WO2014181858A1 - 光学素子、投影光学系、露光装置及びデバイス製造方法 - Google Patents

光学素子、投影光学系、露光装置及びデバイス製造方法 Download PDF

Info

Publication number
WO2014181858A1
WO2014181858A1 PCT/JP2014/062447 JP2014062447W WO2014181858A1 WO 2014181858 A1 WO2014181858 A1 WO 2014181858A1 JP 2014062447 W JP2014062447 W JP 2014062447W WO 2014181858 A1 WO2014181858 A1 WO 2014181858A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
multilayer film
light
optical element
substrate
Prior art date
Application number
PCT/JP2014/062447
Other languages
English (en)
French (fr)
Inventor
神高 典明
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to KR1020177005348A priority Critical patent/KR20170027862A/ko
Priority to KR1020187012287A priority patent/KR20180050760A/ko
Priority to JP2015515902A priority patent/JPWO2014181858A1/ja
Priority to EP14795365.7A priority patent/EP2998980A4/en
Priority to KR1020157033754A priority patent/KR20160003140A/ko
Publication of WO2014181858A1 publication Critical patent/WO2014181858A1/ja
Priority to US14/930,967 priority patent/US10353120B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0891Ultraviolet [UV] mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/52Reflectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70316Details of optical elements, e.g. of Bragg reflectors, extreme ultraviolet [EUV] multilayer or bilayer mirrors or diffractive optical elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • G21K1/062Devices having a multilayer structure
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • G21K1/067Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators using surface reflection, e.g. grazing incidence mirrors, gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • the present invention relates to an optical element, a projection optical system, an exposure apparatus, and a device manufacturing method.
  • This application claims priority based on Japanese Patent Application No. 2013-99216 for which it applied on May 9, 2013, and uses the content here.
  • an EUV exposure apparatus that uses extreme ultraviolet (EUV) light as exposure light has been devised as disclosed in the following patent document.
  • EUV extreme ultraviolet
  • an optical element such as a multilayer reflector having a multilayer film capable of reflecting at least a part of incident light is used.
  • a periodic multilayer film for example, a periodic multilayer film is known.
  • This equi-periodic multilayer film is known to have a high reflectance with respect to EUV light.
  • the equi-periodic multilayer film has a configuration in which a first layer (eg, a molybdenum layer) and a second layer (eg, a silicon layer) are laminated at regular intervals.
  • a first layer eg, a molybdenum layer
  • a second layer eg, a silicon layer
  • a broadband film has been proposed to cope with a wavelength range incident in a wide incident angle range.
  • a broadband film for example, an unequal periodic film structure having a different layer thickness for each layer is known.
  • the film thickness of the 1 period structure there are two parameters for the film structure: the film thickness of the 1 period structure and the film thickness ratio of the first layer and the second layer.
  • the layer thickness is a parameter.
  • the EUV optical system is required to adjust the reflection characteristics with high accuracy, when forming a multilayer film, the reflection characteristics of the actually formed multilayer film are evaluated, and then the film structure of the multilayer film is corrected. In addition, adjustments are made to bring the characteristics closer to the target characteristics.
  • the reflection characteristics can be easily corrected and adjusted because the film structure parameters are limited to the first layer and the second layer.
  • aspects of the present invention provide an optical element, a projection optical system, an exposure apparatus, and a device manufacture having a multilayer film that can obtain a substantially constant reflectivity over a wide angle range and can easily modify and adjust the film structure. It aims to provide a method.
  • a plurality of unit laminated structures each having a base material, the first layer, and the second layer arranged on the first layer are laminated on the base material.
  • an optical element including a multilayer film and a plurality of spacer layers arranged between different layers among the layered structures.
  • a projection optical system having a plurality of reflecting elements and projecting an image of the first surface onto the second surface, wherein at least one of the plurality of reflecting elements is a book
  • a projection optical system is provided in which an optical element according to a first aspect of the invention is used.
  • an exposure apparatus that exposes a substrate with exposure light, the exposure apparatus including an optical element according to the first aspect of the present invention.
  • a device manufacturing method including exposing a substrate using the exposure apparatus according to the third aspect of the present invention and developing the exposed substrate.
  • an optical element a projection optical system, an exposure apparatus, and a multilayer film that can obtain a substantially constant reflectivity over a wide angle range and that can easily modify and adjust the film structure.
  • a device manufacturing method can be provided.
  • the figure which shows an example of the optical element which concerns on this embodiment The table
  • the figure which shows an example of the relationship between the incident angle of light with respect to the surface of a multilayer film, and a reflectance The figure which shows an example of the relationship between the incident angle of light with respect to the surface of a multilayer film, and a reflectance. The figure which shows an example of the relationship between the incident angle of light with respect to the surface of a multilayer film, and a reflectance. It is a figure which shows an example of the exposure apparatus which concerns on this embodiment.
  • an XYZ orthogonal coordinate system is set, and the positional relationship of each part will be described with reference to this XYZ orthogonal coordinate system.
  • a predetermined direction in the horizontal plane is defined as the X-axis direction
  • a direction orthogonal to the X-axis direction in the horizontal plane is defined as the Y-axis direction
  • a direction orthogonal to the X-axis direction and the Y-axis direction (that is, the vertical direction) is defined as the Z-axis direction.
  • the rotation (tilt) directions around the X axis, Y axis, and Z axis are the ⁇ X, ⁇ Y, and ⁇ Z directions, respectively.
  • FIG. 1 is a schematic diagram illustrating an example of an optical element 100 according to the present embodiment.
  • the optical element 100 will be described using a multilayer mirror as an example.
  • an optical element 100 includes a base material S, and first layers 10 and second layers 20 alternately stacked on the base material S, and can reflect at least a part of incident light EL. And a membrane 50.
  • the light EL incident on the multilayer film 50 includes extreme ultraviolet light.
  • Extreme ultraviolet light is an electromagnetic wave in the soft X-ray region having a wavelength of about 11 to 14 nm, for example. Extreme ultraviolet light is reflected by the multilayer film 50. In the following description, extreme ultraviolet light is appropriately referred to as EUV light.
  • the light EL incident on the multilayer film 50 may be an electromagnetic wave in the soft X-ray region of about 5 to 50 nm or an electromagnetic wave of about 5 to 20 nm.
  • the light EL may be an electromagnetic wave having a wavelength of 193 nm or less.
  • the light EL may be vacuum ultraviolet light (VUV light) such as ArF excimer laser light (wavelength 193 nm) and F2 laser light (wavelength 157 nm).
  • the substrate S is formed of, for example, ultra low expansion glass.
  • As the substrate S for example, ULE manufactured by Corning, Zerodur (registered trademark) manufactured by Schott, or the like is used.
  • the multilayer film 50 includes first layers 10 and second layers 20 that are alternately stacked with a predetermined period length d.
  • the period length d refers to the sum (d1 + d2) of the thickness d1 of the first layer 10 and the thickness d2 of the second layer 20.
  • the thickness d1 of the first layer 10 and the thickness d2 of the second layer 20 are set so that the phases of the reflected waves reflected at the interfaces between the first layer 10 and the second layer 20 match. Each is set.
  • a set of the first layer 10 and the second layer 20 is appropriately expressed as a unit laminated structure 30.
  • the first layer 10 is arranged on the base material S side (the ⁇ Z side in the drawing) with respect to the second layer 20 with respect to one unit laminated structure 30.
  • a multilayer film 50 having a so-called equiperiodic structure is formed.
  • unit laminated structures 30 are laminated on the substrate S in the present embodiment.
  • the first layer 10 is made of a material having a large difference between the refractive index with respect to EUV light and the refractive index of vacuum.
  • the second layer 20 is made of a material having a small difference between the refractive index with respect to EUV light and the refractive index of vacuum.
  • the first layer (heavy atom layer) 10 is formed of molybdenum (Mo).
  • the second layer (light atomic layer) 20 is formed of silicon (Si). That is, the multilayer film 50 of the present embodiment is a Mo / Si multilayer film in which molybdenum layers (Mo layers) and silicon layers (Si layers) are alternately stacked.
  • Refractive index of vacuum n 1.
  • the second layer 20 is formed of a material whose refractive index with respect to EUV light is substantially equal to the refractive index of vacuum.
  • the multilayer film 50 includes a spacer layer 40.
  • the spacer layer 40 is disposed between the unit laminated structures 30.
  • a plurality of unit laminated structures 30 are laminated on the multilayer film 50. Therefore, the multilayer film 50 is provided with a plurality of positions (interlayer positions) corresponding to each other between the unit laminated structures 30.
  • the plurality of spacer layers 40 are respectively disposed at different interlayer positions among such a plurality of interlayer positions (positions corresponding to the unit laminated structures 30).
  • the first spacer layer among the plurality of spacer layers 40 is disposed at the first interlayer position among the plurality of interlayer positions
  • the second spacer layer 40 is different from the first spacer layer among the plurality of spacer layers 40.
  • the spacer layer is disposed at a second interlayer position different from the first interlayer position among the plurality of interlayer positions.
  • the first spacer layer is disposed between one unit laminated structure 30 and the next unit laminated structure 30, and the second spacer layer is composed of another unit laminated structure 30 and the next unit laminated structure 30. 30.
  • the distance from the surface of the substrate S is different between the first spacer layer and the second spacer layer.
  • the second spacer layer is disposed at a position away from the surface of the substrate S as compared to the first spacer layer.
  • a third spacer layer, a fourth spacer layer,... can be provided as necessary.
  • the plurality of spacer layers 40 each have the same layer thickness d4.
  • the layer thickness d4 is formed to have a dimension corresponding to the thickness (period length) of the unit laminated structure 30.
  • the layer thickness d4 is a dimension of about 1/3 to 2/3 of the periodic length d of the unit laminated structure 30, or a dimension obtained by adding a dimension equal to the optical thickness of the periodic length d to this dimension. It has become.
  • the layer thickness is a dimension of about 2/5 to 3/5 of the periodic length d of the unit laminated structure 30 or a dimension obtained by adding a dimension equal to the optical thickness of the periodic length d to this dimension. .
  • the spacer layer 40 is formed to a thickness corresponding to the thickness of the unit laminated structure 30.
  • the multilayer film 50 includes a plurality of unit laminated structures 30 and a plurality of spacer layers 40, and has a layer thickness Da. The distance from the interface between the substrate S and the multilayer film 50 to the surface of the multilayer film 50 is equal to the layer thickness Da of the multilayer film 50.
  • the multilayer film 50 is divided into a plurality of equal-period blocks (laminated structure) 60 by the plurality of spacer layers 40 by having the plurality of spacer layers 40.
  • the equal periodic block 60 is a structure having a plurality of unit laminated structures 30.
  • a plurality of equi-periodic blocks 60 are formed by the plurality of spacer layers 40.
  • the spacer layer 40 contains a material having a smaller extinction coefficient than the material constituting the multilayer film 50 at the wavelength of the EUV light reflected by the multilayer film 50.
  • examples of such substances include substances such as C, B, Si, Zr, Nb, and Ru, and compounds thereof.
  • the spacer layer 40 is formed of Si having an excellent extinction coefficient.
  • the spacer layer 40 is formed of Si, a layer of the same material is formed on the second layer 20 that is also formed of Si. Therefore, by forming the Si film so that the thickness of the Si film when forming the second layer 20 is the sum of the thickness of the second layer 20 and the thickness of the spacer layer 40, The spacer layer 40 is formed in the same process.
  • FIG. 2 is a table showing the number of spacer layers 40 (film thickness) and the number of unit laminated structures 30 included in the equal period block 60 in comparison with respect to five types of multilayer films.
  • the multilayer films 1 to 5 are multilayer films having an equal periodic structure made of a Mo (molybdenum) layer and a Si (silicon) layer, respectively.
  • the Mo layer has a thickness of 3.0 nm and the Si layer has a thickness of 4.5 nm.
  • the multilayer films 1 to 5 have an ideal structure in which no interface diffusion layer is generated between the Mo layer and the Si layer, for example. Si is used as a constituent material of the spacer layer.
  • the multilayer film 1 does not include a spacer layer. Therefore, the multilayer film 1 includes one equiperiodic block.
  • the total number of unit laminated structures included in the equal period block is 50.
  • the multilayer film 2 includes one spacer layer. For this reason, the multilayer film 2 includes two equi-periodic blocks.
  • the total number of unit laminated structures included in the periodic block on the surface side of the multilayer film 2 is 30.
  • the total number of unit laminated structures included in the equal-periodic blocks arranged on the substrate S side is 8.
  • the layer thickness of the spacer layer is 3.8 nm.
  • the multilayer film 3 includes two spacer layers. For this reason, the multilayer film 3 includes three equi-periodic blocks.
  • the total number of unit laminated structures included in the regular block on the surface side of the multilayer film 3 is 25. Further, the total number of unit laminated structures included in the second equi-periodic block from the upper layer side in the multilayer film 3 is 12. Moreover, the total number of the equal periodic blocks arrange
  • the multilayer film 4 includes three spacer layers. Therefore, the multilayer film 4 includes four equal periodic blocks.
  • the total number of unit laminated structures included in the periodic block on the surface side of the multilayer film 4 is 20. Further, the total number of unit laminated structures included in the second equi-periodic block from the upper layer side in the multilayer film 4 is 9. Further, the total number of unit laminated structures included in the third equi-periodic block from the upper layer side in the multilayer film 4 is 6.
  • the total number of equal-periodic blocks arranged on the substrate S side is 2. Further, the thicknesses of the three spacer layers are both 3.6 nm.
  • the multilayer film 5 includes four spacer layers. For this reason, the multilayer film 5 includes five equi-periodic blocks.
  • the total number of unit laminated structures included in the regular block on the surface side of the multilayer film 5 is 17.
  • the total number of unit laminated structures included in the second equi-periodic block from the upper layer side in the multilayer film 5 is 8.
