WO2014181538A1 - 透明導電体及びその製造方法 - Google Patents

透明導電体及びその製造方法 Download PDF

Info

Publication number
WO2014181538A1
WO2014181538A1 PCT/JP2014/002429 JP2014002429W WO2014181538A1 WO 2014181538 A1 WO2014181538 A1 WO 2014181538A1 JP 2014002429 W JP2014002429 W JP 2014002429W WO 2014181538 A1 WO2014181538 A1 WO 2014181538A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
refractive index
metal film
transparent conductor
index layer
Prior art date
Application number
PCT/JP2014/002429
Other languages
English (en)
French (fr)
Inventor
仁一 粕谷
一成 多田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014181538A1 publication Critical patent/WO2014181538A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers

Definitions

  • the present invention relates to a transparent conductor and a manufacturing method thereof.
  • transparent conductive films have been used in various materials such as electrode materials for display devices such as liquid crystal displays, plasma displays, inorganic and organic EL (electroluminescence) displays, electrode materials for inorganic and organic EL elements, touch panel materials, and solar cell materials. in use.
  • electrode materials for display devices such as liquid crystal displays, plasma displays, inorganic and organic EL (electroluminescence) displays, electrode materials for inorganic and organic EL elements, touch panel materials, and solar cell materials. in use.
  • metals such as Au, Ag, Pt, Cu, Rh, Pd, Al, and Cr, In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , and TiO 2 are used.
  • SnO 2 , ZnO, ITO (indium tin oxide) and other oxide semiconductors are known.
  • a capacitive touch panel has been developed, and in this method, a transparent conductive film having a low surface electrical resistance value and high transparency is required.
  • an ITO film it is difficult to sufficiently reduce the surface electrical resistance value.
  • the ITO film is easily broken and cannot be applied to applications that require flexibility. Therefore, a transparent conductive film in which Ag is formed in a mesh shape has been proposed as a transparent conductive film that replaces ITO (Patent Document 1).
  • a transparent conductive film coated with carbon nanotubes or Ag nanowires has also been proposed (Patent Documents 2 and 3).
  • Patent Document 4 It has also been proposed to use a thin film made of Ag as a transparent conductive film; a transparent conductor in which an underlayer made of aluminum and an Ag layer are laminated has also been proposed (Patent Document 4).
  • JP 2006-352073 A Japanese translation of PCT publication No. 2004-526838 JP 2011-167848 A JP 2008-171737 A
  • the Ag mesh described in Patent Document 1 has a metal part with a line width of about 20 ⁇ m. Therefore, the Ag mesh is easily visible and cannot be applied to uses that require high transparency. Moreover, the transparent conductive film of patent document 2 and patent document 3 still has a high surface electrical resistance value. Therefore, it is required to further reduce the surface electrical resistance value.
  • the transparent conductor of Patent Document 4 has an average visible light transmittance of less than 70% and is required to further improve the light transmittance.
  • An object of the present invention is to provide a transparent conductor having a low surface electrical resistance value and a high light transmittance, and a method for producing the same.
  • the first of the present invention relates to the following transparent conductor.
  • a transparent substrate made of palladium or an alloy containing 20% by mass or more of palladium and having a thickness of 3 nm or less, a layer adjacent to the base layer, and a thickness of 15 nm or less
  • a transparent conductor comprising transparent metal films in this order, wherein the transparent conductor has a transmittance of 50% or more over the entire wavelength range of 400 to 800 nm.
  • a first high material including a dielectric material or an oxide semiconductor material having a refractive index of light having a wavelength of 570 nm higher than the refractive index of light having a wavelength of 570 nm of the transparent substrate between the transparent substrate and the base layer.
  • the second high-contrast layer further includes a dielectric material or an oxide semiconductor material having a refractive index layer and having a refractive index of light having a wavelength of 570 nm higher than that of light of the wavelength of 570 nm of the transparent substrate on the transparent metal film.
  • the transparent conductor according to [1] further comprising a refractive index layer.
  • the transparent conductor according to [2] wherein an average transmittance of light having a wavelength of 400 to 800 nm of the transparent conductor is 70% or more.
  • the refractive index of light having a wavelength of 570 nm is present on one or both of the surface of the base layer on the transparent substrate side and the surface of the transparent metal film opposite to the base layer.
  • a transparent conductor comprising a transparent substrate, palladium, or an underlayer having a thickness of 3 nm or less, and a transparent metal film having a thickness of 15 nm or less in this order, consisting of palladium or an alloy containing 20% by mass or more of palladium.
  • a method of forming a base layer on a transparent substrate by a vapor deposition method or a sputtering method, and a step of forming a transparent metal film on the base layer by a vapor deposition method The manufacturing method of a transparent conductor.
  • a transparent conductor having both high transparency and a low surface electric resistance value can be obtained.
  • the transparent conductor 100 of the present invention may be a laminate in which a transparent substrate 1 / underlayer 2 / transparent metal film 3 are laminated in this order.
  • the transparent conductor 100 may include other layers as necessary.
  • the underlayer 2 and the transparent metal film 3 may be sandwiched between the first high refractive index layer 4 and the second high refractive index layer 5 having a high refractive index.
  • the low refractive index layer 6 for suppressing the plasmon absorption of the base layer 2 and the transparent metal film 3 may be included on the surface of the base layer 2 on the transparent substrate 1 side or on the transparent metal film 3.
  • the base layer 2 made of palladium or an alloy containing 20 mass% or more of palladium is disposed between the transparent substrate 1 and the transparent metal film 3.
  • a layer containing a certain amount or more of palladium is easily formed uniformly by a general vapor deposition method.
  • palladium is difficult to migrate on the film formation surface (for example, the surface of the transparent substrate 1), and the above-described island-like structure is difficult to form.
  • the transparent metal film is formed on such an underlayer 2, the constituent atoms of the transparent metal film 3 are difficult to migrate, and the transparent metal film becomes a smooth film even if the thickness is small. Therefore, in the transparent conductor of this invention, the high light transmittance of a transparent metal film and the low surface electrical resistance value are compatible.
  • the transparent substrate 1 included in the transparent conductor 100 can be the same as the transparent substrate of various display devices.
  • the transparent substrate 1 includes a glass substrate, a cellulose ester resin (for example, triacetyl cellulose, diacetyl cellulose, acetylpropionyl cellulose, etc.), a polycarbonate resin (for example, Panlite, Multilon (both manufactured by Teijin Limited)), a cycloolefin resin (for example, ZEONOR (manufactured by Nippon Zeon), Arton (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resin (for example, polymethyl methacrylate, "Acrylite (manufactured by Mitsubishi Rayon), Sumipex (manufactured by Sumitomo Chemical)”) ), Polyimide, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (eg, polyethylene terephthalate (PE) resin
  • the transparent substrate 1 is a glass substrate, or a cellulose ester resin, a polyester resin (particularly polyethylene terephthalate), a triacetyl cellulose, a cycloolefin resin, a phenol resin, an epoxy resin, a polyphenylene ether (PPE) resin, a polyether sulfone.
  • a film made of ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), or styrene block copolymer resin is preferable.
  • the transparent substrate 1 preferably has high transparency to visible light; the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and 85% or more. More preferably it is. When the average light transmittance of the transparent substrate 1 is 70% or more, the light transmittance of the transparent conductor 100 is likely to be increased. Further, the average absorptance of light having a wavelength of 450 to 800 nm of the transparent substrate 1 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
  • the average transmittance of the transparent substrate 1 is measured by making light incident from an angle inclined by 5 ° with respect to the normal of the surface of the transparent substrate 1.
  • Average transmittance and average reflectance are measured with a spectrophotometer.
  • the refractive index of light having a wavelength of 570 nm of the transparent substrate 1 is preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. .
  • the refractive index of the transparent substrate is usually determined by the material of the transparent substrate. The refractive index of the transparent substrate is measured with an ellipsometer.
  • the haze value of the transparent substrate 1 is preferably 0.01 to 2.5, more preferably 0.1 to 1.2.
  • the haze value of a transparent conductor can be suppressed as the haze value of a transparent substrate is 2.5 or less.
  • the haze value is measured with a haze meter.
  • the thickness of the transparent substrate 1 is preferably 1 ⁇ m to 20 mm, more preferably 10 ⁇ m to 2 mm.
  • the thickness of the transparent substrate is 1 ⁇ m or more, the strength of the transparent substrate 1 is increased, and it is difficult to crack or tear the first high refractive index layer 2 during production.
  • the thickness of the transparent substrate 1 is 20 mm or less, the flexibility of the transparent conductor 100 is sufficient.
  • the thickness of the apparatus using the transparent conductor 100 can be reduced.
  • the apparatus using the transparent conductor 100 can also be reduced in weight.
  • the underlayer 2 is disposed between the transparent substrate 1 and the transparent metal film 3 and in contact with the transparent metal film 3, and is made of palladium alone or an alloy of palladium and another metal. Is a layer.
