WO2015011928A1 - 透明導電体の製造方法 - Google Patents

透明導電体の製造方法 Download PDF

Info

Publication number
WO2015011928A1
WO2015011928A1 PCT/JP2014/003924 JP2014003924W WO2015011928A1 WO 2015011928 A1 WO2015011928 A1 WO 2015011928A1 JP 2014003924 W JP2014003924 W JP 2014003924W WO 2015011928 A1 WO2015011928 A1 WO 2015011928A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
refractive index
metal film
index layer
film
Prior art date
Application number
PCT/JP2014/003924
Other languages
English (en)
French (fr)
Inventor
仁一 粕谷
一成 多田
健一郎 平田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2015011928A1 publication Critical patent/WO2015011928A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering

Definitions

  • the present invention relates to a method for producing a transparent conductor.
  • transparent conductive films have been used in various materials such as electrode materials for display devices such as liquid crystal displays, plasma displays, inorganic and organic EL (electroluminescence) displays, electrode materials for inorganic and organic EL elements, touch panel materials, and solar cell materials. in use.
  • electrode materials for display devices such as liquid crystal displays, plasma displays, inorganic and organic EL (electroluminescence) displays, electrode materials for inorganic and organic EL elements, touch panel materials, and solar cell materials. in use.
  • metals such as Au, Ag, Pt, Cu, Rh, Pd, Al, and Cr, In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , and TiO 2 are used.
  • SnO 2 , ZnO, ITO (indium tin oxide) and other oxide semiconductors are known.
  • a capacitive touch panel has been developed, and in this method, a transparent conductive film having a low surface electrical resistance value and high transparency is required.
  • an ITO film it is difficult to sufficiently reduce the surface electrical resistance value.
  • the ITO film is easily broken and cannot be applied to applications that require flexibility. Therefore, a transparent conductive film in which Ag is formed in a mesh shape has been proposed as a transparent conductive film that replaces ITO (Patent Document 1).
  • a transparent conductive film coated with carbon nanotubes or Ag nanowires has also been proposed (Patent Documents 2 and 3). It has also been proposed that a thin film made of Ag be a transparent conductive film; a transparent conductor having a laminated structure of a high refractive index layer and an Ag thin film has also been proposed (Patent Document 4).
  • the Ag thin film can be formed by magnetron sputtering (for example, Patent Document 4).
  • An IZO thin film, a Cu thin film, or the like can be formed by a counter sputtering method in addition to a magnetron sputtering method (for example, Patent Documents 5 and 6).
  • JP 2006-352073 A Japanese translation of PCT publication No. 2004-526838 JP 2011-167848 A JP 2000-158578 A JP 2012-83686 A JP 2010-244860 A
  • the Ag mesh described in Patent Document 1 has a metal part with a line width of about 20 ⁇ m. Therefore, the Ag mesh is easily visible and cannot be applied to uses that require high transparency. Moreover, the transparent conductive film of patent document 2 and patent document 3 still has a high surface electrical resistance value. Therefore, it is required to further reduce the surface electrical resistance value. Thus, a transparent metal film mainly composed of Ag having a low surface electrical resistance value and high transparency is desired.
  • the thickness of the metal film In order to reduce the surface electrical resistance of the metal film, it is effective to increase the thickness of the metal film to make it a continuous film. However, if the thickness of the metal film is increased, reflection tends to occur and transparency decreases. It's easy to do. On the other hand, when the thickness of the metal film is reduced, a discontinuous film is likely to be obtained, and the surface electrical resistance value is likely to be increased.
  • the present inventors have intensively studied a method for obtaining a transparent metal film mainly composed of Ag having a low surface electrical resistance even when the transparent metal film is thin. It has been found that it is effective to form a film. That is, it has been found that the surface electric resistance of the metal film mainly composed of Ag formed by the counter sputtering method is significantly reduced as compared with the metal film mainly composed of Ag formed by the magnetron sputtering method. It was.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a method for producing a transparent conductor having a low surface electric resistance value even when the thickness is small.
  • a method for producing a transparent conductor comprising a transparent substrate and a transparent metal film containing 50 atomic% or more of silver and having a thickness of 20 nm or less, wherein the transparent metal film is formed by a counter sputtering method.
  • the manufacturing method of a transparent conductor including the process to form a film.
  • the transparent conductor 20% by mass or more of palladium, molybdenum, zinc, germanium, niobium or indium or palladium, molybdenum, zinc, germanium, niobium or indium between the transparent substrate and the transparent metal film.
  • Production method. [4] The method for producing a transparent conductor according to any one of [1] to [3], wherein an average transmittance of light having a wavelength of 450 to 800 nm of the transparent conductor is 70% or more.
  • the present invention it is possible to provide a method for producing a transparent conductor having a low surface electric resistance value even when the transparent metal film is thin.
  • the transparent conductor in the present invention includes a transparent substrate and a transparent metal film, and may further include other layers such as a base layer.
  • the transparent conductor 100 according to the present invention may be a laminated body of the transparent substrate 1 and the transparent metal film 2 (see FIG. 1); the bottom disposed between the transparent substrate 1 and the transparent metal film 2
  • the laminate may further include a base layer 3 (see FIG. 2); the first high refractive index layer 4 and the second high refractive index layer 5 sandwiching the base layer 3 and the transparent metal film 2;
  • the transparent conductor 100 according to the present invention is easy to achieve both high light transmittance and low surface electric resistance value. It is preferable to further include a base layer 3 between the two.
  • the transparent substrate 1 may be the same as the transparent substrate of various display devices.
  • the transparent substrate 1 includes a glass substrate, a cellulose ester resin (for example, triacetylcellulose, diacetylcellulose, acetylpropionylcellulose, etc.), a polycarbonate resin (for example, Panlite, Multilon (both manufactured by Teijin Limited)), a cycloolefin resin (for example, ZEONOR (manufactured by Nippon Zeon), Arton (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resin (eg polymethyl methacrylate, acrylite (manufactured by Mitsubishi Rayon), Sumipex (manufactured by Sumitomo Chemical)) Polyimide, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (for example, polyethylene terephthalate (PET), polyethylene naphthalate), polyethersulf
  • the transparent substrate 1 is a glass substrate, or a cellulose ester resin, a polyester resin (particularly polyethylene terephthalate), a triacetyl cellulose, a cycloolefin resin, a phenol resin, an epoxy resin, a polyphenylene ether (PPE) resin, a polyether sulfone.
  • a film made of ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), or styrene block copolymer resin is preferable.
  • the transparent substrate 1 preferably has high transparency to visible light; the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and 85% or more. More preferably it is. When the average light transmittance of the transparent substrate 1 is 70% or more, the light transmittance of the transparent conductor 100 is likely to be increased. Further, the average absorptance of light having a wavelength of 450 to 800 nm of the transparent substrate 1 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
  • the average transmittance of the transparent substrate 1 is measured by making light incident from an angle inclined by 5 ° with respect to the normal of the surface of the transparent substrate 1.
  • Average transmittance and average reflectance are measured with a spectrophotometer.
  • the refractive index of light having a wavelength of 570 nm of the transparent substrate 1 is preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. .
  • the refractive index of the transparent substrate is usually determined by the material of the transparent substrate. The refractive index of the transparent substrate is measured with an ellipsometer.
  • the haze value of the transparent substrate 1 is preferably 0.01 to 2.5, more preferably 0.1 to 1.2.
  • the haze value of a transparent conductor can be suppressed as the haze value of a transparent substrate is 2.5 or less.
  • the haze value is measured with a haze meter.
  • the thickness of the transparent substrate 1 is preferably 1 ⁇ m to 20 mm, more preferably 10 ⁇ m to 2 mm.
  • the thickness of the transparent substrate 1 is 1 ⁇ m or more, the strength of the transparent substrate 1 is increased, and it is difficult to crack or tear the transparent metal film 2 when it is formed.
  • the thickness of the transparent substrate 1 is 20 mm or less, the flexibility of the transparent conductor 100 is sufficient.
  • the thickness of the apparatus using the transparent conductor 100 can be reduced.
  • the apparatus using the transparent conductor 100 can also be reduced in weight.
  • the transparent metal film 2 is a film for conducting electricity in a transparent conductor.
  • the transparent metal film 2 can be laminated adjacent to the transparent substrate 1, an underlayer 3, which will be described later, the first high refractive index layer 4, or the low refractive index layer 6.
  • the metal contained in the transparent metal film 2 is not particularly limited as long as it is a highly conductive metal, and may be, for example, silver, copper, gold, platinum group, titanium, chromium, or the like.
  • the transparent metal film 2 may contain only one kind of these metals or two or more kinds.
  • the transparent metal film 2 is preferably a metal containing 50 atomic% or more of silver; more preferably, silver or an alloy containing 90 atomic% or more of silver.
  • the metal combined with silver can be zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, and the like.
  • salt resistance (NaCl) resistance increases.
  • silver and copper are combined, the oxidation resistance increases.
  • the plasmon absorption rate of the transparent metal film 2 is preferably 10% or less over the wavelength range of 400 nm to 800 nm (entire range).
  • the plasmon absorption rate of the transparent metal film 2 is more preferably 7% or less, and further preferably 5% or less.
  • the plasmon absorption rate at a wavelength of 400 nm to 800 nm of the transparent metal film 2 is measured by the following procedure.
  • platinum palladium (palladium content 20% by mass) is formed to a thickness of 0.1 nm by a magnetron sputtering apparatus. The average thickness of platinum palladium is calculated from the film forming speed and the like of the manufacturer's nominal value of the sputtering apparatus. Thereafter, a 20 nm thick film made of the same metal as the object to be measured is formed on the substrate to which platinum-palladium is adhered by the facing sputtering method.
  • the counter sputtering apparatus for example, a counter sputtering apparatus manufactured by FTS Corporation can be used.
  • measurement light is incident from an angle inclined by 5 ° with respect to the normal line of the surface of the obtained metal film, and the transmittance and reflectance of the metal film are measured.
  • absorption rate 100 ⁇ (transmittance + reflectance) is calculated and used as reference data.
  • the transmittance and reflectance are measured with a spectrophotometer.
  • the transmittance and reflectance of the transparent metal film to be measured are similarly measured. Then, the reference data is subtracted from the obtained absorption rate, and the calculated value is defined as the plasmon absorption rate.
  • the transmittance of the transparent metal film 2 at a wavelength of 500 nm is preferably 20% or more.
  • the transmittance can be measured with a spectrophotometer.
  • the thickness of the transparent metal film 2 is preferably 20 nm or less, more preferably 15 nm or less, still more preferably 13 nm or less, particularly preferably 10 nm or less, and most preferably 8 nm or less. If the thickness of the transparent metal film 2 is 20 nm or less, reflection of the metal contained in the transparent metal film 2 hardly occurs, and the light transmittance of the transparent conductor is likely to increase. On the other hand, the thickness of the transparent metal film 2 is preferably 3 nm or more, more preferably 4 nm or more, and further preferably 5 nm or more. If the thickness of the transparent metal film 2 is 3 nm or more, it is easy to form a continuous film, and the surface electric resistance value of the transparent metal film can be easily lowered.
  • the transparent conductor 100 easily includes both a high light transmittance and a low surface electric resistance value, and therefore further includes a base layer 3 between the transparent substrate 1 and the transparent metal film 2. Is preferred.
  • the transparent metal film 2 made of Ag or the like is formed directly on the transparent substrate 1, it is difficult to form a transparent metal film having both sufficiently high light transmittance and low surface electric resistance.
  • the reason is guessed as follows.
  • Ag atoms that reach the transparent substrate migrate (surface move) on the transparent substrate at the initial stage of film formation.
  • a large number of Ag atoms gather to form a discontinuous island structure.
  • an Ag film grows starting from the island-like structure; a part of adjacent lumps are connected to enable electrical conduction.
  • the gap between the lumps is not completely filled, so that plasmon absorption occurs and the light transmittance is not sufficiently increased.
  • the thickness of the Ag film is increased, the surface of the Ag film becomes smooth, so that the surface electrical resistance value is lowered and plasmon absorption is not generated.
  • the light transmittance of the Ag layer does not increase.
  • the base layer 3 made of palladium or molybdenum or an alloy containing 20% by mass or more of palladium or molybdenum between the transparent substrate 1 and the transparent metal film 2.
  • a layer containing a certain amount of palladium or molybdenum is easily formed uniformly by a general vapor deposition method. Further, palladium or molybdenum is difficult to migrate on the film formation surface (for example, the surface of the transparent substrate 1), and it is difficult to form the aforementioned island-like structure.
  • the transparent metal film 2 is formed on such an underlayer 3, the constituent atoms of the transparent metal film 2 are difficult to migrate, and the transparent metal film 2 becomes a smooth film even if it is thin. Therefore, it is easy to obtain a transparent conductor that achieves both high light transmittance and low surface electrical resistance.
  • Underlayer 3 is laminated between the transparent substrate 1 and the transparent metal film 2 and in contact with the transparent metal film 2, and palladium, molybdenum, zinc, germanium, niobium, or indium; It is a layer made of an alloy with another metal.
