WO2014183495A1 - 一种缔合型非交联压裂液及其制备方法 - Google Patents

一种缔合型非交联压裂液及其制备方法 Download PDF

Info

Publication number
WO2014183495A1
WO2014183495A1 PCT/CN2014/073092 CN2014073092W WO2014183495A1 WO 2014183495 A1 WO2014183495 A1 WO 2014183495A1 CN 2014073092 W CN2014073092 W CN 2014073092W WO 2014183495 A1 WO2014183495 A1 WO 2014183495A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
sodium
fracturing fluid
instant
total weight
Prior art date
Application number
PCT/CN2014/073092
Other languages
English (en)
French (fr)
Inventor
郭拥军
罗平亚
Original Assignee
西南石油大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南石油大学 filed Critical 西南石油大学
Publication of WO2014183495A1 publication Critical patent/WO2014183495A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds

Definitions

  • the invention belongs to the fields of petroleum engineering and chemical industry, and in particular relates to an associative non-crosslinking fracturing fluid and a preparation method thereof.
  • fracturing fluid In the petroleum industry, a suitable fluid is injected into the formation under high pressure, providing sufficient energy to exceed the overburden pressure of the original formation, causing cracks in the formation rock, and the fluid carries 20-40 mesh quartz sand, ceramsite, glass at the same time. Proppants such as microbeads are transported into the cracks. When the pressure is released, these proppants remain in the newly created cracks, creating new fluid in and out channels, thereby increasing the production of oil and gas wells or enhancing the injection capacity of the wells, ie, hydraulic pressure. Crack, this fluid is called fracturing fluid.
  • Fracturing fluid is one of the keys to the success of hydraulic fracturing.
  • the water-based fracturing fluid is mainly composed of a thickener, a crosslinking agent, potassium chloride, a gel breaker and water, and is supplemented with other auxiliaries as needed.
  • Thickeners generally have two types of natural polymers and synthetic polymers. Natural polymers include silicone, coumarin, konjac, etc. Commonly used are silicone and its modified products such as carboxymethyl tannin and hydroxypropyl. Silicone and so on. Conventional synthetic polymers (such as acrylamide copolymers) have a relatively simple molecular structure, a small number of functional groups capable of cross-linking, and a complicated cross-linking technique, so that they are not used much.
  • Natural polymer thickeners are currently the most commonly used thickeners for fracturing.
  • such thickeners are natural crop products, and their yield and quality are inevitably affected by the amount of planting and climate.
  • Natural polymers and their modified products can crosslink with more functional groups and are prone to occur.
  • Cross-linking reaction it has become the main thickener for fracturing fluid at home and abroad.
  • it itself contains more water insoluble matter (8 ⁇ 3 ⁇ 4-103 ⁇ 4, although chemical modification can reduce its insoluble content, but it cannot be completely solved. These water insolubles will remain in the cracked filling layer after the end of the fracturing. Medium, seriously affecting the conductivity of the fracture, affecting the fracturing effect.
  • the frictional fluid friction increase will inevitably consume the energy provided by the ground fracturing pump.
  • the pressure consumed in the column is too large due to excessive friction. It will make the energy applied to the formation insufficient, the energy utilization rate of the fracture will be reduced, the ability to create cracks will be weakened, and even the formation will not be pressed.
  • the traditional fracturing fluid also adopts measures to reduce the friction, it also adopts aggravating the fracturing fluid and raising the pipe.
  • Viscoelastic surfactant cleaning fracturing fluid is a new type of residue-free fracturing fluid developed in recent years. It has been reported that fracturing operations using clean fracturing fluids worldwide have exceeded 2,100 wells. After the introduction of this technology, China has made some improvements in practice and achieved some effects. However, it has also exposed some problems. The most important thing is that its working fluid performance and cost are difficult to balance, the temperature resistance is poor, and the water loss is difficult to control. Natural gas well fracturing Difficulties have thus affected its large-scale promotion in oil fields.
  • HAWSP Hydrophobically Associating Water-Soluble Polymers
  • the viscosity of the solution is greatly increased, and at the same time, it has better temperature resistance and salt resistance. Moreover, this solution has good shear thinning and viscoelasticity.
  • the supramolecular dynamic physical cross-linking network present in the solution also gives this solution the properties of a jelly and good ability to suspend stable solid particles or bubbles.
  • the supramolecular dynamic physical cross-linking network has the characteristic of reversible recovery at low shear rate after destruction at high shear rate, thus also making the solution have better shear resistance than chemical cross-linked jelly. Its good shear thinning behavior also makes it possible to have low friction at high velocity flow. Theoretically and practically, as long as the synthesis and production processes are appropriate, it is possible to obtain such a polymer which has a low water insoluble content. The properties and characteristics of this polymer and its solutions are all required for good fracturing fluids.
  • the water-soluble hydrophobically associating polymer solution and its surfactant composition are highly promising fracturing fluid thickeners, and the fracturing fluid prepared from such thickeners is completely possible to have no chemical Cross-linking, simple composition, low water insolubles (clean), low friction, shear resistance, temperature resistance, salt resistance, a new generation of fracturing fluid system and thickener instead of silicone and its fracturing fluid .
  • the present invention first provides a fracturing fluid thickener which is a water-soluble hydrophobic associative polymer which is a hydrophobically modified partially hydrolyzed polyacrylamide and is derived therefrom.
  • a molecular structure comprising an acrylamide monomer unit, at least one amphiphilic unsaturated monomer unit, and at least one anionic ethylenically unsaturated monomer unit;
  • the amphiphilic unsaturated monomer is a mercaptodimethylene An ammonium chloride or a decyl methacrylate or the like, wherein the fluorenyl chain has 8 to 22, preferably 12 to 20, more preferably 14 to 18;
  • the anionic ethylenically unsaturated monomer optionally acrylic acid or acrylic acid Sodium salt, ammonium acrylate, methacrylic acid, sodium methacrylate, ammonium methacrylate, 2-acrylamido-2-methylpropanesulfonic acid (AMPS), 2-acrylamido-2-methyl
  • AMPS 2-acrylamido-2-methyl
  • the acrylamide monomer unit, the amphiphilic unsaturated monomer unit and the anionic ethylenically unsaturated monomer unit are 60-80, 1-5 and 39-15, respectively, in parts by weight.
  • the molecular structure of the aforementioned fracturing fluid thickener is:
  • amphiphilic unsaturated monomer is preferably decyl dimethylallyl ammonium chloride or decyl methacrylate; or
  • amphiphilic unsaturated monomer is preferably decyl dimethylallyl ammonium chloride or decyl methacrylate
  • anionic ethylenically unsaturated monomer is preferably AMPS, methacrylic acid and sodium salts thereof, styrenesulfonic acid and sodium salts thereof, vinylsulfonic acid and sodium salts thereof, or the like;
  • amphiphilic unsaturated monomer is preferably decyl dimethylallyl ammonium chloride or decyl methacrylate;
  • anionic ethylenically unsaturated monomer is preferably AMPS, methacrylic acid and sodium salts thereof, styrenesulfonic acid and sodium salts thereof, vinylsulfonic acid and sodium salts thereof and the like.
  • the anionic ethylenically unsaturated monomer AMPS, sodium vinyl sulfonate or the like is selected in order to further improve the viscosity increasing and temperature and salt resistance of the thickener to obtain a suitable temperature and mineral.
  • the degree of fracturing fluid is selected in order to further improve the viscosity increasing and temperature and salt resistance of the thickener to obtain a suitable temperature and mineral.
  • the fracturing fluid thickener may optionally contain one or more of a synthetic quick-dissolving aid, a hydrolysis-solving aid, a drying instant-solving aid, and a releasing agent.
  • the present invention also provides a method for preparing the above thickener, which comprises a copolymerization method, a post-copolymerization hydrolysis method, an adiabatic copolymerization method, an adiabatic copolymerization co-hydrolysis method, and an adiabatic copolymerization hydrolysis method.
  • a copolymerization method a post-copolymerization hydrolysis method
  • an adiabatic copolymerization method an adiabatic copolymerization co-hydrolysis method
  • an adiabatic copolymerization hydrolysis method a method for preparing the above thickener
  • the acrylamide monomer, the amphiphilic unsaturated monomer and the anionic ethylenically unsaturated monomer are sequentially added to the reaction vessel according to the feed ratio, and an appropriate amount of the synthetic instant additive is added, and the mixture is added with water to dissolve and obtain a concentration of 15 ⁇ 3 ⁇ 4-35.
  • the monomer solution is controlled to -5 ° C ⁇ 50 ° C, nitrogen is removed by oxygen, and then added to the monomer solution
  • the polymerization initiation temperature is -5 ° C ⁇ 50 ° C (preferably 5 ° C ⁇ 25 ° C), after the end of the polymerization, continue to mature for 1-2 hours to obtain a polymer colloid, pulverized into granules, and dried in an appropriate amount
  • the instant additive and the anti-adhesive agent are mixed, and dried and pulverized.
  • the synthetic instant dissolution aid is a combination of sodium sulfate, urea, sodium formate and nonionic surfactant OP-10 (recommended weight ratio is 2:1.5:0.25:0.25), and the added amount is the total weight of the monomer solution.
  • the initiator is a water-soluble azo initiator, or a redox initiation system consisting of persulfate and sodium bisulfite, added in an amount of 0.1 based on the total weight of the monomer solution -1.0%, preferably 0.5%
  • the dry instant solvating agent is a combination of sodium formate, JFC (fatty alcohol polyoxyethylene ether) and thiourea (recommended weight ratio is 2:1:2), and the amount thereof is polymer
  • the total weight of the colloid is 0.5 ⁇ 3 ⁇ 4-10 ⁇ 3 ⁇ 4, preferably 5%
  • the release agent is one or more of dearomatized kerosene, nonylphenol ethoxylate, and polyoxyethylene stearate,
  • the amount added is 0.5-5% of the total weight of the polymer colloid, preferably a composition of dearomatized kerosene, nonylphenol ethoxylate, and polyoxyethylene stearate (recommended weight ratio is 1:2:2), It is
  • the acrylamide monomer and the amphiphilic unsaturated monomer are sequentially added to the reaction vessel according to the feed ratio, and an anionic ethylenically unsaturated monomer other than sodium acrylate may be added as needed, and an appropriate amount of a synthetic instant auxiliary agent is added, and the mixture is dissolved by water. Evenly, a monomer solution having a concentration of 15 ⁇ 3 ⁇ 4-35 ⁇ 3 ⁇ 4 (preferably 20 ⁇ 3 ⁇ 4-28 ⁇ 3 ⁇ 4, more preferably 25%) is obtained, and the monomer solution is controlled to -5 ° C to 50 ° C, and nitrogen is removed.
  • the polymerization temperature is -5 ° C ⁇ 50 ° C (preferably 5 ° C ⁇ 25 ° C), after the end of the polymerization, continue to mature for 1-2 hours to obtain polymerization
  • the colloid is pulverized into granules, mixed with an appropriate amount of alkali, a hydrolysis-dissolving aid and a release agent, and subjected to heat hydrolysis at a temperature of 70 ° C to 120 ° C (preferably 80 ° C to 110 ° C, more preferably 85 °).
  • the hydrolysis time is 1-8 hours (preferably 2-5 hours, more preferably 3.5 hours); the obtained colloid is secondarily granulated, mixed with an appropriate amount of dry instant auxiliaries and a release agent, dried, pulverized I will get it later.
  • the synthetic instant dissolution aid is one or more of sodium sulfate, urea, sodium formate and surfactant OP-10, and the addition amount is 0.5 ⁇ 3 ⁇ 4-10 ⁇ 3 ⁇ 4, preferably 2, of the total weight of the monomer solution.
  • the synthetic instant builder is a combination of sodium sulfate, urea, sodium formate and nonionic surfactant OP (recommended weight ratio is 2: 1.5: 0.25: 0.25), and the amount thereof is The total weight of the monomer solution is 5%; the initiator is a water-soluble azo initiator, or a redox initiation system composed of persulfate and sodium hydrogen sulfite, and the addition amount is 0.1- of the total weight of the monomer solution.
  • the base is sodium carbonate, sodium hydrogencarbonate or sodium hydroxide, etc., and the amount thereof is 5-10%, preferably 7.5%, of the total weight of the polymer colloid;
  • the hydrolysis instant aid is sodium formate One or more of urea, thiourea, added in an amount of 0.1 to 1%, preferably 0.5%, based on the total weight of the polymer colloid, more preferably the hydrolysis-solvent aid is a combination of sodium formate, urea and thiourea (Recommended weight ratio is 1:2:2), which is added in an amount of 0.5% of the total weight of the polymer colloid;
  • the drying instant-dissolving aid is one or more of sodium formate, JFC (fatty alcohol polyoxyethylene ether), thiourea, and the addition amount is 0.5 ⁇ 3 ⁇ 4-10 ⁇ 3 ⁇ 4, preferably 2 ⁇ 3 ⁇ 4, of the total weight of the polymer colloid.
  • the dry instant solvating agent is a combination of sodium formate, JFC (fatty alcohol polyoxyethylene ether) and thiourea (recommended weight ratio is 2: 1:2), and the amount thereof is polymer colloid 5% of the total weight;
  • the anti-blocking agent is one or more of dearomatized kerosene, nonylphenol ethoxylate, and polyoxyethylene stearate, and the amount added is 0.5 of the total weight of the polymer colloid.
  • - 5% preferably a composition of dearomatized kerosene, nonylphenol ethoxylate, and polyoxyethylene stearate (weight ratio 1:2:2), which is added in an amount of 0.5 based on the total weight of the polymer colloid. -5%, preferably 2%.
  • acrylamide monomer, amphiphilic unsaturated monomer and anionic ethylenically unsaturated monomer to the adiabatic reactor according to the feed ratio, and add appropriate amount of synthetic instant additive, add water to dissolve and mix to obtain a concentration of 15 ⁇ 3 ⁇ 4- 35 ⁇ 3 ⁇ 4 (preferably 20 ⁇ 3 ⁇ 4-28 ⁇ 3 ⁇ 4, more preferably 25%) monomer solution, the temperature of the monomer solution is controlled at -5 ° C ⁇ 50 ° C, nitrogen is removed by oxygen, and then to the monomer solution The initiator is added, and the temperature for initiating the polymerization is -5 ° C ⁇ 50 ° C (preferably 5 ° C ⁇ 25 ° C).
  • the aging is continued for 1-2 hours to obtain a polymer colloid, which is pulverized into granules. It is mixed with an appropriate amount of dry instant auxiliaries and anti-adhesive agents, and dried and pulverized.
  • the synthetic instant dissolution aid is a combination of sodium sulfate, urea, sodium formate and nonionic surfactant OP-10 (recommended weight ratio is 2: 1.5: 0.25: 0.25), and the added amount is the total weight of the monomer solution.
  • the initiator is a water-soluble azo initiator, or a redox initiation system consisting of persulfate and sodium bisulfite, added in an amount of 0.1 based on the total weight of the monomer solution -1.0%, preferably 0.5%;
  • the dry instant aid is a combination of sodium formate, JFC (fatty alcohol polyoxyethylene ether) and thiourea (recommended weight ratio is 2:1:2), and the amount added is polymer
  • the total weight of the colloid is 0.5 ⁇ 3 ⁇ 4-10 ⁇ 3 ⁇ 4, preferably 5%;
  • the release agent is one or more of dearomatized kerosene, nonylphenol ethoxylate, and polyoxyethylene stearate,
  • the amount added is 0.5-5% of the total weight of the polymer colloid, preferably a composition of dearomatized kerosene, nonylphenol ethoxylate, and polyoxyethylene stearate (recommended weight ratio is 1:2:2), It is added in an
  • Adding acrylamide monomer and amphiphilic unsaturated monomer to the adiabatic reactor according to the feed ratio, and adding another anionic ethylenically unsaturated monomer other than sodium acrylate, if necessary, adding an appropriate amount of alkali and synthesizing instant solution Adding water, dissolving and mixing to obtain a monomer solution having a concentration of 153 ⁇ 4>-35 ⁇ 3 ⁇ 4 (preferably 20%-28%, more preferably 25%), and controlling the monomer solution to -5 ° C ⁇ 50 ° C, Nitrogen deoxidation, then adding an initiator to the monomer solution, adiabatic polymerization, the temperature inside the polymerization tank rises, after the end of the polymerization reaction, the temperature in the polymerization reactor causes the alkali to react with the acrylamide unit on the polymer chain to form a sodium acrylate unit. , continue to mature for 1-2 hours, get polymer colloid, cut the polymer colloid into 3-5mm particles, with the right amount of dry instant help
  • the synthetic instant dissolution aid is one or more of sodium sulfate, urea, sodium formate and surfactant OP-10, and the addition amount is 0.5 ⁇ 3 ⁇ 4-10 ⁇ 3 ⁇ 4, preferably 2, of the total weight of the monomer solution.
  • the synthetic instant builder is a combination of sodium sulfate, urea, sodium formate and nonionic surfactant OP (recommended weight ratio is 2:1.5:0.25:0.25), and the amount thereof is 5% of the total weight of the monomer solution;
  • the initiator is a water-soluble azo initiator, or a redox initiation system composed of persulfate and sodium hydrogen sulfite, the amount of which is 0.1- of the total weight of the monomer solution 1%, preferably 0.5%;
  • the base is sodium carbonate, sodium hydrogencarbonate or sodium hydroxide, etc., and the amount thereof is 5-10%, preferably 7.5%, of the total weight of the monomer solution;
  • the dry instant aid is sodium formate , one or more of JFC (fatty alcohol polyoxyethylene ether), thiourea, added in an amount of 0.5 ⁇ 3 ⁇ 4-10 ⁇ 3 ⁇ 4, preferably 2 ⁇ 3 ⁇ 4-8 ⁇ 3 ⁇ 4, more preferably, the total weight of the polymer colloid.
  • the dry instant dissolution aid is a combination of sodium formate, JFC (fatty alcohol polyoxyethylene ether) and thiourea (recommended weight ratio is 2: 1:2),
  • the amount added is 5% of the total weight of the polymer colloid;
  • the anti-blocking agent is one or more of dearomatized kerosene, nonylphenol ethoxylate, and polyoxyethylene stearate, and the amount thereof is polymerization.
  • 0.5-5% of the total weight of the colloid preferably a composition of dearomatized kerosene, nonylphenol ethoxylate, and polyoxyethylene stearate (weight ratio 1:2:2), the amount of which is
  • the total weight of the polymer colloid is from 0.5 to 5%, preferably 2%.
  • acrylamide monomer and amphiphilic unsaturated monomer to the adiabatic reactor according to the feed ratio. If necessary, add anionic ethylenically unsaturated monomer other than sodium acrylate, add appropriate amount of synthetic instant auxiliaries, add water to dissolve and mix. Evenly, a monomer solution having a concentration of 15 ⁇ 3 ⁇ 4-35 ⁇ 3 ⁇ 4 (preferably 20 ⁇ 3 ⁇ 4-28 ⁇ 3 ⁇ 4, more preferably 25%) is obtained, and the monomer solution is controlled to -5 ° C to 50 ° C, and nitrogen is removed.
  • hydrolysis temperature is 70 ° C -120 ° C (preferably 80 ° C -110 ° C, more preferably 85 ° C -95 ° C, most preferably 90 ° C)
  • hydrolysis time is 1-8 Hour (preferably 2-5 hours, more preferably 3.5 hours); the obtained colloid is subjected to secondary granulation, mixed with an appropriate amount of dry instant auxiliaries and a releasing agent, and dried and pulverized.
  • the synthetic instant dissolution aid is one or more of sodium sulfate, urea, sodium formate and surfactant OP-10, and the addition amount is 0.5 ⁇ 3 ⁇ 4-10 ⁇ 3 ⁇ 4, preferably 2, of the total weight of the monomer solution.
  • the synthetic instant builder is a combination of sodium sulfate, urea, sodium formate and nonionic surfactant OP (recommended weight ratio is 2:1.5:0.25:0.25), and the amount thereof is 5% of the total weight of the monomer solution;
  • the initiator is a water-soluble azo initiator, or a redox initiation system composed of persulfate and sodium hydrogen sulfite, the amount of which is 0.1- of the total weight of the monomer solution 1%, preferably 0.5%;
  • the base is sodium carbonate, sodium hydrogencarbonate or sodium hydroxide, etc., and the amount thereof is 5-10%, preferably 7.5%, of the total weight of the polymer colloid;
  • the hydrolysis instant aid is sodium formate One or more of urea, thiourea, added in an amount of 0.1 to 1%, preferably 0.5%, based on the total weight of the polymer colloid, more preferably the hydrolysis-solvent aid is a combination of sodium formate, ure