  • the amount of palladium contained in the underlayer 2 is 20% by mass or more, preferably 40% by mass or more, and more preferably 60% by mass or more. From the viewpoint of cost, it is desirable that the amount of palladium is large.
  • the underlayer 2 contains 20 mass% or more of palladium atoms
  • the material of the underlayer 2 is difficult to migrate when the underlayer 2 is formed, so that the thickness and density of the underlayer 2 are likely to be uniform.
  • the surface smoothness of the transparent metal film 3 formed with the base layer 2 as a starting point is likely to increase.
  • palladium has a high affinity with the atoms constituting the transparent metal film 3. Therefore, when the underlayer 2 contains 20% by mass or more of palladium, the adhesion between the underlayer 2 and the transparent metal film 3 is likely to increase.
  • Examples of metals other than palladium included in the underlayer 2 include indium other than palladium, platinum group, gold, cobalt, nickel, titanium, aluminum, chromium, niobium, zinc, and the like.
  • the underlayer 2 may contain only one kind of these metals or two or more kinds. Among these metals, indium is preferable.
  • the thickness of the underlayer 2 is 3 nm or less, preferably 0.5 nm or less, and more preferably a monoatomic film. Further, it may be a film in which metal atoms are adhered to the transparent substrate 1 while being separated from each other. When metal atoms made of metal atoms are attached to the transparent substrate 1 so as to be spaced apart from each other, atoms that are the material of the transparent metal film 3 are difficult to migrate when the transparent metal film 3 is formed. Therefore, the transparent metal film 3 tends to grow starting from this metal atom, and the transparent metal film 3 tends to become flat.
  • the transparent metal film 3 is a film for conducting electricity in the transparent conductor; it is disposed adjacent to the base layer 2.
  • the metal contained in the transparent metal film 3 is not particularly limited as long as it is a highly conductive metal, and may be, for example, silver, copper, gold, platinum group, titanium, chromium, or the like.
  • the transparent metal film may contain only one kind of these metals or two or more kinds. From the viewpoint of high conductivity, the transparent metal film is preferably made of silver or an alloy containing 90 at% or more of silver.
  • the metal combined with silver can be zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, and the like. For example, when silver and zinc are combined, the sulfidation resistance of the transparent metal film is enhanced. When silver and gold are combined, salt resistance (NaCl) resistance increases. Furthermore, when silver and copper are combined, the oxidation resistance increases.
  • the plasmon absorption rate of the transparent metal film 3 is preferably 10% or less over the entire wavelength range of 400 nm to 800 nm.
  • the plasmon absorption rate of the transparent metal film 3 is more preferably 7% or less, and further preferably 5% or less.
  • the plasmon absorption rate at a wavelength of 400 nm to 800 nm of the transparent metal film 3 is measured by the following procedure.
  • platinum palladium (palladium content 20% by mass) is formed to a thickness of 0.1 nm by a magnetron sputtering apparatus.
  • the average thickness of platinum palladium is calculated from the film forming speed and the like of the manufacturer's nominal value of the sputtering apparatus.
  • a film made of the same metal as the object to be measured is formed on the substrate on which platinum palladium is adhered by a vapor deposition machine to a thickness of 20 nm.
  • the thickness of the transparent metal film 3 is 15 nm or less, preferably 3 to 13 nm, and more preferably 7 to 12 nm. If the thickness of the transparent metal film 3 is 15 nm or less, the reflection of the metal contained in the transparent metal film 3 hardly occurs, and the light transmittance of the transparent conductor is likely to increase.
  • the transparent conductor 100 of the present invention has a relatively refractive index so as to sandwich the underlayer 2 and the transparent metal film 3 as described above.
  • a high layer that is, a first high refractive index layer 4 and a second high refractive index layer 5 may be provided.
  • the reflection characteristics of the transparent conductor greatly depend on the layer structure of the transparent conductor.
  • the first high-refractive index layer 4 and the second high-refractive index layer 5 include a dielectric material or an oxide semiconductor material in which the refractive index of light having a wavelength of 570 nm is higher than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1. It is preferable that The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable.
  • the refractive index of light having a specific wavelength of 570 nm of the dielectric material or the oxide semiconductor material contained in the first high refractive index layer 4 and the second high refractive index layer 5 is preferably larger than 1.5, Is more preferably 2.5, and still more preferably 1.8 to 2.5.
  • the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the reflectance of the transparent conductor 100 is likely to be lowered by the first high refractive index layer 4 and the second high refractive index layer 5.
  • the refractive index of the 1st high refractive index layer 4 and the 2nd high refractive index layer 5 is adjusted with the refractive index of the said dielectric material or an oxide semiconductor material, and the density of each layer.
  • the dielectric material or the oxide semiconductor material included in the first high refractive index layer 4 and the second high refractive index layer 5 may be an insulating material or a conductive material.
  • the dielectric material or oxide semiconductor material contained in the first high refractive index layer 4 and the second high refractive index layer 5 is preferably a metal oxide or a metal sulfide.
  • metal oxide or metal sulfide examples include TiO 2, ITO (indium tin oxide), ZnO, ZnS, Nb 2 O 5, ZrO 2, CeO 2, Ta 2 O 5, Ti 3 O 5, Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium oxide / zinc oxide), AZO (Al-doped ZnO), GZO (Ga-doped ZnO), ATO (Sb-doped SnO), ICO (Indium cerium oxide), WO 3 and the like are included.
  • the metal oxide or metal sulfide is preferably TiO 2 , ITO, ZnO, Nb 2 O 5 or ZnS from the viewpoint of refractive index and productivity.
  • the first high-refractive index layer 4 and the second high-refractive index layer 5 may contain only one kind of the metal oxide or metal sulfide, or may contain two or more kinds.
  • the thickness of the first high refractive index layer 4 and the second high refractive index layer 5 is preferably set by optical design using an admittance diagram.
  • the thicknesses of the first high refractive index layer 4 and the second high refractive index layer 5 are usually preferably 10 to 150 nm, and more preferably 20 to 80 nm.
  • the first high refractive index layer 4 and the second high refractive index layer 5 cause the reflectance of the transparent conductor 100 to be sufficiently low. Become.
  • the thickness of the first high refractive index layer 4 and the second high refractive index layer 5 is 150 nm or less, the light transmittance of the transparent conductor 100 is unlikely to decrease.
  • the thicknesses of the first high refractive index layer 4 and the second high refractive index layer 5 are measured with an ellipsometer.
  • the transparent conductor 100 of the present invention may be provided with a low refractive index layer 6 for suppressing plasmon absorption of the underlayer 2 and the transparent metal film 3.
  • the low refractive index layer 6 is disposed on one or both of the surface of the base layer 2 on the transparent substrate 1 side and the surface of the transparent metal film 3 on the side not adjacent to the base layer 2.
  • the low refractive index layer 6 is disposed on the surface of the base layer 2 on the transparent substrate 1 side or on the surface of the transparent metal film 3 that is not adjacent to the base layer 2, the plasmon absorption of the base layer 2 and the transparent metal film 3 is achieved.
  • the reason why is suppressed is as follows.
  • the localized plasmon absorption cross section C abs is expressed by the following equation.
  • the low refractive index layer 6 preferably includes a dielectric material or an oxide semiconductor material having a refractive index of light having a wavelength of 570 nm of less than 1.8, and more preferably 1.30 to 1.6. Particularly preferred is 1.35 to 1.5.
  • the refractive index of the low refractive index layer 6 is mainly adjusted by the refractive index of the material contained in the low refractive index layer 6 and the density of the low refractive index layer 6.
  • the dielectric material or oxide semiconductor material included in the low refractive index layer 6 is MgF 2 , SiO 2 , AlF 3 , CaF 2 , CeF 3 , CdF 3 , LaF 3 , LiF, NaF, NdF 3 , YF 3 , YbF. 3 , Ga 2 O 3 , LaAlO 3 , Na 3 AlF 6 , Al 2 O 3 , MgO, and ThO 2 .
  • Dielectric material or an oxide semiconductor material is inter alia, is MgF 2, SiO 2, CaF 2 , CeF 3, LaF 3, LiF, NaF, NdF 3, Na 3 AlF 6, Al 2 O 3, MgO or ThO 2,
  • MgF 2 and SiO 2 are particularly preferable.
  • the low refractive index layer 6 may contain only one kind of these materials or two or more kinds.
  • the thickness of the low refractive index layer 6 is preferably a thickness that does not greatly affect the optical characteristics of the transparent conductor 100.
  • the thickness of the low refractive index layer 6 is preferably 0.1 to 15 nm, more preferably 1 to 10 nm, and further preferably 3 to 8 nm.
  • the method for producing a transparent conductor described above preferably includes the following two steps.
  • Underlayer film forming step The above-described underlayer is formed on a transparent substrate by vapor deposition or sputtering. However, some types of metal cannot be sufficiently deposited. When a material containing such a metal atom is deposited, unevenness may occur in the thickness and density of the obtained underlayer. Therefore, when the underlayer is formed by vapor deposition, it is preferable that the amount of palladium contained in the material is large.
  • the specific content of palladium is preferably 20% by mass or more, more preferably 40% by mass or more, and still more preferably 60% by mass or more. A material containing 20% by mass or more of palladium is easily formed uniformly by a vapor deposition method. From the viewpoint of cost, it is desirable that the amount of palladium is large.
