WO2014178155A1 - リベット型接点及びその製造方法 - Google Patents

リベット型接点及びその製造方法 Download PDF

Info

Publication number
WO2014178155A1
WO2014178155A1 PCT/JP2013/083420 JP2013083420W WO2014178155A1 WO 2014178155 A1 WO2014178155 A1 WO 2014178155A1 JP 2013083420 W JP2013083420 W JP 2013083420W WO 2014178155 A1 WO2014178155 A1 WO 2014178155A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
contact
rivet
billet
head
Prior art date
Application number
PCT/JP2013/083420
Other languages
English (en)
French (fr)
Inventor
正夫 黒田
弘 白幡
Original Assignee
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中貴金属工業株式会社 filed Critical 田中貴金属工業株式会社
Priority to CN201380076262.XA priority Critical patent/CN105164778B/zh
Priority to US14/784,739 priority patent/US9666382B2/en
Priority to DE112013007018.9T priority patent/DE112013007018T5/de
Priority to JP2015514743A priority patent/JP6051298B2/ja
Publication of WO2014178155A1 publication Critical patent/WO2014178155A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/018Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of a noble metal or a noble metal alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • C22C5/08Alloys based on silver with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • C22C5/10Alloys based on silver with cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
    • H01H11/041Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by bonding of a contact marking face to a contact body portion
    • H01H11/045Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by bonding of a contact marking face to a contact body portion with the help of an intermediate layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/025Composite material having copper as the basic material

