び/又はPbを0.00010~0.040モルの範囲の量にて含有する。
 波長350~430nmの光による励起用のSMS蛍光体は、蛍光体1モル中のEu含有量が0.025~0.040モルの範囲、特に0.028~0.040モルの範囲にあり、蛍光体1モルに対してWを0.00075~0.0075モルの範囲の量にて含有する蛍光体であるか、蛍光体1モル中のEu含有量が0.025~0.040モルの範囲、特に0.028~0.040モルの範囲にあり、蛍光体1モルに対してPbを0.00075~0.0075モルの範囲の量にて含有する蛍光体であることが好ましい。
 上記のSMS蛍光体は、Sr源粉末、Mg源粉末、Si源粉末、Eu源粉末、そしてW源粉末及び/又はPb源粉末を混合し、得られた粉末混合物を焼成することによって製造することができる。
 Sr源粉末、Mg源粉末、Si源粉末、Eu源粉末、W源粉末及びPb源粉末の各原料粉末はそれぞれ、酸化物粉末であってもよいし、水酸化物、ハロゲン化物、炭酸塩(塩基性炭酸塩を含む)、硝酸塩、シュウ酸塩などの加熱により酸化物を生成する化合物の粉末であってもよい。原料粉末はそれぞれ一種を単独で使用してもよいし、二種以上を併用してもよい。各原料粉末は、純度が99質量%以上であることが好ましい。
 Sr源粉末、Mg源粉末、Si源粉末及びEu源粉末の配合比率は、SMS蛍光体が生成する割合であり、一般に、粉末混合物中のSrとEuとの合計量を3モルとしたときにMgが0.9~1.1モルの範囲、Siが1.9~2.1モルの範囲となる割合である。
 粉末混合物には、フラックスを添加してもよい。フラックスはハロゲン化物であることが好ましく、塩素化合物であることが特に好ましい。フラックスとして、原料粉末の一部に塩素化合物粉末を用いることが好ましい。特に、ストロンチウムの塩素化合物粉末を用いることが好ましい。フラックスの添加量は、粉末混合物中のストロンチウムとユウロピウムとの合計量を3モルとして、ハロゲン量が0.0001~0.5モルの範囲となる量であることが好ましく、0.02~0.5モルの範囲となる量であることが特に好ましい。
 原料粉末の混合方法には、乾式混合法及び湿式混合法のいずれかの方法を採用することができる。湿式混合法で原料粉末を混合する場合は、回転ボールミル、振動ボールミル、遊星ミル、ペイントシェーカー、ロッキングミル、ロッキングミキサー、ビーズミル、撹拌機などを用いることができる。溶媒には、水や、エタノール、イソプロピルアルコールなどの低級アルコールを用いることができる。
 粉末混合物の焼成は、0.5~5.0体積%の水素と99.5~95.0体積%の不活性気体とからなる還元性気体の雰囲気下にて行なう。不活性気体の例としては、アルゴン及び窒素を挙げることができる。焼成温度は、一般に900~1300℃の範囲である。焼成時間は、一般に0.5~100時間の範囲である。
 原料粉末に加熱により酸化物を生成する化合物の粉末を用いる場合には、還元性気体雰囲気下で焼成する前に、粉末混合物を大気雰囲気下にて、600~850℃の温度で0.5~100時間仮焼することが好ましい。
 焼成により得られたSMS蛍光体は、必要に応じて分級処理、塩酸や硝酸などの鉱酸による酸洗浄処理、ベーキング処理を行なってもよい。
 次に、本発明の発光装置について添付図面の図1~図3を参照しながら、説明する。
 図1は、本発明に従うAC型PDPの一例の斜視図である。AC型PDPは、励起光源が放電下にあるXeガスであり、波長172nmの発光を含む真空紫外光を励起光とする発光装置である。
 図1において、プラズマディスプレイパネルは、Xeガスを含む放電ガスが充填された放電空間10を介して、対向配置された前面板20と背面板30とからなる。放電空間10に充填される放電ガスには、通常はXeガスとNeガスとの混合ガスが用いられる。混合ガス中のXeガスの濃度は、Xeガスの放電により分子線発光が生じる濃度であり、一般には10~30体積%の範囲、好ましくは15~25体積%の範囲にある。
 前面板20は、透明ガラス基板21、透明ガラス基板21の背面板側の表面に形成された二つの列電極24a、24bからなる放電電極25、放電電極を被覆する誘電体層26、そして誘電体層の表面に形成された誘電体保護層27からなる。放電電極25を構成する二つの列電極24a、24bは、それぞれ透明電極22とバス電極23とからなる。透明電極22は、一般にITO(インジウムスズ酸化物)膜や酸化スズ膜などの導電性金属酸化物膜からなる。誘電体層26は低融点ガラスからなる。誘電体保護層27は、酸化マグネシウム膜からなる。
