WO2014178265A1 - 基板処理装置および基板処理方法 - Google Patents

基板処理装置および基板処理方法 Download PDF

Info

Publication number
WO2014178265A1
WO2014178265A1 PCT/JP2014/060302 JP2014060302W WO2014178265A1 WO 2014178265 A1 WO2014178265 A1 WO 2014178265A1 JP 2014060302 W JP2014060302 W JP 2014060302W WO 2014178265 A1 WO2014178265 A1 WO 2014178265A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate processing
optical system
head
processing apparatus
substrate
Prior art date
Application number
PCT/JP2014/060302
Other languages
English (en)
French (fr)
Inventor
渡辺 正浩
吉田 実
潔人 伊藤
豊和 高木
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2014178265A1 publication Critical patent/WO2014178265A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0008Apparatus or processes for manufacturing printed circuits for aligning or positioning of tools relative to the circuit board
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0812Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines the monitoring devices being integrated in the mounting machine, e.g. for monitoring components, leads, component placement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/16Inspection; Monitoring; Aligning
    • H05K2203/166Alignment or registration; Control of registration
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0047Drilling of holes

Definitions

  • the present invention relates to a substrate processing technique for positioning using an imaging device, and more particularly to a substrate processing apparatus such as a component mounting apparatus and a substrate processing apparatus, and a technique effective when applied to a substrate processing method in the substrate processing apparatus. .
  • a large number of electronic components such as resistors and IC chips are mounted on a printed circuit board used for electronic equipment. These electronic components are automatically mounted at predetermined mounting locations by a component mounting apparatus.
  • One configuration of the component mounting apparatus includes a mounting head that can be moved to an arbitrary position in a horizontal plane by a beam mechanism, and a nozzle (suction nozzle) that sucks an electronic component provided in the mounting head.
  • the electronic component supplied from the electronic component feeder is sucked by the suction nozzle, and then the mounting head is moved to the target mounting position with high accuracy, and the suction nozzle is lowered toward the substrate, and then the suction of the electronic component is released.
  • the electronic component is mounted on the printed board.
  • the position of the component mounting location (land) varies from printed circuit board to printed circuit board due to variations and deformations in the printed circuit board manufacturing process. That is, when the mounting head is moved to a predetermined component mounting position based on the design value of the printed circuit board, a positional deviation occurs due to the above-described variation, deformation, and the like.
  • the encoder value for obtaining the position of the mounting head inside the device is shifted. Therefore, even if positioning is performed based on the value read from the encoder, the mounting head is misaligned.
  • Patent Document 2 includes an imaging device that captures an image of a component sucked by a suction nozzle and a mounting position obliquely from above, and the position of the suction component relative to the mounting position based on an image signal from the imaging device.
  • a technique is described in which a deviation is calculated, the suction nozzle is moved in a horizontal plane in accordance with the calculated positional deviation, and the position of the component is corrected.
  • Patent Document 3 a mounting head, a component suction nozzle, a computer that drives and controls them, and a camera that captures an image directly under the mounting head from an oblique direction are used, and a movable reflecting mirror installed in an optical path is used.
  • a system is disclosed that adjusts the deviation between the center of the attracted component and the center of the target position of the substrate from the image of the component taken by one camera and the target position of the substrate on which the component is mounted.
  • Patent Document 4 a three-dimensional position of a pattern on a board is measured with a stereo camera in advance, and then the board is sent to a component mounting apparatus to correct the pattern position and mount the component. Is disclosed.
  • Patent Document 1 is a technique for recognizing an adsorption deviation after adsorbing a component. That is, it is not possible to perform correction when the mounting head stop position itself is deviated from the target mounting location.
  • Patent Documents 2 and 3 correct the relative displacement between the mounting position and the suction component by using a camera image. That is, it is possible to correct the deviation between the component and the mounting position even when there is a suction deviation or when there is a positional deviation at the stationary position of the mounting head.
  • Patent Document 4 corrects the position of the pattern at the time of mounting the component by measuring the position of the pattern on the board with a stereo camera in advance using a separate device, but requires a separate device. If the position of the board or the position of the head shifts when mounting the component, it will lead to an error in the mounting position.
  • the mounting position on the board is accurately measured three-dimensionally without increasing the tact time, and the mounting head is accurately moved to the target position, so that the mounting position can be accurately determined. It is a problem to arrange parts at appropriate positions.
  • the drilling position on the substrate is accurately measured three-dimensionally without increasing the tact time, and the processing head is accurately moved to the target location, so that Drilling holes at precise positions is a challenge.
  • the present invention solves the above-described problems, and a typical purpose thereof is to accurately move the operating head to a target position in a substrate processing apparatus such as a component mounting apparatus or a substrate processing apparatus without increasing tact time. It is to provide the technology to move to.
  • a typical substrate processing apparatus includes an operating head having an operator, an optical system, and an imaging unit, and a driving unit that drives the operating head.
  • the optical system is a stereo optical system.
  • the imaging unit measures the three-dimensional position of the pattern of the head action position on the substrate via the stereo optical system in a state where the operator is immediately above the head action position.
  • the drive unit corrects the position of the operating head based on the measurement result by the imaging unit.
  • a typical substrate processing method of the present embodiment is a substrate processing in a substrate processing apparatus having an operating head having an operator, an optical system, and an imaging unit, and a driving unit for driving the operating head.
  • the optical system is a stereo optical system.
  • the imaging unit measures the three-dimensional position of the pattern of the head action position on the substrate via the stereo optical system in a state where the operator is immediately above the head action position.
  • the drive unit corrects the position of the operating head based on the measurement result by the imaging unit.
  • a typical effect is that the operation head can be accurately moved to a target position without increasing the tact time in a substrate processing apparatus such as a component mounting apparatus or a substrate processing apparatus.
  • FIG. 7 is a perspective view showing an example of a schematic configuration of a component mounting apparatus that shares an image sensor between mounting heads, as a modification of the component mounting apparatus according to the first embodiment of the present invention.
  • FIG. 8 is a side view showing another example of a mounting head in which a stereo optical system is arranged in the component mounting apparatus of FIG. 7.
  • FIG. 8 is a front view showing another example of a mounting head in which a stereo optical system is arranged in the component mounting apparatus of FIG. 7. It is the figure which showed an example of the visual field of three rod objective lenses in the component mounting apparatus which concerns on Embodiment 1 of this invention. It is the figure which showed an example of the image of three rod objective lenses in the component mounting apparatus which concerns on Embodiment 1 of this invention. It is the figure which showed an example of the shape of the light-shielding mask for overlapping the image of three rod objective lenses in the component mounting apparatus which concerns on Embodiment 1 of this invention.
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
  • the shapes, positional relationships, etc. of the components, etc. when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
  • a typical substrate processing apparatus of the present embodiment includes an operating head (mounting head 10 or processing head) having an operator (suction nozzle 21 or drill 29), an optical system, and an imaging unit (camera module 30). 10A) and driving units (X-axis motor driving unit 911, Y-axis motor driving unit 912, Z-axis motor driving unit 922, and ⁇ -axis motor driving unit 923) that drive the operation head.
  • the optical system is a stereo optical system (rod objective lens 211 and rod relay lens 210).
  • the imaging unit is configured so that the three-dimensional position of the pattern of the head operating position (component mounting position 601 or drilling position 601A) on the substrate (printed circuit board 50) is displayed by the operator via the stereo optical system. Measurement is performed in a state immediately above the head operating position (including substantially directly above). The drive unit corrects the position of the operating head based on the measurement result by the imaging unit.
  • a typical substrate processing method of the present embodiment is an operation head (mounting head 10 or processing head) having an operator (suction nozzle 21 or drill 29), an optical system, and an imaging unit (camera module 30). 10A) and a drive unit (X-axis motor drive unit 911, Y-axis motor drive unit 912, Z-axis motor drive unit 922, and ⁇ -axis motor drive unit 923) that drives the operation head. It is a processing method.
  • the optical system is a stereo optical system (rod objective lens 211 and rod relay lens 210).
  • the imaging unit is configured so that the three-dimensional position of the pattern of the head operating position (component mounting position 601 or drilling position 601A) on the substrate (printed circuit board 50) is displayed by the operator via the stereo optical system. Measurement is performed in a state immediately above the head operating position (including substantially directly above). The drive unit corrects the position of the operating head based on the measurement result by the imaging unit.
  • Embodiment 1 As an example of a substrate processing apparatus, in Embodiment 1, a component mounting apparatus for mounting electronic components on a printed board will be described, and in Embodiment 2, a substrate processing apparatus for making holes in a printed board will be described. Although described, the present invention is not limited to this.
  • the present embodiment relates to a component mounting apparatus that performs positioning using an imaging device and mounts electronic components on a board.
  • An operator is a suction nozzle
  • an operating head is a mounting head
  • a board is a printed circuit board
  • a head working position Is a component mounting position.
  • the outline of the component mounting apparatus includes an optical system that measures a three-dimensional position of a component mounting position (land) and an electronic component (chip) in close contact with the component mounting head. Use this to mount the chip with the exact position of the chip and land.
  • two rod-shaped gradient index lenses are used to transmit a stereo image, and a stereo pair with a single image sensor placed apart so as not to interfere with the component mounting head Get an image.
  • the tip of the nozzle is illuminated with a phosphor or the like so that the three-dimensional position of the tip of the component suction nozzle can be detected by the same optical system. Further, the component adsorption state and the like are observed laterally with an additional gradient index lens.
  • FIG. 1 is a perspective view showing an example of a schematic configuration of a component mounting apparatus 100 according to the present embodiment.
  • a component mounting apparatus 100 two directions perpendicular to each other in the horizontal plane are defined as an X-axis direction and a Y-axis direction, respectively, and a vertical direction perpendicular thereto is defined as a Z-axis direction.
  • the component mounting apparatus 100 includes a mounting head 10, an X beam mechanism 11, Y beam mechanisms 12a and 12b, a plurality (six in this example) of electronic component feeders 40 for supplying electronic components to be mounted, and a control unit 90. And a base frame 13 (only the outer shape is shown) for mounting and supporting these components.
  • the mounting head 10 includes a plurality (five in this example) of suction nozzle modules 20 and a camera module 30 mounted on each of the suction nozzle modules 20.
  • One end of the mounting head 10 (left side of the drawing) is supported by the X-beam mechanism 11, and a built-in drive unit (not shown: corresponding to the X-axis motor drive unit 911 in FIG. 3) allows any mounting frame 10 in the base frame 13. It can be translated to the X coordinate.
  • a built-in drive unit (not shown: corresponding to the X-axis motor drive unit 911 in FIG. 3) allows any mounting frame 10 in the base frame 13. It can be translated to the X coordinate.
  • Both ends of the X beam mechanism 11 are supported by Y beam mechanisms 12a and 12b, and an arbitrary Y in the base frame 13 is provided by a built-in drive unit (not shown: corresponding to the Y-axis motor drive unit 912 in FIG. 3). It is configured to be able to move parallel to the coordinates.
  • the mounting head 10 is configured to be movable to arbitrary coordinates in the base frame 13 on the XY plane in FIG. 1 by a drive unit that translates the X and Y coordinates.
  • the electronic component feeder 40 is mounted on one end of the base frame 13 in the Y-axis direction in FIG. 1 so as to be juxtaposed in the X-axis direction in FIG. Further, the electronic component feeder 40 can be detached and separated as necessary by exchanging electronic components to be mounted.
  • the electronic component feeder 40 includes a component delivery unit 41 inside the apparatus in FIG.
  • the electronic component feeder 40 holds a component tape reel (not shown) in which electronic components are sealed at a uniform interval.
  • the electronic component feeder 40 is configured to expose an electronic component to be mounted on the component delivery unit 41 by sending out a predetermined amount of the component tape reel.
  • the control unit 90 is connected to each component by wire or wireless and gives an operation command to each component.
  • the control unit 90 is configured to acquire the current state of each component.
  • a predetermined transport mechanism (not shown) is provided so that the printed board 50 can be transported into the component mounting apparatus 100.
  • the conveyed printed circuit board 50 is held and fixed at a predetermined location inside the base frame 13.
  • FIG. 2 is a side view showing an example of a schematic configuration of the mounting head 10 when a normal camera is used as a comparative example with respect to the present embodiment.
  • the periphery of one suction nozzle module 20 is shown in FIG.
  • the state seen along is shown.
  • the description will be made with a configuration using a monocular camera instead of a stereo camera.
  • the mounting head 10 includes a suction nozzle module 20 and a camera module 30.
  • the suction nozzle module 20 includes a suction nozzle 21, a Z-axis motor 22, a ⁇ -axis motor 23, a vacuum valve 24, and a frame 25 that supports these components.
  • the suction nozzle 21 is configured to be able to vacuum-suck the electronic component 60 such as a chip at the lower end in the Z-axis direction (the lower side of the paper) by changing the internal pressure.
  • the Z-axis motor 22 is disposed inside the suction nozzle module 20 and has a function of translating the suction nozzle 21 up and down by a predetermined distance along the Z-axis direction in FIG.
  • the ⁇ -axis motor 23 is also disposed inside the suction nozzle module 20 and has a function of rotating the suction nozzle 21 by a predetermined angle around the nozzle axis (broken line N in FIG. 2).
  • the vacuum valve 24 is disposed on an air flow path that connects a vacuum pump (not shown) inside the suction nozzle module 20 and the inside of the suction nozzle 21, and opens and closes the vacuum valve 24 to reduce the internal pressure of the suction nozzle 21. It has a function to change.
