TWM374405U - Non-conductive multi-layer membrane structure on semi-reflective & semi-penetration flexible substrates - Google Patents

Non-conductive multi-layer membrane structure on semi-reflective & semi-penetration flexible substrates Download PDF

Info

Publication number
TWM374405U
TWM374405U TW98217678U TW98217678U TWM374405U TW M374405 U TWM374405 U TW M374405U TW 98217678 U TW98217678 U TW 98217678U TW 98217678 U TW98217678 U TW 98217678U TW M374405 U TWM374405 U TW M374405U
Authority
TW
Taiwan
Prior art keywords
layer
semi
refractive index
conductive
index layer
Prior art date
Application number
TW98217678U
Other languages
Chinese (zh)
Inventor
Hsiu-Ying Meng
Original Assignee
Scitec Internat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scitec Internat Co Ltd filed Critical Scitec Internat Co Ltd
Priority to TW98217678U priority Critical patent/TWM374405U/en
Publication of TWM374405U publication Critical patent/TWM374405U/en

Links

Landscapes

  • Laminated Bodies (AREA)

Description

M374405 五、新型說明: 【新型所屬之技術領域】 本創作係關於一種半反射半穿透可撓性基材非導電性 多層膜結構,尤指一種可用於手機、PDA、筆記型電腦、 隔熱紙及消費性電子產品之螢幕等的半反射半穿透可撓 性基材非導電性多層膜結構。 【先前技術】 我國發明專利130672揭示了一種透明導電平板,尤 其是指一種具有低電阻及高穿透率之透明導電平板,包括 一位於一透明平的玻璃或塑料基板上的透明電絕緣膜,該 電絕緣膜為單一或複數透明的電絕緣層所構成,其中至少 有一層電絕緣層其可見光平均光學折射率低於1.4或大於 1.8 ;及一位於該電絕緣膜上的導電膜,該導電膜為複數 導電層所構成,其中該等導電層可以是金屬性或非金屬性 物質,但其中至少一層導電層為金屬性物質,並且其餘非 金屬性物質為透明的;其中該電絕緣膜及導電膜所包含的 電絕緣層及導電層的厚度、順序及可見光平均光學折射率 被安排成在光學干涉原理下,使得該電絕緣膜及導電膜所 形成的複合膜具有80%-95%的可見光平均穿透率。 我國發明專利226858揭示了 一種薄板型導電膜结 構,包括:一非導電透明玻璃或塑料基板;一位於該基板 的一表面上的導電膜,該導電膜為複數導電層所構成,瘀 中該等導電層可以是金屬性或非金屬性物質,但其中位於 3 該基板的該表面的第-層導電層為該金屬性 導電膜所包含的各導電層的厚度、卿及 均 折射率被安排成在光學干涉原訂,使得 膜^ 60%-95%的可見光平均穿透率。 導電、具有 以上兩件專利所揭示的結構均包含了導電膜,而其目 的是提供一種用於平板顯示器,如液曰 、 、 窃斯戍日日顯不器(LCD),電 致發光顯示器(LEd,TFEL,oled等),電装顯*器(pDp) 等,的透明導電基板,來取代一般使用的ιτ〇玻璃基板。 我國發明專利238768揭示了一種塑膠基材不導電金 屬化的製造方法及其結構,主要係於塑膠基材表面進行多 層的金屬蒸著處理所達成者,其中該金屬蒸著係利用金屬 材料的物性’使金屬蒸著於_基材後能_不導電的狀 況;藉此,透過本發明技術所製造的塑膠基材表面可具有 顯著的金>1光澤,但對於電磁波卻可财不具遮蔽性的可 通過特性;因此,在通訊器材的應用上,例如:在攜帶電 話的外殼組件應用時,可達到不會對電磁波傳輸與接收造 成吸收或反射等干擾,進而能夠維持高通訊品質的特性。 此發明所使用的方法簡稱為"非導電真空金屬仆,, (NON-Conductive Vacuum Metallization,英文縮寫為 NCVM) 〇 我國新型專利345705揭示了一種非導電性基材上高 表面電阻高光澤金屬結構,包含一非導電性基材;位於疟 一表面上的一介面層;及配置於該介面層上的至少一光睪 層。該光澤層上可進一步配置一功能層,該功能層包含一 M374405 顏色層’及一配置於該顏色層上之保護層。此前案之主要 目的在於提供一種非導電性基材上高電阻高光澤金屬結 構’其係利用真空濺鐘(Sputtering)控制不同金屬膜厚與結 構’除使得至少一光澤層產生具有高表面電阻及光澤提升 外,亦可與其他金屬配置組合。 至目前為止,仍沒有先前技藝揭示一種半反射半穿透 可撓性基材非導電性多層膜結構,其具有4〇%-59%的可見 光平均穿透率及40%-59%的可見光平均反射率。 【新型内容】 本創作的一主要目的在於提供一種半反射半穿透可 撓性基材非導電性多層膜結構,其具有3〇%_7〇%,較佳的 40%_59% ’的可見光平均穿透率及30%-70%,較佳的 40%-59% ’的可見光平均反射率。 本創作使用NCVM方式形成高表面電阻的金屬錢膜 及/或使用以溶膠凝膠法獲得高低折射率材料堆疊的膜, 利用光學干涉原理達成一半反射與半穿透的效果,也可再 利用最後一層的有機高分子層進行整體穿透率與反射率 的調變達到穿透率(3〇〜70%)與反射率(30〜70%)同時並存 的效果。 本創作所提供的一種半反射半穿透可撓性基材非導 電性多層膜結構包含: 一非導電透明塑膠基材; 一位於該基材的一表面上的非導電膜,該非導電膜备 5 M374405 多數非導電層所構成,其中每一層非導電層具有大於 1〇1°Ω/□的表面電阻的金屬性物質或非金屬性物質;及 一位於該非導電膜上的有機高分子層; 其中該非導電膜所包含的各非導電層的厚度、順序及 可見光平均光學折射率被安排成在光學干涉原理下使得 該半反射半?透可撓性基材非導電性多層膜結構具有 30%-70% ’較佳的4〇%_59% ’更佳的45%-50%,的可見光 平均穿透率及30%-70°/〇,較佳的4〇〇/❶·59〇/0,更佳的 45%-50%,的可見光平均反射率。 較佳的,位於該基板的該表面的第一層為金屬性物 質,該金屬性物質為錫(Sn)、鈦(Ti)、鉻(Cr)、銦(Ιη)、銀 (Ag)、Ni(鎳)、銅(Cu),或它們的合金。於本創作的一軚 佳具體實施例中該金屬性物質為銀。 較佳的,位於該基板的該表面的第一層為非金屬性物 質’該非金屬性物質為二氧化鈦(Ti〇2)、五氧化二麵 (Ta205)、二氧化鎢(w〇2)、三氧化鎢(w〇3),或硫化辞 (ZnS) 〇更佳的,該非金屬性物質為二氧化欽。 較佳的,該非導電膜位於該基板的該表面的第一層的 厚度為M〇〇nm,該非導電膜所包含的其它各非導電層的 厚度為1-350 nm,及該有機高分子層的厚度為 較佳的,其中該非導電膜包含該第一層金屬性物質 層,位於該第一層金屬性物質層上的第一層低折射率層瓦 位於該第一層低折射率層上的第一層高折射率層,其中滚 第一層低折射率層係選自二氧化矽、三氧化二鋁,及反也 M374405 鎂(MgF2),及該第一層高折射率層係選自二氧化鈦、五氧 化二钽、二氧化鎢、三氧化鎢,及硫化鋅。 較佳的,該非導電膜包含該第一層金屬性物質層,位 於該第一層金屬性物質層上的第一層高折射率層及位於 該第一層高折射率層上的第一層低折射率層,其中該第一 層低折射率層係選自二氧化矽、三氧化二鋁,及氟化鎂, 及該第一層高折射率層係選自二氧化鈦、五氧化二组、二 氧化鶴、三氧化鶴,及硫化辞。 較佳的,該非導電膜所包含該第一層金屬性物質層, 位於該第一層金屬性物質層上的第一層低折射率層,位於 該第一層低折射率層上的第二層金屬性物質層,位於該第 二層金屬性物質層上的第二層低折射率層,重復金屬性物 質層及低折射率層直到第η層低折射率層,位於該第η層低 折射率層上的第η+1層金屬性物質層,位於該η+1層金屬性 物質層上的第一層高折射率層,及位於該第一層高折射率 層的第η+1層低折射率層,其中η為3至10的整數,其中该 第一層低折射率層至第η+1層係低折射率層獨立的選自二 氧化矽、三氧化二鋁,及氟化鎂,及該第一層高折射率曆 係選自二氧化鈦、五氧化二钽、二氧化鎢、三氧化鎢,殳 硫化辞。 較佳的,該非導電膜所包含該第一層金屬性物質層, 位於該第一層金屬性物質層上的第一層低折射率層,位於* 該第一層低折射率層上的第二層金屬性物質層,位於該落 二層金屬性物質層上的第二層低折射率層,重復金屬性勿 7 M374405 質層及低折射率層直到第n層低折射率層,位於該第n層低 折射率層上的第n+l層金屬性物質層,位於該n+1層金屬性 物質層上的第n+1層低折射率層,及位於該第n+1層低折射 率層的第一層高折射率層的,其中11為3至1〇的整數,其中 的低折射率層獨立的選自二氧化%、三氧化二鋁,及氟化 鎂,及第一層高折射率層係選自二氧化鈦、五氧化二组、 一氧化鑛、三氧化鶴,及硫化鋅。 較佳的,其中該有機尚分子層為聚甲基丙烯酸甲酯、 丙烯腈-丁二稀-苯乙稀共聚物、液晶高分子、聚氨酯、聚 乙烯、聚氣乙稀、聚丙稀、或聚苯乙稀。 較佳的’該有機高分子層為透明的。 較佳的,該有機尚分子層被添加有具光反射性物質。 較佳的,該有機高分子層為液晶高分子。 較佳的,該非導電透明塑膠基材為聚對苯二甲酸乙二 酯、聚碳酸酯樹脂、聚甲基丙稀酸曱酯、聚丙埽、或聚乙 烯。更佳的,該非導電透明塑膠基材為聚對苯二甲酸乙二 輯。 較佳的,該非導電膜由作為該第一層金屬性物質層的 銀’作為該第一層低折射率層的二氧化矽及作為該第一曆 高折射率層的二氧化鈦所組成。 較佳的’該非導電膜由作為該第一層金屬性物質層I 第n+1層金屬性物質層的銀,作為該第一層低折射率層i 第n+1層低折射率層的二氧化矽及作為該第一層高折射_ 層的二氧化鈦所組成,其中n=3。 M374405 較佳的,該非導電膜包含該第一層非金屬性物質層, 及位於該第一層非金屬性物質層上的第一層低折射率 層,其中該第一層低折射率層係選自二氧化矽、三氧化二 鋁,及氟化鎂。更佳的,該非導電膜由作為該第一層非金 屬性物質層的二氧化鈦,及作為第一層低折射率層的二氧 化矽所組成。 【實施方式】 本創作為達成上述創作目的,所採用之方式與技術, 舉幾個較佳具體實施例並配合圖式詳細說明如後。本創作 利用多層薄膜折射率的差異形成干涉,藉由設計薄骐的厚 度達到建設性或破壞性干涉的效果,進一步達到調整穿透 率與反射率,以單層膜為例,當基板的折射率大於薄膜的 折射率時,設計薄膜光學厚度為四分之一波長時可提升其 穿透率達到抗反射的效果,而進一步搭配高低折射率之堆 疊I設計狀波長錄_穿㈣肢料效果,再搭配 電真空鐘膜或以金屬微粉/有機高分子聚合物的塗作 手法製作之反射效果以改變反射率與穿料, ^性多層膜之穿透率30〜70%與反射率3〇〜7〇%並存的效 ’其中45〜5G%之穿透與反射效果為應用於半反射與 穿透設計之最佳範圍。 、 本創作之第一較佳具體實施例被示於第一圖,其中一 半反射半穿透可撓性基材非導電性多相結構包括: 明塑膠基材1〇,及依序形成於該基材上的—反射層 9 M374405 一低折射率層12、一高折射率層13(依光學設計需求高、 低折射率層可以互換)及一有機高分子層14。 該透明塑膠基材10泛指聚對苯二甲酸乙二酯(PET)、 聚碳酸酯樹脂(PC)、聚曱基丙烯酸曱酯(PMMA)、聚丙烯 (PP)、聚乙烯(PE)等》透明塑膠基材10的厚度並無特別限 制,以23〜250 μπι較為常用。 該反射層11可為金屬鍍膜,如錫(Sn)、鈦(Ti)、鉻 (Cr)、銦(In)、銀(Ag)、Ni(鎳)、Cu(銅)等,或多層金屬如 Al-Si、Al-Sn-Cr-In 等。 該低折射率層12可為氧化物例如二氧化矽(si〇2)、三 氧化二鋁(Al2〇3),或氟化物如氟化鎂(MgF2)的薄膜。 該高折射率層13可為氧化物例如二氧化鈦(Ti〇2)、五 氧化二钽(Ta2〇5)、氧化鎢(W〇2、W〇3),或硫化物例如琉 化鋅(ZnS)的薄膜》 該有機高分子層14在本實施例中可選用pet作為基 材,其可為以純物質獨自成膜,或適量添加具光反射性物 質於高分子層中,使其具有光穿透及光反射之功能。有機 高分子層之材料如聚甲基丙烯酸甲酯[p〇ly(methyl methacrylate), PMMA]、丙烯腈丁二烯_苯乙烯共聚物 (Acrylonitrile-butadiene-styrene copolymer, ABS)、液晶高 分子、聚胺酯(pu)、聚乙烯、聚氣乙烯、pp(p〇lypr〇pyleBe) 聚丙烯、聚苯乙烯等等。有機高分子層的使用可和該金靨 鍍膜之反射層或介電質材料的高、低折射率層相互調整以^ 達半反射半穿透(45〜50%之穿透與反射)同時並存的效茅。 M374405 本創作之第二較佳具體實施例被示於第二圖,其中一 半反射半穿透可撓性基材非導電性多層膜結構包括:一透 明塑膠基材20,及依序重復形成於該基材上的反射層 21、低折射率層22、高折射率層23及最後的有機高分子 層24。