  • the total number of unit laminated structures included in the third equi-periodic block from the upper layer side in the multilayer film 5 is 8.
  • the total number of unit laminated structures included in the fourth equi-periodic block from the upper layer side in the multilayer film 5 is 6.
  • the total number of equal-periodic blocks arranged on the substrate S side is 2.
  • the thicknesses of the four spacer layers are both 3.6 nm.
  • FIG. 3 is a graph showing the relationship between the incident angle and the reflectance when light (non-polarized light) is incident on the five types of multilayer films 1 to 5 shown in FIG.
  • the horizontal axis of the graph is the incident angle (unit is °), and the horizontal axis of the graph is the reflectance (unit is%).
  • FIG. 4 is a graph showing the relationship between the total number of spacers included in the multilayer film and the angular width at which 90% of the peak reflectance is obtained.
  • the horizontal axis of the graph is the total number of spacers
  • the vertical axis of the graph is the angular width (unit is °).
  • the multilayer film 1 has a substantially maximum reflectance (about 70%) when the incident angle is about 22 °.
  • the reflectance of the multilayer film 1 gradually decreases as the incident angle becomes smaller than 22 ° and as the incident angle becomes larger than 22 °.
  • the angular width at which 90% of the peak reflectance is obtained is about 4 °.
  • the multilayer film 2 has a substantially maximum reflectance (about 62%) when the incident angle is about 20 ° to 22 °.
  • the reflectance of the multilayer film 2 gradually decreases as the incident angle becomes smaller than 20 ° and as the incident angle becomes larger than 22 °.
  • the multilayer film 2 maintains a substantially constant reflectivity at an incident angle of 20 ° to 22 °.
  • the multilayer film 2 has a maximum reflectance itself smaller than that of the multilayer film 1, the incident angle range in which the reflectance is substantially maximized is wider than that of the multilayer film 1.
  • the angular width at which 90% of the peak reflectance is obtained is about 5.5 °.
  • the multilayer film 3 has a substantially maximum reflectance (about 58%) when the incident angle is about 18 ° to 23 °.
  • the reflectance of the multilayer film 3 gradually decreases as the incident angle becomes smaller than 18 ° and as the incident angle becomes larger than 23 °.
  • the multilayer film 3 maintains a substantially constant reflectivity at an incident angle of 18 ° to 23 °.
  • the multilayer film 3 has a maximum reflectance itself smaller than that of the multilayer film 1 or the multilayer film 2, the incident angle range in which the reflectance is substantially maximized is wider than that of the multilayer film 1 and the multilayer film 2. ing.
  • the angular width at which 90% of the peak reflectance is obtained is about 7.5 °.
  • the multilayer film 4 has a substantially maximum reflectance (about 50%) when the incident angle is about 17 ° to 24 °.
  • the reflectance of the multilayer film 4 gradually decreases as the incident angle becomes smaller than 17 ° and as the incident angle becomes larger than 24 °.
  • the multilayer film 4 maintains a substantially constant reflectivity at an incident angle of 17 ° to 24 °.
  • the maximum reflectance itself is smaller than that of the multilayer films 1 to 3, but the range of incident angles where the reflectance is substantially maximized is wider than that of the multilayer films 1 to 3. ing.
  • the angular width at which 90% of the peak reflectance is obtained is about 9 °.
  • the multilayer film 5 has a substantially maximum reflectance (about 40 to 45%) when the incident angle is about 15 ° to 26 °.
  • the reflectance of the multilayer film 5 gradually decreases as the incident angle becomes smaller than 15 ° and as the incident angle becomes larger than 26 °.
  • the multilayer film 5 maintains a substantially constant reflectivity at an incident angle of 15 ° to 26 °.
  • the multilayer film 5 has a maximum reflectance itself smaller than that of the multilayer films 1 to 4, the range of incident angles where the reflectance is substantially maximized is wider than that of the multilayer films 1 to 4. ing. Further, as shown in FIG. 4, the angular width at which 90% of the peak reflectance is obtained is about 13 °.
  • the multilayer film 50 can obtain a light reflectance of a certain ratio or more with respect to the maximum value of the light reflectance.
  • the range of incident angles that can be expanded.
  • the peak reflectivity of the multilayer film 50 decreases as the number of spacer layers 40 increases, the angle width of the incident angle at which a substantially constant reflectivity with a change in reflectivity of 10% or less is obtained is greatly increased. To increase. In addition, what is necessary is just to increase the number of the spacer layers 40 to insert, when extending the angle range of an incident angle further.
  • the multilayer film 50 When forming the multilayer film 50 configured as described above, first, the multilayer film 50 is actually formed. Then, the reflection characteristics of the formed multilayer film 50 are evaluated, and thereafter, the film structure of the multilayer film 50 is corrected and adjusted so as to approach the target characteristics.
  • the multilayer film 50 has a structure in which a plurality of spacer layers 40 having a layer thickness d4 are inserted between a plurality of equal periodic blocks 60. Therefore, there are only three parameters that determine the structure of the multilayer film 50, that is, the thicknesses d 1 and d 2 of the first layer 10 and the second layer 20 included in the equiperiodic block 60 and the thickness d 4 of the spacer layer 40. For this reason, since it is sufficient to adjust these three parameters, the adjustment for obtaining the target reflection characteristics becomes easy.
  • the unit laminated structure 30 having a total number of 40 to 50 may be formed, and the reflectance peak angle position may be actually measured. Further, the adjustment of the equal period block 60 itself is easy because it is only necessary to adjust the period length d.
  • the thickness of the spacer layer 40 is adjusted.
  • FIG. 5 is a graph showing the relationship between the incident angle and the reflectance when light (non-polarized light) enters the multilayer film having the same configuration as the multilayer film 4 shown in FIG.
  • the reflectance is substantially constant (about 50%) in a predetermined incident angle range.
  • the thickness of the spacer layer is 3.4 nm, the reflectance on the high incident angle side in the above range becomes large (about 53%), and the light reflectance on the low incident angle side becomes small (about 47%). ).
  • the deviation of the thickness of the spacer layer 40 affects the slope of the peak portion of the reflectance. Therefore, how to adjust the film thickness of the spacer layer 40 in order to obtain the target angle distribution of the reflectance is easily determined using the reflectance evaluation result as shown in FIG. be able to.
  • 6 to 8 are graphs showing the relationship between the incident angle and the reflectance when non-polarized light, S-polarized light, and P-polarized light are incident on the multilayer film 50.
  • the horizontal axis of the graph is the incident angle (unit is °), and the vertical axis of the graph is the reflectance (unit is%).
  • the characteristics shown in FIG. 6 are characteristics when the thickness of the spacer layer 40 is 3.6 nm in the same configuration as the multilayer film 4 described above. As shown in FIG. 6, when the thickness of the spacer layer 40 is 3.6 nm, non-polarized light is incident on the multilayer film 50, so that it is substantially within a predetermined angle range (eg, 15 ° to 25 °). Therefore, a constant reflectance (about 50%) can be obtained.
  • a predetermined angle range eg, 15 ° to 25 °. Therefore, a constant reflectance (about 50%) can be obtained.
  • the characteristics shown in FIG. 7 are characteristics when the thickness of the spacer layer 40 is 4.0 nm in the same configuration as the multilayer film 4 described above.
  • the S-polarized light is incident on the multilayer film 50, so that it is substantially within a predetermined angle range (eg, 15 ° to 25 °). Therefore, a constant reflectance (about 60%) can be obtained.
  • the obtained reflectance is higher than that in the case of non-polarized light.
  • the characteristics shown in FIG. 8 are characteristics when the thickness of the spacer layer 40 is 3.3 nm in the same configuration as the multilayer film 4 described above. As shown in FIG. 8, when the thickness of the spacer layer 40 is 3.3 nm, the P-polarized light is incident on the multilayer film 50 so that it is substantially within a predetermined angle range (eg, 15 ° to 25 °). Therefore, a constant reflectance (about 40%) can be obtained. In this way, a design corresponding to the polarization of incident light is possible.
  • a predetermined angle range eg. 15 ° to 25 °
  • FIG. 9 shows the reflectance for four types of multilayer films (multilayer film A to multilayer film D).
  • the multilayer film A does not include a spacer layer. For this reason, the multilayer film A includes one equi-periodic block.
  • the total number of unit laminated structures included in the equal period block is 20.
  • the multilayer film B includes one spacer layer. For this reason, the multilayer film B includes two equal periodic blocks.
  • the total number of unit laminated structures included in the regular block on the surface side of the multilayer film B is 20.
  • the total number of unit laminated structures included in the equi-periodic blocks arranged on the substrate S side is 9.
  • the layer thickness of the spacer layer is 3.6 nm.
  • the multilayer film C includes two spacer layers. For this reason, the multilayer film C includes three equal-period blocks.
  • the total number of unit laminated structures included in the regular block on the surface side is 20. Further, the total number of unit laminated structures included in the second equi-periodic block from the upper layer side in the multilayer film C is 9. Moreover, the total number of the equal periodic blocks arrange
  • the thickness of the two spacer layers is both 3.6 nm.
  • the multilayer film D includes three spacer layers. For this reason, the multilayer film D includes four equal periodic blocks.
  • the total number of unit laminated structures included in the regular block on the surface side is 20. Further, the total number of unit laminated structures included in the second equi-periodic block from the upper layer side in the multilayer film D is 9. Further, the total number of unit laminated structures included in the third equi-periodic block from the upper layer side in the multilayer film D is 6.
  • the total number of equal-periodic blocks arranged on the substrate S side is 2. Further, the thicknesses of the three spacer layers are both 3.6 nm.
  • the multilayer film A can obtain the reflectance characteristics similar to the reflectance characteristics of a general equi-periodic multilayer film.
  • the multilayer film B is formed by inserting nine unit laminated structures 30 between the multilayer film A and the substrate S with the spacer layer 40 interposed therebetween. In the multilayer film B, the reflectance near the peak angle is lowered and the reflectance around the multilayer film A is increased as compared with the multilayer film A.
  • the multilayer film has an equal periodic structure
  • the phases of the reflected light from all the interfaces are uniform from the outermost surface to the interface closest to the substrate S near the peak angle (eg, 21.3 °). For this reason, the reflectance increases as the number of unit laminated structures 30 increases.
  • the total number of unit laminated structures 30 is limited to about 50.
  • the phase of the reflected wave is shifted by 180 ° above and below the spacer layer 40. Therefore, by inserting the equi-periodic block 60 (9 unit laminated structures 30) on the substrate S side, the reflected waves whose phases are reversed are overlapped, and the peak reflectance is lowered.
  • the phases of the reflected waves at each interface do not completely match, and as the number of unit laminated structures 30 increases, the phase shift increases. growing. And when the number of the unit laminated structures 30 exceeds a certain number, the reflectance starts to decrease. However, the phase is aligned with that of the regular block 60 (9 unit laminated structures 30) inserted with the spacer layer 40 interposed therebetween, and the reflectance is increased.
  • the spacer layer 40 is used as an adjustment layer that adjusts the phase shift of the light reflected by the multilayer film 50.
  • the equi-periodic block 60 when the equi-periodic block 60 is added, there is an incident angle at which the reflectivity increases when the phases of the reflected light are aligned, and an incident angle at which the reflectivity decreases when the phase of the reflected light is shifted. Therefore, by inserting the periodic block 60 with the spacer layer 40 interposed therebetween, it is possible to balance the reflectance in a predetermined angular range, and finally obtain a substantially constant reflectance in a wide angular range. It becomes possible.
  • the unit laminated structure 30 including the base material S and the first layer 10 and the second layer 20 disposed on the first layer 10 is disposed on the base material S.
  • the optical element 100 having a multilayer film that can easily modify and adjust the film structure can be obtained.
  • FIG. 10 is a view showing an example of the exposure apparatus EX according to the present embodiment.
  • the exposure apparatus EX of the present embodiment is an EUV exposure apparatus that exposes a substrate P with EUV light.
  • the optical element 100 described above is used as an optical system of the EUV exposure apparatus EX according to the present embodiment.
  • an exposure apparatus EX includes a mask stage 111 that is movable while holding a mask M, a substrate stage 112 that is movable while holding a substrate P irradiated with exposure light EL, and light (including EUV light).
  • (Exposure light) light source device 113 for generating EL illumination optical system IL for illuminating mask M held on mask stage 111 by exposure light EL emitted from light source device 113, and mask illuminated by exposure light EL
  • a projection optical system PL that projects an image of an M pattern onto the substrate P and at least a predetermined space through which the exposure light EL passes are formed, and the predetermined space is in a vacuum state (eg, 1.3 ⁇ 10 ⁇ 3 Pa or less).
  • a chamber apparatus VC having a vacuum system.
  • the substrate P includes a substrate having a photosensitive film formed on a base material such as a semiconductor wafer.
  • the mask M includes a reticle on which a device pattern projected onto the substrate P is formed.
  • EUV light is used as the exposure light EL
  • the mask M is a reflective mask having a multilayer film capable of reflecting EUV light.
  • the multilayer film of the reflective mask includes, for example, a Mo / Si multilayer film and a Mo / Be multilayer film.
  • the exposure apparatus EX illuminates the reflection surface (pattern formation surface) of the mask M on which the multilayer film is formed with the exposure light EL, and exposes the substrate P with the reflection light of the exposure light EL reflected by the mask M.
  • the light source device 113 of the present embodiment is a laser excitation type plasma light source device, and includes a laser device 115 that emits laser light and a supply member 116 that supplies a target material such as xenon gas.
  • the laser device 115 generates laser light having wavelengths in the infrared region and the visible region.
  • the laser device 115 includes, for example, a YAG laser, excimer laser, carbon dioxide laser or the like by semiconductor laser excitation.
  • the light source device 113 includes a first condensing optical system 117 that condenses the laser light emitted from the laser device 115.
  • the first condensing optical system 117 condenses the laser light emitted from the laser device 115 at a position 119.
  • the supply member 116 has a supply port for supplying the target material to the position 119.
  • the laser beam condensed by the first condensing optical system 117 is applied to the target material supplied from the supply member 116.