  • the camera module 30 is fixed to the frame 25 of the suction nozzle module 20 by a camera module stay 32 with its photographing direction (hereinafter, optical axis: broken line C in FIG. 2) directed downward in the Z axis in FIG.
  • optical axis broken line C in FIG. 2
  • L is a distance between the optical axis C and the nozzle axis N.
  • the camera module 30 has a lens 31.
  • the lens 31 is adjusted so that its focal point matches the substrate surface of the printed circuit board 50 held inside the apparatus.
  • the viewing angle of the lens 31 is indicated by a one-dot chain line ⁇ in FIG. That is, the camera module 30 can acquire a focused captured image of a region included in the viewing angle ⁇ on the board surface of the printed board 50.
  • this region is referred to as a visual field region of the camera module 30.
  • the visual field region of the camera module 30 includes not only the position immediately below the mounting head 10 but also the traveling direction of the mounting head 10 (in this example, the right-hand direction on the paper surface).
  • the camera module 30 acquires captured images at predetermined time intervals.
  • the time interval has a function that can be controlled from the outside by a shooting trigger.
  • suction nozzle module 20 and one camera module 30 the configuration of one suction nozzle module 20 and one camera module 30 has been described. However, as shown in FIG. 1, other suction nozzle modules 20 and camera modules 30 provided in the mounting head 10 are used. Needless to say, they have the same configuration.
  • the field of view of the camera module 30 needs to be larger than the diameter 2L, and thus has a wide field of view.
  • the resolution is insufficient to recognize the position of the upper pattern with high accuracy.
  • the line of sight from the lens 31 is inclined, so that the height of the printed circuit board 50 is increased. If the distance fluctuates, the position of the pattern 601 detected by the camera module 30 will shift.
  • the angle of the pattern 601 with respect to the optical axis is ⁇
  • the height Z of the printed circuit board 50 is shifted by ⁇ Z
  • the position of the detected pattern 601 is shifted in the horizontal direction by ⁇ Ztan ⁇ .
  • the mounting in which the suction nozzle module 20 is once mounted at a position L away from the mounting position in order to once capture the pattern 601 at the center of the field of view of the camera module 30, that is, the position on the optical axis, the mounting in which the suction nozzle module 20 is once mounted at a position L away from the mounting position. It is necessary to move the head 10 to recognize the pattern 601 on the printed circuit board 50 that is a component mounting target, and then correct the positional deviation amount to bring the electronic component 60 directly above the pattern 601. . For this reason, unnecessary movement of the mounting head 10 occurs, which causes a reduction in the throughput of the apparatus.
  • a stereo optical system is configured as the camera module 30 so that the accuracy of the horizontal position can be obtained even when measuring a pattern on the printed circuit board 50 at a position shifted L from the optical axis.
  • the three-dimensional position including the height of the pattern 601 can be measured.
  • a compact stereo optical system is constructed that can be configured as close as possible to the axis of the suction nozzle 21 (with L kept small).
  • FIG. 3 is a block diagram showing an example of the configuration of the control system of the component mounting apparatus 100 according to the present embodiment.
  • the control system of the component mounting apparatus 100 includes a control unit 90, an X-axis motor drive unit 911, a Y-axis motor drive unit 912, a Z-axis motor drive unit 922, a ⁇ -axis motor drive unit 923, and a vacuum valve drive unit. 924 and an image processing unit 930.
  • the X-axis motor drive unit 911 and the Y-axis motor drive unit 912 incorporate position encoders 9111 and 9121, respectively.
  • the control unit 90 incorporates a CPU (Central Processing Unit) 901, a ROM (Read Only Memory) 902, and a RAM (Random Access Memory) 903, and is based on a program stored in the ROM 902 or RAM 903, and a component mounting apparatus It has a function to perform overall control.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • control unit 90 gives a movement command to the X-axis motor driving unit 911 incorporating the position encoder 9111 and acquires the current position of the mounting head 10 acquired by the position encoder 9111.
  • control unit 90 gives a movement command to the Y-axis motor driving unit 912 incorporating the position encoder 9121 and acquires the current position of the X beam mechanism 11 acquired by the position encoder 9121.
  • control unit 90 gives an elevation command to the Z-axis motor drive unit 922 and controls the suction nozzle 21 from an encoder (not shown) built in the Z-axis motor drive unit 922 in order to control the vertical movement of the suction nozzle 21. Get the current position of.
  • control unit 90 gives a rotation command to the ⁇ -axis motor drive unit 923, and receives a predetermined command from an encoder (not shown) built in the ⁇ -axis motor drive unit 923. Get the current angle of rotation angle from the reference direction.
  • a suction command is given to the vacuum valve drive unit 924, and the current state of whether suction is currently being performed or not is acquired.
  • the image processing unit 930 acquires image data captured by the camera module 30. In addition, the image processing unit 930 gives a shooting trigger for instructing the image acquisition timing to the camera module 30. Further, the image processing unit 930 receives predetermined position information from the control unit 90 and performs predetermined image processing based on the position information. Then, the image processing result is transmitted to the control unit 90.
  • the image input to the image processing unit 930 is obtained by capturing a stereo pair image formed on one image sensor as a digital image, as will be described later.
  • a plurality of substrate images having different lines of sight are cut out from the image data, and binarization, filtering, pattern position detection calculation, and the like are performed on the cut out images to detect the position of the pattern to be measured.
  • binarization, filtering, pattern position detection calculation, and the like are performed on the cut out images to detect the position of the pattern to be measured.
  • FIG. 3 only one Y-axis motor drive unit 912 is shown. However, when two Y beam mechanisms 12a and 12b are provided as shown in FIG. The structure which provides two motor drive parts 912 may be sufficient.
  • control unit 90 shows a configuration in which a single CPU 901 is built in, but the present invention is not limited to this. For example, a plurality of CPUs may be incorporated. Thereby, it is possible to execute arithmetic processing necessary for operation control of each component at high speed.
  • the component mounting apparatus 100 mounts the electronic component 60 supplied from the electronic component feeder 40 on the printed circuit board 50 as follows.
  • control unit 90 controls the X-axis motor driving unit 911 and the Y-axis motor driving unit 912 to move the mounting head 10 above the component delivery unit 41 of the electronic component feeder 40. More specifically, the electronic component 60 supplied by the component delivery unit 41 is moved so as to be positioned immediately below the predetermined suction nozzle 21 in the Z-axis direction.
  • control unit 90 controls the Z-axis motor driving unit 922 and the vacuum valve driving unit 924 to lower the suction nozzle 21 to the component delivery unit 41 and start air suction. As a result, the electronic component 60 supplied by the component delivery unit 41 is sucked to the tip of the suction nozzle 21. Then, the control unit 90 controls the Z-axis motor driving unit 922 to shorten the suction nozzle 21 and hold the sucked electronic component 60.
  • control unit 90 controls the X-axis motor driving unit 911 and the Y-axis motor driving unit 912 to move the mounting head 10 to a predetermined location on the printed circuit board 50. More specifically, the electronic component 60 is moved so that the component mounting position 601 of the sucked electronic component 60 is positioned immediately below the suction nozzle 21 in the Z-axis direction.
  • control unit 90 controls the Z-axis motor driving unit 922 and the vacuum valve driving unit 924 to lower the suction nozzle 21 and release the air suction, so that the sucked electronic component 60 is placed on the printed circuit board 50. Place the mounting.
  • the component mounting apparatus 100 repeats these operations in order to mount a plurality of electronic components 60 on the printed circuit board 50.
  • each procedure does not necessarily have to be executed sequentially in time series. For example, it is not necessary to lower the suction nozzle 21 after the mounting head 10 has completely moved and stopped, and the lowering of the suction nozzle 21 may be started immediately before the mounting head 10 is stationary. In this method, it is necessary to control the timing of each procedure with high time accuracy, but it is possible to reduce the time (takt time) required for mounting one component.
  • FIG. 4 is a flowchart showing an example of a positioning control method of the mounting head 10 by the control unit 90 when the electronic component 60 is arranged at a predetermined component mounting position 601 on the printed circuit board 50 in the present embodiment. is there.
  • the controller 90 sucks and holds the electronic component 60 from the electronic component feeder 40 by the suction nozzle 21, and then starts control to move the mounting head 10 onto the printed board 50 (S100).
  • control unit 90 calculates in advance the position coordinates of the component mounting position 601 in the base frame 13 from the coordinate system determined at the time of designing the component mounting apparatus 100 and the printed circuit board 50, and sets it as the first movement target position. (S101). Then, movement control of the mounting head 10 is started toward the first movement target position.
  • the control unit 90 uses the position encoder 9111 built in the X-axis motor drive unit 911 and the position encoder 9121 built in the Y-axis motor drive unit 912 to use the current position on the X axis of the mounting head 10 and the X beam mechanism. 11 current positions are acquired. A parameter determined from the relative relationship between the coordinate system of the mounting head 10 and the central axis N of the suction nozzle 21 is added to the acquired current position to obtain the current XY coordinates of the suction nozzle 21 (hereinafter referred to as suction nozzle coordinates). (S102).
  • the arrival determination is not a simple coordinate value coincidence determination but indicates that the difference between the suction nozzle coordinates and the first movement target position falls within a predetermined range for a certain period of time. If the suction nozzle coordinates have arrived at the first movement target position (YES), the movement is finished (S199). If it has not arrived (NO), the movement control is continued.
  • the control unit 90 performs movement control correction based on the image processing result of the image processing unit 930 (S104). And the control part 90 produces
  • the movement command indicates an ideal trajectory until the suction nozzle 21 arrives at the first movement target position.
  • control unit 90 transmits a movement command to the X-axis motor drive unit 911 and the Y-axis motor drive unit 912 (S106), and returns to S102 again.
  • the X-axis motor drive unit 911 and the Y-axis motor drive unit 912 determine the output of each axis motor based on the received movement command based on a predetermined control algorithm, and move the mounting head 10.
  • a proportional control method for determining the output of the motor in proportion to the difference value between the ideal trajectory of the suction nozzle 21 and the current suction nozzle coordinates may be used.
  • FIG. 5 is a side view showing an example of the mounting head 10 in which the stereo optical system is arranged
  • FIG. 6 is a front view.
  • a description will be mainly given of differences from the description with reference to FIG. 2 (normal camera).
  • the distance L between the axis N of the suction nozzle 21 and the axis C of the objective lens of the optical system is close to reduce the field of view of the objective lens and observe the printed circuit board 50 with high magnification. Is important to. Further, reducing the angle ⁇ from the objective lens to the component mounting position 601 immediately below the axis N of the suction nozzle 21 on the printed circuit board 50 (for example, 30 degrees or less) affects the influence of fluctuations in the height of the printed circuit board 50. It is important to make it smaller. Furthermore, in order to detect the height of the printed circuit board 50, it is necessary to obtain an image of the component mounting position 601 from two or more viewpoints and perform stereo measurement.
  • a rod objective lens 211 and a rod relay lens 210 using a gradient-index lens are used.
  • This is a small-diameter rod-type lens that can function as a compact objective lens with little aberration, a lens for relaying images, and the like by giving the refractive index a radial distribution.
  • a unit of the rod objective lens 211a and the rod relay lens 210a and a unit of the rod objective lens 211b and the rod relay lens 210b, which are obtained by joining these lenses in series, are arranged close to the suction nozzle module 20.
  • the visual field limiting light shielding patterns shown in 212a and 212b are respectively provided between the rod objective lens 211a and the rod relay lens 210a, and between the rod objective lens 211b and the rod relay lens 210b. It may be inserted. By these units, an image on the printed circuit board 50 is obtained from two directions and transmitted to the camera module 30.
  • the camera module 30 is mounted via a camera module stay 32 at a position where it does not interfere with the suction nozzle module 20, for example, above the suction nozzle module 20, and thereby a small-diameter rod regardless of the size of the camera module 30.
  • the rod objective lenses 211a and 211b can be attached with a short offset distance L corresponding to the lens. Further, by arranging the rod objective lenses 211a and 211b at positions close to the suction nozzle 21, it is possible to observe the suction nozzle 21 and the electronic component 60 sucked by the suction nozzle 21 at the same time as the printed board 50 in stereo. .
  • the transmitted light is imaged on the image sensor 301 by the lens 31 attached to the camera module 30.
  • the images of the two rod lens units (the rod objective lens 211a and the rod relay lens 210a, and the rod objective lens 211b and the rod relay lens 210b) are simultaneously detected by the image sensor 301.
  • One camera module 30 can detect a stereo image.
  • the wedge prisms 223a and 223b are provided above the rod relay lenses 210a and 210b for the purpose of shifting the position of the image on the image sensor 301 so as not to overlap as will be described later (FIG. 15). It is. As will be described later, the wedge prisms 223a and 223b may not be necessary depending on the configuration and are not essential parts.
  • the camera module 30 is shared between the rod lens units. However, each camera module is prepared for each rod lens unit and installed at a position where it does not interfere with each other. Needless to say, the image may be transferred by a mirror or the like.
  • the board oblique illumination light sources 201a and 201b are means for illuminating the printed circuit board 50 from the oblique direction, and the component mounting position 601 on the printed circuit board 50 on which the electronic component 60 is mounted scatters light from the oblique direction upward. Since it is easy to use, it is used to reveal the component mounting position 601. Although two sets of the substrate oblique illumination light sources 201a and 201b are prepared in FIGS. 5 to 6, at least one set is sufficient, or three or more sets are prepared and surround the component mounting position 601. You may arrange as follows.
  • the nozzle illumination light source 202 illuminates the tip of the suction nozzle 21 and the electronic component 60.
  • the component transmissive illumination light source 203 is a light source that illuminates the electronic component 60 from the left side, and electronically passes through the triangular prism 220 and the rod objective lens 211c, a light shielding pattern 212c that is added as necessary, and a rod relay lens 210c for image relay.
  • a silhouette image of the component 60 is transmitted upward. Needless to say, a bright field image by the nozzle illumination light source 202 may be used instead of the silhouette image.