  • the amount of palladium, molybdenum, zinc, germanium, niobium or indium contained in the underlayer 3 is 20% by mass or more, preferably 40% by mass or more, and more preferably 60% by mass or more. If the metal is contained in the underlayer 3 by 20% by mass or more, the thickness and density of the underlayer 3 are likely to be uniform, and the surface smoothness of the transparent metal film 2 is likely to be improved. The metal has a high affinity with the atoms constituting the transparent metal film 2. Therefore, if the metal is contained in the base layer 3 in an amount of 20% by mass or more, the adhesion between the base layer 3 and the transparent metal film 2 is likely to increase. Among the above metals, palladium and molybdenum are more preferable.
  • Examples of other metals that can form alloys with the above metals include platinum group other than palladium, gold, cobalt, nickel, titanium, aluminum, chromium, and the like.
  • the thickness of the underlayer 3 is 3 nm or less, preferably 0.5 nm or less, and more preferably a monoatomic film. Further, it may be a film in which metal atoms are adhered to the transparent substrate 1 while being separated from each other. When metal atoms are attached to the transparent substrate 1 at a distance, the atoms that are the material of the transparent metal film 2 are difficult to migrate when the transparent metal film 2 is formed. Furthermore, the transparent metal film 2 is likely to grow starting from this metal atom, and the transparent metal film 2 is likely to be flat.
  • the transparent conductor 100 in the present invention has a relatively high refractive index so as to sandwich the underlayer 3 and the transparent metal film 2 as described above.
  • the reflection characteristics of the transparent conductor greatly depend on the layer structure of the transparent conductor. And when the 1st high refractive index layer 4 and the 2nd high refractive index layer 5 are laminated
  • the first high-refractive index layer 4 and the second high-refractive index layer 5 include a dielectric material or an oxide semiconductor material in which the refractive index of light having a wavelength of 570 nm is higher than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1. It is preferable that The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable.
  • the refractive index of light having a specific wavelength of 570 nm of the dielectric material or the oxide semiconductor material contained in the first high refractive index layer 4 and the second high refractive index layer 5 is preferably larger than 1.5, Is more preferably 2.5, and still more preferably 1.8 to 2.5.
  • the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the reflectance of the transparent conductor 100 is likely to be lowered by the first high refractive index layer 4 and the second high refractive index layer 5.
  • the refractive index of the 1st high refractive index layer 4 and the 2nd high refractive index layer 5 is adjusted with the refractive index of the said dielectric material or an oxide semiconductor material, and the density of each layer.
  • the dielectric material or the oxide semiconductor material included in the first high refractive index layer 4 and the second high refractive index layer 5 may be an insulating material or a conductive material.
  • the dielectric material or oxide semiconductor material contained in the first high refractive index layer 4 and the second high refractive index layer 5 is preferably a metal oxide or a metal sulfide.
  • metal oxides or metal sulfides include TiO 2 , ITO (indium tin oxide), ZnO, ZnS, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O.
  • the metal oxide or metal sulfide is preferably TiO 2 , ITO, ZnO, Nb 2 O 5 or ZnS from the viewpoint of refractive index and productivity.
  • the first high-refractive index layer 4 and the second high-refractive index layer 5 may contain only one kind of the metal oxide or metal sulfide, or may contain two or more kinds.
  • the thickness of the first high refractive index layer 4 and the second high refractive index layer 5 is preferably set by optical design using an admittance diagram.
  • the thickness of the first high refractive index layer 4 and the second high refractive index layer 5 is usually preferably 10 to 150 nm, more preferably 20 to 80 nm.
  • the first high refractive index layer 4 and the second high refractive index layer 5 cause the reflectance of the transparent conductor 100 to be sufficiently low. Become.
  • the thickness of the first high refractive index layer 4 and the second high refractive index layer 5 is 150 nm or less, the light transmittance of the transparent conductor 100 is unlikely to decrease.
  • the thicknesses of the first high refractive index layer 4 and the second high refractive index layer 5 are measured with an ellipsometer.
  • the transparent conductor 100 in the present invention may be further laminated with a low refractive index layer 6 for suppressing plasmon absorption of the base layer 3 and the transparent metal film 2.
  • the low refractive index layer 6 is formed between the first high refractive index layer 4 and the transparent metal film 2 or the underlayer 3; between the transparent metal film 2 and the second high refractive index layer 5; and the second high refractive index layer. 5 may be laminated on any one or more of the surfaces opposite to the surface on which the transparent metal film 2 is disposed (see FIG. 3).
  • the localized plasmon absorption cross section Cabs is expressed by the following equation.
  • the low refractive index layer 6 preferably includes a dielectric material or an oxide semiconductor material having a refractive index of light having a wavelength of 570 nm of less than 1.8, and more preferably 1.30 to 1.6. Particularly preferred is 1.35 to 1.5.
  • the refractive index of the low refractive index layer 6 is mainly adjusted by the refractive index of the material contained in the low refractive index layer 6 and the density of the low refractive index layer 6.
  • the dielectric material or oxide semiconductor material included in the low refractive index layer 6 is MgF 2 , SiO 2 , AlF 3 , CaF 2 , CeF 3 , CdF 3 , LaF 3 , LiF, NaF, NdF 3 , YF 3 , YbF. 3 , Ga 2 O 3 , LaAlO 3 , Na 3 AlF 6 , Al 2 O 3 , MgO, and ThO 2 .
  • Dielectric material or an oxide semiconductor material is inter alia, is MgF 2, SiO 2, CaF 2 , CeF 3, LaF 3, LiF, NaF, NdF 3, Na 3 AlF 6, Al 2 O 3, MgO or ThO 2,
  • MgF 2 and SiO 2 are particularly preferable.
  • the low refractive index layer 6 may contain only one kind of these materials or two or more kinds.
  • the thickness of the low refractive index layer 6 is preferably a thickness that does not greatly affect the optical characteristics of the transparent conductor 100.
  • the thickness of the low refractive index layer 6 is preferably 0.1 to 15 nm, more preferably 1 to 10 nm, and further preferably 3 to 8 nm.
  • the total thickness of the layers excluding the transparent substrate 1 in the transparent conductor 100 may be about 7 to 130 nm, preferably 87 to 94 nm, depending on the layer structure.
  • the method for producing a transparent conductor of the present invention includes at least (i) a step of forming a transparent metal film by a counter sputtering method. Further, the method for producing a transparent conductor according to the present invention includes (ii) a step of forming a base layer according to the layer structure of the transparent conductor, and (iii) a first high refractive index layer and a second high refractive index layer. It may further include a step of forming a film, or (iv) a step of forming a low refractive index layer.
  • FIG. 4 is a schematic diagram illustrating an example of a main part of the facing sputtering apparatus.
  • the opposing sputtering apparatus 200 includes two targets 11 a and 11 b that are arranged to face each other, and magnetic field generation means 13 a and 13 b that are arranged on the outer periphery of the back surfaces of the targets 11 a and 11 b.
  • the composition of the targets 11a and 11b can be the same as the composition of the transparent metal film described above. That is, the targets 11a and 11b are preferably composed of a metal containing 50 atomic% or more of silver; and more preferably composed of an alloy of silver or 90 atomic% or more of silver and another metal.
  • the distance between the targets 11a and 11b can be about 86 to 110 mm.
  • the distance L between the extension line 1 of the outer peripheral end of the target 11a or 11b and the substrate 21 may be, for example, 50 to 200 mm, although it depends on the film forming speed and the composition of the target.
  • the film formation may be performed with the substrate 21 fixed; it may be performed while the substrate 21 is moved (for example, moved in the vertical direction). When sputtering is performed while the substrate 21 is moved, the moving speed of the substrate 21 can be set to 0.25 to 3.00 m / min.
  • Magnetic field generating means 13a and 13b are arranged so that their poles are different from each other. As a result, a magnetic field can be formed so as to surround the outer periphery of the facing space 17.
  • the vacuum chamber 23 has an introduction port 27 for introducing a sputtering gas such as Ar gas into the vacuum chamber 23 and a discharge port 29 for discharging the gas in the vacuum chamber 21.
  • a sputtering gas such as Ar gas
  • an inert gas such as Ar gas is supplied from the inlet 27.
  • Sputtering power is supplied using the vacuum chamber 23 as an anode (anode) and the targets 11a and 11b as cathodes (cathodes).
  • a magnetic field in a direction substantially perpendicular to the surfaces of the targets 11a and 11b is formed by the magnetic field generating means 13a and 13b.
  • a high-density plasma space is formed in the facing space 17.
  • the sputtered particles knocked out of the targets 11a and 11b reciprocate between the targets 11a and 11b, and then a part thereof leaks out of the plasma space.
  • the leaked sputtered particles are deposited on the substrate 21 arranged at a certain distance from the plasma space, and a transparent metal film is formed.
  • the deposition rate of the transparent metal film can be about 5.0 to 10 liters / s.
  • the film formation speed can be adjusted by the pressure difference between the inside and outside of the plasma space formed in the facing space 17; specifically, the sputtering power applied to the targets 11a and 11b, the pressure in the vacuum chamber 23, and the like.
  • the pressure in the vacuum chamber 23 can be about 0.1 to 0.3 Pa, for example.
  • the sputtering power can be 1 kW to 3 kW.
  • the surface metal resistance of the transparent metal film formed by the facing sputtering method can be remarkably reduced as compared with the transparent metal film formed by the magnetron sputtering method.
  • a magnetic field is formed so as to surround the outer peripheral portions of the two targets 11a and 11b arranged so as to face each other (dotted arrow in FIG. 4). Since the sputtered particles reciprocate in the plasma space formed in the facing space 17, they have higher kinetic energy than the magnetron sputtering method. Thereby, it is considered that a dense transparent metal film is easily formed. In addition, since electrons generated by ionizing Ar gas are easily confined in the plasma space, the electrons are less likely to collide with the transparent metal film formed on the substrate 21 that is arranged at a certain distance from the plasma space. It is hard to hurt. Thereby, it is considered that a transparent metal film having a smooth structure is easily obtained. As a result, the obtained transparent metal film has a dense and smooth structure; it is considered that the surface electrical resistance is remarkably reduced even if the thickness is small.
  • the method for producing a transparent conductor according to the present invention suppresses migration of constituent atoms of a transparent metal film on a transparent substrate, thereby obtaining a transparent metal film having a smooth surface.
  • the above-mentioned underlayer is formed on the transparent substrate by vapor deposition or sputtering.
  • some types of metal cannot be sufficiently deposited.
  • a material containing such a metal atom is deposited, unevenness may occur in the thickness and density of the obtained underlayer. Therefore, when the underlayer is formed by vapor deposition, it is preferable that the amount of palladium contained in the material is large.
  • the specific content of palladium is preferably 20% by mass or more, more preferably 40% by mass or more, and still more preferably 60% by mass or more.
  • a material containing 20% by mass or more of palladium is easily formed uniformly by a vapor deposition method. From the viewpoint of cost, it is desirable that the amount of palladium is large.
  • Examples of vapor deposition methods for forming the underlayer include vacuum vapor deposition, electron beam vapor deposition, ion plating, and ion beam vapor deposition.
  • the deposition time is appropriately selected according to the thickness of the underlying layer to be deposited and the deposition rate.
  • the deposition rate is preferably 0.1 to 15 ⁇ / second, more preferably 0.1 to 7 ⁇ / second.
  • the amount of palladium contained in the material is not particularly limited, and is appropriately selected according to the composition of the underlayer.
  • sputtering methods include ion beam sputtering, magnetron sputtering, reactive sputtering, bipolar sputtering, and bias sputtering.
  • the sputtering time is appropriately selected according to the desired underlayer thickness and film formation rate.
  • the sputter deposition rate is preferably from 0.1 to 15 ⁇ / second, more preferably from 0.1 to 7 ⁇ / second.
  • the method for producing a transparent conductor of the present invention includes a step of forming a first high refractive index layer on a transparent substrate according to the layer configuration of the transparent conductor, as described above, A step of forming a second high refractive index layer on the metal film, a step of forming a low refractive index layer, and the like may be further included.
  • the first high refractive index layer deposition method, the second high refractive index layer deposition method, and the low refractive index layer deposition method are not particularly limited as long as they are general vapor deposition methods. , Vacuum deposition, sputtering, ion plating, plasma CVD, thermal CVD, and the like.
  • the transparent conductor in this invention is obtained through the process of forming a transparent metal film with a counter sputtering method. Even if the transparent metal film of such a transparent conductor has a small thickness, the surface electric resistance is remarkably reduced.
  • the surface electrical resistance of the transparent metal film of the transparent conductor is preferably 30 ⁇ / ⁇ or less, more preferably 10 ⁇ / ⁇ or less, further preferably 8 ⁇ / ⁇ or less, and 4.5 ⁇ / ⁇ . More preferably, it is as follows.
  • the surface electric resistance of a transparent metal film having a thickness of 10 nm or less is preferably 8 ⁇ / ⁇ or less; the surface electric resistance of a transparent metal film having a thickness of 8 nm or less is more preferably 8 ⁇ / ⁇ or less.
  • a transparent conductor having a surface electrical resistance value of 30 ⁇ / ⁇ or less can be preferably applied to a transparent conductive panel for a capacitive touch panel.
  • the surface electrical resistance value of the transparent metal film of the transparent conductor can be measured in accordance with, for example, JIS K7194, ASTM D257, and the like. Moreover, the surface electrical resistance value of the transparent metal film of a transparent conductor can also be measured with a commercially available surface electrical resistivity meter.
  • the surface electric resistance value of the transparent metal film of the transparent conductor In order to make the surface electric resistance value of the transparent metal film of the transparent conductor within the above range, it is preferable to form the transparent metal film by a counter sputtering method.