  • the dry instant aid is a combination of sodium formate, JFC (fatty alcohol polyoxyethylene ether) and thiourea (recommended weight ratio is 2: 1:2), and the added amount is polymer colloid total 5% by weight;
  • the release agent is one or more of dearomatized kerosene, nonylphenol ethoxylate, and polyoxyethylene stearate, and the amount added is 0.5- of the total weight of the polymer colloid.
  • 5% preferably a composition of dearomatized kerosene, nonylphenol ethoxylate, and polyoxyethylene stearate (weight ratio 1:2:2), which is added in an amount of 0.5- of the total weight of the polymer colloid. 5%, preferably 2%.
  • the drying temperature should not exceed 110 ° C, and the drying time is 1-5 hours, preferably 2-4 hours, more preferably 2.5 hours.
  • a thickening agent of the above molecular structure of I, II or III is prepared by a copolymerization method: first, it is necessary to form a monomer solution, and the monomer solution is calculated according to Calculating the feed ratio consisting of one of acrylamide, one of the amphiphilic unsaturated monomers, sodium acrylate and/or AMPS or sodium methacrylate or sodium sulfonate, and adding the necessary synthetic instant solution Additives, dissolve the above components in pure plastic (deionized water or reverse osmosis water) in plastic, stainless steel, ceramic or glass containers.
  • the monomer solution is controlled to an appropriate temperature, nitrogen is removed by oxygen, and then an initiator is added to the monomer solution to initiate polymerization.
  • an initiator is added to the monomer solution to initiate polymerization.
  • the temperature change in the center of the polymerization vessel was monitored online. As the polymerization progressed, the temperature gradually increased, and finally stabilized, indicating that the polymerization reaction was almost finished, and the aging was continued for 1-2 hours to obtain a polymer colloid, which was taken out from the vessel.
  • the polymer colloid is cut into 3-5mm size granules, mixed with appropriate amount of dry instant auxiliaries and anti-adhesive agents, dried and pulverized.
  • a thickener of the above I and II molecular structures by post-copolymerization hydrolysis: firstly forming a monomer solution which is composed of one of a calculated amount of acrylamide and the amphiphilic unsaturated monomer. , if necessary, can add anionic ethylenically unsaturated monomer other than sodium acrylate, and add the necessary synthetic instant additives, and then use the above components in plastic, stainless steel or ceramic or glass reactor with pure water (deionized water or Reverse osmosis water) dissolves and mixes evenly. Then, the monomer solution is controlled to an appropriate temperature, and an initiator is added to the monomer solution after nitrogen and oxygen is removed to initiate polymerization.
  • the temperature change in the center of the polymerization vessel is monitored online during the polymerization process, and the temperature gradually rises as the polymerization proceeds.
  • Stabilization indicating that the polymerization reaction is basically finished, and then continue to mature for 1-2 hours to obtain a polymer colloid, the polymer colloid is taken out from the container, and cut into 3-5 mm size particles, with an appropriate amount of alkali, hydrolysis instant aid and anti-
  • the adhesive is uniformly mixed and sealed and heated to hydrolyze.
  • the hydrolysis process is for hydrolyzing a portion of the acrylamide unit on the polymer molecular chain to a sodium acrylate unit.
  • the colloid After hydrolysis, the colloid is secondarily granulated to a particle size of 3-5 mm, and then uniformly mixed with the dry instant auxiliaries and the anti-adhesive agent. Further drying and pulverization are carried out to obtain a thick powder thickener of the above molecular structure.
  • the hydrophobically modified partially hydrolyzed polyacrylamide and its derivative dry powders of molecular structures I and II can also be prepared by adiabatic copolymerization co-hydrolysis: forming a monomer solution consisting of acrylamide, amphiphilic unsaturated monomers, If necessary, an anionic ethylenically unsaturated monomer other than sodium acrylate may be added, and an appropriate amount of a base may be added to synthesize a quick-dissolving auxiliary composition, and the above components may be dissolved in pure water (deionized water or reverse osmosis water) in a ceramic insulated container. well mixed.
  • the monomer solution is controlled to a suitable temperature, nitrogen is removed by oxygen, and then an initiator is added to the monomer solution to initiate polymerization.
  • the temperature change in the center of the polymerization vessel is monitored online during the polymerization, and the temperature gradually rises as the polymerization proceeds.
  • Stabilization indicating that the polymerization reaction is basically finished, and then continue to hydrolyze and mature for 1-2 hours to obtain a polymer colloid, and then the polymer colloid is cut into particles of 3-5 mm size, and is uniformly dried with a dry instant dissolution aid and a release agent.
  • the powder is pulverized to obtain a hydrophobically modified water-soluble partially hydrolyzed polyacrylamide dry powder.
  • the hydrophobically modified partially hydrolyzed polyacrylamide of the molecular structures I and II and the dry powder of the derivative thereof can also be prepared by adiabatic copolymerization hydrolysis method: forming a monomer solution, the monomer solution is composed of acrylamide, amphiphilic unsaturated monomers, If necessary, an anionic ethylenically unsaturated monomer other than sodium acrylate and a synthetic instant additive may be added, and the above components may be dissolved and mixed uniformly in a ceramic or stainless steel insulated container with pure water (deionized water or reverse osmosis water). The monomer solution is controlled to a suitable temperature, nitrogen is removed by oxygen, and then an initiator is added to the monomer solution to initiate polymerization.
  • the temperature change in the center of the polymerization vessel is monitored online during the polymerization, and the temperature gradually rises as the polymerization proceeds. Stabilization, indicating that the polymerization reaction is almost finished, and then continue to mature for 1-2 hours to obtain a polymer colloid, and then the polymer colloid is cut into 3-5 mm size particles, mixed with an appropriate amount of alkali, hydrolysis instant fixative and anti-blocking agent. Uniform, then sealed and heated to hydrolyze. After hydrolysis, the colloid is granulated by granules of 3-5 mm in size, mixed with dry instant auxiliaries and anti-adhesive agents to further dry and pulverize to obtain a hydrophobically modified water-soluble partially hydrolyzed polyacrylamide dry powder.
  • the copolymerization process is simple, no hydrolysis is required, industrial production has low energy consumption, and ammonia gas is not discharged during the preparation process, but the copolymerization method often obtains poor water solubility of the product, and the dissolution rate is slow; the hydrolysis after the copolymerization is increased.
  • the disadvantage is that the polymerization process is greatly affected by the ambient temperature, which is not conducive to the stability of the product quality; the adiabatic copolymerization co-hydrolysis method requires an adiabatic polymerization device, the process is relatively complicated, but the polymerization process is less affected by the ambient temperature.
  • the product quality is stable, and the hydrolysis of the polymer is carried out by the heat accumulated in the polymerization process. It does not need externally providing additional heat energy, so it is beneficial to reduce the energy consumption. However, it is unfavorable to introduce a large amount of alkali in the monomer solution.
  • the polymerization of impurities is not conducive to the increase of the molecular weight of the polymer.
  • the polymerization in a strong alkaline environment the strong alkali environment is conducive to the production of a nitrogen-soluble acrylamide which is convenient for the instant solution, and the hydrolysis destroys the cross-linking effect, thereby facilitating the polymerization.
  • Improve product water solubility and dissolution rate; adiabatic copolymerization hydrolysis In order to adiabatic polymerization equipment, the process is relatively complicated, but the polymerization process is affected by the ambient temperature, the product quality is stable, but the post-hydrolysis process is increased, and external additional heat energy is required.
  • the polymerized impurities are beneficial to the increase of the molecular weight of the polymer, and the hydrolysis destroys the crosslinking, thereby contributing to the improvement of the water solubility and dissolution rate of the product.
  • the fracturing fluid thickener product can be prepared by selecting the above various methods according to the requirements of the product performance and the actual production process conditions and investment scale.
  • the present invention also provides an associative non-crosslinking fracturing fluid, the active ingredient of which is any of the above-mentioned fracturing fluid thickener, gel breaker and potassium chloride, and optionally surfactant, formulated with water .
  • the gel breaker is a commonly used gel breaker for the silicone fracturing fluid, and one or more of ammonium persulfate, potassium persulfate, capsule breaker, etc. may be optionally selected according to the length of the gel breaking time;
  • the surfactant is an anionic surfactant and/or a nonionic surfactant.
  • the content of the thickener is 0.2%-0.8 ⁇ 3 ⁇ 4 ;
  • the anionic surfactant is one or more of, but not limited to, mercaptobenzenesulfonate, mercaptosulfate, petroleum sulfonate and the like.
  • the nonionic surfactant is, but not limited to, nonylphenol ethoxylate and/or octylphenol ethoxylate.
  • the addition amount of these surfactants and their compositions cannot be directly fixed in the present invention, but can be determined according to the method disclosed in the present invention by: determining the specific reservoir temperature, preparing the fracturing Under the mineralization degree of the liquid water, the relationship between the viscosity of the fracturing fluid and the amount of the surfactant added is scanned under the premise of the amount of the fixed thickener. Generally, in the case where the surfactant is properly selected, the fixed polymer is added. Under the condition of the amount of the fracturing fluid, the viscosity of the fracturing fluid increases first, and when it exceeds a certain concentration, it decreases with the increase of the concentration of the surfactant.
  • the optimum amount of preferred surfactant in the fracturing fluid is determined based on the results of this scanning experiment. Different types of thickeners, different reservoir temperatures, different degrees of mineralization of the fracturing fluid, and the corresponding amount of surfactant will vary.
  • compositions of a surfactant it is preferred to use a composition of a surfactant, and it has been found that the use of the composition can increase the viscosity of the thickener solution to a greater extent than the surfactant alone.
  • composition and addition amount of the above-mentioned associative non-crosslinked fracturing fluid are also not directly determinable in the present invention, but can be screened and optimized according to the above-described methods and principles disclosed in the present invention.
  • the viscosity of the fracturing fluid can be obtained at a suitably high concentration of the thickener.
  • Its preparation method is to use the reservoir temperature and match In the case of water salinity, the relationship between the apparent viscosity of the thickener solution and the thickener concentration is measured at 170 s- 1 . When the solution viscosity is greater than 50 mPa ⁇ s , the polymer concentration is a suitable addition amount.
  • the fracturing fluid formulation is a thickener, preferably a surfactant or combination thereof, potassium chloride, a breaker and water.
  • a surfactant or composition thereof When a preferred surfactant or composition thereof is not added, the fracturing fluid needs to add more thickener to achieve the desired viscosity, thus increasing the cost of the fracturing fluid.
  • the addition of a surfactant can achieve the desired viscosity at a lower polymer loading, while also reducing the viscosity of the fracturing fluid base fluid, facilitating the pumping of the fracturing fluid, and reducing the degradation of the polymer. Incomplete components damage the oil layers and cracks.
  • the addition amount of the thickener is preferably 0.2 ⁇ 3 ⁇ 4 - 0.83 ⁇ 4 > (mass percentage), and it is to be noted that the higher the use temperature, the larger the addition amount. The higher the concentration of salt in the fracturing fluid, the greater the amount required.
  • the addition of potassium chloride to the fracturing fluid is to inhibit the hydration expansion of the clay minerals in the reservoir, and to reduce the damage to the reservoir caused by the water swelling in the fracturing fluid of the reservoir clay mineral, according to the reservoir.
  • the content of the clay mineral is determined to determine the amount of potassium chloride added.
  • the amount of potassium chloride added is generally 0-2%, preferably 1%-2 ⁇ 3 ⁇ 4 (mass percentage).
  • Gel breakers generally use gel breakers commonly used in silicone fracturing fluids, such as ammonium sulfate, potassium persulfate, and capsule breakers containing these components. In high temperature or in fracturing applications where the fracturing fluid is required to maintain viscosity for a longer period of time, such as in large fracturing, capsule breakers are preferred. The amount of the breaker is determined according to the time required for the fracturing fluid.
  • Capsule breakers are not limited by time, because the principle of action is that the breaker is wrapped in the capsule. After the end of the fracturing, the pressure is released, the formation is closed, the capsule is crushed, and the breaker in the capsule is released and broken. However, the amount of all breakers must be such that the viscosity of the fracturing fluid after breaking the gel is less than a certain viscosity value, such as 5 mPa. S.
  • the above-mentioned associative non-crosslinking fracturing fluid is prepared by adding water to the thickener, adding the surfactant in proportion, stirring for 10-20 minutes, then adding potassium chloride, stirring for 10-20 minutes, and finally Add the breaker and stir evenly.
  • the agent or its composition is preliminarily prepared into a solution having a concentration of 53 ⁇ 4>-20 ⁇ 3 ⁇ 4, stirring is continued for 10-20 minutes, then the metered potassium chloride is added and stirring is continued for 10-20 minutes, and finally the metered gelatin is added, and the mixture is evenly stirred. , that is, the association type non-crosslinked fracturing fluid.
  • the order of addition of the thickener, surfactant and potassium chloride is preferred. It is not recommended to add potassium chloride before the addition of the surfactant. It is not recommended to add potassium chloride before the thickener because the viscosity of the fracturing fluid prepared in the latter two ways, especially the last one, is significantly lower. And significantly affect the dissolution rate of the thickener.
  • a method for preparing a system of associative non-crosslinking fracturing fluid thickeners including a copolymerization method, a post-copolymerization hydrolysis method, an adiabatic copolymerization co-hydrolysis method, and an adiabatic copolymerization hydrolysis method.
  • the associative non-cross-linking fracturing fluid system of the present invention has cleanness, shear resistance, high temperature resistance, low friction, temperature thickening, and shearing. Excellent performance such as thickening, diversity of preparation methods of thickeners, and diversity of molecular structure of thickeners There are several options available for a clean fracturing fluid system in a specific reservoir environment.
  • the clean fracturing fluid system based on the thickener interacts with the surfactant to have a strong hydrophobic association, thereby making the intermolecular
  • the strength of the association dynamic physical cross-linking network is increased, which is characterized by enhanced viscosity, shear thinning, suspension, salt resistance, temperature resistance, etc., which can be a new generation of fracturing instead of silicone and its fracturing fluid. Liquid system and thickener.
  • Figure 1 is a graph showing the relationship between viscosity and concentration and temperature of an associative non-crosslinked fracturing fluid in Example 5 of the present invention.
  • Fig. 2 is a graph showing the shear thinning performance of the associative non-crosslinked fracturing fluid in Example 5 of the present invention.
  • Figure 3 is a graph showing the shear resistance of an associative non-crosslinked fracturing fluid in Example 5 of the present invention.
  • Figure 4 is the temperature resistance and shear resistance of the associative non-crosslinked fracturing fluid system (excluding SDBS) in Example 7 of the present invention.
  • Figure 5 is the temperature resistance and shear resistance of the associative non-crosslinked fracturing fluid system (containing 0.1% SDBS) in Example 7 of the present invention.
  • 6 is a relationship between a friction coefficient and a flow velocity of an associative non-crosslinked fracturing fluid system according to Example 5 of the present invention; wherein CFF represents an association type non-crosslinked fracturing fluid, and HPG represents a silicone fracturing fluid (control) ).
  • Figure 7 is a comparison of the appearance of the associative non-crosslinked fracturing fluid and the silicone fracturing fluid breaking solution; wherein, in the left beaker, it is an associative non-crosslinking fracturing fluid, and in the right beaker, it is a silicone rubber pressure. Cracking fluid.
  • Figure 8 shows the formulation of the fracturing fluid at different temperatures (SDBS is the preferred surfactant).
  • Figure 9 shows the fracturing fluid formulation at different temperatures (anionic/nonionic surfactant composition is preferred surfactant)
  • the percent "%" referred to in the present invention means a mass percentage unless otherwise specified; however, the percentage of the solution, unless otherwise specified, means the number of grams of the solute contained in the 100 ml solution.
  • the silicone fracturing fluid for the control test of the associative non-crosslinking fracturing fluid of the present invention referred to in the following examples is a boron crosslinked guar fracturing fluid, the main component of which is 1% KC1 + 0.45% HPG. +0.2% Na 2 C0 3 +0.105% ammonium persulfate + 0.3% crosslinked UBCL-61A + 20% sodium hydroxide.
  • Example 1 Synthesis of a water-soluble hydrophobically associating polymer fracturing fluid thickener
  • a water-soluble hydrophobic association polymer fracturing fluid thickener is prepared by a copolymerization method. See Table 1 for the monomer, initiator, instant additive charge ratio, water insolubles and viscosity at different temperatures.
  • AM NaAA: AMPS-Na: octadecyl methacrylate: speed of synthesis
  • AM sodium vinyl sulfonate
  • AMPS-Na C18DMAAC: synthetic instant help
  • AM, NaAA, C12DMAAC, C14DMAAC, C18DMAAC represent acrylamide, sodium acrylate, dodecyldimethylallyl ammonium chloride, tetradecyl dimethylallyl ammonium chloride, 18 ⁇ , respectively. Dimethylallyl ammonium chloride.
  • the components except the initiator in Table 1 were uniformly mixed in a 2000 mL beaker, and the pure nitrogen gas was passed through for 15 minutes. When the temperature was adjusted to 25 ° C, the initiator was added in the amount specified in Table 1 to initiate polymerization, and inserted in the center of the reaction system. The thermometer monitors the degree of polymerization, and the polymerization is considered to be substantially complete when the temperature rises within 1 minute without exceeding 1 °C. t
  • the entire polymerization was carried out at ambient temperature without adiabatic or other temperature control treatment.
  • the colloid was taken out, and the colloid was cut into 3-5 mm-sized granules, and the dry-dissolving auxiliaries and the anti-adhesive agent were uniformly mixed according to the ratio of Table 2.
  • the polymer colloidal particles after mixing the dry instant additive and the anti-adhesive agent are dried, and the drying may be vacuum drying.