  • the target material irradiated with the laser light becomes a high temperature by the energy of the laser light, is excited to a plasma state, and generates light including EUV light when transitioning to a low potential state.
  • the light source device 113 may be a discharge plasma light source device.
  • the light source device 113 generates light (EUV light) having a spectrum in the extreme ultraviolet region.
  • the exposure apparatus EX includes a second condenser mirror 118 disposed around the position 119.
  • the second condenser mirror 118 includes an elliptical mirror.
  • the second condensing mirror 118 including the elliptical mirror is disposed so that the first focal point and the position 119 substantially coincide with each other.
  • the EUV light (exposure light) EL condensed at the second focal point by the second condenser mirror 118 is supplied to the illumination optical system IL.
  • the illumination optical system IL includes a plurality of optical elements 120, 121, 122, 123, and 124 to which the exposure light EL from the light source device 113 is supplied, and illuminates the mask M with the exposure light EL from the light source device 113. At least one of the optical elements 120, 121, 122, 123, and 124 of the illumination optical system IL may be the optical element 100 described above.
  • the optical element 120 of the illumination optical system IL is a third condenser mirror that functions as a collimator mirror, and is supplied with the exposure light EL from the second condenser mirror 118.
  • the exposure light EL from the second condenser mirror 118 is guided to the third condenser mirror 120.
  • the third condenser mirror 120 includes a parabolic mirror.
  • the third condenser mirror 120 is arranged so that its focal point and the second focal point of the second condenser mirror 118 substantially coincide.
  • the illumination optical system IL includes an optical integrator 125.
  • the optical integrator 125 includes a reflective fly-eye mirror optical system.
  • the reflective fly-eye mirror optical system 125 includes an incident-side fly-eye mirror 121 and an exit-side fly-eye mirror 122.
  • the third condenser mirror 120 supplies the exposure light EL to the incident side fly-eye mirror 121 of the fly-eye mirror optical system 125 in a substantially collimated state.
  • the incident-side fly-eye mirror 121 includes a plurality of unit mirrors (reflection elements) having arc-shaped reflection surfaces that are substantially similar to illumination fields arranged in parallel. Group).
  • the incident-side fly-eye mirror 121 is disposed at or near a position optically conjugate with the reflective surface of the mask M and the surface of the substrate P.
  • the exit-side fly-eye mirror 122 includes a plurality of unit mirrors (reflection element group) corresponding to the plurality of unit mirrors of the entrance-side fly-eye mirror 121.
  • Each of the unit mirrors of the emission side fly-eye mirror 122 has a rectangular shape and is arranged in parallel.
  • the exit-side fly-eye mirror 122 is disposed at or near a position optically conjugate with the pupil position of the projection optical system PL.
  • the collimated light from the third condenser mirror 120 is incident on the incident-side fly-eye mirror 121 and is wave-divided by the incident-side fly-eye mirror 121.
  • Each of the unit mirrors of the incident side fly-eye mirror 121 condenses incident light and forms a plurality of condensing points (light source images).
  • a plurality of unit mirrors of the exit side fly-eye mirror 122 are arranged in the vicinity of the positions where the plurality of condensing points are formed.
  • a plurality of condensing points (secondary light sources) corresponding to the number of unit mirrors of the exit side fly-eye mirror 122 are formed on or near the exit surface of the exit side fly-eye mirror 122.
  • the illumination optical system IL has a condenser mirror 123.
  • the condenser mirror 123 is arranged so that the focal position of the condenser mirror 123 substantially coincides with the position of the secondary light source formed by the fly-eye mirror optical system 125.
  • the light from the secondary light source formed by the fly-eye mirror optical system 125 is reflected and condensed by the condenser mirror 123 and supplied to the mask M via the optical path bending mirror 124.
  • the illumination optical system IL including the plurality of optical elements 120 to 124 uniformly illuminates the illumination area on the mask M with the exposure light EL emitted from the light source device 113.
  • the exposure light EL illuminated by the illumination optical system IL and reflected by the mask M enters the projection optical system PL.
  • the illumination optical system IL of this embodiment is a non-telecentric system in order to spatially separate the optical path between the light supplied to the mask M and the light reflected by the mask M and incident on the projection optical system PL. It is.
  • the projection optical system PL is also a mask-side non-telecentric system.
  • the mask stage 111 is a six-degree-of-freedom stage that can move in six directions including the X-axis, Y-axis, Z-axis, ⁇ X, ⁇ Y, and ⁇ Z directions while holding the mask M.
  • the mask stage 111 holds the mask M so that the reflective surface of the mask M and the XY plane are substantially parallel.
  • Position information of the mask stage 111 (mask M) is measured by the laser interferometer 141.
  • the laser interferometer 141 measures position information regarding the X axis, the Y axis, and the ⁇ Z direction of the mask stage 111 using a measurement mirror provided on the mask stage 111.
  • the surface position information (position information regarding the Z axis, ⁇ X, and ⁇ Y) of the surface of the mask M held on the mask stage 111 is detected by a focus / leveling detection system (not shown). Based on the measurement result of the laser interferometer 141 and the detection result of the focus / leveling detection system, the position of the mask M held on the mask stage 111 is controlled.
  • the exposure apparatus EX of the present embodiment is disposed at a position facing at least a part of the reflective surface of the mask M as disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-356415, and the reflective surface of the mask M.
  • a blind member 160 for limiting the illumination area of the exposure light EL is provided.
  • the blind member 160 has an opening through which the exposure light EL can pass, and defines an illumination area of the exposure light EL on the reflective surface of the mask M.
  • the projection optical system PL includes a plurality of optical elements 131, 132, 133, 134, 135, 136 to which the exposure light EL from the mask M is supplied, and an image of the pattern of the mask M illuminated with the exposure light EL is a substrate. Project to P. At least one of the optical elements 131, 132, 133, 134, 135, 136 of the projection optical system PL may be the optical element 100 described above.
  • the projection optical system PL includes a first mirror pair including a first reflecting mirror 131 having a concave reflecting surface and a second reflecting mirror 132 having a concave reflecting surface, and a third reflecting mirror having a reflecting surface having a predetermined shape.
  • 133 and a second mirror pair including a fourth reflecting mirror 134 having a concave reflecting surface, a fifth reflecting mirror 135 having a convex reflecting surface, and a sixth reflecting mirror 136 having a concave reflecting surface. It has three mirror pairs.
  • each of the first reflecting mirror 131, the third reflecting mirror 133, and the fifth reflecting mirror 135 is disposed such that the reflecting surface faces the object plane side (mask M side) of the projection optical system PL.
  • Each of the second reflection mirror 132, the fourth reflection mirror 134, and the sixth reflection mirror 136 is disposed such that the reflection surface faces the image plane side (substrate P side) of the projection optical system PL. .
  • the exposure light EL from the mask M forms an intermediate image after being reflected by the first mirror pair in the order of the first reflecting mirror 131 and the second reflecting mirror 132.
  • Light from the intermediate image is reflected by the second mirror pair in the order of the third reflecting mirror 133 and the fourth reflecting mirror 134.
  • the light reflected by the second mirror pair is reflected by the third mirror pair in the order of the fifth reflecting mirror 135 and the sixth reflecting mirror 136 and guided to the substrate P.
  • a field stop FS that restricts the projection area on the substrate P is disposed.
  • An aperture stop AS that limits the numerical aperture NA of the projection optical system PL is disposed between the first reflection mirror 131 and the second reflection mirror 132 of the first mirror pair.
  • the aperture stop AS has an aperture whose size (diameter) is variable. The size (aperture) of the opening is controlled by the aperture stop control unit 151.
  • the substrate stage 112 is a six-degree-of-freedom stage that can move in six directions including the X-axis, the Y-axis, the Z-axis, the ⁇ X, ⁇ Y, and ⁇ Z directions while holding the substrate P.
  • the substrate stage 112 holds the substrate P so that the surface of the substrate P and the XY plane are substantially parallel.
  • the position information of the substrate stage 112 (substrate P) is measured by the laser interferometer 142.
  • the laser interferometer 142 uses the measurement mirror provided on the substrate stage 112 to measure position information regarding the X axis, the Y axis, and the ⁇ Z direction of the substrate stage 112.
  • surface position information position information on the Z axis, ⁇ X, and ⁇ Y
  • surface position information position information on the Z axis, ⁇ X, and ⁇ Y
  • a focus / leveling detection system not shown
  • the position of the substrate P held on the substrate stage 112 is controlled.
  • the illumination optical system IL When exposing the substrate P, the illumination optical system IL illuminates a predetermined illumination area on the mask M with the exposure light EL, and in synchronization with the movement of the mask stage 111 holding the mask M in the Y-axis direction, The substrate stage 112 holding P moves in the Y-axis direction. Thereby, the pattern image of the mask M is projected onto the substrate P via the projection optical system PL.
  • the optical element 100 is used for at least one of the illumination optical system IL and the projection optical system PL of the EUV exposure apparatus EX according to the present embodiment, the optical element 100 is incident on the optical system.
  • the light EL can be reflected with high reflectivity. Therefore, the exposure apparatus EX having the illumination optical system IL and the projection optical system PL showing good reflection characteristics can be obtained.
  • FIG. 11 is a graph showing the incident angle dependence of the reflectance of a Mo / Si multilayer film (50 layer pairs) having an equal periodic structure. The horizontal axis of the graph represents the incident angle (unit: °), and the vertical axis represents the reflectance (unit:%). In the graph of FIG.
  • S-polarized light, P-polarized light, and non-polarized light having wavelengths of 7.0 nm to 7.8 nm are shown as examples.
  • the reflectance peak of the multilayer film 50 becomes narrower as the incident angle increases.
  • the optical element (reflection mirror) arranged at a position where the incident angle of the light EL is increased is required to reflect broadband light even when the incident angle range that can be reflected with high reflectivity is narrow, for example. There is a case. From this point of view, when the optical element 100 is used, good reflection characteristics can be obtained by using the optical element 100 as the optical element disposed at the position where the incident angle of the light EL is the largest.
  • the multilayer film 50 is a Mo / Si multilayer film
  • the material for forming the multilayer film 50 is changed according to the wavelength band of EUV light. be able to.
  • EUV light having a wavelength band near 11.3 nm when EUV light having a wavelength band near 11.3 nm is used, a high reflectance can be obtained by using a Mo / Be multilayer film in which molybdenum layers (Mo layers) and beryllium layers (Be layers) are alternately stacked. Can be obtained.
  • ruthenium As a material for forming the first layer 10 of the multilayer film 50, ruthenium (Ru), molybdenum carbide (Mo 2 C), molybdenum oxide (MoO 2 ), molybdenum silicide (MoSi 2 ). ) Etc. may be used. Further, silicon carbide (SiC) can be used as a material for forming the second layer 20 of the multilayer film 50.
  • the substrate P in the above-described embodiment not only a semiconductor wafer for manufacturing a semiconductor device but also a glass substrate for a display device, a ceramic wafer for a thin film magnetic head, or an original mask (reticle) used in an exposure apparatus ( Synthetic quartz, silicon wafer) or the like is applied.
  • the exposure apparatus EX in addition to the step-and-scan type scanning exposure apparatus (scanning stepper) that scans and exposes the pattern of the mask M by moving the mask M and the substrate P synchronously, the mask M and the substrate P Can be applied to a step-and-repeat type projection exposure apparatus (stepper) in which the pattern of the mask M is collectively exposed while the substrate P is stationary and the substrate P is sequentially moved stepwise.
  • stepper step-and-repeat type projection exposure apparatus
  • a reduced image of the second pattern may be partially overlapped with the first pattern using the projection optical system and may be collectively exposed on the substrate P (stitch method). Lump exposure equipment).
  • the stitch type exposure apparatus can be applied to a step-and-stitch type exposure apparatus in which at least two patterns are partially transferred on the substrate P, and the substrate P is sequentially moved.
  • two mask patterns are synthesized on a substrate via a projection optical system, and one shot area on the substrate is substantially formed by one scanning exposure.
  • the present invention can be applied to an exposure apparatus that performs double exposure simultaneously.
  • the present invention also includes a plurality of substrate stages as disclosed in US Pat. No. 6,341,007, US Pat. No. 6,400,441, US Pat. No. 6,549,269, US Pat. No. 6,590,634, US Pat. No. 6,208,407, US Pat. It can also be applied to a twin stage type exposure apparatus.
  • an exposure apparatus including a substrate stage for holding a substrate, a reference member on which a reference mark is formed, and / or a measurement stage on which various photoelectric sensors are mounted.
  • the present invention can also be applied to.
  • the present invention can also be applied to an exposure apparatus that includes a plurality of substrate stages and measurement stages.
  • the type of exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern onto a substrate P, but an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, an image sensor (CCD).
  • the present invention can be widely applied to an exposure apparatus for manufacturing a micromachine, MEMS, DNA chip, reticle, mask, or the like.
  • the exposure apparatus EX of the present embodiment is manufactured by assembling various subsystems including the respective constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy.
  • various optical systems are adjusted to achieve optical accuracy
  • various mechanical systems are adjusted to achieve mechanical accuracy
  • various electrical systems are Adjustments are made to achieve electrical accuracy.
  • the assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems.
  • an assembly process for each subsystem is performed prior to the assembly process from the various subsystems to the exposure apparatus.
  • comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus.
  • the exposure apparatus can be manufactured in a clean room in which temperature, cleanliness, etc. are controlled.
  • a step 201 for designing the function / performance of the device, a step 202 for producing a mask (reticle) based on this design step, and a substrate as a base material of the device are manufactured.
  • EX exposure apparatus 10 ... first layer 20 ... second layer 30 ... unit laminated structure 40 ... spacer layer 50 ... multilayer film 60 ... periodic block 70 ... diffusion suppression layer 80 ... oxidation suppression layer 100 ... optical element.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Lenses (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