Definitions

  • the present invention relates to a rivet type contact.
  • the present invention relates to a rivet-type contact that can reduce the amount of contact material such as an Ag alloy and that has a good durability life even under a use environment that receives a high capacity load.
  • Electrical contacts that mechanically open and close electrical circuits are used as components for various switches and relays in a wide range of electrical equipment from home appliances, OA equipment, automotive electrical components, etc. to heavy electrical equipment.
  • an open / close type electrical contact there is a chip-shaped one that is directly bonded to a support material such as a spring material, but generally a rivet-shaped contact is often used.
  • This rivet-type contact consists of a head that acts as an electrical contact and a foot that is narrower than the head. The foot is crimped when the rivet type contact is fixed to the support material.
  • the electrical contact is required to be able to maintain a reliable mechanical opening / closing, that is, to transmit a current / signal flowing through the contact without any trouble at the time of contact and to be opened without any trouble when disconnected. Furthermore, it is required to have a stable contact resistance.
  • the material melts, evaporates, wears out, etc. due to electric discharge, which impedes the contact function of the electrical contact, and sometimes the contacts are welded together, which deteriorates the performance of the electrical product, etc. Or cause a malfunction. For this reason, much research has been conducted on constituent materials so that the above basic functions can be achieved even under such severe loads.
  • Ag-based contact materials are currently preferred as contact materials, and in particular, various metal oxides such as SnO 2 , In 2 O 3 , and CuO are dispersed in an Ag matrix.
  • Oxide dispersion type Ag alloys Al—SnO 2 alloy, Ag—SnO 2 —In 2 O 3 alloy, Ag—ZnO alloy, etc. are often used.
  • the upper surface portion of the head is made of a contact material
  • the lower surface and the foot of the head are made of a base material such as Cu.
  • the conventional rivet-type contact having a two-layer structure is satisfactory from the viewpoint of achieving both the member cost and the contact function. And its durability is sufficient for most applications.
  • the switching contacts have a wide variety of uses, from low load ones to one that opens and closes high loads with a rated current of several tens to several hundreds of A.
  • the conventional rivet-type contact having a two-layer structure has a problem that a contact material portion made of an Ag alloy is peeled off from the base material with use in such a high load application. If such peeling of the contact material occurs at one contact (fixed contact), the other contact (movable contact) may contact or short circuit with the base material, which may cause a failure of the device.
  • the present invention provides a rivet-type contact that does not cause the contact material as described above to be peeled off and has an excellent durability life.
  • the present inventors first examined the cause of peeling of the contact material that occurs in the conventional two-layer structure rivet-type contact. As a result, we focused on the behavior of oxygen in the environment specific to high-capacity switching contacts.
  • the contact surface When the contacts are in contact with each other, the contact surface is subjected to an arc heat / joule heat load corresponding to the electric capacity, but in the case of a high capacity contact surface, the temperature is considerably high.
  • oxygen in the external atmosphere air
  • the contact material is a metal that can easily diffuse oxygen, so that the infiltrated oxygen diffuses into the contact material and eventually reaches the junction interface between the contact material and the base material. Will be reached.
  • the oxygen that reaches the bonding interface is bonded to and oxidized with Cu constituting the base material to form a Cu oxide. Since this Cu oxide has a weak bonding force with the contact material (Ag), it causes peeling.
  • the influence of oxygen in addition to the intrusion from the external atmosphere, the influence of what is contained in the contact material itself can be considered. This is because, when an Ag oxide alloy is applied as a contact material, oxygen in the dispersed oxide dissociates from the oxide at a high temperature, diffuses in the contact material, reaches the bonding interface, and forms an oxide. Is.
  • the present inventors considered that it is effective to suppress oxide formation at the junction interface between the contact material and the base material in order to suppress the peeling of the contact material.
  • the cause of oxide formation is due to oxygen from the external atmosphere or due to oxygen from the oxide in the contact material. It is impossible to change the external atmosphere of the contact, and the oxide in the contact material is a main component in the Ag oxide alloy, and limits the amount of oxide when the Ag oxide alloy is applied. That is not realistic.
  • the present inventors set a barrier layer that prevents diffusion of oxygen to the bonding interface as a means for suppressing the formation of oxide at the bonding interface, and further applies an Ag alloy as the constituent material.
  • the present invention was conceived as preferred.
  • the present invention is a rivet type contact comprising a head and a foot narrower than the head, wherein the head comprises a contact material layer having at least an upper surface made of an Ag-based contact material,
  • the rivet-type contact is characterized in that the remaining part and the foot part are made of a base material made of Cu or a Cu alloy, and a barrier layer made of an Ag alloy is provided at the bonding interface between the contact material layer and the base material.
  • the present invention relates to a rivet type having a two-layer structure in which at least an upper surface is made of a contact layer made of an Ag-based contact material, and a remaining part of the head and a foot are made of a base material made of Cu or a Cu alloy.
  • the contact is characterized in that a three-layer structure is formed by forming a barrier layer made of an Ag alloy at the junction interface between the contact layer and the base material.
  • the barrier layer which is a feature of the present invention will be described.
  • an additive element of Ag alloy (a constituent element other than Ag) is preferentially bonded to oxygen to become an oxide, thereby preventing oxygen from reaching the bonding interface and Cu oxidation. This prevents the production of objects.
  • the Ag alloy constituting this barrier layer has a sufficient bonding force to both the contact material (Ag-based contact material) and the base material (Cu). Further, since the conductivity and toughness are also good, it is possible to prevent the formation of oxide at the joint interface without impairing the electrical characteristics as a contact.
  • the constituent material of the barrier layer a material that does not readily diffuse oxygen instead of an Ag alloy may be used, and the oxygen transfer itself to the bonding interface may be invalidated.
  • the types of metal materials that do not cause oxygen diffusion at all are limited, and there are few metal materials that are excellent in conductivity and toughness and that have sufficient bonding strength to both the contact material and the base material.
  • the barrier layer made of an Ag alloy that consumes oxygen as in the present invention changes to an Ag oxide alloy close to a contact material by precipitating an oxide in the course of use. This means that the wear resistance and welding resistance of the barrier layer are improved in the course of use, and there is also an advantage that it can act as a backup when the contact material is worn.
  • the Ag alloy serving as the barrier layer contains 0.03 to 0.03 of one or more base metal elements of Sn, In, Cu, Ni, Fe, Co, W, Mo, Zn, Cd, Te, and Bi.
  • An Ag alloy added by 20% by mass is preferable.
  • the addition amount of these base metals is less than 0.03%, oxygen is allowed to reach the bonding interface.
  • it exceeds 20 mass% joining strength with a base material will become unstable.
  • the Ag alloy constituting the barrier layer may contain inevitable impurities.
  • the “Ag alloy” constituting the barrier layer means that a solid solution alloy in which Ag and an additive element (base metal) are in solid solution and a part of additive element that has not been completely dissolved are precipitated. It is a meaning including both of a certain composite type alloy.
  • the function as a barrier layer is exhibited by oxidizing the additive element.
  • the Ag alloy constituting the barrier layer examples include an Ag alloy (Ag—Cu alloy) obtained by adding 0.5 to 20% by mass of Cu to Ag.
  • the amount of Cu added is preferably 3.0 to 20% by mass.
  • an Ag alloy obtained by adding 0.03 to 1.0% by mass of Ni to an Ag—Cu alloy can also be applied.
  • an alloy other than Cu can be added, for example, an Ag alloy in which at least one of Sn, In, Zn, and Cd is added to Ag in an amount of 0.5 to 20% by mass.
  • an Ag alloy (Ag—Sn—In alloy) obtained by adding 1.0 to 10% by mass of Sn and 0.5 to 10% by mass of In to Ag is preferable.
  • An Ag alloy to which at least one of Cu, Bi, and Cd is added in a total amount of 0.01 to 1.0% by mass can also be applied.
  • an Ag alloy in which at least one of Ni, Fe, Co, W, and Mo is added to Ag in a total amount of 0.03 to 20% by mass is also considered useful. Since these additive elements have a relatively low solid solubility limit with respect to Ag, a composite type Ag alloy in which some of the additive elements precipitate independently is obtained.
  • the lower limit of the amount of Ni added is preferably 0.03% by mass.
  • the lower limit of the total addition amount is preferably 0.05% by mass.
  • the thickness of the barrier layer is preferably 0.03 mm to 0.3 mm. If it is less than 0.03 mm, the action of trapping oxygen in the barrier layer is insufficient, and oxide formation at the bonding interface cannot be sufficiently suppressed. Although there is no restriction
  • the rivet-type contact of the present invention having the barrier layer described above is basically the same as the conventional rivet-type contact having a two-layer structure in other configurations.
  • the contact material layer forming the upper surface of the head is made of an Ag-based contact material, and specifically, pure Ag or an Ag alloy (Ag—Ni alloy, Ag—Cu alloy, etc.).