  • the surface electric resistance value of the transparent metal film of the transparent conductor can be determined by opposition sputtering conditions (for example, sputtering power, pressure in the vacuum chamber, distance between targets, distance L between the target end and the substrate), transparent metal It may be further adjusted by the thickness of the film or the formation of an underlayer.
  • the thickness of the transparent metal film for keeping the surface electrical resistance value below a certain value can be reduced, the light transmittance or average transmittance of the transparent conductor can be increased.
  • the light transmittance of the transparent conductor over the entire range of light having a wavelength of 400 to 800 nm is 50% or more, preferably 60% or more, and more preferably 70% or more.
  • the transmittance is 50% or more over the entire wavelength range of 400 to 800 nm, the transparent conductor is difficult to be colored.
  • the average transmittance of light having a wavelength of 450 to 800 nm of the transparent conductor is preferably 60% or more, more preferably 70% or more, and further preferably 80% or more.
  • the transparent conductor can be applied to applications requiring particularly high transparency.
  • the light transmittance and average transmittance of the transparent conductor can be adjusted by the thickness and layer configuration of the transparent metal film (lamination of layers having different refractive indexes).
  • the average reflectance of light having a wavelength of 500 to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and further preferably 10% or less.
  • the transmittance and the reflectance are measured by allowing measurement light to enter the transparent conductor from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductor. Transmittance and reflectance are measured with a spectrophotometer.
  • the light absorptance of the transparent conductor is preferably 15% or less, more preferably 10% or less over the entire range of light having a wavelength of 400 to 800 nm. If the absorptance is 15% or less over the entire wavelength range of 400 to 800 nm, the transparent conductor is difficult to be colored.
  • the average absorptance of light having a wavelength of 400 to 800 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and further preferably 10% or less.
  • the light absorptance of the transparent conductor is reduced by suppressing the absorptivity of the transparent metal film and the light absorptivity of the material constituting each layer.
  • the a * value and b * value in the L * a * b * color system of the transparent conductor are preferably within ⁇ 30, more preferably within ⁇ 5, and even more preferably within ⁇ 3.0. Particularly preferably, it is within ⁇ 2.0. If the a * value and b * value in the L * a * b * color system are within ⁇ 30, the transparent conductor is observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
  • White plate glass substrate White plate glass substrate of Yamanaka Semiconductor (thickness 2mm, ⁇ 30mm, wavelength 570nm light refractive index 1.52)
  • TAC cellulose triacetate film (thickness 80 ⁇ m)
  • PET Polyethylene terephthalate film (thickness 50 ⁇ m, wavelength 570 nm, visible light transmittance 95%)
  • COP cycloolefin resin film (thickness 60 ⁇ m)
  • PC Polycarbonate film (thickness 100 ⁇ m)
  • Example 1 Yamanaka Semiconductor's white glass substrate ( ⁇ 30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used.
  • the obtained white glass substrate (transparent substrate) was set on a substrate holder. Then, using a counter sputtering apparatus manufactured by FTS Corporation, the substrate holder on which the white plate glass substrate is set is moved from the bottom to the top at a moving speed of 3 m / min (see FIG. 4). By the method, a transparent metal film (thickness 7 nm) made of Ag was formed on a white glass substrate to obtain a transparent conductor.
  • the sputtering gas is Ar gas; the distance L (see FIG. 4) between the extension line 1 of the target end and the transparent substrate surface is 90 mm; the pressure in the vacuum chamber is 0.2 Pa; and the sputtering power is 1.3 kW; The film formation rate was 7 cm / s.
  • the thickness of the transparent metal film is J. A. Woollam Co., Ltd. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
  • Examples 2 to 5 A transparent conductor was obtained in the same manner as in Example 1 except that the type of the transparent substrate was changed as shown in Table 1.
  • Example 6 A transparent conductor was obtained in the same manner as in Example 1 except that the type of the transparent metal film was changed to a silver / bismuth alloy (99/1 atomic% ratio).
  • Example 7 A transparent conductor having a transparent substrate / underlayer / transparent metal film in this order was obtained in the same manner as in Example 1 except that an underlayer was further formed. (Underlayer) Using a magnetron sputtering apparatus MSP-1S manufactured by Vacuum Device Inc., palladium (Pd) was deposited for 0.2 seconds to form an underlayer with an average thickness of 0.2 nm. The average thickness of the underlayer was calculated from the film formation speed at the manufacturer's nominal value of the sputtering apparatus.
  • Example 8 A transparent conductor was obtained in the same manner as in Example 7 except that the composition of the underlayer was changed as shown in Table 1.
  • Example 9 The transparent substrate / first high refractive index layer / transparent metal film / second high refractive index layer were formed in this order in the same manner as in Example 1 except that the first high refractive index layer and the second high refractive index layer were further formed. A transparent conductor was obtained.
  • Example 10 to 11 A transparent conductor was obtained in the same manner as in Example 9 except that the thickness of the transparent metal film and the composition and thickness of the first high refractive index layer and the second high refractive index layer were changed as shown in Table 2.
  • the refractive index of light with a wavelength of 570 nm of Nb 2 O 5 was 2.31; the refractive index of light with a wavelength of 570 nm of TiO 2 was 2.35.
  • Example 12 A transparent conductor having a transparent substrate / first high refractive index layer / underlayer / transparent metal film / second high refractive index layer in this order was obtained in the same manner as in Example 9 except that an underlayer was further formed.
  • Underlayer Using a magnetron sputtering apparatus MSP-1S manufactured by Vacuum Device Inc., palladium (Pd) was deposited for 0.1 seconds to form an underlayer with an average thickness of 0.1 nm. The average thickness of the underlayer was calculated from the film formation speed at the manufacturer's nominal value of the sputtering apparatus.
  • Example 13 In the same manner as in Example 9 except that the first low refractive index layer and the second low refractive index layer were further formed and the thickness of the first high refractive index layer was adjusted, the transparent substrate / first high refractive index layer / A transparent conductor having a first low refractive index layer / transparent metal film / second low refractive index layer / second high refractive index layer in this order was obtained.
  • Example 14 A transparent conductor was obtained in the same manner as in Example 13 except that the compositions of the first low refractive index layer and the second low refractive index layer were changed as shown in Table 2.
  • the refractive index of light with a wavelength of 570 nm of MgF 2 was 1.38.
  • Example 15 Transparent substrate / first high refractive index in the same manner as in Example 14 except that an underlayer was further formed and the thicknesses of the first high refractive index layer and the second high refractive index layer were changed as shown in Table 2.
  • a transparent conductor having a refractive index layer / first low refractive index layer / underlayer / transparent metal film / second low refractive index layer / second high refractive index layer was obtained.
  • (Underlayer) Using a magnetron sputtering apparatus MSP-1S manufactured by Vacuum Device Inc., palladium (Pd) was deposited for 0.1 seconds to form an underlayer with an average thickness of 0.1 nm. The average thickness of the underlayer was calculated from the film formation speed at the manufacturer's nominal value of the sputtering apparatus.
  • Example 16 A transparent substrate / first high refractive index layer / first low refractive index layer was formed in the same manner as in Example 15 except that a third low refractive index layer was further formed and the composition and thickness of each layer were changed as shown in Table 2.
  • a transparent conductor having a refractive index layer / underlayer / transparent metal film / second low refractive index layer / second high refractive index layer / third low refractive index layer in this order was obtained.
  • a transparent metal film (thickness 7 nm) made of Ag is used, using a magnetron sputtering apparatus of Osaka Vacuum Co., Ar: 20 sccm, sputtering pressure: 0.5 Pa, at room temperature, Ag was RF sputtered at a target-side power of 150 W and a film formation rate of 14 ⁇ / s.
  • the target-substrate distance was 90 mm.
  • the plasmon absorption rate of the obtained transparent metal film was 10% or less over a wavelength range of 400 nm to 800 nm.
  • total pressure 266 mPa oxygen partial pressure 5 mPa
  • the Ag thin film was formed using silver as a target and argon gas (total pressure 266 mPa) as a sputtering gas.
  • the Ag—Au alloy thin film was formed using a silver-gold alloy (gold 10 wt%) as a target and argon gas (total pressure 266 mPa) as a sputtering gas.
  • Primer layer SiOx was deposited using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., Ltd. to form a primer layer composed of a 3 nm thick SiOx thin film.
  • a transparent conductive oxide material (ICO) containing 10 atomic% of cerium in indium was formed using a magnetron sputtering apparatus of Osaka Vacuum Co., Ltd., and an ICO thin film (high refractive index layer, wavelength 570 nm having a wavelength of 570 nm) having a thickness of 27 nm or 40 nm.
  • ICO transparent conductive oxide material
  • a high refractive index layer having a light refractive index of 2.2 and an extinction coefficient of 0.001 was formed.
  • Metal thin film layer An alloy containing 1.5 atomic% of gold and 0.5 atomic% of copper in silver was formed by using a magnetron sputtering apparatus of Osaka Vacuum Co., Ltd., and a metal thin film layer (wavelength 570 nm) comprising a silver alloy thin film having a thickness of 11 nm.
  • the light has a refractive index of 0.09 and an extinction coefficient of 3.51).
  • Nichrome was formed into a film using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., Ltd. to form a protective layer made of a NiCr thin film having a thickness of 0.8 nm.
  • Low refractive index layer SiO 2 was deposited using a magnetron sputtering apparatus of Osaka Vacuum Co., Ltd., and a low refractive index layer (refractive index 1.46 of light having a wavelength of 570 nm, extinction coefficient 0) composed of a 3 nm or 31 nm thick SiO 2 thin film was formed. Formed.
  • a fluorine-based material (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KP801M) was formed into a film by a vacuum deposition method to form a 6-nm thick antifouling layer.
  • the total thickness from the primer layer to the antifouling layer was 106.6 nm.
  • the aluminum oxide (Al 2 O 3 ) thin film (thickness 150 nm) was formed by a counter sputtering method using a counter sputtering apparatus manufactured by FTS Corporation. Specifically, an aluminum (Al) target is set, the inside of the vacuum chamber is evacuated to 10 ⁇ 5 Pa or less, Ar gas as a sputtering gas is added at a predetermined flow rate, and the inside of the vacuum chamber is set to 0.3 Pa. did.
  • oxygen gas which is a reactive gas is mixed at 0.10 Pa, sputtering power is 2.5 kW, and sputtering is performed while moving a substrate holder on which a white plate glass substrate is set at a moving speed of 0.08 m / min.
  • An Al 2 O 3 thin film having a thickness of 150 nm was formed.
  • AlON thin film An aluminum oxynitride (AlON) thin film (thickness 120 nm) was formed by a counter sputtering method using a counter sputtering apparatus manufactured by FTS Corporation. Specifically, using an aluminum (Al) target, the inside of the vacuum chamber is evacuated to 10 ⁇ 5 Pa or less, Ar gas as a sputtering gas is added at a predetermined flow rate, and the inside of the vacuum chamber is set to 0.3 Pa. did.
  • nitrogen gas which is a reactive gas
  • oxygen gas at 5 ⁇ 10 ⁇ 2 Pa
  • the sputtering power is 2.5 kW
  • the substrate holder on which a white glass substrate is set is moved at a moving speed.
  • Sputtering was performed while moving at 0.10 m / min to form an AlON thin film having a thickness of 120 nm.
  • the copper (Cu) thin film (thickness 30 nm) was formed by a counter sputtering method using a counter sputtering apparatus manufactured by FTS Corporation. Specifically, using a Cu target, the inside of the vacuum chamber is evacuated to 10 ⁇ 5 Pa or less, and Ar gas as a sputtering gas is supplied while the flow rate is adjusted, so that the vacuum chamber has a predetermined degree of vacuum of 0.3 Pa. A 30 nm copper thin film was formed while moving a substrate holder on which a white glass substrate was set at a moving speed of 0.40 m / min at a sputtering power of 2.5 kW.
  • the average transmittance and surface electrical resistance of the transparent conductors obtained in Examples 1 to 16 and Comparative Examples 1 to 4 were measured by the following methods.
  • the surface of the transparent metal film (the surface of the second high-refractive index layer or the third low-refractive index layer in the case of having the second high-refractive index layer or the third low-refractive index layer on the surface) Measurement light was incident from a position inclined by 5 ° with respect to the normal. Then, the transmittance of the transparent conductor was measured with a spectrophotometer (U4100 manufactured by Hitachi High-Tech) to determine the average transmittance of light having a wavelength of 450 nm to 800 nm.
  • a spectrophotometer (U4100 manufactured by Hitachi High-Tech)
  • the surface electric resistance of the transparent metal film of the obtained transparent conductor was measured by Loresta EP MCP-T360 manufactured by Mitsubishi Chemical Analytech in accordance with JIS K7194.
  • Example 1 The evaluation results of Examples 1 to 8 are shown in Table 1, the evaluation results of Examples 9 to 16 are shown in Table 2, and the evaluation results of Comparative Examples 1 to 4 are shown in Table 3.
  • the transparent conductors of Examples 1 to 16 in which the transparent metal film was formed by the facing sputtering method had a low surface resistance value of 7.1 ⁇ / ⁇ or less even when the thickness of the transparent metal film was as small as 11 nm or less.
  • the transparent conductors of Examples 1 to 16 have a high average transmittance of 64% or more because the thickness of the transparent metal film is as small as 11 nm or less.
  • the transparent conductors of Comparative Examples 1 and 3 in which a transparent metal film is formed by magnetron sputtering may have a high surface resistance value of 8.8 to 11 ⁇ / ⁇ when the thickness of the transparent metal film is as small as 11 nm or less. Recognize.
  • the transparent conductor of Comparative Example 2 is found to have a low average transmittance of 57% because the total thickness of the transparent metal film is as large as 38 nm.
  • the present invention it is possible to provide a method for producing a transparent conductor having a low surface electric resistance value even when the transparent metal film is thin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 本発明の目的は、透明金属膜の厚みが薄くても、表面電気抵抗値が低い透明導電体の製造方法を提供することである。本発明の透明導電体の製造方法は、透明基板と、銀を50質量%以上含み、かつ厚みが20nm以下である透明金属膜とを含む透明導電体の製造方法であって、前記透明金属膜を、対向スパッタ法にて成膜する工程を含む。