  • the vacuum drying temperature is recommended to be 60 ° C, or the air drying may be performed, and the air drying temperature is not more than 110 °. C, recommended is 95 °C.
  • the drying time is determined by the amount of colloid, usually 1-2 hours. When the solid content reached 88 ⁇ 3 ⁇ 4-90 ⁇ 3 ⁇ 4, the drying was stopped, cooled, and pulverized to obtain a dry powder sample.
  • the temperature resistance of the thickener is significantly improved, and a higher viscosity can be obtained at a high temperature (12 CTC);
  • the thickening agent containing the amphiphilic unsaturated monomer decyl dimethylallyl ammonium chloride is significantly better than the thickener containing decyl methacrylate, so it will be as high as possible under high temperature conditions. Selecting the use of the amphiphilic unsaturated monomer decyl dimethylallyl ammonium chloride;
  • the thickening agent containing the ethylenically unsaturated monomer sodium vinyl sulfonate has a significantly better viscosity-increasing performance than the sodium acrylate-containing thickener, so under high temperature conditions, the ethylenically unsaturated monomer ethylene is selected as much as possible.
  • the initiator is initiated by a redox system/water-soluble azo composite, and the thickener obtained has better viscosity-increasing property and lower water-insoluble matter, because the composite initiator can make the polymerization proceed more smoothly.
  • the molecular weight of the obtained product is higher, and further, the polymerization initiated by the water-soluble azo initiator does not form a branched structure (the persulfate initiator tends to cause a branched structure), thereby making the obtained thickener The water insoluble content is lower.
  • a water-soluble hydrophobically associating polymer fracturing fluid thickener is prepared by post-copolymerization hydrolysis. See Table 3 for the monomer, initiator, instant additive charge ratio, water insolubles and viscosity at different temperatures.
  • AM sodium vinyl sulfonate: octadecyl methacrylate: synthetic instant solution
  • the colloid was taken out, and the colloid was cut into 3-5 mm-sized granules.
  • Hydrolyzed NaOH, hydrolyzed instant auxiliaries, hydrolyzed anti-adhesive agent were added in the proportion of Table 4, uniformly mixed, and transferred to a sealed and heatable In a container (ceramic, plastic, stainless steel or glass container), the seal is heated to hydrolyze.
  • the above substances can be sealed in a plastic bag in a laboratory and then heated and hydrolyzed in a water bath or a constant temperature oven. It is necessary to pay attention to the exclusion of air as much as possible during the sealing, and to leave enough space for the ammonia gas generated during hydrolysis. Note that the sealed bag should not be broken when hydrolyzed.
  • the hydrolysis instant aid is a combination of sodium formate, urea and thiourea, and the mass ratio of the three is 1:2:2.
  • the colloid is taken out, and then the colloidal particles are dried in the amounts specified in Table 2 to dissolve the quick-dissolving auxiliary agent and the anti-sticking dispersing agent, and the polymer colloidal particles after mixing the dry instant-dissolving auxiliary agent and the anti-sticking quick-dissolving agent are dried and dried. It can be vacuum dried. The vacuum drying temperature is recommended to be 60 °C. It can also be air-dried. The blast drying temperature does not exceed 110 °C. It is recommended to be 95 °C. The drying time is determined by the amount of drying, 1-2 hours. When the solid content reached 88 ⁇ 3 ⁇ 4-90 ⁇ 3 ⁇ 4, the drying was stopped, cooled, and pulverized to obtain a dry powder sample.
  • the water insoluble content and the solution viscosity of the thickener prepared by the above method are shown in Table 3.
  • Table 3 the water-soluble thickener obtained by the post-copolymerization hydrolysis method is remarkably improved in water solubility with respect to the copolymerization method, and the water-insoluble matter is remarkably lowered because the hydrolysis process can break the cross-linking which occurs during the polymerization.
  • the thickening agent obtained by this preparation method is significantly more viscous than the copolymerization method because it is easier to obtain a higher molecular weight in the monomer type in the monomer solution during the synthesis.
  • associative thickeners with hydrophobic chain lengths are better than short tackifiers
  • thickeners containing AMPS units are more temperature resistant
  • composite initiators give better tackifying properties and lower Water insoluble matter.
  • a water-soluble hydrophobically associating polymer fracturing fluid thickener is prepared by adiabatic copolymerization co-hydrolysis.
  • water deionized water or reverse osmosis water
  • NaOH sodium sulfate
  • AM, C12DMAAC (or C14DMAAC, C18DMAAC), AMPS (if any) instant additives to stir the above components evenly, then control the temperature of the material to 25 ° C, and transfer to the insulated container of the ceramic inner wall with temperature detector.
  • AM sodium vinyl sulfonate: octadecyl methacrylate:
  • the colloid is mixed with the drying instant dissolving aid and the anti-sticking dispersing agent uniformly.
  • the polymer colloidal particles after mixing the dry instant dissolving agent and the anti-sticking quick-dissolving agent are dried.
  • the drying can be vacuum drying, and the vacuum drying temperature is recommended. At 60 ° C, blast drying can also be used. The blast drying temperature does not exceed 110 ° C, and it is recommended to be 95 ° C.
  • the drying time is determined by the amount of drying, 1-2 hours. When the solid content reaches ⁇ - ⁇ ), the drying is stopped, cooled, and pulverized to obtain a dry powder sample.
  • the water insoluble content of the obtained thickener dry powder and the viscosity of the solution at different temperatures are shown in Table 5.
  • the water-insoluble content of the thickener prepared by this method is also low, but the viscosity of the thickener obtained by the post-copolymerization hydrolysis method is low, because the method is in the monomer solution.
  • a large amount of NaOH is added, and a small amount of a substance which is disadvantageous to the molecular weight increase may be introduced into the alkali.
  • part of the AM monomer is hydrolyzed to sodium acrylate, which is equivalent to increasing the type of comonomer, which is not conducive to the increase of molecular weight.
  • the thickener which contains the longer hydrophobic chain amphiphilic monomer, contains the AMPS monomer, and the composite initiator is used to initiate the polymerization, and the thickener has better viscosity-increasing property and better temperature resistance. .
  • the water-soluble hydrophobic associative polymer fracturing fluid was prepared by adiabatic copolymerization and post-hydrolysis method to increase the thickening ratio.
  • AM sodium vinyl sulfonate: octadecyl methacrylate: NaOH:
  • composition of the synthetic instant additive is: sodium sulfate: urea: sodium formate: ⁇ 2 : 1.5: 0.25: 0.25 (mass ratio).
  • the polymerization reaction is considered to be basically completed.
  • Add the hydrolysis agent NaOH, hydrolysis quick-dissolving aid, hydrolysis and anti-adhesive agent mix evenly, transfer it to sealed and heatable container (ceramic, plastic, stainless steel or glass container), seal and heat hydrolysis.
  • sealed and heatable container ceramic, plastic, stainless steel or glass container
  • seal and heat hydrolysis for example, the above materials can be sealed in a plastic bag and then heated and hydrolyzed in a water bath or a constant temperature oven. It is necessary to pay attention to the exclusion of air as much as possible during the sealing, and to leave enough space for the ammonia gas generated during hydrolysis. Note that the sealed bag should not be broken when hydrolyzed.
  • the colloid is taken out, and then the colloidal particles are mixed with the dry instant solvating agent and the anti-sticking dispersing agent in the amounts specified in Table 1, and the polymer colloidal particles after mixing the dry instant auxiliaries and the anti-sticking quick-dissolving agent are dried. Drying can be carried out by vacuum drying. The drying temperature is recommended to be 60 ° C. It can also be air-dried. The blast drying temperature does not exceed 110 ° C. It is recommended to be 95 ° C. The drying time is determined by the amount of drying, 1-2 hours. When the solid content reached 88 ⁇ 3 ⁇ 4-90 ⁇ 3 ⁇ 4, the drying was stopped, cooled, and pulverized to obtain a dry powder sample.
  • the water insolubles of the obtained thickener dry powder and the viscosity of the solution at different temperatures are shown in Table 6. It can be seen from Table 6 that the thickener contained in this method has a low water-insoluble content, and the thickener obtained by the adiabatic copolymerization co-hydrolysis has good viscosity, because a large amount is not added to the polymerization. Alkali. However, the viscosity of the thickener obtained by the post-copolymerization hydrolysis method is low because the heat generated by the colloidal polymerization cannot be dissipated with respect to the post-copolymerization hydrolysis, which is disadvantageous for the substance having an increased molecular weight.
  • the thickener obtained by the polymerization containing the 7-ship monomer, the AMPS-containing monomer, and the composite initiator is better in viscosity-increasing performance and better in temperature resistance.
  • Example 5 Associative non-crosslinked fracturing fluid system based on water-soluble hydrophobically associating polymer fracturing fluid thickener
  • a water-soluble hydrophobically-associated polymer fracturing fluid thickener was prepared based on the number 16 in Example 3 to prepare an associative non-crosslinking fracturing fluid and tested for correlation properties.
  • Associative non-crosslinked fracturing fluids prepared based on the associative polymeric thickeners prepared in the other examples can be used as a reference.
  • the method for preparing the fracturing fluid according to the amount of Table 7 is as follows: First, weigh the metered water in a stirred vessel, start the agitator, and slowly add the metered water-soluble hydrophobic associative polymer fracturing fluid thickener dry powder. In the water, the dry powder should be added along the vortex. Be careful to disperse the dry powder in the water. Otherwise, the fish eye will be formed easily. Stir for 10-20 minutes. After the polymer is fully dissolved, add the metered potassium chloride and continue to stir. Minutes, finally add the metered gel breaker and stir evenly to obtain the associative non-crosslinking fracturing fluid.
  • the tackifying and temperature resistance properties of the associative non-crosslinked fracturing fluid system based on the water-soluble hydrophobically associating polymer fracturing fluid thickener were determined.
  • the apparent viscosity of different polymer concentrations and temperatures was measured at 170 s- 1 using the Physical MCR301 Advanced Rheometer High Temperature and High Pressure Test System.
  • the experimental results are shown in Figure 1.
  • the results in Figure 1 show that as the polymer concentration increases, the viscosity of the polymer gradually increases, especially when the polymer concentration exceeds the critical concentration CAC, the viscosity of the solution increases sharply.
  • the polymer thickening ability decreases and the critical concentration increases. With the apparent viscosity of 50mPa.
  • the addition amount of different thickeners can be determined, thereby determining the fracturing fluid formula based on the water-soluble hydrophobically associating polymer fracturing fluid thickener, respectively.
  • the recommended concentration of water-soluble hydrophobically-associated polymer fracturing fluid thickener is 0.4%, 0.6%, 0.8. %, 1.0%, and 1.2%.
  • the static suspension capacity of the associative non-crosslinked fracturing fluid system based on water-soluble hydrophobically associating polymer fracturing fluid thickener was investigated. 50 g of ceramsite with a density of 3.31 g / cm3 is thoroughly mixed with 100 mL of the associative non-crosslinking fracturing fluid with a polymer concentration of 0.4%, transferred to a stoppered cylinder, and placed in a constant temperature oven at 70 °. C keep warm and let stand for more than 16 hours. The ceramsite remained in suspension and no precipitation of ceramsite was observed, indicating that the fracturing fluid had good suspension properties.
  • the residue of the associative non-crosslinking fracturing fluid (the concentration of polymer of 1# and 2# was 0.4% and 0.8%, respectively) based on the water-soluble hydrophobically-associated polymer fracturing fluid thickener was determined.
  • the fracturing fluid residue is very low (about 9.0mg / L), far lower than the People's Republic of China oil and gas industry standard "SYT 5107-2005 water-based fracturing fluid performance evaluation method” And the water-based fracturing fluid residue standard ( ⁇ 600 03 ⁇ 4 /1 ⁇ specified in "General Technical Conditions for Fracturing Fluids of SYT 6376-2008", also lower than the viscoelastic surfactant fracturing fluid specified in the above standard (typical The residue content of the cleaning fracturing fluid ( ⁇ 100mg/L).
  • the fracturing fluid breaking liquid of the present invention is clear and transparent, and the colloidal fracturing fluid breaks the glue and is obviously turbid. (Fig. 7) These fully demonstrate that the associative non-crosslinked fracturing fluid of the present invention is clean.
  • the damage rate of the core matrix of the associative non-crosslinking fracturing fluid (associated polymer concentration 0.5%) based on the water-soluble hydrophobically-associated polymer fracturing fluid thickener was determined, and the colloidal fracturing fluid was also carried out.
  • Table 9 It can be seen from the data in Table 9 that the associative non-crosslinking fracturing fluid damages the core permeability by less than 10%, and the damage rate of the silicone fracturing fluid is as high as 45%, indicating that the fracturing fluid of the present invention is low in damage. of.
  • the static and core matrix dynamic fluid loss properties of the associative non-crosslinked fracturing fluid (0.4% polymer concentration) based on the water-soluble hydrophobically-associated polymer fracturing fluid thickener were determined. The results are shown in Tables 10 and 11. It can be seen that the static fluid loss rate, initial filtration loss and fluid loss coefficient of the associative non-crosslinked fracturing fluid are larger than that of the tantalum fracturing fluid, because the associative non-crosslinked fracturing fluid water insoluble matter It is lower than the silicone fracturing fluid and cannot effectively form the filter cake. However, the static and dynamic fluid loss properties of associative non-crosslinked fracturing fluids meet the standard requirements.
  • the clean fracturing fluid system based on the water-soluble hydrophobically associating polymer fracturing fluid thickener was determined (the concentrations of the associative polymers of the 1#, 2#, 3# and 4# fracturing fluids were 0.4% and 0.5%, respectively). , 0.6% and 0.7%) Surface tension, interfacial tension and viscosity of the breaker. As can be seen from Table 12, all indicators are up to standard.
  • No. 1, 2, and 3 are associated non-cross-linking fracturing fluids with associative polymer concentrations of 0.4%, 0.5%, and 0.6%, respectively;
  • No. 5 is a silicone fracturing fluid.
  • Table 11 Dynamic matrix fluid loss properties of associative non-crosslinked fracturing fluids (associated polymer concentration 0.5%)
  • Viscosity 2.4 2.6 2.5 4.3 It can be seen from the above experimental data that the associative non-crosslinking fracturing fluid based on the water-soluble hydrophobically associating polymer fracturing fluid thickener has a fracturing fluid In addition to the essential basic properties, it also has the characteristics of clean, shear resistance, high temperature resistance and low friction.
  • This embodiment relates to a clean fracturing fluid system based on the above thickener/preferred surfactant or combination thereof and a method of preparing the same.
  • the fixed potassium chloride addition amount is 1%
  • the fixed thickener concentration is 0.4% (the thickener is selected as the thickener prepared in No. 20 of Example 4)
  • SDBS is used as the preferred surfactant to determine the optimum.
  • the surfactant and its composition are suitably added in the fracturing fluid.
  • the specific method is as follows: first weigh the metered water in a stirred container, start the stirrer, slowly add the metered thickener dry powder to the water, dry powder Should be added along the vortex side, pay attention to make the dry powder fully dispersed in water, otherwise it is easy to form fish eyes, stir for 10-20 minutes, after the polymer is fully dissolved, add the metered surfactant SDBS, it is recommended to pre-form SDBS into concentration 5 ⁇ 3 ⁇ 4-20 ⁇ 3 ⁇ 4 solution, continue stirring for 10-20 minutes, then add metered potassium chloride and continue to stir for 10-20 minutes, stir well.
  • the apparent viscosity of the solution was measured at a fixed temperature of 90 ° C on a rheometer and a shear rate of 170 s -1 .
  • the concentration is 0.4%
  • SDBS is used as a reinforcing agent
  • the amount of potassium chloride is 1%
  • the temperature is 90 °C.
  • the recommended amount of SDBS is 1.0%. -2%.
  • the optimal addition amount is 1.5%. .
  • the thickener/preferably surfactant/potassium chloride fracturing fluid system has an advantage over the thickener/potassium chloride fracturing fluid system in that, at relatively lower polymer concentrations, The viscosity of the solution is significantly increased by the addition of a small amount of a preferred surfactant, so that the viscosity of the fracturing fluid system meets the technical requirements, and the separate thickener solution does not meet the viscosity specification.
  • the concentration of the thickener added is too low, even if a preferred surfactant is added, the viscosity of the fracturing fluid may not meet the technical requirements, and at this time, it is necessary to appropriately increase the concentration of the thickener.
  • the temperature resistance is an extremely important application performance of the clean fracturing fluid system, which directly determines the application range of the cleaning fracturing fluid.
  • the composition of the clean fracturing fluid system is: thickener concentration 0.45-0.65%, KC1 concentration 2%, SDBS concentration 0-0.1%.
  • the clean fracturing fluid system has a temperature thickening effect in the range of 60-10 CTC, and the warm thickening effect is more obvious with the increase of the thickener concentration; at a temperature of 150 ° C, After 170s- 1 long-term test, the viscosity remained basically unchanged, indicating excellent resistance to shear and high temperature.
  • the clean fracturing fluid system still has a temperature thickening effect in the range of 60-10 CTC, and the temperature thickening phenomenon is more obvious with the increase of the thickener concentration; it is worth noting that At a temperature of 150 ° C, the viscosity of the clean fracturing fluid system increases with the increase of the test time, and the greater the thickener concentration, the greater the viscosity increase. When the thickener concentration is 0.65%, the viscosity is tested after 120 min. From 60mPa.s to 90mPa. S , it has excellent temperature resistance and shear thickening effect.
  • Example 8 Clean Fracturing Fluid System 1 (Thickener / Preferred Surfactant / Potassium Chloride) Suitable for Different Temperatures Based on Example 6, using the thickener 1-5 prepared in Example 1, a preferred surfactant SDBS or SDS, petroleum sulfonate, nonionic surfactant OP-8, etc., potassium chloride is fixed at 1%. to a viscosity of about 50 mPa. S standard, the system studied fracturing fluid cleaning formulations at different temperature. The experimental results are shown in Figure 8.
  • Example 9 Clean Fracturing Fluid System II Suitable for Different Temperatures (Thickener / Preferred Surfactant Composition / Potassium Chloride)
  • the preferred surfactant is a combination of an anionic surfactant and a nonionic surfactant, wherein the nonionic surfactant is fixed to OP-8.
  • the anionic surfactant can be SDBS, SDS, petroleum sulfonate, etc., the potassium chloride is fixed at 1%, and the viscosity is about 50mPa. S.
  • the formulation of the clean fracturing fluid system at different service temperatures is shown in Fig. 9. .