  • Examples of vapor deposition methods for forming the underlayer include vacuum vapor deposition, electron beam vapor deposition, ion plating, and ion beam vapor deposition.
  • the deposition time is appropriately selected according to the thickness of the underlying layer to be deposited and the deposition rate.
  • the deposition rate is preferably 0.1 to 15 ⁇ / second, more preferably 0.1 to 7 ⁇ / second.
  • the amount of palladium contained in the material is not particularly limited, and is appropriately selected according to the composition of the underlayer.
  • sputtering methods include ion beam sputtering, magnetron sputtering, reactive sputtering, bipolar sputtering, and bias sputtering.
  • the sputtering time is appropriately selected according to the desired underlayer thickness and film formation rate.
  • the sputter deposition rate is preferably from 0.1 to 15 ⁇ / second, more preferably from 0.1 to 7 ⁇ / second.
  • Transparent Metal Film Forming Step A metal is laminated on the above-described underlayer by a vapor deposition method to form a transparent metal film.
  • a transparent metal film As described above, by forming a transparent metal film on the underlayer, constituent atoms of the transparent metal film are difficult to migrate, and the surface of the obtained transparent metal film is likely to be smooth.
  • the method for forming the transparent metal film is not particularly limited as long as it is a general vapor deposition method, and may be, for example, a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like.
  • vacuum deposition or sputtering is preferred.
  • a transparent metal film having a uniform thickness and a desired thickness is easily obtained.
  • the film forming speed of the transparent metal film is appropriately selected according to the type of vapor phase film forming method, the desired film density, and the like.
  • a step of forming a first high refractive index layer on a transparent substrate A step of forming a second high refractive index layer on the transparent metal film, a step of forming a low refractive index layer, and the like may be included.
  • the first high refractive index layer deposition method, the second high refractive index layer deposition method, and the low refractive index layer deposition method are not particularly limited as long as they are general vapor deposition methods. , Vacuum deposition, sputtering, ion plating, plasma CVD, thermal CVD, and the like.
  • the transparent conductor of the present invention has a light transmittance of 50% or more, preferably 60% or more, more preferably 70% or more over the entire range of light having a wavelength of 400 nm to 800 nm. It is. If the transmittance is 50% or more over the entire wavelength range of 400 to 800 nm, the transparent conductor is difficult to be colored. Further, the average transmittance of light having a wavelength of 400 nm to 800 nm is preferably 60% or more, more preferably 70% or more, and further preferably 80% or more. When the average transmittance of light in the above-mentioned wavelength range of the transparent conductor is 85% or more, the transparent conductor can be applied to applications requiring particularly high transparency.
  • the average reflectance of light having a wavelength of 500 nm to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and further preferably 10% or less.
  • the transmittance and the reflectance are measured by allowing measurement light to enter the transparent conductor from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductor. Transmittance and reflectance are measured with a spectrophotometer.
  • the transparent conductor is preferably 15% or less, more preferably 10% or less over the entire range of light having a wavelength of 400 to 800 nm. If the absorptance is 15% or less over the entire wavelength range of 400 to 800 nm, the transparent conductor is difficult to be colored.
  • the average absorptance of light having a wavelength of 400 nm to 800 nm is preferably 20% or less, more preferably 15% or less, and further preferably 10% or less.
  • the light absorption rate of the transparent conductor can be reduced by suppressing the absorption rate of the transparent metal film and the light absorption rate of the material constituting each layer.
  • the a * value and b * value in the L * a * b * color system of the transparent conductor are preferably within ⁇ 30, more preferably within ⁇ 5, and even more preferably within ⁇ 3.0. Particularly preferably, it is within ⁇ 2.0. If the a * value and b * value in the L * a * b * color system are within ⁇ 30, the transparent conductor is observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
  • the surface electrical resistance of the transparent conductor is preferably 50 ⁇ / ⁇ or less, more preferably 30 ⁇ / ⁇ or less.
  • a transparent conductor having a surface electric resistance value of 50 ⁇ / ⁇ or less can be applied to a transparent conductive panel for a capacitive touch panel.
  • the surface electrical resistance value of the transparent conductor can be adjusted by the thickness of the transparent metal film or the like.
  • the surface electrical resistance value of the transparent conductor can be measured in accordance with, for example, JIS K7194, ASTM D257, and the like. It can also be measured by a commercially available surface electrical resistivity meter.
  • Example 1 Yamanaka Semiconductor's white substrate ( ⁇ 30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. An underlayer and a transparent metal film were formed on the white plate substrate (transparent substrate) by the following method.
  • Example 2 A transparent conductor was produced in the same manner as in Example 1 except that the base layer was a layer made of an alloy of platinum and palladium (composition ratio 80:20).
  • Example 3 An alloy of gold and palladium (composition ratio 80:20) was vapor-deposited by resistance heating vapor deposition (RH) at 360 mA and a film formation rate of 0.1 ⁇ / s using a BMC-800T vapor deposition machine manufactured by Shincron. A transparent conductor was produced in the same manner as in Example 1 except that the film was formed. The thickness of the obtained underlayer (Au / Pd layer) was 0.2 nm.
  • Example 4 Using an BMC-800T vapor deposition machine manufactured by Shincron, platinum and palladium alloy (composition ratio 80:20) was vapor-deposited by resistance heating vapor deposition (RH) at 330 mA and a film formation rate of 0.1 kg / s. A transparent conductor was produced in the same manner as in Example 1 except that the film was formed. The thickness of the obtained underlayer (Pd / Pt layer) was 3.0 nm.
  • Example 5 Except for forming the first high refractive index layer and the second high refractive index layer by the following method, the transparent substrate / first high refractive index layer / underlayer / transparent metal film / A transparent conductor having a second high refractive index layer in this order was produced.
  • a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., Ltd. was used to deposit TiO 2 by electron beam (EB) at 320 mA, a deposition rate of 3 ⁇ / s under introduction of oxygen (2 ⁇ 10 ⁇ 2 Pa), and a first high refractive index layer ( A thickness of 37 nm) and a second high refractive index layer (thickness of 37 nm) were formed.
  • EB electron beam
  • Example 6 A transparent conductor was produced in the same manner as in Example 5 except that the thickness of the transparent metal film was 6 nm.
  • Example 7 Except that the low refractive index layer A and the low refractive index layer B were formed by the following method, a transparent substrate / first high refractive index layer / low refractive index layer A / underlayer / A transparent conductor having transparent metal film / low refractive index layer B / second high refractive index layer in this order was prepared.
  • Low refractive index layer A and low refractive index layer B Low-refractive-index layer A (thickness) was deposited by an electron beam (EB) deposition of SiO 2 with a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., with oxygen introduction (2 ⁇ 10 ⁇ 2 Pa), 100 mA, and a film formation rate of 10 ⁇ / s. 5 nm) and a low refractive index layer B (thickness 5 nm) were formed.
  • EB electron beam
  • Example 1 A transparent conductor was produced in the same manner as in Example 1 except that the underlayer was not formed.
  • Example 2 A transparent conductor was produced in the same manner as in Example 1 except that the underlayer was formed by the following method.
  • Comparative Example 3 A transparent conductor was prepared in the same manner as in Comparative Example 2 except that the thickness of the transparent metal film was 10 nm.
  • the transparent conductor having no base layer had an average transmittance of about 40% for light having a wavelength of 400 to 800 nm and a lower maximum transmittance (Comparative Example 1).
  • the surface smoothness of the transparent metal film contained in the transparent conductor is low, and it is assumed that plasmon absorption occurred.
  • Comparative Example 2 and Comparative Example 3 having a base layer made of Al compared to Comparative Example 1 having no base layer, the light transmittance of the transparent conductor is not increased, and the light absorption is sufficient. could not be suppressed.
  • the surface electrical resistance is high, it is presumed that the surface smoothness of the transparent metal film was low.
  • the average transmittance of light having a wavelength of 400 to 800 nm exceeds 60%, and further, light having a wavelength of 400 to 800 nm is transmitted.
  • the average absorption rate was 13% or less.
  • the surface electrical resistance was 20 ⁇ / ⁇ . It is presumed that a transparent metal film having high surface smoothness was obtained by the underlayer.
  • the average transmittance of light having a wavelength of 400 to 800 nm is 83% or more. There was good light transmittance.
  • the average transmittance is 88%. And it was very expensive. It is assumed that plasmon absorption was suppressed by the low refractive index layer.
  • the transparent conductor obtained by the present invention has a low surface electric resistance value and excellent transparency. Therefore, it is preferably used for various types of optoelectronic devices such as various types of displays, touch panels, mobile phones, electronic paper, various types of solar cells, and various types of electroluminescent light control elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明は、表面電気抵抗値が低く、かつ光透過性が高い透明導電体、及びその製造方法を提供することを課題とする。 上記課題を解決するため、透明基板と、パラジウム、またはパラジウムを20質量%以上含む合金からなり、かつ厚みが3nm以下である下地層と、前記下地層に隣接して配設され、かつ厚みが15nm以下である透明金属膜と、をこの順に含む透明導電体であって、前記透明導電体の透過率が、波長400~800nmの全範囲で50%以上である、透明導電体とする。