Description

透明導電体の製造方法
 本発明は、透明導電体の製造方法に関する。
 近年、液晶ディスプレイやプラズマディスプレイ、無機及び有機EL(エレクトロルミネッセンス)ディスプレイ等の表示装置の電極材料や、無機及び有機EL素子の電極材料、タッチパネル材料、太陽電池材料等の各種装置に透明導電膜が使用されている。
 このような透明導電膜を構成する材料として、Au、Ag、Pt、Cu、Rh、Pd、Al、Cr等の金属やIn、CdO、CdIn、CdSnO、TiO、SnO、ZnO、ITO(酸化インジウムスズ)等の酸化物半導体が知られている。
 近年、静電容量方式のタッチパネルが開発され、この方式では、表面電気抵抗値が低く、かつ透明性の高い透明導電膜が求められている。しかし、ITO膜では、表面電気抵抗値を十分に低くすることが難しい。また、ITO膜は割れやすく、フレキシブル性が求められる用途に適用できない、という問題もある。そこで、ITOに代わる透明導電膜として、Agをメッシュ状に形成した透明導電膜が提案されている(特許文献1)。また、カーボンナノチューブや、Agナノワイヤをコーティングした透明導電膜も提案されている(特許文献2及び3)。また、Agからなる薄膜を透明導電膜とすることも提案されており;高屈折率層とAg薄膜の積層構造を有する透明導電体なども提案されている(特許文献4)。
 このような透明導電膜の多くは、スパッタ法で成膜されうる。例えば、Ag薄膜は、マグネトロンスパッタ法で成膜されうる(例えば特許文献4)。IZO薄膜やCu薄膜などは、マグネトロンスパッタ法のほか、対向スパッタ法などでも成膜されうる(例えば特許文献5及び6)。
特開2006-352073号公報 特表2004-526838号公報 特開2011-167848号公報 特開2000-158578号公報 特開2012-83686号公報 特開2010-244860号公報
 しかしながら、特許文献1に記載のAgメッシュは、金属部の線幅が20μm程度である。そのため、Agメッシュが視認されやすく、高い透明性が必要とされる用途には適用できない。また、特許文献2や特許文献3の透明導電膜は、いまだ表面電気抵抗値が高い。そのため、さらに表面電気抵抗値を低くすることが求められている。このように、表面電気抵抗値が低く、かつ透明性が高いAgを主成分とする透明金属膜が望まれている。
 金属膜の表面電気抵抗値を低くするためには、金属膜の厚みを大きくして連続膜とすることが有効であるが、金属膜の厚みを大きくすると反射が発生しやすく、透明性が低下しやすい。一方、金属膜の厚みを小さくすると不連続膜となりやすく、表面電気抵抗値が高くなりやすい。
 本発明者らは、透明金属膜の厚みが薄くても、表面電気抵抗が低いAgを主成分とする透明金属膜を得る方法を鋭意検討した結果、対向スパッタ法でAgを主成分とする金属膜を形成することが有効であることを見出した。即ち、対向スパッタ法で成膜されたAgを主成分とする金属膜は、マグネトロンスパッタ法で成膜されたAgを主成分とする金属膜よりも、表面電気抵抗が著しく低減されることを見出した。
 本発明は、このような状況に鑑みてなされたものであり、厚みが小さくても、表面電気抵抗値が低い透明導電体の製造方法を提供することを目的とする。
 [1] 透明基板と、銀を50原子%以上含み、かつ厚みが20nm以下である透明金属膜とを含む透明導電体の製造方法であって、前記透明金属膜を、対向スパッタ法にて成膜する工程を含む、透明導電体の製造方法。
 [2] 前記透明導電体の透明金属膜の表面電気抵抗が8Ω/□以下である、[1]に記載の透明導電体の製造方法。
 [3] 前記透明導電体は、前記透明基板と前記透明金属膜との間に、パラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブまたはインジウムあるいはパラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブまたはインジウムを20質量%以上含む合金からなり、かつ厚みが3nm以下である下地層をさらに含み、前記透明基板上に、前記下地層を成膜する工程をさらに含む、[1]または[2]に記載の透明導電体の製造方法。
 [4] 前記透明導電体の波長450~800nmの光の平均透過率が70%以上である、[1]~[3]のいずれかに記載の透明導電体の製造方法。
 本発明によれば、透明金属膜の厚みが薄くても、表面電気抵抗値が低い透明導電体の製造方法を提供することができる。
本発明における透明導電体の層構成の例を示す図である。 本発明における透明導電体の層構成の例を示す図である。 本発明における透明導電体の層構成の例を示す図である。 対向スパッタ装置の要部の一例を示す模式図である。 マグネトロンスパッタ法を説明する説明図である。
 1.透明導電体について
 本発明における透明導電体は、透明基板と、透明金属膜とを含み、下地層などの他の層をさらに含んでもよい。
 図1~3は、本発明における透明導電体の層構成の例を示す図である。本発明における透明導電体100は、透明基板1と、透明金属膜2との積層体であってもよいし(図1参照);透明基板1と透明金属膜2との間に配置された下地層3をさらに含む積層体であってもよいし(図2参照);下地層3と透明金属膜2とを挟持する第一高屈折率層4および第二高屈折率層5や、第一高屈折率層4と透明金属膜2または下地層3との間などに配置され、透明金属膜2と下地層3のプラズモン吸収を抑制するための低屈折率層6などをさらに含む積層体であってもよい(図3参照)。
 なかでも、図2または図3に示されるように、本発明における透明導電体100は、高い光透過性と低い表面電気抵抗値とを両立しやすいことなどから、透明基板1と透明金属膜2との間に下地層3をさらに含むことが好ましい。
 (1)透明基板
 透明基板1は、各種表示デバイスの透明基板と同様でありうる。透明基板1は、ガラス基板や、セルロースエステル樹脂(例えば、トリアセチルセルロース、ジアセチルセルロース、アセチルプロピオニルセルロース等)、ポリカーボネート樹脂(例えばパンライト、マルチロン(いずれも帝人社製))、シクロオレフィン樹脂(例えばゼオノア(日本ゼオン社製)、アートン(JSR社製)、アペル(三井化学社製))、アクリル樹脂(例えばポリメチルメタクリレート、アクリライト(三菱レイヨン社製)、スミペックス(住友化学社製))、ポリイミド、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエステル樹脂(例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート)、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、スチレン系ブロックコポリマー樹脂等からなる透明樹脂フィルムでありうる。透明基板が透明樹脂フィルムである場合、当該フィルムには2種以上の樹脂が含まれてもよい。
 透明性の観点から、透明基板1はガラス基板、もしくはセルロースエステル樹脂、ポリエステル樹脂(特にポリエチレンテレフタレート)、トリアセチルセルロース、シクロオレフィン樹脂、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、またはスチレン系ブロックコポリマー樹脂からなるフィルムであることが好ましい。
 透明基板1は、可視光に対する透明性が高いことが好ましく;波長450~800nmの光の平均透過率が70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。透明基板1の光の平均透過率が70%以上であると、透明導電体100の光透過性が高まりやすい。また、透明基板1の波長450~800nmの光の平均吸収率は10%以下であることが好ましく、より好ましくは5%以下、さらに好ましくは3%以下である。
 透明基板1の平均透過率は、透明基板1の表面の法線に対して、5°傾けた角度から光を入射させて測定する。一方、透明基板1の平均吸収率は、平均透過率と同様の角度から光を入射させて、透明基板1の平均反射率を測定し;平均吸収率=100-(平均透過率+平均反射率)として算出する。平均透過率及び平均反射率は分光光度計で測定する。
 透明基板1の波長570nmの光の屈折率は1.40~1.95であることが好ましく、より好ましくは1.45~1.75であり、さらに好ましくは1.45~1.70である。透明基板の屈折率は、通常、透明基板の材質によって定まる。透明基板の屈折率は、エリプソメーターで測定される。
 透明基板1のヘイズ値は0.01~2.5であることが好ましく、より好ましくは0.1~1.2である。透明基板のヘイズ値が2.5以下であると、透明導電体のヘイズ値を抑制できる。ヘイズ値は、ヘイズメーターで測定される。
 透明基板1の厚みは、1μm~20mmであることが好ましく、より好ましくは10μm~2mmである。透明基板1の厚みが1μm以上であると、透明基板1の強度が高まり、透明金属膜2の成膜時に割れたり、裂けたりし難くなる。一方、透明基板1の厚みが20mm以下であれば、透明導電体100のフレキシブル性が十分となる。さらに透明導電体100を用いた機器の厚みを薄くできる。また、透明導電体100を用いた機器を軽量化することもできる。
 (2)透明金属膜
 透明金属膜2は、透明導電体において電気を導通させるための膜である。透明金属膜2は、透明基板1、後述する下地層3、第一高屈折率層4または低屈折率層6などに隣接して積層されうる。
 透明金属膜2に含まれる金属は、導電性の高い金属であれば特に制限されず、例えば銀、銅、金、白金族、チタン、クロム等でありうる。透明金属膜2には、これらの金属が1種のみ含まれてもよく、2種以上含まれてもよい。導電性が高いとの観点から、透明金属膜2は、銀を50原子%以上含有する金属であることが好ましく;銀または銀が90原子%以上含まれる合金からなることがより好ましい。銀と組み合わされる金属は、亜鉛、金、銅、パラジウム、アルミニウム、マンガン、ビスマス、ネオジム等でありうる。例えば銀と亜鉛とが組み合わされると、透明金属膜の耐硫化性が高まる。銀と金とが組み合わされると、耐塩(NaCl)性が高まる。さらに銀と銅とが組み合わされると、耐酸化性が高まる。
 また、透明金属膜2のプラズモン吸収率は、波長400nm~800nmにわたって(全範囲)で10%以下であることが好ましい。透明金属膜2の上記プラズモン吸収率は7%以下であることがより好ましく、さらに好ましくは5%以下である。
 透明金属膜2の波長400nm~800nmにおけるプラズモン吸収率は、以下の手順で測定される。
 (i)ガラス基板上に、白金パラジウム(パラジウム含有量20質量%)をマグネトロンスパッタ装置にて0.1nm成膜する。白金パラジウムの平均厚みは、スパッタ装置のメーカー公称値の成膜速度等から算出する。その後、白金パラジウムが付着した基板上に、対向スパッタ法にて測定対象と同様の金属からなる膜を20nm成膜する。対向スパッタ装置は、例えばエフ・ティ・エスコーポレーション社製の対向スパッタ装置を用いることができる。
 (ii)そして、得られた金属膜の表面の法線に対して、5°傾けた角度から測定光を入射させ、金属膜の透過率及び反射率を測定する。そして各波長における透過率及び反射率から、吸収率=100-(透過率+反射率)を算出し、これをリファレンスデータとする。透過率及び反射率は、分光光度計で測定する。
 (iii)続いて、測定対象の透明金属膜について、同様に透過率及び反射率を測定する。そして、得られた吸収率から上記リファレンスデータを差し引き、算出された値を、プラズモン吸収率とする。
 透明金属膜2の波長500nmにおける透過率は、20%以上であることが好ましい。透過率は、分光光度計で測定されうる。