  • the transmitted image of the electronic component 60 and the suction nozzle 21 may be incident on the lens 31 as it is, but if necessary, the Dove prism 221 for rotating the image, the rhomboid prism 222 for shifting the optical axis, and the image sensor 301. After passing through the wedge prism 223 c for shifting the image above, the light enters the lens 31 and forms an image on the image sensor 301.
  • the imaging lens 31 is not required.
  • FIGS. 5 to 6 The configuration shown in FIGS. 5 to 6 makes it possible to place a very compact optical system in close contact with the suction nozzle module 20. Accurate measurement of the three-dimensional positions of the printed circuit board 50 and the electronic component 60 by stereo measurement and lateral observation of the mounting state of the electronic component 60 can be realized.
  • FIG. 7 is a perspective view illustrating an example of a schematic configuration of the component mounting apparatus 100 in which the image sensor 301 is shared between the mounting heads 10.
  • the stereo optical system described with reference to FIGS. 5 to 6 may be mounted as many as the number of the suction nozzle modules 20 arranged, but in this modification, as another method, the camera module 30 including the lens 31 is replaced with a camera module moving stage. It is mounted on 33 so that it can move between the suction nozzle modules 20. As a result, the camera can be shared by moving the camera module 30 to the suction nozzle module 20 to be mounted next. As another modification, the same effect can be obtained by moving not only the camera module 30 but also the rod lens unit and the entire illumination system by the camera module moving stage 33.
  • FIG. 8 is a side view showing another example of the mounting head 10 in which the stereo optical system is arranged
  • FIG. 9 is a front view.
  • the suction nozzle module 20 is present on the rear surface on the axis indicated by n1 to n8 in the front view of FIG.
  • eight suction nozzle modules 20 are shown as an example, but it should be noted that if the number of suction nozzle modules is two or more, the same configuration can be made.
  • a rod lens unit (rod objective lens 211a and rod relay lens 210a) for acquiring a stereo image from the left, and a rod lens unit (rod objective lens 211b and rod for acquiring a stereo image from the right).
  • the relay lens 210b) is shared between adjacent suction nozzle modules. That is, i is an integer of 1 to 7, and the rod lens unit (rod objective lens 211 and rod relay lens 210) is shared between ni and ni + 1.
  • One camera module 30 is provided for each of the eight suction nozzle modules 20, and is mounted on the camera module unit moving unit 302 together with the wedge prism 223 and the lens 31, and moves to the left and right on the camera module moving stage 33.
  • the stationary operation is performed on the axis of the suction nozzle module 20 that performs the mounting operation.
  • the number of camera modules 30 can be reduced to one, the number of stereo rod lens units can be almost halved, and the suction nozzle modules 20 can be arranged at a narrow pitch.
  • FIG. 10 is a diagram showing an example of the field of view of the three rod objective lenses 211a, 211b, and 211c.
  • FIG. 11 is a diagram illustrating an example of images of three rod objective lenses 211a, 211b, and 211c.
  • FIG. 12 is a diagram showing an example of the shape of a light shielding mask for overlapping the images of the three rod objective lenses 211a, 211b, and 211c.
  • FIG. 13 is a diagram illustrating an example of a state of an image obtained by combining the images of the three rod objective lenses 211a, 211b, and 211c detected by the image sensor 301.
  • the component mounting position (pattern) 601 immediately below the suction nozzle 21 on the printed circuit board 50 is as shown in FIG. 10 in the field of view of the rod objective lens 211a responsible for the left eye image and the rod objective lens 211b responsible for the right eye image. appear.
  • the height of the printed circuit board 50 fluctuates and becomes lower, for example, the field of view expands and becomes larger as a circle indicated by a dotted line.
  • the position of the pattern 601 does not change, the position of the image of the pattern 601 that is visible in the field of view is shifted toward the center of the field of view. This state is shown in FIG. 11, and the image of the pattern 601 in FIG. 11 moves to the position of the image 'of the pattern 601 indicated by the dotted line. Since there is an image movement accompanying the change in the height of the printed circuit board 50, the positional deviation of the pattern in the XY horizontal plane becomes large unless the pattern is normally observed in the middle of the field of view of the lens.
  • the three-dimensional position of the pattern 601 on the printed circuit board 50 can be obtained by acquiring the images of the two types of patterns 601 shown in FIG. These two images may be detected independently by separate image sensors 301, but these are formed on one image sensor 301 and detected simultaneously. If they are simply overlapped, a plurality of images cannot be separated. Since an intermediate image is formed between the rod objective lens 211 and the rod relay lens 210, light shielding patterns 212a and 212b made of a metal film or the like are formed thereon as shown in FIG. As a result, as shown in FIG. 13, an image formed on one image sensor 301 can form a right eye image of the pattern 601 on the upper left of the field of view of the image sensor 301 and a left eye image of the pattern 601 on the upper right of the field of view.
  • FIG. 10 shows the field of view of the rod objective lens 211c for observing the suction nozzle 21 and the electronic component 60 from the side.
  • the image is shown in the lower part of FIG.
  • a light shielding pattern 212c is formed between the rod objective lens 211c and the rod relay lens 210c so as to transmit only the lower half of the image.
  • FIG. 13 shows the result of forming the image sensor 301 on the image sensor 301 as well. In this example, the later-described rhomboid prism 222 and wedge prism 223c are unnecessary.
  • FIGS. 14 to 15 are other examples.
  • FIG. 14 is a diagram illustrating an example of a state of the image synthesized after rotating the side image of the electronic component 60 in FIG. 13.
  • FIG. 15 is a diagram illustrating an example of a state of an image synthesized by shifting three images on the image sensor 301 with a prism without using a light shielding mask.
  • the images of the suction nozzle 21 and the electronic component 60 are rotated by 90 degrees, and the downward direction
  • the image of the suction nozzle 21 and the electronic component 60 is devised so as to move in the longitudinal direction of the image sensor 301 so that even if the suction nozzle 21 descends, it can be caught in the field of view.
  • the light shielding pattern 212c in FIG. 12 needs to be configured so as to hide the left and right sides of the field of view and transmit the vertically long central portion.
  • the left eye image of the pattern 601 is shifted to the lower left
  • the right eye image of the pattern 601 is shifted to the lower right
  • the electronic component 60 side images can be shifted upward. In this way, an unnecessary field of view of each image goes out of the image sensor 301. Therefore, the light shielding patterns 212a, 212b, and 212c may be used. It is possible to detect the field images so as not to overlap.
  • a single image sensor 301 can be used to simultaneously detect a plurality of images including a stereo image and a side image, and an effect of realizing a compact and low-cost detection can be obtained.
  • the image formation on the image sensor 301 is not limited to the case where images from a plurality of viewpoints are simultaneously formed on one image sensor 301, and the images of the two types of patterns 601 are independently separated. It is also possible to detect at 301. In this case, for example, by using an optical system such as an optical axis shifting rhomboid prism 222, stereo measurement is performed with the two image sensors 301 arranged at a distance from each other, whereby a pattern 601 on the printed board 50 is obtained. 3D stereo images can be obtained.
  • FIG. 16 is a diagram illustrating an example of a configuration using a relay lens.
  • FIG. 17 is a diagram illustrating an example of a configuration using bundle glass fibers.
  • FIG. 16 shows a tube (cylinder) in which an objective lens 250, a relay lens 251 and an eyepiece lens 252 using a normal lens or a combination lens are incorporated. In this way, an image can be transmitted and finally formed on the image sensor 301 by the lens 31.
  • transmission may be performed while forming a plurality of intermediate image positions 254 using a plurality of relay lenses.
  • the light-shielding pattern for limiting the field of view is installed in the same manner as the examples shown in FIGS. 5 to 6, 8 to 9, and 12, the light-shielding pattern 212 is provided at any one of the intermediate image positions 254. Can be inserted.
  • FIG. 17 shows an example in which an image transfer fiber bundle 253 is used.
  • One end of the image transfer fiber bundle 253 is installed at the intermediate image position 254 by the objective lens 250, and an image transmitted to the other end is formed on the image sensor 301 by the eyepiece lens 252 and the lens 31. It becomes possible.
  • the component mounting position 601 on the printed circuit board 50 is set to 3 without increasing the tact time.
  • the electronic component 60 can be arranged at an accurate position of the mounting location by accurately measuring in dimension and accurately moving the mounting head 10 to the target location. More specifically, the following effects can be obtained.
  • the mounting head 10 having the suction nozzle 21, the optical system, and the camera module 30, the X-axis motor driving unit 911, the Y-axis motor driving unit 912, the Z-axis motor driving unit 922, and ⁇ that drive the mounting head 10.
  • the optical system is a stereo optical system including rod objective lenses 211a and 211b and rod relay lenses 210a and 210b, so that the camera module 30 can be mounted on the printed circuit board 50 via the stereo optical system.
  • the three-dimensional position of the pattern is measured in a state where the suction nozzle 21 is directly above (substantially above) the component mounting position 601, and each of the drive units 911, 912, 922, and 923 is measured by the camera module 30. Based on the result, the position of the mounting head 10 can be corrected.
  • the stereo optical system is disposed in close contact with the mounting head 10 by using two relay optical systems of the rod objective lens 211a and the rod relay lens 210a, and the rod objective lens 211b and the rod relay lens 210b. Therefore, a compact stereo optical system can be realized.
  • the relay optical system can be realized by using a transmission relay lens 251 arranged in a tube, an image transfer fiber bundle 253, or the like, in addition to using a rod-shaped GRIN lens.
  • the camera module 30 forms an image of the relay optical system on the two image sensors 301 to form a stereo image. Obtainable.
  • the camera module 30 forms an image of the relay optical system on the one image sensor 301 to form a stereo image. Obtainable.
  • the image sensor 301 can be configured to have the number of the plurality of suction nozzles 21.
  • the image sensor 301 can be shared between the plurality of suction nozzles 21.
  • the camera module 30 can be reduced, the number of stereo rod lens units can be reduced, and the suction nozzle modules 20 can be arranged at a narrow pitch.
  • the stereo optical system is configured so that the tip of the suction nozzle 21 of the mounting head 10 or the position of the electronic component 60 can be measured simultaneously with the component mounting position 601 on the printed circuit board 50, so that the camera module 30
  • the relative position between the tip of the nozzle 21 or the position of the electronic component 60 and the component mounting position 601 on the printed circuit board 50 is measured, and the drive units 911, 912, 922, and 923 are based on the measurement results obtained by the camera module 30.
  • the trajectory of the mounting head 10 can be corrected.
  • a fluorescent material is applied to the tip of the suction nozzle 21, and the nozzle illumination light source 202 that illuminates the fluorescent material with ultraviolet light is provided so that only the tip of the suction nozzle 21 is made visible to facilitate stereo measurement. Can do.
  • the component transmitting illumination light source 203 As an observation optical system for observing the lower end of the suction nozzle 21 of the mounting head 10 from the side, the component transmitting illumination light source 203, the rod relay lens 210c, and the like are provided, so that the lower end of the mounting head 10 with respect to the printed circuit board 50 The suction state of the electronic component 60 can be observed.
  • FIG. 2 A substrate processing apparatus according to the present embodiment and a substrate processing method in the substrate processing apparatus will be described with reference to FIG.
  • the imaging device described in the first embodiment is applied to a substrate processing apparatus.
  • differences from the first embodiment will be mainly described.
  • the present embodiment relates to a substrate processing apparatus that performs positioning using an imaging device and drills holes in the substrate.
  • the operator is a drill
  • the operation head is a processing head
  • the substrate is a printed circuit board
  • the head operation position is a drilling position. .
  • FIG. 18 is a side view showing an example of a processing head in which a stereo optical system is arranged in the substrate processing apparatus according to the present embodiment.
  • the mounting head 10 of the first embodiment is replaced with the processing head 10A
  • the suction nozzle module 20 is replaced with the processing head module 20A
  • a drill 29 is provided in the processing head module 20A. It is installed. That is, the substrate processing apparatus shown in FIG. 18 differs from FIGS. 5 to 6 and FIGS. 8 to 9 in that a drill 29 is mounted instead of the suction nozzle 21.
  • a hole is made on the printed circuit board 50 by processing while the drill 29 is rotating.
  • a description will be given with reference to FIGS. 5 to 6 and FIGS. 8 to 9 when it is desired to finely adjust the position where a hole is to be drilled with the miniaturization of a circuit pattern according to the actual position of the hole position (pattern) 601A on the printed circuit board 50.
  • the three-dimensional position of the pattern 601A can be detected by a stereo image by using the same optical system as the optical system that has been used, and this result is fed back to the positioning of the processing head module 20A to obtain a highly accurate printed circuit board. 50 processes can be realized. Further, by providing a side observation system in the same manner as in FIGS. 5 to 6 and FIGS. 8 to 9, the height of the tip of the drill 29, the shaft runout of the drill 29, and wear and loss of the tip of the drill 29 are monitored. There is also an effect that it becomes possible.
  • the operator is the drill 29 and the operation head is the processing head 10A compared to the first embodiment.
  • the head working position is replaced with the drilling position 601A, the drilling position 601A on the printed circuit board 50 is accurately measured three-dimensionally without increasing the tact time, as in the first embodiment.
  • drilling can be performed at an accurate position of the machining location.
  • a machining head 10A having a drill 29, an optical system, and a camera module 30, an X-axis motor driving unit 911, a Y-axis motor driving unit 912, a Z-axis motor driving unit 922, and the like. and a ⁇ -axis motor driving unit 923.
  • the optical system is a stereo optical system composed of rod objective lenses 211a and 211b and rod relay lenses 210a and 210b, so that the camera module 30 is located at the hole position 601A on the printed circuit board 50 via the stereo optical system.
  • the three-dimensional position of the pattern is measured in a state where the drill 29 is directly above (substantially above) the drilling position 601A, and each of the drive units 911, 912, 922, and 923 is based on the measurement result by the camera module 30.
  • the position of the machining head 10A can be corrected.
  • the lower end of the machining head 10A is the tip of the drill 29 or the like.
  • the present invention made by the present inventor has been specifically described based on the embodiment.
  • the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. .
  • a component mounting apparatus that mounts electronic components on a printed circuit board or a substrate processing apparatus that punches holes in the printed circuit board has been described as an example.
  • the present invention is not limited, and can be widely applied to all substrate processing apparatuses that perform positioning using an imaging apparatus.