Description

透明導電体及びその製造方法
 本発明は、透明導電体及びその製造方法に関する。
 近年、液晶ディスプレイやプラズマディスプレイ、無機及び有機EL(エレクトロルミネッセンス)ディスプレイ等の表示装置の電極材料や、無機及び有機EL素子の電極材料、タッチパネル材料、太陽電池材料等の各種装置に透明導電膜が使用されている。
 このような透明導電膜を構成する材料として、Au、Ag、Pt、Cu、Rh、Pd、Al、Cr等の金属やIn、CdO、CdIn、CdSnO、TiO、SnO、ZnO、ITO(酸化インジウムスズ)等の酸化物半導体が知られている。
 近年、静電容量方式のタッチパネルが開発され、この方式では、表面電気抵抗値が低く、かつ透明性の高い透明導電膜が求められている。しかし、ITO膜では、表面電気抵抗値を十分に低くすることが難しい。また、ITO膜は割れやすく、フレキシブル性が求められる用途に適用できない、という問題もある。そこで、ITOに代わる透明導電膜として、Agをメッシュ状に形成した透明導電膜が提案されている(特許文献1)。また、カーボンナノチューブや、Agナノワイヤをコーティングした透明導電膜も提案されている(特許文献2及び3)。
 また、Agからなる薄膜を透明導電膜とすることも提案されており;アルミニウムからなる下地層と、Ag層とが積層された透明導電体等も提案されている(特許文献4)。
特開2006-352073号公報 特表2004-526838号公報 特開2011-167848号公報 特開2008-171637号公報
 しかし、特許文献1に記載のAgメッシュは、金属部の線幅が20μm程度である。そのため、Agメッシュが視認されやすく、高い透明性が必要とされる用途には適用できない。また、特許文献2や特許文献3の透明導電膜は、いまだ表面電気抵抗値が高い。そのため、さらに表面電気抵抗値を低くすることが求められている。
 一方、特許文献4の透明導電体は、可視光の平均透過率が70%未満であり、光透過性をさらに高めることが求められている。
 本発明はこのような状況に鑑みてなされたものである。本発明は、表面電気抵抗値が低く、かつ光透過性が高い透明導電体、及びその製造方法を提供することを目的とする。
 即ち、本発明の第一は、以下の透明導電体に関する。
 [1]透明基板と、パラジウム、またはパラジウムを20質量%以上含む合金からなり、かつ厚みが3nm以下である下地層と、前記下地層に隣接して配設され、かつ厚みが15nm以下である透明金属膜と、をこの順に含む透明導電体であって、前記透明導電体の透過率が、波長400~800nmの全範囲で50%以上である、透明導電体。
 [2]前記透明基板と前記下地層との間に、前記透明基板の波長570nmの光の屈折率より、波長570nmの光の屈折率が高い誘電性材料または酸化物半導体材料を含む第一高屈折率層をさらに有し、前記透明金属膜上に、前記透明基板の波長570nmの光の屈折率より、波長570nmの光の屈折率が高い誘電性材料または酸化物半導体材料を含む第二高屈折率層をさらに有する、[1]に記載の透明導電体。
 [3]前記透明導電体の波長400~800nmの光の平均透過率が70%以上である、[2]に記載の透明導電体。
 [4]前記下地層の前記透明基板側表面、及び前記透明金属膜の前記下地層とは反対側の表面のうち、いずれか一方の面もしくは両方の面に、波長570nmの光の屈折率が1.8以下である誘電性材料または酸化物半導体材料を含む低屈折率層をさらに有する、[1]~[3]のいずれかに記載の透明導電体。
 本発明の第二は、以下の透明導電体の製造方法に関する。
 [5]透明基板と、パラジウム、またはパラジウムを20質量%以上含む合金からなり、かつ厚みが3nm以下である下地層と、厚みが15nm以下である透明金属膜と、をこの順に有する透明導電体の製造方法であって、透明基板上に、蒸着法またはスパッタ法で下地層を成膜する工程と、前記下地層上に、気相成膜法で透明金属膜を成膜する工程とを含む、透明導電体の製造方法。
 本発明によれば、高い透明性と、低い表面電気抵抗値とを兼ね備えた、透明導電体が得られる。
本発明の透明導電体の層構成の一例を示す概略断面図である。 本発明の透明導電体の層構成の他の例を示す概略断面図である。 本発明の実施例及び比較例の透明導電体の光の透過率を示すグラフである。 本発明の実施例及び比較例の透明導電体の光の吸収率を示すグラフである。
 1.透明導電体について
 本発明の透明導電体の層構成の例を図1及び図2に示す。図1及び図2に示されるように、本発明の透明導電体100は、透明基板1/下地層2/透明金属膜3がこの順に積層された積層体でありうる。図2に示されるように、透明導電体100には、必要に応じて、他の層が含まれてもよい。例えば、下地層2及び透明金属膜3が、屈折率の高い第一高屈折率層4と第二高屈折率層5とで挟み込まれていてもよい。また、下地層2の透明基板1側の表面、もしくは透明金属膜3上に、下地層2及び透明金属膜3のプラズモン吸収を抑制するための低屈折率層6が含まれてもよい。
 透明基板上に直接Ag等からなる透明金属膜を成膜すると、高い光透過性と、低い表面電気抵抗とを兼ね備えた透明金属膜になり難かった。その理由は、以下のように推察される。一般的な気相成膜法で、基板上にAg層を成膜すると、成膜初期には、透明基板に到達したAg原子が透明基板上をマイグレート(表面移動)する。そして、多数のAg原子が寄り集まって非連続な島状構造を多数形成する。
 さらにAg原子を供給すると、当該島状構造を起点にAg膜が成長し;隣り合う塊同士の一部が繋がって、電気の導通が可能になる。しかし、Ag膜の厚みが薄いと、塊同士の間の隙間が完全に埋まらない。そのため、プラズモン吸収が生じて、光透過性が十分に高まらない。一方、Ag膜の厚みが厚くなると、Ag膜の表面が平滑になるため、表面電気抵抗値が低くなり、プラズモン吸収も発生しなくなる。しかし、Ag本来の反射が生じるため、Ag層の光透過性が高まらない。
 そこで前述のように、透明基板とAg層との間に、アルミニウムからなる下地層を配設することが提案されている。しかしこの方法においても、上記プラズモン吸収を十分に抑制することはできなかった。これは、下地層を構成する原子(アルミニウム等)とAgとの親和性が十分でなく、当該下地層が成長核になり難い、もしくは下地層を構成する原子が、Ag原子同様にマイグレートして、非連続な島状構造(大きな塊)を形成しやすいためであると推察される。
 これに対し、本発明の透明導電体では、透明基板1と透明金属膜3との間に、パラジウム、またはパラジウムが20質量%以上含まれる合金からなる下地層2が配設されている。パラジウムが一定以上含まれる層は、一般的な気相成膜法で均一に成膜されやすい。またパラジウムは、被成膜面(例えば透明基板1表面)でマイグレートし難く、前述の島状構造を形成し難い。このような下地層2上に透明金属膜を成膜すると、透明金属膜3の構成原子がマイグレートし難く、透明金属膜は、厚みが薄くとも平滑な膜になる。したがって、本発明の透明導電体では、透明金属膜の高い光透過性と、低い表面電気抵抗値が両立する。
 1.1)透明基板
 透明導電体100に含まれる透明基板1は、各種表示デバイスの透明基板と同様でありうる。透明基板1は、ガラス基板や、セルロースエステル樹脂(例えば、トリアセチルセルロース、ジアセチルセルロース、アセチルプロピオニルセルロース等)、ポリカーボネート樹脂(例えばパンライト、マルチロン(いずれも帝人社製))、シクロオレフィン樹脂(例えばゼオノア(日本ゼオン社製)、アートン(JSR社製)、アペル(三井化学社製))、アクリル樹脂(例えばポリメチルメタクリレート、「アクリライト(三菱レイヨン社製)、スミペックス(住友化学社製)」)、ポリイミド、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエステル樹脂(例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート)、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、スチレン系ブロックコポリマー樹脂等からなる透明樹脂フィルムでありうる。透明基板が透明樹脂フィルムである場合、当該フィルムには2種以上の樹脂が含まれてもよい。