 光学素子は、基材と、基材上に配置され、第一層と第一層上に配置された第二層とを有する単位積層構造が複数積層された多層膜と、単位積層構造同士の層間のうち互いに異なる層間に配置された複数のスペーサ層とを備える。

Description

光学素子、投影光学系、露光装置及びデバイス製造方法
 本発明は、光学素子、投影光学系、露光装置及びデバイス製造方法に関する。
 本願は、2013年5月9日に出願された特願2013-99216号に基づき優先権を主張し、その内容をここに援用する。
 フォトリソグラフィ工程で用いられる露光装置において、例えば下記特許文献に開示されているような、露光光として極端紫外(EUV:Extreme Ultra-Violet)光を用いるEUV露光装置が案出されている。EUV露光装置の投影光学系には、入射した光の少なくとも一部を反射可能な多層膜を有する多層膜反射鏡などの光学素子が用いられる。
 このような多層膜として、例えば等周期多層膜が知られている。この等周期多層膜は、EUV光に対して高い反射率を有することが知られている。等周期多層膜は、第一層(例、モリブデン層)と第二層(例、シリコン層)が等周期に積層形成された構成を有している。一方、高い解像度を得るため投影光学系のNAを大きくすると、EUV光の光線がより広い入射角範囲にわたって入射する。このため、光学系には広い入射角範囲で入射するEUV光を反射することが求められる。しかし、例えば等周期構造を有する多層膜は、EUV光の波長(例、13.5nm)付近の光が広い入射角範囲で入射する場合に広い角度範囲で均一な反射率を得ることが困難であった。
 これに対して、広い入射角範囲で入射する波長範囲に対応するために広帯域膜が提案されている。このような広帯域膜としては、例えば層厚が層ごとに異なっている不等周期膜構造が知られている。等周期構造においては膜構造のパラメータは1周期構造の膜厚、及び、第一層と第二層の膜厚比、の2つであるが、不等周期構造膜の場合、数十層すべての層厚がパラメータとなる。
 EUV光学系では反射特性を高い精度で調整することが求められるため、多層膜を成膜するにあたっては、実際に成膜した多層膜の反射特性を評価し、その後、多層膜の膜構造の修正及び調整を行って目標の特性に近づけていくようにしている。この点、等周期構造を有する多層膜を成膜する場合には、膜構造パラメータは第一層及び第二層の2つに限られているため反射特性の修正及び調整は容易である。
米国特許出願公開第2005/157384号
 しかしながら、不等周期構造多層膜の場合は、目標とする反射特性と成膜した多層膜を実測した特性との差がどの層の厚さの違いによるものなのかを明らかにすることは容易ではなく、最終的に目標とした反射特性に近づけるためには何度もの調整が必要となっていた。このため、膜構造の修正及び調整が容易な多層膜が求められていた。
 本発明の態様は、広い角度範囲で実質的に一定の反射率を得ることが可能であり、膜構造の修正及び調整が容易な多層膜を有する光学素子、投影光学系、露光装置及びデバイス製造方法を提供することを目的とする。
 本発明の第一の態様に従えば、基材と、前記基材上に配置され、第一層と前記第一層上に配置された第二層とを有する単位積層構造が複数積層された多層膜と、前記単位積層構造同士の層間のうち互いに異なる層間に配置された複数のスペーサ層とを備える光学素子が提供される。
 本発明の第二の態様に従えば、複数の反射素子を有し、第一面の像を第二面に投影する投影光学系であって、前記複数の反射素子の少なくとも一つとして、本発明の第一の態様に従う光学素子が用いられている投影光学系が提供される。
 本発明の第三の態様に従えば、露光光で基板を露光する露光装置であって、本発明の第一の態様に従う光学素子を備える露光装置が提供される。
 本発明の第四の態様に従えば、本発明の第三の態様に従う露光装置を用いて基板を露光することと、露光された前記基板を現像することとを含むデバイス製造方法が提供される。
 本発明の態様によれば、広い角度範囲で実質的に一定の反射率を得ることが可能であり、膜構造の修正及び調整が容易な多層膜を有する光学素子、投影光学系、露光装置及びデバイス製造方法を提供することができる。
本実施形態に係る光学素子の一例を示す図。 本実施形態に係る光学素子の構成例を示す表。 多層膜の表面に対する光の入射角度と反射率との関係の一例を示す図。 多層膜に挿入するスペーサの層数と入射角度幅、ピーク反射率との関係を示すグラフ。 多層膜の表面に対する光の入射角度と反射率との関係の一例を示す図。 多層膜の表面に対する光の入射角度と反射率との関係の一例を示す図。 多層膜の表面に対する光の入射角度と反射率との関係の一例を示す図。 多層膜の表面に対する光の入射角度と反射率との関係の一例を示す図。 多層膜の表面に対する光の入射角度と反射率との関係の一例を示す図。 本実施形態に係る露光装置の一例を示す図である。 等周期構造のMo/Si多層膜(50層対)の反射率の入射角依存性を示すグラフ。 本実施形態に係るデバイス製造方法の一例を説明するためのフローチャート。
 [光学素子] 
 以下、本発明の実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下の説明においては、XYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部の位置関係について説明する。水平面内の所定方向をX軸方向、水平面内においてX軸方向と直交する方向をY軸方向、X軸方向及びY軸方向のそれぞれに直交する方向(すなわち鉛直方向)をZ軸方向とする。X軸、Y軸、及びZ軸まわりの回転(傾斜)方向をそれぞれ、θX、θY、及びθZ方向とする。
 図1は、本実施形態に係る光学素子100の一例を示す模式図である。本実施形態では、光学素子100として、多層膜反射鏡を例に挙げて説明する。図1において、光学素子100は、基材Sと、基材S上に交互に積層された第一層10及び第二層20を含み、入射された光ELの少なくとも一部を反射可能な多層膜50とを備えている。
 本実施形態において、多層膜50に入射する光ELは、極端紫外光を含む。極端紫外光は、例えば波長11~14nm程度の軟X線領域の電磁波である。極端紫外光は、多層膜50で反射される。以下の説明において、極端紫外光を適宜、EUV光、と称する。
 なお、多層膜50に入射する光ELが、5~50nm程度の軟X線領域の電磁波でもよいし、5~20nm程度の電磁波でもよい。また、光ELは、193nm以下の波長の電磁波でもよい。例えば、光ELが、ArFエキシマレーザ光(波長193nm)、及びF2レーザ光(波長157nm)等の真空紫外光(VUV光)でもよい。
 基材Sは、例えば超低膨張ガラスで形成される。基材Sとして、例えばコーニング社製ULE、ショット社製Zerodur(登録商標)等が用いられる。
 多層膜50は、所定の周期長dで交互に積層された第一層10及び第二層20を含む。周期長dとは、第一層10の厚さd1と第二層20の厚さd2との和(d1+d2)をいう。光干渉理論に基づいて、第一層10と第二層20との各界面で反射した反射波の位相が一致するように、第一層10の厚さd1及び第二層20の厚さd2のそれぞれが設定される。
 以下の説明において、1組の第一層10と第二層20とを適宜、単位積層構造30、と表記する。本実施形態においては、1つの単位積層構造30に関して、第一層10が第二層20に対して基材S側(図中、-Z側)に配置される。第一層10及び第二層20を有する単位積層構造30が基材S上に積層されることによって、いわゆる等周期構造の多層膜50が形成される。
 基材S上には、例えば数十~数百組の単位積層構造30が積層される。一例として、本実施形態においては、基材S上に50組の単位積層構造30が積層されている。
 第一層10は、EUV光に対する屈折率と真空の屈折率との差が大きい物質で形成されている。第二層20は、EUV光に対する屈折率と真空の屈折率との差が小さい物質で形成されている。本実施形態においては、第一層(重原子層)10は、モリブデン(Mo)で形成される。第二層(軽原子層)20は、シリコン(Si)で形成される。すなわち、本実施形態の多層膜50は、モリブデン層(Mo層)とシリコン層(Si層)とを交互に積層したMo/Si多層膜である。
 真空の屈折率n=1である。また、例えば波長13.5nmのEUV光に対するモリブデンの屈折率nMo=0.92であり、シリコンの屈折率nSi=0.998である。このように、第二層20は、EUV光に対する屈折率が真空の屈折率と実質的に等しい物質で形成される。
 また、多層膜50は、スペーサ層40を含む。スペーサ層40は、単位積層構造30同士の間に配置されている。多層膜50には、複数の単位積層構造30が積層されている。
 したがって、多層膜50には、このような単位積層構造30同士の間に相当する位置(層間位置)が複数設けられることになる。本実施形態では、複数のスペーサ層40は、このような複数の層間位置(単位積層構造30同士の間に相当する位置)のうち、異なる層間位置にそれぞれ配置されている。
 換言すれば、複数のスペーサ層40のうち第1のスペーサ層は、複数の層間位置のうち第1の層間位置に配置され、複数のスペーサ層40のうち第1のスペーサ層とは異なる第2のスペーサ層は、複数の層間位置のうち第1の層間位置とは異なる第2の層間位置に配置される。第1のスペーサ層は、1つの単位積層構造30とその次の単位積層構造30との間に配置され、第2のスペーサ層は、別の1つの単位積層構造30とその次の単位積層構造30との間に配置される。基材Sの表面からの距離は、第1のスペーサ層と第2のスペーサ層との間で異なる。例えば、第1のスペーサ層に比べて、第2のスペーサ層は、基材Sの表面から離れた位置に配置される。同様に、必要に応じて、第3のスペーサ層、第4のスペーサ層・・・を設けることができる。
 複数のスペーサ層40は、それぞれ等しい層厚d4を有している。層厚d4は、それぞれ単位積層構造30の厚さ(周期長)に応じた寸法に形成されている。具体的には、層厚d4は、単位積層構造30の周期長dの1/3~2/3程度の寸法、あるいは、この寸法に周期長dの光学的厚さに等しい寸法を加えた寸法となっている。また、好ましくは、単位積層構造30の周期長dの2/5~3/5程度の寸法、あるいは、この寸法に周期長dの光学的厚さに等しい寸法を加えた層厚となっている。このように、スペーサ層40は、単位積層構造30の厚さに応じた厚さに形成されている。
 本実施形態では、多層膜50は、複数の単位積層構造30と複数のスペーサ層40とで構成され、層厚Daを有する。基材Sと多層膜50との界面から多層膜50の表面までの距離は、多層膜50の層厚Daに等しい。
 多層膜50は、複数のスペーサ層40を有することにより、複数のスペーサ層40によって、複数の等周期ブロック(積層構造)60に分割されている。等周期ブロック60は、複数の単位積層構造30を有する構造体である。本実施形態では、複数のスペーサ層40により、複数の等周期ブロック60が形成されている。
 スペーサ層40は、多層膜50によって反射されるEUV光の波長において、多層膜50を構成する物質より消衰係数が小さい物質を含んでいる。このような物質としては、例えば、C、B、Si、Zr、Nb、Ruなどの物質や、その化合物などが挙げられる。本実施形態では、スペーサ層40が消衰係数に優れたSiによって形成された構成となっている。なお、スペーサ層40がSiによって形成される場合、同じくSiによって形成される第二層20上に同一材料の層が形成されることになる。したがって、第二層20を形成する際のSi膜の厚さを、第二層20の厚さとスペーサ層40の厚さとの和となるようにSi膜を形成することにより、第二層20とスペーサ層40とが同一工程で形成されるようになっている。
 次に、多層膜50に含まれるスペーサ層40の個数と、多層膜50で反射される光(無偏光)の入射角度依存性との関係について説明する。 
 図2は、5種類の多層膜について、スペーサ層40の個数(膜厚)と等周期ブロック60に含まれる単位積層構造30の個数とを対比させて示す表である。
 多層膜1~多層膜5は、それぞれMo(モリブデン)層及びSi(シリコン)層からなる等周期構造を有する多層膜である。等周期構造におけるMo層の厚さは3.0nm、Si層の厚さは4.5nmである。多層膜1~多層膜5は、例えばMo層とSi層の間に界面拡散層が生成されない理想的な構造であるとしている。また、スペーサ層の構成材料としてSiが用いられている。
 図2に示すように、多層膜1は、スペーサ層を含まない。このため、多層膜1は等周期ブロックを1つ含んでいる。また、等周期ブロックに含まれる単位積層構造の総数は50である。
 多層膜2は、スペーサ層を1層含んでいる。このため、多層膜2は、等周期ブロックを2つ含んでいる。多層膜2のうち表面側の等周期ブロックに含まれる単位積層構造の総数は、30である。また、基材S側に配置される等周期ブロックに含まれる単位積層構造の総数は、8である。また、スペーサ層の層厚は、3.8nmである。
 多層膜3は、スペーサ層を2層含んでいる。このため、多層膜3は、等周期ブロックを3つ含んでいる。多層膜3のうち表面側の等周期ブロックに含まれる単位積層構造の総数は、25である。また、多層膜3のうち上層側から2つ目の等周期ブロックに含まれる単位積層構造の総数は、12である。また、基材S側に配置される等周期ブロックの総数は、6である。また、2つのスペーサ層の層厚は、共に3.7nmである。
 多層膜4は、スペーサ層を3層含んでいる。このため、多層膜4は、等周期ブロックを4つ含んでいる。多層膜4のうち表面側の等周期ブロックに含まれる単位積層構造の総数は、20である。また、多層膜4のうち上層側から2つ目の等周期ブロックに含まれる単位積層構造の総数は、9である。また、多層膜4のうち上層側から3つ目の等周期ブロックに含まれる単位積層構造の総数は、6である。また、基材S側に配置される等周期ブロックの総数は、2である。また、3つのスペーサ層の層厚は、共に3.6nmである。
 多層膜5は、スペーサ層を4層含んでいる。このため、多層膜5は、等周期ブロックを5つ含んでいる。多層膜5のうち表面側の等周期ブロックに含まれる単位積層構造の総数は、17である。また、多層膜5のうち上層側から2つ目の等周期ブロックに含まれる単位積層構造の総数は、8である。また、多層膜5のうち上層側から3つ目の等周期ブロックに含まれる単位積層構造の総数は、8である。また、多層膜5のうち上層側から4つ目の等周期ブロックに含まれる単位積層構造の総数は、6である。また、基材S側に配置される等周期ブロックの総数は、2である。また、4つのスペーサ層の層厚は、共に3.6nmである。
 図3は、図2に示す5種類の多層膜1~多層膜5について、光(無偏光)が入射する際の入射角と反射率との関係を示すグラフである。グラフの横軸は入射角(単位は°)であり、グラフの横軸は反射率(単位は%)である。また、図4は、多層膜に含まれるスペーサの総数と、ピーク反射率の9割が得られる角度幅との関係を示すグラフである。グラフの横軸はスペーサ総数であり、グラフの縦軸は角度幅(単位は°)である。
 図3に示すように、多層膜1は、入射角が22°程度のときに反射率が実質的に最大(70%程度)となる。一方、多層膜1は、入射角が22°よりも小さくなるにつれて、また、入射角が22°よりも大きくなるにつれて、徐々に反射率が低下している。また、図4に示すように、ピーク反射率の9割が得られる角度幅は、約4°となっている。
 また、多層膜2は、入射角が20°~22°程度の場合に反射率が実質的に最大(62%程度)となる。一方、多層膜2は、入射角が20°よりも小さくなるにつれて、また、入射角が22°よりも大きくなるにつれて、徐々に反射率が低下している。このように、多層膜2は、入射角が20°~22°において実質的に一定の反射率を維持している。多層膜2は、反射率の最大値自体は多層膜1よりも小さいものの、反射率が実質的に最大となる入射角の範囲が多層膜1に比べて広くなっている。また、図4に示すように、ピーク反射率の9割が得られる角度幅は、約5.5°となっている。
 また、多層膜3は、入射角が18°~23°程度の場合に反射率が実質的に最大(58%程度)となる。一方、多層膜3は、入射角が18°よりも小さくなるにつれて、また、入射角が23°よりも大きくなるにつれて、徐々に反射率が低下している。このように、多層膜3は、入射角が18°~23°において実質的に一定の反射率を維持している。多層膜3は、反射率の最大値自体は多層膜1や多層膜2よりも小さいものの、反射率が実質的に最大となる入射角の範囲が多層膜1及び多層膜2に比べて広くなっている。また、図4に示すように、ピーク反射率の9割が得られる角度幅は、約7.5°となっている。
 また、多層膜4は、入射角が17°~24°程度の場合に反射率が実質的に最大(50%程度)となる。一方、多層膜4は、入射角が17°よりも小さくなるにつれて、また、入射角が24°よりも大きくなるにつれて、徐々に反射率が低下している。このように、多層膜4は、入射角が17°~24°において実質的に一定の反射率を維持している。多層膜4は、反射率の最大値自体は多層膜1~多層膜3よりも小さいものの、反射率が実質的に最大となる入射角の範囲が多層膜1~多層膜3に比べて広くなっている。また、図4に示すように、ピーク反射率の9割が得られる角度幅は、約9°となっている。
 また、多層膜5は、入射角が15°~26°程度の場合に反射率が実質的に最大(40~45%程度)となる。一方、多層膜5は、入射角が15°よりも小さくなるにつれて、また、入射角が26°よりも大きくなるにつれて、徐々に反射率が低下している。このように、多層膜5は、入射角が15°~26°において実質的に一定の反射率を維持している。多層膜5は、反射率の最大値自体は多層膜1~多層膜4よりも小さいものの、反射率が実質的に最大となる入射角の範囲が多層膜1~多層膜4に比べて広くなっている。また、図4に示すように、ピーク反射率の9割が得られる角度幅は、約13°となっている。
 図2~図4に示すように、多層膜50に挿入するスペーサ層40を2層以上にすることにより、多層膜50において光反射率の最大値に対して一定割合以上の光反射率が得られる入射角度の範囲が拡がることになる。また、スペーサ層40の数が増えるに従って多層膜50のピーク反射率は低下するものの、反射率の変動が1割以下の実質的に一定の反射率が得られるような入射角の角度幅は大幅に増大する。なお、入射角の角度範囲を更に広げる場合には、挿入するスペーサ層40の数を増やせばよい。
 上記のように構成された多層膜50を成膜する場合、まず多層膜50を実際に成膜する。そして、成膜した多層膜50の反射特性を評価し、その後、多層膜50の膜構造の修正及び調整を行って目標の特性に近づけるようにする。
 本実施形態では、多層膜50は、複数の等周期ブロック60の間に層厚d4の複数のスペーサ層40が挿入された構造である。したがって、多層膜50の構造を決めるパラメータは、等周期ブロック60に含まれる第一層10及び第二層20の厚さd1、d2と、スペーサ層40の厚さd4の3つだけである。このため、この3つのパラメータを調整すればよいため、目標とする反射特性を得るための調整が容易となる。
 等周期ブロック60の調整を行う場合、例えば、総数が40~50の単位積層構造30を成膜し、その反射率ピーク角度位置を実測すればよい。また、等周期ブロック60自体の調整は周期長dの調整のみで済むため容易である。
 等周期ブロック60の調整を終えた後、スペーサ層40の厚さを調整する。スペーサ層40を挿入した多層膜50を成膜して目標とする特性に合わせ込んでいくことで目標の反射特性に近づけることができる。
 図5は、図2に示す多層膜4と同一構成の多層膜に光(無偏光)が入射する際の入射角と反射率との関係を示すグラフである。 
 図5に示すように、多層膜4に含まれるスペーサ層の厚さが3.6nmの場合、所定の入射角の範囲において実質的に一定の反射率(50%程度)となる。一方、スペーサ層の厚さを3.4nmとした場合、上記範囲のうち高入射角側の反射率が大きくなり(53%程度)、低入射角側の光反射率が小さくなる(47%程度)。
 図5に示すように、スペーサ層40の厚さのズレは、反射率のピーク部分の傾きに影響する。このため、目標とする反射率の角度分布を得るため、スペーサ層40の膜厚をどのように調整すれば良いかは、図5に示すような反射率の評価結果を用いて容易に判断することができる。
 また、入射光を無偏光ではなくS偏光、P偏光とした場合、光の入射角と多層膜50の反射率との関係が異なってくる。図6~図8は、無偏光、S偏光、P偏光を多層膜50に入射させた場合の入射角度と反射率との関係を示すグラフである。グラフの横軸は入射角度(単位は°)であり、グラフの縦軸は反射率(単位は%)である。
 図6に示される特性は、上記の多層膜4と同一構成において、スペーサ層40の厚さを3.6nmとした場合の特性である。 
 図6に示すように、スペーサ層40の厚さを3.6nmとした場合、無偏光の光を多層膜50に入射することにより、所定の角度範囲(例、15°~25°)において実質的に一定の反射率(50%程度)が得られる。
 図7に示される特性は、上記の多層膜4と同一構成において、スペーサ層40の厚さを4.0nmとした場合の特性である。 
 図7に示すように、スペーサ層40の厚さを4.0nmとした場合、S偏光の光を多層膜50に入射することにより、所定の角度範囲(例、15°~25°)において実質的に一定の反射率(60%程度)が得られる。なお、S偏光を多層膜50に入射した場合、無偏光の場合に比べて、得られる反射率が高くなる。
 図8に示される特性は、上記の多層膜4と同一構成において、スペーサ層40の厚さを3.3nmとした場合の特性である。 
 図8に示すように、スペーサ層40の厚さを3.3nmとした場合、P偏光の光を多層膜50に入射することにより、所定の角度範囲(例、15°~25°)において実質的に一定の反射率(40%程度)が得られる。 
 このように、入射光の偏光に応じた設計が可能となる。
 次に、複数のスペーサ層40を多層膜50に挿入することにより、広い角度範囲で一定の反射率が得られる理由を説明する。 
 図9は、4種類の多層膜(多層膜A~多層膜D)についての反射率を示したものである。
 多層膜Aは、スペーサ層を含まない。このため、多層膜Aは等周期ブロックを1つ含んでいる。また、等周期ブロックに含まれる単位積層構造の総数は20である。
 多層膜Bは、スペーサ層を1層含んでいる。このため、多層膜Bは、等周期ブロックを2つ含んでいる。多層膜Bのうち表面側の等周期ブロックに含まれる単位積層構造の総数は、20である。また、基材S側に配置される等周期ブロックに含まれる単位積層構造の総数は、9である。また、スペーサ層の層厚は、3.6nmである。
 多層膜Cは、スペーサ層を2層含んでいる。このため、多層膜Cは、等周期ブロックを3つ含んでいる。多層膜Cのうち表面側の等周期ブロックに含まれる単位積層構造の総数は、20である。また、多層膜Cのうち上層側から2つ目の等周期ブロックに含まれる単位積層構造の総数は、9である。また、基材S側に配置される等周期ブロックの総数は、6である。また、2つのスペーサ層の層厚は、共に3.6nmである。
 多層膜Dは、スペーサ層を3層含んでいる。このため、多層膜Dは、等周期ブロックを4つ含んでいる。多層膜Dのうち表面側の等周期ブロックに含まれる単位積層構造の総数は、20である。また、多層膜Dのうち上層側から2つ目の等周期ブロックに含まれる単位積層構造の総数は、9である。また、多層膜Dのうち上層側から3つ目の等周期ブロックに含まれる単位積層構造の総数は、6である。また、基材S側に配置される等周期ブロックの総数は、2である。また、3つのスペーサ層の層厚は、共に3.6nmである。
 以下、多層膜A~Dについて、上記多層膜50の構成に対応する構成については、同一の符号を付して説明する。図9に示すように、多層膜Aは、一般的な等周期多層膜の反射率特性と同様の反射率特性が得られる。多層膜Bは、多層膜Aにスペーサ層40を挟んで9つの単位積層構造30を基材Sとの間に挿入することで形成される。多層膜Bは、多層膜Aに比べて、ピーク角度付近の反射率が低下すると共に、その周辺の反射率が上昇する。
 この現象について説明する。多層膜が等周期構造の場合、ピーク角度(例、21.3°)付近では最表面から最も基材Sに近い界面まですべての界面からの反射光の位相が揃っている。このため、単位積層構造30の数が増えるほど反射率は上昇する。ただし、EUV光ではすべての物質が吸収を有するため反射に寄与する層数には上限がある。一例として、波長13.5nm付近のEUV光をMo/Si多層膜に入射させる場合、単位積層構造30の総数は50程度が限界となる。
 単位積層構造30の間に厚さ3.6nmのスペーサ層40が挟まれた場合、スペーサ層40の上下で反射波の位相が180°ずれる。よって、基材S側に等周期ブロック60(9つの単位積層構造30)が挿入されることにより、位相の反転した反射波が重なり合うことになりピーク反射率が低下する。
 ピークの周辺の入射角度(17°付近と24°付近)では、各界面の反射波の位相は完全には一致しておらず、単位積層構造30の数が増えていくと、位相のずれは大きくなる。そして、単位積層構造30の数がある数を超えると、反射率は低下に転じる。しかし、スペーサ層40を挟んで挿入された等周期ブロック60(9つの単位積層構造30)とは位相が揃うようになり、反射率は上昇する。
 このように、スペーサ層40を挟んで等周期ブロック60を加えることにより、反射光位相が揃うことになる。このときスペーサ層40は、多層膜50によって反射される光の位相のずれを調整する調整層として用いられる。また、等周期ブロック60を加えた場合、反射光の位相が揃うことで反射率が上昇する入射角や、反射光の位相がずれることで反射率が低下する入射角が存在する。したがって、更にスペーサ層40を挟んで等周期ブロック60を挿入することにより、所定の角度範囲において反射率のバランスをとることができ、最終的に広い角度範囲で実質的に一定の反射率を得ることが可能となる。
 以上のように、本実施形態によれば、基材Sと、基材S上に配置され、第一層10と第一層10上に配置された第二層20とを有する単位積層構造30が複数積層された多層膜50と、単位積層構造30同士の層間のうち互いに異なる層間に配置された複数のスペーサ層40とを備えるため、広い角度範囲で実質的に一定の反射率を得ることが可能であり、膜構造の修正及び調整が容易な多層膜を有する光学素子100が得られる。
 [露光装置] 
 図10は、本実施形態に係る露光装置EXの一例を示す図である。本実施形態の露光装置EXは、EUV光で基板Pを露光するEUV露光装置である。上述した光学素子100が、本実施形態に係るEUV露光装置EXの光学系として用いられる。
 図10において、露光装置EXは、マスクMを保持しながら移動可能なマスクステージ111と、露光光ELが照射される基板Pを保持しながら移動可能な基板ステージ112と、EUV光を含む光(露光光)ELを発生する光源装置113と、光源装置113から射出される露光光ELでマスクステージ111に保持されているマスクMを照明する照明光学系ILと、露光光ELで照明されたマスクMのパターンの像を基板Pに投影する投影光学系PLと、少なくとも露光光ELが通過する所定空間を形成し、その所定空間を真空状態(例えば、1.3×10-3Pa以下)にする真空システムを有するチャンバ装置VCとを備えている。
 基板Pは、半導体ウエハ等の基材上に感光膜が形成されたものを含む。マスクMは、基板Pに投影されるデバイスパターンが形成されたレチクルを含む。本実施形態では、露光光ELとしてEUV光が用いられ、マスクMは、EUV光を反射可能な多層膜を有する反射型マスクである。反射型マスクの多層膜は、例えばMo/Si多層膜、Mo/Be多層膜を含む。露光装置EXは、多層膜が形成されたマスクMの反射面(パターン形成面)を露光光ELで照明し、そのマスクMで反射した露光光ELの反射光で基板Pを露光する。
 本実施形態の光源装置113は、レーザ励起型プラズマ光源装置であって、レーザ光を射出するレーザ装置115と、キセノンガス等のターゲット材料を供給する供給部材116とを含む。レーザ装置115は、赤外領域及び可視領域の波長のレーザ光を発生する。
 レーザ装置115は、例えば半導体レーザ励起によるYAGレーザ、エキシマレーザ、炭酸ガスレーザ等を含む。
 また、光源装置113は、レーザ装置115から射出されたレーザ光を集光する第一集光光学系117を備えている。第一集光光学系117は、レーザ装置115から射出されたレーザ光を位置119に集光する。供給部材116は、位置119にターゲット材料を供給する供給口を有する。第一集光光学系117で集光されたレーザ光は、供給部材116から供給されるターゲット材料に照射される。レーザ光が照射されたターゲット材料は、レーザ光のエネルギーによって高温になり、プラズマ状態に励起され、低ポテンシャル状態へ遷移する際に、EUV光を含む光を発生する。なお、光源装置113は、放電型プラズマ光源装置でもよい。
 光源装置113は、極端紫外領域のスペクトルを有する光(EUV光)を発生する。露光装置EXは、位置119の周囲に配置された第二集光ミラー118を備えている。第二集光ミラー118は、楕円鏡を含む。楕円鏡を含む第二集光ミラー118は、その第一焦点と位置119とが実質的に一致するように配置されている。
 第二集光ミラー118により第二焦点に集光されたEUV光(露光光)ELは、照明光学系ILに供給される。照明光学系ILは、光源装置113からの露光光ELが供給される複数の光学素子120、121、122、123、124を含み、光源装置113からの露光光ELでマスクMを照明する。照明光学系ILの光学素子120、121、122、123、124の少なくとも一つが、上述した光学素子100でもよい。
 照明光学系ILの光学素子120は、コリメータミラーとして機能する第三集光ミラーであって、第二集光ミラー118からの露光光ELが供給される。第二集光ミラー118からの露光光ELは、第三集光ミラー120に導かれる。
 第三集光ミラー120は、放物面鏡を含む。第三集光ミラー120は、その焦点と第二集光ミラー118の第二焦点とが実質的に一致するように配置されている。
 また、照明光学系ILは、オプティカルインテグレータ125を有する。本実施形態において、オプティカルインテグレータ125は、反射型フライアイミラー光学系を含む。
 反射型フライアイミラー光学系125は、入射側フライアイミラー121及び射出側フライアイミラー122を含む。第三集光ミラー120は、露光光ELを、実質的にコリメートした状態で、フライアイミラー光学系125の入射側フライアイミラー121に供給する。
 入射側フライアイミラー121は、例えば米国特許第6452661号等に開示されているように、並列に配列された照野と実質的に相似な円弧状の反射面を有する複数の単位ミラー(反射素子群)を含む。入射側フライアイミラー121は、マスクMの反射面及び基板Pの表面と光学的に共役な位置又はその近傍に配置されている。
 また、射出側フライアイミラー122は、入射側フライアイミラー121の複数の単位ミラーと対応する複数の単位ミラー(反射素子群)を含む。射出側フライアイミラー122の単位ミラーのそれぞれは、矩形状であり、並列に配列されている。射出側フライアイミラー122は、投影光学系PLの瞳位置と光学的に共役な位置又はその近傍に配置されている。
 第三集光ミラー120からのコリメートされた光は、入射側フライアイミラー121に入射して、その入射側フライアイミラー121によって波面分割される。入射側フライアイミラー121の単位ミラーのそれぞれは、入射した光を集光し、複数の集光点(光源像)を形成する。それら複数の集光点が形成される位置近傍のそれぞれには、射出側フライアイミラー122の複数の単位ミラーが配置されている。射出側フライアイミラー122の射出面又はその近傍には、射出側フライアイミラー122の単位ミラーの数に応じた複数の集光点(二次光源)が形成される。
 また、照明光学系ILは、コンデンサミラー123を有する。コンデンサミラー123は、コンデンサミラー123の焦点位置とフライアイミラー光学系125により形成される二次光源の位置近傍とが実質的に一致するように配置されている。フライアイミラー光学系125により形成された二次光源からの光は、コンデンサミラー123で反射されるとともに集光され、光路折り曲げミラー124を介して、マスクMに供給される。
 このように、複数の光学素子120~124を含む照明光学系ILは、光源装置113から射出される露光光ELでマスクM上の照明領域を均一に照明する。照明光学系ILにより照明され、マスクMで反射した露光光ELは、投影光学系PLに入射する。
 なお、マスクMに供給される光と、マスクMで反射して投影光学系PLに入射する光との光路分離を空間的に行うために、本実施形態の照明光学系ILは、非テレセントリック系である。また、投影光学系PLもマスク側非テレセントリック系である。
 マスクステージ111は、マスクMを保持しながら、X軸、Y軸、Z軸、θX、θY、及びθZ方向の6つの方向に移動可能な6自由度ステージである。本実施形態においては、マスクステージ111は、マスクMの反射面とXY平面とが実質的に平行となるように、マスクMを保持する。マスクステージ111(マスクM)の位置情報は、レーザ干渉計141によって計測される。レーザ干渉計141は、マスクステージ111に設けられた計測ミラーを用いて、マスクステージ111のX軸、Y軸、及びθZ方向に関する位置情報を計測する。
 また、マスクステージ111に保持されているマスクMの表面の面位置情報(Z軸、θX、及びθYに関する位置情報)は、不図示のフォーカス・レベリング検出システムによって検出される。レーザ干渉計141の計測結果及びフォーカス・レベリング検出システムの検出結果に基づいて、マスクステージ111に保持されているマスクMの位置が制御される。
 また、本実施形態の露光装置EXは、例えば特開2004-356415号公報等に開示されているような、マスクMの反射面の少なくとも一部と対向する位置に配置され、マスクMの反射面での露光光ELの照明領域を制限するブラインド部材160を備えている。ブラインド部材160は、露光光ELが通過可能な開口を有し、マスクMの反射面での露光光ELの照明領域を規定する。
 投影光学系PLは、マスクMからの露光光ELが供給される複数の光学素子131、132、133、134、135、136を含み、露光光ELで照明されたマスクMのパターンの像を基板Pに投影する。投影光学系PLの光学素子131、132、133、134、135、136の少なくとも一つが、上述した光学素子100でもよい。
 投影光学系PLは、凹面状の反射面を有する第一反射ミラー131及び凹面状の反射面を有する第二反射ミラー132を含む第一ミラー対と、所定形状の反射面を有する第三反射ミラー133及び凹面状の反射面を有する第4反射ミラー134を含む第二ミラー対と、凸面状の反射面を有する第5反射ミラー135及び凹面状の反射面を有する第6反射ミラー136を含む第三ミラー対とを備えている。
 それぞれのミラー対のうち、第一反射ミラー131、第三反射ミラー133、及び第5反射ミラー135のそれぞれは、反射面が投影光学系PLの物体面側(マスクM側)を向くように配置されており、第二反射ミラー132、第4反射ミラー134、及び第6反射ミラー136のそれぞれは、反射面が投影光学系PLの像面側(基板P側)を向くように配置されている。
 マスクMからの露光光ELは、第一反射ミラー131及び第二反射ミラー132の順に第一ミラー対で反射された後に中間像を形成する。中間像からの光は、第三反射ミラー133及び第4反射ミラー134の順に第二ミラー対で反射される。第二ミラー対で反射された光は、第5反射ミラー135及び第6反射ミラー136の順に第三ミラー対で反射されて基板Pへ導かれる。中間像が形成される位置には、基板P上の投影領域を制限する視野絞りFSが配置されている。
 第一ミラー対の第一反射ミラー131と第二反射ミラー132との間には、投影光学系PLの開口数NAを制限する開口絞りASが配置されている。開口絞りASは、大きさ(口径)が可変な開口を有する。開口の大きさ(口径)は、開口絞り制御ユニット151により制御される。
 基板ステージ112は、基板Pを保持しながら、X軸、Y軸、Z軸、θX、θY、及びθZ方向の6つの方向に移動可能な6自由度ステージである。本実施形態においては、基板ステージ112は、基板Pの表面とXY平面とが実質的に平行となるように、基板Pを保持する。基板ステージ112(基板P)の位置情報は、レーザ干渉計142によって計測される。レーザ干渉計142は、基板ステージ112に設けられた計測ミラーを用いて、基板ステージ112のX軸、Y軸、及びθZ方向に関する位置情報を計測する。また、基板ステージ112に保持されている基板Pの表面の面位置情報(Z軸、θX、及びθYに関する位置情報)は、不図示のフォーカス・レベリング検出システムによって検出される。
 レーザ干渉計142の計測結果及びフォーカス・レベリング検出システムの検出結果に基づいて、基板ステージ112に保持されている基板Pの位置が制御される。
 基板Pを露光するときには、照明光学系ILがマスクM上の所定の照明領域を露光光ELで照明しながら、マスクMを保持したマスクステージ111のY軸方向への移動と同期して、基板Pを保持した基板ステージ112がY軸方向へ移動する。これにより、マスクMのパターンの像が、投影光学系PLを介して基板Pに投影される。
 以上説明したように、本実施形態によれば、光学素子100が、本実施形態に係るEUV露光装置EXの照明光学系IL及び投影光学系PLの少なくとも一方に用いられるため、光学系に入射した光ELを高い反射率で反射することができる。したがって、良好な反射特性を示す照明光学系IL、投影光学系PLを有する露光装置EXが得られる。
 なお、照明光学系IL、投影光学系PLに対して光学素子100を用いる場合、光ELの入射角度範囲が最も広い光学素子として用いることができる。これにより、良好な反射特性が得られる。 
 また、照明光学系IL、投影光学系PLに対して光学素子100を用いる場合、例えば光ELの入射角度が最も大きい位置に配置される光学素子としても用いることができる。
 図11は、等周期構造のMo/Si多層膜(50層対)の反射率の入射角依存性を示すグラフである。グラフの横軸は入射角(単位は°)を示し、縦軸は反射率(単位は%)を示している。図11のグラフでは、波長が7.0nm~7.8nmのS偏光、P偏光及び無偏光を例に挙げて示している。図11に示すように、多層膜50の反射率のピークは、入射角が大きくなると幅が狭くなる。このため、光ELの入射角が大きくなる位置に配置される光学素子(反射ミラー)は、例えば高反射率で反射可能な入射角度範囲が狭くても、広帯域の光を反射することが求められる場合がある。このような観点から、光学素子100を用いる場合、上記のように光ELの入射角度が最も大きい位置に配置される光学素子として用いることで、良好な反射特性が得られる。
 なお、上述の各実施形態においては、多層膜50がMo/Si多層膜である場合を例にして説明したが、例えばEUV光の波長帯域に応じて、多層膜50を形成する材料を変更することができる。例えば、11.3nm付近の波長帯域のEUV光を用いる場合には、モリブデン層(Mo層)とベリリウム層(Be層)とを交互に積層したMo/Be多層膜を用いることで、高い反射率を得ることができる。
 また、上述の各実施形態において、多層膜50の第一層10を形成するための物質として、ルテニウム(Ru)、炭化モリブデン(MoC)、酸化モリブデン(MoO)、珪化モリブデン(MoSi)等を用いてもよい。また、多層膜50の第二層20を形成する物質として、炭化シリコン(SiC)を用いることができる。
 なお、上述の実施形態の基板Pとしては、半導体デバイス製造用の半導体ウエハのみならず、ディスプレイデバイス用のガラス基板、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスク又はレチクルの原版(合成石英、シリコンウエハ)等が適用される。
 露光装置EXとしては、マスクMと基板Pとを同期移動してマスクMのパターンを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)の他に、マスクMと基板Pとを静止した状態でマスクMのパターンを一括露光し、基板Pを順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。
 さらに、ステップ・アンド・リピート方式の露光において、第一パターンと基板Pとを実質的に静止した状態で、投影光学系を用いて第一パターンの縮小像を基板P上に転写した後、第二パターンと基板Pとを実質的に静止した状態で、投影光学系を用いて第二パターンの縮小像を第一パターンと部分的に重ねて基板P上に一括露光してもよい(スティッチ方式の一括露光装置)。また、スティッチ方式の露光装置としては、基板P上で少なくとも2つのパターンを部分的に重ねて転写し、基板Pを順次移動させるステップ・アンド・スティッチ方式の露光装置にも適用できる。
 また、例えば米国特許第6611316号に開示されているように、2つのマスクのパターンを、投影光学系を介して基板上で合成し、1回の走査露光によって基板上の1つのショット領域を実質的に同時に二重露光する露光装置などにも本発明を適用することができる。
 また、本発明は、米国特許6341007号、米国特許6400441号、米国特許6549269号、及び米国特許6590634号、米国特許6208407号、米国特許6262796号などに開示されているような複数の基板ステージを備えたツインステージ型の露光装置にも適用できる。
 更に、例えば米国特許第6897963号等に開示されているように、基板を保持する基板ステージと基準マークが形成された基準部材及び/又は各種の光電センサを搭載した計測ステージとを備えた露光装置にも本発明を適用することができる。また、複数の基板ステージと計測ステージとを備えた露光装置にも適用することができる。
 露光装置EXの種類としては、基板Pに半導体素子パターンを露光する半導体素子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の露光装置、薄膜磁気ヘッド、撮像素子(CCD)、マイクロマシン、MEMS、DNAチップ、あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。
 本願実施形態の露光装置EXは、本願請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程が行われる。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度及びクリーン度等が管理されたクリーンルームで行うことができる。
 [デバイス製造方法] 
 半導体デバイス等のデバイスは、図12に示すように、デバイスの機能・性能設計を行うステップ201、この設計ステップに基づいたマスク(レチクル)を製作するステップ202、デバイスの基材である基板を製造するステップ203、前述した実施形態に従って、マスクのパターンからの露光光で基板Pを露光すること、及び露光された基板を現像することを含む基板処理(露光処理)を有する基板処理ステップ204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)205、検査ステップ206等を経て製造される。
 なお、上述の各実施形態の要件は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。また、法令で許容される限りにおいて、上述の各実施形態及び変形例で引用した装置等に関する全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。
 本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。 
 例えば、図1に示すように、第一層10と第二層20との間に、第一層10及び第二層20を構成する物質の拡散を抑制する拡散抑制層70が配置された構成であってもよい。また、多層膜50の表層に酸化抑制層80が配置された構成であってもよい。
 EX…露光装置 10…第一層 20…第二層 30…単位積層構造 40…スペーサ層 50…多層膜 60…等周期ブロック 70…拡散抑制層 80…酸化抑制層 100…光学素子。