 透明金属膜2の厚みは、好ましくは20nm以下、より好ましくは15nm以下、さらに好ましくは13nm以下、特に好ましくは10nm以下、最も好ましくは8nm以下である。透明金属膜2の厚みが20nm以下であれば、透明金属膜2に含まれる金属本来の反射が生じ難く、透明導電体の光透過性が高まりやすい。一方、透明金属膜2の厚みは、好ましくは3nm以上、より好ましくは4nm以上、さらに好ましくは5nm以上である。透明金属膜2の厚みが3nm以上であれば、連続膜を形成しやすく、透明金属膜の表面電気抵抗値を低くしやすい。
 本発明における透明導電体100は、前述の通り、高い光透過性と低い表面電気抵抗値とを両立しやすいことから、透明基板1と透明金属膜2との間に下地層3をさらに含むことが好ましい。
 即ち、透明基板1上に直接Ag等からなる透明金属膜2を成膜すると、十分に高い光透過性と、低い表面電気抵抗とを兼ね備えた透明金属膜になり難い。その理由は、以下のように推察される。一般的な気相成膜法で、基板上にAg層を成膜すると、成膜初期には、透明基板に到達したAg原子が透明基板上をマイグレート(表面移動)する。そして、多数のAg原子が寄り集まって非連続な島状構造を多数形成する。
 さらにAg原子を供給すると、当該島状構造を起点にAg膜が成長し;隣り合う塊同士の一部が繋がって、電気の導通が可能になる。しかし、Ag膜の厚みが薄いと、塊同士の間の隙間が完全に埋まらないことから、プラズモン吸収が生じて、光透過性が十分に高まりにくい。一方、Ag膜の厚みが厚くなると、Ag膜の表面が平滑になるため、表面電気抵抗値が低くなり、プラズモン吸収も発生しなくなる。しかし、Ag本来の反射が生じるため、Ag層の光透過性が高まらない。
 これに対して、透明基板1と透明金属膜2との間に、パラジウムまたはモリブデン、あるいはパラジウムまたはモリブデンが20質量%以上含まれる合金からなる下地層3を配置することが好ましい。パラジウムまたはモリブデンが一定以上含まれる層は、一般的な気相成膜法で均一に成膜されやすい。また、パラジウムまたはモリブデンは、被成膜面(例えば透明基板1表面)でマイグレートし難く、前述の島状構造を形成し難い。このような下地層3上に透明金属膜2を成膜すると、透明金属膜2の構成原子がマイグレートし難く、透明金属膜2は、厚みが薄くとも平滑な膜になる。したがって、高い光透過性と、低い表面電気抵抗値とを両立する透明導電体が得られやすい。
 (3)下地層
 下地層3は、透明基板1と透明金属膜2の間、かつ透明金属膜2と接して積層され、かつパラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブまたはインジウム;あるいはこれらの金属と他の金属との合金からなる層である。
 下地層3に含まれるパラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブまたはインジウムの量は、20質量%以上であり、好ましくは40質量%以上であり、さらに好ましくは60質量%以上である。下地層3に上記金属が20質量%以上含まれると、下地層3の厚みや密度が均一になりやすく、透明金属膜2の表面平滑性が高まりやすい。また、上記金属は、透明金属膜2を構成する原子との親和性が高い。したがって、下地層3に上記金属が20質量%以上含まれると、下地層3と透明金属膜2との密着性が高まりやすい。上記金属のなかでも、パラジウムおよびモリブデンがより好ましい。
 上記金属と合金を形成しうる他の金属の例には、パラジウム以外の白金族、金、コバルト、ニッケル、チタン、アルミニウム、クロム等が含まれる。
 下地層3の厚みは、3nm以下であり、好ましくは0.5nm以下であり、単原子膜であることがより好ましい。さらに、透明基板1上に金属原子が互いに離間して付着している膜でもありうる。透明基板1上に金属原子が離間して付着していると、透明金属膜2の成膜時に、透明金属膜2の材料である原子がマイグレートし難い。またさらに、透明金属膜2がこの金属原子を起点に成長しやすく、透明金属膜2が平坦になりやすい。
 (4)第一高屈折率層及び第二高屈折率層
 本発明における透明導電体100には、前述のように、下地層3及び透明金属膜2を挟み込むように、比較的屈折率の高い層;つまり第一高屈折率層4及び第二高屈折率層5の少なくとも一方が積層されうる。透明導電体の反射特性は、透明導電体の層構成によって大きく依存する。そして、下地層3及び透明金属膜2を挟み込むように、第一高屈折率層4及び第二高屈折率層5が積層されると、透明導電体表面の反射率が低下し、透明導電体の光透過性が高まりやすい。
 第一高屈折率層4及び第二高屈折率層5には、透明基板1の波長570nmの光の屈折率より、波長570nmの光の屈折率が高い誘電性材料または酸化物半導体材料が含まれることが好ましい。当該誘電性材料または酸化物半導体材料の波長570nmの光の屈折率は、透明基板1の波長570nmの光の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。第一高屈折率層4及び第二高屈折率層5に含まれる誘電性材料または酸化物半導体材料の具体的な波長570nmの光の屈折率は1.5より大きいことが好ましく、1.6~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。誘電性材料または酸化物半導体材料の屈折率が1.5より大きいと、第一高屈折率層4及び第二高屈折率層5によって、透明導電体100の反射率が低下しやすい。なお、第一高屈折率層4及び第二高屈折率層5の屈折率は、上記誘電性材料または酸化物半導体材料の屈折率や、各層の密度で調整される。
 第一高屈折率層4及び第二高屈折率層5に含まれる誘電性材料または酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。第一高屈折率層4及び第二高屈折率層5に含まれる誘電性材料または酸化物半導体材料は、金属酸化物または金属硫化物であることが好ましい。金属酸化物または金属硫化物の例には、TiO、ITO(酸化インジウムスズ)、ZnO、ZnS、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO(酸化インジウム・酸化亜鉛)、AZO(AlドープZnO)、GZO(GaドープZnO)、ATO(SbドープSnO)、ICO(インジウムセリウムオキサイド)、WO等が含まれる。金属酸化物または金属硫化物は、屈折率や生産性の観点からTiO、ITO、ZnO、NbまたはZnSであることが好ましい。第一高屈折率層4及び第二高屈折率層5には、上記金属酸化物または金属硫化物が1種のみ含まれてもよく、2種以上が含まれてもよい。
 第一高屈折率層4及び第二高屈折率層5の厚みは、アドミッタンス図を用いた光学設計によって設定されることが好ましい。第一高屈折率層4及び第二高屈折率層5の厚みは、通常10~150nmであることが好ましく、より好ましくは20~80nmである。第一高屈折率層4及び第二高屈折率層5が10nm以上であると、第一高屈折率層4及び第二高屈折率層5によって、透明導電体100の反射率が十分に低くなる。一方、第一高屈折率層4及び第二高屈折率層5の厚みが150nm以下であれば、透明導電体100の光透過性が低下し難い。第一高屈折率層4及び第二高屈折率層5の厚みは、エリプソメーターで測定される。
 (5)低屈折率層
 本発明における透明導電体100には、下地層3及び透明金属膜2のプラズモン吸収を抑制するための低屈折率層6がさらに積層されていてもよい。低屈折率層6は、第一高屈折率層4と透明金属膜2または下地層3との間;透明金属膜2と第二高屈折率層5との間;および第二高屈折率層5の透明金属膜2が配置される面とは反対側の面のうち、いずれか一以上の面に積層されうる(図3参照)。
 第一高屈折率層4と透明金属膜2または下地層3との間;透明金属膜2と第二高屈折率層5との間;または第二高屈折率層5の透明金属膜2とは反対側の表面に低屈折率層6が積層されると、下地層3及び透明金属膜2のプラズモン吸収が抑制される理由は以下の通りである。
 前述の下地層3及び透明金属膜2を一つの層とみなし、これらが金属微細球で構成されるとすると、局在プラズモン吸収断面積Cabsは下記の式で表される。
Figure JPOXMLDOC01-appb-M000001
 上記式に基づけば、下地層3及び透明金属膜2の周囲に接する層の屈折率が、低ければ低いほど、下地層3及び透明金属膜2の局在プラズモン吸収断面積が小さくなる。つまり、比較的屈折率の低い低屈折率層6が下地層3や透明金属膜2の表面に積層されると、下地層3や透明金属膜2のプラズモン吸収が抑制される。
 ここで、低屈折率層6には、波長570nmの光の屈折率が1.8未満である誘電性材料または酸化物半導体材料が含まれることが好ましく、より好ましくは1.30~1.6であり、特に好ましくは1.35~1.5である。なお、低屈折率層6の屈折率は主に、低屈折率層6に含まれる材料の屈折率や、低屈折率層6の密度で調整される。
 低屈折率層6に含まれる誘電性材料または酸化物半導体材料は、MgF、SiO、AlF、CaF、CeF、CdF、LaF、LiF、NaF、NdF、YF、YbF、Ga、LaAlO、NaAlF、Al、MgO、及びThO等でありうる。誘電性材料または酸化物半導体材料は中でも、MgF、SiO、CaF、CeF、LaF、LiF、NaF、NdF、NaAlF、Al、MgO、またはThOであることが好ましく、屈折率が低いとの観点から、MgF及びSiOが特に好ましい。低屈折率層6には、これらの材料が1種のみ含まれてもよく、2種以上含まれてもよい。
 低屈折率層6の厚みは、透明導電体100の光学特性に大きく影響しない厚みであることが好ましい。低屈折率層6の厚みは0.1~15nmであることが好ましく、1~10nmであることがより好ましく、さらに好ましくは3~8nmである。
 透明導電体100のうち透明基板1を除く層の合計厚みは、層構成にもよるが、7~130nm程度、好ましくは87~94nmとしうる。
 2.透明導電体の製造方法
 前述の通り、透明性が高く、かつ表面抵抗値が低い透明導電体を得るためには、厚みが小さくても、表面抵抗値が低い透明金属膜を形成することが望まれる。本発明者らは、鋭意検討した結果、対向スパッタ法で形成された透明金属膜は、マグネトロンスパッタ法で成膜された透明金属膜よりも、表面電気抵抗が著しく低減されることを新たに見出した。
 即ち、本発明の透明導電体の製造方法は、少なくとも(i)透明金属膜を、対向スパッタ法で成膜する工程を含む。また、本発明の透明導電体の製造方法は、透明導電体の層構成に応じて(ii)下地層を成膜する工程、(iii)第一高屈折率層や第二高屈折率層を成膜する工程、または(iv)低屈折率層を成膜する工程などをさらに含みうる。
 (i)透明金属膜形成工程
 透明金属膜を、対向スパッタ法にて成膜する。図4は、対向スパッタ装置の要部の一例を示す模式図である。図4に示されるように、対向スパッタ装置200は、互いに対向して配置された二つのターゲット11aおよび11bと、ターゲット11aおよび11bの裏面の外周部に配置された磁界発生手段13aおよび13bと、ターゲット11aおよび11bと磁界発生手段13aおよび13bを覆うシールド15aおよび15bと、ターゲット11aおよび11b間の対向空間17と一定以上離間して配置された基板ホルダ19およびそれに保持された基板21と、これらを収納する真空槽23と、ターゲット11aと11bにスパッタ電力を印加するスパッタ電源25とを有する。
 ターゲット11aおよび11bの組成は、前述の透明金属膜の組成と同様としうる。即ち、ターゲット11aおよび11bは、銀を50原子%以上含有する金属で構成されることが好ましく;銀または銀90原子%以上と他の金属との合金で構成されることがより好ましい。ターゲット11aと11bとの間の距離は、86~110mm程度としうる。