 透明性の観点から、透明基板1はガラス基板、もしくはセルロースエステル樹脂、ポリエステル樹脂(特にポリエチレンテレフタレート)、トリアセチルセルロース、シクロオレフィン樹脂、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、またはスチレン系ブロックコポリマー樹脂からなるフィルムであることが好ましい。
 透明基板1は、可視光に対する透明性が高いことが好ましく;波長450~800nmの光の平均透過率が70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。透明基板1の光の平均透過率が70%以上であると、透明導電体100の光透過性が高まりやすい。また、透明基板1の波長450~800nmの光の平均吸収率は10%以下であることが好ましく、より好ましくは5%以下、さらに好ましくは3%以下である。
 透明基板1の平均透過率は、透明基板1の表面の法線に対して、5°傾けた角度から光を入射させて測定する。一方、透明基板1の平均吸収率は、平均透過率と同様の角度から光を入射させて、透明基板1の平均反射率を測定し;平均吸収率=100-(平均透過率+平均反射率)として算出する。平均透過率及び平均反射率は分光光度計で測定する。
 透明基板1の波長570nmの光の屈折率は1.40~1.95であることが好ましく、より好ましくは1.45~1.75であり、さらに好ましくは1.45~1.70である。透明基板の屈折率は、通常、透明基板の材質によって定まる。透明基板の屈折率は、エリプソメーターで測定される。
 透明基板1のヘイズ値は0.01~2.5であることが好ましく、より好ましくは0.1~1.2である。透明基板のヘイズ値が2.5以下であると、透明導電体のヘイズ値を抑制できる。ヘイズ値は、ヘイズメーターで測定される。
 透明基板1の厚みは、1μm~20mmであることが好ましく、より好ましくは10μm~2mmである。透明基板の厚みが1μm以上であると、透明基板1の強度が高まり、第一高屈折率層2の作製時に割れたり、裂けたりし難くなる。一方、透明基板1の厚みが20mm以下であれば、透明導電体100のフレキシブル性が十分となる。さらに透明導電体100を用いた機器の厚みを薄くできる。また、透明導電体100を用いた機器を軽量化することもできる。
 1.2)下地層
 下地層2は、透明基板1と透明金属膜3との間、かつ透明金属膜3と接して配設され、かつパラジウム単体、もしくはパラジウムと他の金属との合金からなる層である。下地層2に含まれるパラジウムの量は、20質量%以上であり、好ましくは40質量%以上であり、さらに好ましくは60質量%以上である。またコストの面からもパラジウムが多い方が望ましい。
 下地層2にパラジウム原子が20質量%以上含まれると、下地層2の形成時に、下地層2の材料がマイグレートし難くなるため、下地層2の厚みや密度が均一になりやすい。その結果、当該下地層2を起点にして形成される透明金属膜3の表面平滑性が高まりやすい。また、パラジウムは、透明金属膜3を構成する原子との親和性が高い。したがって、下地層2にパラジウムが20質量%以上含まれると、下地層2と透明金属膜3との密着性が高まりやすい。
 下地層2に含まれるパラジウム以外の金属の例には、パラジウム以外のインジウム、白金族、金、コバルト、ニッケル、チタン、アルミニウム、クロム、ニオブ、亜鉛等が含まれる。下地層2には、これらの金属が1種のみ含まれてもよく、2種以上含まれてもよい。これらの金属の中でも、好ましくはインジウムである。
 下地層2の厚みは、3nm以下であり、好ましくは0.5nm以下であり、単原子膜であることがより好ましい。さらに、透明基板1上に金属原子が互いに離間して付着している膜でもありうる。透明基板1上に金属原子からなる金属原子が離間して付着していると、透明金属膜3の成膜時に、透明金属膜3の材料である原子がマイグレートし難い。したがって、透明金属膜3がこの金属原子を起点に成長しやすく、透明金属膜3が平坦になりやすい。
 1.3)透明金属膜
 透明金属膜3は、透明導電体において電気を導通させるための膜であり;前記下地層2に隣接して配設される。透明金属膜3に含まれる金属は、導電性の高い金属であれば特に制限されず、例えば銀、銅、金、白金族、チタン、クロム等でありうる。透明金属膜には、これらの金属が1種のみ含まれてもよく、2種以上含まれてもよい。導電性が高いとの観点から、透明金属膜は銀または銀が90at%以上含まれる合金からなることが好ましい。銀と組み合わされる金属は、亜鉛、金、銅、パラジウム、アルミニウム、マンガン、ビスマス、ネオジム等でありうる。例えば銀と亜鉛とが組み合わされると、透明金属膜の耐硫化性が高まる。銀と金とが組み合わされると、耐塩(NaCl)性が高まる。さらに銀と銅とが組み合わされると、耐酸化性が高まる。
 また、透明金属膜3のプラズモン吸収率は、波長400nm~800nmにわたって(全範囲で)10%以下であることが好ましい。透明金属膜3の上記プラズモン吸収率は7%以下であることがより好ましく、さらに好ましくは5%以下である。
 透明金属膜3の波長400nm~800nmにおけるプラズモン吸収率は、以下の手順で測定される。
 (i)ガラス基板上に、白金パラジウム(パラジウム含有量20質量%)をマグネトロンスパッタ装置にて0.1nm成膜する。白金パラジウムの平均厚みは、スパッタ装置のメーカー公称値の成膜速度等から算出する。その後、白金パラジウムが付着した基板上に蒸着機にて測定対象と同様の金属からなる膜を20nm成膜する。
 (ii)そして、得られた金属膜の表面の法線に対して、5°傾けた角度から測定光を入射させて、金属膜の透過率及び反射率を測定する。そして各波長における透過率及び反射率から、吸収率=100-(透過率+反射率)を算出し、これをリファレンスデータとする。透過率及び反射率は、分光光度計で測定する。
 (iii)続いて、測定対象の透明金属膜について、同様に透過率及び反射率を測定する。そして、得られた吸収率から上記リファレンスデータを差し引き、算出された値を、プラズモン吸収率とする。
 透明金属膜3の厚みは15nm以下であり、好ましくは3~13nmであり、さらに好ましくは7~12nmである。透明金属膜3の厚みが15nm以下であれば、透明金属膜3に含まれる金属本来の反射が生じ難く、透明導電体の光透過性が高まりやすい。
 1.4)第一高屈折率層及び第二高屈折率層
 本発明の透明導電体100には、前述のように、下地層2及び透明金属膜3を挟み込むように、比較的屈折率の高い層;つまり第一高屈折率層4及び第二高屈折率層5が配設されていてもよい。透明導電体の反射特性は、透明導電体の層構成によって大きく依存する。そして、下地層2及び透明金属膜3を挟み込むように、第一高屈折率層4及び第二高屈折率層5が配設されると、透明導電体表面の反射率が低下し、透明導電体の光透過性が高まりやすい。
 第一高屈折率層4及び第二高屈折率層5には、透明基板1の波長570nmの光の屈折率より、波長570nmの光の屈折率が高い誘電性材料または酸化物半導体材料が含まれることが好ましい。当該誘電性材料または酸化物半導体材料の波長570nmの光の屈折率は、透明基板1の波長570nmの光の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。第一高屈折率層4及び第二高屈折率層5に含まれる誘電性材料または酸化物半導体材料の具体的な波長570nmの光の屈折率は1.5より大きいことが好ましく、1.6~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。誘電性材料または酸化物半導体材料の屈折率が1.5より大きいと、第一高屈折率層4及び第二高屈折率層5によって、透明導電体100の反射率が低下しやすい。なお、第一高屈折率層4及び第二高屈折率層5の屈折率は、上記誘電性材料または酸化物半導体材料の屈折率や、各層の密度で調整される。