該金屬鍍膜之反射層和介電質材料的高、低折射 率層利用光學干涉原理以達半反射半穿透(45〜50%之穿透 與反射)同時並存的效果。本實施例的半反射半穿透可撓 • 性基材非導電性多層膜結構的各層所使用的材料選自與 • 前述第一較佳具體實施例所使用的相同材料。 實例一: 如下表所示,本實例的半反射半穿透可撓性基材非導 電性多層膜結構為PET基材,及由下而上的Ag,Si02, Ti02及有機高分子層,其中該有機高分子層為PMMA, 其可見光平均穿透率為92.1%。M374405 V. New description: [New technical field] This is a non-conductive multilayer film structure for semi-reflective and translucent flexible substrates, especially for mobile phones, PDAs, notebook computers, and thermal insulation. A semi-reflective, semi-transparent, flexible substrate, non-conductive multilayer film structure for screens such as paper and consumer electronics. [Prior Art] Chinese Patent No. 130672 discloses a transparent conductive plate, especially a transparent conductive plate having low resistance and high transmittance, comprising a transparent electric insulating film on a transparent flat glass or plastic substrate. The electrically insulating film is composed of a single or a plurality of transparent electrically insulating layers, wherein at least one of the electrically insulating layers has a visible light average refractive index of less than 1.4 or greater than 1.8; and a conductive film on the electrically insulating film, the conductive The film is composed of a plurality of conductive layers, wherein the conductive layers may be metallic or non-metallic materials, but at least one of the conductive layers is a metallic substance, and the remaining non-metallic materials are transparent; wherein the electrically insulating film and The thickness, the order, and the visible light average refractive index of the electrically insulating layer and the conductive layer included in the conductive film are arranged such that the composite film formed by the electrically insulating film and the conductive film has 80% to 95% under the principle of optical interference. Average visible light transmittance. China Patent No. 226,858 discloses a thin-plate type conductive film structure comprising: a non-conductive transparent glass or plastic substrate; a conductive film on a surface of the substrate, the conductive film being composed of a plurality of conductive layers, The conductive layer may be a metallic or non-metallic material, but the first conductive layer on the surface of the substrate is the thickness, the average refractive index and the average refractive index of the conductive layers included in the conductive conductive film. The optical interference is originally ordered so that the film has an average visible light transmittance of 60%-95%. Conductive, and the structures disclosed in the above two patents all contain a conductive film, and the purpose thereof is to provide a flat panel display such as liquid helium, sputum, and electroluminescent display ( A transparent conductive substrate such as LEd, TFEL, oled, etc., which is used to replace the commonly used ιτ〇 glass substrate. China's invention patent 238768 discloses a manufacturing method and structure of a non-conductive metallization of a plastic substrate, which is mainly achieved by performing multi-layer metal evaporation treatment on the surface of a plastic substrate, wherein the metal evaporation system utilizes the physical properties of the metal material. 'A condition in which the metal is vaporized on the substrate after the substrate is _ non-conductive; whereby the surface of the plastic substrate manufactured by the technique of the present invention can have a remarkable gold > 1 gloss, but it is not shieldable for electromagnetic waves. Therefore, in the application of the communication device, for example, when the casing component of the mobile phone is applied, it can achieve the characteristics of not absorbing or reflecting the electromagnetic wave transmission and reception, thereby maintaining high communication quality. The method used in this invention is abbreviated as "NON-Conductive Vacuum Metallization, NCVM. 〇 Our new patent 345705 discloses a high surface resistance high gloss metal structure on a non-conductive substrate. And comprising a non-conductive substrate; an interface layer on the surface of the malaria; and at least one layer of the aperture disposed on the interface layer. A functional layer may be further disposed on the gloss layer, the functional layer comprising a M374405 color layer 'and a protective layer disposed on the color layer. The main purpose of the previous case is to provide a high-resistance and high-gloss metal structure on a non-conductive substrate, which uses vacuum sputtering to control different metal film thicknesses and structures, except that at least one gloss layer produces high surface resistance and In addition to gloss enhancement, it can also be combined with other metal configurations. Until now, there has been no prior art to disclose a semi-reflective, semi-transparent flexible substrate non-conductive multilayer film structure having an average visible light transmittance of 4% to 59% and a visible light average of 40% to 59%. Reflectivity. [New content] A main purpose of the present invention is to provide a semi-reflective semi-transparent flexible substrate non-conductive multilayer film structure having a visible light average of 3〇%_7〇%, preferably 40%_59%′. The transmittance and the average visible reflectance of 30%-70%, preferably 40%-59%. This creation uses the NCVM method to form a metal film with high surface resistance and/or a film obtained by sol-gel method to obtain a stack of high and low refractive index materials, and achieves half reflection and semi-penetration by optical interference principle, and can also be reused. The organic polymer layer of one layer adjusts the overall transmittance and reflectance to achieve the same effect of the transmittance (3〇~70%) and the reflectance (30~70%). The present invention provides a semi-reflective semi-transparent flexible substrate