Claims (13)

  1.  基材と、
     前記基材上に配置され、第一層と前記第一層上に配置された第二層とを有する単位積層構造が複数積層された多層膜と、
     前記単位積層構造同士の層間のうち互いに異なる層間に配置された複数のスペーサ層と
     を備える光学素子。
  2.  前記スペーサ層は、前記多層膜によって反射される光の位相のずれを調整する調整層である
     請求項1に記載の光学素子。
  3.  複数の前記スペーサ層は、等しい厚さに形成されている
     請求項1又は請求項2に記載の光学素子。
  4.  前記スペーサ層は、前記単位積層構造の厚さに応じた厚さに形成されている
     請求項1から請求項3のうちいずれか一項に記載の光学素子。
  5.  前記スペーサ層は、前記単位積層構造の厚さの1/3~2/3の厚さに形成されている
     請求項1から請求項4のうちいずれか一項に記載の光学素子。
  6.  前記スペーサ層は、前記単位積層構造を構成する物質よりも前記光の消衰係数が小さくなる物質を含んでいる
     請求項1から請求項5のうちいずれか一項に記載の光学素子。
  7.  前記多層膜は、複数の前記スペーサ層によって、各々が複数の前記単位積層構造を有する複数の積層構造に分割されており、
     最も表層側の前記スペーサ層よりも表層側に配置される前記積層構造に含まれる前記単位積層構造の数は、前記光の反射に寄与する他の前記積層構造に含まれる前記単位積層構造の数の1.5倍以上である
     請求項1から請求項6のうちいずれか一項に記載の光学素子。
  8.  前記第一層と前記第二層との間には、前記第一層及び前記第二層を構成する物質の拡散を抑制する拡散抑制層が配置されている
     請求項1から請求項7のうちいずれか一項に記載の光学素子。
  9.  前記多層膜は、表層に配置された酸化抑制層を有する
     請求項1から請求項8のうちいずれか一項に記載の光学素子。
  10.  複数の反射素子を有し、第一面の像を第二面に投影する投影光学系であって、
     前記複数の反射素子の少なくとも一つとして、請求項1から請求項9のうちいずれか一項に記載の光学素子が用いられている
     投影光学系。
  11.  前記第一面からの光は複数の前記反射素子を介して前記第二面に照射され、
     複数の前記反射素子のうち、少なくとも前記光の入射角度範囲が最も広い反射素子又は前記光の入射角度が最も大きい反射素子として、前記光学素子が用いられている
     請求項10に記載の投影光学系。
  12.  露光光で基板を露光する露光装置であって、
     請求項1から請求項9のうちいずれか一項に記載の光学素子を備える
     露光装置。
  13.  請求項12に記載の露光装置を用いて基板を露光することと、
     露光された前記基板を現像することと
     を含むデバイス製造方法。
PCT/JP2014/062447 2013-05-09 2014-05-09 光学素子、投影光学系、露光装置及びデバイス製造方法 WO2014181858A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020177005348A KR20170027862A (ko) 2013-05-09 2014-05-09 광학 소자, 투영 광학계, 노광 장치 및 디바이스 제조 방법
KR1020187012287A KR20180050760A (ko) 2013-05-09 2014-05-09 광학 소자, 투영 광학계, 노광 장치 및 디바이스 제조 방법
JP2015515902A JPWO2014181858A1 (ja) 2013-05-09 2014-05-09 光学素子、投影光学系、露光装置及びデバイス製造方法
EP14795365.7A EP2998980A4 (en) 2013-05-09 2014-05-09 OPTICAL ELEMENT, OPTICAL PROJECTION SYSTEM, EXPOSURE DEVICE AND METHOD FOR PRODUCING THE DEVICE
KR1020157033754A KR20160003140A (ko) 2013-05-09 2014-05-09 광학 소자, 투영 광학계, 노광 장치 및 디바이스 제조 방법
US14/930,967 US10353120B2 (en) 2013-05-09 2015-11-03 Optical element, projection optical system, exposure apparatus, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-099216 2013-05-09
JP2013099216 2013-05-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/930,967 Continuation US10353120B2 (en) 2013-05-09 2015-11-03 Optical element, projection optical system, exposure apparatus, and device manufacturing method