Abstract

本发明提供了一种缔合型非交联压裂液及其制备方法,所述缔合型非交联压裂液的有效成分为疏水改性部分水解聚丙烯酰胺及其衍生物、破胶剂和氯化钾,以及任选含有表面活性剂,以水配制。其中,所述疏水改性部分水解聚丙烯酰胺及其衍生物的分子结构中包含丙烯酰胺单体单元、至少一种双亲不饱和单体单元和至少一种阴离子烯属不饱和单体单元。由于这种增稠剂分子结构中含有双亲单体单元,能在水溶液中通过分子间疏水缔合形成可逆超分子网络,不需要化学交联即可获得压裂液所需要的高粘度和悬浮能力。基于这种增稠剂的缔合型非交联压裂液具有组成简单,低残渣、低伤害、低摩阻、抗剪切、抗温、抗盐的特点,可成为替代胍胶及其压裂液的新一代压裂液体系。

Description

一种缔合型非交联压裂液及其制备方法
技术领域
本发明属于石油工程及化工领域, 具体地说, 涉及一种缔合型非交联压裂液及其制备方法。
背景技术
在石油工业中, 在高压下向地层中注入一种合适的流体, 提供足够的能量来超过原始地层上覆压力, 导致 地层岩石产生裂缝, 流体同时携带 20-40目的石英砂、 陶粒、 玻璃微珠等支撑剂输送到裂缝中, 当压力释放后, 这些支撑剂留在新产生的裂缝中, 产生新的流体进出通道, 从而提高油气井产出或增强水井的注入能力, 即为水 力压裂, 这种流体称为压裂液。
压裂液是水力压裂成败的关键之一。 目前, 国内外最常使用的压裂液为水基压裂液。 水基压裂液主要由增 稠剂、 交联剂、 氯化钾、 破胶剂和水组成, 同时根据需要辅以其它助剂。 增稠剂一般有天然聚合物和合成聚合物 两类, 天然聚合物有胍胶、 香豆胶、 魔芋胶等, 常用的是胍胶及其改性产品如羧甲基胍胶和羟丙基胍胶等。 传统 合成高聚物 (如丙烯酰胺共聚物)分子结构比较简单, 能发生交联的官能团少, 交联技术复杂, 因此采用不多。
天然聚合物增稠剂, 特别是胍胶及其改性产品是目前最常用的压裂用增稠剂。 但这类增稠剂是天然农作物 产品, 其产量及品质必然受种植量和气候影响, 天然高分子及其改性产品 (如各种改性胍胶)能发生交联的官能团 多, 易发生交联反应, 故成为国内外压裂液主要增稠剂。 但其本身含有较多的水不溶物 (8<¾-10¾ , 虽然化学改 性能降低其不溶物含量, 但不能彻底解决, 这些水不溶物在压裂结束后将滞留在压开的裂缝充填层中, 严重影响 裂缝的导流能力, 影响压裂效果。
聚合物压裂液为了保证有足够的粘度以完成携砂作业, 通常需要将增稠剂进行化学交联。 交联虽然提高了 体系粘度, 但必然带来以下负面效果: 交联聚合物破胶不彻底, 水不溶的交联碎片是导致裂缝导流能力伤害的另 一重要因素;化学交联冻胶不耐剪切, 因此这类压裂液不太适应需要体系耐受长时间剪切的大型压裂或剪切速率 高的小管柱、 连续油管及喷射压裂; 体系交联后, 压裂液的摩阻会大幅度增加, 压裂液摩阻增大必然要消耗地面 压裂泵提供的能量, 在深井和连续油管压裂中, 由于摩阻过大, 在管柱中消耗的压力太大, 将使得施加到地层能 量不足, 压裂能量利用率降低, 创造裂缝的能力削弱, 甚至不能压开地层, 尽管传统压裂液也采取了降摩阻的措 施, 也有采取加重压裂液, 提高管柱内静水压力来弥补摩阻损失的办法, 但加重往往又增加压裂液的摩阻, 同时 降低压裂液的返排能力, 往往可能得不偿失; 此外, 为了提高胍胶类压裂液的抗温性和生物稳定性, 需不断改进 和提高交联技术, 组分配方也越来越复杂, 增加了工作液的成本, 增大了技术不稳定性。 这些已成为目前水基压 裂液技术发展的瓶颈。 因此研制更高更好的抗温、 抗盐、 抗剪切、 低摩阻、 低伤害特性的新型压裂液及其增稠剂 是当前压裂液技术发展的主要趋势, 而目前胍胶价格猛涨, 使得压裂液成本大幅攀升, 也使得研发新的增稠剂及 其压裂液来替代胍胶及其压裂液成为迫切需要。
粘弹性表面活性剂清洁压裂液是近年来开发的新型无残渣压裂液。 据报道, 在全球范围内采用清洁压裂液 进行的压裂作业已经超过 2100井次。我国在引进这项技术后在实践中进行了一些改进, 取得了一些效果, 然而也 暴露出一些问题, 最主要的是其工作液性能与成本难以兼顾、 抗温性能较差、 失水难以控制、 天然气井压裂破胶 困难, 因而影响了它在油田中的大面积推广。 同时由于这类压裂液的滤失问题不能解决, 也使其不大适合大型压 裂施工, 特别是在微裂缝发育和渗透率较高的地层中, 局限了这类压裂液的应用范围。这也是最近两年国内对粘 弹性表面活性剂清洁压裂液研究热而现场应用趋冷的重要原因。
7 溶性疏水缔合聚合物 (Hydrophobically Associating Water-Soluble Polymers, HAWSP), 是指在聚合物亲水性 大分子链上带有少量疏水基团的水溶性聚合物, HAWSP具有良好的流度控制能力, 在油气井工程和石油工程领域, 特别是在钻井液和提高采收率方面具有巨大的应用潜力,并且已经在油田的实际生产中获得了一定程度的应用。在水 溶液中, 当这种聚合物浓度高于某一临界浓度 (Critical Association Concentration, CAC)后, 大分子链通过疏水缔合 作用聚集,无需化学交联即形成分子间缔合动态物理交联网络,溶液粘度大幅度升高, 同时具备更好的抗温、抗盐性。 而且这种溶液具有良好剪切稀释性、粘弹性。溶液中存在的超分子动态物理交联网络也使得这种溶液具有冻胶的特性, 有良好的悬浮稳定固体颗粒或气泡的能力。超分子动态物理交联网络在高剪切速率下破坏后在低剪切速率下具有可逆 恢复的特点,因此也使得这种溶液相对于化学交联冻胶有更好的抗剪切能力。其良好的剪切稀释行为也使其可能在高 速管流下具有低的摩阻。而理论和实践上, 只要合成和生产工艺适当, 完全可以获得水不溶物很低的这种聚合物。这 种聚合物及其溶液以上的性质和特点, 均是优良压裂液所需要的。
研究发现, 某些表面活性剂可以使水溶性疏水缔合聚合物溶液的粘度大幅度上升, 因为表面活性剂在溶液 中与聚合物的疏水基团发生作用,增强了聚合物分子链间的疏水缔合作用,使得分子间缔合动态物理交联网络强 度增大。 从而使得水溶性疏水缔合聚合物溶液 /表面活性剂组合物的增粘性、 剪切稀释性、 悬浮性、 抗盐性、 抗 温性等性能相对于单独聚合物进一步提升。
基于以上特点, 使水溶性疏水缔合聚合物溶液及其与表面活性剂组合物成为极具潜力的压裂液增稠剂, 由 这类增稠剂配制的压裂液完全有可能具备不用化学交联、 组成简单, 低水不溶物 (清洁)、 低摩阻、 抗剪切、 抗 温、 抗盐的特点, 成为替代胍胶及其压裂液的新一代压裂液体系及增稠剂。
发明内容
本发明的目的是提供一种缔合型非交联压裂液及其制备方法。
为了实现本发明目的, 本发明首先提供一种压裂液增稠剂, 其为水溶性疏水缔合聚合物, 所述水溶性疏水缔合聚 合物为疏水改性部分水解聚丙烯酰胺及其衍生物, 其分子结构中包含丙烯酰胺单体单元、 至少一种双亲不饱 和单体单元和至少一种阴离子烯属不饱和单体单元;所述双亲不饱和单体为垸基二甲基烯丙基氯化铵或甲基 丙烯酸垸基酯等, 其中垸基链碳原子数为 8-22, 优选 12-20, 更优选 14-18 ; 所述阴离子烯属不饱和单体任选 丙烯酸、 丙烯酸钠盐、 丙烯酸铵盐、 甲基丙烯酸、 甲基丙烯酸钠盐、 甲基丙烯酸铵盐、 2-丙烯酰胺基 -2-甲基 丙磺酸(AMPS )、 2-丙烯酰胺基 -2-甲基丙磺酸钠盐、 乙烯基磺酸、 乙烯基磺酸钠盐、 苯乙烯磺酸、 苯乙烯磺 酸钠盐等中的一种或多种, 优选为丙烯酸、 丙烯酸钠盐、 2-丙烯酰胺基 -2-甲基丙磺酸 (AMPS ) 或 2-丙烯酰 胺基 -2-甲基丙磺酸钠盐。
前述压裂液增稠剂中, 丙烯酰胺单体单元、双亲不饱和单体单元和阴离子烯属不饱和单体单元按重量份计依次为 60-80、 1-5和 39-15。 前述压裂液增稠剂的分子结构式为:
I 丙烯酰胺 /丙烯酸钠 /双亲不饱和单体; 其中, 所述双亲不饱和单体优选为垸基二甲基烯丙基氯化铵或甲基丙烯 酸垸基酯; 或
II丙烯酰胺 /丙烯酸钠 /双亲不饱和单体 /阴离子烯属不饱和单体;其中,所述双亲不饱和单体优选为垸基二甲基烯 丙基氯化铵或甲基丙烯酸垸基酯; 所述阴离子烯属不饱和单体优选为 AMPS、 甲基丙烯酸及其钠盐、 苯乙烯 磺酸及其钠盐、 乙烯基磺酸及其钠盐等; 或
III 丙烯酰胺 /双亲不饱和单体 /阴离子烯属不饱和单体;其中,所述双亲不饱和单体优选为垸基二甲基烯丙基氯化 铵或甲基丙烯酸垸基酯; 所述阴离子烯属不饱和单体优选为 AMPS、 甲基丙烯酸及其钠盐、 苯乙烯磺酸及其 钠盐、 乙烯基磺酸及其钠盐等。
在上述分子结构 II或 III中, 选择阴离子烯属不饱和单体 AMPS、 乙烯基磺酸钠等是为了进一步提高增稠剂的增 粘性和抗温抗盐性, 以获得适合更高温度和矿化度的压裂液。
前述压裂液增稠剂中, 任选含有合成速溶助剂、 水解速溶助剂、 干燥速溶助剂、 防粘剂中的一种或多种。
本发明还提供上述增稠剂的制备方法, 包括共聚法、 共聚后水解法、 绝热共聚法、 绝热共聚共水解法和绝 热共聚后水解法。 分述如下:
( 1 ) 共聚法
按投料比向反应釜中依次加入丙烯酰胺单体、 双亲不饱和单体和阴离子烯属不饱和单体, 并添加适量的合 成速溶助剂, 加水溶解混匀, 得到浓度为 15<¾-35<¾ (优选 20<¾-28<¾, 更优选 25% ) 的单体溶液, 将单体溶液控制 到 -5°C~50°C, 通氮除氧, 然后向单体溶液中加入引发剂, 引发聚合的温度为 -5°C~50°C (优选 5°C~25°C ), 聚合 反应结束后, 继续熟化 1-2小时, 得到聚合物胶体, 粉碎成颗粒, 与适量干燥速溶助剂和防粘剂混合, 干燥、 粉 碎后即得。
其中, 所述合成速溶助剂为硫酸钠、 尿素、 甲酸钠和非离子表面活性剂 OP-10的组合物 (推荐重量比为 2:1.5:0.25:0.25 ), 其添加量为单体溶液总重的 1-5¾>, 优选 2%; 所述引发剂为水溶性偶氮引发剂, 或由过硫酸盐和 亚硫酸氢钠组成的氧化还原引发体系, 其添加量为单体溶液总重的 0.1-1.0%, 优选 0.5%; 所述干燥速溶助剂为甲 酸钠、 JFC (脂肪醇聚氧乙烯醚)和硫脲的组合物(推荐重量比为 2:1:2),其添加量为聚合物胶体总重的 0.5<¾-10<¾, 优选 5%; 所述防粘剂为脱芳烃煤油、 壬基酚聚氧乙烯醚、 硬脂酸聚氧乙烯酯中的一种或多种, 其添加量为聚合 物胶体总重的 0.5-5%,优选为脱芳烃煤油、壬基酚聚氧乙烯醚、硬脂酸聚氧乙烯酯的组合物(推荐重量比为 1:2:2), 其添加量为 0.5-5%, 优选 2%。
(2) 共聚后水解法
按投料比向反应釜中依次加入丙烯酰胺单体、 双亲不饱和单体、 根据需要还可加入除丙烯酸钠以外的阴离 子烯属不饱和单体, 并添加适量的合成速溶助剂, 加水溶解混匀, 得到浓度为 15<¾-35<¾ (优选 20<¾-28<¾, 更优选 25% ) 的单体溶液, 将单体溶液控制到 -5°C~50°C, 通氮除氧, 然后向单体溶液中加入引发剂, 引发聚合的温度 为 -5°C~50°C (优选 5°C~25°C ), 聚合反应结束后, 继续熟化 1-2小时, 得到聚合物胶体, 粉碎成颗粒, 与适量的 碱、 水解速溶助剂和防粘剂混合, 密封加热水解, 水解温度为 70°C-120°C (优选 80°C-110°C, 更优选 85°C-95°C, 最优选 90°C ), 水解时间为 1-8小时(优选 2-5小时, 更优选 3.5小时); 所得胶体经二次造粒, 与适量干燥速溶助剂 和防粘剂混合, 干燥、 粉碎后即得。
其中, 所述合成速溶助剂为硫酸钠、 尿素、 甲酸钠、 表面活性剂 OP-10中的一种或多种, 其添加量为单体 溶液总重的 0.5<¾-10<¾, 优选 2<¾-8<¾, 更优选所述合成速溶助剂为硫酸钠、 尿素、 甲酸钠和非离子表面活性剂 OP 的组合物(推荐重量比为 2: 1.5:0.25:0.25 ), 其添加量为单体溶液总重的 5% ; 所述引发剂为水溶性偶氮引发剂, 或 由过硫酸盐和亚硫酸氢钠组成的氧化还原引发体系, 其添加量为单体溶液总重的 0.1-1%, 优选 0.5% ; 所述碱为碳 酸钠、 碳酸氢钠或氢氧化钠等, 其添加量为聚合物胶体总重的 5-10%, 优选 7.5% ; 所述水解速溶助剂为甲酸钠、 尿素、 硫脲中的一种或多种, 其添加量为聚合物胶体总重的 0.1-1%, 优选 0.5%, 更优选所述水解速溶助剂为甲酸 钠、 尿素和硫脲的组合物 (推荐重量比为 1 :2:2), 其添加量为聚合物胶体总重的 0.5% ; 所述干燥速溶助剂为甲酸 钠、 JFC (脂肪醇聚氧乙烯醚)、 硫脲中的一种或多种, 其添加量为聚合物胶体总重的 0.5<¾-10<¾, 优选 2<¾-8<¾, 更优选所述干燥速溶助剂为甲酸钠、 JFC (脂肪醇聚氧乙烯醚) 和硫脲的组合物 (推荐重量比为 2: 1:2), 其添加 量为聚合物胶体总重的 5%; 所述防粘剂为脱芳烃煤油、 壬基酚聚氧乙烯醚、 硬脂酸聚氧乙烯酯中的一种或多种, 其添加量为聚合物胶体总重的 0.5-5%, 优选为脱芳烃煤油、 壬基酚聚氧乙烯醚、 硬脂酸聚氧乙烯酯的组合物(重 量比为 1:2:2), 其添加量为聚合物胶体总重的 0.5-5%, 优选 2%。
( 3 ) 绝热共聚法
按投料比向绝热反应釜中依次加入丙烯酰胺单体、 双亲不饱和单体和阴离子烯属不饱和单体, 并添加适量 的合成速溶助剂, 加水溶解混匀, 得到浓度为 15<¾-35<¾ (优选 20<¾-28<¾, 更优选 25% ) 的单体溶液, 将单体溶液 的温度控制在 -5°C ~50°C, 通氮除氧, 然后向单体溶液中加入引发剂, 引发聚合的温度为 -5°C ~50°C (优选 5°C ~25°C ), 聚合反应结束后, 继续熟化 1-2小时, 得到聚合物胶体, 粉碎成颗粒, 与适量干燥速溶助剂和防粘剂 混合, 干燥、 粉碎后即得。
其中, 所述合成速溶助剂为硫酸钠、 尿素、 甲酸钠和非离子表面活性剂 OP-10的组合物 (推荐重量比为 2: 1.5:0.25:0.25 ), 其添加量为单体溶液总重的 1-5¾>, 优选 2%; 所述引发剂为水溶性偶氮引发剂, 或由过硫酸盐和 亚硫酸氢钠组成的氧化还原引发体系, 其添加量为单体溶液总重的 0.1-1.0%, 优选 0.5% ; 所述干燥速溶助剂为甲 酸钠、 JFC (脂肪醇聚氧乙烯醚)和硫脲的组合物(推荐重量比为 2: 1 :2),其添加量为聚合物胶体总重的 0.5<¾-10<¾, 优选 5% ; 所述防粘剂为脱芳烃煤油、 壬基酚聚氧乙烯醚、 硬脂酸聚氧乙烯酯中的一种或多种, 其添加量为聚合 物胶体总重的 0.5-5%,优选为脱芳烃煤油、壬基酚聚氧乙烯醚、硬脂酸聚氧乙烯酯的组合物(推荐重量比为 1 :2:2), 其添加量为 0.5-5%, 优选 2%。
(4) 绝热共聚共水解法
按投料比向绝热反应釜中依次加入丙烯酰胺单体、 双亲不饱和单体, 根据需要还可加入丙烯酸钠以外的另 外一种阴离子烯属不饱和单体, 并添加适量的碱及合成速溶助剂, 加水溶解混匀, 得到浓度为 15¾>-35<¾ (优选 20%-28%, 更优选 25% ) 的单体溶液, 将单体溶液控制到 -5°C ~50°C, 通氮除氧, 然后向单体溶液中加入引发剂, 绝热聚合, 聚合釜内温度上升, 聚合反应结束后, 聚合釜内温度使碱与聚合物链上丙烯酰胺单元发生水解反应, 生成丙烯酸钠单元, 继续熟化 1-2小时, 得到聚合物胶体, 将聚合物胶体切割成 3-5mm颗粒, 与适量干燥速溶助 剂和防粘剂混合, 干燥、 粉碎后即得。
其中, 所述合成速溶助剂为硫酸钠、 尿素、 甲酸钠、 表面活性剂 OP-10中的一种或多种, 其添加量为单体溶液 总重的 0.5<¾-10<¾, 优选 2<¾-8<¾, 更优选所述合成速溶助剂为硫酸钠、 尿素、 甲酸钠和非离子表面活性剂 OP的组合物 (推荐重量比为 2:1.5:0.25:0.25), 其添加量为单体溶液总重的 5%; 所述引发剂为水溶性偶氮引发剂, 或由过硫酸盐和 亚硫酸氢钠组成的氧化还原引发体系, 其添加量为单体溶液总重的 0.1-1%, 优选 0.5%; 所述碱为碳酸钠、碳酸氢钠或 氢氧化钠等,其添加量为单体溶液总重的 5-10%,优选 7.5%;所述干燥速溶助剂为甲酸钠、 JFC (脂肪醇聚氧乙烯醚)、 硫脲中的一种或多种, 其添加量为聚合物胶体总重的 0.5<¾-10<¾, 优选 2<¾-8<¾, 更优选所述干燥速溶助剂为甲酸钠、 JFC (脂肪醇聚氧乙烯醚)和硫脲的组合物(推荐重量比为 2: 1:2), 其添加量为聚合物胶体总重的 5%; 所述防粘剂为 脱芳烃煤油、 壬基酚聚氧乙烯醚、硬脂酸聚氧乙烯酯中的一种或多种, 其添加量为聚合物胶体总重的 0.5-5%, 优选为 脱芳经煤油、壬基酚聚氧乙烯醚、硬脂酸聚氧乙烯酯的组合物(重量比为 1:2:2),其添加量为聚合物胶体总重的 0.5-5%, 优选 2%。
(5 ) 绝热共聚后水解法
按投料比向绝热反应釜中依次加入丙烯酰胺单体、 双亲不饱和单体, 根据需要还可加入丙烯酸钠以外的阴 离子烯属不饱和单体, 并添加适量的合成速溶助剂, 加水溶解混匀, 得到浓度为 15<¾-35<¾ (优选 20<¾-28<¾, 更优 选 25% ) 的单体溶液, 将单体溶液控制到 -5°C~50°C, 通氮除氧, 然后向单体溶液中加入引发剂, 绝热聚合, 聚 合反应结束后, 熟化水解得到聚合物胶体, 将聚合物胶体切割成 3-5mm颗粒, 与适量的碱、 水解速溶助剂和防粘 剂混合, 密封加热水解, 水解温度为 70°C-120°C (优选 80°C-110°C, 更优选 85°C-95°C, 最优选 90°C ), 水解时间 为 1-8小时 (优选 2-5小时, 更优选 3.5小时); 所得胶体经二次造粒, 与适量干燥速溶助剂和防粘剂混合, 干燥、 粉碎后即得。
其中, 所述合成速溶助剂为硫酸钠、 尿素、 甲酸钠、 表面活性剂 OP-10中的一种或多种, 其添加量为单体 溶液总重的 0.5<¾-10<¾, 优选 2<¾-8<¾, 更优选所述合成速溶助剂为硫酸钠、 尿素、 甲酸钠和非离子表面活性剂 OP 的组合物(推荐重量比为 2:1.5:0.25:0.25 ), 其添加量为单体溶液总重的 5%; 所述引发剂为水溶性偶氮引发剂, 或 由过硫酸盐和亚硫酸氢钠组成的氧化还原引发体系, 其添加量为单体溶液总重的 0.1-1%, 优选 0.5%; 所述碱为碳 酸钠、 碳酸氢钠或氢氧化钠等, 其添加量为聚合物胶体总重的 5-10%, 优选 7.5%; 所述水解速溶助剂为甲酸钠、 尿素、 硫脲中的一种或多种, 其添加量为聚合物胶体总重的 0.1-1%, 优选 0.5%, 更优选所述水解速溶助剂为甲酸 钠、 尿素和硫脲的组合物 (推荐重量比为 1:2:2), 其添加量为聚合物胶体总重的 0.5%; 所述干燥速溶助剂为甲酸 钠、 JFC (脂肪醇聚氧乙烯醚)、 硫脲中的一种或多种, 其添加量为聚合物胶体总重的 0.5<¾-10<¾, 优选 2<¾-8<¾, 更优选所述干燥速溶助剂为甲酸钠、 JFC (脂肪醇聚氧乙烯醚) 和硫脲的组合物 (推荐重量比为 2: 1:2), 其添加 量为聚合物胶体总重的 5%; 所述防粘剂为脱芳烃煤油、 壬基酚聚氧乙烯醚、 硬脂酸聚氧乙烯酯中的一种或多种, 其添加量为聚合物胶体总重的 0.5-5%, 优选为脱芳烃煤油、 壬基酚聚氧乙烯醚、 硬脂酸聚氧乙烯酯的组合物(重 量比为 1:2:2), 其添加量为聚合物胶体总重的 0.5-5%, 优选 2%。
上述五种制备方法中, 干燥温度不应超过 110°C, 干燥时间为 1-5小时, 优选 2-4小时, 更优选 2.5小时。 具体地, 采用共聚法制备上述 I、 II或 III分子结构的增稠剂: 首先需要形成一种单体溶液, 该单体溶液按照计 算的投料比由丙烯酰胺、 所述双亲不饱和单体中的一种、 丙烯酸钠和 /或 AMPS或甲基丙烯酸钠或乙烯磺酸钠中的一 种单体组成, 并加入必要的合成速溶助剂, 将上述组分在塑料、 不锈钢、 陶瓷或玻璃容器中用纯水 (去离子水或反 渗透水) 溶解混合均匀。 将单体溶液控制到适当温度, 通氮除氧, 然后在单体溶液中加入引发剂, 引发聚合。 在聚 合过程中在线监控聚合容器中心的温度变化, 随着聚合进行, 温度逐渐上升, 最后趋于稳定, 表明聚合反应基本结 束, 再继续熟化 1-2小时, 得到聚合物胶体, 从容器中取出聚合胶体, 切割成 3-5mm大小颗粒, 与适当量干燥速溶助 剂和防粘剂混合均匀, 干燥、 粉碎。
还可以采用共聚后水解法制备上述 I和 II分子结构的增稠剂: 首先形成一种单体溶液, 该单体溶液按计算量 的丙烯酰胺、所述双亲不饱和单体中的一种组成, 根据需要可以加入丙烯酸钠以外的阴离子烯属不饱和单体, 并 加入必要的合成速溶助剂, 然后将上述组分在塑料、 不锈钢或者陶瓷或者玻璃反应釜中用纯水(去离子水或反渗 透水)溶解混合均匀。 然后将单体溶液控制到适当温度, 通氮除氧后在单体溶液中加入引发剂, 引发聚合, 在聚 合过程中在线监控聚合容器中心的温度变化, 随着聚合进行, 温度逐渐上升, 最后趋于稳定, 表明聚合反应基本 结束, 再继续熟化 1-2小时, 得到聚合物胶体, 从容器中取出聚合胶体, 切割成 3-5mm大小颗粒, 与适当量的碱、 水解速溶助剂和防粘剂混合均匀,密封加热水解。这一水解过程是为了将聚合物分子链上部分丙烯酰胺单元水解 成丙烯酸钠单元, 水解后胶体二次造粒至粒径为 3-5mm, 再与干燥速溶助剂及防粘剂混合均匀, 进一步干燥、 粉 碎, 得到上述分子结构的增稠剂干粉。
还可以采用绝热共聚共水解法制备分子结构 I和 II的疏水改性部分水解聚丙烯酰胺及其衍生物干粉: 形成一 种单体溶液, 该单体溶液由丙烯酰胺、双亲不饱和单体, 根据需要可以加入丙烯酸钠以外的阴离子烯属不饱和单 体, 以及适当量的碱, 合成速溶助剂组成, 将上述组分在陶瓷绝热容器中用纯水(去离子水或反渗透水)溶解混 合均匀。 将单体溶液控制到适当温度, 通氮除氧, 然后在单体溶液中加入引发剂, 引发聚合, 在聚合过程中在线 监控聚合容器中心的温度变化, 随着聚合进行, 温度逐渐上升, 最后趋于稳定, 表明聚合反应基本结束, 再继续 水解熟化 1-2小时, 得到聚合物胶体, 然后将聚合胶体切割成 3-5mm大小颗粒, 与干燥速溶助剂及防粘剂混合均 匀进一步干燥、 粉碎, 得到疏水改性水溶性部分水解聚丙烯酰胺干粉。
还可以采用绝热共聚后水解法制备分子结构 I和 II的疏水改性部分水解聚丙烯酰胺及其衍生物干粉: 形成一 种单体溶液, 该单体溶液由丙烯酰胺、双亲不饱和单体, 根据需要可以加入丙烯酸钠以外的阴离子烯属不饱和单 体和合成速溶助剂组成, 将上述组分在陶瓷或不锈钢绝热容器中用纯水 (去离子水或反渗透水) 溶解混合均匀。 将单体溶液控制到适当温度, 通氮除氧, 然后在单体溶液中加入引发剂, 引发聚合, 在聚合过程中在线监控聚合 容器中心的温度变化, 随着聚合进行, 温度逐渐上升, 最后趋于稳定, 表明聚合反应基本结束, 再继续熟化 1-2 小时, 得到聚合物胶体, 然后将聚合胶体切割成 3-5mm大小颗粒, 与适当量的碱、 水解速溶助剂和防粘剂混合均 匀, 然后密封加热水解, 水解后胶体二次造粒 3-5mm大小颗粒, 与干燥速溶助剂及防粘剂混合均匀进一步干燥、 粉碎, 得到疏水改性水溶性部分水解聚丙烯酰胺干粉。
在上述方法中, 共聚法工艺简单, 无需水解, 工业生产能耗低, 制备过程中不排放氨气, 但是共聚法往往获 得的产品水溶性欠佳, 溶解速度较慢; 共聚后水解法增加了后水解工艺过程, 制备过程中要排放水解产生的氨气, 但是产品的水溶性好, 溶解速度快, 而且减少了共聚时聚合单体的种类(丙烯酸钠单元由水解过程获得), 有利于提 高聚合物的分子量, 但增加了水解工艺过程, 工业生产能耗增加; 上述这两种方法均可在敞口聚合容器在室温下进 行聚合, 对聚合容器要求低, 也有利于聚合热的散发, 利于聚合物分子量的提高, 但缺点是聚合过程受环境温度影 响较大, 不利于产品质量的稳定; 绝热共聚共水解法需要绝热聚合装置, 工艺相对复杂, 但聚合过程受环境温度影 响小, 产品质量稳定, 同时聚合物的水解是利用聚合过程积聚的热量进行, 不需要外部额外提供热能, 因此有利于 降低能耗, 但在单体溶液中要加入大量的碱, 不可避免的引入不利于聚合的杂质, 不利于聚合物分子量的提高, 同 时聚合在强碱性环境下, 强碱环境有利于产生一种利于速溶的物质氮氚丙烯酰胺, 加上水解破坏交联的作用, 因此 有利于提高产品的水溶性和溶解速度; 绝热共聚后水解法需要绝热聚合装置, 工艺相对复杂, 但聚合过程受环境温 度影响, 产品质量稳定, 但增加了后水解过程, 需要外部额外提供热能, 但在单体溶液中不用加入大量的碱, 减少 引入不利于聚合的杂质, 利于聚合物分子量的提高, 加上水解破坏交联的作用, 因此有利于提高产品的水溶性和溶 解速度。
可以根据对产品性能的要求以及实际生产工艺条件和投资规模来选择上述不同方法制备压裂液增稠剂产 品。
需要指出的是, 为了获得抗温抗盐性更佳的增稠剂, 优选在分子结构中引入 AMPS这种单体, 研究表明这 种单体有利于提高聚丙烯酰胺衍生物的抗温抗盐性,特别适合于需要用盐水加重,或者配制压裂液用水的矿化度 硬度较高的情况, 或者是当需要应用于使用温度大于 15CTC的井时。
本发明还提供一种缔合型非交联压裂液, 其有效成分为任一种上述压裂液增稠剂、破胶剂和氯化钾, 以及任选含 有表面活性剂, 以水配制。 其中, 所述破胶剂为胍胶压裂液常用破胶剂, 可根据破胶时间长短的需要任选过 硫酸铵、过硫酸钾、胶囊破胶剂等中的一种或多种; 所述表面活性剂为阴离子表面活性剂和 /或非离子表面活 性剂。 其中, 增稠剂的含量为 0.2%-0.8<¾ ; 所述阴离子表面活性剂为但不限于垸基苯磺酸盐、 垸基硫酸盐、 石油磺酸盐等中的一种或多种。所述非离子表面活性剂为但不限于壬基酚聚氧乙烯醚和 /或辛基酚聚氧乙烯醚 等。
需要指出的是, 这些表面活性剂及其组合物的添加量不能在本发明中直接固定, 但可以根据本发明公开的 方法来确定, 具体方法为: 在确定的具体油藏温度、 配制压裂液用水的矿化度下, 在固定增稠剂加量的前提下, 扫描压裂液粘度与表面活性剂加入量的关系,一般地, 在表面活性剂选择得当情况下, 在固定聚合物加量的条件 下, 压裂液的粘度随表面活性剂的加量增加而先增大, 超过某一特定浓度后, 又随表面活性剂浓度增加而降低。 根据这一扫描实验结果来确定优选的表面活性剂在压裂液中的最佳加量。增稠剂种类不同、油藏温度不同、配制 压裂液用水矿化度不同, 相应的表面活性剂加量也会有所不同。
进一步地, 优选使用表面活性剂的组合物, 研究发现, 使用组合物可以使其对增稠剂溶液的粘度增加幅度 比单独的表面活性剂更大。
上述缔合型非交联压裂液的组成和加量同样也不能在本发明中直接确定, 但可以根据本发明公开的上述方 法和原则进行筛选和优化。
需要指出的是, 压裂液配制时在增稠剂中加入上述表面活性剂或其组合物并非必须的, 这是由于增稠剂在 适当高的浓度下即可以获得压裂液所需的粘度及其它流变性的指标要求。其配制方法是在固定使用油藏温度和配 制用水矿化度情况下, 在 170s— 1测定增稠剂溶液表观粘度和增稠剂浓度的关系, 当溶液粘度大于 50mPa.S时, 其聚 合物浓度即为合适的加量。
最优选地, 压裂液配方为增稠剂、 优选的表面活性剂或其组合物、 氯化钾、 破胶剂和水。 在未添加优选的表面 活性剂或其组合物时,压裂液要达到所需要的粘度需要加入更多的增稠剂, 因此增加了压裂液的成本。而加入表面活 性剂可以在更低的聚合物加量下获得所需要的粘度, 同时也降低了压裂液基液的粘度,有利于压裂液的泵送,而且可 以降低高分子聚合物降解不彻底组分对油层和裂缝的伤害。
在上述压裂液中, 增稠剂的加量优选为 0.2<¾-0.8¾> (质量百分含量), 同时需要指出的是, 使用温度越高, 加量 越大。 压裂液中盐的浓度越高, 所需加量越大。
在上述压裂液中加入氯化钾, 是为了抑制储层中粘土矿物的水化膨胀, 减小因储层粘土矿物遇压裂液中的水膨 胀从而对储层造成伤害, 根据储层中粘土矿物的含量高低来决定氯化钾的加量, 氯化钾加量一般为 0-2%, 优选 1%-2<¾ (质量百分含量)。
在上述压裂液中加入破胶剂是必须的, 目的是为了在压裂液完成其使命后使聚合物降解, 使压裂液粘度急剧降 低, 从而使压裂液能充分反排。破胶剂一般选择胍胶压裂液常用的破胶剂, 如硫酸铵、过硫酸钾及含有这些组分的胶 囊破胶剂。在高温或需要压裂液能较长时间保持粘度的压裂施工中, 如大型压裂中, 优选使用胶囊破胶剂。破胶剂加 量根据压裂液所需破胶时间来确定, 一般的所需破胶时间越短, 破胶剂加量越多。胶囊破胶剂不受时间的限制, 因为 其作用原理是破胶剂包裹在胶囊中, 压裂结束后, 压力释放, 地层闭合, 胶囊被压破, 胶囊中的破胶剂释放而破胶。 但是所有破胶剂加量必须使破胶后压裂液的粘度小于一定粘度值, 如 5mPa.S
上述缔合型非交联压裂液的制备方法为: 向增稠剂中加水溶解, 按比例加入表面活性剂, 搅拌 10-20分钟, 然后 加入氯化钾, 继续搅拌 10-20分钟, 最后加入破胶剂, 搅拌均匀, 即得。
具体地, 先称取计量的水在带搅拌的容器中, 启动搅拌器, 将计量的疏水改性水溶性聚丙烯酰胺及其衍生 物干粉缓慢加入到水中, 干粉应沿漩涡边加入, 注意要使干粉充分在水中分散, 否则容易形成鱼眼, 搅拌 10-20 分钟, 待聚合物充分溶解后, 加入计量的优选的表面活性剂或其组合物 (视情况而定), 建议优选将表面活性剂 或其组合物预先配制成浓度为 5¾>-20<¾的溶液, 继续搅拌 10-20分钟, 再加入计量的氯化钾继续搅拌 10-20分钟, 最后加入计量的破胶剂, 搅拌均匀, 即得缔合型非交联压裂液。
在上述压裂液的配制过程中, 增稠剂、表面活性剂和氯化钾的添加顺序是优选的。不建议在加入表面活性剂之前 加入氯化钾, 更不建议在增稠剂之前加入氯化钾, 这是因为采用后两种方式特别是最后一种方式所配制的压 裂液粘度明显偏低, 并显著影响增稠剂的溶解速度。
本发明的优点在于:
(一)提供了一套系统的缔合型非交联压裂液增稠剂的制备方法, 包括共聚法、 共聚后水解法、 绝热共聚共水解 法和绝热共聚后水解法。
(二) 提供了一系列以本发明所述增稠剂为基础的缔合型非交联压裂液体系及其配制方法。
(三)本发明所述的缔合型非交联压裂液体系除了能满足压裂液基本性能要求外,还具有清洁、抗剪切、抗高温、 低摩阻、 温增稠、 剪切增稠等优异性能, 增稠剂制备方法的多样性以及增稠剂分子结构的多样性为设计出适 应特定油藏环境的清洁压裂液体系提供了多种选择。
(四)由于本发明的增稠剂分子结构中含有双亲不饱和单体单元, 因此基于该增稠剂的清洁压裂液体系与表面活 性剂相互作用具有强烈的疏水缔合作用, 使得分子间缔合动态物理交联网络强度增大, 表现为增粘性、 剪切 稀释性、 悬浮性、 抗盐性、 抗温性等明显提高, 可成为替代胍胶及其压裂液的新一代压裂液体系及增稠剂。 附图说明
图 1为本发明实施例 5中缔合型非交联压裂液粘度与浓度和温度的关系。
图 2为本发明实施例 5中缔合型非交联压裂液的剪切稀释性能。
图 3为本发明实施例 5中缔合型非交联压裂液的抗剪切性能。
图 4 (A、 B、 C和 D ) 为本发明实施例 7中缔合型非交联压裂液体系 (不含 SDBS ) 的抗温及抗剪切性能。 图 5 (A、 B、 C和 D) 为本发明实施例 7中缔合型非交联压裂液体系 (含 0.1% SDBS ) 的抗温及抗剪切性能。 图 6为本发明实施例 5中缔合型非交联压裂液体系的摩阻系数与流速关系; 其中, CFF表示缔合型非交联压 裂液, HPG表示胍胶压裂液 (对照)。
图 7为缔合型非交联压裂液和胍胶压裂液破胶液的外观比较; 其中, 左侧烧杯中为缔合型非交联压裂液, 右侧烧杯中为胍胶压裂液。
图 8为不同使用温度下压裂液配方 (以 SDBS为优选的表面活性剂)。
图 9为不同使用温度下压裂液配方 (以阴离子 /非离子表面活性剂组合物为优选的表面活性剂)
具体实施方式
以下实施例用于说明本发明, 但不用来限制本发明的范围。若未特别指明, 实施例中所用的技术手段为本领 域技术人员所熟知的常规手段, 所用原料均为市售商品。 若未特别指明,实施例中涉及到压裂液性能测定方法和 手段均参照中华人民共和国石油天然气行业标准 "SYT 5107-2005 水基压裂液性能评价方法"和" SYT 6376-2008 压裂液通用技术条件".。
本发明中涉及到的百分号"%",若未特别说明,是指质量百分比;但溶液的百分比,除另有规定外,是指 100ml 溶液中含有溶质的克数。
以下实施例中涉及的与本发明的缔合型非交联压裂液进行对照试验用的胍胶压裂液为硼交联瓜尔胶压裂液, 其主要成分为 1%KC1+ 0.45% HPG +0.2% Na2C03 +0.105%过硫酸铵 + 0.3%交联齐 UBCL-61A+ 20%氢氧化钠。 实施例 1 水溶性疏水缔合聚合物压裂液增稠剂的合成一共聚法
采用共聚法制备水溶性疏水缔合聚合物压裂液增稠剂。 单体、 引发剂、 速溶助剂投料比、 水不溶物和不同 温度条件下的粘度见表 1。
Figure imgf000012_0001
AM:NaAA:C14DMAAC:合成速溶助剂:水:引发剂
2 1.09 134.2 75 40.3
1=220:92: 15:30:1051:0.2
AM:NaAA:C18DMAAC:合成速溶助剂:水:引发剂
3 0.86 149.5 89.2 62.2
11=220:92: 15:30: 1051:0.2
AM:AMPS-Na:C18DMAAC:合成速溶助齐 IJ:水:引发剂
4 0.6 154.3 101.1 86.6
1=220:207: 15:30: 1416:0.2
AM:NaAA:AMPS-Na:C18DMAAC:合成速溶助齐 IJ:水:
0.44 162.6 132.3 110.4 引发剂 1=220:46:103.5:15:30: 1244:0.2
AM:NaAA:AMPS-Na:甲基丙烯酸十八烷基酯:合成速
6 0.52 125.7 91.2 35.9
溶助剂:水:引发剂 1=220:46:103.5:15:30:1244:0.2
AM:乙烯基磺酸钠: AMPS-Na:C18DMAAC:合成速溶助
7 0.49 180.9 145.8
剂:水:引发剂 1=220:46: 103.5: 15:30: 1244:0.2
注: AM、 NaAA、 C12DMAAC、 C14DMAAC、 C18DMAAC分别表示丙烯酰胺、 丙烯酸钠、 十二垸基二甲基烯 丙基氯化铵、 十四垸基二甲基烯丙基氯化铵、 十八垸基二甲基烯丙基氯化铵。
表 1中, 合成速溶助剂组成为: 硫酸钠:尿素:甲酸钠: OP=2:1.5:0.25:0.25(质量比), 其中, OP为垸基酚聚氧乙 烯醚 (OP-10)。
表 1中, 引发剂 I组成为: 过硫酸铵:亚硫酸氢钠 =1:1 (质量比)。
表 1中, 引发剂 II组成为: 过硫酸铵:亚硫酸氢钠: V40=0.5:l:0.5 (质量比), 其中, V40为偶氮二异丙基咪唑 啉盐酸盐。
将表 1中除引发剂外的各组分在 2000mL烧杯中混合均匀,通高纯氮气 15分钟,恒温至 25°C时加入表 1中规定 量的引发剂引发聚合, 并在反应体系中心插入温度计监控聚合反应进行程度, 当 30分钟内温度上升不超过 1 °C时 认为聚合反应基本完成。 t
除引发聚合时温度为 25°C外, 整个聚合反应在环境温度下进行, 未进行绝热或其他温度控制处理。 聚合反 应完成后 1小时, 取出胶体, 将胶体切割成 3-5mm大小颗粒, 按表 2的比例加入干燥速溶助剂和防粘剂混合均匀。
表 2 干燥各组分投料
组分 聚合物胶体 干燥速溶助剂 防粘分散剂 加量 (g) 200 5 10
表 2中, 干燥速溶助剂的组成为: 甲酸钠: JFC:硫脲 =2: 1:2 (质量比), 其中, JFC为脂肪醇聚氧乙烯醚。 表 2中, 防粘剂的组成为: 脱芳烃煤油:壬基酚聚氧乙烯醚:硬脂酸聚氧乙烯酯 =1:2:2 (质量比)。
将混合好干燥速溶助剂和防粘剂后的聚合物胶体颗粒进行干燥, 干燥可以采用真空干燥, 真空干燥温度建 议在 60°C, 也可以采用鼓风干燥, 鼓风干燥温度不超过 110°C, 建议为 95°C。 干燥时间视胶体量确定, 一般 1-2小 时。 在固含量达到 88<¾-90<¾时停止干燥, 冷却, 粉碎, 得到干粉样品。
从表 1可以看出:
当双亲单体的疏水碳链长度增加时, 增稠剂的增粘能力得到提高, 但水不溶物有所增加;
当在分子结构中存在 AMPS单体时,增稠剂的抗温性得到明显提高,在高温(12CTC )下也能获得较高粘度; 含双亲不饱和单体垸基二甲基烯丙基氯化铵的增稠剂的增粘性能明显优于含甲基丙烯酸垸基酯的增稠剂, 因此在高温条件下, 将尽可能的选择采用双亲不饱和单体垸基二甲基烯丙基氯化铵;
含烯属不饱和单体乙烯基磺酸钠的增稠剂的增粘性能明显优于含丙烯酸钠的增稠剂, 因此在高温条件下, 将尽 可能的选择采用烯属不饱和单体乙烯基磺酸钠。
另外, 引发剂选用氧化还原体系 /水溶性偶氮复合引发, 所得到的增稠剂增粘性能更好, 水不溶物更低, 这 是由于这种复合引发剂可以使聚合更平稳地进行, 从而所得产物的分子量更高, 另外, 这种水溶性偶氮引发剂引 发的聚合反应不会形成支链结构 (过硫酸盐引发剂容易产生支链结构), 因而使所获得的增稠剂中水不溶物含量 更低。
实施例 2 水溶性疏水缔合聚合物压裂液增稠剂的合成一共聚后水解法
采用共聚后水解法制备水溶性疏水缔合聚合物压裂液增稠剂。 单体、 引发剂、 速溶助剂投料比、 水不溶物 和不同温度条件下的粘度见表 3。
表 3 共聚后水解法制备的缔合增稠剂
0.6%溶液粘度 (mPa.s,170s4, Physical 水不溶物
编号 投料质量比 (g) MC 301高级流变仪高温高压J 式系统)
( % ) '·
60 °C 90 °C 120°C
AM:C12DMAAC:合成速溶助剂:水:引发剂
8 0.02 106.2 75.3 35.8
1=284: 10:30: 1020:0.2
AM:C14DMAAC:合成速溶助剂:水:引发剂
9 0.08 149.2 95.4 44.2
1=284: 15:30: 1035:0.2
AM:C18DMAAC:合成速溶助剂:水:引发剂
10 0.03 168.4 112.4 52.5
11=284:15:30: 1035:0.2
AM:AMPS-Na:C18DMAAC:合成速溶助齐 IJ:水:引发剂
11 0.05 179.2 142 96.2
1=248.5:103.5:15:30: 1056:0.2
AM:AMPS-Na:甲基丙烯酸十八烷基酯:合成速溶助齐 IJ:
12 0.06 142.5 105.7 58.9
水:引发剂 1=248.5:103.5:15:30:1056:0.2
AM:乙烯基磺酸钠:甲基丙烯酸十八烷基酯:合成速溶
13 0.05 132.2 85.4 39.8
助剂:水:弓 1发剂 1=248.5: 103.5: 15:30: 1056:0.2
表 3中, 合成速溶助剂组成为: 硫酸钠:尿素:甲酸钠: OP=2:1.5:0.25:0.25(质量比)。
表 3中, 引发剂 I组成为: 过硫酸铵:亚硫酸氢钠 =1:1 (质量比)。
表 3中, 引发剂 II组成为: 过硫酸铵:亚硫酸氢钠: V40=0.5:l:0.5 (质量比)。
将表 3中各组分物质除弓 I发剂外在 2000mL烧杯中混合均匀, 通高纯氮气 15分钟, 恒温至 25 °C时加入表中规 定量的引发剂引发聚合, 并在反应体系中心插入温度计监控聚合反应进行程度, 当 30分钟内温度上升不超过 1 °C 时认为聚合反应基本完成。 除引发聚合时温度为 25°C, 整个聚合反应在环境温度下进行, 未进行绝热或其他温度 控制处理。 聚合反应完成后 1小时, 取出胶体, 将胶体切割成 3-5mm大小颗粒, 按表 4的比例加入水解齐 UNaOH、 水解速溶助剂、 水解防粘剂, 混合均匀, 将其转移到密封可加热容器中 (陶瓷、 塑料、 不锈钢或玻璃容器), 密 封加热水解。 最简单的是, 在实验室可以将上述物质装入塑料袋中密封, 然后在水浴或恒温烘箱中加热水解。 需 要注意密封时尽量排除空气, 并保留足够的空间容纳水解时产生的氨气, 注意水解时密封袋不要破裂。
Figure imgf000014_0001
10 134 4 6 3 90 2
11 136 2 6 3 90 2
12 136 2 6 3 90 2
13 136 2 6 3 90 2
*水解速溶助剂为甲酸钠、 尿素和硫脲的组合物, 三者质量比为 1 :2:2。
水解结束后, 取出胶体, 然后将胶体颗粒按表 2规定的量干燥速溶助剂及防粘分散剂, 将混合好干燥速溶 助剂和防粘速溶助剂后的聚合物胶体颗粒进行干燥, 干燥可以采用真空干燥, 真空干燥温度建议在 60 °C, 也可以 采用鼓风干燥,鼓风干燥温度不超过 110°C,建议为 95°C。干燥时间视干燥量确定, 1-2小时。在固含量达到 88<¾-90<¾ 时停止干燥, 冷却, 粉碎, 得到干粉样品。
按上述方法制备的增稠剂中水不溶物含量及溶液粘度见表 3。 从表 3可以看出, 相对于共聚法, 共聚后水解 法所获得的增稠剂水溶性明显改善, 水不溶物明显降低, 这是因为水解过程可以破坏聚合时产生的交联。 另外, 这种制备方法获得的增稠剂增粘性明显比共聚法的要好,因为在合成时单体溶液中较少的单体种类更容易获得较 高的分子量。 同样的, 含疏水链长的缔合增稠剂比短的增粘性好, 含有 AMPS单元的增稠剂抗温性更好, 而复合 引发剂引发可以获得更好的增粘性能和更低的水不溶物。
实施例 3 水溶性疏水缔合聚合物压裂液增稠剂的合成一绝热共聚共水解
采用绝热共聚共水解法制备水溶性疏水缔合聚合物压裂液增稠剂。 按表 5的投料比, 先在带搅拌的陶瓷、 不锈钢或玻璃内壁的容器中加入水(去离子水或反渗透水), 加入 NaOH, 因为碱溶解时要产生大量热, 因此注意 NaOH加入速度不要太快。 然后依次加入 AM、 C12DMAAC (或 C14DMAAC、 C18DMAAC)、 AMPS (如果有)速 溶助剂将上述组分搅拌均匀, 然后将物料温度控制到 25°C, 转移到带温度探测器的陶瓷内壁的绝热容器中, 通氮 15分钟, 加入引发剂, 继续通氮 15分钟, 停止通氮, 密封绝热聚合。 观察温度变化, 随着聚合反应的进行, 温度 持续上升, 一般 3-5小时候, 温度上升幅度变慢, 当 30分钟内温度上升幅度不超过 1 °C时,认为聚合反应基本结束。 继续将胶体在密封绝热容器中水解熟化 3小时。 然后取出胶体。 将胶体切割成 3-5mm大小颗粒,
表 5 绝热共聚共水解法制备缔合增稠剂
0.6%溶液粘度 (mPa.s,170s4, Physical 水不溶物
编号 投料质量比 (g) MC 301高级流变仪高温高压J 式系统)
(% )
60。C 90。C 120。C
AM:C12DMAAC:NaOH:合成速溶助齐 IJ:水:
14 0.03 76.2 45.3 15.8
引发剂 1=284: 10:40: 30: 1092:0.2
AM:C14DMAAC:NaOH:合成速溶助齐 IJ:水:
15 0.05 89.2 65.4 34.2
引发剂 1=284:15:40: 30:1107:0.2
AM:C18DMAAC:NaOH:合成速溶助齐 IJ:水:
16 0.04 118. 4 72.4 42.5
引发剂 11=284:15:40: 30: 1107:0.2
AM:AMPS-Na:C18DMAAC: NaOH:合成速溶助剂:
17 0.08 139.2 82.5 56.2
水:引发剂 1=248.5: 103.5:20: 15:30:1249.5:0.2
AM:AMPS-Na:甲基丙烯酸十八烷基酯: NaOH:
18 合成速溶助剂:水:引发剂 1 = 0.06 122.5 75.7 38.9
248.5:103.5:20: 15:30: 1249.5:0.2
AM:乙烯基磺酸钠: 甲基丙烯酸十八烷基酯:
19 NaOH:合成速溶助剂:水:引发剂 I = 0.05 102.2 65.7 26.4
248.5:103.5:20: 15:30: 1249.5:0.2 ¾5中, 合成速溶助剂组成为: 硫酸钠:尿素:甲酸钠: OP=2:1.5:0.25:0.25(质量比)。
表 5中, 引发剂 I组成为: 过硫酸铵:亚硫酸氢钠 =1:1 (质量比)。
表 5中, 引发剂 II组成为: 过硫酸铵:亚硫酸氢钠: V40=0.5:l:0.5 (质量比)。
按表 2将胶体与干燥速溶助剂及防粘分散剂混合均匀, 将混合好干燥速溶助剂和防粘速溶助剂后的聚合物 胶体颗粒进行干燥, 干燥可以采用真空干燥, 真空干燥温度建议在 60°C, 也可以采用鼓风干燥, 鼓风干燥温度不 超过 110°C, 建议为 95°C .干燥时间视干燥量确定, 1-2小时。 在固含量达到 δδ - Ο^)时停止干燥, 冷却, 粉碎, 得 到干粉样品。
所得增稠剂干粉的水不溶物含量及不同温度下溶液的粘度见表 5。 从表 5中可以看出, 这种方法制备得到的增稠 剂中水不溶物含量也很低, 但相对共聚后水解法得到的增稠剂粘度偏低, 这是因为该方法在单体溶液中加入了大量的 NaOH,碱中可能带入了少量不利于分子量提高的物质。同时在这种强碱性环境下,部分 AM单体会被水解成丙烯酸钠, 因此相当于是增加了共聚单体的种类, 不利于分子量的提高。
同样的, 在这种制备方法中, 同样表现出含有较长疏水链双亲单体、 含有 AMPS单体以及使用复合引发剂 引发聚合所获得的增稠剂增粘性能更好, 抗温性能更好。
实施例 4 水溶性疏水缔合聚合物压裂液增稠剂的合成一绝热共聚后水解
采用绝热共聚后水解法制备水溶性疏水缔合聚合物压裂液增稠齐^ 投料比见表 6。
表 6 绝热共聚后水解法制备缔合增稠剂
0.6%溶液粘度 (mPa^ Os-1 , Physical 水不溶物
序号 投料质量比 (g) MC 301高级流变仪高温高压 i则试系统)
(% ) -
60 °C 90 °C 120 °C
AM:C12DMAAC:合成速溶助剂:水:
20 0.03 95.5 64.8 25.8
引发剂 1=284:10:30:1020:0.2
AM: C14DMAAC:合成速溶助齐 IJ:水:
21 0.06 127.6 87.4 39.5
引发剂 1=284:15:30:1035:0.2
AM: C18DMAAC:合成速溶助齐 IJ:水:
22 0.04 156.3 106.8 50.7
引发剂 11=284:15:30:1035:0.2
AM:AMPS-Na:C18DMAAC:合成速溶助齐 IJ:水:
23 0.04 169.5 122.4 84.4
引发剂 1=248.5:103.5: 15:30: 1056:0.2
AM:AMPS-Na:甲基丙烯酸十八烷基酉旨: NaOH:合成
24 速溶助剂:水:引发剂 0.06 152.7 108.7 67.9
1=248.5:103.5:20: 15:30: 1249.5:0.2
AM:乙烯基磺酸钠:甲基丙烯酸十八烷基酯: NaOH:
25 合成速溶助剂:水:引发剂 1 = 0.05 142.6 95.4 49.2
248.5:103.5:20:15:30: 1249.5:0.2
表 6中, 合成速溶助剂组成为: 硫酸钠:尿素:甲酸钠: Ο 2:1.5:0.25:0.25(质量比)。
表 6中, 引发剂 I组成为: 过硫酸铵:亚硫酸氢钠 =1:1 (质量比)。
表 6中, 引发剂 II组成为: 过硫酸铵:亚硫酸氢钠: V40=0.5:l:0.5 (质量比)。
按表 6的投料比, 先在带搅拌的陶瓷、 不锈钢或玻璃内壁的容器中加入水, 然后依次加入 AM、 C12DMAAC (或 C14DMAAC、 C18DMAAC)、 AMPS (如果有)、速溶助剂将上述组分搅拌均匀,然后将物料温度控制到 25 °C, 转移到带温度探测器的陶瓷内壁的绝热容器中, 通氮 15分钟, 加入引发剂, 继续通氮 15分钟, 停止通氮, 密封绝 热聚合。 观察温度变化, 随着聚合反应的进行, 温度持续上升, 一般 3-5小时候, 温度上升幅度变慢, 当 30分钟 内温度上升幅度不超过 1 °C时, 认为聚合反应基本结束。 取出胶体, 将胶体切割成 3-5mm大小颗粒, 按表 4的比例 加入水解剂 NaOH、 水解速溶助剂、 水解防粘剂, 混合均匀, 将其转移到密封可加热容器中 (陶瓷、 塑料、 不锈 钢或玻璃容器), 密封加热水解。 例如, 可以将上述物质装入塑料袋中密封, 然后在水浴或恒温烘箱中加热水解。 需要注意密封时尽量排除空气, 并保留足够的空间容纳水解时产生的氨气, 注意水解时密封袋不要破裂。
水解结束后, 取出胶体, 然后将胶体颗粒按表 1规定的量混合干燥速溶助剂及防粘分散剂, 将混合好干燥速 溶助剂和防粘速溶助剂后的聚合物胶体颗粒进行干燥, 干燥可以采用真空干燥, 干燥温度建议在 60°C, 也可以采 用鼓风干燥,鼓风干燥温度不超过 110°C,建议为 95°C。干燥时间视干燥量确定, 1-2小时。在固含量达到 88<¾-90<¾ 时停止干燥, 冷却, 粉碎, 得到干粉样品。
所获得增稠剂干粉的水不溶物及不同温度下溶液的粘度见表 6。从表 6中可以看出,这种方法制备得到的增稠 剂中水不溶物含量很低,相对绝热共聚共水解所获得的增稠剂增粘性好,这是因为这种聚合中没有加入大量的碱。 但相对共聚后水解法得到的增稠剂粘度偏低,这是因为该方法相对于共聚后水解来说胶体聚合产生的热量不能散 发, 不利于分子量提高的物质。
同样的, 在这种制备方法中, 同样表现出含有较 7舰亲单体、 含有 AMPS单体以及使用复合引发剂引发聚合 所获得的增稠剂增粘性能更好, 抗温性能更好。
实施例 5 基于水溶性疏水缔合聚合物压裂液增稠剂的缔合型非交联压裂液体系
基于实施例 3编号 16中制备水溶性疏水缔合聚合物压裂液增稠剂, 制备缔合型非交联压裂液并测试了相关性 能。 基于其它实施例中制备的缔合聚合物增稠剂而制备的缔合型非交联压裂液可以作为参考。
按表 7的加量制备压裂液的方法为: 先称取计量的水在带搅拌的容器中, 启动搅拌器, 将计量的水溶性疏水 缔合聚合物压裂液增稠剂干粉缓慢加入到水中, 干粉应沿漩涡边加入, 注意要使干粉充分在水中分散, 否则容易 形成鱼眼, 搅拌 10-20分钟, 待聚合物充分溶解后, 再加入计量的氯化钾继续搅拌 10-20分钟, 最后加入计量的破 胶剂, 搅拌均匀, 即得到缔合型非交联压裂液。
测定了基于水溶性疏水缔合聚合物压裂液增稠剂的缔合型非交联压裂液体系的增粘性和抗温性能。 采用 Physical MCR301高级流变仪高温高压测试系统在 170s— 1下测定不同聚合物浓度和温度下的表观粘度,实验结果如 图 1所示。 图 1结果表明, 随着聚合物浓度的增加, 聚合物粘度逐渐增大, 特别是当聚合物浓度超过临界浓度 CAC 时, 溶液粘度急剧增大。 随着温度的增大, 聚合物增粘能力减弱, 而且临界浓度上升。 以表观粘度达到 50mPa.S 以上为标准, 可以确定不同增稠剂的加量,从而确定了以水溶性疏水缔合聚合物压裂液增稠剂为基础的压裂液配 方, 在温度分别为 70°C、 90°C、 120°C、 140°C和 160°C时, 水溶性疏水缔合聚合物压裂液增稠剂的建议使用浓度 分另 IJ为 0.4%、 0.6%、 0.8%、 1.0%和 1.2%。
考察了基于水溶性疏水缔合聚合物压裂液增稠剂的缔合型非交联压裂液体系的静态悬浮能力,。 取密度 3. 31 g / cm3 的陶粒 50 g 与 100 mL聚合物浓度为 0.4%的缔合型非交联压裂液充分混合, 转移至具塞量筒中, 并放入恒 温烘箱中 70 °C保温,静置 16 小时以上。 陶粒仍保持悬浮状态, 观察不到陶粒的沉降, 表明该压裂液有良好的悬浮 性能。
测定了缔合型非交联压裂液(缔合聚合物浓度为 0.5% )摩阻系数与流速的关系, 并与胍胶压裂液进行了对比 (测试温度 70°C )。 结果如图 6所示。 从图 6可以看出, 在所测试的流速范围内, 缔合型非交联压裂液的摩阻系数 明显低于胍胶压裂液, 表明本发明的压裂液的低摩阻特性。
测定了基于水溶性疏水缔合聚合物压裂液增稠剂的缔合型非交联压裂液 (1#和2#聚合物浓度为分别为 0.4%和 0.8%)体系破胶液的残渣见表 8, 从表 8可以看出,该压裂液残渣很低 (9.0mg/L左右), 远低于中华人民共和国石油天 然气行业标准 "SYT 5107-2005 水基压裂液性能评价方法"和" SYT 6376-2008 压裂液通用技术条件 "中规定的水 基压裂液残渣含量标准(≤600/1^, 也低于上述标准规定的粘弹性表面活性剂压裂液 (典型的清洁压裂液)的残渣 含量 (≤100mg/L)。 从压裂液破胶液外观来看, 本发明的压裂液破胶液清澈透明, 而胍胶压裂液破破胶液明显混浊 (图 7)。 这些充分说明本发明的缔合型非交联压裂液是清洁的。
测定了基于水溶性疏水缔合聚合物压裂液增稠剂的缔合型非交联压裂液(缔合聚合物浓度 0.5% )岩心基质的 伤害率, 同时与胍胶压裂液进行了对比, 实验结果见表 9。 从表 9数据可以看出, 缔合型非交联压裂液对岩心渗透 率的伤害小于 10%, 而胍胶压裂液的伤害率高达 45%, 说明本发明的压裂液是低伤害的。
测定了基于水溶性疏水缔合聚合物压裂液增稠剂的缔合型非交联压裂液(聚合物浓度为 0.4% )的静态和岩心 基质动态滤失性能。 结果见表 10和表 11。 可以看出, 缔合型非交联压裂液的静态滤失速度、 初滤失量和滤失系数 比胍胶压裂液大, 这是因为缔合型非交联压裂液水不溶物比胍胶压裂液低, 不能有效形成滤饼的缘故。但缔合型 非交联压裂液的静态和动态滤失性能都达到了标准要求。
测定了基于水溶性疏水缔合聚合物压裂液增稠剂的缔合型非交联压裂液的剪切稀释性(缔合聚合物浓度为 0.6%, 测试温度为 70°C ) 和高温下抗剪切性能 (缔合聚合物浓度为 0.8%), 实验结果见图 2和图 3。 从图 2中可以看出, 当剪 切速率增大时复合体系表观粘度迅速下降,表现出很强的剪切稀释性。从图 3中可以看出,压裂液体系连续剪切 2小时, 压裂液体系粘度仍保持在 50mPa.S以上, 说明抗剪切性能优异。
测定了基于水溶性疏水缔合聚合物压裂液增稠剂的清洁压裂液体系 (1# 、 2#、 3#和4#压裂液缔合聚合物浓 度为分别为 0.4%、 0.5%, 0.6%和 0.7% ) 破胶液的表面张力、 界面张力和粘度。 从表 12可知, 各项指标均达标。
表 7 压裂液组成
组成 缔合聚合物增稠剂 KCL 破胶剂 (过硫酸盐)
加量 (wt% ) 0.2%-1.2% 1% 0.1-0.5%
表 8 裂液体系破胶液残渣测试
Figure imgf000017_0001
表 9 岩心基质渗透率损害率
岩心规格 原始渗透率 渗透率 损害率
压裂液体系
(d X L)(cm X cm) Κ!( Χ ΐΟ"3μπ 2) Κ2( Χ ΐΟ"3μη I2) "d(%)
增稠剂 0.4%+l%KCl+0.2%过硫酸钾 2.472 7.392 308 294.4 4.42%
增稠剂 0.6%+l%KCl+0.2%过硫酸钾 2.472 7.408 284.3 259.3 8.79%
增稠剂 0.8%+l%KCl+0.2%过硫酸钾 2.472 7.45O 101.2 93.5 7.61%
增稠剂 1.0%+l%KCl+0.2%过硫酸钾 2.474 7.5OO 357.7 324.5 9.28%
增稠剂 1.2%+l%KCl+0.2%过硫酸钾 2.472 7.440 264.2 239.5 9.35%
胍胶 0.6%+l%KCl+0.2%过硫酸钾 2.472 7.650 105.2 65.6 37.64%
胍胶 1.2%+l%KCl+0.2%过硫酸钾 2.475 7.55O 265.7 145.6 45.20% 表 10 缔合型非交联压裂液的静态滤失性能 样品编号 * 初滤失量 m3/m2 滤失系数, m/min 5 滤失速度 (m/min)
1 9.5xl0-3 1.48xl0"4 4.2xl0"5
2 6.7 xlO"3 1.74xl0"4 4.1xl0-5
3 2.3 xlO-3 1.86xl0-4 3.4xl0-5
5 8.1xl0-4 9.7xl0-4
*: 编号 1、 2、 3分别为缔合聚合物浓度为 0.4%、 0.5%和 0.6%的缔合型非交联压裂液; 编号 5为胍胶压裂液。 表 11 缔合型非交联压裂液的动态基质滤失性能 (缔合聚合物浓度为 0.5% )
Figure imgf000018_0001
表 12 破胶液表面张力和界面张力和粘度
压裂液体系编号 1 # 2 3 # 4#
表面张力 (mN/m) 26.69 27.12 26.12 23.12
界面张力 (mN/m) 0.093 0.079 0.071 0.060
粘度 (mPa.s ) 2.4 2.6 2.5 4.3 从上述实验数据可以看出,本发明基于水溶性疏水缔合聚合物压裂液增稠剂的缔合型非交联压裂液除具备压 裂液所必须的基本性能外, 还具有清洁、 抗剪切、 抗高温、 低摩阻的特性。
实施例 6 缔合型非交联压裂液体系中优选表面活性剂及其组合物的确定
本实施例中涉及以上述增稠剂 /优选的表面活性剂或其组合物为基础的清洁压裂液体系及其配制方法。 固定氯化钾加量为 1%, 固定增稠剂浓度为 0.4% (增稠剂选择实施例 4编号 20中所制备的增稠剂)), 以 SDBS为 优选的表面活性剂, 来确定优选表面活性剂及其组合物在压裂液中合适的加量。
具体方法为: 先称取计量的水在带搅拌的容器中, 启动搅拌器, 将计量的增稠剂干粉缓慢加入到水中, 干粉 应沿漩涡边加入, 注意要使干粉充分在水中分散, 否则容易形成鱼眼, 搅拌 10-20分钟, 待聚合物充分溶解后, 加入计量的表面活性剂 SDBS, 建议将 SDBS预先配制成浓度为 5<¾-20<¾的溶液, 继续搅拌 10-20分钟, 再加入计量 的氯化钾继续搅拌 10-20分钟, 搅拌均匀。 在流变仪上固定测量温度 90 °C, 剪切速率为 170s— 1下测定溶液的表观粘 度。
表 13 缔合型非交联压裂液体系粘度与 SDBS浓度关系
SDBS浓度 (wt%0) 0 0.5 1.0 1.5 2.0 2.5
溶液粘度 (mPa.s) 30.5 36.8 52.6 85.4 50.2 30.6
通过表 13可以看出, 随着表面活性剂 SDBS浓度的增加, 溶液粘度先显著增加, 在 SDBS浓度为 1.5%。时, 溶 液粘度达到最大, 而后又随着 SDBS浓度的增加而下降。 以表观粘度达到 50mPa.S以上为基准, 可以确定增稠剂 ( AM:C12DMAAC:合成速溶助齐 ϋ:水:引发剂 1=284: 10:30: 1020:0.2, 绝热共聚后水解法制备) 浓度为 0.4%时, 以 SDBS为增强剂, 氯化钾加量为 1%, 使用温度为 90°C条件下, SDBS建议加量为 1.0%。-2%。, 最优加量为 1.5%。。
通过上述溶液粘度 /表面活性剂浓度关系研究, 即可以确定在固定增稠剂浓度及其它条件下, 压裂液体系中 的最佳表面活性剂加量。
通过表 13还可以发现,增稠剂 /优选表面活性剂 /氯化钾压裂液体系相对于增稠剂 /氯化钾压裂液体系的优点在 于, 在相对更低的聚合物浓度下, 通过加入少量的优选表面活性剂使得溶液粘度显著增大, 使得压裂液体系粘度 达到技术要求, 而单独增稠剂溶液不能达到粘度技术要求。
当所添加的增稠剂浓度过低时, 即使加入优选的表面活性剂, 压裂液粘度也可能达不到技术要求, 此时, 就 有必要适当提高增稠剂的浓度。
实施例 7 缔合型非交联压裂液体系的抗温、 抗剪切性能
抗温性能是清洁压裂液体系极其重要的应用性能, 直接确定了清洁压裂液的应用范围。
利用实施例 4中制备的增稠剂 20-25 (优选增稠剂 23 ), 以 SDBS为表面活性剂, 研究了清洁压裂液体系的抗温 性能。 该清洁压裂液体系组成为: 增稠剂浓度 0.45-0.65%、 KC1浓度 2%、 SDBS浓度 0-0.1%。 实验条件: Physical
MCR301高级流变仪、 170 。 实验结果如图 4和图 5所示。
图 4和图 5的实验结果表明:
( 1 ) 在 SDBS含量为 0时, 清洁压裂液体系在 60-10CTC范围内具有温增稠效应, 且温增稠效应随增稠剂浓度 的增加更加明显; 在温度为 150°C时, 经 170s— 1长期测试粘度基本保持不变, 说明抗剪切抗高温性能优异。
(2)在 SDBS含量为 0.1%时, 清洁压裂液体系仍然在 60-10CTC范围内具有温增稠效应, 仍然是随增稠剂浓度 的增加温增稠现象越明显; 值得注意的是, 在温度为 150°C时, 清洁压裂液体系粘度随测试时间的增加而增加, 且增稠剂浓度越大增粘幅度越大, 当增稠剂浓度为 0.65%时, 经 120min测试, 粘度从 60mPa.s上升至 90mPa.S, 说 明具备优异的抗温性能, 同时具有剪切增稠效应。
( 3 )对比 SDBS含量为 0和 0.1%时的实验结果, 发现 SDBS存在时温增稠效应更加明显, 同时产生了剪切增稠 的现象, 说明 SDBS对温增稠和剪切增稠具有明显的促进作用, 这对于我们推荐的清洁压裂液体系 (存在优选表 面活性剂的体系) 而言, 极大了拓宽了其应用范围。
实施例 8 适合不同温度的清洁压裂液体系一 (增稠剂 /优选表面活性剂 /氯化钾) 基于实施例 6, 利用实施例 1中制备的增稠剂 1-5, 优选的表面活性剂 SDBS或 SDS、 石油磺酸盐、 非离子表面 活性剂 OP-8等, 氯化钾固定为 1%, 以粘度约 50mPa.S为标准, 研究了不同使用温度下的清洁压裂液体系配方。 实 验结果见图 8。
图 8结果表明, 随使用温度的增加, 所有的增稠剂浓度和表面活性剂浓度明显增加, 而增稠剂分子结构对其 使用浓度和表面活性剂的使用浓度等有较大的影响, 一般而言, 缔合单体垸基链越长, 引入耐温抗盐功能单体等 可提高增稠剂的综合性能, 使其适应更加恶劣的油藏环境。
实施例 9 适合不同温度的清洁压裂液体系二 (增稠剂 /优选表面活性剂组合物 /氯化钾)
基于实施例 6, 利用实施例 1中制备的增稠剂 1-5, 优选的表面活性剂为阴离子表面活性剂和非离子表面活性 剂的组合物, 其中非离子表面活性剂固定为 OP-8, 阴离子表面活性剂可为 SDBS、 SDS、 石油磺酸盐等, 氯化钾 固定为 1%, 以粘度约 50mPa.S为标准, 研究了不同使用温度下的清洁压裂液体系配方见图 9。
图 9结果表明, 采用阴离子 /非离子表面活性剂组合物, 增稠剂的用量比单独采用某种表面活性剂有所降低, 因此可通过合理设计复合表面活性剂的组成和比例, 减少增稠剂的用量而降低使用成本。
虽然, 上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述, 但在本发明基础上, 可以对之作 一些修改或改进, 这对本领域技术人员而言是显而易见的。 因此, 在不偏离本发明精神的基础上所做的这些修改 或改进, 均属于本发明要求保护的范围。

Claims

权 利 要 求 书
1. 一种压裂液增稠剂, 其特征在于, 所述增稠剂的分子结构中包含丙烯酰胺单体单元、 至少一种双亲不 饱和单体单元和至少一种阴离子烯属不饱和单体单元; 所述双亲不饱和单体为垸基二甲基烯丙基氯化铵或 甲基丙烯酸垸基酯, 其中垸基链碳原子数为 8-22; 所述阴离子烯属不饱和单体任选丙烯酸、 丙烯酸钠盐、 丙烯酸铵盐、 甲基丙烯酸、 甲基丙烯酸钠盐、 甲基丙烯酸铵盐、 2-丙烯酰胺基 -2-甲基丙磺酸、 2-丙烯酰胺 基 -2-甲基丙磺酸钠盐、 乙烯基磺酸、 乙烯基磺酸钠盐、 苯乙烯磺酸、 苯乙烯磺酸钠盐中的一种或多种。
2. 根据权利要求 1 所述的增稠剂, 其特征在于, 丙烯酰胺单体单元、 双亲不饱和单体单元和阴离子烯属 不饱和单体单元按重量份计依次为 60-80、 1-5和 39-15。
3. 根据权利要求 1或 2所述的增稠剂, 其特征在于, 所述增稠剂任选含有合成速溶助剂、 水解速溶助剂、 干燥速溶助剂、 防粘剂中的一种或多种。
4. 权利要求 3所述增稠剂的制备方法, 其特征在于, 按投料比向绝热反应釜中依次加入丙烯酰胺单体、 双亲不饱和单体, 并添加适量的碱及合成速溶助剂, 加水溶解混匀, 得到浓度为 15<¾-35<¾的单体溶液, 将 单体溶液的温度控制在 -5°C~50°C,通氮除氧,然后向单体溶液中加入引发剂, 引发聚合,聚合反应结束后, 继续熟化水解 1-2小时, 得到聚合物胶体, 将聚合物胶体切割成 3-4 mm颗粒, 与适量干燥速溶助剂和防 粘剂混合, 干燥、 粉碎后即得;
其中, 所述合成速溶助剂为硫酸钠、 尿素、 甲酸钠、 表面活性剂 OP-10中的一种或多种, 其添加量为单体 溶液总重的 0.5¾>-10<¾ ; 所述引发剂为水溶性偶氮引发剂, 或由过硫酸盐和亚硫酸氢钠组成的氧化还原引 发体系, 其添加量为单体溶液总重的 0.1-1%; 所述碱为碳酸钠、 碳酸氢钠或氢氧化钠, 其添加量为单体溶 液总重的 5-10%; 所述干燥速溶助剂为甲酸钠、 脂肪醇聚氧乙烯醚、 硫脲中的一种或多种, 其添加量为聚 合物胶体总重的 0.5¾>-10<¾ ; 所述防粘剂为脱芳烃煤油、 壬基酚聚氧乙烯醚、 硬脂酸聚氧乙烯酯中的一种 或多种, 其添加量为聚合物胶体总重的 0.5-10%。
5. 权利要求 3所述增稠剂的制备方法, 其特征在于, 按投料比向反应釜中依次加入丙烯酰胺单体、 双亲 不饱和单体, 并添加适量的合成速溶助剂, 加水溶解混匀, 得到浓度为 15<¾-35<¾的单体溶液, 将单体溶液 控制到 -5°C ~50°C, 通氮除氧, 然后向单体溶液中加入引发剂, 引发聚合, 聚合反应结束后, 得到聚合物胶 体, 将聚合物胶体切割成 3-4 mm颗粒, 与适量的碱、 水解速溶助剂和防粘剂混合, 密封加热水解, 水解 温度为 70°C -120°C, 水解时间为 1-8小时; 所得胶体经二次造粒, 与适量干燥速溶助剂和防粘剂混合, 干 燥、 粉碎后即得;
其中, 所述合成速溶助剂为硫酸钠、 尿素、 甲酸钠、 表面活性剂 OP-10中的一种或多种, 其添加量为单体 溶液总重的 0.5¾>-10<¾ ; 所述引发剂为水溶性偶氮引发剂, 或由过硫酸盐和亚硫酸氢钠组成的氧化还原引 发体系, 其添加量为单体溶液总重的 0.1-1%; 所述碱为碳酸钠、 碳酸氢钠或氢氧化钠, 其添加量为聚合物 胶体总重的 5-10%; 所述水解速溶助剂为甲酸钠、 尿素、 硫脲中的一种或多种, 其添加量为聚合物胶体总 重的 0.1-1% ; 所述干燥速溶助剂为甲酸钠、 脂肪醇聚氧乙烯醚、 硫脲中的一种或多种, 其添加量为聚合物 胶体总重的 0.5¾>-10<¾ ; 所述防粘剂为脱芳烃煤油、 壬基酚聚氧乙烯醚、 硬脂酸聚氧乙烯酯中的一种或多 种, 其添加量为 0.5-5%。
6. 权利要求 3所述增稠剂的制备方法, 其特征在于, 按投料比向反应釜中依次加入丙烯酰胺单体、 双亲 不饱和单体和至少一种阴离子烯属不饱和单体, 并添加适量的合成速溶助剂, 加水溶解混匀, 得到浓度为 15¾>-35<¾的单体溶液, 将单体溶液控制到 -5°C ~50°C, 通氮除氧, 然后向单体溶液中加入引发剂, 引发聚合 的温度为 -5°C ~50°C, 聚合反应结束后, 继续熟化 1-2小时, 得到聚合物胶体, 粉碎成颗粒, 与适量干燥速 溶助剂和防粘剂混合, 干燥、 粉碎后即得;
其中, 所述合成速溶助剂为硫酸钠、 尿素、 甲酸钠和非离子表面活性剂 OP-10按重量比 2: 1.5:0.25:0.25的 组合物, 其添加量为单体溶液总重的 1-5% ; 所述引发剂为水溶性偶氮引发剂, 或由过硫酸盐和亚硫酸氢 钠组成的氧化还原引发体系, 其添加量为单体溶液总重的 0.1-1.0%; 所述干燥速溶助剂为甲酸钠、 脂肪醇 聚氧乙烯醚和硫脲按重量比 2: 1:2的组合物, 其添加量为聚合物胶体总重的 0.5¾>-10<¾ ; 所述防粘剂为脱芳 烃煤油、 壬基酚聚氧乙烯醚、 硬脂酸聚氧乙烯酯中的一种或多种, 其添加量为聚合物胶体总重的 0.5-5%。
7. 权利要求 3所述增稠剂的制备方法, 其特征在于, 按投料比向反应釜中依次加入丙烯酰胺单体、 双亲 不饱和单体和除丙烯酸钠以外的阴离子烯属不饱和单体, 并添加适量的合成速溶助剂, 加水溶解混匀, 得 到浓度为 15¾>-35<¾的单体溶液, 将单体溶液控制到 -5°C ~50°C, 通氮除氧, 然后向单体溶液中加入引发剂, 引发聚合的温度为 -5°C ~50°C, 聚合反应结束后, 继续熟化 1-2小时, 得到聚合物胶体, 粉碎成颗粒, 与适 量的碱、 水解速溶助剂和防粘剂混合, 密封加热水解, 水解温度为 70°C -120°C, 水解时间为 1-8小时; 所 得胶体经二次造粒, 与适量干燥速溶助剂和防粘剂混合, 干燥、 粉碎后即得;
其中, 所述合成速溶助剂为硫酸钠、 尿素、 甲酸钠、 表面活性剂 OP-10中的一种或多种, 其添加量为单体 溶液总重的 0.5¾>-10<¾ ; 所述引发剂为水溶性偶氮引发剂, 或由过硫酸盐和亚硫酸氢钠组成的氧化还原引 发体系, 其添加量为单体溶液总重的 0.1-1%; 所述碱为碳酸钠、 碳酸氢钠或氢氧化钠, 其添加量为聚合物 胶体总重的 5-10%; 所述水解速溶助剂为甲酸钠、 尿素、 硫脲中的一种或多种, 其添加量为聚合物胶体总 重的 0.1-1% ; 所述干燥速溶助剂为甲酸钠、 脂肪醇聚氧乙烯醚、 硫脲中的一种或多种, 其添加量为聚合物 胶体总重的 0.5¾>-10<¾ ; 所述防粘剂为脱芳烃煤油、 壬基酚聚氧乙烯醚、 硬脂酸聚氧乙烯酯中的一种或多 种, 其添加量为聚合物胶体总重的 0.5-5%。
8. 权利要求 3所述增稠剂的制备方法, 其特征在于, 按投料比向绝热反应釜中依次加入丙烯酰胺单体、 双亲不饱和单体和除丙烯酸钠以外的阴离子烯属不饱和单体, 并添加适量的碱及合成速溶助剂, 加水溶解 混匀, 得到浓度为 15<¾-35<¾的单体溶液, 将单体溶液控制到 -5°C~50°C, 通氮除氧, 然后向单体溶液中加 入引发剂, 引发聚合, 聚合反应结束后, 继续熟化水解 1-2小时, 得到聚合物胶体, 将聚合物胶体切割成 3-4 mm颗粒, 与适量干燥速溶助剂和防粘剂混合, 干燥、 粉碎后即得;
其中, 所述合成速溶助剂为硫酸钠、 尿素、 甲酸钠、 表面活性剂 OP-10中的一种或多种, 其添加量为单体 溶液总重的 0.5¾>-10<¾ ; 所述引发剂为水溶性偶氮引发剂, 或由过硫酸盐和亚硫酸氢钠组成的氧化还原引 发体系, 其添加量为单体溶液总重的 0.1-1%; 所述碱为碳酸钠、 碳酸氢钠或氢氧化钠, 其添加量为单体溶 液总重的 5-10%; 所述干燥速溶助剂为甲酸钠、 脂肪醇聚氧乙烯醚、 硫脲中的一种或多种, 其添加量为聚 合物胶体总重的 0.5¾>-10<¾ ; 所述防粘剂为脱芳烃煤油、 壬基酚聚氧乙烯醚、 硬脂酸聚氧乙烯酯中的一种 或多种, 其添加量为聚合物胶体总重的 0.5-10%。
9. 一种缔合型非交联压裂液, 其特征在于, 其有效成分为权利要求 1-8任一项所述的增稠剂、破胶剂和氯 化钾, 以及任选含有表面活性剂, 以水配制;
其中, 增稠剂的含量为 0.2<¾-0.8<¾; 所述破胶剂任选过硫酸铵、 过硫酸钾、 胶囊破胶剂中的一种或多种; 所述表面活性剂为阴离子表面活性剂和 /或非离子表面活性剂。
10. 根据权利要 9所述的缔合型非交联压裂液, 其特征在于, 所述阴离子表面活性剂为垸基苯磺酸盐、 垸 基硫酸盐、石油磺酸盐中的一种或多种;所述非离子表面活性剂为壬基酚聚氧乙烯醚和 /或辛基酚聚氧乙烯 醚。
11. 权利要求 9或 10所述清洁压裂液的制备方法, 其特征在于, 向增稠剂中加水溶解, 按比例加入表面 活性剂, 搅拌 10-20分钟, 然后加入氯化钾, 继续搅拌 10-20分钟, 最后加入破胶剂, 搅拌均匀, 即得。
PCT/CN2014/073092 2013-05-16 2014-03-08 一种缔合型非交联压裂液及其制备方法 WO2014183495A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310182183.9 2013-05-16
CN201310182183.9A CN103224779B (zh) 2013-05-16 2013-05-16 一种缔合型非交联压裂液及其制备方法