Abstract

 部品実装装置や基板加工装置などの基板処理装置において、タクトタイムを増大することなく、動作ヘッドを目標箇所に正確に移動させる技術である。部品実装装置は、吸着ノズル21、光学系、および、カメラモジュール30を有する実装ヘッド10と、実装ヘッド10を駆動するX軸・Y軸・Z軸・θ軸モータ駆動部とを有する。特に、光学系は、ロッド対物レンズ211a,211bおよびロッドリレーレンズ210a,210bからなるステレオ光学系である。さらに、カメラモジュール30は、ステレオ光学系を介して、プリント基板50上の部品搭載位置601のパターンの3次元的な位置を、吸着ノズル21が部品搭載位置601の直上にある状態で測定する。そして、各駆動部は、カメラモジュール30による測定結果に基づいて、実装ヘッド10の位置を修正する。

Description

基板処理装置および基板処理方法
 本発明は、撮像装置を用いて位置決めを行う基板処理技術に関し、特に、部品実装装置や基板加工装置などの基板処理装置、および、この基板処理装置における基板処理方法に適用して有効な技術に関する。
 電子機器に使用されるプリント基板には、抵抗やICチップなど多数の電子部品が実装されている。これらの電子部品は、部品実装装置によって、所定の実装箇所に自動的に実装される。
 部品実装装置の1つの構成は、ビーム機構により水平面内の任意の箇所に移動可能な実装ヘッドと、実装ヘッドに具備された電子部品を吸着するノズル(吸着ノズル)とを備える。電子部品フィーダから供給される電子部品を吸着ノズルにて吸着し、その後実装ヘッドを、目標実装箇所に精度良く移動させ、吸着ノズルを基板に向けて降下させた後に、電子部品の吸着を解除することで、電子部品をプリント基板上に実装する。
 近年、電子部品の微細化が急速に進んでおり、電子部品の実装する位置精度の向上が求められている。電子部品を所定箇所に精度良く実装するためには、実装ヘッドを目標位置に精度良く移動させることが必要である。しかしながら、部品実装装置には、下記のような位置ずれの原因が存在する。
 電子部品の吸着位置がノズル中心からずれていた場合(吸着ずれ)、実装ヘッドを目標箇所に正確に移動させても、この吸着ずれのために電子部品の実装位置にずれが生じる。
 また、プリント基板の製造工程のばらつき、変形などにより、部品実装箇所(ランド)の位置はプリント基板ごとに異なる。即ち、プリント基板の設計値に基づいて実装ヘッドを所定の部品実装位置に移動した場合、前記のばらつき、変形などにより、位置ずれが生じる。
 さらに、装置自体の歪み、熱膨張などが発生している場合、装置内部の実装ヘッドの位置を取得するエンコーダの値にずれが生じる。従って、エンコーダから読み取った値に基づいて位置決めを行っても、実装ヘッドの位置には位置ずれが生じる。
 実装する電子部品の微細化に伴い、このような複数の位置ずれ要因の割合が相対的に増大し、部品実装位置精度の低下を生じている。
 また、部品実装装置に限らず、プリント基板上でドリルなどを具備した加工ヘッドを移動させて加工動作を行い、穴をあける基板加工装置でも、プリント基板上のパターンの微細化に伴って、ドリルのプリント基板に対する位置ずれが問題になってくる。
 例えば、特許文献1に記載の部品実装装置では、フィーダから部品を吸着した後、所定の箇所にある部品認識カメラの上を通過させ、部品認識カメラによって部品とノズル中心のずれを検出し、そのずれ量を用いて実装位置に補正を加える方法が用いられている。
 一方、特許文献2には、吸着ノズルに吸着された部品と実装位置とを斜め上方から撮影する撮像装置を備え、撮像装置からの画像信号に基づいて、実装位置に対する吸着部品の相対的な位置ずれを算出し、算出された位置ずれに応じて吸着ノズルを水平面内で移動させ、部品の位置を補正する技術が記載されている。
 また、特許文献3では、実装ヘッドと部品吸着ノズルと、これらを駆動制御するコンピュータと、実装ヘッド直下を斜めから撮影するカメラとを有し、光学経路に設置された移動可能な反射ミラーを用いて、1つのカメラで撮影した部品と部品を搭載する基板の目標位置の画像から、吸着された部品の中心と基板の目標位置の中心とのずれを調整するシステムが開示されている。
 また、特許文献4では、予め基板上のパターンの3次元的な位置をステレオカメラで測定して、その次に部品搭載装置に基板を送って、パターンの位置を補正して部品を搭載するシステムが開示されている。
特開2006-287199号公報 特開平7-115296号公報 US2001/0055069A1 特開2006-196819号公報
 前記特許文献1記載の技術は、部品を吸着させた後に、吸着ずれを認識する技術である。即ち、実装ヘッドの停止位置自体が目標実装箇所に対してずれている場合の補正を行うことはできない。
 一方、前記特許文献2および3記載の技術は、カメラの画像を用いることで、実装位置と、吸着部品の相対的な位置ずれを補正する。即ち、吸着ずれが生じている場合や、実装ヘッドの静止位置に位置ずれが生じている場合でも、部品と実装位置のずれ補正を行うことが可能である。
 しかしながら、前記特許文献2および3記載の技術は、カメラを実装位置の斜め上に配置しているので、基板や部品の高さが設計位置からずれると、検出される基板上のパターンや部品の位置の水平方向のずれにつながってしまうという問題があった。
 また、前記特許文献4記載の技術は、予め別装置で基板上のパターンの位置をステレオカメラで測定することによって、部品搭載時のパターンの位置を補正するが、別装置が必要となるうえに、部品搭載時に基板の位置あるいはヘッドの位置がずれた場合には、搭載位置の誤差につながってしまう。
 即ち、部品実装装置においては、タクトタイムを増大することなく、基板上の部品実装位置を3次元的に正確に測定して、実装ヘッドを目標箇所に正確に移動させることで、実装箇所の正確な位置に部品を配置することが課題となっている。
 また、基板加工装置においても同様に、タクトタイムを増大することなく、基板上の穴あけ位置を3次元的に正確に測定して、加工ヘッドを目標箇所に正確に移動させることで、穴あけ箇所の正確な位置に穴をあけることが課題となっている。
 そこで、本発明では上記のような課題を解決し、その代表的な目的は、部品実装装置や基板加工装置などの基板処理装置において、タクトタイムを増大することなく、動作ヘッドを目標箇所に正確に移動させる技術を提供することにある。
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
 (1)代表的な基板処理装置は、作用子、光学系、および、撮像部を有する動作ヘッドと、前記動作ヘッドを駆動する駆動部と、を有する。特に、前記光学系は、ステレオ光学系である。さらに、前記撮像部は、前記ステレオ光学系を介して、基板上のヘッド作用位置のパターンの3次元的な位置を、前記作用子が前記ヘッド作用位置の直上にある状態で測定する。そして、前記駆動部は、前記撮像部による測定結果に基づいて、前記動作ヘッドの位置を修正する。
 (2)本実施の形態の代表的な基板処理方法は、作用子、光学系、および、撮像部を有する動作ヘッドと、前記動作ヘッドを駆動する駆動部と、を有する基板処理装置における基板処理方法である。特に、前記光学系は、ステレオ光学系である。さらに、前記撮像部は、前記ステレオ光学系を介して、基板上のヘッド作用位置のパターンの3次元的な位置を、前記作用子が前記ヘッド作用位置の直上にある状態で測定する。そして、前記駆動部は、前記撮像部による測定結果に基づいて、前記動作ヘッドの位置を修正する。
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
 すなわち、代表的な効果は、部品実装装置や基板加工装置などの基板処理装置において、タクトタイムを増大することなく、動作ヘッドを目標箇所に正確に移動させることができる。
本発明の実施の形態1に係る部品実装装置の概略構成の一例を示した斜視図である。 本発明の実施の形態1に対する比較例として、通常のカメラを用いた場合の実装ヘッドの概略構成の一例を示した側面図である。 本発明の実施の形態1に係る部品実装装置の制御システムの構成の一例を示したブロック図である。 本発明の実施の形態1に係る部品実装装置において、電子部品をプリント基板上の所定の部品実装箇所に配置する場合の、実装ヘッドの位置決め制御方法の一例を示したフローチャートである。 本発明の実施の形態1に係る部品実装装置において、ステレオ光学系を配置した実装ヘッドの一例を示した側面図である。 本発明の実施の形態1に係る部品実装装置において、ステレオ光学系を配置した実装ヘッドの一例を示した正面図である。 本発明の実施の形態1に係る部品実装装置の変形例として、実装ヘッド間でイメージセンサを共有した部品実装装置の概略構成の一例を示した斜視図である。 図7の部品実装装置において、ステレオ光学系を配置した実装ヘッドの別の一例を示した側面図である。 図7の部品実装装置において、ステレオ光学系を配置した実装ヘッドの別の一例を示した正面図である。 本発明の実施の形態1に係る部品実装装置において、3本のロッド対物レンズの視野の一例を示した図である。 本発明の実施の形態1に係る部品実装装置において、3本のロッド対物レンズの像の一例を示した図である。 本発明の実施の形態1に係る部品実装装置において、3本のロッド対物レンズの像を重ねるための遮光マスクの形状の一例を示した図である。 本発明の実施の形態1に係る部品実装装置において、イメージセンサで検出される3本のロッド対物レンズの像を合成した像の様子の一例を示した図である。 図13で、電子部品の側方像を回転させてから合成した像の様子の一例を示した図である。 本発明の実施の形態1に係る部品実装装置において、遮光マスクを用いずに、イメージセンサ上での3枚の像をプリズムでシフトしてから合成した像の様子の一例を示した図である。 本発明の実施の形態1に係る部品実装装置において、ロッドレンズの代わりにリレーレンズを用いた構成の一例を示した図である。 本発明の実施の形態1に係る部品実装装置において、ロッドレンズの代わりにバンドルガラスファイバーを用いた構成の一例を示した図である。 本発明の実施の形態2に係る基板加工装置において、ステレオ光学系を配置した加工ヘッドの一例を示した側面図である。
 以下の実施の形態においては、便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
 [実施の形態の概要]
 まず、実施の形態の概要について説明する。本実施の形態の概要では、一例として、括弧内に実施の形態の対応する構成要素、符号等を付して説明する。
 (1)本実施の形態の代表的な基板処理装置は、作用子(吸着ノズル21またはドリル29)、光学系、および、撮像部(カメラモジュール30)を有する動作ヘッド(実装ヘッド10または加工ヘッド10A)と、前記動作ヘッドを駆動する駆動部(X軸モータ駆動部911、Y軸モータ駆動部912、Z軸モータ駆動部922およびθ軸モータ駆動部923)と、を有する。特に、前記光学系は、ステレオ光学系(ロッド対物レンズ211およびロッドリレーレンズ210)である。さらに、前記撮像部は、前記ステレオ光学系を介して、基板(プリント基板50)上のヘッド作用位置(部品搭載位置601または穴あけ位置601A)のパターンの3次元的な位置を、前記作用子が前記ヘッド作用位置の直上(略直上も含む)にある状態で測定する。そして、前記駆動部は、前記撮像部による測定結果に基づいて、前記動作ヘッドの位置を修正する。
 (2)本実施の形態の代表的な基板処理方法は、作用子(吸着ノズル21またはドリル29)、光学系、および、撮像部(カメラモジュール30)を有する動作ヘッド(実装ヘッド10または加工ヘッド10A)と、前記動作ヘッドを駆動する駆動部(X軸モータ駆動部911、Y軸モータ駆動部912、Z軸モータ駆動部922およびθ軸モータ駆動部923)と、を有する基板処理装置における基板処理方法である。特に、前記光学系は、ステレオ光学系(ロッド対物レンズ211およびロッドリレーレンズ210)である。さらに、前記撮像部は、前記ステレオ光学系を介して、基板(プリント基板50)上のヘッド作用位置(部品搭載位置601または穴あけ位置601A)のパターンの3次元的な位置を、前記作用子が前記ヘッド作用位置の直上(略直上も含む)にある状態で測定する。そして、前記駆動部は、前記撮像部による測定結果に基づいて、前記動作ヘッドの位置を修正する。
 以下、上述した実施の形態の概要に基づいた各実施の形態を図面に基づいて詳細に説明する。なお、各実施の形態を説明するための全図において、同一または相当する部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
 以下においては、基板処理装置の一例として、実施の形態1では、プリント基板に電子部品を実装する部品実装装置を説明し、また、実施の形態2では、プリント基板に穴をあける基板加工装置を説明するが、本発明はこれに限定されるものではない。
 [実施の形態1]
 本実施の形態に係る部品実装装置、およびこの部品実装装置における部品実装方法について、図1~図17を用いて説明する。
 本実施の形態は、撮像装置を用いて位置決めを行い、基板に電子部品を実装する部品実装装置に係わり、それぞれ、作用子は吸着ノズル、動作ヘッドは実装ヘッド、基板はプリント基板、ヘッド作用位置は部品搭載位置、である。