 背面板30は、透明ガラス基板31、透明ガラス基板31の前面板側の表面に形成されたアドレス電極32、アドレス電極32を被覆する誘電体層33、誘電体層33の表面に間隔を開けてストライプ状に形成された隔壁34、隔壁34の間に充填された青色発光蛍光体35B、緑色発光蛍光体35G及び赤色発光蛍光体35Rからなる。アドレス電極32は、一般にアルミニウム、銅及び銀などの単相金属膜、もしくはクロム/銅/クロムなどの積層金属膜からなる。誘電体層33及び隔壁34は低融点ガラスからなる。青色発光蛍光体35Bは、上記励起光が波長172nmの発光を含む真空紫外光用のSMS蛍光体からなる。
 図1のAC型PDPにおいて、前面板20の放電電極25に電圧を印加すると、放電空間10内のXeガスが放電して、波長146nmと波長172nmの真空紫外光が生成し、この真空紫外光が背面板30に備えられているSMS蛍光体35B、緑色発光蛍光体35G及び赤色発光蛍光体35Rに照射して、それらの蛍光体を励起して、青色、緑色、赤色の三原色の可視光を発光させ、これらの組み合わせで画像を形成する。
 図2は、本発明に従う、CCFLの一例の断面図である。CCFLは、励起光源が放電下にあるHgガスであり、波長254nmの発光を含む紫外光を励起光とする発光装置である。
 図2において、CCFLはガラス部材であるガラス管41、ガラス管41の内部空間42に充填された放電ガス、ガラス管41の内壁面に形成された蛍光体層43、ガラス管41の長手方向の両側端部にそれぞれ設けられた一対の電極44a、44b、そして電極44a、44bと外部電源(図示せず)とを電気的に接続するための導電線45a、45bからなる。放電ガスは、一般にHgガスと希ガス(例えば、Arガス)との混合ガスが用いられる。蛍光体層43は、上記励起光が波長254nmの発光を含む紫外光用のSMS蛍光体と、緑色発光蛍光体と、赤色発光蛍光体とを含む。
 図2のCCFLにおいて、電極44a、44bとの間に高電圧を印加すると、内部空間42に充填されたHgガスの放電により波長254nmの紫外光が生成し、この紫外光が蛍光体層43に照射し、各色の蛍光体を励起して、青色、緑色及び赤色の可視光を発光させ、これらの発光光の混色により白色が生成する。
 図3は、本発明に従う、白色LEDの一例の断面図である。本発明において、白色LEDは、励起光源が電圧が印加された半導体とし、該半導体にて生成した波長350~430nmの範囲にピークを有する光を励起光とする発光装置である。
 図3において、白色LEDは、基板51と、基板51の上に接着材52により固定された半導体53、基板の上に形成された一対の電極54a、54b、半導体53と電極54a、54bとを電気的に接続するリード線55a、55b、半導体53を被覆する樹脂層56、樹脂層56の上に設けられた蛍光体層57、そして樹脂層56と蛍光体層57の周囲を覆う光反射材58、そして電極54a、54bと外部電源(図示せず)とを電気的に接続するための導電線59a、59bからなる。半導体53の例としては、AlGaN系半導体を挙げることができる。樹脂層56の材料の例としてはシリコーン樹脂を挙げることができる。蛍光体層57には、上記波長350~430nmの光による励起用のSMS蛍光体と、緑色発光蛍光体と、赤色発光蛍光体とがガラスやシリコーン樹脂などの透明樹脂に分散された層を用いることができる。
 図3の白色LEDにおいて、電極54a、54bに電圧を印加すると、半導体53から波長350~430nmの範囲にピークを有する光が生成し、この光が蛍光体層57に照射し、各色の蛍光体を励起して、青色、緑色及び赤色の可視光を発光させ、これらの発光光の混色により白色が生成する。
[実施例1]
 SrCO3粉末(純度99.99質量%、平均粒子径2.73μm)、塩基性MgCO3粉末(4MgCO3・Mg(OH)2・4H2O粉末、純度99.99質量%、平均粒子径11.08μm)、SiO2粉末(純度99.9質量%、平均粒子径3.87μm)、Eu23粉末(純度99.9質量%、平均粒子径2.71μm)、WO3粉末(純度99.9質量%、平均粒子径7μm)の各原料粉末をそれぞれ、Sr:Mg:Si:Eu:Wのモル比で2.985:1:2.000:0.015:0.0010となるように秤量した。なお、各原料粉末の平均粒子径は、いずれもレーザー回折散乱法により測定した値である。
