WO2013146790A1 - 深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体及びその製造方法 - Google Patents

深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体及びその製造方法 Download PDF

Info

Publication number
WO2013146790A1
WO2013146790A1 PCT/JP2013/058815 JP2013058815W WO2013146790A1 WO 2013146790 A1 WO2013146790 A1 WO 2013146790A1 JP 2013058815 W JP2013058815 W JP 2013058815W WO 2013146790 A1 WO2013146790 A1 WO 2013146790A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
magnesium
phosphor
red light
Prior art date
Application number
PCT/JP2013/058815
Other languages
English (en)
French (fr)
Inventor
福田 晃一
里花 野北
仁 天谷
稲垣 徹
Original Assignee
宇部マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部マテリアルズ株式会社 filed Critical 宇部マテリアルズ株式会社
Priority to US14/387,910 priority Critical patent/US9605200B2/en
Priority to JP2014507920A priority patent/JP5770365B2/ja
Publication of WO2013146790A1 publication Critical patent/WO2013146790A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/661Chalcogenides
    • C09K11/663Chalcogenides with alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present invention relates to a deep red light emitting magnesium fluorogermanate phosphor and a method for producing the same.
  • the present invention also relates to a light emitting device using a deep red light emitting magnesium fluorogermanate phosphor as a red light source.
  • a magnesium fluorogermanate phosphor represented by the formula 3.5MgO ⁇ 0.5MgF 2 ⁇ GeO 2 : Mn 4+ is known as a deep red light emitting phosphor. This phosphor is used as a red light source of a fluorescent mercury lamp (Non-Patent Document 1).
  • Patent Document 1 describes a deep red light emitting fluorogermanate phosphor represented by the following formula.
  • k is a real number of 2.8 to 5
  • x is a real number of 0.1 to 0.7
  • y is a real number of 0.005 to 0.015
  • A is calcium.
  • magnesium oxide, metal fluoride, germanium oxide, and a manganese precursor compound are uniformly distributed so as to have a molar ratio of (kx): x: 1: y.
  • Patent Document 2 the composition ratio of the constituent element of the phosphor fluorogermanate phosphor represented by the formula of 3.5MgO.0.5MgF 2 .GeO 2 : Mn 4+ is changed, or the constituent element is changed to another element. It is described that a deep red light emitting phosphor with improved light emission efficiency when excited with light in the near ultraviolet to visible region having a wavelength of 350 to 500 nm can be obtained by substituting for. In this patent document, a phosphor represented by the following formula is described as a deep red light emitting magnesium fluorogermanate phosphor in which the composition ratio of constituent elements is changed.
  • an object of the present invention is to provide a method capable of industrially advantageously producing a deep red light emitting magnesium fluorogermanate phosphor having high emission intensity when excited by light in the near ultraviolet region. It is in.
  • Another object of the present invention is to provide a deep red light emitting magnesium fluorogermanate phosphor having high emission intensity when excited by light in the near ultraviolet region, and a light emitting device using the phosphor as a red light source. There is to do.
  • the inventor of the present invention has disclosed a deep red light emitting property that emits light having a maximum peak in a wavelength range of 640 to 680 nm when a mixture containing magnesium oxide, a fluorine compound, a germanium compound, and a manganese compound is fired and excited with light having a wavelength of 400 nm.
  • a magnesium fluorogermanate phosphor if a magnesium oxide fine powder having a BET specific surface area in the range of 5 to 200 m 2 / g is used as magnesium oxide, high emission intensity is obtained when excited with light having a wavelength of 400 nm.
  • the present inventors have found that a phosphor exhibiting the following can be obtained.
  • the present invention provides light emission having a maximum peak in the wavelength range of 640 to 680 nm when excited by light having a wavelength of 400 nm, obtained by firing a mixture containing magnesium oxide, fluorine compound, germanium compound, and manganese compound.
  • a deep red luminescent fluorogermanic acid phosphor characterized in that the magnesium oxide is a fine powder of magnesium oxide having a BET specific surface area in the range of 5 to 200 m 2 / g. Magnesium phosphor.
  • Preferred embodiments of the deep red light-emitting magnesium fluorogermanate phosphor of the present invention are as follows. (1) The diffraction angle 2 ⁇ measured using CuK ⁇ rays having an incident angle of ⁇ has a maximum X-ray diffraction line peak in the range of 35.2 to 36.0 degrees. (2) Magnesium oxide fine powder is fine powder containing cubic primary particles. (3) The magnesium oxide fine powder is a fine powder having a purity of 99.9% by mass or more. (4) Magnesium oxide fine powder is a fine powder obtained by contacting magnesium vapor and oxygen in a gas phase to oxidize magnesium.
  • the deep red light-emitting magnesium fluorogermanate phosphor is a phosphor having a composition represented by the following formula (I).
  • A is at least one element selected from the group consisting of Mg, Ca, Sr, Ba and Zn
  • x is a number in the range of 1.5 to 4.5
  • y Is a number in the range of 0.050 to 2.5
  • z is a number in the range of 0.0010 to 0.10, in particular a number in the range of 0.0050 to 0.040.
  • a red light-emitting phosphor of a light-emitting device including a semiconductor light-emitting element and a red light-emitting phosphor that emits red light when excited by light generated in the semiconductor light-emitting element.
  • the present invention includes a step of firing a mixture containing magnesium oxide, a fluorine compound, a germanium compound, and a manganese compound, and includes a step of emitting light having a maximum peak in a wavelength range of 640 to 680 nm when excited with light having a wavelength of 400 nm.
  • the preferable aspect of the manufacturing method of the deep red light emission magnesium fluorogermanate fluorescent substance of this invention is as follows.
  • the deep red light-emitting magnesium fluorogermanate phosphor has a maximum X-ray diffraction line peak in a diffraction angle 2 ⁇ measured using CuK ⁇ rays having an incident angle ⁇ of 35.2 to 36.0 degrees. It is the fluorescent substance which has.
  • Magnesium oxide fine powder is fine powder containing cubic primary particles.
  • the magnesium oxide fine powder is a fine powder having a purity of 99.9% by mass or more.
  • Magnesium oxide fine powder is a fine powder obtained by contacting magnesium vapor and oxygen in a gas phase to oxidize magnesium.
  • the present invention is also a light-emitting device including a semiconductor light-emitting element that emits light having a wavelength of 350 to 430 nm and the deep red light-emitting magnesium fluorogermanate phosphor of the present invention.
  • the present invention further provides a semiconductor light emitting device that emits light having a wavelength of 350 to 430 nm, the deep red light emitting magnesium fluorogermanate phosphor of the present invention, and emission of blue light when excited by light generated in the semiconductor light emitting device.
  • a light-emitting device including a blue light-emitting phosphor that exhibits green light and a green light-emitting phosphor that emits green light when excited by light generated in the semiconductor light-emitting element.
  • the present invention further provides a semiconductor light emitting device that emits blue light, the deep red light emitting magnesium fluorogermanate phosphor of the present invention, and green light emission when excited by light generated in the semiconductor light emitting device.
  • a semiconductor light emitting device that emits blue light
  • the deep red light emitting magnesium fluorogermanate phosphor of the present invention and green light emission when excited by light generated in the semiconductor light emitting device.
  • light-emitting devices that include green-emitting phosphors.
  • the deep red light-emitting magnesium fluorogermanate phosphor of the present invention exhibits high light emission intensity, and therefore can be advantageously used as a red light source for light-emitting devices such as white LEDs and fluorescent lamps.
  • the deep red light emitting magnesium fluorogermanate phosphor of the present invention is obtained by firing a mixture containing magnesium oxide, a fluorine compound, a germanium compound, and a manganese compound.
  • magnesium oxide fine powder having a BET specific surface area of 5 to 200 m 2 / g, preferably 5 to 100 m 2 / g, is used as the raw material magnesium oxide.
  • the magnesium oxide fine powder is preferably a fine powder containing cubic primary particles.
  • the content of the primary particles in the cubic shape is preferably at least 80% or more based on the number of primary particles.
  • the purity of the magnesium oxide fine powder is preferably 99.9% by mass or more, and more preferably 99.95% by mass.
  • the magnesium oxide fine powder can be produced by a gas phase method.
  • the vapor phase method is a method for producing magnesium oxide fine powder by contacting magnesium vapor and oxygen in a gas phase to oxidize magnesium, and this vapor phase method is already known.
  • raw materials other than magnesium oxide are not particularly limited.
  • the fluorine compound is preferably a divalent metal fluoride.
  • the fluorine compound include magnesium fluoride, calcium fluoride, strontium fluoride, barium fluoride, and zinc fluoride. These fluorine compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the fluorine compound preferably has a BET specific surface area in the range of 0.01 to 50 m 2 / g.
  • the purity of the fluorine compound is preferably 98% by mass or more.
  • germanium compounds include germanium oxide, germanium bromide, germanium iodide and germanium alkoxide.
  • the germanium compound is preferably germanium oxide.
  • Germanium oxide preferably has a BET specific surface area of 0.01 to 50 m 2 / g.
  • the purity of germanium oxide is preferably 99% by mass or more.
  • the manganese compound is preferably a compound having a valence of manganese of 2 to 4. Examples of the manganese compound include manganese carbonate, manganese sulfate, manganese nitrate, and manganese oxide (MnO, Mn 3 O 4 , Mn 2 O 3 , MnO 2 ).
  • the manganese compound preferably has a BET specific surface area in the range of 0.01 to 50 m 2 / g.
  • the purity of the manganese compound is preferably 99% by mass or more.
  • the mixing ratio of magnesium oxide (MgO), fluorine compound (AF 2 ), germanium compound (GeX), and manganese compound (MnX) is 1.5 to 4.5 as a molar ratio of MgO: AF 2 : GeX: MnX: It is preferably in the range of 0.050-2.5: 1: 0.0010-0.10, 3.0-4.3: 0.10-1.0: 1: 0.0050-0.040 It is especially preferable that it is in the range.
  • any of a dry mixing method and a wet mixing method can be used.
  • the wet mixing method it is preferable to use water, alcohol or a mixture thereof as a solvent.
  • a stirring mixer, a ball mill, or a rocking mill can be used.
  • a deep red luminescent magnesium fluorogermanate phosphor is produced.
  • the firing temperature of the raw material mixture is generally in the range of 1000 to 1300 ° C., preferably in the range of 1050 to 1250 ° C.
  • the firing of the raw material mixture is preferably performed in an air atmosphere.
  • the firing time of the raw material mixture is generally in the range of 1 to 100 hours, preferably in the range of 1 to 30 hours. Firing may be performed twice or more.
  • the fired product obtained by firing is preferably a deep red light-emitting magnesium fluorogermanate phosphor having a composition represented by the following formula (I).
  • A is at least one element selected from the group consisting of Mg, Ca, Sr, Ba and Zn
  • x is in the range of 1.5 to 4.5, particularly 3.0 to A number in the range of 4.3
  • y is a number in the range of 0.050 to 2.5, especially in the range of 0.10 to 1.0
  • z is in the range of 0.0010 to 0.10, in particular The number is in the range of 0.0050 to 0.040.
  • the fired product obtained by firing is a deep red light emitting magnesium fluorogermanate phosphor. That is, the deep red light emitting magnesium fluorogermanate phosphor exhibits a maximum emission peak generally in the wavelength range of 640 to 680 nm in the emission spectrum when excited with light having a wavelength of 400 nm.
  • the deep red luminescent magnesium magnesium fluorogermanate phosphor generally has a maximum diffraction angle 2 ⁇ in the range of 35.2 to 36.0 degrees in the X-ray diffraction pattern measured using CuK ⁇ rays with an incident angle of ⁇ . X-ray diffraction line peaks are shown.
  • the reason why the emission intensity of the obtained deep red light-emitting magnesium fluorogermanate phosphor is improved by using magnesium oxide fine powder having a large BET specific surface area as the raw material magnesium oxide is the most present in the raw material mixture.
  • a fine powder having a large BET specific surface area and high reactivity for magnesium oxide the reaction proceeds uniformly during the firing of the raw material mixture, the composition of the resulting phosphor becomes uniform, and the amount of impurities mixed in is reduced. This is thought to be due to a decrease.
  • the deep red light-emitting magnesium fluorogermanate phosphor of the present invention has a particularly small amount of magnesium oxide. It can be confirmed from the X-ray diffraction pattern that the mixed amount of magnesium oxide is small.
  • the deep red light emitting magnesium fluorogermanate phosphor of the present invention has a ratio of the maximum X-ray diffraction line peak value caused by magnesium oxide to the maximum X-ray diffraction line peak value caused by the phosphor (the latter / the former). Usually, it is 0.6 or less.
  • the maximum X-ray diffraction line peak attributed to the phosphor is in the range of 35.2 to 36.0 degrees at a diffraction angle 2 ⁇ .
  • the maximum X-ray diffraction line peak resulting from magnesium oxide is in the range of 42.7 to 43.2 degrees at a diffraction angle 2 ⁇ .
  • the deep red light emitting magnesium fluorogermanate phosphor of the present invention has a red light emitting fluorescence of a light emitting device including a semiconductor light emitting element and a red light emitting phosphor that emits red light when excited by light generated in the semiconductor light emitting element. It can be advantageously used as a body.
  • a light emitting device using the deep red light emitting magnesium fluorogermanate phosphor of the present invention will be described with reference to FIG.
  • FIG. 1 is a cross-sectional view of an example of a white LED using the deep red light emitting magnesium fluorogermanate phosphor of the present invention as a red light source.
  • a white LED includes a substrate 1, a semiconductor light emitting device 3 fixed on the substrate 1 with an adhesive 2, a pair of electrodes 4a and 4b formed on the substrate 1, a semiconductor light emitting device 3 and an electrode 4a.
  • lead wires 5a and 5b electrically connecting the semiconductor light emitting element 3, a resin layer 6 covering the semiconductor light emitting element 3, a phosphor layer 7 provided on the resin layer 6, and the resin layer 6 and the phosphor layer 7
  • the light reflecting material 8 that covers the surroundings, and conductive wires 9a and 9b for electrically connecting the electrodes 4a and 4b and an external power source (not shown).
  • the substrate 1 preferably has high insulation and high thermal conductivity.
  • the substrate 1 include a substrate formed from a ceramic such as alumina or nitrogen aluminum, and a substrate formed from a resin material in which inorganic particles such as metal oxide or glass are dispersed.
  • the semiconductor light emitting element 3 preferably emits light having a wavelength of 350 to 430 nm by applying electric energy.
  • an AlGaN-based semiconductor light emitting element can be cited.
  • the resin layer 6 is formed from a transparent resin. Examples of the transparent resin that forms the resin layer 6 include an epoxy resin and a silicone resin.