non-conductive multilayer film structure comprising: a non-conductive transparent plastic substrate; a non-conductive film on a surface of the substrate, the non-conductive film 5 M374405 A plurality of non-conductive layers, wherein each non-conductive layer has a metallic or non-metallic substance having a surface resistance greater than 1〇1°Ω/□; and an organic polymer layer on the non-conductive film; Wherein the thickness, the order, and the visible average optical refractive index of each of the non-conductive layers included in the non-conductive film are arranged such that the semi-reflective half is under the principle of optical interference? The flexible substrate non-conductive multilayer film structure has 30%-70% 'better 4〇%_59%', preferably 45%-50%, and the average visible light transmittance and 30%-70°/ 〇, preferably 4〇〇/❶·59〇/0, more preferably 45%-50%, the average visible reflectance. Preferably, the first layer on the surface of the substrate is a metallic substance, and the metallic substance is tin (Sn), titanium (Ti), chromium (Cr), indium (Ιη), silver (Ag), Ni. (nickel), copper (Cu), or alloys thereof. In a preferred embodiment of the present invention, the metallic material is silver. Preferably, the first layer on the surface of the substrate is a non-metallic substance. The non-metallic substance is titanium dioxide (Ti〇2), pentoxide (Ta205), tungsten dioxide (w〇2), three. More preferably, the tungsten oxide (w〇3) or the sulfided (ZnS) ruthenium is a non-metallic substance. Preferably, the thickness of the first layer of the non-conductive film on the surface of the substrate is M〇〇nm, the thickness of the other non-conductive layers included in the non-conductive film is 1-350 nm, and the organic polymer layer Preferably, the non-conductive film comprises the first layer of metallic material, and the first low refractive index layer on the first layer of metallic material is located on the first low refractive layer a first high refractive index layer, wherein the first low refractive index layer is selected from the group consisting of cerium oxide, aluminum oxide, and M374405 magnesium (MgF2), and the first high refractive index layer is selected From titanium dioxide, antimony pentoxide, tungsten dioxide, tungsten trioxide, and zinc sulfide. Preferably, the non-conductive film comprises the first layer of metallic material, the first layer of high refractive index layer on the first layer of metallic material layer and the first layer on the first layer of high refractive index layer a low refractive index layer, wherein the first low refractive index layer is selected from the group consisting of cerium oxide, aluminum oxide, and magnesium fluoride, and the first high refractive index layer is selected from the group consisting of titanium dioxide and pentoxide. Dioxide cranes, anti-oxidation cranes, and sulfurization. Preferably, the non-conductive film comprises the first layer of metallic material, the first layer of low refractive index layer on the first layer of metallic material, and the second layer on the first layer of low refractive index a layer of a metallic substance, a second low refractive index layer on the second layer of metallic material, repeating the metallic substance layer and the low refractive index layer until the nth low refractive index layer is located at the nth layer a n+1th metal material layer on the refractive index layer, a first high refractive index layer on the n+1 metal material layer, and an n+1 in the first high refractive index layer a low refractive index layer, wherein n is an integer from 3 to 10, wherein the first low refractive index layer to the n+1th low refractive index layer are independently selected from the group consisting of cerium oxide, aluminum oxide, and fluorine Magnesium, and the first layer of high refractive index are selected from the group consisting of titanium dioxide, antimony pentoxide, tungsten dioxide, tungsten trioxide, and rhodium sulfide. Preferably, the non-conductive film comprises the first layer of metallic material, and the first low refractive index layer on the first layer of metallic material is located on the first low refractive index layer. a second layer of a metallic substance layer, a second layer of low refractive index layer on the layer of the second layer of metallic material, repeating the metallicity of the 7 M374405 layer and the low refractive index layer up to the nth layer of the low refractive index layer An n+1th metal material layer on the nth low refractive index layer, an n+1th low refractive index layer on the n+1 metal material layer, and a low n+1 layer a first layer of the high refractive index layer of the refractive index layer, wherein 11 is an integer of 3 to 1 ,, wherein the low refractive index layer is independently selected from the group consisting of % O2, aluminum oxide, and magnesium fluoride, and the first The layer high refractive index layer is selected from the group consisting of titanium dioxide, a pentoxide group, a monoxide ore, a trioxide crane, and zinc sulfide. Preferably, the organic molecular layer is polymethyl methacrylate, acrylonitrile-butylene-styrene copolymer, liquid crystal polymer, polyurethane, polyethylene, polyethylene oxide, polypropylene, or poly Phenylethylene. Preferably, the organic polymer layer is transparent. Preferably, the organic molecular layer is added with a light reflective material. Preferably, the organic polymer layer is a liquid crystal polymer. Preferably, the non-conductive transparent plastic substrate is polyethylene terephthalate, polycarbonate resin, polymethyl methacrylate, polypropylene, or polyethylene. More preferably, the non-conductive transparent plastic substrate is polyethylene terephthalate. Preferably, the non-conductive film is composed of silver as the first layer of