 ターゲット11aまたは11bの外周端の延長線lと基板21との間の距離Lは、成膜速度やターゲットの組成などにもよるが、例えば50~200mmとしうる。成膜は、基板21を固定した状態で行ってもよいし;基板21を移動させながら(例えば上下方向に移動させながら)行ってもよい。基板21を移動させながらスパッタする場合、基板21の移動速度は、0.25~3.00m/minとしうる。
 磁界発生手段13aと13bは、互いに極が異なるように配置される。それにより、対向空間17の外周部を囲むような磁場を形成できるようになっている。
 真空槽23は、Arガスなどのスパッタガスを真空槽23内に導入する導入口27と、真空槽21内のガスを排出する排出口29とを有する。
 このように構成された対向スパッタ装置200では、真空槽23内の真空度を高めた後、導入口27からArガスなどの不活性ガスを供給する。真空槽23をアノード(陽極)とし、ターゲット11aおよび11bをカソード(陰極)としてスパッタ電力を供給する。
 対向空間17には、磁界発生手段13aおよび13bによって、ターゲット11aおよび11bの表面に対して略垂直方向の磁場(点線矢印)が形成される。それにより、対向空間17に高密度のプラズマ空間が形成される。ターゲット11aおよび11bから叩き出されたスパッタ粒子は、ターゲット11aおよび11bの間を往復した後、その一部がプラズマ空間外に漏れ出す。漏れ出したスパッタ粒子は、プラズマ空間と一定以上離間して配置された基板21上に堆積し、透明金属膜が成膜される。
 透明金属膜の成膜速度は、5.0~10Å/s程度でありうる。成膜速度は、対向空間17に形成されるプラズマ空間内外の圧力差;具体的には、ターゲット11aおよび11bに印加するスパッタ電力や真空槽23内の圧力などによって調整されうる。
 真空槽23内の圧力は、例えば0.1~0.3Pa程度としうる。スパッタ電力は、1kW~3kWとしうる。
 このように、対向スパッタ法で形成された透明金属膜は、マグネトロンスパッタ法で成膜された透明金属膜よりも、表面電気抵抗が顕著に低減されうる。
 この理由は、必ずしも明らかではないものの、以下のように推測される。即ち、マグネトロンスパッタ法では、基板37と対向するように配置されたターゲット31表面に沿った磁場が形成される(図5の実線矢印)。Arガスが電離して生じる電子の大部分は、ターゲット31表面近傍の磁場に捕えられるものの;一部は、ターゲット31表面近傍の磁場に捕えられないため、基板37上に成膜された透明金属膜に衝突して、透明金属膜を傷付けやすい。
 これに対して対向スパッタ法では、前述の通り、互いに対向するように配置された二つのターゲット11aおよび11bの外周部を取り囲むような磁場が形成される(図4の点線矢印)。スパッタ粒子は、対向空間17に形成されたプラズマ空間内を往復するため、マグネトロンスパッタ法よりも高い運動エネルギーを有する。それにより、緻密な透明金属膜が形成されやすいと考えられる。また、Arガスが電離して生じる電子は、プラズマ空間に閉じ込められやすいため、プラズマ空間と一定以上離間して配置された基板21上に成膜された透明金属膜に衝突しにくく、透明金属膜を傷付けにくい。それにより、平滑な構造を有する透明金属膜が得られやすいと考えられる。これらの結果、得られる透明金属膜は、緻密でかつ平滑な構造を有し;厚みが小さくても、表面電気抵抗が著しく低減されると考えられる。
 (ii)下地層成膜工程
 本発明の透明導電体の製造方法は、前述の通り、透明金属膜の構成原子の透明基板上でのマイグレートを抑制し、表面が平滑な透明金属膜を得やすくするためなどから、(ii)下地層を成膜する工程をさらに含むことが好ましい。
 透明基板上に、蒸着法またはスパッタ法で、前述の下地層を成膜する。ただし、金属の種類によっては、十分に蒸着できないものがある。このような金属原子を含む材料を蒸着すると、得られる下地層の厚みや密度にムラが生じる場合がある。したがって、下地層を蒸着法で成膜する場合には、材料中に含まれるパラジウムの量が多いことが好ましい。パラジウムの具体的な含有量は、20質量%以上であることが好ましく、より好ましくは40質量%以上であり、さらに好ましくは60質量%以上である。パラジウムが20質量%以上含まれる材料は、蒸着法で均一に成膜されやすい。またコストの面からもパラジウムが多い方が望ましい。
 下地層を成膜するための蒸着法の例には、真空蒸着法、電子線蒸着法、イオンプレーティング法、イオンビーム蒸着法等が含まれる。蒸着時間は、成膜する下地層の厚みや成膜速度に合わせて適宜選択される。蒸着速度は、好ましくは0.1~15Å/秒であり、より好ましくは0.1~7Å/秒である。
 一方、下地層をスパッタ法で成膜する場合には、材料中に含まれるパラジウムの量は特に制限されず、下地層の組成に応じて適宜選択される。
 スパッタ法の例には、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法等が含まれる。スパッタ時間は、所望の下地層の厚み、及び成膜速度に合わせて適宜選択する。スパッタ成膜速度は、好ましくは0.1~15Å/秒であり、より好ましくは0.1~7Å/秒である。
 このように形成された下地層上に、透明金属膜を成膜することで、透明金属膜の構成原子がマイグレートし難くなり、得られる透明金属膜の表面が平滑になりやすい。
 (iii)その他の工程
 本発明の透明導電体の製造方法は、前述のように、透明導電体の層構成に応じて、透明基板上に第一高屈折率層を成膜する工程や、透明金属膜上に第二高屈折率層を成膜する工程、低屈折率層を成膜する工程等をさらに含んでもよい。
 第一高屈折率層の成膜方法、第二高屈折率層の成膜方法、及び低屈折率層の成膜方法は、いずれも一般的な気相成膜法であれば特に制限されず、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等であり得る。
 3.透明導電体の物性について
 本発明における透明導電体は、前述の通り、透明金属膜を対向スパッタ法で成膜する工程を経て得られる。そのような透明導電体の透明金属膜は、厚みが小さくても、表面電気抵抗が著しく低減されている。
 透明導電体の透明金属膜の表面電気抵抗は、30Ω/□以下であることが好ましく、10Ω/□以下であることがより好ましく、8Ω/□以下であることがさらに好ましく、4.5Ω/□以下であることがさらに好ましい。特に、厚みが10nm以下の透明金属膜の表面電気抵抗が8Ω/□以下であることが好ましく;厚みが8nm以下の透明金属膜の表面電気抵抗が8Ω/□以下であることがより好ましい。表面電気抵抗値が30Ω/□以下である透明導電体は、静電容量方式のタッチパネル用の透明導電パネル等に好ましく適用できる。
 透明導電体の透明金属膜の表面電気抵抗値は、例えばJIS K7194、ASTM D257等に準拠して測定できる。また、透明導電体の透明金属膜の表面電気抵抗値は、市販の表面電気抵抗率計によっても測定できる。
 透明導電体の透明金属膜の表面電気抵抗値を上記範囲とするためには、透明金属膜を対向スパッタ法で成膜することが好ましい。透明導電体の透明金属膜の表面電気抵抗値は、必要に応じて対向スパッタ条件(例えばスパッタ電力、真空槽内の圧力、ターゲット間距離、ターゲット端部と基板との距離Lなど)、透明金属膜の厚みまたは下地層の形成などでさらに調整されてもよい。
 また、表面電気抵抗値を一定以下とするための透明金属膜の厚みを小さくできることから、透明導電体の光の透過率または平均透過率を高めることができる。
 透明導電体の、波長400~800nmの光の全範囲における光の透過率は、50%以上であり、好ましくは60%以上であり、さらに好ましくは70%以上である。波長400~800nmの全範囲で透過率が50%以上であると、透明導電体が着色し難い。
 透明導電体の、波長450~800nmの光の平均透過率は、好ましくは60%以上であり、より好ましくは70%以上であり、さらに好ましくは80%以上である。透明導電体の上記波長範囲の光の平均透過率が85%以上であると、透明導電体を特に高い透明性が要求される用途にも適用できる。
 透明導電体の光の透過率および平均透過率は、透明金属膜の厚みや層構成(屈折率の異なる層の積層)などによって調整されうる。
 一方、透明導電体の波長500~700nmの光の平均反射率は、20%以下であることが好ましく、より好ましくは15%以下であり、さらに好ましくは10%以下である。上記透過率及び反射率は、透明導電体の表面の法線に対して5°傾けた角度から測定光を透明導電体に入射させて測定される。透過率及び反射率は、分光光度計で測定される。
 透明導電体の光の吸収率は、波長400~800nmの光の全範囲で、15%以下であることが好ましく、より好ましくは10%以下である。波長400~800nmの全範囲で、吸収率が15%以下であると、透明導電体が着色し難い。
 透明導電体の波長400~800nmの光の平均吸収率は、20%以下であることが好ましく、より好ましくは15%以下であり、さらに好ましくは10%以下である。透明導電体の光の吸収率は、透明金属膜の吸収率や、各層を構成する材料の光吸収率を抑制することで低減される。透明導電体の吸収率は、吸収率=100-(透過率+反射率)として算出される。
 透明導電体のL*a*b*表色系におけるa*値及びb*値は±30以内であることが好ましく、より好ましくは±5以内であり、さらに好ましくは±3.0以内であり、特に好ましくは±2.0以内である。L*a*b*表色系におけるa*値及びb*値は±30以内であれば、透明導電体が無色透明に観察される。L*a*b*表色系におけるa*値及びb*値は、分光光度計で測定される。
 以下、本発明を実施例により更に詳細に説明する。しかしながら、本発明の範囲はこれによって何ら制限を受けない。
 1.透明基板の種類
 白板ガラス基板:山中セミコンダクターの白板ガラス基板(厚み2mm、Φ30mm、波長570nmの光の屈折率1.52)
 TAC:セルローストリアセテートフィルム(厚み80μm)
 PET:ポリエチレンテレフタレートフィルム(厚み50μm、波長570nmの光の可視光透過率95%)
 COP:シクロオレフィン樹脂フィルム(厚み60μm)
 PC:ポリカーボネートフィルム(厚み100μm)
 2.透明導電体の作製
 [実施例1]
 山中セミコンダクターの白板ガラス基板(Φ30mm、厚み2mm)を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。
 得られた白板ガラス基板(透明基板)を基板ホルダにセットした。そして、エフ・ティ・エスコーポレーション社製の対向スパッタ装置を用いて、当該白板ガラス基板をセットした基板ホルダを下から上方向に移動速度3m/minで移動させながら(図4参照)、対向スパッタ法にて、白板ガラス基板上にAgからなる透明金属膜(厚み7nm)を成膜し、透明導電体を得た。
 スパッタガスはArガスとし;ターゲット端部の延長線lと透明基板面との距離L(図4参照)は90mmとし;真空槽内の圧力は0.2Paとし;スパッタ電力は1.3kWとし;成膜速度は7Å/sとした。透明金属膜の厚みは、J.A.Woollam Co.Inc.製のVB-250型VASEエリプソメーターで測定した。
 [実施例2~5]
 透明基板の種類を表1に示されるように変更した以外は実施例1と同様にして透明導電体を得た。
 [実施例6]
 透明金属膜の種類を銀/ビスマス合金(99/1原子%比)に変更した以外は実施例1と同様にして透明導電体を得た。
 [実施例7]
 下地層をさらに形成した以外は実施例1と同様にして、透明基板/下地層/透明金属膜をこの順に有する透明導電体を得た。
 (下地層)
 真空デバイス社製のマグネトロンスパッタ装置MSP-1Sを用いて、パラジウム(Pd)を0.2秒間成膜し、平均厚み0.2nmの下地層を形成した。下地層の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 [実施例8]
 下地層の組成を表1に示されるように変更した以外は実施例7と同様にして透明導電体を得た。
 [実施例9]