 秤量した各原料粉末を純水750mLと共にボールミルに投入し、24時間湿式混合した後、加熱により水分を除去して粉末混合物を得た。得られた粉末混合物をアルミナ坩堝に入れて、大気雰囲気にて800℃の温度で3時間仮焼し、次いで室温まで放冷した後、2体積%水素-98体積%アルゴンの混合ガス雰囲気にて1200℃の温度で3時間焼成して粉末焼成物を得た。得られた粉末焼成物を目開き20μmのポリアミド製篩にて湿式で篩分けし、粗大粒子を除去した後、乾燥した。以上のようにして、蛍光体1モルに対してEuを0.015モル、Wを0.0010モル含有するSMS蛍光体を製造した。
[実施例2]
 各原料粉末をSr:Mg:Si:Eu:Wのモル比が2.985:1:2.000:0.015:0.0050となるように秤量したこと以外は、実施例1と同様にして、蛍光体1モルに対してEuを0.015モル、Wを0.0050モル含有するSMS蛍光体を製造した。
[比較例1]
 各原料粉末をSr:Mg:Si:Eu:Wのモル比が2.985:1:2.000:0.015:0となるように秤量したこと以外は、実施例1と同様にして、蛍光体1モルに対してEuを0.015モル含有し、Wを含有しないSMS蛍光体を製造した。
[実施例3]
 各原料粉末をSr:Mg:Si:Eu:Wのモル比が2.980:1:2.000:0.020:0.0010となるように秤量したこと以外は、実施例1と同様にして、蛍光体1モルに対してEuを0.020モル、Wを0.0010モル含有するSMS蛍光体を製造した。
[実施例4]
 各原料粉末をSr:Mg:Si:Eu:Wのモル比が2.980:1:2.000:0.020:0.0050となるように秤量したこと以外は、実施例1と同様にして、蛍光体1モルに対してEuを0.020モル、Wを0.0050モル含有するSMS蛍光体を製造した。
[比較例2]
 各原料粉末をSr:Mg:Si:Eu:Wのモル比が2.980:1:2.000:0.020:0となるように秤量したこと以外は、実施例1と同様にして、蛍光体1モルに対してEuを0.020モル含有し、Wを含有しないSMS蛍光体を製造した。
[実施例5]
 各原料粉末をSr:Mg:Si:Eu:Wのモル比が2.970:1:2.000:0.030:0.0010となるように秤量したこと以外は、実施例1と同様にして、蛍光体1モルに対してEuを0.030モル、Wを0.0010モル含有するSMS蛍光体を製造した。
[実施例6]
 各原料粉末をSr:Mg:Si:Eu:Wのモル比が2.970:1:2.000:0.030:0.0050となるように秤量したこと以外は、実施例1と同様にして、蛍光体1モルに対してEuを0.030モル、Wを0.0050モル含有するSMS蛍光体を製造した。
[比較例3]
 各原料粉末をSr:Mg:Si:Eu:Wのモル比が2.970:1:2.000:0.030:0となるように秤量したこと以外は、実施例1と同様にして、蛍光体1モルに対してEuを0.030モル含有し、Wを含有しないSMS蛍光体を製造した。
[実施例7]
 各原料粉末をSr:Mg:Si:Eu:Wのモル比が2.965:1:2.000:0.035:0.0010となるように秤量したこと以外は、実施例1と同様にして、蛍光体1モルに対してEuを0.035モル、Wを0.0010モル含有するSMS蛍光体を製造した。
[実施例8]
 各原料粉末をSr:Mg:Si:Eu:Wのモル比が2.965:1:2.000:0.035:0.0050となるように秤量したこと以外は、実施例1と同様にして、蛍光体1モルに対してEuを0.035モル、Wを0.0050モル含有するSMS蛍光体を製造した。
[比較例4]
 各原料粉末をSr:Mg:Si:Eu:Wのモル比が2.965:1:2.000:0.035:0となるように秤量したこと以外は、実施例1と同様にして、蛍光体1モルに対してEuを0.035モル含有し、Wを含有しないSMS蛍光体を製造した。
[評価]