the metallic substance layer as the first layer of the low refractive index layer of ceria and titanium dioxide as the first calendar-high refractive index layer. Preferably, the non-conductive film is made of silver as the n+1th metal material layer of the first layer of the metallic substance layer I, and the n+1th low refractive index layer of the first layer of the low refractive index layer i Cerium oxide and titanium dioxide as the first high refractive index layer, wherein n = 3. M374405 Preferably, the non-conductive film comprises the first layer of non-metallic material layer, and the first layer of low refractive index layer on the first layer of non-metallic material layer, wherein the first layer of low refractive index layer It is selected from the group consisting of cerium oxide, aluminum oxide, and magnesium fluoride. More preferably, the non-conductive film is composed of titanium dioxide as the first layer of the non-gold-based material layer and cerium oxide as the first layer of the low-refractive-index layer. [Embodiment] The present invention is a method and a technique for achieving the above-mentioned creative purposes, and several preferred embodiments will be described in detail with reference to the drawings. This creation uses the difference in refractive index of the multilayer film to form interference. By designing the thickness of the thin crucible to achieve the effect of constructive or destructive interference, the transmittance and reflectivity are further adjusted. Taking a single layer film as an example, when the substrate is refracted When the rate is greater than the refractive index of the film, the optical thickness of the film is designed to increase the transmittance to achieve anti-reflection effect when the optical thickness is a quarter wavelength, and further combined with the high-low refractive index stack I design wavelength recording_wearing (four) limb effect And with the electric vacuum film or the reflection effect of the metal micropowder / organic polymer polymer coating method to change the reflectivity and the material, the transmittance of the multi-layer film is 30~70% and the reflectivity is 3〇 ~7〇% coexistence effect] Among them, 45~5G% penetration and reflection effects are applied to the best range of semi-reflection and penetration design. A first preferred embodiment of the present invention is shown in the first figure, wherein the semi-reflective semi-transmissive flexible substrate non-conductive multi-phase structure comprises: a clear plastic substrate 1 〇, and sequentially formed thereon A reflective layer 9 M374405 on the substrate, a low refractive index layer 12, a high refractive index layer 13 (highly required for optical design, interchangeable low refractive index layers) and an organic polymer layer 14. The transparent plastic substrate 10 generally refers to polyethylene terephthalate (PET), polycarbonate resin (PC), polyacrylic acid methacrylate (PMMA), polypropylene (PP), polyethylene (PE), etc. The thickness of the transparent plastic substrate 10 is not particularly limited, and is more commonly used at 23 to 250 μπι. The reflective layer 11 may be a metal plating film such as tin (Sn), titanium (Ti), chromium (Cr), indium (In), silver (Ag), Ni (nickel), Cu (copper), or the like, or a multilayer metal such as Al-Si, Al-Sn-Cr-In, and the like. The low refractive index layer 12 may be an oxide such as cerium oxide (si 〇 2), aluminum oxide (Al 2 〇 3), or a film of a fluoride such as magnesium fluoride (MgF 2 ). The high refractive index layer 13 may be an oxide such as titanium oxide (Ti〇2), tantalum pentoxide (Ta2〇5), tungsten oxide (W〇2, W〇3), or a sulfide such as zinc telluride (ZnS). In the embodiment, the organic polymer layer 14 may use pet as a substrate, which may be formed by a pure substance alone, or an appropriate amount of a light-reflective substance may be added to the polymer layer to have light penetration. And the function of light reflection. The material of the organic polymer layer is, for example, polymethyl methacrylate (PMMA), acrylonitrile butadiene-styrene copolymer (ABS), liquid crystal polymer, Polyurethane (pu), polyethylene, polyethylene, pp (p〇lypr〇pyleBe) polypropylene, polystyrene, and the like. The use of the organic polymer layer can be adjusted with the high- and low-refractive-index layers of the reflective layer or the dielectric material of the gold-plated coating to achieve semi-reflective and semi-transparent (45 to 50% penetration and reflection) simultaneously coexisting The effect of the Mao. M374405 A second preferred embodiment of the present invention is shown in the second figure, wherein the semi-reflective semi-transparent flexible substrate non-conductive multilayer film structure comprises: a transparent plastic substrate 20, and is repeatedly formed in sequence The reflective layer 21, the low refractive index layer 22, the high refractive index layer 23, and the last organic polymer layer 24 on the substrate. The reflective layer of the metal coating and the high and low refractive index layers of the dielectric material utilize the principle of optical interference to achieve the effect of semi-reflective and semi-transparent (45 to 50% penetration and reflection). The materials used in the layers of the semi-reflective semi-transparent flexible substrate non-conductive multilayer film structure of this embodiment are selected from the same materials as used in the first preferred embodiment described above. Example 1: As shown in the following table, the semi-reflective semi-transparent flexible substrate non-conductive multilayer film structure of the present example is a PET substrate, and bottom-up Ag, SiO 2 , Ti 02 and an organic polymer layer, wherein The organic polymer layer was PMMA, and its visible light transmittance was 92.1%.