 第一高屈折率層及び第二高屈折率層をさらに形成した以外は実施例1と同様にして、透明基板/第一高屈折率層/透明金属膜/第二高屈折率層をこの順に有する透明導電体を得た。
 (第一高屈折率層及び第二高屈折率層)
 大阪真空社のマグネトロンスパッタ装置を用いて、Ar:20sccm、O:0sccm、スパッタ圧:0.1Pa、室温下、ターゲット側電力:150W、成膜レート:1.1Å/sでZnO(波長570nmの光の屈折率2.05)をRFスパッタした。ターゲット-基板間距離は90mmとした。それにより、第一高屈折率層(厚み48nm)及び第二高屈折率層(厚み40nm)をそれぞれ形成した。
 [実施例10~11]
 透明金属膜の厚みと、第一高屈折率層及び第二高屈折率層の組成と厚みを表2に示されるように変更した以外は実施例9と同様にして透明導電体を得た。Nbの波長570nmの光の屈折率は2.31であり;TiOの波長570nmの光の屈折率は2.35であった。
 [実施例12]
 下地層をさらに形成した以外は実施例9と同様にして、透明基板/第一高屈折率層/下地層/透明金属膜/第二高屈折率層をこの順に有する透明導電体を得た。
 (下地層)
 真空デバイス社製のマグネトロンスパッタ装置MSP-1Sを用いて、パラジウム(Pd)を0.1秒間成膜し、平均厚み0.1nmの下地層を形成した。下地層の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 [実施例13]
 第一低屈折率層及び第二低屈折率層をさらに形成し、かつ第一高屈折率層の厚みを調整した以外は実施例9と同様にして、透明基板/第一高屈折率層/第一低屈折率層/透明金属膜/第二低屈折率層/第二高屈折率層をこの順に有する透明導電体を得た。
 (第一低屈折率層及び第二低屈折率層)
 大阪真空社のマグネトロンスパッタ装置を用い、Ar:20sccm、O:0sccm、スパッタ圧:0.1Pa、室温下、ターゲット側電力:300W、成膜レート:1.6Å/sでSiO(波長570nmの光の屈折率1.46)をRFスパッタした。ターゲット-基板間距離は90mmとした。それにより、第一低屈折率層(厚み5nm)及び第二低屈折率層(厚み5nm)をそれぞれ形成した。
 [実施例14]
 第一低屈折率層及び第二低屈折率層の組成を表2に示されるように変更した以外は実施例13と同様にして透明導電体を得た。MgFの波長570nmの光の屈折率は1.38であった。
 [実施例15]
 下地層をさらに形成し、かつ第一高屈折率層と第二高屈折率層の厚みを表2に示されるように変更した以外は実施例14と同様にして、透明基板/第一高屈折率層/第一低屈折率層/下地層/透明金属膜/第二低屈折率層/第二高屈折率層をこの順に有する透明導電体を得た。
 (下地層)
 真空デバイス社製のマグネトロンスパッタ装置MSP-1Sを用いて、パラジウム(Pd)を0.1秒間成膜し、平均厚み0.1nmの下地層を形成した。下地層の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 [実施例16]
 第三低屈折率層をさらに形成し、かつ各層の組成と厚みを表2に示されるように変更した以外は実施例15と同様にして、透明基板/第一高屈折率層/第一低屈折率層/下地層/透明金属膜/第二低屈折率層/第二高屈折率層/第三低屈折率層をこの順に有する透明導電体を得た。
 (第三低屈折率層)
 大阪真空社のマグネトロンスパッタ装置を用い、Ar:20sccm、O:0sccm、スパッタ圧:0.1Pa、室温下、ターゲット側電力:300W、成膜レート:1.6Å/sでSiO(波長570nmの光の屈折率1.46)をRFスパッタし、第三低屈折率層(厚み60nm)を形成した。ターゲット-基板間距離は90mmとした。
 [比較例1]
 洗浄後の白板ガラス基板(透明基板)上に、Agからなる透明金属膜(厚み7nm)を、大阪真空社のマグネトロンスパッタ装置を用いて、Ar:20sccm、スパッタ圧:0.5Pa、室温下、ターゲット側電力:150W、成膜レート:14Å/sでAgをRFスパッタした。ターゲット-基板間距離は90mmとした。得られた透明金属膜のプラズモン吸収率は、波長400nm~800nmにわたって10%以下であった。
 [比較例2]
 洗浄後の白板ガラス基板(透明基板)上に、大阪真空社のマグネトロンスパッタ装置を用いて、ITO薄膜(厚み45nm)/Ag薄膜(厚み10nm)/ITO薄膜(厚み80nm)/Ag-Au合金薄膜(厚み14nm)/ITO薄膜(厚み80nm)/Ag合金薄膜(厚み14nm)/ITO薄膜(厚み45nm)を形成し、積層体を得た。各層の形成は、以下の方法で行った。
 (ITO薄膜)
 ITO薄膜は、ターゲットに酸化インジウム・酸化スズ焼結体(組成比In:SnO=90:10wt%)を、スパッタガスにアルゴン・酸素混合ガス(全圧266mPa:酸素分圧5mPa)を用いて成膜した。
 (Ag薄膜またはAg-Au合金薄膜)
 Ag薄膜は、ターゲットに銀を用い、スパッタガスにアルゴンガス(全圧266mPa)を用いて成膜した。Ag-Au合金薄膜は、ターゲットに銀-金合金(金10wt%)を用い、スパッタガスにアルゴンガス(全圧266mPa)を用いて成膜した。
 [比較例3]
 セルローストリアセテートフィルム(厚み80μm、波長550nmの光の屈折率1.51)からなる透明基板上に、紫外線硬化型アクリル系樹脂溶液(共栄社化学社製、商品名:PE-3A)を塗布した後、乾燥および光照射して硬化させて、厚み5μmのハードコート層を形成した。
 ハードコート層が形成されたセルローストリアセテートフィルムからなる透明基板上に、プライマー層(SiOx薄膜)/高屈折率層(ICO薄膜)/金属薄膜層(Ag合金薄膜)/保護層(NiCr薄膜)/高屈折率層(ICO薄膜)/低屈折率層(SiO薄膜)をこの順に形成した後、防汚層をさらに形成して積層体を得た。各層の形成は、以下の方法で行った。
 (プライマー層)
 SiOxを、大阪真空社のマグネトロンスパッタ装置を用いて成膜し、厚み3nmのSiOx薄膜からなるプライマー層を形成した。
 (高屈折率層)
 インジウム中にセリウム10原子%を含有する透明導電酸化物材料(ICO)を、大阪真空社のマグネトロンスパッタ装置を用いて成膜し、厚み27nmまたは40nmのICO薄膜(高屈折率層、波長570nmの光の屈折率2.2、消衰係数0.001)からなる高屈折率層を形成した。
 (金属薄膜層)
 銀中に金1.5原子%および銅0.5原子%を含有する合金を、大阪真空社のマグネトロンスパッタ装置を用いて成膜し、厚み11nmの銀合金薄膜からなる金属薄膜層(波長570nmの光の屈折率0.09、消衰係数3.51)を形成した。
 (保護層)
 ニクロムを、大阪真空社のマグネトロンスパッタ装置を用いて成膜し、厚み0.8nmのNiCr薄膜からなる保護層を形成した。
 (低屈折率層)
 SiOを、大阪真空社のマグネトロンスパッタ装置を用いて成膜し、厚み3nmまたは31nmのSiO薄膜からなる低屈折率層(波長570nmの光の屈折率1.46、消衰係数0)を形成した。
 (防汚層)
 弗素系材料(信越化学工業(株)製、商品名:KP801M)を真空蒸着法で成膜し、厚み6nmの防汚層を形成した。プライマー層から防汚層までの厚みの合計は106.6nmであった。
 [比較例4]
 山中セミコンダクターの白板ガラス基板(厚み2mm、Φ30mm、波長570nmの光の屈折率1.52)を脱脂、洗浄および乾燥した。得られたフィルムからなる透明基板上に、対向スパッタ法によりAl薄膜、AlON薄膜、AIN薄膜およびCu薄膜を形成し、Al薄膜/AlON薄膜/AIN薄膜/Cu薄膜/AIN薄膜/AlON薄膜/Al薄膜をこの順に有する積層体を得た。各層の形成は、以下の方法で行った。
 (Al薄膜)
 酸化アルミニウム(Al)薄膜(厚み150nm)は、エフ・ティ・エスコーポレーション社製の対向スパッタ装置を用いて、対向スパッタ法にて形成した。具体的には、アルミニウム(Al)ターゲットをセットし、真空槽内を10-5Pa以下に真空排気し、スパッタガスであるArガスを所定流量加えていき、真空槽内を0.3Paに設定した。さらに、反応性ガスである酸素ガスを、0.10Pa混合して、スパッタ電力を2.5kWで、白板ガラス基板をセットした基板ホルダを移動速度0.08m/minで移動させながらスパッタリングして、厚み150nmのAl薄膜を形成した。
 (AlON薄膜)
 酸窒化アルミニウム(AlON)薄膜(厚み120nm)は、エフ・ティ・エスコーポレーション社製の対向スパッタ装置を用いて、対向スパッタ法にて形成した。具体的には、アルミニウム(Al)ターゲットを用いて、真空槽内を10-5Pa以下に真空排気し、スパッタガスであるArガスを所定流量加えていき、真空槽内を0.3Paに設定した。さらに、反応性ガスである窒素ガスを、8×10-2Pa及び酸素ガスを5×10-2Pa混合して、スパッタ電力を2.5kWで、白板ガラス基板をセットした基板ホルダを移動速度0.10m/minで移動させながらスパッタリングして、厚み120nmのAlON薄膜を形成した。
 (Cu薄膜)
 銅(Cu)薄膜(厚み30nm)は、エフ・ティ・エスコーポレーション社製の対向スパッタ装置を用いて、対向スパッタ法にて形成した。具体的には、Cuターゲットを用いて、真空槽内を10-5Pa以下に真空排気し、スパッタガスであるArガスを流量調節しながら供給して、真空槽を所定の真空度0.3Paに設定し、スパッタ電力2.5kWで、白板ガラス基板をセットした基板ホルダを移動速度0.40m/minで移動させながら30nmの銅薄膜を形成した。
 実施例1~16および比較例1~4で得られた透明導電体の平均透過率および表面電気抵抗を、下記の方法で測定した。
 (平均透過率)
 得られた透明導電体について、透明金属膜の表面(第二高屈折率層または第三低屈折率層を表面に有する場合は第二高屈折率層または第三低屈折率層の表面)の法線に対して5°傾けた位置から測定光を入射させた。そして、透明導電体の透過率を分光光度計(日立ハイテク社製U4100)で測定し、波長450nm~800nmの光の平均透過率を求めた。
 (表面電気抵抗)
 得られた透明導電体の透明金属膜の表面電気抵抗を、JIS K7194に準拠して、三菱化学アナリテック製のロレスタEP MCP-T360にて測定した。
 実施例1~8の評価結果を表1に示し;実施例9~16の評価結果を表2に示し;比較例1~4の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 透明金属膜を対向スパッタ法で形成した実施例1~16の透明導電体は、透明金属膜の厚みが11nm以下と小さくても、表面抵抗値が7.1Ω/□以下と低いことがわかる。また、実施例1~16の透明導電体は、透明金属膜の厚みが11nm以下と小さいことから、平均透過率が64%以上と高いことがわかる。
 一方、透明金属膜をマグネトロンスパッタ法で形成した比較例1と3の透明導電体は、透明金属膜の厚みが11nm以下と小さいと、表面抵抗値が8.8~11Ω/□と高いことがわかる。比較例2の透明導電体は、透明金属膜の総厚みが38nmと大きいことから、平均透過率が57%と低いことがわかる。
 本出願は、2013年7月26日出願の特願2013-155815に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
 本発明によれば、透明金属膜の厚みが薄くても、表面電気抵抗値が低い透明導電体の製造方法を提供することができる。
 1 透明基板
 2 透明金属膜
 3 下地層
 4 第一高屈折率層
 5 第二高屈折率層
 6 低屈折率層
 11a、11b、31 ターゲット
 13a、13b 磁界発生手段
 15a、15b シールド
 17 対向空間
 19 基板ホルダ
 21、37 基板
 23 真空槽
 25 スパッタ電源
 27 導入口
 29 排出口
 100 透明導電体
 200 対向スパッタ装置