 第一高屈折率層4及び第二高屈折率層5に含まれる誘電性材料または酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。第一高屈折率層4及び第二高屈折率層5に含まれる誘電性材料または酸化物半導体材料は、金属酸化物または金属硫化物であることが好ましい。金属酸化物または金属硫化物の例には、TiO、ITO(酸化インジウムスズ)、ZnO、ZnS、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO(酸化インジウム・酸化亜鉛)、AZO(AlドープZnO)、GZO(GaドープZnO)、ATO(SbドープSnO)、ICO(インジウムセリウムオキサイド)、WO等が含まれる。金属酸化物または金属硫化物は、屈折率や生産性の観点からTiO、ITO、ZnO、NbまたはZnSであることが好ましい。第一高屈折率層4及び第二高屈折率層5には、上記金属酸化物または金属硫化物が1種のみ含まれてもよく、2種以上が含まれてもよい。
 第一高屈折率層4及び第二高屈折率層5の厚みは、アドミッタンス図を用いた光学設計によって設定されることが好ましい。第一高屈折率層4及び第二高屈折率層5の厚みは、通常10~150nmであることが好ましく、より好ましくは20~80nmである。第一高屈折率層4及び第二高屈折率層5が10nm以上であると、第一高屈折率層4及び第二高屈折率層5によって、透明導電体100の反射率が十分に低くなる。一方、第一高屈折率層4及び第二高屈折率層5の厚みが150nm以下であれば、透明導電体100の光透過性が低下し難い。第一高屈折率層4及び第二高屈折率層5の厚みは、エリプソメーターで測定される。
1.5)低屈折率層
 本発明の透明導電体100には、下地層2及び透明金属膜3のプラズモン吸収を抑制するための低屈折率層6が配設されていてもよい。低屈折率層6は、下地層2の透明基板1側の表面、及び透明金属膜3の下地層2と隣接しない側の表面のうち、いずれか一方の面、または両方の面に配設される。
 下地層2の透明基板1側の表面、もしくは透明金属膜3の下地層2と隣接しない側の表面に低屈折率層6が配設されると、下地層2及び透明金属膜3のプラズモン吸収が抑制される理由は以下の通りである。
 前述の下地層2及び透明金属膜3を一つの層とみなし、これらが金属微細球で構成されるとすると、局在プラズモン吸収断面積Cabsは下記の式で表される。
Figure JPOXMLDOC01-appb-M000001
 上記式に基づけば、下地層2及び透明金属膜3の周囲に接する層の屈折率が、低ければ低いほど、下地層2及び透明金属膜3の局在プラズモン吸収断面積が小さくなる。つまり、比較的屈折率の低い低屈折率層6が下地層2や透明金属膜3の表面に配設されると、下地層2や透明金属膜3のプラズモン吸収が抑制される。
 ここで、低屈折率層6には、波長570nmの光の屈折率が1.8未満である誘電性材料または酸化物半導体材料が含まれることが好ましく、より好ましくは1.30~1.6であり、特に好ましくは1.35~1.5である。なお、低屈折率層6の屈折率は主に、低屈折率層6に含まれる材料の屈折率や、低屈折率層6の密度で調整される。
 低屈折率層6に含まれる誘電性材料または酸化物半導体材料は、MgF、SiO、AlF、CaF、CeF、CdF、LaF、LiF、NaF、NdF、YF、YbF、Ga、LaAlO、NaAlF、Al、MgO、及びThO等でありうる。誘電性材料または酸化物半導体材料は中でも、MgF、SiO、CaF、CeF、LaF、LiF、NaF、NdF、NaAlF、Al、MgO、またはThOであることが好ましく、屈折率が低いとの観点から、MgF及びSiOが特に好ましい。低屈折率層6には、これらの材料が1種のみ含まれてもよく、2種以上含まれてもよい。
 低屈折率層6の厚みは、透明導電体100の光学特性に大きく影響しない厚みであることが好ましい。低屈折率層6の厚みは0.1~15nmであることが好ましく、1~10nmであることがより好ましく、さらに好ましくは3~8nmである。
2.透明導電体の製造方法
 前述の透明導電体の製造方法には、以下の2つの工程が含まれることが好ましい。
 (i)透明基板上に、蒸着法またはスパッタ法で下地層を成膜する工程
 (ii)下地層上に、気相成膜法で透明金属膜を成膜する工程
 また、透明導電体の層構成に応じて、第一高屈折率層を成膜する工程や第二高屈折率層を成膜する工程、低屈折率層を成膜する工程が含まれてもよい。
 2.1)下地層成膜工程
 透明基板上に、蒸着法またはスパッタ法で、前述の下地層を成膜する。ただし、金属の種類によっては、十分に蒸着できないものがある。このような金属原子を含む材料を蒸着すると、得られる下地層の厚みや密度にムラが生じる場合がある。したがって、下地層を蒸着法で成膜する場合には、材料中に含まれるパラジウムの量が多いことが好ましい。パラジウムの具体的な含有量は、20質量%以上であることが好ましく、より好ましくは40質量%以上であり、さらに好ましくは60質量%以上である。パラジウムが20質量%以上含まれる材料は、蒸着法で均一に成膜されやすい。またコストの面からもパラジウムが多い方が望ましい。
 下地層を成膜するための蒸着法の例には、真空蒸着法、電子線蒸着法、イオンプレーティング法、イオンビーム蒸着法等が含まれる。蒸着時間は、成膜する下地層の厚みや成膜速度に合わせて適宜選択される。蒸着速度は、好ましくは0.1~15Å/秒であり、より好ましくは0.1~7Å/秒である。
 一方、下地層をスパッタ法で成膜する場合には、材料中に含まれるパラジウムの量は特に制限されず、下地層の組成に応じて適宜選択される。
 スパッタ法の例には、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法等が含まれる。スパッタ時間は、所望の下地層の厚み、及び成膜速度に合わせて適宜選択する。スパッタ成膜速度は、好ましくは0.1~15Å/秒であり、より好ましくは0.1~7Å/秒である。
 2.2)透明金属膜形成工程
 前述の下地層上に、気相成膜法で金属を積層して、透明金属膜を形成する。前述のように、下地層上に透明金属膜を成膜することで、透明金属膜の構成原子がマイグレートし難くなり、得られる透明金属膜の表面が平滑になりやすい。
 透明金属膜の成膜方法は、一般的な気相成膜法であれば特に制限されず、例えば真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等でありうる。
 これらの中でも、好ましくは真空蒸着法またはスパッタ法である。真空蒸着法またはスパッタ法によれば、均一かつ、所望の厚みの透明金属膜が得られやすい。透明金属膜の成膜速度は、気相成膜法の種類や、所望の膜密度等に応じて適宜選択する。
 2.3)その他の工程
 前述のように、透明導電体の製造方法には、所望の透明導電体の層構成に応じて、透明基板上に第一高屈折率層を成膜する工程や、透明金属膜上に第二高屈折率層を成膜する工程、低屈折率層を成膜する工程等が含まれてもよい。
 第一高屈折率層の成膜方法、第二高屈折率層の成膜方法、及び低屈折率層の成膜方法は、いずれも一般的な気相成膜法であれば特に制限されず、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等であり得る。
 3.透明導電体の物性について
 本発明の透明導電体は、波長400nm~800nmの光の全範囲で、光の透過率が50%以上であり、好ましくは60%以上であり、さらに好ましくは70%以上である。波長400~800nmの全範囲で、透過率が50%以上であると、透明導電体が着色し難い。また、波長400nm~800nmの光の平均透過率は、好ましくは60%以上であり、より好ましくは70%以上であり、さらに好ましくは80%以上である。透明導電体の上記波長範囲の光の平均透過率が85%以上であると、透明導電体を特に高い透明性が要求される用途にも適用できる。