層 材料 隸 1 PMMA 5 μπι 2 Ti〇2 59 nm 3 Si02 94 nm 4 Ag 5 nm 5 PET 50 μπι 11 M374405 本實例的半反射半穿透可撓性基材非導電性多層膜 結構在參考波長為550 nm之穿透率、反射率分別為:穿透 率:48.4% ;反射率:41.2%。 此例為應用Ti02 (折射率2.38)與Si02 (折射率1.48) 材料之高低折射率設計調整反射率與折射率。 實例二: 如下表所示,本實例的半反射半穿透可撓性基材非導 電性多層膜結構為PET基材,及由下而上的Ag,Si〇2, Ag, Si02,Ag,Si02, Ag,Ti02,Si02,及有機高分子層,其中該有 機高分子層為PMMA,其可見光平均穿透率為92.1%。 層 材料 厚度 1 PMMA 5 μιη 2 Si02 65 nm 3 Ti02 65 nm 4 Ag 3 nm 5 Si02 12 nm 6 Ag 3 nm 7 Si02 12 nm 8 Ag 3 nm 9 Si02 12 nm 10 Ag 3 nm 11 PET 50 μιη 12 M374405 本實例的半反射半穿透可撓性基材非導電性多層膜 結構在參考波長為550 nm之穿透率、反射率分別為:穿透 率:46.5% ;反射率:45.7%。 實例三: ' 如下表所示,本實例的半反射半穿透可撓性基材非導 • 電性多層膜結構為PET基材,及由下而上的Ti02, Si02, • 及有機高分子層,其中該有機高分子層為液晶高分子 (LC),其可見光平均穿透率為52.5%。 層 材料 厚度 1 LC 6 μιη 2 Si02 35 nm 3 Ti02 35 nm 4 PET 50 μπι 本實例的半反射半穿透可撓性基材非導電性多層膜 結構在參考波長為550 nm之穿透率、反射率分別為:穿袭 率:45.2% ;反射率:46.3%。 【圖式簡單說明】 第一圖顯示本創作的半反射半穿透可撓性基材非夢 13 M374405 電性多層膜結構的第一較佳具體實施例的剖面示意圖。 第二圖顯示本創作的半反射半穿透可撓性基材非導 電性多層膜結構的第二較佳具體實施例的剖面示意圖。 【主要元件符號說明】 10、20..透明塑膠基材 11、21..反射層 12、22..低折射率層 13、23..高折射率層 14、24..有機高分子層The layer material is 1 PMMA 5 μπι 2 Ti〇2 59 nm 3 Si02 94 nm 4 Ag 5 nm 5 PET 50 μπι 11 M374405 The semi-reflective semi-transparent flexible substrate non-conductive multilayer film structure of this example is at the reference wavelength The transmittance and reflectance at 550 nm were: transmittance: 48.4%; reflectance: 41.2%. In this example, the high and low refractive index designs of Ti02 (refractive index 2.38) and SiO2 (refractive index 1.48) materials are used to adjust the reflectance and refractive index. Example 2: As shown in the following table, the semi-reflective semi-transparent flexible substrate non-conductive multilayer film structure of the present example is a PET substrate, and bottom-up Ag, Si〇2, Ag, SiO 2, Ag, Si02, Ag, Ti02, SiO2, and an organic polymer layer, wherein the organic polymer layer is PMMA, and the average visible light transmittance is 92.1%. Layer material thickness 1 PMMA 5 μιη 2 Si02 65 nm 3 Ti02 65 nm 4 Ag 3 nm 5 Si02 12 nm 6 Ag 3 nm 7 Si02 12 nm 8 Ag 3 nm 9 Si02 12 nm 10 Ag 3 nm 11 PET 50 μιη 12 M374405 The semi-reflective semi-transparent flexible substrate non-conductive multilayer film structure of the example has a transmittance at a reference wavelength of 550 nm and a reflectance of: transmittance: 46.5%; reflectance: 45.7%. Example 3: ' As shown in the following table, the semi-reflective semi-transparent flexible substrate of this example is a non-conductive, electrically conductive multilayer film structure of PET substrate, and bottom-up Ti02, SiO 2 , and organic polymers. The layer wherein the organic polymer layer is a liquid crystal polymer (LC) having an average visible light transmittance of 52.5%. Layer material thickness 1 LC 6 μιη 2 Si02 35 nm 3 Ti02 35 nm 4 PET 50 μπι The semi-reflective semi-transparent flexible substrate non-conductive multilayer film structure of this example has a transmittance of 550 nm at a reference wavelength and reflection. The rates were: penetration rate: 45.2%; reflectance: 46.3%. BRIEF DESCRIPTION OF THE DRAWINGS The first figure shows a cross-sectional view of a first preferred embodiment of the semi-reflective semi-transparent flexible substrate of the present invention, which is a non-dream 13 M374405 electrical multilayer film structure. The second figure shows a cross-sectional view of a second preferred embodiment of the semi-reflective semi-transparent flexible substrate non-conductive multilayer film structure of the present invention. [Major component symbol description] 10, 20.. Transparent plastic substrate 11, 21. Reflective layer 12, 22: Low refractive index layer 13, 23: High refractive index layer 14, 24: Organic polymer layer