 本実施の形態に係る部品実装装置の概要は、部品実装ヘッドに密接して部品搭載位置(ランド)と電子部品(チップ)の3次元位置をステレオ画像計測する光学系を具備し、この情報を用いてチップとランドの位置を正確に合わせてチップを搭載する。密接したコンパクトなステレオ光学系を実現するため、ロッド状の屈折率分布型レンズを2本用いてステレオ画像を伝送し、部品実装ヘッドと干渉しないように離して配置した1つのイメージセンサでステレオペア画像を取得する。更に、部品吸着ノズルの先端の3次元位置も同じ光学系で検出できるように、ノズル先端を蛍光体などによって光らせる。更に、追加の屈折率分布型レンズで部品吸着状態などを側方観察する。以下、図1~図17に基づいて説明する。
 <部品実装装置の構成>
 図1は、本実施の形態に係る部品実装装置100の概略構成の一例を示した斜視図である。以下、図1中矢印により示されるように、水平面内で互いに直交する2方向を、それぞれX軸方向とY軸方向とし、これらに直交する鉛直方向をZ軸方向とする。
 部品実装装置100は、実装ヘッド10と、Xビーム機構11と、Yビーム機構12aおよび12bと、搭載する電子部品を供給する複数(この例では6基)の電子部品フィーダ40と、制御部90と、これらの構成要素を搭載支持するベースフレーム13(外形のみ図示)とを備えている。実装ヘッド10は、複数(この例では5基)の吸着ノズルモジュール20と、吸着ノズルモジュール20各々に搭載されたカメラモジュール30とを備えている。
 実装ヘッド10は、その一端(紙面左側)がXビーム機構11に支持され、内蔵する駆動部(図示せず:図3のX軸モータ駆動部911に相当)により、ベースフレーム13内の任意のX座標に平行移動できる構成となっている。
 Xビーム機構11は、その両端をYビーム機構12aおよび12bに支持され、内蔵する駆動部(図示せず:図3のY軸モータ駆動部912に相当)により、ベースフレーム13内の任意のY座標に平行移動できる構成となっている。
 即ち、実装ヘッド10は、X座標およびY座標に平行移動させる駆動部により、図1中XY平面においてベースフレーム13内の任意の座標に移動できる構成となっている。
 電子部品フィーダ40は、ベースフレーム13の図1中Y軸方向における一端に、図1中X軸方向に複数並列される形で搭載される。また、電子部品フィーダ40は、搭載する電子部品の交換などで必要に応じて脱着・分離することができる。
 電子部品フィーダ40は、図1中装置内部側に部品受け渡し部41を備える。電子部品フィーダ40は、内部に電子部品が均一間隔で封入された部品テープリール(図示されない)を保持している。電子部品フィーダ40は、部品テープリールを所定の分量ずつ送り出すことで、部品受け渡し部41に搭載する電子部品を露出させる構成となっている。
 制御部90は、有線ないし無線により前記各構成部品と接続され、各構成部品に動作指令を与える。また制御部90は、各構成部品の現在状態を取得できる構成となっている。
 部品実装装置100の内部には、所定の搬送機構(図示されない)が具備され、部品実装装置100の内部へプリント基板50を搬送できる構成となっている。搬送されたプリント基板50は、ベースフレーム13の内部の所定の箇所に保持、固定される。
 <通常のカメラ>
 図2は、本実施の形態に対する比較例として、通常のカメラを用いた場合の実装ヘッド10の概略構成の一例を示した側面図であり、1つの吸着ノズルモジュール20の周辺を図1X軸方向に沿って見た様子を図示したものである。ただし、簡単のため、カメラとしては、ステレオカメラではなくて単眼カメラを用いた構成で説明する。
 図2において、Y軸およびZ軸の示す方向は、図1におけるY軸およびZ軸の示す方向と一致するものとする。
 図2において、実装ヘッド10は、吸着ノズルモジュール20と、カメラモジュール30とを備えている。
 吸着ノズルモジュール20は、吸着ノズル21と、Z軸モータ22と、θ軸モータ23と、真空バルブ24と、これらの構成要素を支持するフレーム25とを備えている。
 吸着ノズル21は、内部圧力を変動させることで、Z軸方向下端(紙面下側)にチップなどの電子部品60を真空吸着可能な構成となっている。
 Z軸モータ22は、吸着ノズルモジュール20の内部に配置され、吸着ノズル21を、図2中Z軸方向に沿って上下に所定の距離だけ平行移動させる機能を有する。θ軸モータ23は、同じく吸着ノズルモジュール20の内部に配置され、ノズル軸(図2中の破線N)を軸として、吸着ノズル21を所定の角度だけ回転移動させる機能を有する。真空バルブ24は、吸着ノズルモジュール20の内部の真空ポンプ(図示されない)と吸着ノズル21の内部とを結ぶ空気流路上に配置され、真空バルブ24を開閉することで、吸着ノズル21の内部圧力を変動させる機能を有する。
 カメラモジュール30は、その撮影方向(以下、光軸:図2中の破線C)を、図2中Z軸下方向に向けて、カメラモジュールステイ32により、吸着ノズルモジュール20のフレーム25に固定される。ここで、光軸Cとノズル軸N間の距離をLとする。
 また、カメラモジュール30は、レンズ31を有している。レンズ31は、その焦点が、装置内部に保持されるプリント基板50の基板面に合うように調整されている。また、レンズ31の視野角は、図2中一点鎖線Φにて示される。即ち、カメラモジュール30は、プリント基板50の基板面で、視野角Φに含まれる領域の、合焦した撮像画像を取得することができる。以下、この領域をカメラモジュール30の視野領域と呼ぶ。
 図2に示されるように、カメラモジュール30の視野領域は、実装ヘッド10の直下だけではなく、実装ヘッド10の進行方向(この例では、紙面右手方向)を含む。
 また、カメラモジュール30は、所定の時間間隔で、撮像画像の取得を行う。時間間隔は、撮影トリガにより、外部から制御可能な機能を有する。
 以上、図2において、1つの吸着ノズルモジュール20と1つのカメラモジュール30との構成について説明したが、図1に示すように、実装ヘッド10に具備される他の吸着ノズルモジュール20およびカメラモジュール30も同一の構成を持つことは言うまでもない。
 図2のような構成では、カメラ軸Cとノズル軸Nの距離Lが離れているため、カメラモジュール30の視野が直径2Lより大きい必要があり、広い視野を持つこととなるので、プリント基板50上のパターンの位置を高精度に認識するには解像度が不足する。
 また、部品装着位置となる吸着ノズル21の真下の部品搭載位置(ランド位置、単にパターン等とも記述する)601を認識する場合は、レンズ31からの視線が斜めになるので、プリント基板50の高さが変動すると、カメラモジュール30で検出されるパターン601の位置がずれることとなる。光軸に対するパターン601の角度をαとすると、プリント基板50の高さZがΔZだけずれると、検出されるパターン601の位置がΔZtanαだけ水平方向にずれることになる。
 これを避けるためには、一旦、パターン601をカメラモジュール30の視野の中心、即ち光軸上の位置でとらえるために、搭載位置よりLだけ離れた位置に一旦吸着ノズルモジュール20の搭載された実装ヘッド10を移動して、ここで部品装着対象となるプリント基板50上のパターン601を認識し、その後で、位置ずれ量を補正して電子部品60をパターン601の直上に持ってくる必要がある。このために、不要な実装ヘッド10の移動が生じることとなり、装置のスループットを低下させる原因となる。
 このため、本実施の形態では、光軸からLずれた所のプリント基板50上のパターンを測る場合にも、水平位置の精度が得られるように、カメラモジュール30としてステレオ光学系を構成し、パターン601の高さを含む3次元位置を測ることができるように構成する。さらに、この光学系を吸着ノズル21の軸になるべく近接して(Lを小さく保って)構成できるようなコンパクトなステレオ光学系を構成する。
 このコンパクトなステレオ光学系の説明をする前に、部品実装装置100の制御システムの構成と、動作フローについて説明する。
 <制御システムの構成>
 図3は、本実施の形態に係る部品実装装置100の制御システムの構成の一例を示したブロック図である。
 部品実装装置100の制御システムは、制御部90と、X軸モータ駆動部911と、Y軸モータ駆動部912と、Z軸モータ駆動部922と、θ軸モータ駆動部923と、真空バルブ駆動部924と、画像処理部930とを備えている。X軸モータ駆動部911およびY軸モータ駆動部912は、それぞれ位置エンコーダ9111および9121を内蔵する。
 制御部90は、CPU(Central Processing Unit)901と、ROM(Read Only Memory)902と、RAM(Random Access Memory)903とを内蔵し、ROM902またはRAM903内に格納されたプログラムに基づき、部品実装装置全体の制御を行う機能を有する。
 また、制御部90は、位置エンコーダ9111を内蔵するX軸モータ駆動部911に、移動指令を与えるとともに、位置エンコーダ9111によって取得された実装ヘッド10の現在位置を取得する。同様に、制御部90は、位置エンコーダ9121を内蔵するY軸モータ駆動部912に、移動指令を与えるとともに、位置エンコーダ9121によって取得されたXビーム機構11の現在位置を取得する。
 さらに、制御部90は、吸着ノズル21の上下動作を制御するために、Z軸モータ駆動部922に昇降指令を与えるとともに、Z軸モータ駆動部922に内蔵するエンコーダ(図示されない)から吸着ノズル21の現在位置を取得する。同様に、制御部90は、吸着ノズル21の回転動作を制御するために、θ軸モータ駆動部923に回転指令を与えるとともに、θ軸モータ駆動部923に内蔵するエンコーダ(図示されない)から所定の基準方向からの回転角度の現在角度を取得する。そして、吸着ノズル21による電子部品60の吸着を制御するために、真空バルブ駆動部924に吸引指令を与えるとともに、現在、吸引を行っているか、行っていないかの現在状態を取得する。
 画像処理部930は、カメラモジュール30により撮影された画像データを取得する。また、画像処理部930は、カメラモジュール30に対して画像取得タイミングを指示する撮影トリガを与える。更に、画像処理部930は、制御部90より、所定の位置情報を受け取り、この位置情報に基づき所定の画像処理を行う。そして、画像処理の結果を、制御部90に送信する。
 画像処理部930に入力される画像は、後述するように、1つのイメージセンサ上に形成されたステレオペア画像をデジタル画像として取り込んだものである。この画像データから、視線の異なる複数の基板画像を切り出し、それぞれの切り出した画像に対して、2値化、フィルタリング、パターン位置検出演算等を行って、測定対象のパターンの位置を検出する。ステレオペア画像それぞれについてパターンの位置を検出して、これらの位置関係から、ステレオ計算を行うことで、パターンの3次元的な位置が測定できる。
 なお、この図3ではY軸モータ駆動部912は1つのみ示されているが、図1のように2つのYビーム機構12aおよび12bを持ち、それぞれに駆動部が必要な場合は、Y軸モータ駆動部912を2つ設ける構成でもよい。
 この例において、制御部90は単一のCPU901を内蔵する構成を示しているが、これに限るものではない。例えば、複数のCPUを内蔵してもよい。これにより、各構成要素の動作制御に必要な演算処理を高速に実行することができる。
 <部品実装装置の動作>
 図1~図3を参照して、本実施の形態に係る部品実装装置100の全体動作について説明する。部品実装装置100は、電子部品フィーダ40から供給される電子部品60を、プリント基板50に、以下のようにして実装する。
 まず、制御部90は、X軸モータ駆動部911およびY軸モータ駆動部912を制御し、実装ヘッド10を電子部品フィーダ40の部品受け渡し部41の上方に移動させる。より詳細には、所定の吸着ノズル21のZ軸方向直下に、部品受け渡し部41により供給される電子部品60が位置するように移動させる。
 次に、制御部90は、Z軸モータ駆動部922および真空バルブ駆動部924を制御し、吸着ノズル21を部品受け渡し部41まで降下させ、空気吸引を開始する。これにより、部品受け渡し部41によって供給された電子部品60を、吸着ノズル21の先端部に吸着する。そして、制御部90は、Z軸モータ駆動部922を制御して、吸着ノズル21を短縮させ、吸着した電子部品60を保持する。
 次に、制御部90は、X軸モータ駆動部911およびY軸モータ駆動部912を制御し、実装ヘッド10を、プリント基板50上の所定の箇所に移動させる。より詳細には、吸着ノズル21のZ軸方向直下に、吸着した電子部品60の部品搭載位置601が位置するように移動させる。
 最後に、制御部90は、Z軸モータ駆動部922および真空バルブ駆動部924を制御し、吸着ノズル21を降下させ、空気吸引を解除することで、吸着した電子部品60をプリント基板50上に実装配置する。
 部品実装装置100は、プリント基板50上に複数の電子部品60を実装するために、これらの動作を繰り返す。
 なお、上記の説明において、各手順は、必ずしも時系列に逐次実行される必要はない。例えば、実装ヘッド10の移動が完全に終了し静止してから、吸着ノズル21を降下させる必要はなく、静止間際に吸着ノズル21の降下を開始してもよい。この方法は、各手順のタイミングを時間精度良く制御する必要があるが、1つの部品実装に要する時間(タクトタイム)の削減が実現できる。
 また、上記の説明において、電子部品60を吸着してから、プリント基板50上に実装するまでの間に、電子部品60の方向を、所定の実装配置方向に回転させる制御、および、電子部品60が吸着ノズル21の中心軸Nからずれている場合、そのずれ量を検出し、補正する制御が必要となる。これらは、公知の技術により実施可能であり、本明細書においては、その詳細な説明は割愛する。
 <実装ヘッドの位置決め制御方法>
 次に、図4を参照して、本実施の形態に係る部品実装装置100において、吸着した電子部品60を、プリント基板50上の部品搭載位置601に配置する場合の動作の詳細を説明する。