 一方、透明導電体の波長500nm~700nmの光の平均反射率は、20%以下であることが好ましく、より好ましくは15%以下であり、さらに好ましくは10%以下である。上記透過率及び反射率は、透明導電体の表面の法線に対して5°傾けた角度から測定光を透明導電体に入射させて測定される。透過率及び反射率は、分光光度計で測定される。
 また、透明導電体は、波長400~800nmの光の全範囲で、15%以下であることが好ましく、より好ましくは10%以下である。波長400~800nmの全範囲で、吸収率が15%以下であると、透明導電体が着色し難い。
 また、波長400nm~800nmの光の平均吸収率が20%以下であることが好ましく、より好ましくは15%以下であり、さらに好ましくは10%以下である。透明導電体の光の吸収率は、透明金属膜の吸収率や、各層を構成する材料の光吸収率を抑制することで、低減される。透明導電体の吸収率は、吸収率=100-(透過率+反射率)として算出される。
 透明導電体のL*a*b*表色系におけるa*値及びb*値は±30以内であることが好ましく、より好ましくは±5以内であり、さらに好ましくは±3.0以内であり、特に好ましくは±2.0以内である。L*a*b*表色系におけるa*値及びb*値は±30以内であれば、透明導電体が無色透明に観察される。L*a*b*表色系におけるa*値及びb*値は、分光光度計で測定される。
 透明導電体の表面電気抵抗は、50Ω/□以下であることが好ましく、さらに好ましくは30Ω/□以下である。表面電気抵抗値が50Ω/□以下である透明導電体は、静電容量方式のタッチパネル用の透明導電パネル等に適用できる。透明導電体の表面電気抵抗値は、透明金属膜の厚み等によって調整できる。透明導電体の表面電気抵抗値は、例えばJIS K7194、ASTM D257等に準拠して測定できる。また、市販の表面電気抵抗率計によっても測定できる。
 以下、本発明を実施例により更に詳細に説明する。しかしながら、本発明の範囲はこれによって何ら制限を受けない。
[実施例1]
 山中セミコンダクターの白板基板(Φ30mm、厚み2mm)を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。上記白板基板(透明基板)上に、下記の方法で、下地層及び透明金属膜を成膜した。
(下地層)
 前記透明基板上に、シンクロン社製のBMC-800T蒸着機により、240A、成膜レート0.1Å/sでパラジウム(Pd)を抵抗加熱式蒸着した。下地層の厚みは0.2nmであった。厚みは、成膜レート及び成膜時間から算出した。
(透明金属膜)
 前記下地層上に、Optorun社のGener 1300(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜(6nm)を得た。成膜レートは3Å/sとした。厚みは、J.A.WoollamCo.Inc.製のVB-250型VASEエリプソメーターで測定した。
[実施例2]
 下地層を、白金及びパラジウムの合金(組成比80:20)からなる層とした以外は、実施例1と同様に透明導電体を作製した。
[実施例3]
 シンクロン社製のBMC-800T蒸着機により、360mA、成膜レート0.1Å/sで金及びパラジウムの合金(組成比80:20)を抵抗加熱式蒸着(RH)にて蒸着して下地層を成膜した以外は、実施例1と同様に透明導電体を作製した。得られた下地層(Au/Pd層)の厚みは、0.2nmであった。
[実施例4]
 シンクロン社製のBMC-800T蒸着機により、330mA、成膜レート0.1Å/sで白金及びパラジウムの合金(組成比80:20)を抵抗加熱式蒸着(RH)にて蒸着して下地層を成膜した以外は、実施例1と同様に透明導電体を作製した。得られた下地層(Pd/Pt層)の厚みは、3.0nmであった。
[実施例5]
 第一高屈折率層及び第二高屈折率層を以下の方法で成膜した以外は、実施例1と同様の方法で、透明基板/第一高屈折率層/下地層/透明金属膜/第二高屈折率層をこの順に有する透明導電体を作製した。
(第一高屈折率層及び第二高屈折率層)
 シンクロン社製のBMC-800T蒸着機により、酸素導入下(2×10-2Pa)、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着し、第一高屈折率層(厚み37nm)及び第二高屈折率層(厚み37nm)を、それぞれ成膜した。
[実施例6]
 透明金属膜の厚みを6nmとした以外は、実施例5と同様に透明導電体を作製した。
[実施例7]
 低屈折率層A及び低屈折率層Bを以下の方法で成膜した以外は、実施例6と同様の方法で、透明基板/第一高屈折率層/低屈折率層A/下地層/透明金属膜/低屈折率層B/第二高屈折率層をこの順に有する透明導電体を作製した。
(低屈折率層A及び低屈折率層B)
 シンクロン社製のBMC-800T蒸着機により、酸素導入下(2×10-2Pa)、100mA、成膜レート10Å/sでSiOを電子ビーム(EB)蒸着し、低屈折率層A(厚み5nm)及び低屈折率層B(厚み5nm)をそれぞれ成膜した。
[比較例1]
 下地層を成膜しなかった以外は、実施例1と同様に透明導電体を作製した。
[比較例2]
 下地層を、以下の方法で成膜した以外は、実施例1と同様に透明導電体を作製した。
(下地層)
 シンクロン社製のBMC-800T蒸着機により、310mA、成膜レート5Å/sでAlを抵抗加熱式蒸着(RH)にて蒸着し、下地層(厚み1nm)を得た。
[比較例3]
 透明金属膜の厚みを10nmとした以外は、比較例2と同様に透明導電体を作製した。
[評価]
 (透明導電体の透過率及び吸収率)
 各実施例及び比較例で得られた透明導電体の透過率、及び吸収率を以下のように算出した。得られた透明導電体について、透明金属膜の表面(第二高屈折率層を表面に有する場合は第二高屈折率層の表面)の法線に対して5°傾けた位置から測定光を入射させた。そして、透明導電体の透過率及び反射率を分光光度計(日立ハイテク社製U4100)で測定した。さらに、光の吸収率を、吸収率=100-(透過率+反射率)として算出した。結果を表1、図3のグラフ(透過率)、及び図4のグラフ(吸収率)に示す。
(表面電気抵抗)
 実施例及び比較例で得られた透明導電体の表面電気抵抗を、三菱化学アナリテック製のロレスタEP MCP-T360にて測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、下地層を有さない透明導電体では、波長400~800nmの光の平均透過率40%程度であり、さらに最大透過率も低かった(比較例1)。透明導電体に含まれる透明金属膜の表面平滑性が低く、プラズモン吸収が生じたと推察される。
 一方、Alからなる下地層を有する比較例2及び比較例3では、下地層を有さない比較例1と比較して、透明導電体の光の透過率が高まらず、光の吸収も十分に抑制できなかった。さらに、表面電気抵抗も高いことから、透明金属膜の表面の平滑性が低かったと推察される。
 これに対し、Pdを20質量%以上含む下地層を有する実施例1~7の透明導電体では、波長400~800nmの光の平均透過率が60%を超え、さらに波長400~800nmの光の平均吸収率が13%以下であった。また、表面電気抵抗も20Ω/□であった。上記下地層によって、表面平滑性の高い、透明金属膜が得られたと推察される。
 特に、透明金属膜が、第一高屈折率層及び第二高屈折率層で挟み込まれた実施例5~7の透明導電体では、波長400~800nmの光の平均透過率が83%以上であり、光透過性が良好であった。また特に、第一高屈折率層と下地層との間、及び透明金属膜と第二高屈折率層との間に、それぞれ低屈折率層を有する実施例7では、平均透過率が88%であり、非常に高かった。低屈折率層によって、プラズモン吸収が抑制されたと推察される。
 本発明で得られる透明導電体は、表面電気抵抗値が低く、かつ透明性にも優れる。したがって、各種方式のディスプレイをはじめ、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子など様々なオプトエレクトロニクスデバイスに好ましく用いられる。
 1 透明基板
 2 下地層
 3 透明金属膜
 4 第一高屈折率層
 5 第二高屈折率層
 6 低屈折率層
 100 透明導電体
 