Claims (4)

  1.  透明基板と、銀を50原子%以上含み、かつ厚みが20nm以下である透明金属膜とを含む透明導電体の製造方法であって、
     前記透明金属膜を、対向スパッタ法にて成膜する工程を含む、透明導電体の製造方法。
  2.  前記透明導電体の透明金属膜の表面電気抵抗が8Ω/□以下である、請求項1に記載の透明導電体の製造方法。
  3.  前記透明導電体は、前記透明基板と前記透明金属膜との間に、パラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブまたはインジウム、あるいはパラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブまたはインジウムを20質量%以上含む合金からなり、かつ厚みが3nm以下である下地層をさらに含み、
     前記透明基板上に、前記下地層を成膜する工程をさらに含む、請求項1に記載の透明導電体の製造方法。
  4.  前記透明導電体の波長450~800nmの光の平均透過率が70%以上である、請求項1に記載の透明導電体の製造方法。
PCT/JP2014/003924 2013-07-26 2014-07-25 透明導電体の製造方法 WO2015011928A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-155815 2013-07-26
JP2013155815 2013-07-26

Publications (1)

Publication Number Publication Date
WO2015011928A1 true WO2015011928A1 (ja) 2015-01-29

Family

ID=52392992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003924 WO2015011928A1 (ja) 2013-07-26 2014-07-25 透明導電体の製造方法

Country Status (1)

Country Link
WO (1) WO2015011928A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112981345A (zh) * 2021-02-07 2021-06-18 苏州光昛智能科技有限公司 无需退火的全固态电致变色器件透明导电极的制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164382A (ja) * 1999-12-03 2001-06-19 Osaka Prefecture 導電性光選択透過シート
JP2008214724A (ja) * 2007-03-07 2008-09-18 Toppan Printing Co Ltd スパッタリング装置及び透明導電膜形成方法並びに有機電界発光素子の製造方法
JP2012083686A (ja) * 2010-10-08 2012-04-26 Soichi Ogawa 透明断熱シート及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164382A (ja) * 1999-12-03 2001-06-19 Osaka Prefecture 導電性光選択透過シート
JP2008214724A (ja) * 2007-03-07 2008-09-18 Toppan Printing Co Ltd スパッタリング装置及び透明導電膜形成方法並びに有機電界発光素子の製造方法
JP2012083686A (ja) * 2010-10-08 2012-04-26 Soichi Ogawa 透明断熱シート及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112981345A (zh) * 2021-02-07 2021-06-18 苏州光昛智能科技有限公司 无需退火的全固态电致变色器件透明导电极的制作方法

Similar Documents

Publication Publication Date Title
JP6314463B2 (ja) 透明導電体
JP5549216B2 (ja) 透明導電性積層体およびその製造方法ならびにタッチパネル
JP2007323045A (ja) プラズマディスプレイパネルフィルタ及びその製造方法
JP5617276B2 (ja) 透明導電性積層体及びその製造方法
JP6292225B2 (ja) 透明導電体
JP6319302B2 (ja) 透明導電体及びその製造方法
WO2014064939A1 (ja) 透明導電体
WO2015068738A1 (ja) 透明導電体
WO2015011928A1 (ja) 透明導電体の製造方法
WO2014196460A1 (ja) 透明導電体及びその製造方法
JP2015219690A (ja) 透明導電デバイス、及び、タッチパネル
WO2015087895A1 (ja) 透明導電体
WO2015125558A1 (ja) 透明導電体の製造方法及び透明導電体
WO2014181538A1 (ja) 透明導電体及びその製造方法
WO2015125512A1 (ja) 透明導電体の製造方法及び透明導電体の製造装置
JP2016177940A (ja) 透明導電体の製造方法
JP2016146052A (ja) 透明導電体及びこれを含むタッチパネル
JPWO2016052158A1 (ja) 透明導電体及びこれを含むタッチパネル
WO2015025525A1 (ja) 透明導電体
WO2015151677A1 (ja) 透明導電部材、及び、透明導電部材の製造方法
WO2015053371A1 (ja) 透明導電体
JP2016091071A (ja) 透明導電性フィルムとその製造方法
WO2015125677A1 (ja) 透明導電体
JP2016169420A (ja) 透明導電部材の製造装置、及び、透明導電部材の製造方法
WO2014188683A1 (ja) タッチパネル用電極基板、これを含むタッチパネル、及び表示パネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14829959

Country of ref document: EP

Kind code of ref document: A1