 以下の説明において、説明を簡単にするため、吸着ノズル21における電子部品60の吸着ずれは無いものとし、また実装配置方向と、電子部品60の方向は合致しているものとする。
 図4は、本実施の形態において、電子部品60をプリント基板50上の所定の部品搭載位置601に配置する場合の、制御部90による、実装ヘッド10の位置決め制御方法の一例を示したフローチャートである。
 制御部90は、吸着ノズル21により電子部品フィーダ40から電子部品60を吸着保持した後、実装ヘッド10を、プリント基板50上に移動させる制御を開始する(S100)。
 まず、制御部90は、部品実装装置100およびプリント基板50の設計時に定められる座標系などから、ベースフレーム13内における部品搭載位置601の位置座標を予め計算し、第1移動目標位置として設定する(S101)。そして、この第1移動目標位置に向けて、実装ヘッド10の移動制御を開始する。
 制御部90は、X軸モータ駆動部911に内蔵される位置エンコーダ9111およびY軸モータ駆動部912に内蔵される位置エンコーダ9121を用いて、実装ヘッド10のX軸上の現在位置およびXビーム機構11の現在位置を取得する。取得した現在位置に対して、実装ヘッド10の座標系と吸着ノズル21の中心軸Nの相対関係から定まるパラメータを加えて、吸着ノズル21の現在XY座標(以下、吸着ノズル座標と称する)を得る(S102)。
 次に、吸着ノズル座標が、第1移動目標位置に到着しているかを判定する(S103)。なお、ここで到着判定は、単純な座標値の一致判定ではなく、吸着ノズル座標と第1移動目標位置との差が、所定の範囲内に一定時間収まることを指す。そして、吸着ノズル座標が、第1移動目標位置に到着していた場合(YES)は移動を終了する(S199)。到着していない場合(NO)は、移動制御を継続する。
 移動制御を継続する場合、制御部90は、画像処理部930の画像処理結果に基づき移動制御補正を行う(S104)。そして、制御部90は、X軸モータ駆動部911およびY軸モータ駆動部912に与える移動指令を生成する(S105)。ここで、移動指令とは吸着ノズル21が第1移動目標位置に到着するまでの理想的な軌道を指す。
 最後に、制御部90は、移動指令を、X軸モータ駆動部911およびY軸モータ駆動部912に送信し(S106)、再びS102に戻る。X軸モータ駆動部911およびY軸モータ駆動部912は、受信した移動指令に基づき各軸モータの出力を所定の制御アルゴリズムに基づき決定し、実装ヘッド10を移動させる。制御アルゴリズムには、例えば、吸着ノズル21の理想軌道と現在の吸着ノズル座標の差分値に比例してモータの出力を決める比例制御法などを用いればよい。
 以降、移動終了(S199)に至るまで、S102~S106の処理を繰り返す。
 <ステレオ光学系>
 次に、本実施の形態におけるコンパクトなステレオ光学系について、図5~図6を用いて説明する。図5は、ステレオ光学系を配置した実装ヘッド10の一例を示した側面図であり、図6は正面図である。ここでは、図2(通常のカメラ)による説明と異なっているところを主に説明することとする。
 実装ヘッド10の光学系では、吸着ノズル21の軸Nと光学系の対物レンズの軸Cの距離Lを近接させることが、対物レンズの視野を小さくして、倍率高くプリント基板50を観察するために重要である。また、対物レンズからプリント基板50上の吸着ノズル21の軸Nの直下の部品搭載位置601までの角度αを小さくする(例えば30度以下)ことが、プリント基板50の高さの変動の影響を小さくするために重要である。さらに、プリント基板50の高さを検出するために、2箇所以上の視点から、部品搭載位置601の像を得てステレオ計測することが必要である。
 以上の効果を得るために、本実施の形態では、屈折率分布型レンズ(GRINレンズ:gradient-index lens)を用いたロッド対物レンズ211とロッドリレーレンズ210を使用する。これは、小径のロッド型レンズで、屈折率に半径方向の分布を持たせることで、コンパクトで収差の小さい対物レンズや、画像をリレーするレンズなどとして機能させることができるレンズである。このレンズを直列に接合した、ロッド対物レンズ211aおよびロッドリレーレンズ210aのユニットと、ロッド対物レンズ211bおよびロッドリレーレンズ210bのユニットを吸着ノズルモジュール20に近接して配置する。ここで、後述(図12)するように、212a,212bに示す視野制限用の遮光パターンをそれぞれ、ロッド対物レンズ211aとロッドリレーレンズ210aの間、ロッド対物レンズ211bとロッドリレーレンズ210bの間に挿入してもよい。これらのユニットによってプリント基板50上の画像を2方向から得て、カメラモジュール30に向けて伝送する。
 カメラモジュール30は、吸着ノズルモジュール20と干渉しない位置、例えば、吸着ノズルモジュール20の上方にカメラモジュールステイ32を介して取り付けられており、これによって、カメラモジュール30のサイズによらず、小径のロッドレンズの分だけの短いオフセット距離Lでロッド対物レンズ211a,211bを取り付けることが可能となる。また、吸着ノズル21に密接した位置にロッド対物レンズ211a,211bを配置することで、プリント基板50と同時に吸着ノズル21および吸着ノズル21に吸着された電子部品60もステレオ観察することが可能となる。
 伝送された光は、カメラモジュール30に取り付けられたレンズ31によって、イメージセンサ301上に結像する。このとき、2本のロッドレンズユニット(ロッド対物レンズ211aおよびロッドリレーレンズ210aと、ロッド対物レンズ211bおよびロッドリレーレンズ210b)の像が同時にイメージセンサ301で検出されるようになっており、これによって1つのカメラモジュール30でステレオ画像検出ができるようになる。なお、ウェッジプリズム223a,223bは、後述(図15)のようにイメージセンサ301上での像の位置をシフトして重ならないようにする目的でロッドリレーレンズ210a,210bの上方に設けられたレンズである。後述のように、ウェッジプリズム223a,223bに関しては、構成によっては不要な場合もあり、必須の部品ではない。
 なお、図5~図6ではロッドレンズユニット間でカメラモジュール30を共用していたが、それぞれのロッドレンズユニットごとに独立にカメラモジュールを用意して、相互に干渉しない位置に設置した各カメラモジュールにミラーなどで画像を転送する構成を採ってもよいことは言うまでもない。
 基板斜方照明光源201a,201bは、プリント基板50を斜方から照明する手段であり、電子部品60を搭載する、プリント基板50上の部品搭載位置601は斜方からの光を上方に散乱しやすいので、部品搭載位置601を顕在化するのに用いる。なお、基板斜方照明光源201a,201bは、この図5~図6では2式用意しているが、最低限1式あればよい、あるいは、3式以上準備して、部品搭載位置601を取り囲むように配置してもよい。また、ノズル照明光源202は、吸着ノズル21の先端および電子部品60を照明する。このとき、吸着ノズル21の先端に蛍光剤を塗布しておいて、ノズル照明光源202として、紫外光を用いると、ノズル先端のみを顕在化してロッド対物レンズ211a,211bによるステレオ計測することが容易になるという、追加の効果がある。
 次に、オプショナルな追加の機能として、電子部品60の吸着状態をモニターする追加の光学系について説明する。部品透過照明光源203は、電子部品60を左方から照明する光源であり、三角プリズム220とロッド対物レンズ211c、必要に応じて追加される遮光パターン212c、イメージリレー用のロッドリレーレンズ210cを通して電子部品60のシルエット像が上方に伝送される。なお、シルエット像を用いる代わりに、ノズル照明光源202による明視野像を用いてもよいことは言うまでもない。伝送された電子部品60と吸着ノズル21の像は、そのままレンズ31に入射してもよいが、必要に応じて画像回転用のダブプリズム221、光軸シフト用のロンボイドプリズム222、イメージセンサ301上での像のシフト用のウェッジプリズム223cを介してから、レンズ31に入射し、イメージセンサ301に結像する。
 また、別の構成として、レンズ31を必要とせず、ロッドリレーレンズ210自体に結像機能を持つレンズを用いる場合は、結像用のレンズ31は必要としない。
 上記図5~図6に示した構成により、非常にコンパクトな光学系を吸着ノズルモジュール20に密接して配置することが可能となり。ステレオ計測によるプリント基板50および電子部品60の3次元的な位置の正確な測定と、電子部品60の装着状態の側方観察が実現できる。
 <部品実装装置の変形例>
 次に、本実施の形態に係る部品実装装置100の変形例として、図7を用いて、図5~図6で説明したステレオ光学系を具備した吸着ノズルモジュール20を搭載した部品実装装置100を説明する。図7は、実装ヘッド10間でイメージセンサ301を共有した部品実装装置100の概略構成の一例を示した斜視図である。
 吸着ノズルモジュール20を並べる数だけそのまま図5~図6で説明したステレオ光学系を実装してもよいが、この変形例では別の方法として、レンズ31を含むカメラモジュール30を、カメラモジュール移動ステージ33に搭載して、吸着ノズルモジュール20間を移動できるようにする。これによって、次に実装を行おうとする吸着ノズルモジュール20にカメラモジュール30を移動させることで、カメラを共用することが可能となる。また、別の変形例として、カメラモジュール30だけではなく、ロッドレンズユニットと照明系全体を、カメラモジュール移動ステージ33によって移動させても、同じ効果を有する。
 次に、図8~図9を用いて、図7に示した部品実装装置100において、ステレオ光学系を配置した実装ヘッド10について説明する。図8は、ステレオ光学系を配置した実装ヘッド10の別の一例を示した側面図であり、図9は正面図である。
 図9の正面図のn1~n8と示された軸上の背面に吸着ノズルモジュール20が存在する。この例では、吸着ノズルモジュール20が8個の例で示しているが、吸着ノズルモジュール数が2以上であれば同様に構成できることを付記しておく。この例では、左からのステレオ画像を取得するためのロッドレンズユニット(ロッド対物レンズ211aおよびロッドリレーレンズ210a)と、右からのステレオ画像を取得するためのロッドレンズユニット(ロッド対物レンズ211bおよびロッドリレーレンズ210b)が隣接する吸着ノズルモジュール間で共用されている。すなわち、iを1~7の整数として、niとni+1の間でロッドレンズユニット(ロッド対物レンズ211およびロッドリレーレンズ210)を共用する。
 カメラモジュール30は、8個の吸着ノズルモジュール20に対して1個とし、カメラモジュール部移動ユニット302にウェッジプリズム223、レンズ31とともに搭載され、カメラモジュール移動ステージ33上を左右に移動して、次に搭載動作を行う吸着ノズルモジュール20の軸上に静止して、検出を行う。
 これによって、カメラモジュール30を1個に低減でき、かつ、ステレオ用のロッドレンズユニットの本数をほぼ半減でき、また、狭いピッチで吸着ノズルモジュール20を配置できるという効果がある。
 <画像形成方法>
 次に、図10~図13を用いて、1つのイメージセンサ301上に複数の視点の画像を同時に形成する方法について詳しく説明する。図10は、3本のロッド対物レンズ211a,211b,211cの視野の一例を示した図である。図11は、3本のロッド対物レンズ211a,211b,211cの像の一例を示した図である。図12は、3本のロッド対物レンズ211a,211b,211cの像を重ねるための遮光マスクの形状の一例を示した図である。図13は、イメージセンサ301で検出される3本のロッド対物レンズ211a,211b,211cの像を合成した像の様子の一例を示した図である。
 プリント基板50上で吸着ノズル21の直下にある部品搭載位置(パターン)601は、左目像を担当するロッド対物レンズ211aと右目像を担当するロッド対物レンズ211bの視野中では、図10のように見える。ここで、プリント基板50の高さが変動して、例えば、低くなると視野が拡大して点線で示した円のように大きくなる。パターン601の位置は変わらないので、視野中に見えるパターン601の像の位置が視野中心に向かってずれることとなる。この様子を図11に示したが、図11中のパターン601の像が点線で示したパターン601の像’の位置に移動することとなる。このプリント基板50の高さの変化に伴う像の移動があるため、通常はレンズの視野の真中でパターンを観察しないとパターンのXY水平面内での位置ずれが大きくなってしまう。
 本実施の形態では、図11に示した2種類のパターン601の像を取得してステレオ計測することにより、プリント基板50上のパターン601の3次元的な位置を得ることができるようになる。この2枚の像を独立に別個のイメージセンサ301で検出してもよいが、これらを1つのイメージセンサ301上に形成して同時に検出することとする。単純に重ねてしまうと複数の像の分離ができないので、以下のようにする。ロッド対物レンズ211とロッドリレーレンズ210の間に、中間像ができるので、ここに金属膜等による遮光パターン212a,212bを図12に示すように形成する。これによって、1つのイメージセンサ301に形成された画像は、図13に示すように、イメージセンサ301の視野の左上にパターン601の右目像、視野の右上にパターン601の左目像を形成できる。