  • an Ag alloy oxide-dispersed Ag oxide alloys (Ag—SnO 2 alloy, Ag—SnO 2 —In 2 O 3 alloy, Ag—ZnO alloy, etc.) can also be applied.
  • the present invention is particularly useful when an Ag oxide alloy is applied as the contact material. This is because oxygen may diffuse from the oxide in the contact material as described above.
  • Cu or a Cu alloy Cu—Ni alloy, Cu—Sn alloy
  • Cu—Ni alloy Cu—Sn alloy
  • the contact material should just be joined to the upper surface of the head.
  • the preferred thickness of the contact material can be adjusted by the load of the contact (rated current, etc.). For low load, it should be 0.1 mm or more, but for high loads such as breakers (rated current of 50 A or more) About 1 to 2 mm is required for the product.
  • the entire head may be a contact material and the foot may be formed of a base material. (FIG. 1 (b)).
  • the foot portion while forming the foot portion from the base material, the foot portion is formed with a heel portion having a diameter larger than that of the foot portion, while the head portion is formed from a contact material, and the lower end surface of the heel portion is It is good also as a shape which buried the foot part in the head so that it may become substantially flat to the lower end surface of the head.
  • the length (l) between the extreme end of the buttocks and the foot starting point is 1 ⁇ L (preferably with respect to the length (L) between the extreme end of the head and the foot starting point. Is preferably 0.4L ⁇ l ⁇ 0.6L).
  • the thickness of the barrier layer is preferably uniform, but the shape does not have to be a complete plane. That is, the barrier layer may be formed along a substantially flat bonding interface as shown in FIG. 1A, but the bonding interface is formed in an arc shape as shown in FIG. 3, and the barrier layer is formed along this. May be. Furthermore, the joining interface may be in a wavy state.
  • the head material and the foot portion are formed in a state where the contact material, the Ag alloy serving as the barrier layer, and the base material are firmly bonded. It is necessary to mold into a rivet type contact having
  • a manufacturing method of the rivet type contact according to the present invention a first billet made of a contact material, a second billet made of an Ag alloy, and a third billet made of a base material are brought into contact with each other and pressed to form a composite.
  • a joining punch having a concave space and a joining die having a cylindrical space are combined to form a rivet-shaped space, and the composite material is moved from the lower part of the joining die to the space of the joining punch.
  • a first billet made of a contact material first, a first billet made of a contact material, a second billet made of an Ag alloy, and a third billet made of a base material are pressure-contacted to form a composite material.
  • This manufacturing process of the composite material is an essential process for manufacturing the rivet type contact according to the present invention.
  • the second billet and the third billet can be deformed by causing the joint surface to follow the deformation of the first billet during the head forming step. It is preferable to process with a strong processing force of 0.8 to 3.0 ton ⁇ f at the time of this pressure contact.
  • the rivet-type contact can be made by press-fitting the manufactured composite material into a mold formed by a combination of a joining punch and a joining die.
  • the first billet press-fitted into the space of the bonding punch is deformed by the wall surface of the bonding punch and becomes a head shape, and each bonding surface of the composite material follows this deformation and the remaining portion of the head and the barrier layer And a foot is formed.
  • the form of the rivet type contact can be adjusted by the relationship between the volume of the first billet and the space volume in the joining punch.
  • FIG. A head composed of three layers of a contact material layer, a barrier layer, and a base material as in a) is formed.
  • the load in press-fitting the composite material may be any load that can deform and process the first billet, and can be adjusted according to the type of contact material of the first billet.
  • the rivet-type contact according to the present invention is an improvement of the two-layer structure in which an Ag-based contact material and a base material such as Cu are combined. -Suppression is suppressed and has an excellent durability life.
  • mold contact which concerns on this invention The figure explaining the other structural example of the rivet type
  • Examples 1 to 5 Ag oxide alloy in which an Ag oxide alloy is applied as a contact material, Cu is applied as a base material, and Cu is added in an amount of 3.0 to 20 mass% and Ni is added in an amount of 0.5 wt% as a barrier layer.
  • the alloy was applied to produce rivet type contacts.
  • FIG. 4 illustrates a manufacturing process of the rivet type contact according to the present embodiment.
  • a first billet (dimensions: ⁇ 2.2 mm, 0.79 mm) was cut out from a wire of an Ag oxide alloy (Ag—SnO 2 —In 2 O 3 alloy: trade name SIE-29B), and a wire of Ag—Cu alloy was cut.
  • a second billet (dimensions: ⁇ 2.2 mm, 0.14 mm) was cut out from the wire, and a third billet (dimensions: ⁇ 2.2 mm, 2.1 mm) was cut out from the Cu wire.
  • the first billet, the second billet, and the third billet were overlapped and inserted into a joining die, and both were pressed to form a composite material.
  • the joining die has a hole diameter of ⁇ 2.45 mm made of cemented carbide.
  • the load for this joining was 2.2 ton ⁇ f.
  • the first to third billets are inserted into the joining dies and joined.
  • the hole diameter of the die for inserting each billet is preferably 0.05 to 0.25 mm larger than the billet diameter.
  • a joining punch was set on the joining die to process the composite material into a rivet shape.
  • the joining punch is made of carbide and has a disk-shaped space (dimensions: upper surface ⁇ 2.4 mm, lower surface ⁇ 2.8 mm, height 1.1 mm) with curved side surfaces.
  • the composite material is pressed into the space of the joining punch at a stroke from below the joining die so that the first billet portion becomes the upper surface of the head, the third billet becomes the lower portion of the head and the foot portion, and the second billet Was deformed to form a barrier layer.
  • the joining punch was moved and the upper surface of the head was pressed with a mortar mold.
  • the dimensions of the rivet type contact manufactured as described above are such that the head has a diameter of ⁇ 3.2 mm, the thickness of 0.8 mm, and the foot has a diameter of ⁇ 2.45 mm and a length of 1.2 mm. And the thickness of the contact layer of the head was 0.45 mm, and the thickness of the barrier layer was 0.07 ⁇ m.
  • Comparative Examples 1 to 3 Here, pure oxide (comparative example) was used as a barrier layer while applying an Ag oxide alloy (Ag—SnO 2 —In 2 O 3 alloy) as a contact material and Cu as a base material. A rivet type contact was manufactured by applying an Ag—Cu alloy to which 1), 0.3 mass% (Comparative Example 2) and 28 mass% (Comparative Example 3) of Cu were added.
  • an Ag oxide alloy Au—SnO 2 —In 2 O 3 alloy
  • Example 1 Further, a conventional rivet-type contact without a barrier layer was manufactured while applying an Ag oxide alloy (Ag—SnO 2 —In 2 O 3 alloy) as a contact material and Cu as a base material.
  • an Ag oxide alloy Au—SnO 2 —In 2 O 3 alloy
  • the second billet Al—Cu alloy
  • the thickness of the contact layer was the same as in Example 1.
  • the heating test for confirming the presence or absence of peeling of the contact material in a high temperature atmosphere was performed on the rivet type contacts of Examples, Comparative Examples, and Conventional Examples manufactured as described above. In this heating test, each contact was heated to 600 ° C., 700 ° C., and 750 ° C. for 3 hours, and then the head of the rivet-type contact was compressed in the lateral direction until the head diameter was halved. The presence or absence of peeling at the bonding interface was observed. The results of this heating test are shown in Table 1.
  • Examples 1 to 5 provided with an Ag—Cu alloy having an appropriate composition range as a barrier layer, no peeling was observed at the bonding interface even when subjected to heating and compression at 600 to 750 ° C.
  • peeling occurred at the bonding interface at the stage of heating at 600 ° C.
  • Comparative Example 1 in which pure Ag was used as the barrier layer, peeling did not occur until heating at 600 ° C., but peeling occurred due to heating at 700 ° C. or higher.
  • peeling occurs due to heating at 700 ° C. or higher due to excessive or insufficient amount of added Cu (Comparative Example 2 and Comparative Example 3), so it is necessary to pay attention to the composition range. is there.
  • FIG. 5 is an observation result of the bonding interface after the heating test for each contact of Example 2, Comparative Example 1, and the conventional example.
  • clear peeling occurs by heating at 600 ° C.
  • Comparative Example 1 no peeling was observed when heated at 600 ° C., but precipitation (black portion) of oxide (oxidized Cu) was observed at the interface between the base material (Cu) and the barrier layer (Ag). It is done. Then, when the heating temperature reaches 700 ° C. or higher, the amount of oxide increases and peeling occurs.
  • Example 2 On the other hand, in Example 2, a clear change was not seen up to heating at 700 ° C., and a slight amount of Cu oxide was generated at the interface between the contact material and the barrier layer at 750 ° C. heating. However, no oxide is observed between the barrier layer and the base material, and no peeling occurs. It is considered that the oxide between the contact material and the barrier layer was produced by Cu trapping oxygen in the Ag—Cu alloy as the barrier layer. From the above results, it can be confirmed that the prevention of oxygen from reaching the base material can be achieved by the barrier layer made of an Ag alloy.
  • the contact material is prevented from being peeled / dropped off during the use process.
  • the improvement of the durability life is added to the original characteristic of the conventional two-layer rivet type contact that reduces the amount of the contact material used and suppresses the member cost.
  • the rivet-type contact according to the present invention is useful for home appliances, industrial equipment and other general-purpose relays or switches, residential wiring, industrial equipment wiring breakers, and electromagnetic switches.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Contacts (AREA)
  • Manufacture Of Switches (AREA)