  • the phosphor layer 7 is formed of a mixture in which a blue light-emitting phosphor, a green light-emitting phosphor, and a red light-emitting phosphor are dispersed in glass or a transparent resin such as an epoxy resin or a silicone resin.
  • the red light emitting phosphor includes the deep red light emitting magnesium fluorogermanate phosphor of the present invention. There are no particular limitations on the blue-emitting phosphor and the green-emitting phosphor.
  • blue-emitting phosphors examples include (Ba, Sr, Ca) 3 MgSi 2 O 8 : Eu, (Ba, Sr, Ca) MgAl 10 O 17 : Eu, (Ba, Sr, Mg, Ca) 10 (PO 4 ) 6 (Cl, F) 2 : Eu.
  • green light emitting phosphors include (Ca, Sr, Ba) 2 SiO 4 : Eu 2+ , BaMgAl 10 O 17 : Eu 2+ , Mn 2+ , ⁇ -SiAlON: Eu 2+ , ⁇ -SiAlON: Eu 2+ and ZnS: Cu, Al.
  • the light reflecting material 8 improves visible light emission efficiency by reflecting the visible light generated in the phosphor layer 7 toward the outside.
  • the material for forming the light reflecting material 8 include metals such as Al, Ni, Fe, Cr, Ti, Cu, Rh, Ag, Au, and Pt, alumina, zirconia, titania, magnesia, zinc oxide, calcium carbonate, and the like.
  • examples thereof include a resin material in which a white metal compound and a white pigment are dispersed.
  • the semiconductor light emitting element 3 when a voltage is applied to the electrodes 4a and 4b through the conductive wires 9a and 9b, the semiconductor light emitting element 3 emits light, and emitted light having a peak in a wavelength range of 350 to 430 nm is generated.
  • the emitted light excites each color emitting phosphor in the phosphor layer 7 to generate blue, green and red visible lights.
  • White LED can be manufactured as follows, for example. Electrodes 4a and 4b are formed on the substrate 1 in a predetermined pattern. Next, after fixing the semiconductor light emitting element 3 with the adhesive 2 on the substrate 1, the lead wires 5a and 5b for electrically connecting the semiconductor light emitting element 3 and the electrodes 4a and 4b are formed by a method such as wire bonding. Form. Next, after fixing the light reflecting material 8 around the semiconductor light emitting element 3, a transparent resin is poured onto the semiconductor light emitting element 3, and the transparent resin is solidified to form the resin layer 6.
  • a red LED can be obtained by dispersing only the deep red light-emitting magnesium fluorogermanate phosphor in the phosphor layer 7 of the white LED.
  • a blue light emitting semiconductor light emitting element is used in place of the semiconductor light emitting element 3, and a deep red light emitting magnesium fluorogermanate phosphor and a green light emitting phosphor are dispersed in the phosphor layer 7 to obtain a white LED. It can.
  • the blue light emitting semiconductor light emitting element preferably emits blue light having a wavelength of 440 to 480 nm by application of electric energy.
  • Example 1 Magnesium oxide (MgO) fine powder having a BET specific surface area of 8 m 2 / g and a purity of 99.98% by mass (produced by a vapor phase method, content of cubic primary particles: 90%), magnesium fluoride (MgF 2 ) powder (BET specific surface area: 0.02 m 2 / g, purity: 99 mass%), germanium oxide (GeO 2 ) powder (BET specific surface area: 0.06 m 2 / g, purity: 99.9 mass%) ), Manganese carbonate (MnCO 3 ) powder (BET specific surface area: 0.06 m 2 / g, purity: 99.9 mass%), respectively, the molar ratio of MgO: MgF 2 : GeO 2 : MnCO 3 is 3.5: Weighed at a ratio of 0.5: 1: 0.015.
  • Each raw material powder weighed was put into ethanol, mixed using a rocking mill, and then dried at a temperature of 120 ° C. for several hours to obtain a raw material mixture. After the obtained raw material mixture was crushed in a mortar, the raw material mixture was put in a crucible made of aluminum oxide and fired at a temperature of 1100 ° C. for 3 hours to obtain 3.5 MgO ⁇ 0.5MgF 2 ⁇ GeO 2 : 0.00.
  • a deep red light-emitting magnesium fluorogermanate phosphor represented by the formula 015Mn 4+ was produced.
  • the obtained phosphor had a maximum X-ray diffraction line peak of 35 at a diffraction angle 2 ⁇ . It was confirmed to have a maximum emission peak in the wavelength range of 640 to 680 nm with a range of .2 to 36.0 degrees.
  • the deep red light-emitting magnesium fluorogermanate phosphor of the sample is irradiated with ultraviolet light having a wavelength of 400 nm using an Xe lamp, and an emission spectrum is measured.
  • Example 2 A deep red light-emitting magnesium fluorogermanate phosphor was manufactured in the same manner as in Example 1 except that each raw material powder charged in ethanol was mixed using a ball mill.
  • Example 3 A deep red light-emitting magnesium fluorogermanate phosphor was manufactured in the same manner as in Example 1 except that the raw material mixture was fired at a temperature of 1150 ° C. for 3 hours.
  • Example 4 A deep red light-emitting magnesium fluorogermanate phosphor was manufactured in the same manner as in Example 1 except that the raw material mixture was fired at a temperature of 1200 ° C. for 3 hours.
  • Example 5 The deep red light-emitting fluorogermanium was prepared in the same manner as in Example 1 except that each raw material powder charged in ethanol was mixed using a ball mill and the raw material mixture was calcined at 1200 ° C. for 3 hours. A magnesium acid phosphor was produced.
  • Example 1 Example 1 except that magnesium oxide powder (obtained by firing magnesium hydroxide) having a BET specific surface area of 0.4 m 2 / g and a purity of 99% by mass was used in place of the magnesium oxide fine powder. The same operation as described above was performed to produce a deep red light-emitting magnesium fluorogermanate phosphor.
  • magnesium oxide powder obtained by firing magnesium hydroxide having a BET specific surface area of 0.4 m 2 / g and a purity of 99% by mass was used, and the raw material mixture was fired.
  • a deep red light-emitting magnesium fluorogermanate phosphor was manufactured in the same manner as in Example 1 except that the operation was performed at a temperature of 1200 ° C. for 3 hours.
  • Table 1 shows the mixing method of the raw material powders of Examples 1 to 5 and Comparative Examples 1 and 2, firing conditions of the raw material mixture, and the intensity of the maximum emission peak of the obtained deep red light emitting magnesium fluorogermanate phosphor. Indicates.
  • the intensity of the maximum emission peak is expressed as a relative value with the intensity of the maximum emission peak of the phosphor obtained in Comparative Example 1 being 100.
  • the maximum X-ray resulting from magnesium oxide with respect to the maximum X-ray-diffraction-line peak value resulting from the deep red light emission magnesium fluorogermanate fluorescent substance computed from the X-ray-diffraction pattern The ratio of diffraction line peak values (the latter / the former) is shown.
  • Examples 1 to 5 Magnesium oxide fine powder (manufactured by a gas phase method) having a BET specific surface area of 8 m 2 / g was used as magnesium oxide.
  • Comparative Examples 1 and 2 Magnesium oxide powder having a BET specific surface area of 0.4 m 2 / g (obtained by firing magnesium hydroxide) was used as magnesium oxide.
  • Example 6 The mixing ratio of the magnesium oxide fine powder, the magnesium fluoride powder, the germanium oxide powder, and the manganese carbonate powder in terms of a molar ratio of MgO: MgF 2 : GeO 2 : MnCO 3 is 4.1: 0.59: 1: 0.018.
  • the same operation as in Example 1 was performed except that the raw material mixture was fired at 1000 ° C. for 3 hours and then at a temperature of 1200 ° C. for 3 hours to obtain 4.1 MgO ⁇ 0.6MgF 2.
  • a deep red light-emitting magnesium fluorogermanate phosphor represented by the formula GeO 2 : 0.018Mn 4+ was produced.
  • the obtained phosphor had a maximum X-ray diffraction line peak of 35 at a diffraction angle 2 ⁇ . It was confirmed to have a maximum emission peak in the wavelength range of 640 to 680 nm with a range of .2 to 36.0 degrees. The intensity of the maximum emission peak was 147 as a relative value with the intensity of the maximum emission peak of the phosphor obtained in Comparative Example 1 being 100.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)

Abstract

 酸化マグネシウム、フッ素化合物、ゲルマニウム化合物、マンガン化合物を含む混合物を焼成することによって得られた、波長400nmの光で励起させると640~680nmの波長範囲に最大ピークを有する発光を示す深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体であって、酸化マグネシウムがBET比表面積が5~200m2/gの範囲にある酸化マグネシウム微粉末であることを特徴とする深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体は、波長400nmの光で励起させたときに高い発光強度を示す。

Description

深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体及びその製造方法
 本発明は、深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体とその製造方法に関する。本発明はまた、深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体を赤色発光源に用いた発光装置にも関する。
 3.5MgO・0.5MgF2・GeO2:Mn4+の式で表されるフルオロゲルマニウム酸マグネシウム蛍光体は、深赤色発光蛍光体として知られている。この蛍光体は、蛍光水銀ランプの赤色発光源として利用されている(非特許文献1)。
 特許文献1には、下記の式で表される深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体が記載されている。
   (k-x)MgO・xAF2・GeO2:yMn4+
 但し、上記式において、kは2.8~5の実数であり、xは0.1~0.7の実数であり、yは0.005~0.015の実数であり、Aは、カルシウム、ストロンチウム、バリウム、亜鉛、またはこれらの混合物である。
 この特許文献には、上記蛍光体の製造方法として、酸化マグネシウム、フッ化金属、酸化ゲルマニウムおよびマンガン前駆体化合物を、(k-x):x:1:yのモル比となるように均一に混合して混合粉末を準備する段階と、混合粉末を1000~1200℃の温度下で4~9時間熱処理して混合粉末を焼成する段階と、焼成された粉末を洗浄およびろ過する段階とを含む方法が記載されている。但し、この特許文献には、酸化マグネシウム源として用いる酸化マグネシウムの性状に関する記載はない。なお、この特許文献には、上記蛍光体の用途として、紫外線光源または青色光源を採用するLEDや蛍光ランプの赤色発光源が記載されている。
 特許文献2には、3.5MgO・0.5MgF2・GeO2:Mn4+の式で表されるフルオロゲルマニウム酸マグネシウム蛍光体の構成元素の組成比を変えること、または構成元素を他の元素に置換することにより、波長350~500nmの近紫外から可視領域の光で励起させたときの発光の効率が向上した深赤色発光蛍光体が得られることが記載されている。
 この特許文献には、構成元素の組成比を変えた深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体として下記の式で表される蛍光体が記載されている。
   xMgO・yMgF2・GeO2:zMn4+
 但し、上記式において、1.5<x≦4、0.5<y≦2、0<z≦0.1、y<xである。
 また、この特許文献には、構成元素を他の元素に置換した深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体の一例として下記の式で表される蛍光体も記載されている。
   (x-a)MgO・aMe1O・yMgF2・bMe2Hal2・(1-c)GeO2・cMtO2:zMn4+
 但し、上記式において、1.5<x≦4、0<y≦2、0<z≦0.1、0<a<1.5、0<b≦2、0<c<0.5、Me1、Me2はカルシウム、ストロンチウム、バリウム、亜鉛から選ばれた少なくとも1つ以上、Halはフッ素、塩素から選ばれた少なくとも1つ以上、Mtはチタン、スズ、ジルコニウムから選ばれた少なくとも1つ以上である。
 但し、この特許文献には、上記蛍光体の製造方法に関する一般的な記載はなく、実施例では、酸化マグネシウム源に炭酸マグネシウムを用いて蛍光体を製造している。なお、この特許文献にも、上記蛍光体の用途として発光ダイオード(LED)の赤色発光源が記載されている。
特開2008-202044号公報 特開2011-6501号公報
「蛍光体ハンドブック」、蛍光体同学会編、株式会社オーム社、昭和62年12月25日発行、p.19
 特許文献1や特許文献2に記載されているように、深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体を近紫外領域の光で励起させたときの発光の強度を向上させるために、構成元素の組成比を変える、または構成元素を他の元素に置換することは検討されている。しかしながら、これまで、製造方法の観点から深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体の発光強度を向上させることは検討されていない。
 従って、本発明の目的は、近紫外領域の光で励起させたときの発光の強度が高い深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体を工業的に有利に製造することができる方法を提供することにある。本発明の目的はまた、近紫外領域の光での励起させたときの発光の強度が高い深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体、及びその蛍光体を赤色発光源に用いた発光装置を提供することにある。
 本発明者は、酸化マグネシウム、フッ素化合物、ゲルマニウム化合物、マンガン化合物を含む混合物を焼成して、波長400nmの光で励起させると640~680nmの波長範囲に最大ピークを有する発光を示す深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体を製造する際に、酸化マグネシウムとしてBET比表面積が5~200m2/gの範囲にある酸化マグネシウム微粉末を用いると、波長400nmの光で励起させたときに高い発光強度を示す蛍光体が得られることを見出し、本発明に到達した。
 従って、本発明は、酸化マグネシウム、フッ素化合物、ゲルマニウム化合物、マンガン化合物を含む混合物を焼成することによって得られた、波長400nmの光で励起させると640~680nmの波長範囲に最大ピークを有する発光を示す深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体であって、酸化マグネシウムがBET比表面積が5~200m2/gの範囲にある酸化マグネシウム微粉末であることを特徴とする深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体にある。
 本発明の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体の好ましい態様は、次の通りである。
(1)入射角がθのCuKα線を用いて測定された回折角2θが35.2~36.0度の範囲に最大X線回折線ピークを有する。
(2)酸化マグネシウム微粉末が立方体形状の一次粒子を含む微粉末である。
(3)酸化マグネシウム微粉末が純度が99.9質量%以上の微粉末である。
(4)酸化マグネシウム微粉末が、マグネシウム蒸気と酸素とを気相下で接触させてマグネシウムを酸化させることによって得られた微粉末である。
(5)深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体が、下記式(I)で表される組成の蛍光体である。
    xMgO・yAF2・GeO2:zMn4+・・・(I)
 ただし、式(I)において、Aは、Mg、Ca、Sr、Ba及びZnからなる群より選ばれる少なくとも一種の元素であり、xは1.5~4.5の範囲の数であり、yは0.050~2.5の範囲の数であり、zは0.0010~0.10の範囲の数であり、特に0.0050~0.040の範囲の数である。
(6)半導体発光素子と、該半導体発光素子にて発生した光で励起させて赤色を発光する赤色発光蛍光体とを含む発光装置の赤色発光蛍光体用である。
 また、本発明は、酸化マグネシウム、フッ素化合物、ゲルマニウム化合物、マンガン化合物を含む混合物を焼成する工程を含む、波長400nmの光で励起させると640~680nmの波長範囲に最大ピークを有する発光を示す深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体の製造方法であって、酸化マグネシウムがBET比表面積が5~200m2/gの範囲にある酸化マグネシウム微粉末であることを特徴とする深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体の製造方法にもある。
 本発明の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体の製造方法の好ましい態様は、次の通りである。
(1)深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体が、入射角がθのCuKα線を用いて測定された回折角2θが35.2~36.0度の範囲に最大X線回折線ピークを有する蛍光体である。
(2)酸化マグネシウム微粉末が立方体形状の一次粒子を含む微粉末である。
(3)酸化マグネシウム微粉末が純度が99.9質量%以上の微粉末である。
(4)酸化マグネシウム微粉末が、マグネシウム蒸気と酸素とを気相下で接触させてマグネシウムを酸化させることによって得られた微粉末である。
 本発明はまた、波長350~430nmの光を発光する半導体発光素子と、上記本発明の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体とを含む発光装置にもある。
 本発明はさらに、波長350~430nmの光を発光する半導体発光素子、上記本発明の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体、該半導体発光素子にて発生した光で励起させると青色光の発光を示す青色発光蛍光体、そして該半導体発光素子にて発生した光で励起させると緑色光の発光を示す緑色発光蛍光体を含む発光装置にもある。
 本発明はさらにまた、青色光を発光する半導体発光素子、上記本発明の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体、そして該半導体発光素子にて発生した光で励起させると緑色光の発光を示す緑色発光蛍光体を含む発光装置にもある。
 本発明の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体は、高い発光強度を示すことから、白色LEDや蛍光ランプなどの発光装置の赤色発光源として有利に使用することができる。
本発明に従う発光装置(白色LED)の一例の断面図である。
 本発明の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体は、酸化マグネシウム、フッ素化合物、ゲルマニウム化合物、マンガン化合物を含む混合物を焼成することによって得られたものである。本発明では、原料の酸化マグネシウムにBET比表面積が5~200m2/gの範囲、好ましくは5~100m2/gの範囲にある酸化マグネシウム微粉末を用いる。酸化マグネシウム微粉末は、立方体形状の一次粒子を含む微粉末であることが好ましい。立方体形状の一次粒子の含有量は、一次粒子の個数基準で少なくとも80%以上であることが好ましい。酸化マグネシウム微粉末の純度は、99.9質量%以上であることが好ましく、99.95質量%であることがより好ましい。この酸化マグネシウム微粉末は気相法によって製造することができる。気相法とは、マグネシウム蒸気と酸素とを気相下で接触させてマグネシウムを酸化させることによって、酸化マグネシウム微粉末を製造する方法であり、この気相法は既に公知である。
 本発明において、酸化マグネシウム以外の原料は特には制限はない。フッ素化合物は二価金属のフッ化物であることが好ましい。フッ素化合物の例としては、フッ化マグネシウム、フッ化カルシウム、フッ化ストロンチウム、フッ化バリウム及びフッ化亜鉛を挙げることができる。これらのフッ素化合物は、一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。フッ素化合物は、BET比表面積が0.01~50m2/gの範囲にあることが好ましい。フッ素化合物の純度は98質量%以上であることが好ましい。ゲルマニウム化合物の例としては、酸化ゲルマニウム、臭化ゲルマニウム、沃化ゲルマニウム及びゲルマニウムアルコキシドを挙げることができる。ゲルマニウム化合物は酸化ゲルマニウムであることが好ましい。酸化ゲルマニウムは、BET比表面積が0.01~50m2/gの範囲にあることが好ましい。酸化ゲルマニウムの純度は99質量%以上であることが好ましい。マンガン化合物は、マンガンの原子価が2~4価の化合物であることが好ましい。マンガン化合物の例としては、炭酸マンガン、硫酸マンガン、硝酸マンガン及び酸化マンガン(MnO、Mn34、Mn23、MnO2)を挙げることができる。マンガン化合物は、BET比表面積が0.01~50m2/gの範囲にあることが好ましい。マンガン化合物の純度は99質量%以上であることが好ましい。
 酸化マグネシウム(MgO)、フッ素化合物(AF2)、ゲルマニウム化合物(GeX)及びマンガン化合物(MnX)の混合比率は、MgO:AF2:GeX:MnXのモル比で、1.5~4.5:0.050~2.5:1:0.0010~0.10の範囲にあることが好ましく、3.0~4.3:0.10~1.0:1:0.0050~0.040の範囲にあることが特に好ましい。
 上記各原料の混合方法には特に制限はなく、乾式混合法及び湿式混合法のいずれの方法も利用することができる。湿式混合法では、溶媒に水、アルコール又はこれらの混合液を用いることが好ましい。混合装置としては、攪拌混合機、ボールミル、ロッキングミルを用いることができる。
 原料の混合物を焼成することによって、深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体が生成する。原料混合物の焼成温度は、一般に1000~1300℃の範囲、好ましくは1050~1250℃の範囲である。原料混合物の焼成は、大気雰囲気下で行なうことが好ましい。原料混合物の焼成時間は、一般に1~100時間の範囲、好ましくは1~30時間の範囲である。焼成は、二回以上行なってもよい。
 焼成によって得られる焼成物は、下記式(I)で表される組成の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体であることが好ましい。
    xMgO・yAF2・GeO2:zMn4+・・・(I)
 ただし、式(I)において、Aは、Mg、Ca、Sr、Ba及びZnからなる群より選ばれる少なくとも一種の元素であり、xは1.5~4.5の範囲、特に3.0~4.3の範囲の数であり、yは0.050~2.5の範囲、特に0.10~1.0の範囲の数であり、zは0.0010~0.10の範囲、特に0.0050~0.040の範囲の数である。
 焼成によって得られる焼成物が、深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体であることは、発光スペクトルもしくはX線回折パターンから確認することができる。すなわち、深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体は、波長400nmの光で励起させたときの発光スペクトルにおいて、一般に640~680nmの波長範囲に最大発光ピークを示す。また、深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体は、入射角がθのCuKα線を用いて測定されたX線回折パターンにおいて、一般に回折角2θが35.2~36.0度の範囲に最大X線回折線ピークを示す。
 原料の酸化マグネシウムにBET比表面積が大きい酸化マグネシウム微粉末を用いることによって、得られる深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体の発光強度が向上する理由としては、原料混合物中の存在量が最も多い酸化マグネシウムに、BET比表面積が大きくて反応性が高い微粉末を用いることによって、原料混合物の焼成時に反応が均一に進行し、得られる蛍光体の組成が均一になり、また不純物の混入量が少なくなるためであると考えられる。本発明の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体は、特に酸化マグネシウムの混入量が少ない。酸化マグネシウムの混入量が少ないことは、X線回折パターンから確認することができる。本発明の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体は、蛍光体に起因する最大X線回折線ピーク値に対する酸化マグネシウムに起因する最大X線回折線ピーク値の比(後者/前者)の比が、通常は0.6以下である。蛍光体に起因する最大X線回折線ピークは、回折角2θで35.2~36.0度の範囲にある。酸化マグネシウムに起因する最大X線回折線ピークは回折角2θで42.7~43.2度の範囲にある。
 本発明の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体は、半導体発光素子と、その半導体発光素子にて発生した光で励起させて赤色を発光する赤色発光蛍光体とを含む発光装置の赤色発光蛍光体用として有利に用いることができる。次に、本発明の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体を用いた発光装置を白色LEDを例にとって、添付図面の図1を参照しながら説明する。
 図1は、本発明の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体を赤色発光源に用いた白色LEDの一例の断面図である。図1において、白色LEDは、基板1、基板1の上に接着剤2により固定された半導体発光素子3、基板1の上に形成された一対の電極4a、4b、半導体発光素子3と電極4a、4bとを電気的に接続するリード線5a、5b、半導体発光素子3を被覆する樹脂層6、樹脂層6の上に設けられた蛍光体層7、そして樹脂層6と蛍光体層7の周囲を覆う光反射材8、そして電極4a、4bと外部電源(図示せず)とを電気的に接続するための導電線9a、9bからなる。
 基板1は、高い絶縁性と高い熱導電性とを有していることが好ましい。基板1の例としては、アルミナや窒素アルミニウムなどのセラミックから形成された基板及び金属酸化物やガラスなどの無機物粒子を分散させた樹脂材料から形成された基板を挙げることができる。半導体発光素子3は、電気エネルギーの付与によって波長350~430nmの光を発光するものであることが好ましい。半導体発光素子3の例としては、AlGaN系半導体発光素子を挙げることができる。樹脂層6は透明樹脂から形成される。樹脂層6を形成する透明樹脂の例としては、エポキシ樹脂及びシリコーン樹脂を挙げることができる。
 蛍光体層7は、青色発光蛍光体、緑色発光蛍光体及び赤色発光蛍光体をガラスもしくはエポキシ樹脂やシリコーン樹脂などの透明樹脂に分散させた混合物から形成される。赤色発光蛍光体として、本発明の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体を含む。青色発光蛍光体及び緑色発光蛍光体に特には制限はない。青色発光蛍光体の例としては、(Ba,Sr,Ca)3MgSi28:Eu、(Ba,Sr,Ca)MgAl1017:Eu、(Ba,Sr,Mg、Ca)10(PO46(Cl,F)2:Euを挙げることができる。緑色発光蛍光体の例としては、(Ca,Sr,Ba)2SiO4:Eu2+、BaMgAl1017:Eu2+,Mn2+、α-SiAlON:Eu2+、β-SiAlON:Eu2+、ZnS:Cu,Alを挙げることができる。光反射材8は、蛍光体層7にて発生した可視光を外部に向けて反射することによって可視光の発光効率を向上させる。光反射材8の形成材料の例としては、Al、Ni、Fe、Cr、Ti、Cu、Rh、Ag、Au、Ptなどの金属、アルミナ、ジルコニア、チタニア、マグネシア、酸化亜鉛、炭酸カルシウムなどの白色金属化合物、及び白色顔料を分散させた樹脂材料を挙げることができる。
 図1の白色LEDにおいて、導電線9a、9bを介して電極4a、4bに電圧を印加すると、半導体発光素子3が発光して波長350~430nmの範囲にピークを有する発光光が発生し、この発光光が蛍光体層7中の各色発光蛍光体を励起させることによって青色、緑色及び赤色の可視光が発生する。そして、それらの青色光、緑色光及び赤色光の混色により白色光が発生する。
 白色LEDは、例えば、次のようにして製造することができる。基板1に所定のパターンで電極4a、4bを形成する。次に、基板1の上に接着剤2により半導体発光素子3を固定した後、ワイヤボンディングなどの方法により、半導体発光素子3と電極4a、4bとを電気的に接続するリード線5a、5bを形成する。次に、半導体発光素子3の周囲に光反射材8を固定した後、半導体発光素子3の上に透明樹脂を流し込み、その透明樹脂を固化させて樹脂層6を形成する。そして、樹脂層6の上に、青色発光蛍光体、緑色発光蛍光体及び赤色発光蛍光体をガラスもしくはエポキシ樹脂やシリコーン樹脂などの透明樹脂に分散させた混合物を流し込み、その混合物を固化させて、蛍光体層7を形成する。
 白色LEDの蛍光体層7に深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体のみを分散させることによって赤色LEDとすることができる。また、半導体発光素子3の代わりに青色発光半導体発光素子を用い、蛍光体層7に深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体と緑色発光蛍光体とを分散させることによっても白色LEDとすることができる。青色発光半導体発光素子は、電気エネルギーの付与によって波長440~480nmの青色光を発光するものが好ましい。
[実施例1]
 BET比表面積が8m2/g、純度が99.98質量%の酸化マグネシウム(MgO)微粉末(気相法により製造されたもの、立方体形状の一次粒子の含有量:90%)、フッ化マグネシウム(MgF2)粉末(BET比表面積:0.02m2/g、純度:99質量%)、酸化ゲルマニウム(GeO2)粉末(BET比表面積:0.06m2/g、純度:99.9質量%)、炭酸マンガン(MnCO3)粉末(BET比表面積:0.06m2/g、純度:99.9質量%)を、それぞれMgO:MgF2:GeO2:MnCO3のモル比が3.5:0.5:1:0.015となる割合にて秤量した。秤量した各原料粉末をエタノールに投入し、ロッキングミルを用いて混合した後、120℃の温度で数時間乾燥して、原料混合物を得た。得られた原料混合物を乳鉢で解砕した後、その原料混合物を酸化アルミニウム製のるつぼに入れ、1100℃の温度で3時間焼成して、3.5MgO・0.5MgF2・GeO2:0.015Mn4+の式で表される深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体を製造した。得られた深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体のX線回折パターンと発光スペクトルとを下記の方法により測定したところ、得られた蛍光体は、最大X線回折線ピークを回折角2θで35.2~36.0度の範囲に有し、最大発光ピークを640~680nmの波長範囲に有することが確認された。
[X線回折パターンの測定]
 下記の条件にて測定する。
 測定:連続測定
 X線源:CuKα
 管電圧:40kV
 管電流:40mA
 発散スリット幅:1/2deg
 散乱スリット幅:1/2deg
 受光スリット幅:0.30mm
 スキャンステップ:2deg/分
 スキャンステップ:0.02deg
[発光スペクトルの測定]
 試料の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体に、Xeランプを用いて波長400nmの紫外光を照射して発光スペクトルを測定する。
[実施例2]
 エタノールに投入した各原料粉末をボールミルを用いて混合したこと以外は、実施例1と同じ操作を行なって深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体を製造した。
[実施例3]
 原料混合物の焼成を1150℃の温度で3時間行なったこと以外は、実施例1と同じ操作を行なって深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体を製造した。
[実施例4]
 原料混合物の焼成を1200℃の温度で3時間行なったこと以外は、実施例1と同じ操作を行なって深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体を製造した。
[実施例5]
 エタノールに投入した各原料粉末をボールミルを用いて混合したこと、そして原料混合物の焼成を1200℃の温度で3時間行なったこと以外は、実施例1と同じ操作を行なって深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体を製造した。
[比較例1]
 酸化マグネシウム微粉末の代わりに、BET比表面積が0.4m2/g、純度が99質量%の酸化マグネシウム粉末(水酸化マグネシウムを焼成して得たもの)を用いたこと以外は、実施例1と同じ操作を行なって深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体を製造した。
[比較例2]
 酸化マグネシウム微粉末の代わりに、BET比表面積が0.4m2/g、純度が99質量%の酸化マグネシウム粉末(水酸化マグネシウムを焼成して得たもの)を用いたこと、原料混合物の焼成を1200℃の温度で3時間行なったこと以外は、実施例1と同じ操作を行なって深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体を製造した。
 下記の表1に、実施例1~5及び比較例1、2の原料粉末の混合方法、原料混合物の焼成条件、そして得られた深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体の最大発光ピークの強度を示す。なお、最大発光ピークの強度は、比較例1で得られた蛍光体の最大発光ピークの強度を100とした相対値として表す。また、比較例1と実施例5とについては、X線回折パターンから算出した、深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体に起因する最大X線回折線ピーク値に対する酸化マグネシウムに起因する最大X線回折線ピーク値の比(後者/前者)を示す。
Figure JPOXMLDOC01-appb-T000001
実施例1~5:酸化マグネシウムに、BET比表面積が8m2/gの酸化マグネシウム微粉末(気相法により製造されたもの)を使用。
比較例1、2:酸化マグネシウムに、BET比表面積が0.4m2/gの酸化マグネシウム粉末(水酸化マグネシウムを焼成して得たもの)を使用。
[実施例6]
 酸化マグネシウム微粉末、フッ化マグネシウム粉末、酸化ゲルマニウム粉末、炭酸マンガン粉末の混合比を、それぞれMgO:MgF2:GeO2:MnCO3のモル比で4.1:0.59:1:0.018としたこと、原料混合物の焼成を1000℃で3時間行なった後、1200℃の温度で3時間行なったこと以外は、実施例1と同じ操作を行なって、4.1MgO・0.6MgF2・GeO2:0.018Mn4+の式で表される深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体を製造した。得られた深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体のX線回折パターンと発光スペクトルとを前記の方法により測定したところ、得られた蛍光体は、最大X線回折線ピークを回折角2θで35.2~36.0度の範囲に有し、最大発光ピークを640~680nmの波長範囲に有することが確認された。最大発光ピークの強度は、比較例1で得られた蛍光体の最大発光ピークの強度を100とした相対値で147であった。
 1 基板
 2 接着剤
 3 半導体発光素子
 4a、4b 電極
 5a、5b リード線
 6 樹脂層
 7 蛍光体層
 8 光反射材
 9a、9b 導電線

Claims (12)

  1.  酸化マグネシウム、フッ素化合物、ゲルマニウム化合物、マンガン化合物を含む混合物を焼成することによって得られた、波長400nmの光で励起させると640~680nmの波長範囲に最大ピークを有する発光を示す深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体であって、酸化マグネシウムがBET比表面積が5~200m2/gの範囲にある酸化マグネシウム微粉末であることを特徴とする深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体。
  2.  入射角がθのCuKα線を用いて測定された回折角2θが35.2~36.0度の範囲に最大X線回折線ピークを有する蛍光体である請求項1に記載の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体。
  3.  酸化マグネシウム微粉末が立方体形状の一次粒子を含む微粉末である請求項1に記載の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体。
  4.  酸化マグネシウム微粉末が純度が99.9質量%以上の微粉末である請求項1に記載の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体。
  5.  酸化マグネシウム微粉末が、マグネシウム蒸気と酸素とを気相下で接触させてマグネシウムを酸化させることによって得られた微粉末である請求項1に記載の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体。
  6.  深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体が、下記式(I)で表される組成の蛍光体である請求項1に記載の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体:
        xMgO・yAF2・GeO2:zMn4+・・・(I)
    (ただし、式(I)において、Aは、Mg、Ca、Sr、Ba及びZnからなる群より選ばれる少なくとも一種の元素であり、xは1.5~4.5の範囲の数であり、yは0.050~2.5の範囲の数であり、zは0.0010~0.10の範囲の数である)。
  7.  半導体発光素子と、該半導体発光素子にて発生した光で励起させて赤色を発光する赤色発光蛍光体とを含む発光装置の赤色発光蛍光体用である請求項1に記載の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体。
  8.  酸化マグネシウム、フッ素化合物、ゲルマニウム化合物、マンガン化合物を含む混合物を焼成する工程を含む、波長400nmの光で励起させると640~680nmの波長範囲に最大ピークを有する発光を示す深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体の製造方法であって、酸化マグネシウムがBET比表面積が5~200m2/gの範囲にある酸化マグネシウム微粉末であることを特徴とする深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体の製造方法。
  9.  深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体が、入射角がθのCuKα線を用いて測定された回折角2θが35.2~36.0度の範囲に最大X線回折線ピークを有する蛍光体である請求項8に記載の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体の製造方法。
  10.  波長350~430nmの光を発光する半導体発光素子と、請求項1に記載の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体とを含む発光装置。
  11.  波長350~430nmの光を発光する半導体発光素子、請求項1に記載の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体、該半導体発光素子にて発生した光で励起させると青色光の発光を示す青色発光蛍光体、そして該半導体発光素子にて発生した光で励起させると緑色光の発光を示す緑色発光蛍光体を含む発光装置。
  12.  青色光を発光する半導体発光素子、請求項1に記載の深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体、そして該半導体発光素子にて発生した光で励起させると緑色光の発光を示す緑色発光蛍光体を含む発光装置。
PCT/JP2013/058815 2012-03-26 2013-03-26 深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体及びその製造方法 WO2013146790A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/387,910 US9605200B2 (en) 2012-03-26 2013-03-26 Deep-red light-emitting magnesium fluoro-germanate fluoroescent body and method for producing same
JP2014507920A JP5770365B2 (ja) 2012-03-26 2013-03-26 深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-069784 2012-03-26
JP2012069784 2012-03-26

Publications (1)

Publication Number Publication Date
WO2013146790A1 true WO2013146790A1 (ja) 2013-10-03

Family

ID=49260041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058815 WO2013146790A1 (ja) 2012-03-26 2013-03-26 深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体及びその製造方法

Country Status (3)

Country Link
US (1) US9605200B2 (ja)
JP (1) JP5770365B2 (ja)
WO (1) WO2013146790A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170133824A (ko) * 2016-05-26 2017-12-06 엘지이노텍 주식회사 형광체 조성물, 이를 포함하는 발광소자 패키지 및 조명장치
JP2017216438A (ja) * 2016-05-26 2017-12-07 日亜化学工業株式会社 発光装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105462585B (zh) * 2015-12-31 2017-06-23 温州大学 一种白光led用氟锗酸钡红光材料及其制备方法
CN111269718B (zh) * 2020-04-02 2022-09-23 常熟理工学院 一种复合钙钛矿型深红色荧光粉及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102054A (ja) * 1996-09-30 1998-04-21 Matsushita Electric Ind Co Ltd 蛍光体
JPH115974A (ja) * 1997-06-19 1999-01-12 Nichia Chem Ind Ltd ゲルマン酸塩蛍光体及びそれを用いた塗布スラリー
JP2008202044A (ja) * 2007-02-16 2008-09-04 Samsung Electronics Co Ltd 深赤色蛍光体およびその製造方法
JP2011006501A (ja) * 2009-06-23 2011-01-13 Tokyo Kagaku Kenkyusho:Kk 深赤色蛍光体
WO2011115032A1 (ja) * 2010-03-18 2011-09-22 株式会社東芝 白色発光ランプおよびそれを用いた白色led照明装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7267787B2 (en) * 2004-08-04 2007-09-11 Intematix Corporation Phosphor systems for a white light emitting diode (LED)
KR101388362B1 (ko) * 2008-12-19 2014-04-22 우베 마테리알즈 가부시키가이샤 산화 마그네슘 미세 분말 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102054A (ja) * 1996-09-30 1998-04-21 Matsushita Electric Ind Co Ltd 蛍光体
JPH115974A (ja) * 1997-06-19 1999-01-12 Nichia Chem Ind Ltd ゲルマン酸塩蛍光体及びそれを用いた塗布スラリー
JP2008202044A (ja) * 2007-02-16 2008-09-04 Samsung Electronics Co Ltd 深赤色蛍光体およびその製造方法
JP2011006501A (ja) * 2009-06-23 2011-01-13 Tokyo Kagaku Kenkyusho:Kk 深赤色蛍光体
WO2011115032A1 (ja) * 2010-03-18 2011-09-22 株式会社東芝 白色発光ランプおよびそれを用いた白色led照明装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170133824A (ko) * 2016-05-26 2017-12-06 엘지이노텍 주식회사 형광체 조성물, 이를 포함하는 발광소자 패키지 및 조명장치
JP2017216438A (ja) * 2016-05-26 2017-12-07 日亜化学工業株式会社 発光装置
JP2019114794A (ja) * 2016-05-26 2019-07-11 日亜化学工業株式会社 発光装置
KR102590034B1 (ko) * 2016-05-26 2023-10-16 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 형광체 조성물, 이를 포함하는 발광소자 패키지 및 조명장치

Also Published As

Publication number Publication date
JPWO2013146790A1 (ja) 2015-12-14
US20150041843A1 (en) 2015-02-12
US9605200B2 (en) 2017-03-28
JP5770365B2 (ja) 2015-08-26

Similar Documents

Publication Publication Date Title
JP6315212B2 (ja) 高い発光特性と耐湿性とを示すケイ酸塩蛍光体及び発光装置
JP6083881B2 (ja) 蛍光体、その製造方法、発光装置、画像表示装置、顔料および紫外線吸収剤
JP5770192B2 (ja) 青色発光蛍光体及び該青色発光蛍光体を用いた発光装置
US20190067530A1 (en) Blue light-emitting phosphor and light emitting device using same
JP5770365B2 (ja) 深赤色発光性フルオロゲルマニウム酸マグネシウム蛍光体及びその製造方法
JP5689407B2 (ja) ケイ酸塩緑色発光蛍光体
JP2015000965A (ja) 蛍光体、その製造方法、発光装置、画像表示装置、顔料、および、紫外線吸収剤
JP5736272B2 (ja) 青色発光蛍光体及び該青色発光蛍光体を用いた発光装置
JP6241812B2 (ja) 白色発光蛍光体及び白色発光装置
WO2013176195A1 (ja) 可視領域での発光光の発光強度と演色性とが最適化された蛍光体混合物
WO2011055753A1 (ja) 発光装置
JP2016155893A (ja) アルミン酸塩蛍光体及び発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13770384

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507920

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14387910

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13770384

Country of ref document: EP

Kind code of ref document: A1