 更に、側方から吸着ノズル21と電子部品60を観察するロッド対物レンズ211cの視野は図10の下に、像は図11の下に示されている。これについても、図12に示すように遮光パターン212cをロッド対物レンズ211cとロッドリレーレンズ210cの間に形成して、像の下半分だけを透過するようにする。これも、イメージセンサ301上に重ねて形成した結果が図13に示されている。なお、この例の場合は、後述するロンボイドプリズム222とウェッジプリズム223cは不要である。
 更に、別の例として、図14~図15がある。図14は、図13で、電子部品60の側方像を回転させてから合成した像の様子の一例を示した図である。図15は、遮光マスクを用いずに、イメージセンサ301上での3枚の像をプリズムでシフトしてから合成した像の様子の一例を示した図である。
 図14では、ロッドリレーレンズ210cの上方に、像回転用のダブプリズム221、像シフト用のウェッジプリズム223cを用いて、吸着ノズル21と電子部品60の像を90度回転し、かつ、下方向にシフトすることで、吸着ノズル21が下降しても視野にとらえられるように、イメージセンサ301の長手方向に吸着ノズル21と電子部品60の像が移動するように工夫している。なお、この場合は、図12の遮光パターン212cは視野の左右を隠し、縦長の中央部を透過するように構成することが必要となる。
 更に、別の例として、図15の例では、遮光パターン212を用いずに、3種類の像を1つのイメージセンサ301上に形成する方法を説明する。ここでは、ウェッジプリズム223a,223b,223cを用いてロッドリレーレンズ210a,210b,210cから出射する光の方向を曲げる。そうすると、光を曲げた方向に、光線の曲げ角度とレンズ31の焦点距離にほぼ比例して、イメージセンサ301上の像はシフトする。ウェッジプリズム223a,223b,223cのそれぞれの角度と方向を適切に設定すると、図15に示すようにパターン601の左目像を左下にシフトし、パターン601の右目像を右下にシフトし、電子部品60の側方像を上方にシフトすることが可能となる。このようにすると、各像のうち不要な視野はイメージセンサ301の外に出てしまうので、遮光パターン212a,212b,212cは使ってもよいが、使わなくても1つのイメージセンサ301で複数の視野の像を重ならないように検出することが可能である。
 以上によって、1つのイメージセンサ301を用いてステレオ像と側方像を含む複数の画像を同時に検出することができるようになり、コンパクトでコストの低い検出を実現できるという効果が得られる。
 なお、イメージセンサ301上に画像を形成する場合には、1つのイメージセンサ301上に複数の視点の画像を同時に形成する場合に限らず、2種類のパターン601の像を独立に別個のイメージセンサ301で検出することも可能である。この場合には、例えば、光軸シフト用のロンボイドプリズム222のような光学系を用いて、距離を離して配置した2つのイメージセンサ301でステレオ計測することにより、プリント基板50上のパターン601の3次元的なステレオ画像を得ることができる。
 <像伝送方法の変形例>
 次に、図16~図17を用いて、GRINロッドレンズを用いずに、像を伝送する別の方法について説明する。図16は、リレーレンズを用いた構成の一例を示した図である。図17は、バンドルガラスファイバーを用いた構成の一例を示した図である。
 図16は、管(筒)の中に、通常のレンズあるいは組み合わせレンズを用いた、対物レンズ250とリレーレンズ251と接眼レンズ252を組み込んだものである。このようにして像を伝送し、最後にレンズ31でイメージセンサ301上に結像することが可能となる。このとき、リレーレンズ251は図16では1個のみ用いているが、複数のリレーレンズを用いて、中間像位置254を複数形成しながら伝送を行ってもよい。また、視野制限用の遮光パターンを、図5~図6、図8~図9や図12に示した例と同様に設置する場合は、この中間像位置254のうちのいずれかに遮光パターン212を挿入すればよい。
 図17は、イメージ転送用ファイバーバンドル253を用いた例である。対物レンズ250による中間像位置254に、イメージ転送用ファイバーバンドル253の一端を設置し、もう一方の端に伝送された像を、接眼レンズ252とレンズ31によってイメージセンサ301上に結像することが可能となる。
 <実施の形態1の効果>
 以上説明したように、本実施の形態に係る部品実装装置100、およびこの部品実装装置100における部品実装方法によれば、タクトタイムを増大することなく、プリント基板50上の部品搭載位置601を3次元的に正確に測定して、実装ヘッド10を目標箇所に正確に移動させることで、実装箇所の正確な位置に電子部品60を配置することができる。より詳細には、以下のような効果を得ることができる。
 (1)吸着ノズル21、光学系、および、カメラモジュール30を有する実装ヘッド10と、実装ヘッド10を駆動するX軸モータ駆動部911、Y軸モータ駆動部912、Z軸モータ駆動部922およびθ軸モータ駆動部923とを有する。特に、光学系は、ロッド対物レンズ211a,211bおよびロッドリレーレンズ210a,210bからなるステレオ光学系とすることで、カメラモジュール30は、ステレオ光学系を介して、プリント基板50上の部品搭載位置601のパターンの3次元的な位置を、吸着ノズル21が部品搭載位置601の直上(略直上)にある状態で測定し、そして、各駆動部911,912,922,923は、カメラモジュール30による測定結果に基づいて、実装ヘッド10の位置を修正することができる。
 (2)ステレオ光学系は、ロッド対物レンズ211aおよびロッドリレーレンズ210aと、ロッド対物レンズ211bおよびロッドリレーレンズ210bとの2本のリレー光学系を用いることで、実装ヘッド10に密接して配置することができるので、コンパクトなステレオ光学系を実現することが可能となる。
 (3)リレー光学系は、ロッド状のGRINレンズを用いる以外に、伝送用リレーレンズ251を管内に配置したもの、または、イメージ転送用ファイバーバンドル253などを用いて実現することができる。
 (4)カメラモジュール30は、リレー光学系の撮像側に2台のイメージセンサ301を配置した構成においては、リレー光学系の像を、この2台のイメージセンサ301上に形成してステレオ画像を得ることができる。
 (5)カメラモジュール30は、リレー光学系の撮像側に1台のイメージセンサ301を配置した構成においては、リレー光学系の像を、この1台のイメージセンサ301上に形成してステレオ画像を得ることができる。
 (6)複数の吸着ノズル21と、各吸着ノズル21に対応する複数のロッド対物レンズ211およびロッドリレーレンズ210からなるステレオ光学系と、各吸着ノズル21に対応する複数のイメージセンサ301とを有する構成において、イメージセンサ301は、複数の吸着ノズル21の個数分有して構成することができる。
 (7)複数の吸着ノズル21と、各吸着ノズル21に対応する複数のロッド対物レンズ211およびロッドリレーレンズ210からなるステレオ光学系と、各吸着ノズル21に対応する複数のイメージセンサ301とを有する構成において、イメージセンサ301は、複数の吸着ノズル21間で共用することができる。この構成では、カメラモジュール30を低減でき、かつ、ステレオ用のロッドレンズユニットの本数を低減でき、また、狭いピッチで吸着ノズルモジュール20を配置することができる。
 (8)ステレオ光学系は、プリント基板50上の部品搭載位置601と同時に、実装ヘッド10の吸着ノズル21の先端あるいは電子部品60の位置も測定可能に構成することで、カメラモジュール30は、吸着ノズル21の先端あるいは電子部品60の位置とプリント基板50上の部品搭載位置601との相対位置を測定し、そして、各駆動部911,912,922,923は、カメラモジュール30による測定結果に基づいて、実装ヘッド10の軌道を修正することができる。
 (9)吸着ノズル21の先端に蛍光物質が塗布され、この蛍光物質を紫外光で照明するノズル照明光源202を有することで、吸着ノズル21の先端のみを顕在化してステレオ計測を容易にすることができる。
 (10)実装ヘッド10の吸着ノズル21の下端を側方から観察する観察用光学系として、部品透過照明光源203やロッドリレーレンズ210cなどを有することで、プリント基板50に対する実装ヘッド10の下端の電子部品60の吸着状態などを観察することができる。
 (11)観察用光学系として、イメージリレー用のロッドリレーレンズ210cなどからなるリレー光学系を1つ以上付加することで、実装ヘッド10の吸着ノズル21の下端を側方から観察することができる。
 [実施の形態2]
 本実施の形態に係る基板加工装置、およびこの基板加工装置における基板加工方法について、図18を用いて説明する。本実施の形態では、前記実施の形態1で説明した撮像装置を基板加工装置に適用したものである。本実施の形態では、前記実施の形態1と異なる点を主に説明する。
 本実施の形態は、撮像装置を用いて位置決めを行い、基板に穴をあける基板加工装置に係わり、それぞれ、作用子はドリル、動作ヘッドは加工ヘッド、基板はプリント基板、ヘッド作用位置は穴あけ位置、である。
 図18は、本実施の形態に係る基板加工装置において、ステレオ光学系を配置した加工ヘッドの一例を示した側面図である。
 本実施の形態に係る基板加工装置は、前記実施の形態1の実装ヘッド10が加工ヘッド10Aに代わり、吸着ノズルモジュール20が加工ヘッドモジュール20Aに代わっており、この加工ヘッドモジュール20Aにドリル29が装着されている。すなわち、図18に示す基板加工装置において、図5~図6,図8~図9と異なっているのはドリル29が吸着ノズル21の代わりに装着されていることである。
 このドリル29が回転しながら加工することで、プリント基板50上に穴をあける。回路パターンの微細化に伴って穴をあける位置をプリント基板50上の穴あけ位置(パターン)601Aの実際の位置によって微調整したい場合に、図5~図6,図8~図9を用いて説明した光学系と同一の光学系を用いて、パターン601Aの3次元的な位置をステレオ画像によって検出することが可能となり、この結果を加工ヘッドモジュール20Aの位置決めにフィードバックして、高精度なプリント基板50の加工を実現できる。また、側方観察系を図5~図6,図8~図9と同様に備えることで、ドリル29の先端の高さ、ドリル29の軸ぶれ、ドリル29の先端の摩耗や欠損をモニターすることが可能になるという効果もある。
 以上説明したように、本実施の形態に係る基板加工装置、およびこの基板加工装置における基板加工方法によれば、前記実施の形態1に対して、作用子はドリル29、動作ヘッドは加工ヘッド10A、ヘッド作用位置は穴あけ位置601Aにそれぞれ代わるものの、前記実施の形態1と同様に、タクトタイムを増大することなく、プリント基板50上の穴あけ位置601Aを3次元的に正確に測定して、加工ヘッド10Aを目標箇所に正確に移動させることで、加工箇所の正確な位置に穴あけを行うことができる。
 より詳細には、ドリル29、光学系、および、カメラモジュール30を有する加工ヘッド10Aと、加工ヘッド10Aを駆動するX軸モータ駆動部911、Y軸モータ駆動部912、Z軸モータ駆動部922およびθ軸モータ駆動部923とを有する。特に、光学系は、ロッド対物レンズ211a,211bおよびロッドリレーレンズ210a,210bからなるステレオ光学系とすることで、カメラモジュール30は、ステレオ光学系を介して、プリント基板50上の穴あけ位置601Aのパターンの3次元的な位置を、ドリル29が穴あけ位置601Aの直上(略直上)にある状態で測定し、そして、各駆動部911,912,922,923は、カメラモジュール30による測定結果に基づいて、加工ヘッド10Aの位置を修正することができる。
 他の詳細は、前記実施の形態1と同様である。ただし、加工ヘッド10Aの下端はドリル29の先端などとなる。
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例えば、上記した実施の形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 例えば、前記実施の形態においては、基板処理装置の一例として、プリント基板に電子部品を実装する部品実装装置や、プリント基板に穴をあける基板加工装置を例に説明したが、本発明はこれに限定されるものではなく、撮像装置を用いて位置決めを行う基板処理装置全般に広く適用できるものである。
10 実装ヘッド
10A 加工ヘッド
11 Xビーム機構
12 Yビーム機構
13 ベースフレーム
20 吸着ノズルモジュール
20A 加工ヘッドモジュール
21 吸着ノズル
22 Z軸モータ
23 θ軸モータ
24 真空バルブ
25 フレーム
29 ドリル
30 カメラモジュール
31 レンズ
32 カメラモジュールステイ
33 カメラモジュール移動ステージ
40 電子部品フィーダ
41 部品受け渡し部
50 プリント基板
60 電子部品
90 制御部
100 部品実装装置
201 基板斜方照明光源
202 ノズル照明光源
203 部品透過照明光源
210 ロッドリレーレンズ
211 ロッド対物レンズ
212 遮光パターン
220 三角プリズム
221 ダブプリズム
222 ロンボイドプリズム
223 ウェッジプリズム
250 対物レンズ
251 リレーレンズ
252 接眼レンズ
253 イメージ転送用ファイバーバンドル
254 中間像位置
301 イメージセンサ
302 カメラモジュール部移動ユニット
601 部品搭載位置
601A 穴あけ位置
911 X軸モータ駆動部
9111 位置エンコーダ
912 Y軸モータ駆動部
9121 位置エンコーダ
922 Z軸モータ駆動部
923 θ軸モータ駆動部
924 真空バルブ駆動部
930 画像処理部
 