Abstract

 本発明は、頭部と前記頭部より幅狭の足部よりなるリベット型接点において、前記頭部は、少なくとも上面がAg系接点材料よりなる接点層からなり、前記頭部の残部及び前記足部がCu又はCu合金よりなるベース材料からなり、前記接点材料と前記ベース材料との接合界面に、Ag合金からなるバリア層を備えることを特徴とするリベット型接点である。ここで、バリア層を構成するAg合金は、AgにSn、In、Cu、Ni、Fe、Co、W、Mo、Zn、Cd、Te、Biの1種又は2種以上の卑金属元素を0.03~20質量%添加してなるAg合金が好適に使用される。

Description

リベット型接点及びその製造方法
 本発明は、リベット型接点に関する。特に、Ag合金等の接点材料の使用量を低減することができると共に、高容量負荷を受ける使用環境下においても耐久寿命が良好なリベット型接点に関する。
 電気回路を機械的に開閉する電気接点は、家電製品、OA機器、自動車用電装品等から重電機器まで幅広い分野の電気機器の各種スイッチ、リレーの構成部品として使用されている。かかる開閉型の電気接点の形態としては、直接バネ材等の支持材に接合するチップ形状のものもあるが、一般的にはリベット形状の接点が用いられることが多い。このリベット型接点は、電気接点として作用する頭部と、頭部より幅狭の足部とからなる。足部はリベット型接点を支持材に固定させる際、カシメ変形される。
 そして、電気接点は、確実な機械的開閉を維持することができること、即ち、接触時には接点に流れる電流・信号を支障なく伝え、切り離した際には支障なく開離できることが要求される。更に、安定した接触抵抗を有することも要求される。その一方で、開閉接点の表面においては、放電による材料の溶融、蒸発、消耗等が生じ、これらにより電気接点の接触機能が阻害され、ときには接点同士が溶着し、これらが電気製品等の性能低下や機能停止を引き起こす要因となる。そのため、かかる過酷な負荷のもとでも上述の基本機能を果たすことができるよう構成材料についての研究も多くなされている。その中で現在、接点材料として好適であるとされているのは、Ag系の接点材料であり、特に、Agマトリックスに、SnO、In、CuO等の各種金属酸化物を分散させた酸化物分散型のAg合金(Ag-SnO系合金、Ag-SnO-In系合金、Ag-ZnO系合金等)が適用されることが多い。
 従来のリベット型接点は、全体を接点材料で構成することが多かったが、近年では接点材料であるAg合金等が高価であることを考慮して、部材コスト低減のため接点材料の適用箇所を一部とし、他の部分をCuやCu合金等の比較的低コストの材料(ベース材料)で構成した2層リベット型接点の使用が一般的となっている。
 このようなAg合金とCu系材料とを組み合わせた2層リベット型接点の構成としては、例えば、頭部の上面部分を接点材料で構成し、頭部の下面と足部をCu等のベース材料にしたもの(図7(a)、特許文献1参照)や、頭部全体を接点材料とし足部をベース材料にしたもの等(図7(b)、特許文献2参照)が知られている。
特開平5-282957号公報 実用新案登録第3098834号公報
 従来の2層構成のリベット型接点は、部材コストと接点機能との両立の観点では満足できるものである。そして、その耐久性も概ねの用途においては十分なものである。
 しかしながら、上記のように開閉接点の用途は多岐に渡っており、低負荷のものから、定格電流数十~数百Aの高負荷の開閉、遮断を行うものもある。そして、本発明者等によれば、従来の2層構成のリベット型接点は、かかる高負荷の用途においては、使用に伴いAg合金からなる接点材料部分がベース材料から剥離するという問題がある。このような接点材料の剥離が一方の接点(固定接点)に生じると、そのベース材料に他方の接点(可動接点)が接触・短絡して機器の故障の要因となり得る。
 以上のような2層構造のリベット型接点における問題は、異種材料を組み合わせて構成したことにより生じるものであり、接点全体をAg合金で構成すれば生じない問題であるが、部材コストを考慮すれば合理的な構成である。従って、かかる合理的構成を維持しつつその耐久性に配慮することが求められる。そこで本発明は、リベット型接点について、上記のような接点材料の剥離・脱落が発生せず耐久寿命に優れるものを提供する。
 本発明者等は、上記課題を解決するため、まず、従来の2層構造のリベット型接点で生じる接点材料の剥離の要因について検討した。その結果、高容量の開閉接点特有の環境における酸素の挙動に着目した。
 接点同士の接触の際には、接点表面はその電気容量に応じたアーク熱・ジュール熱の負荷を受けるが、高容量の接点表面の場合、その温度は相当高温なものとなる。このとき、外部雰囲気(空気)中の酸素が接点材料に浸入することとなる。ここで、接点材料の主要構成金属であるAgは、酸素を容易に拡散させることができる金属であるため、浸入した酸素は接点材料中に拡散し、やがて接点材料とベース材料との接合界面に達することとなる。そして、接合界面に到達した酸素は、ベース材料を構成するCuと結合・酸化してCu酸化物を形成する。このCu酸化物は、接点材料(Ag)との結合力が弱いため、剥離を生じさせることとなる。
 また、酸素の影響としては、外部雰囲気から侵入するものの他、接点材料自体に含有されているものの影響も考えられる。これは、接点材料としてAg酸化物合金を適用する場合、分散する酸化物の酸素が、高温下で酸化物より解離し、接点材料中で拡散して接合界面に到達し酸化物を形成するというものである。
 本発明者等は、上記検討から、接点材料の剥離を抑制するためには、接点材料とベース材料との接合界面における酸化物形成を抑制することが有効であると考えた。もっとも、酸化物形成の要因が、外部雰囲気からの酸素によるものなのか、接点材料中の酸化物からの酸素によるものなのかは一義的なものではない。そして、接点の外部雰囲気を変更することは不可能であり、また、接点材料中の酸化物はAg酸化物合金における主要な構成であり、Ag酸化物合金を適用する場合において酸化物量を制限することは現実的ではない。
 そこで本発明者等は、接合界面における酸化物の形成抑制の手段として、接合界面への酸素の拡散を阻止するバリア層を設定することとし、更に、その構成材料としてAg合金を適用することが好ましいとして本発明に想到した。
 即ち、本発明は、頭部と、前記頭部より幅狭の足部よりなるリベット型接点において、前記頭部は、少なくとも上面がAg系接点材料よりなる接点材料層からなり、前記頭部の残部及び前記足部がCu又はCu合金よりなるベース材料からなり、前記接点材料層と前記ベース材料との接合界面に、Ag合金からなるバリア層を備えることを特徴とするリベット型接点である。
 以下、本発明について詳細に説明する。本発明は、少なくとも上面がAg系接点材料よりなる接点層からなる頭部と、頭部の残りの部分及び足部がCu又はCu合金よりなるベース材料で構成される2層構造を有するリベット型接点について、接点層とベース材料との接合界面にAg合金からなるバリア層を形成し3層構造とすることに特徴がある。
 そこで、本発明の特徴であるバリア層について説明する。本発明におけるAg合金からなるバリア層は、Ag合金の添加元素(Ag以外の構成元素)が優先的に酸素と結合し酸化物となることで、接合界面への酸素の到達を阻止しCu酸化物の生成を防止するものである。このバリア層を構成するAg合金は、接点材料(Ag系接点材料)及びベース材料(Cu)の双方に対して十分な接合力を有する。また、導電性・靭性も良好であることから、接点としての電気的特性を損なうことなく接合界面での酸化物生成を防止できる。