 実施例1~8と比較例1~4で製造したSMS蛍光体、及び市販のBAM蛍光体をそれぞれアルミナ坩堝に入れて大気雰囲気にて500℃の温度で1時間加熱処理した後、室温まで放冷した。放冷後の各蛍光体に、波長146nm、波長172nm、波長254nm及び波長405nmの光をそれぞれ照射して、蛍光体を励起させ、蛍光体が発光した青色光の発光輝度を測定した。波長146nmと波長172nmの光源にはそれぞれ各波長用のエキシマランプを用いた。波長254nmと波長405nmの光源にはキセノンランプを用い、分光器を用いて波長254nmと波長405nmの光に分光した。発光輝度の測定結果を表1に示す。なお、発光輝度は、市販のBAM蛍光体の発光強度を100とした相対値である。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、実施例1~4のWを含むSMS蛍光体は、Wを含まないSMS蛍光体(比較例1)と比較して、波長172nmの真空紫外光の励起による発光輝度が高い。またSMS蛍光体はBAM蛍光体と比較して、経時的な発光輝度の低下が少ないことは知られている。従って、実施例1~4のWを含むSMS蛍光体は、励起光源に放電下にあるXeガスを用いる発光装置の青色発光源用として特に有用である。また、実施例5~8のWを含むSMS蛍光体は、Wを含まないSMS蛍光体(比較例4)と比較して、波長254nmの紫外光の励起による発光輝度が高い。従って、実施例5~8のWを含むSMS蛍光体は、励起光源に放電下にあるHgガスを用いる発光装置の青色発光源用として特に有用である。また、実施例1、3のWを含むSMS蛍光体は、Wを含まないSMS蛍光体(比較例4)とを比較して、SMS蛍光体の付活成分であるEuが少量でありながらも、波長405nmの光の励起による発光輝度は同等であり、実施例2、4~8のWを含むSMS蛍光体は、いずれもWを含まないSMS蛍光体(比較例4)とを比較して、波長405nmの光の励起による発光輝度が高い。従って、実施例1~8のWを含むSMS蛍光体は、励起光源に電圧が印加されて、波長350~430nmの範囲にピークを有する光の発光を示す半導体を励起光源とする発光装置の青色発光源として有用である。
[実施例9]
 SrCO3粉末(純度99.99質量%、平均粒子径2.73μm)、塩基性MgCO3粉末(4MgCO3・Mg(OH)2・4H2O粉末、純度99.99質量%、平均粒子径11.08μm)、SiO2粉末(純度99.9質量%、平均粒子径3.87μm)、Eu23粉末(純度99.9質量%、平均粒子径2.71μm)、PbCl2粉末(純度98質量%、平均粒子径30μm)の各原料粉末をそれぞれ、Sr:Mg:Si:Eu:Pbのモル比で2.990:1:2.000:0.010:0.0010となるように秤量した。なお、各原料粉末の平均粒子径は、いずれもレーザー回折散乱法により測定した値である。
 秤量した各原料粉末を純水750mLと共にボールミルに投入し、24時間湿式混合した後、加熱により水分を除去して粉末混合物を得た。得られた粉末混合物をアルミナ坩堝に入れて、大気雰囲気にて800℃の温度で3時間焼成し、次いで室温まで放冷した後、2体積%水素-98体積%アルゴンの混合ガス雰囲気にて1200℃の温度で3時間焼成して粉末焼成物を得た。得られた粉末焼成物を目開き20μmのポリアミド製篩にて湿式で篩分けし、粗大粒子を除去した後、乾燥した。以上のようにして、蛍光体1モルに対してEuを0.010モル、Pbを0.0010モル含有するSMS蛍光体を製造した。
[実施例10]
 各原料粉末をSr:Mg:Si:Eu:Pbのモル比が2.990:1:2.000:0.010:0.0050となるように秤量したこと以外は、実施例9と同様にして、蛍光体1モルに対してEuを0.010モル、Pbを0.0050モル含有するSMS蛍光体を製造した。
[実施例11]
 各原料粉末をSr:Mg:Si:Eu:Pbのモル比が2.990:1:2.000:0.010:0.0100となるように秤量したこと以外は、実施例9と同様にして、蛍光体1モルに対してEuを0.010モル、Pbを0.0100モル含有するSMS蛍光体を製造した。
[実施例12]
 各原料粉末をSr:Mg:Si:Eu:Pbのモル比が2.990:1:2.000:0.010:0.0300となるように秤量したこと以外は、実施例9と同様にして、蛍光体1モルに対してEuを0.010モル、Pbを0.0300モル含有するSMS蛍光体を製造した。
[比較例5]
 各原料粉末をSr:Mg:Si:Eu:Pbのモル比が2.990:1:2.000:0.010:0となるように秤量したこと以外は、実施例9と同様にして、蛍光体1モルに対してEuを0.010モルを含有し、Pbを含有しないSMS蛍光体を製造した。
[実施例13]
 各原料粉末をSr:Mg:Si:Eu:Pbのモル比が2.985:1:2.000:0.015:0.0010となるように秤量したこと以外は、実施例9と同様にして、蛍光体1モルに対してEuを0.015モル、Pbを0.0010モル含有するSMS蛍光体を製造した。
[実施例14]
 各原料粉末をSr:Mg:Si:Eu:Pbのモル比が2.985:1:2.000:0.015:0.0050となるように秤量したこと以外は、実施例9と同様にして、蛍光体1モルに対してEuを0.015モル、Pbを0.0050モル含有するSMS蛍光体を製造した。
[比較例6]
 各原料粉末をSr:Mg:Si:Eu:Pbのモル比が2.985:1:2.000:0.015:0となるように秤量したこと以外は、実施例9と同様にして、蛍光体1モルに対してEuを0.015モルを含有し、Pbを含有しないSMS蛍光体を製造した。
[実施例15]
 各原料粉末をSr:Mg:Si:Eu:Pbのモル比が2.980:1:2.000:0.020:0.0010となるように秤量したこと以外は、実施例9と同様にして、蛍光体1モルに対してEuを0.020モル、Pbを0.0010モル含有するSMS蛍光体を製造した。
[実施例16]
 各原料粉末をSr:Mg:Si:Eu:Pbのモル比が2.980:1:2.000:0.020:0.0050となるように秤量したこと以外は、実施例9と同様にして、蛍光体1モルに対してEuを0.020モル、Pbを0.0050モル含有するSMS蛍光体を製造した。
[実施例17]
 各原料粉末をSr:Mg:Si:Eu:Pbのモル比が2.980:1:2.000:0.020:0.0100となるように秤量したこと以外は、実施例9と同様にして、蛍光体1モルに対してEuを0.020モル、Pbを0.0100モル含有するSMS蛍光体を製造した。
[実施例18]
 各原料粉末をSr:Mg:Si:Eu:Pbのモル比が2.980:1:2.000:0.020:0.0300となるように秤量したこと以外は、実施例9と同様にして、蛍光体1モルに対してEuを0.020モル、Pbを0.0300モル含有するSMS蛍光体を製造した。
[比較例7]
 各原料粉末をSr:Mg:Si:Eu:Pbのモル比が2.980:1:2.000:0.020:0となるように秤量したこと以外は、実施例9と同様にして、蛍光体1モルに対してEuを0.020モルを含有し、Pbを含有しないSMS蛍光体を製造した。
[実施例19]
 各原料粉末をSr:Mg:Si:Eu:Pbのモル比が2.970:1:2.000:0.030:0.0010となるように秤量したこと以外は、実施例9と同様にして、蛍光体1モルに対してEuを0.030モル、Pbを0.0010モル含有するSMS蛍光体を製造した。
[実施例20]
 各原料粉末をSr:Mg:Si:Eu:Pbのモル比が2.970:1:2.000:0.030:0.0050となるように秤量したこと以外は、実施例9と同様にして、蛍光体1モルに対してEuを0.030モル、Pbを0.0050モル含有するSMS蛍光体を製造した。
[比較例8]
 各原料粉末をSr:Mg:Si:Eu:Pbのモル比が2.970:1:2.000:0.030:0となるように秤量したこと以外は、実施例9と同様にして、蛍光体1モルに対してEuを0.030モルを含有し、Pbを含有しないSMS蛍光体を製造した。
[実施例21]
 各原料粉末をSr:Mg:Si:Eu:Pbのモル比が2.965:1:2.000:0.035:0.0010となるように秤量したこと以外は、実施例9と同様にして、蛍光体1モルに対してEuを0.035モル、Pbを0.0010モル含有するSMS蛍光体を製造した。
[実施例22]
 各原料粉末をSr:Mg:Si:Eu:Pbのモル比が2.965:1:2.000:0.035:0.0050となるように秤量したこと以外は、実施例9と同様にして、蛍光体1モルに対してEuを0.035モル、Pbを0.0050モル含有するSMS蛍光体を製造した。
[比較例9]
 各原料粉末をSr:Mg:Si:Eu:Pbのモル比が2.965:1:2.000:0.035:0となるように秤量したこと以外は、実施例9と同様にして、蛍光体1モルに対してEuを0.035モルを含有し、Pbを含有しないSMS蛍光体を製造した。
[評価]
 実施例9~22と比較例5~9で製造したSMS蛍光体、及び市販のBAM蛍光体をそれぞれアルミナ坩堝に入れて大気雰囲気にて500℃の温度で1時間加熱処理した後、室温まで放冷した。放冷後の各蛍光体に波長146nm、波長172nm、波長254nm及び波長405nmの光をそれぞれ照射して、蛍光体を励起させ、蛍光体が発光した青色光の発光輝度を測定した。その結果を表2に示す。なお、発光輝度は、市販のBAM蛍光体の発光強度を100とした相対値である。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、実施例9~18のPbを含むSMS蛍光体は、Pbを含まないSMS蛍光体(比較例6)と比較して、波長172nmの真空紫外光の励起による発光輝度が高い。またSMS蛍光体はBAM蛍光体と比較して、経時的な発光輝度の低下が少ないことは知られている。従って、実施例9~18のPbを含むSMS蛍光体は、Xeガスの放電により生成する真空紫外光で蛍光体を励起させる発光装置の青色発光源用として特に有用である。また、実施例19~22のPbを含むSMS蛍光体は、Pbを含まないSMS蛍光体(比較例9)と比較して、波長254nmの紫外光の励起による発光輝度が高い。従って、実施例19~22のPbを含むSMS蛍光体は、励起光源に放電下にあるHgガスを用いる発光装置の青色発光源用として特に有用である。また、実施例9~17のPbを含むSMS蛍光体は、Pbを含まないSMS蛍光体(比較例8)とを比較して、SMS蛍光体の付活成分であるEuが少量でありながらも、波長405nmの光の励起による発光輝度は同等であり、実施例18~22のPbを含むSMS蛍光体は、いずれもPbを含まないSMS蛍光体(比較例8)とを比較して、波長405nmの光の励起による発光輝度が高い。従って、実施例9~22のPbを含むSMS蛍光体は、励起光源に電圧が印加されて、波長350~430nmの範囲にピークを有する光の発光を示す半導体を励起光源とする発光装置の青色発光源として有用である。
 10 放電空間
 20 前面板
 21 透明ガラス基板
 22 透明電極
 23 バス電極
 24a、24b 列電極
 25 放電電極
 26 誘電体層
 27 誘電体保護層
 30 背面板
 31 透明ガラス基板
 32 アドレス電極
 33 誘電体層
 34 隔壁
 35B 青色発光蛍光体
 35G 緑色発光蛍光体
 35R 赤色発光蛍光体
 41 ガラス管
 42 内部空間
 43 蛍光体層
 44a、44b 電極
 45a、45b 導電線
 51 基板
 52 接着材
 53 半導体
 54a、54b 電極
 55a、55b リード線
 56 樹脂層
 57 蛍光体層
 58 光反射材
 59a、59b 導電線

Claims (9)

  1.  波長172nmの発光を含む真空紫外光の発光を示す励起光源と、該励起光源からの真空紫外光によって励起されて青色光を発光する蛍光体とを備えた発光装置であって、該蛍光体が、Sr3-xMgSi28:Euxの組成式で示され、xが0.0090~0.025の範囲にある値であり、蛍光体1モルに対してW及び/又はPbを0.00010~0.040モルの範囲の量にて含有する蛍光体である発光装置。
  2.  励起光源が放電下にあるXeガスであり、蛍光体の組成式のxが、0.010~0.025の範囲にある値であり、該蛍光体が、蛍光体1モルに対してWを0.00075~0.0075モルの範囲の量にて含有する蛍光体である請求項1に記載の発光装置。
  3.  励起光源が放電下にあるXeガスであり、蛍光体の組成式のxが、0.0090~0.025の範囲にある値であり、該蛍光体が、蛍光体1モルに対してPbを0.00050~0.040モルの範囲の量にて含有する蛍光体である請求項1に記載の発光装置。
  4.  波長254nmの発光を含む紫外光の発光を示す励起光源と、該励起光源からの紫外光によって励起されて青色光を発光する蛍光体とを備えた発光装置であって、該蛍光体が、Sr3-xMgSi28:Euxの組成式で示され、xが0.025~0.040の範囲にあり、蛍光体1モルに対してW及び/又はPbを0.00010~0.0075モルの範囲の量にて含有する蛍光体である発光装置。
  5.  励起光源が放電下にあるHgガスであり、蛍光体の組成式のxが、0.025~0.040の範囲にある値であり、該蛍光体が、蛍光体1モルに対してWを0.00075~0.0075モルの範囲の量にて含有する蛍光体である請求項4に記載の発光装置。
  6.  励起光源が放電下にあるHgガスであり、蛍光体の組成式のxが、0.025~0.040の範囲にある値であり、該蛍光体が、蛍光体1モルに対してPbを0.00075~0.0075モルの範囲の量にて含有する蛍光体である請求項4に記載の発光装置。
  7.  波長350~430nmの範囲にピークを有する光の発光を示す励起光源と、該励起光源からの光によって励起されて青色光を発光する蛍光体とを備えた発光装置であって、該蛍光体が、Sr3-xMgSi28:Euxの組成式で示され、xが0.0090~0.040の範囲にある値であり、蛍光体1モルに対してW及び/又はPbを0.00010~0.040モルの範囲の量にて含有する蛍光体である発光装置。
  8.  励起光源が電圧が印加された半導体であり、蛍光体の組成式のxが、0.025~0.040の範囲にある値であり、該蛍光体が、蛍光体1モルに対してWを0.00075~0.0075モルの範囲の量にて含有する蛍光体である請求項7に記載の発光装置。
  9.  励起光源が電圧が印加された半導体であり、蛍光体の組成式のxが、0.025~0.040の範囲にある値であり、該蛍光体が、蛍光体1モルに対してPbを0.00075~0.0075モルの範囲の量にて含有する蛍光体である請求項7に記載の発光装置。
PCT/JP2010/069619 2009-11-04 2010-11-04 発光装置 WO2011055753A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-253002 2009-11-04
JP2009253002 2009-11-04

Publications (1)

Publication Number Publication Date
WO2011055753A1 true WO2011055753A1 (ja) 2011-05-12

Family

ID=43969991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069619 WO2011055753A1 (ja) 2009-11-04 2010-11-04 発光装置

Country Status (2)

Country Link
JP (1) JP5638348B2 (ja)
WO (1) WO2011055753A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509112B (zh) 2013-07-08 2024-04-02 亮锐控股有限公司 波长转换的半导体发光器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646087A (en) * 1987-06-30 1989-01-10 Hitachi Ltd Synthesis of fluophor
JP2006012770A (ja) * 2004-05-27 2006-01-12 Hitachi Ltd 発光装置及び該発光装置を用いた画像表示装置
WO2007139125A1 (ja) * 2006-05-25 2007-12-06 Sumitomo Chemical Company, Limited 複合酸化物、蛍光体、蛍光体ペーストおよび発光素子
WO2007139014A1 (ja) * 2006-05-26 2007-12-06 Panasonic Corporation 蛍光体および発光装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070187A (ja) * 2004-09-03 2006-03-16 Hitachi Ltd 珪酸塩蛍光体、発光装置及び該発光装置を用いた表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646087A (en) * 1987-06-30 1989-01-10 Hitachi Ltd Synthesis of fluophor