Claims (1)

M374405 六、申請專利範圍: 1. 一種半反射半穿透可撓性基材非導電性多層膜結 構,包含: 一非導電透明塑膠基材; 一位於該基材的一表面上的非導電膜’該非導電膜為 多數非導電層所構成,其中每一層非導電層具有大於 ιο1()Ω/□的表面電阻的金屬性物質或非金屬性物質;及 一位於該非導電膜上的有機高分子層; 其中該非導電膜所包含的各非導電層的厚度、順序及 可見光平均光學折射率被安排成在光學干涉原理下,使得 該半反射半穿透可撓性基材非導電性多層膜結構具有 30%-70%的可見光平均穿透率及3〇%·7〇%的可見光平均 反射率。 2. 如申請專利範圍第1項的半反射半穿透可撓性基 材非導電性多層膜結構’其具有4〇%-59%的可見光平均穿 透率及40%-59%的可見光平均反射率。 3. 如申請專利範圍第1項的半反射半穿透可撓性基 材非導電性多層膜結構,其具有45%-50%的可見光平均穿: 透率及45%-50%的可見光平均反射率。 4. 如申請專利範圍第1項的半反射半穿透可撓性基 材非導電性多層膜結構,其中位於該基板的該表面的第一 15 層為金屬性物質,該金屬性物質為錫(Sn)、鈦(ή)、鉻(Cr)、 銦(In)、銀(Ag)、Ni(錄)、銅(Cu),或它們的合金。 5. 如申請專利範圍第4項的半反射半穿透可撓性基 材非導電性多層膜結構,其中該金屬性物質為銀。 6. 如申請專利範圍第1項的半反射半穿透可撓性基 . 材非導電性多層膜結構,其中位於該基板的該表面的第一 層為非金屬性物質,該非金屬性物質為二氧化鈦(丁丨〇2)、 φ 五氧化二鈕(Ta2〇5)、二氧化鎢(w〇2)、三氧化鎢(w〇3), 或硫化辞(ZnS)。 7. 如申請專利範圍第6項的半反射半穿透可撓性基 材非導電性多層膜結構,其中該非金屬性物質為二氧化 鈦。 8. 如申清專利範圍第4或6項的半反射半穿透可撓性 基材非導電性多層膜結構,其中該非導電膜位於該基板的 該表面的第一層的厚度為該非導電膜所包含的 其它各非導電層的厚度為1-350 nm,及該有機高分子層的 厚度為1-100 μιη。 9.如申請專利範圍第8項的半反射半穿透可撓性基 材非導電性多層膜結構,其中該非導電膜包含該第一層釭 M374405 屬性物質層,位於該第一層金屬性物質層上的第一層低折 射率層及位於該第一層低折射率層上的第一層高折射率 層,其中該第一層低折射率層係選自二氧化矽、三氧化二 鋁,及氟化鎂(MgF2),及該第一層高折射率層係選自二氧 化欽、五氧化二组、二氧化嫣、三氧化鶴,及硫化辞。 , 10.如申請專利範圍第8項的半反射半穿透可撓性基 • 材非導電性多層膜結構,其中該非導電膜包含該第一層金 • 屬性物質層,位於該第一層金屬性物質層上的第一層高折 射率層及位於該第一層高折射率層上的第一層低折射率 層,其中該第一層低折射率層係選自二氧化矽、三氧化二 鋁,及氟化鎂,及該第一層高折射率層係選自二氧化鈦、 五氧化二钽、二氧化鎢、三氧化鎢,及硫化鋅。 11.如申請專利範圍第8項的半反射半穿透可撓性基 β 材非導電性多層膜結構,其中該非導電膜所包含該第一層 . 金屬性物質層,位於該第一層金屬性物質層上的第一層低 折射率層,位於該第一層低折射率層上的第二層金屬性物 質層,位於該第二層金屬性物質層上的第二層低折射碎 層,重復金屬性物質層及低折射率層直到第η層低折射莽 層,位於該第η層低折射率層上的第η+1層金屬性物質層, 位於該η+1層金屬性物質層上的第一層高折射率層,及位: 於該第一層高折射率層的第η+1層低折射率層,其中η為3 至10的整數,其中該第一層低折射率層至第η+1層係低妒 17 M374405 射率層獨立的選自二氧化矽、三氧化二鋁,及氟化鎂,及 該第一層高折射率層係選自二氧化鈦、五氧化二组、二氧 化鶴、三氧化鶴,及硫化鋅。 12. 如申請專利範圍第8項的半反射半穿透可撓性基 材非導電性多層膜結構,其中該非導電膜所包含該第一層 金屬性物質層,位於該第一層金屬性物質層上的第一層低 折射率層,位於該第一層低折射率層上的第二層金屬性物 質層,位於該第二層金屬性物質層上的第二層低折射率 層,重復金屬性物質層及低折射率層直到第η層低折射率 層,位於該第η層低折射率層上的第η+1層金屬性物質層, 位於該η+1層金屬性物質層上的第η+1層低折射率層,及位 於該第η+1層低折射率層的第一層高折射率層的,其中η 為3至10的整數,其中的低折射率層獨立的選自二氧化 矽、三氧化二鋁,及氟化鎂,及第一層高折射率層係選自 二氧化鈦、五氧化二钽、二氧化鎢、三氧化鎢,及硫化鋅。 13. 如申請專利範圍第8項的半反射半穿透可撓性基 材非導電性多層膜結構,其中該有機高分子層為聚曱基兩 烯酸曱酯、丙烯腈-丁二烯-苯乙烯共聚物、液晶高分子、 聚氨酯、聚乙烯、聚氯乙烯、聚丙烯、或聚苯乙烯。 14. 如申請專利範圍第13項的半反射半穿透可撓性 基材非導電性多層膜結構,其中該有機高分子層為透明 18 M374405 的。 15.如申請專利範圍第13項的半反射半穿透可撓性 基材非導電性多層膜結構,其中該有機高分子層被添加有 具光反射性物質。 • 16.如申請專利範圍第13項的半反射半穿透可撓性 • 基材非導電性多層膜結構,其中該有機高分子層為液晶高 •分子。 17.如申請專利範圍第1項的半反射半穿透可撓性基 材非導電性多層膜結構,其中該非導電透明塑膠基材為聚 對苯二曱酸乙二酯、聚碳酸酯樹脂、聚甲基丙烯酸曱酯、 聚丙烯、或聚乙烯。 I 18.如申請專利範圍第17項的半反射半穿透可撓性 . 基材非導電性多層膜結構,其中該非導電透明塑膠基材為 聚對苯二曱酸乙二酯。 19.如申請專利範圍第9項的半反射半穿透可撓性基 材非導電性多層膜結構,其中該非導電膜由作為該第一層 金屬性物質層的銀,作為該第一層低折射率層的二氧化矽 及作為該第一層高折射率層的二氧化鈦所組成。 19 M374405 20. 如申請專利範圍第11項的半反射半穿透可撓性 基材非導電性多層膜結構,其中該非導電膜由作為該第一 層金屬性物質層至第n+l層金屬性物質層的銀,作為該第 一層低折射率層至第n+1層低折射率層的二氧化矽及作為 該第一層高折射率層的二氧化鈦所組成,其中n=3。 21. 如申請專利範圍第8項的半反射半穿透可撓性基 材非導電性多層膜結構,其中該非導電膜包含該第一層非 金屬性物質層,及位於該第一層非金屬性物質層上的第一 層低折射率層,其中該第一層低折射率層係選自二氧化 矽、三氧化二鋁,及氟化鎂。 22. 如申請專利範圍第21項的半反射半穿透可撓性 基材非導電性多層膜結構,其中該非導電膜由作為該第一 層非金屬性物質層的二氧化鈦,及作為第一層低折射率層 的二氧化碎所組成。M374405 VI. Patent Application Range: 1. A semi-reflective semi-transparent flexible substrate non-conductive multilayer film structure comprising: a non-conductive transparent plastic substrate; a non-conductive film on a surface of the substrate 'The non-conductive film is composed of a plurality of non-conductive layers, wherein each non-conductive layer has a metallic or non-metallic substance having a surface resistance greater than ιο1 (? Ω / □); and an organic polymer located on the non-conductive film The thickness, the order, and the visible average optical refractive index of each non-conductive layer included in the non-conductive film are arranged to be a non-conductive multilayer film structure of the semi-reflective semi-transparent flexible substrate under the principle of optical interference. It has an average visible light transmittance of 30% to 70% and an average visible light reflectance of 3〇%·7〇%. 2. The semi-reflective semi-transmissive flexible substrate non-conductive multilayer film structure of claim 1 has a visible light average transmittance of 4% to 59% and a visible light average of 40% to 59%. Reflectivity. 3. The semi-reflective semi-transparent flexible substrate non-conductive multilayer film structure of claim 1 which has a visible light average transmittance of 45% to 50%: a transmittance and a visible light average of 45% to 50%. Reflectivity. 4. The semi-reflective semi-transmissive flexible substrate non-conductive multilayer film structure of claim 1, wherein the first 15 layers on the surface of the substrate are metallic substances, and the metallic substance is tin (Sn), titanium (ruthenium), chromium (Cr), indium (In), silver (Ag), Ni (recorded), copper (Cu), or alloys thereof. 5. The semi-reflective semi-transmissive flexible substrate non-conductive multilayer film structure of claim 4, wherein the metallic substance is silver. 6. The semi-reflective semi-transmissive flexible substrate of claim 1, wherein the first layer on the surface of the substrate is a non-metallic substance, and the non-metallic substance is Titanium dioxide (butadiene 2), φ pentoxide (Ta2〇5), tungsten dioxide (w〇2), tungsten trioxide (w〇3), or sulfided (ZnS). 7. The semi-reflective semi-transmissive flexible substrate non-conductive multilayer film structure of claim 6, wherein the non-metallic substance is titanium dioxide. 8. The semi-reflective semi-transmissive flexible substrate non-conductive multilayer film structure of claim 4, wherein the thickness of the first layer of the non-conductive film on the surface of the substrate is the non-conductive film The other non-conductive layers included have a thickness of 1-350 nm, and the organic polymer layer has a thickness of 1-100 μm. 9. The semi-reflective semi-transmissive flexible substrate non-conductive multilayer film structure of claim 8, wherein the non-conductive film comprises the first layer of 374M374405 property material layer, the first layer of metallic substance a first low refractive index layer on the layer and a first high refractive index layer on the first low refractive index layer, wherein the first low refractive index layer is selected from the group consisting of cerium oxide and aluminum oxide And magnesium fluoride (MgF2), and the first high refractive index layer is selected from the group consisting of a dioxide, a pentoxide group, a cerium oxide, a trioxide crane, and a sulfuric acid. 10. The semi-reflective semi-transmissive flexible substrate non-conductive multilayer film structure according to claim 8 wherein the non-conductive film comprises the first layer of gold attribute material layer located in the first layer of metal a first high refractive index layer on the material layer and a first low refractive index layer on the first high refractive index layer, wherein the first low refractive index layer is selected from the group consisting of cerium oxide and trioxide The aluminum, and the magnesium fluoride, and the first high refractive index layer are selected from the group consisting of titanium dioxide, tantalum pentoxide, tungsten dioxide, tungsten trioxide, and zinc sulfide. 