Publications (1)

Publication Number Publication Date
WO2014183495A1 true WO2014183495A1 (zh) 2014-11-20

Family

ID=48835429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073092 WO2014183495A1 (zh) 2013-05-16 2014-03-08 一种缔合型非交联压裂液及其制备方法

Country Status (2)

Country Link
CN (1) CN103224779B (zh)
WO (1) WO2014183495A1 (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106146730A (zh) * 2015-03-25 2016-11-23 中国石油天然气股份有限公司 一种丙烯酰胺类聚合物增稠剂及其制备方法和压裂液
EP3231852A4 (en) * 2015-11-19 2018-06-20 Sichuan Guangya Polymer Chemical Co., Ltd. Multifunctional composite fracturing fluid system
CN113214817A (zh) * 2021-05-14 2021-08-06 西南石油大学 一种超高温压裂液稠化剂及其制备方法
CN113667466A (zh) * 2021-08-13 2021-11-19 四川川庆井下科技有限公司 一种基于改性聚丙烯酰胺的超分子压裂液及其制备方法
CN113736013A (zh) * 2020-05-28 2021-12-03 中国石油天然气股份有限公司 一种可调节分子量的耐温抗盐聚丙烯酰胺及其制备方法
CN113736039A (zh) * 2021-09-14 2021-12-03 北京百特泰科能源工程技术有限公司 稠油活化剂及其制备方法
WO2022016711A1 (zh) * 2020-07-20 2022-01-27 宁波锋成先进能源材料研究院有限公司 一种增粘组合物及其制备方法与应用
CN114349916A (zh) * 2021-12-10 2022-04-15 贵州省欣紫鸿药用辅料有限公司 一种三层复合丙烯酸树脂及其制备方法和应用
CN114380946A (zh) * 2020-10-22 2022-04-22 中国石油天然气股份有限公司 自增粘转向酸液稠化剂及其制备方法与应用
CN114426618A (zh) * 2020-10-14 2022-05-03 中国石油化工股份有限公司 一种聚合物型耐高温防膨缩膨剂及其制备方法与应用
CN114790385A (zh) * 2021-01-25 2022-07-26 中国石油天然气股份有限公司 一种氯化钙加重高密度滑溜水及其制备方法与应用
CN115044384A (zh) * 2022-05-30 2022-09-13 中国石油大学(华东) 一种用于天然气水合物清洁压裂液的阴-非两性双子表面活性剂及其制备方法
CN115215965A (zh) * 2022-09-15 2022-10-21 山东诺尔生物科技有限公司 一种疏水缔合型压裂稠化剂及其制备方法
CN115287054A (zh) * 2022-08-23 2022-11-04 洲际海峡能源科技有限公司 有机铝交联剂及其制备方法与在连续混配压裂液中的应用
CN115304708A (zh) * 2022-10-10 2022-11-08 山东诺尔生物科技有限公司 一种多枝型压裂液稠化剂及其制备方法
WO2022233555A1 (en) 2021-05-04 2022-11-10 Spcm Sa Water-soluble associative amphoteric polymer as a rheology modifier for subterranean treatments
CN115353870A (zh) * 2022-09-02 2022-11-18 苏州石为开环保材料科技有限公司 一种自降解压裂液稠化剂及其制备方法
CN115403698A (zh) * 2021-05-27 2022-11-29 中国石油化工股份有限公司 耐盐范围广的速溶低吸附疏水缔合聚合物组合物及其制备方法
CN115594796A (zh) * 2021-07-08 2023-01-13 中国石油天然气集团有限公司(Cn) 抗盐免混配的压裂液稠化剂及其制备方法
CN115677942A (zh) * 2021-07-30 2023-02-03 中国石油化工股份有限公司 一种稠化剂及其制备方法和应用
CN116003701A (zh) * 2023-03-15 2023-04-25 山东科兴化工有限责任公司 一种基于二氧化硅纳米微乳压裂液及其制备方法
CN116239723A (zh) * 2023-04-13 2023-06-09 陕西日新石油化工有限公司 一种油田压裂液稠化剂及其制备方法
CN114437486B (zh) * 2020-11-02 2023-08-15 中国石油化工股份有限公司 速溶型驱油组合物及其制备方法与应用、速溶添加剂
CN116970122A (zh) * 2023-09-21 2023-10-31 河南博源新材料有限公司 一种速溶型聚丙烯酰胺及其制备方法

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103224779B (zh) * 2013-05-16 2015-05-20 西南石油大学 一种缔合型非交联压裂液及其制备方法
CN103641950B (zh) * 2013-11-29 2015-09-30 成都理工大学 阴离子型疏水缔合部分水解聚丙烯酰胺及制备方法和应用
CN103820099A (zh) * 2014-03-05 2014-05-28 成都佰椿石油科技有限公司 一种酸液减阻剂及其制备方法
CN105273126A (zh) * 2014-07-04 2016-01-27 山东诺尔生物科技有限公司 压裂用瓜尔胶替代品的制备方法
CN105542068B (zh) * 2014-10-24 2017-11-21 中国石油化工股份有限公司 疏水缔合型聚丙烯酰胺类压裂液用增稠剂及其制备方法和应用
CN104357038A (zh) * 2014-10-28 2015-02-18 东北石油大学 提高水溶性聚合物干粉溶解速度的化学方法
CN106279523B (zh) * 2015-06-25 2019-03-15 中国石油天然气股份有限公司 一种增稠剂及其制备方法和应用
CN106317320A (zh) * 2015-07-02 2017-01-11 中国石油化工股份有限公司 一种疏水缔合聚合物增稠剂及其制备方法
CN106318365A (zh) * 2015-07-02 2017-01-11 中国石油化工股份有限公司 一种可逆物理交联聚合物压裂液及其制备方法
CN106317319A (zh) * 2015-07-02 2017-01-11 中国石油化工股份有限公司 一种疏水缔合胶凝酸稠化剂及其制备方法
CN106608947B (zh) * 2015-10-21 2019-01-25 中国石油化工股份有限公司 增粘剂共聚缔合物及其制备方法
CN105273709A (zh) * 2015-11-24 2016-01-27 延长油田股份有限公司西区采油厂 一种清洁压裂液体系
CN105385434A (zh) * 2015-11-25 2016-03-09 中国石油天然气集团公司 一种聚合物清洁压裂液及其配制方法
CN105601804A (zh) * 2015-12-29 2016-05-25 四川光亚聚合物化工有限公司 一种疏水缔合聚合物及其制备方法
CN105461855B (zh) * 2015-12-29 2018-04-06 四川光亚聚合物化工有限公司 一种疏水缔合聚合物及其制备方法
CN105646775B (zh) * 2015-12-29 2019-05-10 四川光亚聚合物化工有限公司 一种疏水缔合聚合物及其制备方法
CN105418862A (zh) * 2015-12-29 2016-03-23 四川光亚聚合物化工有限公司 一种疏水缔合聚合物及其制备方法
CN105646777A (zh) * 2015-12-29 2016-06-08 四川光亚聚合物化工有限公司 一种疏水缔合聚合物及其制备方法
CN105646772B (zh) * 2015-12-29 2018-03-27 四川光亚聚合物化工有限公司 一种疏水缔合聚合物及其制备方法
CN105504155A (zh) * 2015-12-29 2016-04-20 四川光亚聚合物化工有限公司 一种疏水缔合聚合物及其制备方法
CN105542070A (zh) * 2015-12-29 2016-05-04 四川光亚聚合物化工有限公司 一种疏水缔合聚合物及其制备方法
CN105482037A (zh) * 2015-12-29 2016-04-13 四川光亚聚合物化工有限公司 一种疏水缔合聚合物及其制备方法
CN105646776B (zh) * 2015-12-29 2019-01-25 四川光亚聚合物化工有限公司 一种疏水缔合聚合物及其制备方法
CN105601805A (zh) * 2015-12-29 2016-05-25 四川光亚聚合物化工有限公司 一种疏水缔合聚合物及其制备方法
CN105778879A (zh) * 2016-04-06 2016-07-20 长江大学 一种高温自组装盐加重压裂液体系
CN105860950A (zh) * 2016-05-09 2016-08-17 东北石油大学 一种新型聚合物溶液压裂液
US10047279B2 (en) * 2016-05-12 2018-08-14 Saudi Arabian Oil Company High temperature viscoelastic surfactant (VES) fluids comprising polymeric viscosity modifiers
CN106046253A (zh) * 2016-06-28 2016-10-26 江西富诚环保新材料科技有限公司 一种页岩气专用超分子表面活性微电型清洁压裂液增稠剂及其制备方法
CN106543999A (zh) * 2016-07-13 2017-03-29 成都菲尔特技术开发有限公司 一种压裂液
CN106544000A (zh) * 2016-07-13 2017-03-29 成都菲尔特技术开发有限公司 一种滑溜水压裂液
CN107868658B (zh) * 2016-09-26 2020-09-04 中国石油化工股份有限公司 压裂液用疏水缔合型胍胶及其制备方法
CN106867488A (zh) * 2017-03-28 2017-06-20 四川光亚聚合物化工有限公司 一种物理交联凝胶类调剖堵水体系及其应用
CN107868659A (zh) * 2017-11-07 2018-04-03 西南石油大学 一种耐高温缔合型压裂液及其制备方法
CN109054799A (zh) * 2018-07-25 2018-12-21 中国石油集团川庆钻探工程有限公司 环保多用途页岩气藏体积改造用稠化剂及其制备方法
CN110643343B (zh) * 2019-10-10 2022-03-29 西南石油大学 一种渗吸采油超分子压裂液体系及其应用
CN111849443A (zh) * 2020-07-28 2020-10-30 宁波锋成先进能源材料研究院 一种污水净化或驱油用液相组合物及其制备方法、应用
CN114195927B (zh) * 2020-09-18 2023-08-22 中国石油天然气集团有限公司 稠化剂、形成其的组合物、乳状液聚合物、压裂液体系及其应用
CN112322274B (zh) * 2020-11-27 2022-12-20 西安石油大学 可重复水基压裂液的制备方法、破胶剂及破胶剂的应用
CN113880983A (zh) * 2021-09-30 2022-01-04 陕西科技大学 一种自缔合增强一体化水性耐高温稠化剂及其制备方法
CN116064023A (zh) * 2021-11-01 2023-05-05 中国石油化工股份有限公司 一种对储层低伤害的驱油压裂液及其应用
CN116063622A (zh) * 2021-11-01 2023-05-05 中国石油化工股份有限公司 一种压裂液增稠剂、驱油压裂液及应用
CN115991848A (zh) * 2022-12-21 2023-04-21 西南石油大学 一种适用于浅层、薄层压裂的压裂液稠化剂

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1041770A (zh) * 1987-10-13 1990-05-02 美国氰胺公司 水分散性疏水增稠剂
CN103224779A (zh) * 2013-05-16 2013-07-31 西南石油大学 一种缔合型非交联压裂液及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102031103A (zh) * 2010-11-18 2011-04-27 陕西延长石油(集团)有限责任公司研究院 一种co2清洁泡沫压裂液体系

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1041770A (zh) * 1987-10-13 1990-05-02 美国氰胺公司 水分散性疏水增稠剂
CN103224779A (zh) * 2013-05-16 2013-07-31 西南石油大学 一种缔合型非交联压裂液及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, PINGDE ET AL.: "Synthesis And Performance Of Hydrophobically Associating (Acrylamide-Hexadecyl Ally Ammonium Chloride-2-IAcrylamino-2-Methyl Propane Sufuric Acid) Terpolymers", ACTA POLYMERICA SINICA, no. 5, 20 September 2002 (2002-09-20), pages 692 - 694 *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106146730A (zh) * 2015-03-25 2016-11-23 中国石油天然气股份有限公司 一种丙烯酰胺类聚合物增稠剂及其制备方法和压裂液
EP3231852A4 (en) * 2015-11-19 2018-06-20 Sichuan Guangya Polymer Chemical Co., Ltd. Multifunctional composite fracturing fluid system
CN113736013B (zh) * 2020-05-28 2023-02-10 中国石油天然气股份有限公司 一种可调节分子量的耐温抗盐聚丙烯酰胺及其制备方法
CN113736013A (zh) * 2020-05-28 2021-12-03 中国石油天然气股份有限公司 一种可调节分子量的耐温抗盐聚丙烯酰胺及其制备方法
WO2022016711A1 (zh) * 2020-07-20 2022-01-27 宁波锋成先进能源材料研究院有限公司 一种增粘组合物及其制备方法与应用
CN114426618B (zh) * 2020-10-14 2024-03-22 中国石油化工股份有限公司 一种聚合物型耐高温防膨缩膨剂及其制备方法与应用
CN114426618A (zh) * 2020-10-14 2022-05-03 中国石油化工股份有限公司 一种聚合物型耐高温防膨缩膨剂及其制备方法与应用
CN114380946A (zh) * 2020-10-22 2022-04-22 中国石油天然气股份有限公司 自增粘转向酸液稠化剂及其制备方法与应用
CN114437486B (zh) * 2020-11-02 2023-08-15 中国石油化工股份有限公司 速溶型驱油组合物及其制备方法与应用、速溶添加剂
CN114790385A (zh) * 2021-01-25 2022-07-26 中国石油天然气股份有限公司 一种氯化钙加重高密度滑溜水及其制备方法与应用
WO2022233555A1 (en) 2021-05-04 2022-11-10 Spcm Sa Water-soluble associative amphoteric polymer as a rheology modifier for subterranean treatments
FR3122656A1 (fr) 2021-05-04 2022-11-11 Snf Sa Polymere amphotérique associatif hydrosoluble comme modificateur de rheologie pour traitement souterrain
CN113214817A (zh) * 2021-05-14 2021-08-06 西南石油大学 一种超高温压裂液稠化剂及其制备方法
CN115403698B (zh) * 2021-05-27 2023-07-04 中国石油化工股份有限公司 耐盐范围广的速溶低吸附疏水缔合聚合物组合物及其制备方法
CN115403698A (zh) * 2021-05-27 2022-11-29 中国石油化工股份有限公司 耐盐范围广的速溶低吸附疏水缔合聚合物组合物及其制备方法
CN115594796A (zh) * 2021-07-08 2023-01-13 中国石油天然气集团有限公司(Cn) 抗盐免混配的压裂液稠化剂及其制备方法
CN115594796B (zh) * 2021-07-08 2023-07-07 中国石油天然气集团有限公司 抗盐免混配的压裂液稠化剂及其制备方法
CN115677942A (zh) * 2021-07-30 2023-02-03 中国石油化工股份有限公司 一种稠化剂及其制备方法和应用
CN115160493B (zh) * 2021-08-13 2023-07-25 四川川庆井下科技有限公司 一种提高压裂液粘弹性和耐温性的改性聚丙烯酰胺、超分子压裂液及其制备方法
CN115160493A (zh) * 2021-08-13 2022-10-11 四川川庆井下科技有限公司 一种提高压裂液粘弹性和耐温性的改性聚丙烯酰胺、超分子压裂液及其制备方法
CN113667466A (zh) * 2021-08-13 2021-11-19 四川川庆井下科技有限公司 一种基于改性聚丙烯酰胺的超分子压裂液及其制备方法
CN113736039B (zh) * 2021-09-14 2023-06-06 北京百特泰科能源工程技术有限公司 稠油活化剂及其制备方法
CN113736039A (zh) * 2021-09-14 2021-12-03 北京百特泰科能源工程技术有限公司 稠油活化剂及其制备方法
CN114349916A (zh) * 2021-12-10 2022-04-15 贵州省欣紫鸿药用辅料有限公司 一种三层复合丙烯酸树脂及其制备方法和应用
CN114349916B (zh) * 2021-12-10 2023-07-18 贵州省欣紫鸿药用辅料有限公司 一种三层复合丙烯酸树脂及其制备方法和应用
CN115044384B (zh) * 2022-05-30 2024-02-13 中国石油大学(华东) 一种用于天然气水合物清洁压裂液的阴-非两性双子表面活性剂及其制备方法
CN115044384A (zh) * 2022-05-30 2022-09-13 中国石油大学(华东) 一种用于天然气水合物清洁压裂液的阴-非两性双子表面活性剂及其制备方法
CN115287054A (zh) * 2022-08-23 2022-11-04 洲际海峡能源科技有限公司 有机铝交联剂及其制备方法与在连续混配压裂液中的应用
CN115353870A (zh) * 2022-09-02 2022-11-18 苏州石为开环保材料科技有限公司 一种自降解压裂液稠化剂及其制备方法
CN115353870B (zh) * 2022-09-02 2023-09-05 苏州石为开环保材料科技有限公司 一种自降解压裂液稠化剂及其制备方法
CN115215965A (zh) * 2022-09-15 2022-10-21 山东诺尔生物科技有限公司 一种疏水缔合型压裂稠化剂及其制备方法
CN115304708B (zh) * 2022-10-10 2022-12-13 山东诺尔生物科技有限公司 一种多枝型压裂液稠化剂及其制备方法
CN115304708A (zh) * 2022-10-10 2022-11-08 山东诺尔生物科技有限公司 一种多枝型压裂液稠化剂及其制备方法
CN116003701B (zh) * 2023-03-15 2023-05-30 山东科兴化工有限责任公司 一种基于二氧化硅纳米微乳压裂液及其制备方法
CN116003701A (zh) * 2023-03-15 2023-04-25 山东科兴化工有限责任公司 一种基于二氧化硅纳米微乳压裂液及其制备方法
CN116239723A (zh) * 2023-04-13 2023-06-09 陕西日新石油化工有限公司 一种油田压裂液稠化剂及其制备方法
CN116970122A (zh) * 2023-09-21 2023-10-31 河南博源新材料有限公司 一种速溶型聚丙烯酰胺及其制备方法
CN116970122B (zh) * 2023-09-21 2023-12-22 河南博源新材料有限公司 一种速溶型聚丙烯酰胺及其制备方法

Also Published As

Publication number Publication date
CN103224779A (zh) 2013-07-31
CN103224779B (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2014183495A1 (zh) 一种缔合型非交联压裂液及其制备方法
US20140158355A1 (en) Crosslinked synthetic polymer gel systems for hydraulic fracturing
WO2017113773A1 (zh) 一种疏水缔合聚合物及其制备方法
EP3770232B1 (en) Composition for oil and gas recovery
JP6549583B2 (ja) 界面活性剤応答性乳化重合マイクロゲル
US9611416B2 (en) Salt-tolerant, thermally-stable rheology modifiers
AU2017257206A1 (en) Method for preparing an aqueous polyacrylamide solution
CN106867463B (zh) 一种氧化石墨烯复合水凝胶基相变材料及其制备方法和应用
AU2017257205A1 (en) Method for preparing an aqueous polyacrylamide solution
CN104109219B (zh) 一种耐高温稠化剂及其制备方法和应用
CN103254887B (zh) 一种减阻水压裂液配制剂
CN108587593A (zh) 一种低温储层用滑溜水压裂液
Chen Polyacrylamide and its derivatives for oil recovery
CN107523286A (zh) 一种用于页岩储层的清洁滑溜水压裂液及其制备方法
CN104893704A (zh) 水溶性疏水缔合聚合物压裂液体系及其制备方法
WO2016134548A1 (zh) 一种页岩气井滑溜水压裂液体系高效乳态快速水溶减阻剂
CN113929801A (zh) 一种超高温度酸化压裂用稠化剂的制备方法
EP3098381A1 (en) Formulation comprising at least one hydrophobically associating copolymer, a crosslinking agent and a proppant
CN104232055B (zh) 一种压裂液减阻剂及其制备方法
CN106317324B (zh) 制备减阻剂用稳定剂和页岩气压裂用减阻剂及它们的制备方法
CN116200183A (zh) 深层煤层气开发的高效能变粘压裂液及一体化施工方法
CN106317320A (zh) 一种疏水缔合聚合物增稠剂及其制备方法
CN106279524B (zh) 一种页岩气压裂用减阻剂的制备方法及压裂用减阻剂
CN107936174A (zh) 一种压裂用耐高温降阻聚合物及其制备方法、应用方法
CN104232056B (zh) 一种压裂液减阻剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14797404

Country of ref document: EP

Kind code of ref document: A1