Publications (1)

Publication Number Publication Date
WO2014181858A1 true WO2014181858A1 (ja) 2014-11-13

Family

ID=51867330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062447 WO2014181858A1 (ja) 2013-05-09 2014-05-09 光学素子、投影光学系、露光装置及びデバイス製造方法

Country Status (6)

Country Link
US (1) US10353120B2 (ja)
EP (1) EP2998980A4 (ja)
JP (2) JPWO2014181858A1 (ja)
KR (3) KR20160003140A (ja)
TW (2) TWI664452B (ja)
WO (1) WO2014181858A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017224819A (ja) * 2016-06-16 2017-12-21 アイメック・ヴェーゼットウェーImec Vzw 極端紫外線(euv)リソグラフィの実行方法
WO2020153228A1 (ja) * 2019-01-21 2020-07-30 Agc株式会社 反射型マスクブランク、反射型マスク、および反射型マスクブランクの製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016118940B3 (de) * 2016-10-06 2018-01-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multilayer-Spiegel zur Reflexion von EUV-Strahlung und Verfahren zu dessen Herstellung
DE102019200193B3 (de) * 2019-01-09 2020-02-06 Carl Zeiss Smt Gmbh Optisches System für eine Projektionsbelichtungsanlage
US11782337B2 (en) 2021-09-09 2023-10-10 Applied Materials, Inc. Multilayer extreme ultraviolet reflectors

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208407B1 (en) 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
US6262796B1 (en) 1997-03-10 2001-07-17 Asm Lithography B.V. Positioning device having two object holders
US6341007B1 (en) 1996-11-28 2002-01-22 Nikon Corporation Exposure apparatus and method
US6452661B1 (en) 1998-02-27 2002-09-17 Nikon Corporation Illumination system and exposure apparatus and method
US6611316B2 (en) 2001-02-27 2003-08-26 Asml Holding N.V. Method and system for dual reticle image exposure
JP2004356415A (ja) 2003-05-29 2004-12-16 Nikon Corp 露光装置及び露光方法
US6897963B1 (en) 1997-12-18 2005-05-24 Nikon Corporation Stage device and exposure apparatus
US20050157384A1 (en) 2000-10-20 2005-07-21 Nikon Corporation Multilayer reflective mirrors for EUV, wavefront-aberration-correction methods for same, and EUV optical systems comprising same
JP2008270802A (ja) * 2007-04-24 2008-11-06 Nikon Corp 光学装置、多層膜反射鏡、露光装置、及びデバイス製造方法
JP2010518594A (ja) * 2007-02-05 2010-05-27 カール・ツァイス・エスエムティー・アーゲー 第1および第2付加中間層を備えるeuvリソグラフィ装置用多層反射光学素子
WO2012126954A1 (en) * 2011-03-23 2012-09-27 Carl Zeiss Smt Gmbh Euv mirror arrangement, optical system comprising euv mirror arrangement and method for operating an optical system comprising an euv mirror arrangement

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI267704B (en) * 1999-07-02 2006-12-01 Asml Netherlands Bv Capping layer for EUV optical elements
US6396900B1 (en) 2001-05-01 2002-05-28 The Regents Of The University Of California Multilayer films with sharp, stable interfaces for use in EUV and soft X-ray application
US20030008148A1 (en) 2001-07-03 2003-01-09 Sasa Bajt Optimized capping layers for EUV multilayers
WO2003005377A2 (en) 2001-07-03 2003-01-16 The Regents Of The University Of California Passivating overcoat bilayer
JP2005298833A (ja) * 2002-10-22 2005-10-27 Asahi Glass Co Ltd 多層膜付き基板とその製造方法
ATE538491T1 (de) 2003-10-15 2012-01-15 Nikon Corp Mehrschichtiger filmreflexionsspiegel, herstellungsverfahren für einen mehrschichtigen filmreflexionsspiegel und belichtungssystem
JP4383194B2 (ja) * 2004-02-03 2009-12-16 古河電気工業株式会社 所定の波長光学特性を有する誘電体多層膜フィルタ、その設計方法、その設計プログラム、およびその誘電体多層膜フィルタを用いた光アド・ドロップシステム
US7193228B2 (en) * 2004-03-10 2007-03-20 Cymer, Inc. EUV light source optical elements
JP4532991B2 (ja) * 2004-05-26 2010-08-25 キヤノン株式会社 投影光学系、露光装置及びデバイス製造方法
US7784207B2 (en) * 2005-05-10 2010-08-31 Lighted Promotions, Inc. Display framing systems and related methods
KR101186309B1 (ko) * 2005-05-23 2012-09-27 엘지전자 주식회사 드럼 세탁기
JP2007057450A (ja) * 2005-08-26 2007-03-08 Nikon Corp 多層膜反射鏡および露光装置
JP4666365B2 (ja) * 2005-10-14 2011-04-06 Hoya株式会社 多層反射膜付き基板、その製造方法、反射型マスクブランクおよび反射型マスク
JP2007134464A (ja) * 2005-11-09 2007-05-31 Canon Inc 多層膜を有する光学素子及びそれを有する露光装置
JP2007198784A (ja) * 2006-01-24 2007-08-09 Nikon Corp 多層膜反射鏡、多層膜反射鏡の製造方法及び露光装置
US7771896B2 (en) 2006-12-22 2010-08-10 Asml Netherlands B.V. Patterning device, method of providing a patterning device, photolithographic apparatus and device manufacturing method
JP2009141177A (ja) 2007-12-07 2009-06-25 Canon Inc Euv用ミラー及びそれを有するeuv露光装置
DE102008040265A1 (de) * 2008-07-09 2010-01-14 Carl Zeiss Smt Ag Reflektives optisches Element und Verfahren zu seiner Herstellung
KR101114159B1 (ko) * 2009-07-23 2012-03-09 엘지이노텍 주식회사 발광 장치
JP5196507B2 (ja) 2011-01-05 2013-05-15 Hoya株式会社 反射型マスクブランク、反射型マスク及び多層膜反射鏡
CN102955185A (zh) * 2011-08-29 2013-03-06 同济大学 Mg/Mo/SiC极紫外多层膜反射镜及其制作方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6590634B1 (en) 1996-11-28 2003-07-08 Nikon Corporation Exposure apparatus and method
US6341007B1 (en) 1996-11-28 2002-01-22 Nikon Corporation Exposure apparatus and method
US6400441B1 (en) 1996-11-28 2002-06-04 Nikon Corporation Projection exposure apparatus and method
US6549269B1 (en) 1996-11-28 2003-04-15 Nikon Corporation Exposure apparatus and an exposure method
US6262796B1 (en) 1997-03-10 2001-07-17 Asm Lithography B.V. Positioning device having two object holders
US6897963B1 (en) 1997-12-18 2005-05-24 Nikon Corporation Stage device and exposure apparatus
US6208407B1 (en) 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
US6452661B1 (en) 1998-02-27 2002-09-17 Nikon Corporation Illumination system and exposure apparatus and method
US20050157384A1 (en) 2000-10-20 2005-07-21 Nikon Corporation Multilayer reflective mirrors for EUV, wavefront-aberration-correction methods for same, and EUV optical systems comprising same
US6611316B2 (en) 2001-02-27 2003-08-26 Asml Holding N.V. Method and system for dual reticle image exposure
JP2004356415A (ja) 2003-05-29 2004-12-16 Nikon Corp 露光装置及び露光方法
JP2010518594A (ja) * 2007-02-05 2010-05-27 カール・ツァイス・エスエムティー・アーゲー 第1および第2付加中間層を備えるeuvリソグラフィ装置用多層反射光学素子
JP2008270802A (ja) * 2007-04-24 2008-11-06 Nikon Corp 光学装置、多層膜反射鏡、露光装置、及びデバイス製造方法
WO2012126954A1 (en) * 2011-03-23 2012-09-27 Carl Zeiss Smt Gmbh Euv mirror arrangement, optical system comprising euv mirror arrangement and method for operating an optical system comprising an euv mirror arrangement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2998980A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017224819A (ja) * 2016-06-16 2017-12-21 アイメック・ヴェーゼットウェーImec Vzw 極端紫外線(euv)リソグラフィの実行方法
WO2020153228A1 (ja) * 2019-01-21 2020-07-30 Agc株式会社 反射型マスクブランク、反射型マスク、および反射型マスクブランクの製造方法
JPWO2020153228A1 (ja) * 2019-01-21 2021-12-02 Agc株式会社 反射型マスクブランク、反射型マスク、および反射型マスクブランクの製造方法
JP7447812B2 (ja) 2019-01-21 2024-03-12 Agc株式会社 反射型マスクブランク、反射型マスク、および反射型マスクブランクの製造方法

Also Published As

Publication number Publication date
TWI664452B (zh) 2019-07-01
KR20160003140A (ko) 2016-01-08
TW201502594A (zh) 2015-01-16
TWI631375B (zh) 2018-08-01
TW201831926A (zh) 2018-09-01
KR20170027862A (ko) 2017-03-10
JPWO2014181858A1 (ja) 2017-02-23
US20160054488A1 (en) 2016-02-25
EP2998980A1 (en) 2016-03-23
JP2017076150A (ja) 2017-04-20
KR20180050760A (ko) 2018-05-15
EP2998980A4 (en) 2016-11-16
US10353120B2 (en) 2019-07-16

Similar Documents

Publication Publication Date Title
JP5406602B2 (ja) 多層ミラー及びリソグラフィ装置
JP2017076150A (ja) 光学素子、投影光学系、露光装置及びデバイス製造方法
KR102178588B1 (ko) 오버레이 및 임계 치수 센서들에서의 퓨필 조명을 위한 디바이스 및 방법
JP5311757B2 (ja) 反射光学素子、露光装置およびデバイス製造方法
US8120752B2 (en) Lithographic apparatus
JP5485262B2 (ja) アライメントフィーチャ、プリ・アライメント方法、及びリソグラフィ装置
US10191387B2 (en) Reflective mirror, projection optical system, exposure apparatus, and device manufacturing method
JP5497016B2 (ja) 多層ミラーおよびリソグラフィ装置
JP2019512716A (ja) 複数の光源の波長合成
JP6112201B2 (ja) 多層膜反射鏡、多層膜反射鏡の製造方法、投影光学系、露光装置、デバイスの製造方法
JP2004246060A (ja) 反射型投影光学系の調整方法
JP6754002B2 (ja) アライメントシステムの断熱化

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14795365

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015515902

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014795365

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157033754

Country of ref document: KR

Kind code of ref document: A