 この点、バリア層の構成材料としては、Ag合金ではなく酸素が拡散し難い材料を適用し、接合界面への酸素の移動そのものを無効化するものも考えられる。しかし、酸素拡散が全く生じない金属材料は種類が限られ、また、導電性・靭性に優れる上に接点材料及びベース材料の双方に対して十分な接合力を有するものは少ない。これに対し、本発明のような酸素を消費するAg合金からなるバリア層は、使用過程で酸化物を析出させることで接点材料に近いAg酸化物合金に変化する。これは、使用過程においてバリア層の耐摩耗性、耐溶着性が向上することを意味し、接点材料が磨耗したときのバックアップとして作用することができるというメリットもある。
 そして、バリア層となるAg合金は、AgにSn、In、Cu、Ni、Fe、Co、W、Mo、Zn、Cd、Te、Biの1種又は2種以上の卑金属元素を0.03~20質量%添加してなるAg合金が好ましい。これらの卑金属の添加量が0.03%未満では、酸素を接合界面への到達を許すこととなる。また、20質量%を超えると、ベース材料との接合強度が不安定になる。尚、複数の添加元素がある場合は、それらの総量である。また、バリア層を構成するAg合金は、不可避不純物を含むことがある。
 ここで、バリア層を構成する「Ag合金」とは、Agと添加元素(卑金属)とが固溶した状態にある固溶合金と、固溶しきれなかった添加元素が一部析出した状態にある複合型の合金の双方を含む意義である。いずれの形態においても、添加元素が酸化することでバリア層としての機能が発揮される。
 バリア層を構成するAg合金の具体例としては、Agに0.5~20質量%のCuを添加してなるAg合金(Ag-Cu合金)が挙げられる。Cuの添加量は、好ましくは3.0~20質量%である。更に、Ag-Cu合金に0.03~1.0質量%のNiを添加してなるAg合金も適用できる。
 また、バリア層を構成するAg合金について、Cu以外を添加するものとしては、AgにSn、In、Zn、Cdの少なくともいずれかを0.5~20質量%添加してなるAg合金も適用できる。例えば、Agに1.0~10質量%のSn及び0.5~10質量%のInを添加してなるAg合金(Ag-Sn-In合金)が好適である。そして、Ag-Sn-In合金に、Ni、Teの少なくともいずれかを合計で0.01~1.0質量%添加したAg合金、及び、Ag-Sn-In合金に、Fe、Co、Zn、Cu、Bi、Cdの少なくともいずれかを合計で0.01~1.0質量%添加したAg合金も適用できる。
 更に、上記の他、AgにNi、Fe、Co、W、Moの少なくともいずれかを合計で0.03~20質量%添加したAg合金も有用であると考えている。これらの添加元素はAgに対する固溶限が比較的低いため、一部の添加元素が単独で析出する複合型のAg合金となる。このとき、Niを添加元素とする場合には、Ni添加量の下限を0.03質量%とするのが好ましい。また、Fe、Co、W、Moを添加元素とする場合には、それらの合計添加量の下限を0.05質量%とするのが好ましい。
 そして、バリア層の厚さは、0.03mm~0.3mmとするのが好ましい。0.03mm未満では、バリア層の酸素を捕捉する作用が不足して接合界面の酸化物形成を十分抑制できない。バリア層の厚さの上限については、特に制限はないが、接点の寸法を考慮し0.3mm程度とするのが好ましい。
 以上説明したバリア層を備える本発明のリベット型接点は、他の構成においては、従来の2層構造のリベット型接点と基本的に同様である。
 頭部の上面を形成する接点材料層は、Ag系接点材料からなり、具体的には、純AgやAg合金(Ag-Ni合金、Ag-Cu合金等)である。Ag合金としては、酸化物分散型のAg酸化物合金(Ag-SnO系合金、Ag-SnO-In系合金、Ag-ZnO系合金等)も適用できる。尚、本発明は、接点材料としてAg酸化物合金を適用した場合において特に有用である。上述の通り、接点材料中の酸化物から酸素が拡散するおそれがあるからである。また、接点材料に接合され、主に足部を形成するベース材料は、Cu、Cu合金(Cu-Ni合金、Cu-Sn合金)が適用できる。
 尚、接点材料は、頭部の上面に接合されていれば良い。接点材料の好ましい厚さは、接点の負荷(定格電流等)によって調整することができ、低負荷のものについては0.1mm以上あれば良いが、ブレーカー等の高負荷(定格電流50A以上)のものについては1~2mm程度必要となる。本発明の具体的な態様としては、頭部の上面部分のみを接点材料としたもの(図1(a))の他、頭部全体を接点材料とし足部をベース材料で形成しても良い(図1(b))。
 また、図2のように、足部をベース材料で形成しつつ、足部形状として足部より大径の鍔部を形成する一方、頭部を接点材料で形成し、鍔部の下端面が頭部の下端面に対して略フラットになるように、足部を頭部に埋接した形状としても良い。このとき鍔部の最端部と足部起点との間の長さ(l)が、頭部の最端部と足部起点との間の長さ(L)に対してl<L(好ましくは0.4L≦l≦0.6L)としたものが好ましい。
 更に、バリア層の厚さは均一であることが好ましいが、形状については完全な平面である必要はない。即ち、図1(a)のように略平坦な接合界面に沿ってバリア層が形成されていても良いが、図3のように接合界面が円弧形状となりこれに沿ってバリア層が形成されていても良い。更に、接合界面が波打った状態であっても良い。
 本発明に係るリベット型接点を製造するためには、耐久性を確保するために、接点材料、バリア層となるAg合金、ベース材料のそれぞれが強固に接合された状態で、頭部と足部を有するリベット型接点に成形加工する必要がある。ここで、本発明に係るリベット型接点の製造方法としては、接点材料からなる第1ビレットと、Ag合金からなる第2ビレットと、ベース材料からなる第3ビレットと、を突き合わせて圧接して複合材を製造し、凹状の空間を有する接合パンチと、筒状の空間を有する接合ダイスとを組み合わせてリベット形状の空間を形成し、前記複合材を、前記接合ダイスの下部から前記接合パンチの空間に圧入し、前記接合パンチ内の空間に第1ビレットを充填し、頭部の少なくとも表層を構成する接点材料層を形成すると共に、接合パンチ内の残余の空間に第2ビレット及び第3ビレットを充填して、頭部の残部とバリア層と足部を形成させるものとする。
 本発明に係るリベット型接点の製造方法では、まず、接点材料からなる第1ビレットと、Ag合金からなる第2ビレットと、ベース材料からなる第3ビレットとを圧接して複合材とする。この複合材の製造工程は、本発明に係るリベット型接点を製造するために必須の工程である。第1ビレットと第2ビレットとを強固に接合することで、頭部の形成工程の際、接合面を第1ビレットの変形に追従させて第2ビレット及び第3ビレットも変形させることができる。この圧接時の荷重は、0.8~3.0ton・fの強力な加工力で加工するのが好ましい。
 製造した複合材を、接合パンチと接合ダイスとの組合せにより形成される型に圧入することで、リベット型接点とすることができる。この成形工程では、接合パンチの空間に圧入された第1ビレットが接合パンチの壁面により変形しつつ頭部形状となり、複合材の各接合面がこの変形に追従して頭部の残部とバリア層及び足部が形成される。このときリベット型接点の形態は、第1ビレットの体積と接合パンチ内の空間容積との関係で調整することができ、第1ビレットの体積と接合パンチ内の空間容積より小さい場合、図1(a)のような接点材料の層とバリア層とベース材料の3層からなる頭部が形成される。また、第1ビレットの体積が接合パンチ内の空間容積以上であれば、接合パンチ内の残余の空間が無いので頭部全体が接点材料で形成される(図1(b))。この複合材の圧入における荷重は、第1ビレットを変形・加工できる荷重であれば良く、第1ビレットの接点材料の種類に応じて調整できる。
 以上の複合材の製造及び圧入による成形加工は、常温で行うことができる。そして、頭部と鍔部を形成したリベット型接点については、頭部適宜にプレス加工性を成型しても良い。この成型工程は、頭部の形状・寸法について厳密な規制が必要なときに有用である。
 以上説明したように本発明に係るリベット型接点は、Ag系の接点材料とCu等のベース材料とを組み合わせた2層構造のものを改良するものであり、バリア層の設定により接点材料の剥離・脱落が抑制されており、耐久寿命に優れている。
本発明に係るリベット型接点の構成の一例を説明する図。 本発明に係るリベット型接点の他の構成例を説明する図。 本発明に係るリベット型接点における接合界面の状態を説明する図。 本実施形態のリベット型接点の製造工程を説明する図。 実施例2、比較例1、従来例の加熱試験後の接合界面の写真。 実施例2、比較例1、従来例の耐久試験の結果。 従来の2層構造を有するリベット型接点の構成を説明する図。
 以下、本発明の好適な実施例を説明する。
[第1実施形態]
実施例1~実施例5:接点材料としてAg酸化物合金を、ベース材料としてCuを適用し、バリア層としてCuを3.0~20質量%およびNiを0.5重量%添加したAg-Cu合金を適用してリベット型接点を製造した。図4は、本実施形態に係るリベット型接点の製造工程を説明するものである。まず、Ag酸化物合金(Ag-SnO-In合金:商品名SIE-29B)のワイヤーから第1ビレット(寸法:φ2.2mm、0.79mm)を切り出し、Ag-Cu合金のワイヤーから第2ビレット(寸法:φ2.2mm、0.14mm)を切り出し、Cuのワイヤーから第3ビレット(寸法:φ2.2mm、2.1mm)を切り出した。
 そして、図4(A)のように、第1ビレット、第2ビレット、第3ビレットを重ねて接合ダイスに挿入し、両者を圧接して複合材とした。接合ダイスは、超硬製のφ2.45mmの孔径を有する。そして、この接合のための荷重は、2.2ton・fとした。尚、本実施形態では、第1~第3ビレットを接合ダイスに挿入して接合を行ったが、これは、そのまま成型加工を行うことができるという利便性の他、横方向について適度な拘束を与えて複合材が過度に変形しないようにするためである。尚、各ビレットを挿入するダイスの孔径は、ビレットの直径に対し0.05~0.25mm大きいものを適用するのが好ましい。
 次に、図4(B)のように、接合ダイスの上に接合パンチをセットして複合材をリベット形状に加工した。接合パンチは、超硬製であり側面が湾曲した円盤形状の空間(寸法:上面φ2.4mm、下面φ2.8mm、高さ1.1mm)を有する。この工程では、接合ダイス下方から複合材を接合パンチの空間に一気に圧入して、第1ビレット部分を頭部の上面とし、第3ビレットを頭部下部及び足部となるようにし、第2ビレットがバリア層を形成するように変形させた。
 金型によるリベット型接点作成後、図4(C)のように、接合パンチを移動させて、頭部の上面を臼型成形金型でプレスして成型した。以上により製造したリベット型接点の寸法は、頭部がφ3.2mm厚さ0.8mm、足部がφ2.45mm長さ1.2mmである。そして、頭部の接点層の厚さは0.45mmであり、バリア層の厚さは0.07μmであった。
比較例1~比較例3:ここでは、接点材料としてAg酸化物合金(Ag-SnO-In合金)を、ベース材料としてCuを適用しつつ、バリア層として、純Ag(比較例1)、0.3質量%(比較例2)、28質量%(比較例3)のCuを添加したAg-Cu合金を適用してリベット型接点を製造した。
従来例:更に、接点材料としてAg酸化物合金(Ag-SnO-In合金)を、ベース材料としてCuを適用しつつ、バリア層のない従来のリベット型接点を製造した。実施例1の製造工程において、第2ビレット(Ag-Cu合金)を使用せずに、同様の工程にて第1ビレットと第2ビレットとを接合し、実施例1と同様にして成形加工した。接点層の厚さは実施例1と同様とした。
 以上製造した、実施例、比較例、従来例のリベット型接点について、高温雰囲気における接点材料の剥離の有無を確認するための加熱試験を行った。この加熱試験は、各接点を600℃、700℃、750℃に3時間加熱し、その後、リベット型接点の頭部を横方向圧縮し、頭部の径が1/2になるまで圧縮したときの接合界面の剥離の有無を観察した。この加熱試験の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、適切な組成範囲を有するAg-Cu合金をバリア層として備える実施例1~実施例5は、600~750℃の加熱及び圧縮を受けても接合界面に剥離は見られなかった。これに対して、バリア層のない従来例は、600℃の加熱の段階で接合界面に剥離が生じた。また、バリア層の構成についてみると、純Agをバリア層とした比較例1をみると、600℃の加熱までは剥離は生じないが、700℃以上の加熱により剥離が生じた。更に、バリア層としてAg-Cu合金とするとしても、Cu添加量の過不足により700℃以上の加熱により剥離が生じることから(比較例2、比較例3)、その組成範囲に留意する必要がある。
 図5は、実施例2、比較例1、従来例の各接点について、加熱試験後の接合界面の観察結果である。従来例であるバリア層のないものは、600℃の加熱で明確な剥離が生じている。また、比較例1については、600℃加熱では剥離は見られなかったが、ベース材料(Cu)とバリア層(Ag)との界面において酸化物(酸化Cu)の析出(黒色の部分)が見られる。そして、加熱温度が700℃以上となった段階で酸化物の量は増加し、剥離が生じている。これらに対して、実施例2では700℃の加熱までは明瞭な変化が見られず、750℃加熱において、接点材料とバリア層との界面にわずかに酸化Cuが生じた。但し、バリア層とベース材料との間には酸化物の生成は観察されず剥離も生じない。接点材料とバリア層との間の酸化物は、バリア層であるAg-Cu合金のCuが酸素を捕捉したことにより生成したものと考えられる。以上の結果から、酸素のベース材料への到達阻止が、Ag合金からなるバリア層により達成できることが確認できる。
 次に、各リベット型接点についてその耐久性を評価した。耐久性評価はリベット型接点をヒンジ型交流汎用リレーに固定接点として取付け、通電負荷の状態で開閉動作を繰返し、故障発生までの耐久寿命開閉回数を測定した。耐久評価試験における試験条件は以下の通りである。
・試験電圧:AC250V
・試験電流:10A
・負荷:抵抗負荷
・開閉頻度:1秒ON/1秒OFF
 上記耐久試験は複数のリレー試験機で行い、各リレーで故障した耐久寿命開閉回数をワイブル確率紙上にプロットした。この結果を図6に示す。図6から、各リベット型接点の特性寿命は、実施例2で約26万回であり、比較例1は約24万回であり、従来例は約22万回である。よって、本実施形態のリベット型接点は耐久寿命に優れるものであることが確認できた。
[第2実施形態]
 ここでは、接点材料の種類、及び、バリア層となるAg合金の種類、厚さを変更しつつその効果を確認した。基本的な製造工程は実施例1と同様とし、各種のAg合金から厚さ(長さ)を調整しつつ第2ビレットを切り出し加工に供した。そして、製造したリベット型接点について、第1実施形態と同様に加熱試験を行った。加熱温度は750℃とした。この評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 各種のバリア層にて加熱・圧縮試験を行ったが、表2からわかるようにいずれも接合界面剥離は見られなかった。また、接点材料を変更しても効果は変わらなかった。このバリア層は各種の接点材料に対して有効であることがわかる。
 本発明に係るリベット型接点は、使用過程における接点材料の剥離・脱落が防止されている。本発明は、接点材料の使用量を低減して部材コストを抑制するという従来の2層リベット型接点本来の特徴に、耐久寿命の改善が付加されている。本発明に係るリベット型接点は、家電、産業機器その他一般用途向けリレー又はスイッチや、住宅配線、産業機器配線遮断器及び電磁開閉器に有用である。
 

Claims (9)

  1.  頭部と、前記頭部より幅狭の足部よりなるリベット型接点において、
     前記頭部は、少なくとも上面がAg系接点材料よりなる接点材料層からなり、
     前記頭部の残部及び前記足部がCu又はCu合金よりなるベース材料からなり、
     前記接点材料層と前記ベース材料との接合界面に、Ag合金からなるバリア層を備えることを特徴とするリベット型接点。
  2.  バリア層を構成するAg合金は、AgにSn、In、Cu、Ni、Fe、Co、W、Mo、Zn、Cd、Te、Biの1種又は2種以上の卑金属元素を0.03~20質量%添加してなるAg合金である請求項1記載のリベット型接点。
  3.  バリア層を構成するAg合金は、Agに0.5~20質量%のCuを添加してなるAg合金である請求項1又は請求項2記載のリベット型接点。
  4.  バリア層を構成するAg合金は、更に、0.03~1.0質量%のNiを添加してなるAg合金である請求項3記載のリベット型接点。
  5.  バリア層の厚さは、0.03mm~0.3mmである請求項1~請求項4のいずれかに記載のリベット型接点。
  6.  Ag系接点材料は、純Ag、Ag合金、Ag酸化物合金である請求項1~請求項5のいずれかに記載のリベット型接点。
  7.  請求項1~請求項6のいずれかに記載のリベット型接点の製造方法であって、
     接点材料からなる第1ビレットと、Ag合金からなる第2ビレットと、ベース材料からなる第3ビレットと、を突き合わせて圧接して複合材を製造し、
     凹状の空間を有する接合パンチと、筒状の空間を有する接合ダイスとを組み合わせてリベット形状の空間を形成し、
     前記複合材を、前記接合ダイスの下部から前記接合パンチの空間に圧入し、
     前記接合パンチ内の空間に第1ビレットを充填し、頭部の少なくとも表層を構成する接点材料層を形成すると共に、接合パンチ内の残余の空間に第2ビレット及び第3ビレットを充填して、頭部の残部とバリア層と足部を形成させるリベット型接点の製造方法。
  8.  第1ビレット、第2ビレット、第3ビレットを圧接して複合材とする工程は、0.8~3.0ton・fの荷重による圧接である請求項7記載のリベット型接点の製造方法。
  9.  頭部及び足部を形成後、頭部の上面をプレス加工して成型する工程を含む請求項7又は請求項8記載のリベット型接点の製造方法。
     