11. The semi-reflective semi-transmissive flexible beta-material non-conductive multilayer film structure of claim 8 wherein the non-conductive film comprises the first layer. a metallic substance layer located in the first layer of metal a first low refractive index layer on the material layer, a second metal material layer on the first low refractive index layer, and a second low refractive layer layer on the second metal material layer And repeating the metallic substance layer and the low refractive index layer up to the nth layer low refractive 莽 layer, the n+1th metal material layer on the nth low refractive index layer, located in the n+1 layer metallic substance a first high refractive index layer on the layer, and a: n+1th low refractive index layer of the first high refractive index layer, wherein n is an integer from 3 to 10, wherein the first layer has low refractive index The rate layer to the n+1 layer is lower than 17 M374405. The rate layer is independently selected from the group consisting of cerium oxide, aluminum oxide, and magnesium fluoride, and the first high refractive index layer is selected from the group consisting of titanium dioxide and pentoxide. Two groups, dioxide cranes, trioxide cranes, and zinc sulfide. 12. The semi-reflective semi-transparent flexible substrate non-conductive multilayer film structure of claim 8, wherein the non-conductive film comprises the first layer of metallic substance, the first layer of metallic substance a first low refractive index layer on the layer, a second metallic material layer on the first low refractive index layer, and a second low refractive index layer on the second metallic material layer, repeating a metal material layer and a low refractive index layer up to the n-th low-refractive-index layer, and the n+1th metal material layer on the n-th low-refractive-index layer is located on the n+1 metal layer a n+1th low refractive index layer, and a first high refractive index layer of the n+1th low refractive index layer, wherein n is an integer of 3 to 10, wherein the low refractive index layer is independent It is selected from the group consisting of cerium oxide, aluminum oxide, and magnesium fluoride, and the first high refractive index layer is selected from the group consisting of titanium dioxide, tantalum pentoxide, tungsten dioxide, tungsten trioxide, and zinc sulfide. 13. The semi-reflective semi-transmissive flexible substrate non-conductive multilayer film structure of claim 8, wherein the organic polymer layer is polydecyl enoate, acrylonitrile-butadiene- Styrene copolymer, liquid crystal polymer, polyurethane, polyethylene, polyvinyl chloride, polypropylene, or polystyrene. 14. The semi-reflective semi-transmissive flexible substrate non-conductive multilayer film structure of claim 13, wherein the organic polymer layer is transparent 18 M374405. 15. The semi-reflective semi-transmissive flexible substrate non-conductive multilayer film structure according to claim 13, wherein the organic polymer layer is added with a light-reflecting substance. • 16. Semi-reflective semi-transmissive flexible material according to claim 13 • A non-conductive multilayer film structure in which the organic polymer layer is a liquid crystal high molecule. 17. The semi-reflective semi-transparent flexible substrate non-conductive multilayer film structure according to claim 1, wherein the non-conductive transparent plastic substrate is polyethylene terephthalate, polycarbonate resin, Polymethyl methacrylate, polypropylene, or polyethylene. I 18. The semi-reflective semi-transmissive flexible material of claim 17, wherein the non-conductive transparent plastic substrate is polyethylene terephthalate. 19. The semi-reflective semi-transmissive flexible substrate non-conductive multilayer film structure of claim 9, wherein the non-conductive film is made of silver as the first layer of metallic substance, as the first layer is low The ruthenium dioxide of the refractive index layer and the titanium dioxide as the first high refractive index layer are composed. 19 M374405. The semi-reflective semi-transmissive flexible substrate non-conductive multilayer film structure according to claim 11, wherein the non-conductive film is used as the first layer of the metallic substance layer to the n+1th layer of the metal layer The silver of the substance layer is composed of cerium oxide as the first low refractive index layer to the n+1th low refractive index layer and titanium dioxide as the first high refractive index layer, wherein n=3. 21. The semi-reflective semi-transmissive flexible substrate non-conductive multilayer film structure of claim 8, wherein the non-conductive film comprises the first layer of non-metallic material layer, and the first layer of non-metal layer A first low refractive index layer on the layer of a substance, wherein the first low refractive index layer is selected from the group consisting of cerium oxide, aluminum oxide, and magnesium fluoride. 22. The semi-reflective semi-transmissive flexible substrate non-conductive multilayer film structure of claim 21, wherein the non-conductive film comprises titanium dioxide as the first non-metallic substance layer, and as a first layer The low refractive index layer consists of a oxidized powder.
TW98217678U 2009-09-24 2009-09-24 Non-conductive multi-layer membrane structure on semi-reflective & semi-penetration flexible substrates TWM374405U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98217678U TWM374405U (en) 2009-09-24 2009-09-24 Non-conductive multi-layer membrane structure on semi-reflective & semi-penetration flexible substrates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98217678U TWM374405U (en) 2009-09-24 2009-09-24 Non-conductive multi-layer membrane structure on semi-reflective & semi-penetration flexible substrates