JP2006012770A (ja) * 2004-05-27 2006-01-12 Hitachi Ltd 発光装置及び該発光装置を用いた画像表示装置
WO2007139125A1 (ja) * 2006-05-25 2007-12-06 Sumitomo Chemical Company, Limited 複合酸化物、蛍光体、蛍光体ペーストおよび発光素子
WO2007139014A1 (ja) * 2006-05-26 2007-12-06 Panasonic Corporation 蛍光体および発光装置

Also Published As

Publication number Publication date
JP5638348B2 (ja) 2014-12-10
JP2011116974A (ja) 2011-06-16

Similar Documents

Publication Publication Date Title
JP5361886B2 (ja) 熱安定性の酸窒化物蛍光体及びこの種の蛍光体を有する光源
TWI582214B (zh) 螢光體及其製造方法、使用螢光體之發光裝置、圖像顯示裝置、顏料及紫外線吸收劑
WO2012070565A1 (ja) 高い発光特性と耐湿性とを示すケイ酸塩蛍光体及び発光装置
TWI491709B (zh) A blue light-emitting phosphor, and a light-emitting device using the blue light-emitting phosphor
JP4561194B2 (ja) 冷陰極蛍光ランプ用アルカリ土類アルミン酸塩蛍光体および冷陰極蛍光ランプ
US20190067530A1 (en) Blue light-emitting phosphor and light emitting device using same
US20080048547A1 (en) Plasma display device and light emitting device
KR101573104B1 (ko) 발광성 적층체
WO2013146790A1 (ja) 深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体及びその製造方法
JP5150623B2 (ja) 青色蛍光体、発光装置およびプラズマディスプレイパネル
CN1384528A (zh) 具有降低转换发光体的气体放电灯
JP5638348B2 (ja) 青色発光蛍光体及び発光装置
JP2001335777A (ja) 真空紫外線励起蛍光体およびそれを用いた発光装置
JP4146173B2 (ja) 2価金属珪酸塩蛍光体、蛍光体ペースト組成物及びそれを用いた真空紫外線励起発光素子
JP4046542B2 (ja) 珪酸カルシウム・マグネシウム蛍光体、蛍光体ペースト組成物及び真空紫外線励起発光素子
JP5736272B2 (ja) 青色発光蛍光体及び該青色発光蛍光体を用いた発光装置
JP4517783B2 (ja) 希土類硼アルミン酸塩蛍光体及びそれを用いた発光装置
JP2005187690A (ja) 真空紫外線励起珪酸塩蛍光体及びその製造方法並びに真空紫外線励起発光装置
JP2005023317A (ja) 蛍光体とその製造方法、および前記蛍光体を用いたガス放電表示パネルおよび蛍光ランプ
JP2001303047A (ja) 真空紫外線励起蛍光体およびそれを用いた発光装置
JP5766454B2 (ja) 青色発光蛍光体
JP4517781B2 (ja) 希土類硼アルミン酸塩蛍光体及びそれを用いた発光装置
JP2010192254A (ja) 冷陰極蛍光ランプ及びアルミン酸塩系蛍光体
JP2006089692A (ja) 緑色発光蛍光体およびそれを用いた水銀蛍光ランプ
JP2006070187A (ja) 珪酸塩蛍光体、発光装置及び該発光装置を用いた表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10828313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10828313

Country of ref document: EP

Kind code of ref document: A1