PCT/JP2013/083420 2013-05-02 2013-12-13 リベット型接点及びその製造方法 WO2014178155A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380076262.XA CN105164778B (zh) 2013-05-02 2013-12-13 铆钉型触点及其制造方法
US14/784,739 US9666382B2 (en) 2013-05-02 2013-12-13 Silver and copper alloyed rivet contact
DE112013007018.9T DE112013007018T5 (de) 2013-05-02 2013-12-13 Nietenkontakt und Verfahren zu dessen Herstellung
JP2015514743A JP6051298B2 (ja) 2013-05-02 2013-12-13 リベット型接点及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-096708 2013-05-02
JP2013096708A JP2013239437A (ja) 2013-05-02 2013-05-02 リベット型接点及びその製造方法

Publications (1)

Publication Number Publication Date
WO2014178155A1 true WO2014178155A1 (ja) 2014-11-06

Family

ID=49764276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083420 WO2014178155A1 (ja) 2013-05-02 2013-12-13 リベット型接点及びその製造方法

Country Status (7)

Country Link
US (1) US9666382B2 (ja)
JP (2) JP2013239437A (ja)
CN (1) CN105164778B (ja)
DE (1) DE112013007018T5 (ja)
MY (1) MY176306A (ja)
TW (1) TWI505304B (ja)
WO (1) WO2014178155A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180216A1 (ja) * 2017-03-27 2018-10-04 日本電産株式会社 電気接点、それを備えた電磁リレー及び電気接点の製造方法
KR102638007B1 (ko) * 2018-03-16 2024-02-20 다나카 기킨조쿠 고교 가부시키가이샤 직류 고전압 릴레이 및 직류 고전압 릴레이용의 접점 재료
CN113168971B (zh) * 2018-11-30 2022-07-22 三菱电机株式会社 电接触件及其制造方法
US10872739B2 (en) * 2019-05-24 2020-12-22 Frank P Stacom Methods and systems for DC current interrupter based on thermionic arc extinction via anode ion depletion
DE102019219879B4 (de) * 2019-12-17 2023-02-02 Siemens Aktiengesellschaft Verfahren zum Herstellen von verschweißbar ausgestalteten Kupferschaltkontakten und Vakuumleistungsschalter mit solchen Kontaktstücken
CN111719096B (zh) * 2020-06-30 2021-10-08 东莞市中一合金科技有限公司 一种银氧化镉合金材料微复合加工工艺
CN112582193A (zh) * 2020-12-01 2021-03-30 福达合金材料股份有限公司 一种铆钉触头产品生产装置、方法及铆钉触头产品

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343916A (ja) * 1989-07-11 1991-02-25 Tanaka Kikinzoku Kogyo Kk リベット型クラッド接点
JP2008270192A (ja) * 2007-03-27 2008-11-06 Furukawa Electric Co Ltd:The 可動接点部品用銀被覆材およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3098834B2 (ja) * 1992-01-29 2000-10-16 オリンパス光学工業株式会社 偏心測定方法
JPH05282957A (ja) * 1992-03-27 1993-10-29 Tanaka Kikinzoku Kogyo Kk リベット型クラッド電気接点の製造方法
JP3098834U (ja) 2003-06-26 2004-03-18 中外電気工業株式会社 電気接点
JP4834023B2 (ja) * 2007-03-27 2011-12-07 古河電気工業株式会社 可動接点部品用銀被覆材およびその製造方法
EP2200056A1 (en) * 2007-09-26 2010-06-23 The Furukawa Electric Co., Ltd. Silver-clad composite material for movable contacts and process for production thereof
CN101577197B (zh) * 2008-11-04 2011-02-02 厦门宏美电子有限公司 一种可提高分断能力的低压断路器
CN102842448A (zh) * 2011-06-24 2012-12-26 三菱综合材料C.M.I.株式会社 复合触点的制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343916A (ja) * 1989-07-11 1991-02-25 Tanaka Kikinzoku Kogyo Kk リベット型クラッド接点
JP2008270192A (ja) * 2007-03-27 2008-11-06 Furukawa Electric Co Ltd:The 可動接点部品用銀被覆材およびその製造方法

Also Published As

Publication number Publication date
TWI505304B (zh) 2015-10-21
CN105164778B (zh) 2018-01-26
CN105164778A (zh) 2015-12-16
TW201517089A (zh) 2015-05-01
JP2013239437A (ja) 2013-11-28
US9666382B2 (en) 2017-05-30
JPWO2014178155A1 (ja) 2017-02-23
JP6051298B2 (ja) 2016-12-27
MY176306A (en) 2020-07-28
US20160064157A1 (en) 2016-03-03
DE112013007018T5 (de) 2016-01-28

Similar Documents

Publication Publication Date Title
JP6051298B2 (ja) リベット型接点及びその製造方法
US6934134B2 (en) Direct current load breaking contact point constitution and switching mechanism therewith
JP6180324B2 (ja) 温度ヒューズおよび当該温度ヒューズに用いられる摺動電極
JPWO2009041246A1 (ja) 接点部材の製造方法、接点部材および開閉器
JP5730480B2 (ja) 電極材料およびその製造方法
JP5424811B2 (ja) リレー用電気接点及びその製造方法
TWI817239B (zh) 直流高壓繼電器及直流高壓繼電器用接點材料
KR20090044162A (ko) 판상형 복합 전기접점소자의 제조방법
KR102211658B1 (ko) 테이프형 접점재 및 그 제조 방법
JP2010100912A (ja) 銀−酸化物系電気接点材料
JPH10162704A (ja) 温度ヒューズ
JPH0460284B2 (ja)
JP4994144B2 (ja) 銀−酸化物系電気接点材料
JP3987458B2 (ja) 電気接点材料及びスイッチ
JP4389564B2 (ja) 高導電性を有する小寸化電磁リレー用内部酸化銀−酸化物系材料製電気接点
US20230197393A1 (en) Contact material for thermal fuse and thermosensitive pellet-type thermal fuse using the same
JP4389563B2 (ja) 高導電性を有する小寸化電磁リレー用内部酸化銀−酸化物系材料製電気接点
Hu Powder Metallurgy Electrical Contact Materials
JPH0361738B2 (ja)
JP2003263932A (ja) 接点構成および該構成を有した開閉器
JPS58126607A (ja) 電気接点材料
JP2004303505A (ja) 電気接点材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380076262.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883402

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015514743

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14784739

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013007018

Country of ref document: DE

Ref document number: 1120130070189

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201508020

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 13883402

Country of ref document: EP

Kind code of ref document: A1