Publications (1)

Publication Number Publication Date
TWM374405U true TWM374405U (en) 2010-02-21

Family

ID=50591782

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98217678U TWM374405U (en) 2009-09-24 2009-09-24 Non-conductive multi-layer membrane structure on semi-reflective & semi-penetration flexible substrates

Country Status (1)

Country Link
TW (1) TWM374405U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI485585B (en) * 2012-02-17 2015-05-21 Innocom Tech Shenzhen Co Ltd Composite layer structure and touch display device having the same thereof
TWI503225B (en) * 2010-12-06 2015-10-11 Hon Hai Prec Ind Co Ltd Board with complex coating layers and portable electronic device useing the board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI503225B (en) * 2010-12-06 2015-10-11 Hon Hai Prec Ind Co Ltd Board with complex coating layers and portable electronic device useing the board
TWI485585B (en) * 2012-02-17 2015-05-21 Innocom Tech Shenzhen Co Ltd Composite layer structure and touch display device having the same thereof

Similar Documents

Publication Publication Date Title
JP6165329B2 (en) Manufacturing method of touch panel
JP6021030B2 (en) Structure, touch panel and display
TWI441199B (en) Conductive structure body and method for preparing the same
JP5549216B2 (en) Transparent conductive laminate, method for producing the same, and touch panel
JP5382820B2 (en) Optical adjustment film, transparent conductive film obtained using the same, transparent conductive laminate, and touch panel
JP6314463B2 (en) Transparent conductor
TW201007777A (en) Conducting film or electrode with improved optical and electrical performance
CN104040643B (en) Transparent and electrically conductive film that electrical characteristics are outstanding and utilize the contact panel of this transparent and electrically conductive film
JP4349794B2 (en) Method for producing conductive transparent substrate with multilayer antireflection film
KR20110083622A (en) Electrically conductive laminate, and protective plate for plasma display
JP2012101544A (en) Transparent conductive layered film, method for producing the same, and touch panel including the same
CN107004463A (en) Transparent conducting film and use its touch sensor
JP6292225B2 (en) Transparent conductor
JP6651484B2 (en) Transparent conductive film
JP6319302B2 (en) Transparent conductor and method for producing the same
TWM374405U (en) Non-conductive multi-layer membrane structure on semi-reflective & semi-penetration flexible substrates
CN111883284A (en) Double-sided conductive film, film coating method and touch screen
JP2005014540A (en) Transparent conductive film and optical filter using the same
JP2015219690A (en) Transparent conductive device and touch panel
JP4245339B2 (en) Method for producing conductive transparent substrate with multilayer film
WO2014196460A1 (en) Transparent conductor and method for producing same
CN201604330U (en) Transflective flexible substrate non-conductive multilayer film structure
WO2014181538A1 (en) Transparent conductor and method for producing same
CN204904291U (en) Contactor control device
WO2014188683A1 (en) Touch panel electrode substrate, touch panel including touch panel electrode substrate, and display panel

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model