 

Claims (16)

  1.  作用子、光学系、および、撮像部を有する動作ヘッドと、
     前記動作ヘッドを駆動する駆動部と、を有し、
     前記光学系は、ステレオ光学系であり、
     前記撮像部は、前記ステレオ光学系を介して、基板上のヘッド作用位置のパターンの3次元的な位置を、前記作用子が前記ヘッド作用位置の直上にある状態で測定し、
     前記駆動部は、前記撮像部による測定結果に基づいて、前記動作ヘッドの位置を修正する、基板処理装置。
  2.  請求項1記載の基板処理装置において、
     前記ステレオ光学系は、2本のリレー光学系を用いて、前記動作ヘッドに密接して配置されている、基板処理装置。
  3.  請求項2記載の基板処理装置において、
     前記リレー光学系は、ロッド状の屈折率分布型レンズ、伝送用リレーレンズを管内に配置したもの、または、ファイバーバンドルの何れかである、基板処理装置。
  4.  請求項3記載の基板処理装置において、
     前記撮像部は、前記リレー光学系の撮像側に2台のイメージセンサが配置され、前記リレー光学系の像を前記2台のイメージセンサ上に形成してステレオ画像を得る、基板処理装置。
  5.  請求項3記載の基板処理装置において、
     前記撮像部は、前記リレー光学系の撮像側に1台のイメージセンサが配置され、前記リレー光学系の像を前記1台のイメージセンサ上に形成してステレオ画像を得る、基板処理装置。
  6.  請求項5記載の基板処理装置において、
     複数の前記作用子と、前記複数の作用子に対応する複数の前記リレー光学系を有するステレオ光学系と、前記複数の作用子に対応する複数の前記イメージセンサとを有し、
     前記イメージセンサは、前記複数の作用子の個数分有する、基板処理装置。
  7.  請求項5記載の基板処理装置において、
     複数の前記作用子と、前記複数の作用子に対応する複数の前記リレー光学系を有するステレオ光学系と、1台の移動可能な前記イメージセンサとを有し、
     前記イメージセンサは、前記複数の作用子間で共用する、基板処理装置。
  8.  請求項1乃至7の何れか一項に記載の基板処理装置において、
     前記ステレオ光学系は、前記基板上のヘッド作用位置と同時に、前記動作ヘッドの下端の位置も測定可能に構成され、
     前記撮像部は、前記動作ヘッドの下端の位置と前記基板上のヘッド作用位置との相対位置を測定し、
     前記駆動部は、前記撮像部による測定結果に基づいて、前記動作ヘッドの軌道を修正する、基板処理装置。
  9.  請求項8記載の基板処理装置において、
     前記作用子の先端に蛍光物質が塗布され、前記蛍光物質を紫外光で照明する光源を有する、基板処理装置。
  10.  請求項1乃至9の何れか一項に記載の基板処理装置において、
     前記動作ヘッドの下端を側方から観察する観察用光学系を有し、前記観察用光学系により前記基板に対する前記動作ヘッドの下端の状態を観察する、基板処理装置。
  11.  請求項10記載の基板処理装置において、
     前記観察用光学系として、前記ステレオ光学系に対して、リレー光学系を1つ以上付加する、基板処理装置。
  12.  請求項1記載の基板処理装置において、
     前記基板処理装置は、前記基板に電子部品を実装する部品実装装置であり、
     それぞれ、前記作用子は吸着ノズル、前記動作ヘッドは実装ヘッド、前記基板はプリント基板、前記ヘッド作用位置は部品搭載位置、であり、
     前記撮像部は、前記ステレオ光学系を介して、前記プリント基板上の前記部品搭載位置のパターンの3次元的な位置を、前記吸着ノズルが前記部品搭載位置の直上にある状態で測定し、
     前記駆動部は、前記撮像部による測定結果に基づいて、前記実装ヘッドの位置を修正する、基板処理装置。
  13.  請求項1記載の基板処理装置において、
     前記基板処理装置は、前記基板に穴をあける基板加工装置であり、
     それぞれ、前記作用子はドリル、前記動作ヘッドは加工ヘッド、前記基板はプリント基板、前記ヘッド作用位置は穴あけ位置、であり、
     前記撮像部は、前記ステレオ光学系を介して、前記プリント基板上の前記穴あけ位置のパターンの3次元的な位置を、前記ドリルが前記穴あけ位置の直上にある状態で測定し、
     前記駆動部は、前記撮像部による測定結果に基づいて、前記加工ヘッドの位置を修正する、基板処理装置。
  14.  作用子、光学系、および、撮像部を有する動作ヘッドと、
     前記動作ヘッドを駆動する駆動部と、を有する基板処理装置における基板処理方法であって、
     前記光学系は、ステレオ光学系であり、
     前記撮像部は、前記ステレオ光学系を介して、基板上のヘッド作用位置のパターンの3次元的な位置を、前記作用子が前記ヘッド作用位置の直上にある状態で測定し、
     前記駆動部は、前記撮像部による測定結果に基づいて、前記動作ヘッドの位置を修正する、基板処理方法。
  15.  請求項14記載の基板処理方法において、
     前記基板処理装置は、前記基板に電子部品を実装する部品実装装置であり、
     それぞれ、前記作用子は吸着ノズル、前記動作ヘッドは実装ヘッド、前記基板はプリント基板、前記ヘッド作用位置は部品搭載位置、であり、
     前記撮像部は、前記ステレオ光学系を介して、前記プリント基板上の前記部品搭載位置のパターンの3次元的な位置を、前記吸着ノズルが前記部品搭載位置の直上にある状態で測定し、
     前記駆動部は、前記撮像部による測定結果に基づいて、前記実装ヘッドの位置を修正する、基板処理方法。
  16.  請求項14記載の基板処理方法において、
     前記基板処理装置は、前記基板に穴をあける基板加工装置であり、
     それぞれ、前記作用子はドリル、前記動作ヘッドは加工ヘッド、前記基板はプリント基板、前記ヘッド作用位置は穴あけ位置、であり、
     前記撮像部は、前記ステレオ光学系を介して、前記プリント基板上の前記穴あけ位置のパターンの3次元的な位置を、前記ドリルが前記穴あけ位置の直上にある状態で測定し、
     前記駆動部は、前記撮像部による測定結果に基づいて、前記加工ヘッドの位置を修正する、基板処理方法。
     
     
PCT/JP2014/060302 2013-04-30 2014-04-09 基板処理装置および基板処理方法 WO2014178265A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013095661A JP2014216621A (ja) 2013-04-30 2013-04-30 基板処理装置および基板処理方法
JP2013-095661 2013-04-30

Publications (1)

Publication Number Publication Date
WO2014178265A1 true WO2014178265A1 (ja) 2014-11-06

Family

ID=51843400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060302 WO2014178265A1 (ja) 2013-04-30 2014-04-09 基板処理装置および基板処理方法

Country Status (2)

Country Link
JP (1) JP2014216621A (ja)
WO (1) WO2014178265A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170325370A1 (en) * 2014-12-10 2017-11-09 Fuji Machine Mfg. Co., Ltd. Component mounter
CN108029236A (zh) * 2015-10-14 2018-05-11 雅马哈发动机株式会社 元件安装装置
CN108156802A (zh) * 2017-12-13 2018-06-12 恩纳基智能科技无锡有限公司 一种堆叠装片检测设备
JP6469926B1 (ja) * 2018-10-16 2019-02-13 ハイソル株式会社 チップ裏面撮像装置及びボンディング装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10621745B2 (en) 2015-06-19 2020-04-14 Yamaha Hatsudoki Kabushiki Kaisha Component mounting device and component mounting method
DE112015006637T5 (de) 2015-06-19 2018-03-01 Yamaha Hatsudoki Kabushiki Kaisha Bauteilmontagevorrichtung und Verfahren zur Bauteilmontagebestimmung für eine Bauteilmontagevorrichtung
DE112015006596T5 (de) 2015-08-17 2018-05-24 Yamaha Hatsudoki Kabushiki Kaisha Komponentenbefestigungsvorrichtung
US11134597B2 (en) 2015-10-14 2021-09-28 Yamaha Hatsudoki Kabushiki Kaisha Component mounting device
WO2017064774A1 (ja) 2015-10-14 2017-04-20 ヤマハ発動機株式会社 基板作業システムおよび部品実装装置
WO2017064786A1 (ja) 2015-10-15 2017-04-20 ヤマハ発動機株式会社 部品実装装置
DE102015013495B4 (de) * 2015-10-16 2018-04-26 Mühlbauer Gmbh & Co. Kg Empfangseinrichtung für Bauteile und Verfahren zum Entnehmen fehlerhafter Bauteile aus dieser
US11266050B2 (en) 2017-02-07 2022-03-01 Yamaha Hatsudoki Kabushiki Kaisha Component mounting device
JP2018186116A (ja) * 2017-04-24 2018-11-22 株式会社Fuji 対基板作業装置
WO2018220704A1 (ja) * 2017-05-30 2018-12-06 ヤマハ発動機株式会社 部品実装装置
CN111096102B (zh) 2017-09-28 2021-08-24 雅马哈发动机株式会社 元件安装装置
WO2019064413A1 (ja) 2017-09-28 2019-04-04 ヤマハ発動機株式会社 部品実装装置
WO2021060065A1 (ja) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 実装システム、ヘッドユニット及び撮像方法
JPWO2021060064A1 (ja) * 2019-09-27 2021-04-01
JP7373436B2 (ja) * 2020-03-09 2023-11-02 ファスフォードテクノロジ株式会社 ダイボンディング装置および半導体装置の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115296A (ja) * 1993-10-15 1995-05-02 Sanyo Electric Co Ltd 部品実装機の制御装置
JPH08184408A (ja) * 1994-12-28 1996-07-16 Sony Corp 位置確認装置
JP2003168897A (ja) * 2001-11-30 2003-06-13 Matsushita Electric Ind Co Ltd 電子部品姿勢認識装置
JP2007103667A (ja) * 2005-10-04 2007-04-19 Canon Machinery Inc ダイボンダ
JP2009004448A (ja) * 2007-06-19 2009-01-08 Yamaha Motor Co Ltd 部品認識装置、表面実装機
JP2010003293A (ja) * 2008-05-22 2010-01-07 Seiko Precision Inc 画像表示装置及び画像表示方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115296A (ja) * 1993-10-15 1995-05-02 Sanyo Electric Co Ltd 部品実装機の制御装置
JPH08184408A (ja) * 1994-12-28 1996-07-16 Sony Corp 位置確認装置
JP2003168897A (ja) * 2001-11-30 2003-06-13 Matsushita Electric Ind Co Ltd 電子部品姿勢認識装置
JP2007103667A (ja) * 2005-10-04 2007-04-19 Canon Machinery Inc ダイボンダ
JP2009004448A (ja) * 2007-06-19 2009-01-08 Yamaha Motor Co Ltd 部品認識装置、表面実装機
JP2010003293A (ja) * 2008-05-22 2010-01-07 Seiko Precision Inc 画像表示装置及び画像表示方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170325370A1 (en) * 2014-12-10 2017-11-09 Fuji Machine Mfg. Co., Ltd. Component mounter
EP3232756A4 (en) * 2014-12-10 2017-12-06 Fuji Machine Mfg. Co., Ltd. Component-mounting device
US10925199B2 (en) * 2014-12-10 2021-02-16 Fuji Corporation Component mounter
CN108029236A (zh) * 2015-10-14 2018-05-11 雅马哈发动机株式会社 元件安装装置
CN108029236B (zh) * 2015-10-14 2020-03-20 雅马哈发动机株式会社 元件安装装置
CN108156802A (zh) * 2017-12-13 2018-06-12 恩纳基智能科技无锡有限公司 一种堆叠装片检测设备
CN108156802B (zh) * 2017-12-13 2024-03-08 恩纳基智能科技无锡有限公司 一种堆叠装片检测设备
JP6469926B1 (ja) * 2018-10-16 2019-02-13 ハイソル株式会社 チップ裏面撮像装置及びボンディング装置
JP2020064948A (ja) * 2018-10-16 2020-04-23 ハイソル株式会社 チップ裏面撮像装置及びボンディング装置

Also Published As

Publication number Publication date
JP2014216621A (ja) 2014-11-17

Similar Documents

Publication Publication Date Title
WO2014178265A1 (ja) 基板処理装置および基板処理方法
KR100420272B1 (ko) 오프셋 측정방법, 툴위치 검출방법 및 본딩장치
KR101207198B1 (ko) 기판 검사장치
KR102255607B1 (ko) 본딩 장치 및 본딩 대상물의 높이 검출 방법
KR20010033900A (ko) 스테레오 비젼 라인스캔 센서를 갖는 전자 조립 장치
KR101390890B1 (ko) 반도체 칩의 실장장치 및 실장방법
JP4128540B2 (ja) ボンディング装置
TW201819855A (zh) 電子零件搬送裝置及電子零件檢查裝置
USRE41506E1 (en) Offset measuring mechanism and offset measuring method in a bonding apparatus
TW201405092A (zh) 三維影像量測裝置
JP2007214460A (ja) 部品実装機
US20150192528A1 (en) Method and apparatus for determining coplanarity in integrated circuit packages
JP6298064B2 (ja) 部品実装機
JPWO2019082558A1 (ja) ボンディング装置
JP5755502B2 (ja) 位置認識用カメラ及び位置認識装置
KR101873602B1 (ko) 칩 다이의 피킹 및 배치를 위한 시스템 및 방법
TW202111455A (zh) 將部件定位在板上期望位置的方法
JP5875676B2 (ja) 撮像装置及び画像処理装置
WO2015011850A1 (ja) 電子部品実装装置及び電子部品実装方法
KR100491371B1 (ko) 본딩 장치
JP2006210705A (ja) 電子部品実装装置
JP2006140391A (ja) 部品認識装置及び部品実装装置
WO2013111550A1 (ja) 部品実装装置およびその方法
JPH05180622A (ja) 位置と姿勢の検出装置
JP2022107877A (ja) 部品撮像装置および部品実装装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14791594

Country of ref document: EP

Kind code of ref document: A1