Claims (5)

  1.  透明基板と、
     パラジウム、またはパラジウムを20質量%以上含む合金からなり、かつ厚みが3nm以下である下地層と、
     前記下地層に隣接して配設され、かつ厚みが15nm以下である透明金属膜と、をこの順に含む透明導電体であって、
     前記透明導電体の透過率が、波長400~800nmの全範囲で50%以上である、透明導電体。
  2.  前記透明基板と前記下地層との間に、前記透明基板の波長570nmの光の屈折率より、波長570nmの光の屈折率が高い誘電性材料または酸化物半導体材料を含む第一高屈折率層をさらに有し、
     前記透明金属膜上に、前記透明基板の波長570nmの光の屈折率より、波長570nmの光の屈折率が高い誘電性材料または酸化物半導体材料を含む第二高屈折率層をさらに有する、請求項1に記載の透明導電体。
  3.  前記透明導電体の波長400~800nmの光の平均透過率が70%以上である、請求項2に記載の透明導電体。
  4.  前記下地層の前記透明基板側表面、及び前記透明金属膜の前記下地層とは反対側の表面のうち、いずれか一方の面もしくは両方の面に、波長570nmの光の屈折率が1.8以下である誘電性材料または酸化物半導体材料を含む低屈折率層をさらに有する、請求項1に記載の透明導電体。
  5.  透明基板と、パラジウム、またはパラジウムを20質量%以上含む合金からなり、かつ厚みが3nm以下である下地層と、厚みが15nm以下である透明金属膜と、をこの順に有する透明導電体の製造方法であって、
     透明基板上に、蒸着法またはスパッタ法で下地層を成膜する工程と、
     前記下地層上に、気相成膜法で透明金属膜を成膜する工程とを含む、透明導電体の製造方法。
     
PCT/JP2014/002429 2013-05-08 2014-05-07 透明導電体及びその製造方法 WO2014181538A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-098333 2013-05-08
JP2013098333 2013-05-08

Publications (1)

Publication Number Publication Date
WO2014181538A1 true WO2014181538A1 (ja) 2014-11-13

Family

ID=51867026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002429 WO2014181538A1 (ja) 2013-05-08 2014-05-07 透明導電体及びその製造方法

Country Status (1)

Country Link
WO (1) WO2014181538A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020001823A (ja) * 2018-06-28 2020-01-09 株式會社 榮一 リサイクルが可能で接着力に優れた包装用フィルム組成物

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253722A (ja) * 1985-05-01 1986-11-11 住友電気工業株式会社 光透過性導電膜の形成方法
JPH07105740A (ja) * 1993-10-08 1995-04-21 Mitsui Toatsu Chem Inc 透明導電性フィルム
JPH0877832A (ja) * 1994-09-01 1996-03-22 Catalysts & Chem Ind Co Ltd 透明導電性被膜付基材、その製造方法および該基材を備えた表示装置
JPH09291355A (ja) * 1996-04-26 1997-11-11 Asahi Glass Co Ltd 透明導電膜付き基体及びその製造方法
JPH10241464A (ja) * 1996-12-26 1998-09-11 Asahi Glass Co Ltd 透明導電膜付き基体とその製造方法
JP2000147244A (ja) * 1998-11-12 2000-05-26 Mitsui Chemicals Inc 光学フィルター
JP2001179868A (ja) * 1999-12-27 2001-07-03 Nitto Denko Corp 透明積層体の製造方法
JP2002324431A (ja) * 2001-04-24 2002-11-08 Mitsui Chemicals Inc ディスプレイ用フィルタ及びその製造方法
JP2002371350A (ja) * 2001-06-14 2002-12-26 Nitto Denko Corp 透明積層体の製造方法
JP2004345278A (ja) * 2003-05-23 2004-12-09 Sony Corp 透明導電性基材、抵抗膜方式タッチパネルおよび表示素子

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253722A (ja) * 1985-05-01 1986-11-11 住友電気工業株式会社 光透過性導電膜の形成方法
JPH07105740A (ja) * 1993-10-08 1995-04-21 Mitsui Toatsu Chem Inc 透明導電性フィルム
JPH0877832A (ja) * 1994-09-01 1996-03-22 Catalysts & Chem Ind Co Ltd 透明導電性被膜付基材、その製造方法および該基材を備えた表示装置
JPH09291355A (ja) * 1996-04-26 1997-11-11 Asahi Glass Co Ltd 透明導電膜付き基体及びその製造方法
JPH10241464A (ja) * 1996-12-26 1998-09-11 Asahi Glass Co Ltd 透明導電膜付き基体とその製造方法
JP2000147244A (ja) * 1998-11-12 2000-05-26 Mitsui Chemicals Inc 光学フィルター
JP2001179868A (ja) * 1999-12-27 2001-07-03 Nitto Denko Corp 透明積層体の製造方法
JP2002324431A (ja) * 2001-04-24 2002-11-08 Mitsui Chemicals Inc ディスプレイ用フィルタ及びその製造方法
JP2002371350A (ja) * 2001-06-14 2002-12-26 Nitto Denko Corp 透明積層体の製造方法
JP2004345278A (ja) * 2003-05-23 2004-12-09 Sony Corp 透明導電性基材、抵抗膜方式タッチパネルおよび表示素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020001823A (ja) * 2018-06-28 2020-01-09 株式會社 榮一 リサイクルが可能で接着力に優れた包装用フィルム組成物

Similar Documents

Publication Publication Date Title
JP5549216B2 (ja) 透明導電性積層体およびその製造方法ならびにタッチパネル
JP6314463B2 (ja) 透明導電体
CN104040643B (zh) 电特性优秀的透明导电性膜及利用该透明导电性膜的触控面板
JP2011194679A (ja) 透明導電性積層体およびその製造方法ならびにタッチパネル
JP6292225B2 (ja) 透明導電体
JP2007323045A (ja) プラズマディスプレイパネルフィルタ及びその製造方法
JP6319302B2 (ja) 透明導電体及びその製造方法
WO2015068738A1 (ja) 透明導電体
CN111883284A (zh) 一种双面导电膜、镀膜方法及触控屏
WO2014196460A1 (ja) 透明導電体及びその製造方法
WO2014181538A1 (ja) 透明導電体及びその製造方法
WO2015087895A1 (ja) 透明導電体
WO2015125558A1 (ja) 透明導電体の製造方法及び透明導電体
JP4894279B2 (ja) 透明導電性積層体
WO2015011928A1 (ja) 透明導電体の製造方法
JP2015219690A (ja) 透明導電デバイス、及び、タッチパネル
JP2016146052A (ja) 透明導電体及びこれを含むタッチパネル
WO2015053371A1 (ja) 透明導電体
WO2015025525A1 (ja) 透明導電体
WO2014188683A1 (ja) タッチパネル用電極基板、これを含むタッチパネル、及び表示パネル
JP2016177940A (ja) 透明導電体の製造方法
JP2004175074A (ja) 導電性を有する多層膜付透明基板
WO2015125677A1 (ja) 透明導電体
TWM374405U (en) Non-conductive multi-layer membrane structure on semi-reflective & semi-penetration flexible substrates
JP2016044356A (ja) 透明導電体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14795036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14795036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP