WO2014176900A1 - 皂苷纳米胶束及其制备方法、应用和药物组合物 - Google Patents

皂苷纳米胶束及其制备方法、应用和药物组合物 Download PDF

Info

Publication number
WO2014176900A1
WO2014176900A1 PCT/CN2013/088558 CN2013088558W WO2014176900A1 WO 2014176900 A1 WO2014176900 A1 WO 2014176900A1 CN 2013088558 W CN2013088558 W CN 2013088558W WO 2014176900 A1 WO2014176900 A1 WO 2014176900A1
Authority
WO
WIPO (PCT)
Prior art keywords
ginsenoside
saponin
glc
type
content
Prior art date
Application number
PCT/CN2013/088558
Other languages
English (en)
French (fr)
Inventor
詹华杏
姜志宏
王丹
沈鑫
杨继东
骆剑萍
张宏生
杜敏
缪鹏飞
Original Assignee
福建南方制药股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建南方制药股份有限公司 filed Critical 福建南方制药股份有限公司
Priority to JP2015514348A priority Critical patent/JP5952494B2/ja
Priority to CN201380026612.1A priority patent/CN104602679A/zh
Priority to US14/370,885 priority patent/US9421269B2/en
Priority to EP13870395.4A priority patent/EP2815746B1/en
Publication of WO2014176900A1 publication Critical patent/WO2014176900A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/28Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7032Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a polyol, i.e. compounds having two or more free or esterified hydroxy groups, including the hydroxy group involved in the glycosidic linkage, e.g. monoglucosyldiacylglycerides, lactobionic acid, gangliosides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/14Liposomes; Vesicles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/347Phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/494Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom
    • A61K8/4953Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom containing pyrimidine ring derivatives, e.g. minoxidil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4973Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom
    • A61K8/498Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom having 6-membered rings or their condensed derivatives, e.g. coumarin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/63Steroids; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/67Vitamins
    • A61K8/676Ascorbic acid, i.e. vitamin C
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J17/00Normal steroids containing carbon, hydrogen, halogen or oxygen, having an oxygen-containing hetero ring not condensed with the cyclopenta(a)hydrophenanthrene skeleton
    • C07J17/005Glycosides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/413Nanosized, i.e. having sizes below 100 nm

Definitions

  • the invention belongs to the field of medicaments, and in particular relates to a saponin nanomicelle and a preparation method, application and pharmaceutical composition thereof. Background technique
  • the polymer micelles are generally characterized by being amphiphilic, that is, having both a hydrophilic group and a hydrophobic group.
  • the hydrophobic group generally forms an inner core in the middle, and the hydrophilic group is generally arranged to form an outer shell, and the polymer formed by the polymerization can be fat-soluble.
  • the pharmaceutical ingredient is encapsulated in the hydrophobic center of its polymeric micelles to form a drug-loaded polymeric micelle and can be dissolved in water or alcohol with its hydrophilic end.
  • Polymer micelles can encapsulate fat-soluble drug molecules inside the micelles, prolong the cycle time and biological half-life of the drug in the blood, increase the accumulation of drugs in the lesions, reduce adverse reactions, and can be connected to special carriers, antibodies or The body is capable of binding to a receptor of a target cell to enhance the therapeutic effect.
  • most of the researches on the use of micelles as drug carriers were prepared by using polymer micelles. Representative of such polymer micelles were poly-L-glutamic acid, poly-L-lysine, and more. Sugar polymers such as chitin and chitosan.
  • Tween 80 which is the most commonly used in the Tween series
  • Tween 80 certain additives such as Tween 80, which is the most commonly used in the Tween series, are added, but these additives often have certain side effects.
  • the lipophilic ingredients in Tween 80 include unsaturated fatty acids, which are easily oxidatively degraded to produce more toxic components, and the resulting side effects will outweigh the benefits of the product itself.
  • the medical profession confirmed that Tween 80 is used in injections and can cause allergic reactions, including shock, dyspnea, hypotension, angioedema, rubella and other allergic reactions. These adverse reactions can be very serious in human clinical trials, and even deaths are reported. Therefore, relevant standards for pharmaceuticals, foods and health care products have strict regulations on the safe use limits of Tween 80.
  • Other types of polymer micelles in the prior art also have problems in terms of preparation and physiological availability.
  • Saponin compounds include natural saponin compounds as well as artificial semi-synthesized saponin compounds.
  • natural saponin compounds such as ginsenosides and notoginsenosides have been modified by relatively mature techniques, and various semi-synthetic saponin derivatives have been obtained.
  • the invention patent application of the patent application No. CN200910217947.7, the application publication No. CN101824065A, the ginsenoside secondary glycoside Rhl is modified; the patent application No. CN201110054137.1, the application patent of the publication No. CN102174191A is also disclosed.
  • a method for preparing a saponin compound such as ginsenoside by using polyethylene glycol a method for preparing a fatty acid ester compound of ginsenoside Rh2 by a patent application No. CN201010548971.1, application No. CN102603847A; Patent Application No. CN201210207368 .6, the invention patent application of the publication No. CN102766187A, discloses four ester derivatives of ginsenoside Compoimd-K and preparation method thereof; "Experimental study on ginsenoside Rgl PEG modification and stability" (Liu Mei, Wang Li, Hu Kaili, Feng Jiggling, Chinese Journal of Traditional Chinese Medicine, Vol. 37, No.
  • Reverse micelle refers to an agglomerate (self-organized system) in which a certain amount of amphiphilic substances spontaneously form in a non-polar organic solvent, wherein the polar group of the amphiphilic substance faces the inside of the micelle, and the non-polar group faces the glue.
  • the outer continuous phase of the oil, the polar environment inside the reverse micelles allows it to solubilize the water soluble material.
  • the reverse micelle can increase the stability of the drug, and can be converted into a liquid crystal junction after contact with body fluid. Structure, retarding the dissolution of the drug, thereby achieving a slow release release administration. It can also be used as a carrier for transdermal drug delivery systems.
  • reverse micelles can also be used as a nanoparticle preparation technique.
  • the nanoparticles prepared by the method have the characteristics of small particle size and narrow distribution.
  • the commonly used reverse micelles are lecithin reverse micelles and Sodium Di-2-Ethylhexyl Sulfosuccinate (AOT) reverse micelles.
  • the technical problem to be solved by the present invention is to solve the problem that the fat-soluble drug is hardly soluble in water or the water-soluble drug is insoluble in the lipid solvent, and the existing polymer micelle or reverse micelle drug-loading ability is not ideal, and the biological A defect of poor compatibility, providing a saponin nanomicelle and a preparation method, application and pharmaceutical composition thereof.
  • ginsenosides and/or notoginsenosides having certain structures can be taken from the roots, stems, leaves, fruits, etc. of the Araliaceae plant, or Synthetic, one or more of the saponins can be used to prepare saponin nanomicelles, which can be used as a cosolvent or compound preparation for antitumor drug ingredients, cosmetically insoluble ingredients and health food poorly soluble ingredients, among which
  • the bundle can be used as a drug-loaded micelle which is insoluble in water-soluble fat-soluble pharmaceutical ingredients, and the ginsenoside and/or notoginsenoside component used is naturally non-toxic, has no toxic side effects, and has an excellent effect.
  • the reverse micelle prepared by saponin can be used as a cosolvent or a combination preparation of a water-soluble drug or a water-soluble component, and can also be used as a drug-loaded micelle of a water-soluble drug or a component.
  • the present invention solves the above technical problems by the following technical solutions.
  • the present invention provides a saponin nanomicelle comprising one or more saponins as shown in Formula 1;
  • R 2 are each independently -H or a hydrophilic group
  • R 3 is -H or -OH
  • R 4 is a lipophilic group.
  • the hydrophilic group is a hydrophilic group in the conventional sense of the art.
  • the hydrophilic group is preferably -OH, a glycosyl group, a modified sugar group, a fatty acyl group, an amino acid group, an organic acid ester group, and a sulfate.
  • the modified sugar group is preferably a polymer type modified sugar group, a fatty acyl modified sugar group, an amino acid group modified sugar group or an organic acid ester group modified sugar group.
  • 1 ⁇ and 12 are preferably not -H at the same time.
  • R 6 is any one of the following groups: -0-Glc, -0-Rha, -0-Lyx, -O-XyK-O-Ara(p), -O -Ara(f), -0-Glc(2 ⁇ l)Glc (number indicates carbon position, the same below), -0-Glc(6 ⁇ l)Glc, -0-Glc(2 ⁇ l)Rha, -0 -Glc(2 ⁇ l)XyK -0-Glc(6 ⁇ l)Xyl, -0-Glc(6 ⁇ l)Rha, -0-Glc(2 ⁇ l)Ara(p), -0-Glc(6 ⁇ l) Ara(p), -0-Glc(2 ⁇ l)Ara(f), -0-Glc(6 ⁇ l)Ara(f), -0-Glc(2 ⁇ l)Glc(2 ⁇ l ) G
  • R 7 , R 7 is a group formed by substituting one or more of the hydroxyl groups in the above, wherein R 5 is any one of the following groups:
  • a linear fatty acyl group a phosphate group, a succinate group, a n-butyrate group, a sulfonate group, a malate group or a sodium sulfate salt of ID c 4 to c 22 ;
  • Boc-glycine Gly
  • Boc-alanine Ala
  • Boc-arginine Arg
  • Boc-lysine Lys
  • Boc-serine Ser
  • acetophenine Ac) -Phe-OH
  • Acetylproline Ac-Pro-OH
  • Acetylphenylalanine Ac-Phe-OH
  • Asparagine Asn
  • Aspartic Acid Asp
  • Cysteine (Cys) glutamine
  • glutamic acid Glu
  • Histidine Histidine
  • isoleucine Ile
  • leu Leu
  • methionine Metal
  • phenylalanine Phe
  • R 8 and R 8 are any of the following groups:
  • a linear fatty acyl group a phosphate group, a succinate group, a n-butyrate group, a sulfonate group, a malate group or a sodium sulfate salt of ID c 4 to c 22 ;
  • Boc-glycine Gly
  • Boc-alanine Ala
  • Boc-arginine Arg
  • Boc-lysine Lys
  • Boc-serine Ser
  • acetophenine Ac) -Phe-OH
  • Acetylproline Ac-Pro-OH
  • Acetylphenylalanine Ac-Phe-OH
  • Asparagine Asn
  • Aspartic Acid Asp
  • Cysteine (Cys) glutamine
  • glutamic acid Glu
  • Histidine Histidine
  • isoleucine Ile
  • leu Leu
  • methionine Metal
  • phenylalanine Phe
  • the molecular weights of the PEG, PEO, PVP and EPEG are preferably independently from 200 to 20000.
  • the linear fatty acyl group may be an acyl group of a naturally occurring saturated or unsaturated linear fatty acid, and an acyl group of a synthetic saturated or unsaturated linear fatty acid, preferably a stearyl group or a palmitoyl group.
  • Glc in -O-Glc is: ; at -O-Ara(p)
  • is preferably R 6 a group formed by substituting 1 to 4 hydroxyl groups in the above;
  • R 6 is -0-Glc(2 ⁇ l)Glc, -0-Glc(6 ⁇ l)Glc, -0-Glc(2 ⁇ l)Rha, -0-Glc(2 ⁇ l)Xyl, -0 -Glc(6 ⁇ l)Xyl, -0-Glc(6 ⁇ l)Rha, -0-Glc(2 ⁇ l)Ara(p), -0-Glc(6 ⁇ l)Ara(p), -0 -Glc(2 ⁇ l)Ara(f) , -0-Glc(6 ⁇ l)Ara(f) , -0-Glc(2 ⁇ l)Lyx or -0-Glc(6 ⁇ l)Lyx, R 7 is preferred for R 6 1 ⁇ 7 hydroxyl groups of the R 5 groups is substituted with the formed;
  • R 6 is -0-Glc(2 ⁇ l)Glc(4 ⁇ l)Xyl, -0-Glc(2 ⁇ l)Glc(2 ⁇ l)Rha, -0-Glc(2 ⁇ l)Glc(2 ⁇ l) Lyx, -0-Glc(2 ⁇ l)Glc(2 ⁇ l)Ara(f), -0-Glc(2 ⁇ l)Glc(2 ⁇ l)Ara(p), -0-Glc( 2 ⁇ l) Glc(6 ⁇ l)Glc, -0-Glc(2 ⁇ l)Glc(6 ⁇ l)Rha, -0-Glc(2 ⁇ l)Glc(6 ⁇ l)Xyl, -0-Glc (2 ⁇ l) Glc(6 ⁇ l)Lyx, -0-Glc(2 ⁇ l)Glc(6 ⁇ l)Ara(f), -0-Glc(2 ⁇ l)Glc
  • the lipophilic group is an oleophilic group in the conventional sense of the art.
  • it is preferably a group represented by Formula 2, Formula 3 or Formula 4; Formula 2; wherein R 9 , R 1Q and R are the thiol groups of ( ⁇ 3 , d is Equation 3; where, R 12 , ! ⁇ ⁇ ⁇ base, e is an integer from 1 to 3; Wherein R 15 and R 16 are each independently ( ⁇ ( 3 ⁇ , f is an integer of 1 to 3), in the present invention, R 4 is 2-1, 3-1 or 4- a group as shown in 1;
  • the saponin represented by Formula 1 is a type A saponin, a type B saponin, and a type C saponin; or, preferably, the saponin nanomicelle,
  • the saponin of the formula 1 is a type B saponin and/or a type C saponin; wherein the type A saponin is one or more of the saponins of the formula 1-1, and the type B saponin is of the formula One or more of saponins represented by 1-2, wherein the C-type saponin is one or more of saponins as shown in Formula 1-3;
  • the saponin represented by Formula 1 when the saponin represented by Formula 1 is the A saponin, the B saponin and the C saponin, the molars of the saponin A, the saponin B and the saponin C More preferably (0.8 ⁇ 1.2) : (1.8-2.2) : (0.8 ⁇ 1.2).
  • the saponin represented by Formula 1 is the B-type saponin and/or the C-type saponin, and the saponin nanomicelle does not contain the Type A saponin.
  • the saponin nanomicelles of the present invention can be classified into saponin nanopositive micelles and saponin nano reverse micelles.
  • the saponin nano-positive micelles have the characteristics of encapsulating a fat-soluble drug component
  • the saponin nano-anti-micelle It has the characteristics of wrapping water-soluble pharmaceutical ingredients.
  • the saponin nanomicelle is a saponin nanopositive micelle, such as Rg5 type ginsenoside nanopositive micelle, Rg5/Rkl type ginsenoside nanopositive micelle, Rg3/Rg5/Rkl type ginseng saponin nanopositive micelle;
  • the saponin nanomicelle is a saponin nano reverse micelle;
  • the saponin nanomicelle is a saponin nano Positive micelles, such as HSE-type ginsenoside nano-nose micelles, Rg2/Rk4/Rg6-type ginsenoside nano-nano micelles.
  • the saponin nanomicelle may be formed from one or more saponins as shown in Formula 1.
  • mass content means the mass percentage content of the substance to the total mass of the saponin nanomicelle
  • molar content means the molar percentage content of the substance in the molar amount of the total substance in the saponin nanomicelle.
  • the saponin nanomicelle is formed of one type of saponin as shown in Formula 1, the saponin is the saponin, B-type saponin or C-type saponin; the mass content of the saponin It is 70% or more, preferably 80% or more, more preferably 90% or more, and most preferably 95% or more.
  • saponin nanomicelles formed by ginsenoside Rg5, ginsenoside Rk1, ginsenoside Rk4, and ginsenoside Rg6, respectively, wherein ginsenoside Rg5 and ginsenoside Rkl form ginsenoside nanopositive micelles
  • ginsenoside Rk4 and the ginsenoside Rg6 form a ginsenoside nano reverse micelle.
  • the saponin nanomicelle is formed of the type B saponin or the type C saponin, and the saponin has a molar content of 70% or more, preferably 80% or more, more preferably 90%. Above, it is optimally above 95%.
  • the saponin nanomicelle is formed by two types of saponins as shown in Formula 1, that is, the saponin is any two saponins of the saponin, the saponin and the saponin;
  • the mass content of the two saponins is respectively above 25%, and the total mass content of the two saponins is above 70%; preferably, the mass ratio of the two saponins is 0.8 to 1.2, and the total mass of the two saponins
  • the content is above 90%; more preferably, the mass ratio of the two saponins is 1:1, and the total mass content of the two saponins is above 95%.
  • ginsenoside Rg5 and ginsenoside Rkl form Rg5/Rkl type ginsenoside nanopositive micelles
  • ginsenoside Rk4 and ginsenoside Rg6 form Rk4/Rg6 type ginsenoside nano reverse micelles.
  • the saponin nanomicelle is formed of the type B saponin and the type C saponin, and the molar content of the type B saponin and the type C saponin is respectively 25% or more, and the type B saponin and the type C are respectively
  • the total molar content of the saponin is 70% or more; preferably, the molar ratio of the type B saponin to the type C saponin is 0.8 to 1.2, and the total molar content of the type B saponin and the type C saponin is 90%. More preferably, the molar ratio of the B-type saponin to the C-type saponin is 1:1, and the total molar content of the B-type saponin and the C-type saponin is 95% or more.
  • the saponin nanomicelle is formed of three types of saponins as shown in Formula 1, that is, the saponins are the saponins A, B saponins and C saponins, the saponins A
  • the mass content of the type B saponin and the type C saponin is respectively 15% to 45%, and the total mass content of the type A saponin, the type B saponin and the type C saponin is 70% or more;
  • the mass content of the type A saponin is 15% to 25%
  • the mass content of the type B saponin is 35% to 45%
  • the mass content of the type C saponin is 15% to 25%
  • the total mass content of the type A saponin, the type B saponin and the type C saponin is 80% or more; more preferably, the mass ratio of the type A saponin, the type B saponin and the type C saponin Is (0.8 to 1.2): (1.8-2.2): (0.8 to 1.2), and the total mass content of the type A saponin, the type B saponin, and the type C saponin is 90% or more; optimally, The mass ratio of the type A saponin, the type B saponin and the type C saponin is 1:2: 1, and the total mass content of the type A saponin, the type B saponin and the type C saponin is above 95.
  • ginsenoside Rg3, ginsenoside Rg5 and ginsenoside Rkl form Rg3/Rg5/Rkl type ginsenoside nanopositive micelles
  • ginsenoside Rh2 ginsenoside Rh3 and ginsenoside Rk2 form Rh2/Rh3/ Rk2 type ginsenoside nanopositive micelles
  • ginsenoside Rg2, ginsenoside Rk4 and ginsenoside Rg6 form Rg2/Rk4/Rg6 type ginsenoside nano reverse micelles.
  • type A saponin ginsenoside Rg2, ginsenoside Rg3, ginsenoside Rhl
  • type B saponin ginsenoside Rg5, ginsenoside Rk4, ginsenoside Rh4, and type C saponin: ginsenoside Rkl, ginseng Saponin Rg6 and ginsenoside Rk3 together form HSE-type ginsenoside nanopositive micelles.
  • the saponin nanomicelle is formed of the type A saponin, the type B saponin and the type C saponin, and the molar content of the type A saponin, the type B saponin and the type C saponin 15% ⁇ 45%, respectively, the total molar content of the type A saponin, the type B saponin and the type C saponin is above 70%;
  • the molar content of the type A saponin is 15% to 25%
  • the molar content of the type B saponin is 35% to 45%
  • the molar content of the type C saponin is 15% to 25%
  • the total molar content of the type A saponin, the type B saponin and the type C saponin is 80% or more; more preferably, the molar ratio of the type A saponin, the type B saponin and the type C saponin Is (0.8 to 1.2): (1.8-2.2): (0.8 to 1.2), and the total molar content of the type A saponin, the type B saponin, and the type C saponin is 90% or more; optimally, The molar ratio of the type A saponin, the type B saponin and the type C saponin is 1:2:1, and the total molar content of the type A saponin, the type B saponin and the type C saponin is above 95.
  • the saponin nano-nano micelle has the amphiphilic property of the ordinary polymer micelle, that is, has both a hydrophilic group and a hydrophobic group.
  • the hydrophobic group forms an inner core in the middle, and/or is a hydrophilic group, and is arranged outside the micelle to form an outer shell.
  • the saponin nanomicelle can encapsulate the fat-soluble drug component in the hydrophobic center of the micelle to form a drug-loaded micelle. And can be dissolved in water or alcohol with its hydrophilic end.
  • the saponin nano-positive micelles can encapsulate the fat-soluble drug molecules into the micelle, prolong the circulation time and biological half-life of the drug in the blood, increase the accumulation of the drug in the lesion, and reduce the adverse reactions.
  • a special vector, antibody or ligand can be attached to enable binding to the receptor of the target cell to enhance the therapeutic effect.
  • the saponin nano reverse micelle has the amphiphilic property of a conventional polymer reverse micelle, that is, has both a hydrophilic group and a hydrophobic group.
  • the hydrophilic group forms an inner core in the middle, and/or is a hydrophilic group, and is arranged in the micelle to form a hydrophilic center.
  • the saponin nanomicelle can encapsulate the water-soluble drug component in the hydrophilic center of the micelle to form a carrier. It has a reverse micelle of the drug and can be dissolved in the ester or oil with its hydrophobic end.
  • the saponin nano reverse micelle can encapsulate the water-soluble drug molecule into the inside of the micelle, prolong the circulation time and biological half-life of the drug in the blood, increase the accumulation of the drug in the lesion, reduce the adverse reaction, and can be connected with a special carrier and antibody. Or a ligand that binds to a receptor of a target cell to enhance the therapeutic effect.
  • the saponin represented by Formula 1 is mainly derived from a ginsenoside raw material and/or a notoginsenoside raw material, such as ginsenosides and notoginsenosides processed from the plant of the genus Araliaceae or the genus Gynostemma. analog.
  • the saponin nanomicelle in addition to the saponin as shown in Formula 1, the remaining components may be regarded as non-essential components, which are generally unavoidable impurities, usually in addition to A-type saponin, B-type saponin and C-type.
  • Other types of ginsenosides and/or notoginsenosides other than saponins that is, compounds represented by Formula 1.
  • Ginsenoside Rg5 Ginsenoside Rkl: Ginsenoside Rg3: 7; Ginsenoside Rh2: Ginsenoside Rh3: Formula 9; Ginsenoside Rk2: Formula 10: Ginsenoside Rg2:
  • Ginsenoside Rhl 2013/088558 Ginsenoside Rk4: ;
  • the saponin nanomicelle which is a Rg5 type ginsenoside nanopositive micelle, comprises ginsenoside Rg5, and the ginsenoside Rg5 has a mass content of 50% or more.
  • the content of the ginsenoside Rg5 is preferably 70% or more, further preferably 85% or more, more preferably 90% or more, and most preferably 95% or more.
  • the saponin nanomicelle comprising ginsenoside Rg5, wherein the ginsenoside Rg5 has a molar content of 50% or more, preferably 70% or more, further preferably 85% or more, more preferably Above 90%, optimally above 95%.
  • the ginsenoside Rg5 is derived from the ginsenoside Rg5 monomer obtained by the above-mentioned ginsenoside raw material after acid hydrolysis and purified.
  • all of the components other than the ginsenoside Rg5 are other kinds of ginsenosides.
  • ginsenoside Rg5 ginsenoside Rg5
  • ginsenoside Rk1 ginsenoside Rs5
  • ginsenoside Rk2 ginsenoside Rh3, ginsenoside Rs4
  • any of said type B saponins and said type C saponin are hydrophilic groups and are -11
  • ginsenosides of -OH can also form saponin nanopositive micelles.
  • the saponin nanomicelle which is a Rkl type ginsenoside nanopositive micelle, comprises ginsenoside Rkl, the ginseng soap The ground is at least 85%, more preferably at least 90%, and most preferably at least 95%.
  • the saponin nanomicelle comprising ginsenoside Rkl, the ginsenoside
  • the molar content of Rkl is 50% or more, preferably 70% or more, further preferably 85% or more, more preferably 90% or more, and most preferably 95% or more.
  • the ginsenoside Rkl is derived from the ginsenoside Rkl monomer obtained by acidolysis of the above-mentioned ginsenoside raw material and purified.
  • all of the components other than the ginsenoside Rk1 are other kinds of saponins.
  • the saponin nanomicelle which is a Rk4 type ginsenoside nano reverse micelle, comprises ginsenoside Rk4, and the ginsenoside Rk4 has a mass content of 50% or more.
  • the content of the ginsenoside Rk4 is preferably 70% or more, further preferably 85% or more, more preferably 90% or more, and most preferably 95% or more.
  • the saponin nanomicelle comprising ginsenoside Rk4, wherein the ginsenoside Rk4 has a molar content of 50% or more, preferably 70% or more, further preferably 85% or more, more preferably Above 90%, optimally above 95%.
  • the ginsenoside Rk4 is derived from the ginsenoside Rk4 monomer obtained by acid hydrolysis of the ginsenoside raw material and purified.
  • the remaining components are other kinds of saponins.
  • ginsenoside Rk4 ginsenoside Rk3, ginsenoside F4, ginsenoside Rs7, ginsenoside Rh4, ginsenoside Rs6, ginsenoside Rg6, notoginsenoside T5 or any of said type B saponins and said type C saponin Ginsenosides, wherein -OH, and R 2 is a hydrophilic group, can also form saponin nano reverse micelles.
  • the saponin nanomicelle which is a Rg6 type ginsenoside nano reverse micelle, comprising ginsenoside Rg6, the ginseng soap
  • the mass content of the glycoside Rg6 is 50% or more.
  • the ginsenoside Rg6 preferably has a mass content of 70% or more, further preferably 85% or more, more preferably 90% or more, most preferably 95% or more.
  • the saponin nanomicelle comprises ginsenoside Rg6, and the ginsenoside Rg6 has a molar content of 50% or more, preferably 70% or more, further preferably 85% or more, more preferably Above 90%, optimally above 95%.
  • the ginsenoside Rg6 is derived from the ginsenoside Rg6 monomer obtained by the above-mentioned ginsenoside raw material after acid hydrolysis and purified.
  • the remaining components are all other types of saponins except for the ginsenoside Rg6.
  • the saponin nanomicelle which is a Rg5/Rkl type ginsenoside nanopositive micelle, comprising ginsenoside Rg5 and ginsenoside Rkl, the mass content of the ginsenoside Rg5 Above 15%, the ginsenoside Rk1 has a mass content of 15% or more, and the total mass content of the ginsenoside Rg5 and the ginsenoside Rk1 is 50% or more.
  • the ginsenoside Rg5 has a mass content of 25% or more
  • the ginsenoside Rk1 has a mass content of 25% or more
  • the total mass content of the ginsenoside Rg5 and the ginsenoside Rkl is 80%. %the above;
  • the ginsenoside Rg5 has a mass content of 25% to 60%
  • the ginsenoside Rk1 has a mass content of 25% to 60%
  • the total mass of the ginsenoside Rg5 and the ginsenoside Rkl The content is above 70%
  • the ginsenoside Rg5 has a mass content of 35% to 50%
  • the ginsenoside Rk1 has a mass content of 35% to 50%
  • the total mass of the ginsenoside Rg5 and the ginsenoside Rkl The content is above 80%;
  • the mass ratio of the ginsenoside Rg5 and the ginsenoside Rkl is 0.8 to 1.2, and the total mass content of the ginsenoside Rg5 and the ginsenoside Rkl is 80% or more; Further preferably, the mass ratio of the ginsenoside Rg5 to the ginsenoside Rk1 is 0.8-1.2, and the total mass content of the ginsenoside Rg5 and the ginsenoside Rkl is 90% or more;
  • the mass ratio of the ginsenoside Rg5 to the ginsenoside Rk1 is 1: 1, and the total mass content of the ginsenoside Rg5 and the ginsenoside Rk1 is 95% or more.
  • the saponin nanomicelle comprising ginsenoside Rg5 and ginsenoside Rkl, the ginsenoside Rg5 having a molar content of 15% or more, the ginsenoside Rkl having a molar content of 15% or more, and the The total molar content of ginsenoside Rg5 and ginsenoside Rkl is above 50%.
  • the ginsenoside Rg5 has a molar content of 25% or more
  • the ginsenoside Rk1 has a molar content of 25% or more
  • the total molar content of the ginsenoside Rg5 and the ginsenoside Rk1 is 80%. %the above;
  • the ginsenoside Rg5 has a molar content of 25% to 60%
  • the ginsenoside Rk1 has a molar content of 25% to 60%
  • the total molar ratio of the ginsenoside Rg5 and the ginsenoside Rk1 The content is above 70%;
  • the ginsenoside Rg5 has a molar content of 35% to 50%
  • the ginsenoside Rk1 has a molar content of 35% to 50%
  • the total molar amount of the ginsenoside Rg5 and the ginsenoside Rk1 The content is above 80%;
  • the molar ratio of the ginsenoside Rg5 to the ginsenoside Rkl is 0.8 to 1.2, and the total molar content of the ginsenoside Rg5 and the ginsenoside Rkl is 80% or more;
  • the molar ratio of the ginsenoside Rg5 to the ginsenoside Rkl is 0.8-1.2, and the total molar content of the ginsenoside Rg5 and the ginsenoside Rkl is above 90%;
  • the molar ratio of the ginsenoside Rg5 to the ginsenoside Rk1 is 1: 1, and the total molar content of the ginsenoside Rg5 and the ginsenoside Rk1 is 95% or more.
  • the remaining components are other types of saponins.
  • the B-type saponin and any of the ginsenosides of the C-type saponin which are hydrophilic groups and are -11 or -OH can also form saponin nanometers. Positive micelles.
  • the saponin nanomicelle which is a Rk4/Rg6 type ginsenoside nano reverse micelle, comprising ginsenoside Rk4 and ginsenoside Rg6, the mass content of the ginsenoside Rk4 Above 15%, the mass content of the ginsenoside Rg6 is 15% or more, and the total mass content of the ginsenoside Rk4 and the ginsenoside Rg6 is 50% or more.
  • the ginsenoside Rk4 has a mass content of 25% to 60%
  • the ginsenoside Rg6 has a mass content of 25% to 60%
  • the total mass of the ginsenoside Rk4 and the ginsenoside Rg6 The content is above 70%;
  • the ginsenoside Rk4 has a mass content of 35% to 50%
  • the ginsenoside Rg6 has a mass content of 35% to 50%
  • the total mass of the ginsenoside Rk4 and the ginsenoside Rg6 The content is above 80%;
  • the mass ratio of the ginsenoside Rk4 to the ginsenoside Rg6 is 0.8 to 1.2, and the total mass content of the ginsenoside Rk4 and the ginsenoside Rg6 is 90% or more;
  • the mass ratio of the ginsenoside Rk4 to the ginsenoside Rg6 is 1:1, and the total mass content of the ginsenoside Rk4 and the ginsenoside Rg6 is 95% or more.
  • the saponin nanomicelle comprises ginsenoside Rk4 and ginsenoside Rg6, the ginsenoside Rk4 has a molar content of 15% or more, the ginsenoside Rg6 has a molar content of 15% or more, and the ginseng The total molar content of saponin Rk4 and ginsenoside Rg6 is 50% or more.
  • the ginsenoside Rk4 has a molar content of 25% to 60%
  • the ginsenoside Rg6 has a molar content of 25% to 60%
  • the total molar amount of the ginsenoside Rk4 and the ginsenoside Rg6 The content is above 70%;
  • the ginsenoside Rk4 has a molar content of 35% to 50%
  • the ginsenoside Rg6 has a molar content of 35% to 50%
  • the total molar amount of the ginsenoside Rk4 and the ginsenoside Rg6 The content is above 80%;
  • the molar ratio of the ginsenoside Rk4 to the ginsenoside Rg6 is 0.8 to 1.2, and the total molar content of the ginsenoside Rk4 and the ginsenoside Rg6 is 90% or more;
  • the molar ratio of the ginsenoside Rk4 to the ginsenoside Rg6 is 1:1, and the total molar content of the ginsenoside Rk4 and the ginsenoside Rg6 is 95% or more.
  • the remaining components are other kinds of saponins.
  • ginsenoside Rk4 and ginsenoside Rg6 either of the type B saponin and the ginsenoside of the type C saponin or -OH and being a hydrophilic group can form a saponin nano reverse micelle.
  • the saponin nanomicelle which is a Rg3/Rg5/Rkl type ginsenoside nanopositive micelle, comprising ginsenoside Rg3, ginsenoside Rg5 and ginsenoside Rkl
  • the ginsenoside Rg3 has a mass content of 15% to 45%
  • the ginsenoside Rg5 has a mass content of 15% to 45%
  • the ginsenoside Rk1 has a mass content of 15% to 45%
  • the ginsenoside Rg3 The total mass content of the ginsenoside Rg5 and the ginsenoside Rkl is 70% or more.
  • the ginsenoside Rg3 has a mass content of 15% to 25%
  • the ginsenoside Rg5 has a mass content of 35% to 45%
  • the ginsenoside Rkl has a mass content of 15% to 25%.
  • the total mass content of the ginsenoside Rg3, the ginsenoside Rg5 and the ginsenoside Rkl is above 80%;
  • the mass ratio of the ginsenoside Rg3, the ginsenoside Rg5 and the ginsenoside Rk1 is (0.8 to 1.2): (1.8-2.2): (0.8 to 1.2), and the ginsenoside Rg3,
  • the total mass content of the ginsenoside Rg5 and the ginsenoside Rkl is 90%;
  • the ginsenoside Rg3, the ginsenoside Rg5 and the ginsenoside Rkl The mass ratio is 1:2:1.
  • the saponin nanomicelle comprises ginsenoside Rg3, ginsenoside Rg5 and ginsenoside Rkl
  • the ginsenoside Rg3 has a molar content of 15% to 45%
  • the ginsenoside Rg5 has a molar content of 15%.
  • the molar content of the ginsenoside Rk1 is 15% to 45%
  • the total molar content of the ginsenoside Rg3, the ginsenoside Rg5 and the ginsenoside Rk1 is 70% or more.
  • the ginsenoside Rg3 has a molar content of 15% to 25%
  • the ginsenoside Rg5 has a molar content of 35% to 45%
  • the ginsenoside Rkl has a molar content of 15% to 25%.
  • the total molar content of the ginsenoside Rg3, the ginsenoside Rg5 and the ginsenoside Rkl is above 80%;
  • the molar ratio of the ginsenoside Rg3, the ginsenoside Rg5 and the ginsenoside Rk1 is (0.8 to 1.2): (1.8-2.2): (0.8 to 1.2), and the ginsenoside Rg3,
  • the total molar content of the ginsenoside Rg5 and the ginsenoside Rkl is 90%;
  • the molar ratio of the ginsenoside Rg3, the ginsenoside Rg5 and the ginsenoside Rkl is 1:2:1.
  • the remaining components are other kinds of saponins.
  • the saponin nanomicelle is a Rh2/Rh3/Rk2 type ginsenoside nanopositive micelle comprising ginsenoside Rh2, ginsenoside Rh3 and ginsenoside Rk2,
  • the mass content of the ginsenoside Rh2 is 15% to 45%
  • the mass content of the ginsenoside Rh3 is 15% to 45%
  • the mass content of the ginsenoside Rk2 is 15% to 45%
  • the ginsenoside Rh2 is The total mass content of the ginsenoside Rh3 and the ginsenoside Rk2 is 70% or more.
  • the ginsenoside Rh2 has a mass content of 15% to 25%
  • the ginsenoside Rh3 has a mass content of 35% to 45%
  • the ginsenoside Rk2 has a mass content of 15% to 25%.
  • the ginsenoside Rh2, the ginsenoside Rh3, and the ginsenoside Rk2 The total mass content is above 80%;
  • the mass ratio of the ginsenoside Rh2, the ginsenoside Rh3, and the ginsenoside Rk2 is (0.8 to 1.2): (1.8-2.2): (0.8 to 1.2), and the ginsenoside Rh2
  • the total mass content of the ginsenoside Rh3 and the ginsenoside Rk2 is above 90%;
  • the mass ratio of the ginsenoside Rh2, the ginsenoside Rh3 and the ginsenoside Rk2 is 1:2:1.
  • the saponin nanomicelle comprises ginsenoside Rh2, ginsenoside Rh3 and ginsenoside Rk2, the ginsenoside Rh2 has a molar content of 15% to 45%, and the ginsenoside Rh3 has a molar content of 15%. ⁇ 45%, the molar content of the ginsenoside Rk2 is 15% to 45%, and the total molar content of the ginsenoside Rh2, the ginsenoside Rh3 and the ginsenoside Rk2 is 70% or more.
  • the ginsenoside Rh2 has a molar content of 15% to 25%
  • the ginsenoside Rh3 has a molar content of 35% to 45%
  • the ginsenoside Rk2 has a molar content of 15% to 25%.
  • the total molar content of the ginsenoside Rh2, the ginsenoside Rh3 and the ginsenoside Rk2 is above 80%;
  • the molar ratio of the ginsenoside Rh2, the ginsenoside Rh3 and the ginsenoside Rk2 is (0.8 to 1.2): (1.8-2.2): (0.8 to 1.2), and the ginsenoside Rh2
  • the total molar content of the ginsenoside Rh3 and the ginsenoside Rk2 is above 90%;
  • the molar ratio of the ginsenoside Rh2, the ginsenoside Rh3 and the ginsenoside Rk2 is 1:2:1.
  • the other components are other kinds of saponins.
  • the saponin nanomicelle which is a Rg2/Rk4/Rg6 type ginsenoside nanomicelle, comprising ginsenoside Rg2, ginsenoside Rk4 and ginsenoside Rg6, the ginseng
  • the saponin Rg2 has a mass content of 15% to 45%
  • the ginsenoside Rk4 has a mass content of 15% to 45%
  • the ginsenoside Rg6 has a mass content of 15% to 45%
  • the ginsenoside Rg2 the ginsenoside Rk4 and the ginsenoside Rg6 have a total mass content of 70% or more.
  • the ginsenoside Rg2 has a mass content of 15% to 25%
  • the ginsenoside Rk4 has a mass content of 35% to 45%
  • the ginsenoside Rg6 has a mass content of 15% to 25%.
  • the total mass content of the ginsenoside Rg2, the ginsenoside Rk4 and the ginsenoside Rg6 is above 80%;
  • the mass ratio of the ginsenoside Rg2, the ginsenoside Rk4 and the ginsenoside Rg6 is (0.8 to 1.2): (1.8-2.2): (0.8 to 1.2), and the ginsenoside Rg2
  • the total mass content of the ginsenoside Rk4 and the ginsenoside Rg6 is above 90%;
  • the mass ratio of the ginsenoside Rg2, the ginsenoside Rk4 and the ginsenoside Rg6 is 1:2:1, and the ginsenoside Rg2, the ginsenoside Rk4 and the ginsenoside Rg6 are The total mass content is above 95%.
  • the saponin nanomicelle comprises ginsenoside Rg2, ginsenoside Rk4 and ginsenoside Rg6, the ginsenoside Rg2 has a molar content of 15% to 45%, and the ginsenoside Rk4 has a molar content of 15%. ⁇ 45%, the ginsenoside Rg6 has a molar content of 15% to 45%, and the total molar content of the ginsenoside Rg2, the ginsenoside Rk4 and the ginsenoside Rg6 is 70% or more.
  • the ginsenoside Rg2 has a molar content of 15% to 25%
  • the ginsenoside Rk4 has a molar content of 35% to 45%
  • the ginsenoside Rg6 has a molar content of 15% to 25%.
  • the total molar content of the ginsenoside Rg2, the ginsenoside Rk4 and the ginsenoside Rg6 is above 80%;
  • the molar ratio of the ginsenoside Rg2, the ginsenoside Rk4 and the ginsenoside Rg6 is (0.8 to 1.2): (1.8-2.2): (0.8 to 1.2), and the ginsenoside Rg2
  • the total molar content of the ginsenoside Rk4 and the ginsenoside Rg6 is above 90%;
  • the molar ratio of the ginsenoside Rg2, the ginsenoside Rk4 and the ginsenoside Rg6 is 1:2:1, and the ginsenoside Rg2, the ginsenoside Rk4 and the ginsenoside Rg6
  • the total molar content is above 95%.
  • the other components are other kinds of saponins except for the ginsenoside Rg2, the ginsenoside Rk4, and the ginsenoside Rg6.
  • the Rg2/Rk4/Rg6 type ginsenoside nanomicelle is a Rg2/Rk4/Rg6 type ginsenoside nano reverse micelle.
  • the Rg2/Rk4/Rg6 type ginsenoside nanomicelle contains a saponin of the formula 1 which forms a positive micelle, for example, it contains a trace amount of ginsenoside Rg3, ginsenoside Rg5 and ginseng.
  • the Rg2/Rk4/Rg6 type ginsenoside nanomicelle is a Rg2/Rk4/Rg6 type ginsenoside nanopositive micelle.
  • the saponin nanomicelle is a HSE-type ginsenoside nano-negative micelle comprising ginsenoside Rg2, ginsenoside Rg3, ginsenoside Rhl, ginsenoside Rg5, ginsenoside Rk4, ginsenoside Rh4, ginsenoside Rkl, ginsenoside Rg6 and ginsenoside Rk3, wherein the total mass content of the ginsenoside Rg2, ginsenoside Rg3 and ginsenoside Rhl is 15% to 45%, the ginsenoside Rg5, The total mass content of ginsenoside Rk4 and ginsenoside Rh4 is 15% to 45%, and the total mass content of the ginsenoside Rk1, ginsenoside Rg6 and ginsenoside Rk3 is 15% to 45%, and the ginsenoside Rg2, ginseng The total mass content of saponin Rg3, ginsenoside Rhl,
  • the total mass content of the ginsenoside Rg2, the ginsenoside Rg3 and the ginsenoside Rhl is 15% to 25%, and the total mass content of the ginsenoside Rg5, the ginsenoside Rk4 and the ginsenoside Rh4 is 35%.
  • the total mass content of the ginsenoside Rk1, ginsenoside Rg6 and ginsenoside Rk3 is 15% to 25%, and the ginsenoside Rg2, ginsenoside Rg3, ginsenoside Rhl, ginsenoside Rg5, ginsenoside Rk4 , the total mass content of ginsenoside Rh4, ginsenoside Rkl, ginsenoside Rg6 and ginsenoside Rk3 is above 80%;
  • the total mass of the ginsenoside Rg2, ginsenoside Rg3 and ginsenoside Rhl, the total mass of the ginsenoside Rg5, ginsenoside Rk4 and ginsenoside Rh4, and the ginsenoside Rkl, ginsenoside Rg6 and ginseng The mass ratio between the total mass of saponin Rk3 is (0.8 to 1.2): (1.8-2.2): (0.8 ⁇ 1.2), and the ginsenoside Rg2, ginsenoside Rg3, ginsenoside Rhl, ginsenoside Rg5, ginsenoside Rk4, ginsenoside Rh4, ginsenoside Rkl, ginsenoside Rg6 and ginsenoside Rk3
  • the total mass content is above 95%;
  • the total mass of the ginsenoside Rg2, ginsenoside Rg3 and ginsenoside Rhl, the total mass of the ginsenoside Rg5, ginsenoside Rk4 and ginsenoside Rh4, and the ginsenoside Rkl, ginsenoside Rg6 and ginseng The mass ratio between the total mass of saponin Rk3 is 1:2:1.
  • the saponin nanomicelle comprises ginsenoside Rg2, ginsenoside Rg3, ginsenoside Rhl, ginsenoside Rg5, ginsenoside Rk4, ginsenoside Rh4, ginsenoside Rk1, ginsenoside Rg6 and ginsenoside Rk3, wherein The total molar content of the ginsenoside Rg2, the ginsenoside Rg3 and the ginsenoside Rhl is 15% to 45%, and the total molar content of the ginsenoside Rg5, the ginsenoside Rk4 and the ginsenoside Rh4 is 15% to 45%, The total molar content of ginsenoside Rkl, ginsenoside Rg6 and ginsenoside Rk3 is 15% to 45%, and the ginsenoside Rg2, ginsenoside Rg3, ginsenoside Rhl, ginsenoside Rg5, ginsenoside Rk4, ginsenoside Rh4,
  • the total molar content of the ginsenoside Rg2, the ginsenoside Rg3 and the ginsenoside Rhl is 15% to 25%, and the total molar content of the ginsenoside Rg5, the ginsenoside Rk4 and the ginsenoside Rh4 is 35%.
  • the total molar content of the ginsenoside Rkl, ginsenoside Rg6 and ginsenoside Rk3 is 15% to 25%, and the ginsenoside Rg2, ginsenoside Rg3, ginsenoside Rhl, ginsenoside Rg5, ginsenoside Rk4 , the total molar content of ginsenoside Rh4, ginsenoside Rkl, ginsenoside Rg6 and ginsenoside Rk3 is above 80%;
  • the total molar amount of the ginsenoside Rg2, the ginsenoside Rg3 and the ginsenoside Rhl, the total molar amount of the ginsenoside Rg5, the ginsenoside Rk4 and the ginsenoside Rh4, and the ginsenoside Rkl, ginsenoside Rg6 The molar ratio between the total molar amount of ginsenoside Rk3 and
  • the total molar content of saponin Rg6 and ginsenoside Rk3 is above 95%; Most preferably, the total molar amount of the ginsenoside Rg2, ginsenoside Rg3 and ginsenoside Rhl, the total molar amount of the ginsenoside Rg5, ginsenoside Rk4 and ginsenoside Rh4, and the ginsenoside Rkl, ginsenoside Rg6
  • the molar ratio between the total molar amount of ginsenoside Rk3 and the ginsenoside Rk3 is 1:2:1.
  • ginsenoside Rg2 in addition to ginsenoside Rg2, ginsenoside Rg3, ginsenoside Rhl, ginsenoside Rg5, ginsenoside Rk4, ginsenoside Rh4, ginsenoside Rk1, ginsenoside Rg6 and ginsenoside Rk3, the remaining components All are other kinds of saponins.
  • the present invention also provides a process for producing a saponin nanomicelle comprising the steps of: mixing the saponin of the formula 1 with an organic solvent capable of dissolving the saponin, and then removing the organic solvent.
  • the organic solvent capable of dissolving saponin may be an organic solvent conventionally used in the art for dissolving ginsenosides and/or notoginsenosides, preferably methanol, ethanol, hydrazine, hydrazine-dimethylformamide (DMF). And one or more of n-butanol, propanol, tetrahydrofuran and pyridine.
  • the method and conditions of the mixing may be the methods and conditions conventional in the art, which are based on the uniformity of mixing.
  • the temperature of the mixing is preferably from 30 ° C to 80 ° C.
  • the method and conditions for removing the organic solvent can be the methods and conditions conventional in the art.
  • the organic solvent is preferably removed by concentration and concentration under reduced pressure at 30 ° C to 80 ° C. More preferably, the organic solvent is removed: after the concentrated drying under reduced pressure, vacuum drying is carried out at 30 ° C to 80 ° C until the loss on drying is less than 3% by mass.
  • the invention also provides a preparation method of saponin nano micelle, which comprises the following steps:
  • the reaction solution containing the saponin mixture obtained in the step (1) is purified to remove impurities, and then mixed with an organic solvent capable of dissolving the saponin to remove the organic solvent, thereby obtaining a saponin nanomicelle;
  • reaction mixture containing the saponin mixture obtained in the step (1) is purified and separated, various saponin monomers are obtained, and one or more of the ginsenosides represented by the formula 1 are dissolved therein.
  • the organic solvent of the saponin is mixed, and the organic solvent is removed to obtain a saponin nanomicelle.
  • the Araliaceae plant extract is conventionally described in the art, and is generally an extract of one or more of roots, stems, leaves and fruits of the Araliaceae plant.
  • the Araliaceae plant is preferably Chinese ginseng (Panax ginseng), Korean ginseng ⁇ . Sinensis J. W, American ginseng quique folius, Japanese ginseng (P. japonicus) ⁇ Vietnamese ginseng (P. réellenamensis) ⁇ pseudo ginseng P One or more of pseudogiengng and Sanqi P. notoginseng.
  • the cucurbit plant extract is conventionally described in the art and is generally an extract of one or more of roots, stems, leaves and fruits of the cucurbitaceae.
  • the Cucurbitaceae plant is preferably Gynostemma pentaphyllum.
  • the Araliaceae plant extract and/or the Cucurbitaceae plant extract preferably satisfy the following conditions: the ginseng total saponin content percentage is 60%, preferably 80%, more preferably 90%; or Any one of the following ginsenoside compounds containing 60% by mass, preferably 80%, more preferably 90%: ginsenoside Rbl, ginsenoside Rb2, ginsenoside Rb3, ginsenoside Re, ginsenoside Rc, ginsenoside Rd, ginsenoside Rgl, ginsenoside Rg2, ginsenoside Rg3, ginsenoside Rhl, ginsenoside Rh2, ginsenoside Rh3, ginsenoside Fl, ginsenoside F2 and notoginsenoside Rl, further preferably ginsenoside Rbl, ginsenoside Re or ginseng Saponin F2.
  • the Araliaceae plant extract and/or the Cucurbitaceae plant extract are either commercially available or obtained according to the
  • the acidic aqueous solution may be conventionally described in the art, and the acidic substance in the acidic aqueous solution may be an organic acid and/or an inorganic acid, preferably citric acid, acetic acid, formic acid, oxalic acid, One or more of succinic acid, salicylic acid, tartaric acid, malic acid, citric acid, methanesulfonic acid, benzoic acid, hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid, more preferably acetic acid and/or citric acid.
  • the pH of the acidic aqueous solution is preferably 6.5, and further preferably, the pH is adjusted to 6.5 with acetic acid and/or citric acid; more preferably, the pH of the acidic aqueous solution is 3, The pH is preferably adjusted to 3 with acetic acid and/or citric acid.
  • the conditions of the acid hydrolysis reaction may be conventional conditions in the art.
  • the acid The temperature at which the reaction is carried out is preferably from 60 ° C to 100 ° C, more preferably from 80 ° C to 90 ° C.
  • the acid hydrolysis reaction time is preferably from 2 hours to 48 hours, more preferably from 3 hours to 6 hours.
  • the method for purifying and removing impurities may be conventionally described in the art, and only the impurities other than the saponin mixture in the reaction solution containing the saponin mixture in the step (1) may be removed.
  • the method for purifying and removing impurities is the following method 1 or method 2;
  • Method one includes the following steps:
  • step (b) adjusting the pH of the reaction solution after the step (a) to a basic condition with a base to obtain a precipitate;
  • step (d) Cool the saponin mixture in step (c) to below 5 °C, remove the precipitate, and then dry.
  • the cooling and the standing are conventional operations in the art, and the cooling is preferably cooled to -20 ° C to 30 ° C, and the standing time is preferably 4 hours or longer.
  • the precipitation removal is conventional in the art and is typically filtration or centrifugation.
  • the base is conventional in the art and may be an organic base and/or an inorganic base;
  • the organic base is preferably sodium methoxide, sodium ethoxide, potassium acetate, sodium acetate, triethylamine, One or more of ammonia water, methanolamine, potassium t-butoxide and sodium t-butoxide, preferably sodium hydroxide, potassium hydroxide, calcium hydroxide, potassium carbonate, sodium carbonate, carbonic acid
  • potassium hydrogen and sodium hydrogencarbonate more preferably sodium carbonate and/or sodium hydrogencarbonate.
  • the concentration of the base in the reaction liquid is preferably 0.05 mol/L to 1 mol/L.
  • the pH adjustment to alkaline is preferably adjusted to a pH of from 8 to 14.
  • the precipitate is preferably dried as conventionally in the art, and then subjected to the step (c), the drying is: drying at 30 ° C to 80 ° C until the loss on drying is lower than the mass The percentage is 5%.
  • the amount of the organic solvent used is conventional in the art, preferably the amount of the precipitate dissolved, more preferably the volume ratio of the precipitate to the organic solvent is ( 1: 1) ⁇ (1:5).
  • the mixing temperature is preferably from 30 ° C to 80 ° C.
  • the cooling temperature is preferably -20 ° C to 5 ° C.
  • the precipitation removal is a routine operation in the art, and generally filtration is sufficient.
  • the manner of drying can be conventional in the art, preferably concentrated under reduced pressure.
  • the method 2 includes the following steps:
  • reaction mixture of the saponin-containing mixture obtained in the step (1) is adjusted to a pH of 8 to 14 with a base, and the solution A is obtained after precipitation;
  • step S1 the base is as described in the aforementioned step (b).
  • the number of extractions may be conventional in the art, preferably 1 to 5 times.
  • the volume of the n-butanol and the solution A is preferably (1:0.5) to (1:4).
  • the n-butanol and the water-washing water preferably have a volume of (1:0.5) to (1:4).
  • the operation of removing the solvent in the n-butanol layer may be conventional in the art, preferably concentrated under reduced pressure.
  • the purification separation method and conditions may be a conventional method and conditions in the art, preferably column chromatography separation.
  • the saponin monomer is ginsenoside Rg2, ginsenoside Rg3, ginsenoside Rg4, ginsenoside Rg5, ginsenoside Rg6, ginsenoside Rhl, ginsenoside Rh2, ginsenoside Rh3, ginsenoside Rh4, ginseng
  • saponin Rf ginsenoside Rs3, ginsenoside Rkl, ginsenoside Rk2, ginsenoside Rk3, ginsenoside Rk4, ginsenoside, ginsenoside F4, notoginsenoside R2 and notoginsenoside T5.
  • the organic solvent capable of dissolving the saponin is preferably one of methanol, ethanol, hydrazine, hydrazine-dimethylformamide (DMF), n-butanol, propanol, tetrahydrofuran and pyridine. Or a variety.
  • the mixing is a routine operation in the art, and the mixing is uniform.
  • the temperature of the mixing is preferably from 30 ° C to 80 ° C.
  • the method for removing the organic solvent may be conventional in the art, and is preferably concentrated and dried under reduced pressure at 30 ° C to 80 ° C; more preferably: after concentration and drying under reduced pressure at 30 ° C. Vacuum drying was carried out at 80 ° C until the loss on drying was less than 3% by mass.
  • the preparation method of the saponin nanomicelle comprises the following steps:
  • the concentrate obtained in the step (3') is dried to obtain a saponin nanomicelle; wherein the saponin described in the step () is any one of the following saponin compounds: ginseng total saponin Ra0, ginseng Total saponin Ral, ginseng total saponin Ra2, ginseng total saponin Ra3, ginsenoside Rbl, ginsenoside Malonyl-Rbl, ginsenoside Rb2, ginsenoside Malonyl-Rb2, ginsenoside Rb3, ginsenoside Malonyl-Rb3, ginsenoside Rgl, ginsenoside Malonyl-Rgl, ginsenoside Rc, ginsenoside Malonyl-Rc, ginsenoside F2, ginsenoside Re, ginsenoside Rd, ginsenoside Malonyl-Rd, ginsenoside Rl, ginsenoside Rsl, ginsenoside Rsl, ginsen
  • the saponin nanomicelle is HSE-type ginsenoside nano-nose micelle; when the saponin is ginsenoside Rbl, the saponin nanomicelle is Rg3 type saponin nano positive micelle; when the saponin is ginsenoside F2, the saponin nanomicelle is Rh2 type ginsenoside nano positive micelle; when the saponin is ginsenoside Re, the saponin
  • the nanomicelle is a Rg2 type ginsenoside nano reverse micelle.
  • the method for preparing the saponin nanomicelle comprises the following steps:
  • reaction liquid obtained by the reaction of the step (1 ⁇ ) is cooled to 15 ° C ⁇ 30 ° C, and then neutralized with Na 2 CO 3 , after precipitation to obtain a solution A;
  • the solid obtained in the step (4 ⁇ ) is mixed with absolute ethanol, then cooled to below 5 ° C, allowed to stand for 4 to 24 hours, and the precipitate is removed, followed by concentration under reduced pressure to obtain a concentrated Repeating the above operation of the step (5 ⁇ ) 1 ⁇ 3 times;
  • the concentrate obtained in the step (5 ⁇ ) is dried to obtain a saponin nanomicelle;
  • the saponin described in the step (1 ⁇ ) is any one of the following saponin compounds: ginseng total saponin Ra0, ginseng total Saponin Ral, ginseng total saponin Ra2, ginseng total saponin Ra3, ginsenoside Rbl, ginsenoside Malonyl-Rbl, ginsenoside Rb2, ginsenoside Malonyl-Rb2, ginsenoside Rb3, ginsenoside Malonyl-Rb3, ginsenoside Rgl, ginsenoside Malony -Rgl, ginsenoside Rc, ginsenoside Malonyl-Rc, ginsenoside F2, ginsenoside Re, ginsenoside Rd, ginsenoside Malonyl-Rd, ginsenoside Rl, ginsenoside Rsl, ginsenoside Rs2, notogins
  • the saponin nanomicelle is HSE-type ginsenoside nano-nose micelle; when the saponin is ginsenoside Rbl, the saponin nanomicelle is Rg3 ginsenoside Nano saponin; when the saponin is ginsenoside F2, the saponin nanomicelle is Rh2 type ginsenoside nanopositive micelle; when the saponin is ginsenoside Re, the saponin nanomicelle It is a Rg2 type ginsenoside nano anti-micelle.
  • the present invention also provides a saponin nanomicelle produced by the preparation method as described above.
  • the invention also provides a preparation method of a saponin nano-positive micelle, which comprises the steps of: mixing a saponin nano reverse micelle, an organic solvent capable of dissolving saponin and a seed crystal of a saponin nano-nano micelle to remove an organic solvent, That is, wherein the seed crystal of the saponin nano-positive micelle is: one or more of the saponins of the formula 1 which is -11 or -OH, and is a hydrophilic group;
  • the saponin nano reverse micelles are one or more of the saponin nano reverse micelles prepared by the aforementioned preparation method and any of the saponin nano reverse micelles as described above.
  • the seed crystal of the saponin nano-positive micelle is preferably a glycosyl group or a modified sugar group, more preferably a better, specific group of the above-mentioned groups other than -H and -OH Any of the others.
  • the seed crystal of the saponin nanopositive micelle is preferably one or more of ginsenoside Rg3, ginsenoside Rg5 and ginsenoside Rkl.
  • the saponin nano reverse micelle is any saponin nano reverse micelle which can be obtained according to the preparation method of the present invention and/or any saponin nano reverse micelle as described above, preferably Rg2 /Rk4/Rg6 type ginsenoside nano anti-micelle.
  • the organic solvent capable of dissolving saponin may be an organic solvent conventionally used in the art for dissolving ginsenosides and/or notoginsenosides, preferably methanol, ethanol, hydrazine, hydrazine-dimethylformamide (DMF). And one or more of n-butanol, propanol, tetrahydrofuran and pyridine.
  • the method and conditions of the mixing may be conventional methods and conditions in the art, Evenly.
  • the temperature of the mixing is preferably from 30 ° C to 80 ° C.
  • the method and conditions for removing the organic solvent can be the methods and conditions conventional in the art.
  • the organic solvent is preferably removed by concentration and concentration under reduced pressure at 30 ° C to 80 ° C. More preferably, the organic solvent is removed: after the concentrated drying under reduced pressure, vacuum drying is carried out at 30 ° C to 80 ° C until the loss on drying is less than 3% by mass.
  • the present invention also provides a saponin nanopositive micelle obtained by the preparation method as described above.
  • the present invention also provides the use of a saponin nanomicelle as described above as an aqueous co-solvent or a pharmaceutical carrier for a liposoluble compound or composition, said saponin nanomicelle being a saponin nanopositive micelle.
  • the fat-soluble compound or composition may be a fat-soluble compound conventional in the art, preferably soybean isoflavone, cardamom, resveratrol, coenzyme Q10, vitamin A, vitamin D, vitamin E, One or more of vitamin K, ginkgo extract, melatonin, lycopene and beta-carotene.
  • the mass of the fat-soluble compound or composition and the saponin nano-nose micelles is preferably (1:1) to (15:1), more preferably 1:9.
  • the above aqueous auxiliary solvent means a cosolvent capable of increasing the solubility of a substance which is hardly soluble in water in an aqueous solution system.
  • the present invention also provides the use of a saponin nanomicelle as described above for the preparation of a pharmaceutical preparation, a health care product or a cosmetic of a poorly water-soluble drug, wherein the saponin nanomicelle is a saponin nanopositive micelle.
  • the poorly water-soluble drug may be a water-insoluble drug conventional in the art, preferably paclitaxel, docetaxel, cabazitaxel, irinotecan hydrochloride, topotecan hydrochloride, hydroxy Camptothecin, minoxidil, azithromycin, epirubicin hydrochloride, doxorubicin hydrochloride, amrubicin hydrochloride, tacrolimus, fluorouracil, vincristine sulfate, vinblastine sulfate, vindesine sulfate, Vinorelbine tartrate, huperzine A, homoharringtonine, harringtonine, epothilone, epothilone oxime, epothilone (e, epothilone 0, epothilone) , epothilone?, bortezomib, etoposide phosphate, gemcitabine hydrochloride, fludarabine phosphate,
  • the present invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising the saponin nanomicelle as described above and the poorly water-soluble drug; the saponin nanomicelle is a saponin nanopositive micelle.
  • the quality of the poorly water-soluble drug and the saponin nanopositive micelle is preferably (1:3) to (1:12), more preferably 1:6.
  • the invention further provides the use of a saponin nanomicelle as described above as a lipid cosolvent or a pharmaceutical carrier for a water soluble compound or composition, said saponin nanomicelle being a saponin nano reverse micelle.
  • the water-soluble compound or composition may be a conventional water-soluble compound in the art, preferably a peptide, a polypeptide, a protein, a nucleic acid (DNA or RNA (preferably RNAi) or a fragment thereof), insulin, erythropoiesis , leptin, growth factor, growth hormone releasing hormone, colony stimulating factor, water soluble hormone (parathyroid hormone or its fragment or analog), luteinizing hormone releasing hormone (LHRH) and its analogues (eg, narfare Lin, buserelin, goserelin, interferon, cytokines, polysaccharides (eg, heparin), heparin compounds, DNA, RNA fragments and their plasmids, RNA interference agents, and their immunizing agents and vaccines One or more.
  • the water-soluble compound or composition and the saponin nano reverse micelle preferably have a mass of (1:1) to (15:1), more preferably 1:9.
  • the above-mentioned fat cosolvent means: a cosolvent capable of increasing the solubility of a substance which is hardly soluble in fat in an oil or fat system.
  • the present invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising the saponin nanomicelle as described above and the water soluble compound or composition; the saponin nanomicelle is a saponin nano reverse micelle.
  • the quality of the water-soluble compound or composition and the saponin nano reverse micelle is preferably (1:1) ⁇ (15: 1), more preferably 1:9.
  • the reagents and starting materials used in the present invention are commercially available.
  • the positive effects of the present invention are: 1.
  • the saponin nanomicelle of the present invention is the first one, wherein the positive micelle is applied to a fat-soluble component in foods, health care products, cosmetics, etc., so that the fat-soluble component is dissolved in water or alcohol to achieve nanocrystallization. It plays an important role in the application range of commodity development; and, in actual use, the relevant components are transported to the site of action, hydrolyzed under physiological conditions, released, exerting efficacy or effect, and wherein ginsenosides and/or notoginsenosides It also exerts a therapeutic effect or a beneficial effect.
  • the saponin nanomicelle of the invention is used as a drug carrier or applied to a medicine, and the micelle encapsulates a pharmaceutically active ingredient which is hardly soluble in water, has a stronger drug-loading capacity, higher biocompatibility, and has a drug loading of at least 99.5%.
  • the drug-loaded micelles are placed in the glucose solution for more than 10 hours, and the encapsulation efficiency is still not less than 90%.
  • As a medium for the drug component it can replace the existing drug carrier such as pharmaceutical cosolvent or polymer micelle.
  • reverse micelles can be used as cosolvents or combination preparations for water-soluble drugs or water-soluble ingredients, and can also be used as drug-loading drugs for water-soluble drugs or ingredients.
  • Micellar can be used as cosolvents or combination preparations for water-soluble drugs or water-soluble ingredients, and can also be used as drug-loading drugs for water-soluble drugs or ingredients.
  • Fig. 1 is a graph showing the relationship of each component in the reactant of Example 2 with time.
  • Fig. 2 is a graph showing the particle size distribution of the drug-loaded ginsenoside nanomicelles of Application Example 1.
  • Fig. 3 is a photograph showing the drug-loaded micelle solution of the application examples 1 to 2 and their comparison.
  • Fig. 4 is a graph showing the particle size distribution of the drug-loaded ginsenoside nanomicelles of the application example.
  • Fig. 5 is a graph showing the particle size distribution of the drug-loaded ginsenoside nanomicelle of Application Example 8.
  • Figure 6 is a photograph showing the resveratrol drug-loaded micelle solution of Application Example 12 and its comparison.
  • Fig. 7 is a graph showing the particle size distribution of the ginsenoside nanomicelle of Example 1 in a 5% glucose solution.
  • Fig. 8 is a graph showing the particle size distribution of the ginsenoside nanomicelle of Example 2 in a 5% glucose solution.
  • Fig. 9 is a transmission electron micrograph of the HSE-type ginsenoside nanomicelle of Example 1.
  • Fig. 10 is a transmission electron micrograph of the Rg3/Rg5/Rkl type ginsenoside nanomicelle of Example 2.
  • Figure 11 is a transmission electron micrograph of the Rg2/Rk4/Rg6 type ginsenoside nano reverse micelle of Example 5.
  • Figure 12 is a transmission electron micrograph of the paclitaxel-loaded ginsenoside nanomicelle of Application Example 1. detailed description
  • ginseng total saponins are prepared; Porous adsorption resin method (for example, the method described in Chinese Patent No. CN201010527369.X)
  • the ginsenoside is divided into a mixed saponin A mainly composed of ginsenoside Re and ginsenoside Rgl and mainly composed of ginsenoside Fl, ginsenoside Rg2, ginsenoside F2.
  • a mixed saponin B composed of notoginsenoside Fe, ginsenoside Rd, ginsenoside Rb2, ginsenoside Rc, ginsenoside Rbl and ginsenoside Rb3, followed by recrystallization or alumina column chromatography to obtain a simpler ginsenoside Mixture (for example, the method described in Chinese invention patent CN200610093615.9), finally passed through the column
  • the ginsenoside monomer was obtained by chromatography.
  • the preparation method of the ginsenoside monomer used in the following examples is as follows:
  • ginsenoside Rbl Preparation of ginsenoside Rbl, ginsenoside Rb3, ginsenoside Rd, ginsenoside Re and other monomers by using American ginseng root extract: 300 g of ginseng root saponin with a mass content of 81% was dissolved in 4 L of methanol, and after ultrasonic assisted dissolution, 6 L of purified water was added to prepare a ginsenoside sample solution of 40 v/v% methanol aqueous solution.
  • the column was repeatedly subjected to preparation to obtain 500 g of 90% or more of ginsenoside Re, 500 g of 90% or more of ginsenoside Rb1, 500 g of 90% or more of ginsenoside Rb3, and 500 g of 90% or more of ginsenoside Rd.
  • the precipitate was heated to 60 ° C with 1.0 L of absolute ethanol, and then allowed to stand at 4 ° C for 2 hours, and filtered with ⁇ . ⁇ filter paper to remove the precipitate, and the filtrate was concentrated under reduced pressure;
  • the compressed concentrate was dissolved in 0.4 L of absolute ethanol, and then placed at a temperature of 4 ° C for 2 hours, filtered through a ⁇ . ⁇ filter paper, and concentrated under reduced pressure to obtain 153 g of HSE-type ginsenoside nanomicelle.
  • HPLC analysis conditions were as follows: Column ZORBAX Eclipse XDB-C18 4.6x250mm; detection wavelength UV/Vis, 203mm; flow rate 1.0ml/min; column temperature 50°C; The system running time is 80 min; the mobile phase (gradient) is shown in Table 1 below.
  • reaction solution obtained in the reaction of the step (1) was allowed to stand at room temperature to be cooled to 30 ° C, neutralized with 10 wt% of sodium carbonate, and then filtered through a 0.45 ⁇ filter paper to remove the precipitate to obtain a filtrate.
  • the reaction mixture was analyzed by HPLC under the same conditions as described in Example 1.
  • the mass percentage of each component in the reaction solution was as shown in Table 3 below and FIG. 1 under the conditions.
  • the Rg3/Rg5/Rkl type ginsenoside nanomicelle prepared in this embodiment can replace the existing polyoxyethylene castor oil or Tween-80.
  • Preparation method of ginsenoside nanomicelle of Rg3/Rg5/Rkl by using ginsenoside Rb3 100 g of ginsenoside Rb3 is placed in a reaction tank, and 38 g of Rg3/Rg5/Rkl type ginsenoside nanometer can be obtained by the same method as in Example 2. Micellar. The components of the analysis were analyzed by HPLC in the same manner as in Example 1, and the results are shown in Table 4 below.
  • Preparation method of ginsenoside nanomicelle of Rg3/Rg5/Rkl type by using ginsenoside Rd 100g of ginsenoside Rd is placed in the reaction tank, and the method of the second embodiment can obtain 23g.
  • Rg2/Rk4/Rg6 ginsenoside nano reverse micelle dissolve it in 200ml absolute ethanol, concentrate to 100ml under reduced pressure, add a small amount of Rg3/Rg5/Rkl micelle seed crystal, cool the crystal, consider, dry, That is, 5.4 g of Rg2/Rk4/Rg6 type ginsenoside nanopositive micelles were obtained.
  • the raw material ginsenoside Re used in the present example, and the obtained Rg2/Rk4/Rg6 type ginsenoside nanopositive micelles were subjected to HPLC detection and analysis of the components of Example 1, and the results are shown in Table 7 below.
  • the ginsenoside F2 is prepared by the following method:
  • ginsenoside Rbl Take high-purity 200g ginsenoside Rbl into the reaction tank, add 500ml of purified water, add alpha-galactosidase, and digest the enzyme for 4 ⁇ 44 hours (more preferably 8 ⁇ 12 hours) at 30 °C. 200 ml of n-butanol was extracted 3 times, and n-butanol was combined, and concentrated under reduced pressure to obtain 136 g of ginsenoside F2.
  • Example 10 In the same manner as in Example 8, an Rg5-rich fraction was obtained, which was concentrated by a nanofiltration membrane, extracted with n-butanol, concentrated under reduced pressure, and dried to obtain 8.6 g of an Rg5 monomer. Further, 8.6 g of the mixture was dissolved in 50 ml of anhydrous ethanol, and then concentrated to dryness by a reduced pressure to obtain 8.6 g of a ginsenoside nanomicelle of Rg5 type. The components of the analysis were analyzed by HPLC in the same manner as in Example 1, and the results are shown in Table 10 below.
  • the Rk1 enrichment section was taken, concentrated by a nanofiltration membrane, extracted with n-butanol, concentrated under reduced pressure, and dried to obtain 2.6 g of Rkl monomer. Further, 2.6 g of the mixture was dissolved in 20 ml of anhydrous ethanol, and then concentrated under reduced pressure to dryness to obtain 2.6 g of ginsenoside nanomicelle of Rkl type.
  • the analytical components were analyzed by HPLC in the same manner as in Example 1, and the results are shown in Table 11 below.
  • Example 11 the Rk4 enrichment section was taken, concentrated by a nanofiltration membrane, extracted with n-butanol, concentrated under reduced pressure, and dried to obtain 3.3 g of Rk4 monomer. Further, 3.3 g of the mixture was dissolved in 20 ml of absolute ethanol, and then concentrated under reduced pressure to dryness to obtain 3.3 g of a ginsenoside nano reverse micelle of Rk4 type. The analysis components were analyzed by HPLC as in Example 1. The results are shown in Table 13 below. Table 13 Contents of Rk4 type ginsenoside nano-anti-micelle component of Example 12
  • Example 11 In the same manner as in Example 11, an Rg6-rich fraction was obtained, concentrated by a nanofiltration membrane, extracted with n-butanol, concentrated under reduced pressure, and dried to obtain 3.0 g of an Rg6 monomer. Further, 3.0 g of the mixture was dissolved in 20 ml of absolute ethanol, and then concentrated under reduced pressure to dryness to obtain 3.0 g of a ginsenoside nano-anti-micelle of Rg6 type. The components of the analysis were analyzed by HPLC in the same manner as in Example 1, and the results are shown in Table 14 below.
  • Paclitaxel 30 mg and 180 mg of the Rg3/Rg5/Rkl type ginsenoside nanomicelle of Example 2 were added to a 5 ml vial and 2.0 ml of absolute ethanol was added, followed by stirring with a vortex After the mixer is dissolved and filtered with 0.45 ⁇ filter paper, the paclitaxel micelle-encapsulated solution can be prepared. After the particle size distribution was examined, the results are shown in Fig. 2.
  • the paclitaxel micelle-encapsulated solution was added to 75 ml of a commercially available glucose solution for injection, and the image after standing at room temperature for 12 hours is shown in Fig. 3B.
  • a 30 mg paclitaxel injection of a commercially available Peking Union Pharmaceutical Factory was added to 75 ml.
  • a commercially available glucose solution for injection was shown in Fig. 3D after standing at room temperature for 12 hours; it was apparent that the paclitaxel micelle solution was clear and transparent.
  • the ginsenoside nanomicelle has a drug loading of at least 99.5%, and the obtained drug-loaded micelles are placed in the glucose solution for more than 10 hours, and the encapsulation efficiency is still not less than 90%.
  • the drug and ginsenoside nanomicelles were prepared in the following combinations of paclitaxel micelle-encapsulating solutions: 10 mg and 30 mg, 10 mg and 120 mg or 10 mg and 60 mg.
  • Paclitaxel 30 mg and 180 mg of the Rg5/Rkl type ginsenoside nano micelle of Example 8 were added to a 5 ml vial and 2.0 ml of absolute ethanol was added, and then dissolved in a vortex mixer and filtered through a 0.45 ⁇ filter paper. A paclitaxel micelle-encapsulated solution is prepared.
  • the paclitaxel micelle-encapsulated solution was added to 75 ml of a commercially available glucose solution for injection, and allowed to stand at room temperature for 12 hours.
  • a 30 mg paclitaxel injection of a commercially available Peking Union Pharmaceutical Factory was added to 75 ml of a commercially available glucose solution for injection, and the solution was allowed to stand at room temperature. After 12 hours; it can be clearly seen that the paclitaxel micelle solution is clear and transparent, while the comparative sample is turbid.
  • the ginsenoside nanomicelle has a drug loading of at least 99.5%, and the obtained drug-loaded micelles are placed in the glucose solution for more than 10 hours, and the encapsulation efficiency is still not less than 90%.
  • the drug and ginsenoside nanomicelles were prepared in the following combinations of paclitaxel micelle-encapsulating solutions: 10 mg and 30 mg, 10 mg and 120 mg or 10 mg and 60 mg.
  • Paclitaxel and Rg5-loaded micelles Paclitaxel 30 mg and 180 mg of the Rg5 type ginsenoside nanomicelle of Example 9 were added to a 5 ml vial and 2.0 ml of absolute ethanol was added, and then dissolved in a vortex mixer and filtered through a 0.45 ⁇ filter paper to prepare a solution. The paclitaxel micelles encapsulate the solution.
  • the paclitaxel micelle-encapsulated solution was added to 75 ml of a commercially available glucose solution for injection, and allowed to stand at room temperature for 12 hours.
  • a 30 mg paclitaxel injection of a commercially available Peking Union Pharmaceutical Factory was added to 75 ml of a commercially available glucose solution for injection, and the solution was allowed to stand at room temperature. After 12 hours; it can be clearly seen that the paclitaxel micelle solution is clear and transparent, while the comparative sample is turbid.
  • the ginsenoside nanomicelle has a drug loading of at least 99.5%, and the obtained drug-loaded micelles are placed in the glucose solution for more than 10 hours, and the encapsulation efficiency is still not less than 90%.
  • the drug and ginsenoside nanomicelles were prepared in the following combinations of paclitaxel micelle-encapsulating solutions: 10 mg and 30 mg, 10 mg and 120 mg or 10 mg and 60 mg.
  • Paclitaxel 30 mg and 180 mg of the Rh2 type ginsenoside nanomicelle of Example 7 were added to a 5 ml vial and 2.0 ml of absolute ethanol was added, and then dissolved in a vortex mixer and filtered through a 0.45 ⁇ filter paper to prepare a solution.
  • the paclitaxel micelles encapsulate the solution.
  • the paclitaxel micelle-encapsulated solution was added to 75 ml of a commercially available glucose solution for injection, and allowed to stand at room temperature for 12 hours.
  • a 30 mg paclitaxel injection of a commercially available Peking Union Pharmaceutical Factory was added to 75 ml of a commercially available glucose solution for injection, and the solution was allowed to stand at room temperature. After 12 hours; it can be clearly seen that the paclitaxel micelle solution is clear and transparent, while the comparative sample is turbid.
  • the ginsenoside nanomicelle has a drug loading of at least 99.5%, and the obtained drug-loaded micelles are placed in the glucose solution for more than 10 hours, and the encapsulation efficiency is still not less than 90%.
  • the drug and ginsenoside nanomicelles were prepared in the following combinations of paclitaxel micelle-encapsulating solutions: 10 mg and 30 mg, 10 mg and 120 mg or 10 mg and 60 mg.
  • Paclitaxel and Rg2/Rk4/Rg6 positive micelle-loaded micelles Paclitaxel 30 mg and 180 mg of the Rg2/Rk4/Rg6 type ginsenoside nano-nose micelle of Example 6 were added to a 5 ml vial and 2.0 ml of absolute ethanol was added, which was then dissolved in a vortex mixer and filtered through a 0.45 ⁇ filter paper. The paclitaxel micelle-encapsulating solution can be prepared.
  • the paclitaxel micelle-encapsulated solution was added to 75 ml of a commercially available glucose solution for injection, and allowed to stand at room temperature for 12 hours.
  • a 30 mg paclitaxel injection of a commercially available Peking Union Pharmaceutical Factory was added to 75 ml of a commercially available glucose solution for injection, and the solution was allowed to stand at room temperature. After 12 hours; it can be clearly seen that the paclitaxel micelle solution is clear and transparent, while the comparative sample is turbid.
  • the ginsenoside nanomicelle has a drug loading of at least 99.5%, and the obtained drug-loaded micelles are placed in the glucose solution for more than 10 hours, and the encapsulation efficiency is still not less than 90%.
  • the drug and ginsenoside nanomicelles were prepared in the following combinations of paclitaxel micelle-encapsulating solutions: 10 mg and 30 mg, 10 mg and 120 mg or 10 mg and 60 mg.
  • docetaxel anhydrate Docetael.anhydrous
  • 180 mg of Rg5/Rkl type ginsenoside nanomicelle of Example 8 were added to a 5 ml vial and 2.0 ml of absolute ethanol was added, followed by dissolution with a vortex mixer. After filtration of 0.45 ⁇ filter paper, a docetaxel anhydrate-free micelle-encapsulated solution can be prepared.
  • the above docetaxel anhydrous micelle encapsulated solution was added to 75 ml of commercially available glucose solution for injection, and allowed to stand at room temperature for 12 hours; as a comparison, 20 mg of paclitaxel injection from a commercially available Shandong Qilu Pharmaceutical Factory was added to a commercially available injection of 75 ml.
  • the glucose solution was allowed to stand at room temperature for 12 hours; it was apparent that the paclitaxel micelle solution was clear and transparent, and the comparative sample was cloudy.
  • the ginsenoside nano-micelle has a drug loading of at least 99.5%, and the obtained drug-loaded micelles are placed in the glucose solution for more than 10 hours, and the encapsulation efficiency is still not less than 90%.
  • a docetaxel anhydrate micelle-encapsulating solution having a mass of the drug and ginsenoside nanomicelles of the following combination was prepared: 10 mg and 30 mg, 10 mg and 120 mg or 10 mg and 60 mg.
  • the above docetaxel anhydrous micelle encapsulated solution was added to 75 ml of commercially available glucose solution for injection, and the image after standing at room temperature for 12 hours is shown in Fig. 3A; as a comparison, Jiangsu Hengrui Pharmaceutical Co., Ltd. is commercially available.
  • the company's 20mg docetaxel injection, adding 75ml of commercially available glucose solution for injection, the image after standing at room temperature for 12 hours is shown in Figure 3C; it can be clearly seen that the docetaxel anhydrate micelle solution is clear and transparent. , and the comparative sample is turbid.
  • the ginsenoside nanomicelle has a drug loading of at least 99.5%, and the obtained drug-loaded micelles are placed in the glucose solution for more than 10 hours, and the encapsulation efficiency is still not less than 90%.
  • a drug and ginsenoside nanomicelles having a mass of the following combination of docetaxel anhydrate micelle-encapsulated solution were prepared: 10 mg and 30 mg, 10 mg and 120 mg or 10 mg and 60 mg.
  • Docetaxel trihydrate 20 mg and 120 mg of the Rh2 type ginsenoside nanomicelle of Example 7 were added to a 5 ml vial, and then 2.0 ml of absolute ethanol was added, dissolved in a vortex mixer, and filtered through a 0.45 ⁇ filter paper. Thereafter, a docetaxel trihydrate micelle-encapsulated solution is prepared. After the particle size distribution was examined, the results are shown in Fig. 5. After testing, the ginsenoside nanomicelle has a drug loading of at least 99.5%, and the obtained drug-loaded micelles are placed in the glucose solution for more than 10 hours, and the encapsulation efficiency is still not less than 90%.
  • a docetaxel trihydrate micelle-encapsulating solution having the following combination of the drug and ginsenoside nanomicelles was prepared: 10 mg and 30 mg, 10 mg and 120 mg or 10 mg. With 60mg.
  • Minoxidil and 120 mg of HSE-type ginsenoside nanomicelle of Example 1 were added to a 5 ml vial, and then 2.0 ml of absolute ethanol was added, dissolved in a vortex mixer, and then filtered through a 0.45 ⁇ m filter paper to prepare a solution.
  • Minoxidil micelles encapsulate the solution.
  • the ginsenoside nanomicelle has a drug loading of at least 99.5%, and the obtained drug-loaded micelles are placed in the glucose solution for more than 10 hours, and the encapsulation efficiency is still not less than 90%.
  • a drug and ginsenoside nanomicelles having a mass of the following combination of minoxidil micelle-encapsulating solution were prepared: 10 mg and 30 mg, 10 mg and 120 mg or 10 mg and 60 mg.
  • Soy isoflavones (Isoflavone 40%) l.Og and 9.0 g of the HSE-type ginsenoside nanomicelles of Example 1 were added to a 50 ml beaker, then 10 ml of absolute ethanol was added and dissolved in a vortex mixer, and then filtered through a 0.45 ⁇ m filter paper. It is concentrated under reduced pressure and dried to prepare encapsulated soy isoflavone nanomicelles. After testing, the ginsenoside nanomicelle has a drug loading of at least 99.5%, and the obtained drug-loaded micelles are placed in the glucose solution for more than 10 hours, and the encapsulation efficiency is still not less than 90%.
  • encapsulated soy isoflavone nanomicelles of the following combination of the drug and ginsenoside nanomicelles were prepared: 10 mg and 10 mg, 10 mg and 120 mg or 10 mg and 90 mg.
  • Resveratrol l.Og and 9.0 g of the Rg2/Rk4/Rg6 type ginsenoside nano-nose micelle of Example 6 were added to a 50 ml vial, then 10 ml of absolute ethanol was added, and then dissolved in a vortex mixer, and then 0.45 ⁇ filter paper was used. After filtration, the filtrate was obtained, concentrated under reduced pressure, and dried to obtain an encapsulated resveratrol nanomicelle.
  • Fig. 6A The image of the filtrate is shown in Fig. 6A.
  • 1.0 g of resveratrol is added to a 50 ml vial, and then 10 ml of absolute ethanol is added. After dissolution, the obtained image is shown in Fig. 6B; It is obvious that the resveratrol-loaded micelle solution is clear and transparent, while the comparative sample is turbid.
  • the ginsenoside nanomicelle has a drug loading of at least 99.5%, and the obtained drug-loaded micelles are placed in the glucose solution for more than 10 hours, and the encapsulation efficiency is still not less than 90%.
  • resveratrol nanomicelles having the following combinations of resveratrol and ginsenoside nanomicelles were prepared: lOmg and 10 mg, 10 mg and 120 mg or 10 mg and 90 mg.
  • encapsulated vitamin C nanomicelles of the following combinations of the drug and ginsenoside nanomicelles were prepared: lOmg and 10 mg, 10 mg and 120 mg or 10 mg and 90 mg.
  • Drug-loaded micelles of vitamin C and Rg6 reverse micelles 30 mg of vitamin C and 180 mg of the Rg6 type ginsenoside nano reverse micelle of Example 13 were added to a 50 ml beaker, and then 2 ml of absolute ethanol was added thereto, which was dissolved in a vortex mixer, filtered through a 0.45 ⁇ m filter paper, concentrated under reduced pressure, and dried.
  • the encapsulated vitamin C nanomicelles were prepared. After testing, the ginsenoside nanomicelle has a drug loading of at least 99.5%, and the obtained drug-loaded micelles are placed in the olive oil solution for more than 10 hours, and the encapsulation efficiency is still not less than 90%.
  • encapsulated vitamin C nanomicelles of the following combinations of the drug and ginsenoside nanomicelles were prepared: 10 mg and 10 mg, 10 mg and 120 mg or 10 mg and 90 mg.
  • encapsulated vitamin C nanomicelles of the following combinations of the drug and ginsenoside nanomicelles were prepared: 10 mg and 10 mg, 10 mg and 120 mg or 10 mg and 90 mg.
  • ginsenoside nano reverse micelle 30 mg of vitamin C and 180 mg of the Rg2/Rk4/Rg6 type ginsenoside nano reverse micelle of Example 5 were added to a 50 ml beaker, and then 2 ml of absolute ethanol was added and dissolved in a vortex mixer, filtered through a 0.45 ⁇ m filter paper, and decompressed. After concentration and drying, an encapsulated vitamin C nanomicelle was prepared. After testing, the ginsenoside nanomicelle has a drug loading of at least 99.5%, and the obtained drug-loaded micelles are placed in an olive oil solution for more than 10 hours, and the encapsulation efficiency is still not less than 90%.
  • encapsulated vitamin C nanomicelles of the following combinations of the drug and ginsenoside nanomicelles were prepared: 10 mg and 10 mg, 10 mg and 120 mg or 10 mg and 90 mg.
  • model and analysis conditions of the particle size analyzer are as follows: Model ELS800; Detection conditions: diameter 1855.3 MH; polydispersity 20994e-001; diffusion parameter 2.5347e-008; temperature 23.2 °C; solvent is water; refractive index 0.9242; viscosity 0.9242; light scattering intensity 6560 CPS.
  • the ginsenoside nanomicelle of Example 1 was 480 mg, added to a 5 ml vial and added with 2.0 ml of anhydrous ethanol, and dissolved by stirring with a vortex mixer. After dissolution, it was filtered through a 0.45 ⁇ filter paper, and then 1 ml was dissolved in 99 ml of a 5% dextrose solution.
  • the results obtained by a particle size analyzer are shown in Fig. 7, and the data results are shown in Table 19.
  • the ginsenoside nanomicelle of Example 2 480 mg was added to a 5 ml vial and 2.0 ml of anhydrous ethanol was added thereto, and dissolved by stirring with a vortex mixer. After dissolution, the mixture was filtered through a 0.45 ⁇ filter paper, and then 1 ml was dissolved in 99 ml of a 5% glucose solution.
  • the results obtained by the particle size analyzer are shown in Fig. 8, and the data results are shown in Table 20.
  • Example 7 The drug-loaded micelle of Example 7 was applied, and the results were measured by a particle size analyzer as shown in Fig. 4, and the data results are shown in Table 22.
  • Example 8 The drug-loaded micelle of Example 8 was applied, and the results were measured by a particle size analyzer as shown in Fig. 5, and the data results are shown in Table 23.
  • FIG. 9 is a transmission electron micrograph of the HSE-type ginsenoside nanomicelle of Example 1
  • FIG. 10 is a transmission electron micrograph of the Rg3/Rg5/Rkl type ginsenoside nanomicelle of Example 2
  • FIG. 11 is Example 5.
  • Fig. 12 is a transmission electron micrograph of the paclitaxel-loaded ginsenoside nanomicelle of the application example 1.
  • the saponin nanomicelles of the present invention are substantially spherical, have a usual micelle structure, and are structurally stable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Birds (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Emergency Medicine (AREA)
  • Dermatology (AREA)
  • Botany (AREA)
  • Steroid Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

一种皂苷纳米胶束及其制备方法。所述皂苷纳米胶束包含如式1所示的一种或多种皂苷,R1和R2分别独立地为-H或亲水基,R3为-H或-OH,R4为亲油基;其制备方法为将皂苷与能够溶解皂苷的有机溶剂混合,然后除去有机溶剂即得,

Description

皂苷纳米胶束及其制备方法、 应用和药物组合物 技术领域
本发明属于药剂领域, 具体涉及一种皂苷纳米胶束及其制备方法、 应用 和药物组合物。 背景技术
聚合物胶束的一般特征是具有双亲性, 即同时具有亲水基与疏水基, 疏 水基一般在中间形成内核, 亲水基一般排布在外面形成外壳, 聚合形成的聚 合物能将脂溶性药物成分包裹在其聚合物胶束的疏水中心, 形成载有药物的 聚合物胶束, 并能以其亲水端溶于水或者醇。 聚合物胶束可将脂溶性药物分 子包裹到胶束内部, 延长药物在血液中的循环时间及生物半衰期, 可增加药 物在病变部位的蓄积, 降低不良反应, 可连接特殊的载体、 抗体或配体, 使 其能够与靶细胞的受体结合, 提高治疗效果。 以往的有关利用胶束作为药物 载体的研宄, 大多是利用高分子聚合物胶束进行制备, 这类聚合物胶束的代 表物有聚 L-谷氨酸、 聚 L-赖氨酸、 多糖类高分子几丁质和壳聚糖等。
然而, 在以往的研宄中, 利用聚合物胶束作为药物载体安全传送药物成 分的效果并不是很理想。 高分子聚合物胶束的载药量低, 且其合成和药物负 载步骤繁琐, 致使大规模生产受到限制。 而一些人工合成材料有细胞毒性, 存在靶向分布不理想, 很难达到靶向要求, 存放过程中稳定性差, 可能发生 粒径增长或药物降解, 释放过程中会发生突释现象等缺陷。 为了解决脂溶性 药物的亲水性问题, 有的使用了助溶剂, 有的使用了聚合物胶束。 例如, 在 化妆品中, 为了溶解难溶性有效成分, 会添加一定的添加剂, 如吐温系列中 最常用的吐温 80, 但是这些添加剂常有一定的毒副作用。 吐温 80中亲脂成 份包括不饱和脂肪酸, 这些不饱和脂肪酸十分容易氧化降解而产生更多的有 毒成份,由此而产生的毒副作用将会超过产品本身带来的益处。医学界证实, 吐温 80用于注射剂, 会引起过敏反应, 包括休克、 呼吸困难、 低血压、 血 管性水肿、 风疹等过敏样反应症状。 这些不良反应在人的临床实验中可以十 分严重, 甚至有死亡报道。 因此, 药品、 食品和保健品等相关标准都对吐温 80的安全使用限量作出了严格规定。现有技术中其他种类的高分子胶束也都 或多或少存在制备上的问题以及生理利用度等方面的问题。
因此, 本领域迫切需要研宄开发新型的、 载药能力更强、 生物兼容性更 高的胶束, 该现状亟待解决。
皂苷化合物, 包括了天然的皂苷化合物以及人工半合成的皂苷化合物。 目前, 对于人参皂苷、 三七皂苷等天然皂苷化合物, 已有较为成熟的技术对 其进行改性, 并得到各种半合成的皂苷衍生物。 例如, 专利申请号 CN200910217947.7、 申请公布号 CN101824065A的发明专利申请,对人参皂 苷次级苷 Rhl 进行了改性; 专利申请号 CN201110054137.1、 申请公布号 CN102174191A的发明专利申请, 也公开了用聚乙二醇对人参皂苷等皂苷化 合物进行改性的方法; 专利申请号 CN201010548971.1、 申请公布号 CN102603847A的发明专利申请,公开了人参皂苷 Rh2的脂肪酸酯类化合物 的制备方法; 专利申请号 CN201210207368.6、 申请公布号 CN102766187A 的发明专利申请, 公开了四种人参皂苷 Compoimd-K的酯类衍生物及其制备 方法; 《人参皂苷 Rgl PEG修饰及其稳定性实验研宄》 (刘梅, 王莉, 胡凯 莉, 奉建芳, 中国中药杂志, 第 37卷第 10期, 2012年 5月, 1378-1382页) 公开了人参皂苷 Rgl的 PEG改性方法; 《人参皂苷 Rh2及其衍生物的研宄进 展》 (曹满, 张洁, 宋新波, 马百平, 世界科学技术-中医药现代化, 第 14 卷第 6期, 2012) 公开了人参皂苷 Rh2的衍生物及其制备方法。
反胶束是指一定数量的两亲性物质在非极性有机溶剂中自发形成的聚 集体 (自组织体系), 其中两亲物质的极性基朝向胶束内部, 而非极性基朝 向胶束外部的油连续相, 反胶束内部的极性环境使它可以增溶水溶性物质。 反胶束作为药物载体, 可增加药物的稳定性, 与体液接触后可转变为液晶结 构, 阻滞药物的溶出, 从而实现缓控释给药。 还可作为经皮给药系统载体, 同时, 反胶束亦可作为一种纳米粒制备技术, 用该法制备的纳米粒具有粒径 小、 分布窄的特点。 常用的反胶束为卵磷脂反胶束与二 -(2-乙基己基:)墟拍酸 酯磺酸钠 ( Sodium Di-2-Ethylhexyl Sulfosuccinate, AOT ) 反胶束。
国内外关于嵌段共聚物胶束及树枝形聚合物胶束的综述较多,但关于反 胶束在药剂学领域的研宄和文献均较少,特别是反胶束作为缓释缓控的给药 系统还不成熟, 反胶束在动物, 特别是人体内的释药机理、 药动学特点及毒 理学等方面都有待进一步的研宄和评价。 发明内容
本发明所要解决的技术问题是为了解决脂溶性药物难溶于水或水溶性 药物难溶于脂类溶剂的问题, 克服了现有的聚合物胶束或反胶束载药能力不 理想、 生物兼容性差的缺陷, 提供一种皂苷纳米胶束及其制备方法、 应用和 药物组合物。
本发明的发明人通过大量的实验并经反复验证后发现, 具有某些特定结 构的人参皂苷和 /或三七皂苷, 其可以取自五加科植物根、 茎、 叶、 果实等, 也可以由人工合成, 该些皂苷中的一种或多种所制得皂苷纳米胶束, 能够作 为抗肿瘤药物成份、化妆品难溶性成份及保健食品难溶性成份的助溶剂或复 方制剂, 其中的正胶束可用作难溶于水的脂溶性药物成分的载药胶束, 而使 用的人参皂苷和 /或三七皂苷成分天然无毒,不会有毒副作用,效果异常优异 ·' 同时, 利用该些皂苷制备的反胶束能够作为水溶性药物或水溶性成份的助溶 剂或复方制剂, 也可用作水溶性药物或成份的载药胶束。
本发明通过以下技术方案解决上述技术问题。
本发明提供了一种皂苷纳米胶束,其包含如式 1所示的一种或多种皂苷;
Figure imgf000006_0001
式 1 ;
其中, 和 R2分别独立地为 -H或亲水基, R3为 -H或 -OH, R4为亲油基。 本发明中, 所述的亲水基为本领域常规意义上的亲水基团。 其中, 所述 的亲水基较佳地为 -OH、 糖基、 改性糖基、 脂肪酰基、 氨基酸基、 有机酸酯 基和硫酸盐。 其中, 所述改性糖基较佳地为聚合物型改性糖基、 脂肪酰基改 性糖基、 氨基酸基改性糖基或有机酸酯基改性糖基。
本发明中, 1^和1 2较佳地不同时为 -H。
本发明中, 更佳地, 和 分别独立地为下述基团中的任一种:
( 1 ) -H、 -OH; 其中, -H为氢基, -OH为羟基;
(2) R6, 其中, R6为下述基团中的任一种: -0-Glc、 -0-Rha、 -0-Lyx、 -O-XyK -O-Ara(p), -O-Ara(f), -0-Glc(2→ l)Glc (数字表示碳位, 下同)、 -0-Glc(6→l)Glc、 -0-Glc(2→l)Rha、 -0-Glc(2→ l)XyK -0-Glc(6→ l)Xyl、 -0-Glc(6→l)Rha、 -0-Glc(2→ l)Ara(p)、 -0-Glc(6→ l)Ara(p)、 -0-Glc(2→ l)Ara(f)、 -0-Glc(6→l)Ara(f)、 -0-Glc(2→l)Glc(2→l)Glc、 -0-Glc(2→l)Glc(2 →l)Xyl、 -0-Glc(6→l)Glc(6→l)Xyl、 -0-Glc(2→ l)Glc(4→ l)XyK -0-Glc(2 →l)Lyx、 -0-Glc(6→l)Lyx、 -0-Glc(2→ l)Glc(2→ l)Rha、 -0-Glc(2→l)Glc(2 → l)Lyx、 -0-Glc(2→ l)Glc(2→ l)Ara(f)、 -0-Glc(2→ l)Glc(2→ l)Ara(p)、 -0-Glc(2→l)Glc(6→ l)Glc、 -0-Glc(2→ l)Glc(6→ l)Rha、 -0-Glc(2→l)Glc(6→ 1 )Xyl、 -0-Glc(2→ 1 )Glc(6→ 1 )Lyx、 -0-Glc(2→ 1 )Glc(6→ 1 )Ara(f)、 -0-Glc(2 → l)Glc(6→ l)Ara(p)、 -0-Glc(6→l)Glc(2→ l)Glc、 -0-Glc(6→ l)Glc(2→ l)Rha、 -0-Glc(6→l)Glc(2→ l)Xyl、 -0-Glc(6→l)Glc(2→ l)Lyx、 -0-Glc(6→l)Glc(2→ l)Ara(f), -0-Glc(6→ l)Glc(2→ l)Ara(p), -0-Glc(6→l)Glc(6→l)Glc、 -0-Glc(6 → l)Glc(6→ l)Rha、 -0-Glc(6→l)Glc(6→ l)Lyx、 -0-Glc(6→ l)Glc(6→ l)Ara(f), -0-Glc(6→l)Glc(6→l)Ara(p); 其中, Glc为吡喃葡萄糖基, Xyl为吡喃木糖 基, Rha为吡喃鼠李糖基, Ara(p)为吡喃阿拉伯糖基, Ara(f)为呋喃阿拉伯糖 基, Lyx为来苏糖基;
(3 ) R7, R7为所述 ^中的一个以上的羟基被 ^取代后所形成的基团; 其中, R5为下述基团中的任一种:
I ) -mPEG、 -Z-mPEG、 -mPEO、 -Z-PEO、 -mPW、 -Z-PVP、 -mEPEG 或 -Z-EPEG;其中, m为 H、垸基或酰基, Z为 -CO(CH2)aCO-、 -NH(CH2)aCO-、 -NH(CH2)bX-或 -CO-Ar-CH2-; 其中, X为 0、 S或 NH, Ar为芳基, a为 1〜8 的整数, b为 1〜10的整数;
ID c4〜c22的直链脂肪酰基、 磷酸酯基、 丁二酸酯基、 正丁酸酯基、 磺 酸酯基、 苹果酸酯基或硫酸钠盐;
III) Boc-甘氨酸 (Gly)、 Boc-丙氨酸 (Ala)、 Boc-精氨酸 (Arg)、 Boc- 赖氨酸(Lys)、 Boc-丝氨酸(Ser)、 乙酰苯丙氨酸(Ac-Phe-OH)、 乙酰脯氨 酸 (Ac-Pro-OH)、 乙酰苯丙氨酸 (Ac-Phe-OH)、 天冬酰胺 (Asn)、 天冬氨 酸(Asp)、半胱氨酸(Cys)、谷氨酰胺(Gln)、谷氨酸(Glu)、组氨酸(His)、 异亮氨酸 (Ile)、 亮氨酸 (Leu)、 蛋氨酸 (Met)、 苯丙氨酸 (Phe)、 脯氨酸
(Pro), 苏氨酸 (Thr)、 色氨酸 (Trp)、 酪氨酸 (Tyr) 或缬氨酸 (Val) 中 的任一种中的羧基去氢后所形成的基团;
(4) -0-PEO、 -0-PVP, -0-PEG、 -0-MPEG、 -0-EPEG、 -0-Glc(2→l)Glc(6 →l)Mal或 -0-Glc(2→l)Glc(6→l)Ac; 其中, Mai为丙二酰基, Ac为乙酰基, PEG为聚乙二醇, PEO为聚氧乙烯, MPEG为单甲氧基封端的聚乙二醇, EPEG为环氧封端的聚乙二醇, PVP为聚维酮;
(5 ) R8, R8为下述基团中的任一种:
I ) -mPEG、 -Z-mPEG、 -mPEO、 -Z-PEO、 -mPW、 -Z-PVP、 -mEPEG 或 -Z-EPEG;其中, m为 H、垸基或酰基, Z为 -CO(CH2)aCO-、 -NH(CH2)aCO-、 -NH(CH2)bX-或 -CO-Ar-CH2-; 其中, X为 0、 S或 NH, Ar为芳基, a为 1〜8 的整数, b为 1〜10的整数;
ID c4〜c22的直链脂肪酰基、 磷酸酯基、 丁二酸酯基、 正丁酸酯基、 磺 酸酯基、 苹果酸酯基或硫酸钠盐;
III) Boc-甘氨酸 (Gly)、 Boc-丙氨酸 (Ala)、 Boc-精氨酸 (Arg)、 Boc- 赖氨酸(Lys)、 Boc-丝氨酸(Ser)、 乙酰苯丙氨酸(Ac-Phe-OH)、 乙酰脯氨 酸 (Ac-Pro-OH)、 乙酰苯丙氨酸 (Ac-Phe-OH)、 天冬酰胺 (Asn)、 天冬氨 酸(Asp)、半胱氨酸(Cys)、谷氨酰胺(Gln)、谷氨酸(Glu)、组氨酸(His)、 异亮氨酸 (Ile)、 亮氨酸 (Leu)、 蛋氨酸 (Met)、 苯丙氨酸 (Phe)、 脯氨酸
(Pro), 苏氨酸 (Thr)、 色氨酸 (Trp)、 酪氨酸 (Tyr) 或缬氨酸 (Val) 中 的任一种中的羧基去氢后所形成的基团;
并且, 和 不同时为-11。
其中, 所述 PEG、 PEO、 PVP和 EPEG的分子量较佳地分别独立地为 200〜20000。
其中,所述的直链脂肪酰基可为天然存在的饱和或不饱和直链脂肪酸的 酰基、 及人工合成的饱和或不饱和的直链脂肪酸的酰基, 较佳地为硬脂酰基 或棕榈酰基。
其中, 具体地, 在 -O-Glc中 Glc的结构式为:
Figure imgf000008_0001
; 在 -O-Ara(p)
中, Ara p)的结构式为:
Figure imgf000008_0002
; 在 -O-Lyx中, Lyx的结构式为:
Figure imgf000008_0003
在 -O-Rha中, Rha的结构式为 OHOH ;在 -O-Xyl中, Xyl的结构式为
Mai的结构式为
Figure imgf000009_0001
。 其中, 当^和 分别独立地为^时, R7为所述 R6中的一个以上的羟 基被 取代后所形成的基团;
具体地, 当 R6为 -0-Glc、 -O-Rha, -0-Lyx、 -O-XyL -O-Ara(p)或 -O-Ara(f) 时, ^较佳地为 R6中的 1〜4个羟基被所述 ^取代后所形成的基团;
当 R6为 -0-Glc(2→l)Glc、 -0-Glc(6→l)Glc、 -0-Glc(2→l)Rha、 -0-Glc(2 →l)Xyl、 -0-Glc(6→l)Xyl、 -0-Glc(6→l)Rha、 -0-Glc(2→l)Ara(p)、 -0-Glc(6 →l)Ara(p)、 -0-Glc(2→ l)Ara(f) , -0-Glc(6→ l)Ara(f) , -0-Glc(2→ l)Lyx 或 -0-Glc(6→l)Lyx时, R7较佳地为 R6中的 1〜7个羟基被所述 R5取代后所形成 的基团;
当 R6为 -0-Glc(2→l)Glc(4→l)Xyl、 -0-Glc(2→l)Glc(2→l)Rha、 -0-Glc(2 → l)Glc(2→ l)Lyx、 -0-Glc(2→ l)Glc(2→ l)Ara(f)、 -0-Glc(2→ l)Glc(2→ l)Ara(p)、 -0-Glc(2→l)Glc(6→l)Glc、 -0-Glc(2→l)Glc(6→l)Rha、 -0-Glc(2 → l)Glc(6→ l)Xyl、 -0-Glc(2→ l)Glc(6→ l)Lyx、 -0-Glc(2→ l)Glc(6→ l)Ara(f), -0-Glc(2→l)Glc(6→ l)Ara(p)、 -0-Glc(6→ l)Glc(2→ l)Glc、 -0-Glc(6→l)Glc(2 →l)Rha、 -0-Glc(6→ 1 )Glc(2→ 1 )Xyl , -0-Glc(6→l)Glc(2→l)Lyx、 -0-Glc(6 → 1 )Glc(2→ 1 )Ara(f)、 -0-Glc(6→ 1 )Glc(2→ 1 )Ara(p)、 -0-Glc(6→ 1 )Glc(6→ l)Glc、 -0-Glc(6→l)Glc(6→l)Rha、 -0-Glc(6→l)Glc(6→l)Lyx、 -0-Glc(6→ l)Glc(6→ l)Ara(f)或 -0-Glc(6→ l)Glc(6→ l)Ara(p)时, R7较佳地为 R6中的 1〜10 个羟基被所述 取代后所形成的基团。
本发明中, 所述的亲油基为本领域常规意义上的亲油基团。 本发明中, 较佳地为式 2、 式 3或式 4所示的基团;
Figure imgf000010_0001
式2; 其中, R9、 R1Q和 R 立地为 (^ 3的垸基, d为
Figure imgf000010_0002
式 3 ; 其中, R12、 !^ 〜^的垸基, e为 1〜3的整数;
Figure imgf000010_0003
式 4; 其中, R15和 R16分别独立地为 (^〜( 3的垸基, f为 1〜3的整数 < 本发明中, R4最 2-1、 式 3-1或式 4-1所示的基团;
Figure imgf000010_0004
式 4-1。 本发明中, 较佳地, 所述皂苷纳米胶束中, 如式 1所示的皂苷为 A型皂 苷、 B型皂苷和 C型皂苷; 或者, 较佳地, 所述皂苷纳米胶束中, 如式 1所 示的皂苷为 B型皂苷和 /或 C型皂苷; 其中, 所述 A型皂苷为如式 1-1所示 的皂苷的一种或多种, 所述 B型皂苷为如式 1-2所示的皂苷的一种或多种, 所述 C型皂苷为如式 1-3所示的皂苷的一种或多种;
Figure imgf000011_0001
其中, 当所述的皂苷纳米胶束中, 如式 1所示的皂苷为所述 A型皂苷、 B型皂苷和 C型皂苷时, 所述 A型皂苷、 B型皂苷和 C型皂苷的摩尔比较 佳地为 (0.8〜1.2) : ( 1.8-2.2) : (0.8〜1.2)。
本发明中, 最佳地, 所述皂苷纳米胶束中, 如式 1所示的皂苷为所述 B 型皂苷和 /或所述 C型皂苷, 且所述皂苷纳米胶束中不含所述 A型皂苷。
本发明的皂苷纳米胶束, 可以分为皂苷纳米正胶束和皂苷纳米反胶束。 其中, 皂苷纳米正胶束具有包裹脂溶性药物成分的特性, 而皂苷纳米反胶束 则具有包裹水溶性药物成分的特性。
在本发明的一皂苷纳米胶束中, 当如式 1所示的一种或多种皂苷中, R2 均为 -H或 -OH, ^均为除了 -OH以外的亲水基时,该皂苷纳米胶束为皂苷纳 米正胶束, 例如 Rg5型人参皂苷纳米正胶束、 Rg5/Rkl型人参皂苷纳米正胶 束、 Rg3/Rg5/Rkl型人参皂苷纳米正胶束;
当如式 1所示的一种或多种皂苷中, 均为 -H或 -OH, R2均为除了 -OH 以外的亲水基时, 该皂苷纳米胶束为皂苷纳米反胶束; RK4型人参皂苷纳米 反胶束、 Rk4/Rg6型人参皂苷纳米反胶束、 Rg2/Rk4/Rg6型人参皂苷纳米反 胶束;
当如式 1所示的一种或多种皂苷中, 不完全为 -H或 -OH, R2不完全 为除了 -H和 -OH 以外的亲水基时, 该皂苷纳米胶束为皂苷纳米正胶束, 例 如 HSE型人参皂苷纳米正胶束、 Rg2/Rk4/Rg6型人参皂苷纳米正胶束。
本发明中,所述的皂苷纳米胶束可由一种或多种如式 1所示的皂苷所形 成。 下文中, "质量含量"表示物质占所述皂苷纳米胶束总质量的质量百分 比含量, "摩尔含量"表示物质占所述皂苷纳米胶束中总物质的摩尔量的摩 尔百分比含量。
当所述的皂苷纳米胶束由一种类型的如式 1所示的皂苷所形成时,所述 的皂苷为所述 A型皂苷、 B型皂苷或 C型皂苷; 所述的皂苷的质量含量在 70%以上, 较佳地在 80%以上, 更佳地在 90%以上, 最佳地在 95%以上。 例 如, 按上述皂苷含量, 分别由人参皂苷 Rg5、 人参皂苷 Rkl、 人参皂苷 Rk4、 人参皂苷 Rg6所形成的皂苷纳米胶束, 其中人参皂苷 Rg5和人参皂苷 Rkl 所形成的是人参皂苷纳米正胶束, 人参皂苷 Rk4和人参皂苷 Rg6所形成的 是人参皂苷纳米反胶束。
或者, 所述的皂苷纳米胶束由所述 B型皂苷或所述 C型皂苷所形成, 所述的皂苷的摩尔含量在 70%以上,较佳地在 80%以上,更佳地在 90%以上, 最佳地在 95%以上。 当所述的皂苷纳米胶束由两种类型的如式 1所示的皂苷所形成时, 即所 述的皂苷为所述 A型皂苷、 B型皂苷和 C型皂苷中的任两种皂苷; 该两种 皂苷的质量含量分别在 25%以上, 该两种皂苷的总质量含量在 70%以上; 较 佳地, 该两种皂苷的质量比为 0.8〜1.2, 且该两种皂苷的总质量含量在 90% 以上; 更佳地, 该两种皂苷的质量比为 1:1, 且该两种皂苷的总质量含量在 95%以上。 例如, 按上述皂苷含量, 人参皂苷 Rg5和人参皂苷 Rkl 形成了 Rg5/Rkl 型人参皂苷纳米正胶束, 人参皂苷 Rk4 和人参皂苷 Rg6 形成了 Rk4/Rg6型人参皂苷纳米反胶束。
或者, 所述的皂苷纳米胶束由所述 B型皂苷和所述 C型皂苷所形成, 所述 B型皂苷和 C型皂苷的摩尔含量分别在 25%以上, 所述 B型皂苷和 C 型皂苷的总摩尔含量在 70%以上; 较佳地, 所述 B型皂苷和所述 C型皂苷 的摩尔比为 0.8〜1.2,且所述 B型皂苷和 C型皂苷的总摩尔含量在 90%以上; 更佳地,所述 B型皂苷和 C型皂苷的摩尔比为 1:1, 且所述 B型皂苷和 C型 皂苷的总摩尔含量在 95%以上。
当所述的皂苷纳米胶束由三种类型的如式 1所示的皂苷所形成时, 即所 述的皂苷为所述的 A型皂苷、 B型皂苷和 C型皂苷, 所述 A型皂苷、 所述 B型皂苷和所述 C型皂苷的质量含量分别在 15%〜45%, 所述 A型皂苷、 所 述 B型皂苷和所述 C型皂苷的总质量含量在 70%以上;
较佳地, 所述 A型皂苷的质量含量为 15%〜25%, 所述 B型皂苷的质量 含量为 35%〜45%, 所述 C型皂苷的质量含量为 15%〜25%, 且所述 A型皂 苷、 所述 B型皂苷和所述 C型皂苷的总质量含量在 80%以上; 更佳地, 所 述 A型皂苷、所述 B型皂苷和所述 C型皂苷的质量比为(0.8〜1.2) : ( 1.8-2.2): (0.8〜1.2), 且所述 A型皂苷、所述 B型皂苷和所述 C型皂苷的总质量含量 在 90%以上; 最佳地, 所述 A型皂苷、 所述 B型皂苷和所述 C型皂苷的质 量比为 1:2: 1, 且所述 A型皂苷、 所述 B型皂苷和所述 C型皂苷的总质量含 量在 95%以上。 例如, 按上述皂苷含量, 人参皂苷 Rg3、 人参皂苷 Rg5和人参皂苷 Rkl 形成了 Rg3/Rg5/Rkl型人参皂苷纳米正胶束, 人参皂苷 Rh2、 人参皂苷 Rh3 和人参皂苷 Rk2形成了 Rh2/Rh3/Rk2型人参皂苷纳米正胶束,人参皂苷 Rg2、 人参皂苷 Rk4和人参皂苷 Rg6形成了 Rg2/Rk4/Rg6型人参皂苷纳米反胶束。 又例如, 按上述皂苷含量, A型皂苷: 人参皂苷 Rg2、 人参皂苷 Rg3、 人参 皂苷 Rhl, B型皂苷: 人参皂苷 Rg5、 人参皂苷 Rk4、 人参皂苷 Rh4, 以及 C型皂苷: 人参皂苷 Rkl、 人参皂苷 Rg6和人参皂苷 Rk3, 一起形成了 HSE 型人参皂苷纳米正胶束。
或者, 所述的皂苷纳米胶束由所述 A型皂苷、 所述 B型皂苷和所述 C 型皂苷所形成, 所述 A型皂苷、 所述 B型皂苷和所述 C型皂苷的摩尔含量 分别在 15%〜45%, 所述 A型皂苷、 所述 B型皂苷和所述 C型皂苷的总摩尔 含量在 70%以上;
较佳地, 所述 A型皂苷的摩尔含量为 15%〜25%, 所述 B型皂苷的摩尔 含量为 35%〜45%, 所述 C型皂苷的摩尔含量为 15%〜25%, 且所述 A型皂 苷、 所述 B型皂苷和所述 C型皂苷的总摩尔含量在 80%以上; 更佳地, 所 述 A型皂苷、所述 B型皂苷和所述 C型皂苷的摩尔比为(0.8〜1.2): ( 1.8-2.2): (0.8〜1.2), 且所述 A型皂苷、所述 B型皂苷和所述 C型皂苷的总摩尔含量 在 90%以上; 最佳地, 所述 A型皂苷、 所述 B型皂苷和所述 C型皂苷的摩 尔比为 1:2: 1, 且所述 A型皂苷、 所述 B型皂苷和所述 C型皂苷的总摩尔含 量在 95%以上。
本发明中, 所述的皂苷纳米正胶束具有普通聚合物胶束所具有的双亲 性, 即同时具有亲水基与疏水基。 疏水基在中间形成内核, 和/或 为亲 水基, 排布在胶束外面形成外壳, 该皂苷纳米胶束能将脂溶性药物成分包裹 在胶束的疏水中心, 形成载有药物的胶束, 并能以其亲水端溶于水或者醇。 该皂苷纳米正胶束可将脂溶性药物分子包裹到胶束内部, 延长药物在血液中 的循环时间及生物半衰期, 可增加药物在病变部位的蓄积, 降低不良反应, 可连接特殊的载体、 抗体或配体, 使其能够与靶细胞的受体结合, 提高治疗 效果。
本发明中,所述的皂苷纳米反胶束具有普通聚合物反胶束所具有的双亲 性, 即同时具有亲水基与疏水基。 亲水基在中间形成内核, 和/或 为亲 水基, 排布在胶束里面形成亲水中心, 该皂苷纳米胶束能将水溶性药物成分 包裹在其胶束的亲水中心, 形成载有药物的反胶束, 并能以其疏水端溶于酯 或者油。 该皂苷纳米反胶束可将水溶性药物分子包裹到胶束内部, 延长药物 在血液中的循环时间及生物半衰期, 可增加药物在病变部位的蓄积, 降低不 良反应, 可连接特殊的载体、 抗体或配体, 使其能够与靶细胞的受体结合, 提高治疗效果。
本发明中,如式 1所示的皂苷,其主要来源于人参皂苷原料和 /或三七皂 苷原料, 例如五加科植物或葫芦科绞股蓝属植物中加工得到的人参皂苷、 三 七皂苷及其类似物。 在所述的皂苷纳米胶束中, 除了如式 1所示的皂苷, 其 余成分可视为非必要组分,其一般为不可避免的杂质,通常为除了 A型皂苷、 B型皂苷和 C型皂苷以外的其他种类的人参皂苷和 /或三七皂苷, 即其为非 式 1所示的化合物。 下文中, 将其明确称为 "其他种类的皂苷"。
以下,从如式 1所示的皂苷容易通过工业生产或实验室制取的角度出发, 详细描述以下 8种最具有代表性的皂苷纳米胶束, 作为较佳的实施方式。 但 不能以这 8种皂苷纳米胶束而限制了本发明所要求的保护范围。
下述较佳实施方式一〜八中, 所涉及的如式 1所示的人参皂苷的具体名 称和结构式分别如下所示:
人参皂苷 Rg5: 人参皂苷 Rkl: 人参皂苷 Rg3: 7; 人参皂苷 Rh2:
Figure imgf000016_0001
人参皂苷 Rh3: 式 9; 人参皂苷 Rk2: 式 10: 人参皂苷 Rg2:
人参皂苷 Rhl:
Figure imgf000017_0001
2013/088558 人参皂苷 Rk4: ;
人参皂苷 Rh4:
人参皂苷 Rg6:
Figure imgf000018_0001
人参皂苷 Rk3:
Figure imgf000019_0001
16。 在本发明的较佳实施方式一中,所述的皂苷纳米胶束, 其为 Rg5型人参 皂苷纳米正胶束, 其包含人参皂苷 Rg5, 所述的人参皂苷 Rg5的质量含量在 50%以上。
其中,所述的人参皂苷 Rg5的质量含量较佳地在 70%以上,进一步较佳 地在 85%以上, 更佳地在 90%以上, 最佳地为 95%以上。
或者, 所述的皂苷纳米胶束, 其包含人参皂苷 Rg5, 所述的人参皂苷 Rg5的摩尔含量在 50%以上,较佳地在 70%以上,进一步较佳地在 85%以上, 更佳地在 90%以上, 最佳地为 95%以上。
其中, 所述的人参皂苷 Rg5, 来源于上述的人参皂苷原料经酸解后, 并 经纯化后得到的人参皂苷 Rg5单体。
在该较佳实施方式一中, 除了所述的人参皂苷 Rg5之外, 其余成分均为 其他种类的人参皂苷。
除人参皂苷 Rg5外, 人参皂苷 Rkl、 人参皂苷 Rs5、 人参皂苷 Rk2、 人 参皂苷 Rh3、 人参皂苷 Rs4或者任一的所述 B型皂苷和所述 C型皂苷中 为亲水基、 且 为-11或 -OH的人参皂苷, 也能够形成皂苷纳米正胶束。
例如, 在本发明的较佳实施方式一的一变形方式中, 所述的皂苷纳米胶 束, 其为 Rkl型人参皂苷纳米正胶束, 其包含人参皂苷 Rkl, 所述的人参皂 地在 85%以上, 更佳地在 90%以上, 最佳地为 95%以上。
或者, 所述的皂苷纳米胶束, 其包含人参皂苷 Rkl, 所述的人参皂苷
Rkl的摩尔含量在 50%以上,较佳地在 70%以上,进一步较佳地在 85%以上, 更佳地在 90%以上, 最佳地为 95%以上。
其中, 所述的人参皂苷 Rkl, 来源于上述的人参皂苷原料经酸解后, 并 经纯化后得到的人参皂苷 Rkl单体。
在该较佳实施方式一中, 除了所述的人参皂苷 Rkl之外, 其余成分均为 其他种类的皂苷。
在本发明的较佳实施方式二中,所述的皂苷纳米胶束, 其为 Rk4型人参 皂苷纳米反胶束, 其包含人参皂苷 Rk4, 所述的人参皂苷 Rk4的质量含量在 50%以上。
其中,所述的人参皂苷 Rk4的质量含量较佳地在 70%以上,进一步较佳 地在 85%以上, 更佳地在 90%以上, 最佳地为 95%以上。
或者, 所述的皂苷纳米胶束, 其包含人参皂苷 Rk4, 所述的人参皂苷 Rk4的摩尔含量在 50%以上,较佳地在 70%以上,进一步较佳地在 85%以上, 更佳地在 90%以上, 最佳地为 95%以上。
其中, 所述的人参皂苷 Rk4, 来源于上述的人参皂苷原料经酸解后, 并 经纯化后得到的人参皂苷 Rk4单体。
在该较佳实施方式二中, 除了所述的人参皂苷 Rk4之外, 其余成分均为 其他种类的皂苷。
除人参皂苷 Rk4外, 人参皂苷 Rk3、 人参皂苷 F4、 人参皂苷 Rs7、 人参 皂苷 Rh4、 人参皂苷 Rs6、 人参皂苷 Rg6、 三七皂苷 T5或者任一的所述 B 型皂苷和所述 C型皂苷中 或 -OH、 且 R2为亲水基的人参皂苷, 也能 够形成皂苷纳米反胶束。
例如, 在本发明的较佳实施方式二的一变形方式中, 所述的皂苷纳米胶 束, 其为 Rg6型人参皂苷纳米反胶束, 其包含人参皂苷 Rg6, 所述的人参皂 苷 Rg6的质量含量在 50%以上。
其中,所述的人参皂苷 Rg6的质量含量较佳地在 70%以上,进一步较佳 地在 85%以上, 更佳地在 90%以上, 最佳地为 95%以上。
或者, 所述的皂苷纳米胶束, 其包含人参皂苷 Rg6, 所述的人参皂苷 Rg6的摩尔含量在 50%以上,较佳地在 70%以上,进一步较佳地在 85%以上, 更佳地在 90%以上, 最佳地为 95%以上。
其中, 所述的人参皂苷 Rg6, 来源于上述的人参皂苷原料经酸解后, 并 经纯化后得到的人参皂苷 Rg6单体。
在该较佳实施方式二的变形方式中, 除了所述的人参皂苷 Rg6之外, 其 余成分均为其他种类的皂苷。
在本发明的较佳实施方式三中, 所述的皂苷纳米胶束, 其为 Rg5/Rkl型 人参皂苷纳米正胶束, 其包含人参皂苷 Rg5和人参皂苷 Rkl, 所述人参皂苷 Rg5的质量含量在 15%以上, 所述的人参皂苷 Rkl的质量含量在 15%以上, 且所述的人参皂苷 Rg5和人参皂苷 Rkl的总质量含量在 50%以上。
其中, 较佳地, 所述人参皂苷 Rg5的质量含量在 25%以上, 所述的人参 皂苷 Rkl 的质量含量在 25%以上, 且所述的人参皂苷 Rg5和人参皂苷 Rkl 的总质量含量在 80%以上;
或者, 较佳地, 所述人参皂苷 Rg5的质量含量为 25%〜60%, 所述人参 皂苷 Rkl的质量含量为 25%〜60%, 且所述的人参皂苷 Rg5和人参皂苷 Rkl 的总质量含量在 70%以上;
进一步较佳地, 所述人参皂苷 Rg5的质量含量为 35%〜50%, 所述人参 皂苷 Rkl的质量含量为 35%〜50%,且所述人参皂苷 Rg5和所述人参皂苷 Rkl 的总质量含量在 80%以上;
更佳地, 所述人参皂苷 Rg5和所述人参皂苷 Rkl的质量比为 0.8〜1.2, 且所述人参皂苷 Rg5和所述人参皂苷 Rkl的总质量含量在 80%以上; 进一步更佳地, 所述人参皂苷 Rg5 和所述人参皂苷 Rkl 的质量比为 0.8-1.2, 且所述人参皂苷 Rg5和所述人参皂苷 Rkl的总质量含量在 90%以 上;
最佳地, 所述人参皂苷 Rg5和所述人参皂苷 Rkl的质量比为 1: 1, 且所 述人参皂苷 Rg5和所述人参皂苷 Rkl的总质量含量在 95%以上。
或者, 所述的皂苷纳米胶束, 其包含人参皂苷 Rg5和人参皂苷 Rkl, 所 述人参皂苷 Rg5的摩尔含量在 15%以上, 所述的人参皂苷 Rkl 的摩尔含量 在 15%以上, 且所述的人参皂苷 Rg5和人参皂苷 Rkl的总摩尔含量在 50% 以上。
其中, 较佳地, 所述人参皂苷 Rg5的摩尔含量在 25%以上, 所述的人参 皂苷 Rkl 的摩尔含量在 25%以上, 且所述的人参皂苷 Rg5和人参皂苷 Rkl 的总摩尔含量在 80%以上;
或者, 较佳地, 所述人参皂苷 Rg5的摩尔含量为 25%〜60%, 所述人参 皂苷 Rkl的摩尔含量为 25%〜60%, 且所述的人参皂苷 Rg5和人参皂苷 Rkl 的总摩尔含量在 70%以上;
进一步较佳地, 所述人参皂苷 Rg5的摩尔含量为 35%〜50%, 所述人参 皂苷 Rkl的摩尔含量为 35%〜50%,且所述人参皂苷 Rg5和所述人参皂苷 Rkl 的总摩尔含量在 80%以上;
更佳地, 所述人参皂苷 Rg5和所述人参皂苷 Rkl的摩尔比为 0.8〜1.2, 且所述人参皂苷 Rg5和所述人参皂苷 Rkl的总摩尔含量在 80%以上;
进一步更佳地, 所述人参皂苷 Rg5 和所述人参皂苷 Rkl 的摩尔比为 0.8-1.2, 且所述人参皂苷 Rg5和所述人参皂苷 Rkl的总摩尔含量在 90%以 上;
最佳地, 所述人参皂苷 Rg5和所述人参皂苷 Rkl的摩尔比为 1: 1, 且所 述人参皂苷 Rg5和所述人参皂苷 Rkl的总摩尔含量在 95%以上。
在该较佳实施方式三中, 除了所述的人参皂苷 Rg5 和所述的人参皂苷 Rkl之外, 其余成分均为其他种类的皂苷。
除人参皂苷 Rg5和人参皂苷 Rkl之外, 所述 B型皂苷和所述 C型皂苷 中^为亲水基、且 为-11或 -OH的人参皂苷中的任意两种, 也能够形成皂 苷纳米正胶束。
在本发明的较佳实施方式四中, 所述的皂苷纳米胶束, 其为 Rk4/Rg6型 人参皂苷纳米反胶束, 其包含人参皂苷 Rk4和人参皂苷 Rg6, 所述人参皂苷 Rk4的质量含量在 15%以上,所述人参皂苷 Rg6的质量含量在 15%以上,且 所述人参皂苷 Rk4和人参皂苷 Rg6的总质量含量在 50%以上。
其中, 较佳地, 所述人参皂苷 Rk4的质量含量为 25%〜60%, 所述人参 皂苷 Rg6的质量含量为 25%〜60%, 且所述的人参皂苷 Rk4和人参皂苷 Rg6 的总质量含量在 70%以上;
进一步较佳地, 所述人参皂苷 Rk4的质量含量为 35%〜50%, 所述人参 皂苷 Rg6的质量含量为 35%〜50%,且所述人参皂苷 Rk4和所述人参皂苷 Rg6 的总质量含量在 80%以上;
更佳地, 所述人参皂苷 Rk4和所述人参皂苷 Rg6的质量比为 0.8〜1.2, 且所述人参皂苷 Rk4和所述人参皂苷 Rg6的总质量含量在 90%以上;
最佳地, 所述人参皂苷 Rk4和所述人参皂苷 Rg6的质量比为 1:1, 且所 述人参皂苷 Rk4和所述人参皂苷 Rg6的总质量含量在 95%以上。
或者, 所述的皂苷纳米胶束, 其包含人参皂苷 Rk4和人参皂苷 Rg6, 所 述人参皂苷 Rk4的摩尔含量在 15%以上, 所述人参皂苷 Rg6的摩尔含量在 15%以上, 且所述人参皂苷 Rk4和人参皂苷 Rg6的总摩尔含量在 50%以上。
其中, 较佳地, 所述人参皂苷 Rk4的摩尔含量为 25%〜60%, 所述人参 皂苷 Rg6的摩尔含量为 25%〜60%, 且所述的人参皂苷 Rk4和人参皂苷 Rg6 的总摩尔含量在 70%以上; 进一步较佳地, 所述人参皂苷 Rk4的摩尔含量为 35%〜50%, 所述人参 皂苷 Rg6的摩尔含量为 35%〜50%,且所述人参皂苷 Rk4和所述人参皂苷 Rg6 的总摩尔含量在 80%以上;
更佳地, 所述人参皂苷 Rk4和所述人参皂苷 Rg6的摩尔比为 0.8〜1.2, 且所述人参皂苷 Rk4和所述人参皂苷 Rg6的总摩尔含量在 90%以上;
最佳地, 所述人参皂苷 Rk4和所述人参皂苷 Rg6的摩尔比为 1:1, 且所 述人参皂苷 Rk4和所述人参皂苷 Rg6的总摩尔含量在 95%以上。
在该较佳实施方式四中, 除了所述的人参皂苷 Rk4 和所述的人参皂苷 Rg6之外, 其余成分均为其他种类的皂苷。
除人参皂苷 Rk4和人参皂苷 Rg6外, 所述 B型皂苷和所述 C型皂苷中 或 -OH、 且 为亲水基的人参皂苷中的任意两种, 也能够形成皂苷 纳米反胶束。
在本发明的较佳实施方式五中,所述的皂苷纳米胶束,其为 Rg3/Rg5/Rkl 型人参皂苷纳米正胶束, 其包含人参皂苷 Rg3、 人参皂苷 Rg5 和人参皂苷 Rkl , 所述人参皂苷 Rg3的质量含量为 15%〜45%, 所述人参皂苷 Rg5的质 量含量为 15%〜45%, 所述人参皂苷 Rkl的质量含量为 15%〜45%, 且所述的 人参皂苷 Rg3、 所述的人参皂苷 Rg5和所述人参皂苷 Rkl 的总质量含量在 70%以上。
其中, 较佳地, 所述人参皂苷 Rg3的质量含量为 15%〜25%, 所述人参 皂苷 Rg5 的质量含量为 35%〜45%, 所述人参皂苷 Rkl 的质量含量为 15%〜25%,且所述的人参皂苷 Rg3、所述人参皂苷 Rg5和所述人参皂苷 Rkl 的总质量含量在 80%以上;
更佳地, 所述人参皂苷 Rg3、 所述人参皂苷 Rg5和所述人参皂苷 Rkl 的质量比为 (0.8〜1.2) : ( 1.8-2.2) : (0.8〜1.2), 且所述人参皂苷 Rg3、 所述 人参皂苷 Rg5和所述人参皂苷 Rkl的总质量含量在 90%;
最佳地, 所述人参皂苷 Rg3、 所述人参皂苷 Rg5和所述人参皂苷 Rkl 的质量比为 1:2:1。
或者, 所述的皂苷纳米胶束, 其包含人参皂苷 Rg3、 人参皂苷 Rg5和人 参皂苷 Rkl,所述人参皂苷 Rg3的摩尔含量为 15%〜45%,所述人参皂苷 Rg5 的摩尔含量为 15%〜45%, 所述人参皂苷 Rkl的摩尔含量为 15%〜45%, 且所 述的人参皂苷 Rg3、所述的人参皂苷 Rg5和所述人参皂苷 Rkl的总摩尔含量 在 70%以上。
其中, 较佳地, 所述人参皂苷 Rg3的摩尔含量为 15%〜25%, 所述人参 皂苷 Rg5 的摩尔含量为 35%〜45%, 所述人参皂苷 Rkl 的摩尔含量为 15%〜25%,且所述的人参皂苷 Rg3、所述人参皂苷 Rg5和所述人参皂苷 Rkl 的总摩尔含量在 80%以上;
更佳地, 所述人参皂苷 Rg3、 所述人参皂苷 Rg5和所述人参皂苷 Rkl 的摩尔比为 (0.8〜1.2) : ( 1.8-2.2) : (0.8〜1.2), 且所述人参皂苷 Rg3、 所述 人参皂苷 Rg5和所述人参皂苷 Rkl的总摩尔含量在 90%;
最佳地, 所述人参皂苷 Rg3、 所述人参皂苷 Rg5和所述人参皂苷 Rkl 的摩尔比为 1:2:1。
在该较佳实施方式五中, 除了所述的人参皂苷 Rg3、 所述的人参皂苷 Rg5和所述的人参皂苷 Rkl之外, 其余成分均为其他种类的皂苷。
在本发明的较佳实施方式六中,所述的皂苷纳米胶束,其为 Rh2/Rh3/Rk2 型人参皂苷纳米正胶束, 其包含人参皂苷 Rh2、 人参皂苷 Rh3 和人参皂苷 Rk2, 所述人参皂苷 Rh2的质量含量为 15%〜45%, 所述人参皂苷 Rh3的质 量含量为 15%〜45%, 所述人参皂苷 Rk2的质量含量为 15%〜45%, 且所述人 参皂苷 Rh2、 所述人参皂苷 Rh3和所述人参皂苷 Rk2的总质量含量在 70% 以上。
其中, 较佳地, 所述人参皂苷 Rh2的质量含量为 15%〜25%, 所述人参 皂苷 Rh3 的质量含量为 35%〜45%, 所述人参皂苷 Rk2 的质量含量为 15%〜25%, 且所述人参皂苷 Rh2、 所述人参皂苷 Rh3和所述人参皂苷 Rk2 的总质量含量在 80%以上;
更佳地, 所述人参皂苷 Rh2、 所述人参皂苷 Rh3 和所述人参皂苷 Rk2 的质量比为 (0.8〜1.2) : ( 1.8-2.2) : (0.8〜1.2), 且所述人参皂苷 Rh2、 所述 人参皂苷 Rh3和所述人参皂苷 Rk2的总质量含量在 90%以上;
最佳地, 所述人参皂苷 Rh2、 所述人参皂苷 Rh3 和所述人参皂苷 Rk2 的质量比为 1:2:1。
或者, 所述的皂苷纳米胶束, 其包含人参皂苷 Rh2、 人参皂苷 Rh3和人 参皂苷 Rk2,所述人参皂苷 Rh2的摩尔含量为 15%〜45%,所述人参皂苷 Rh3 的摩尔含量为 15%〜45%, 所述人参皂苷 Rk2的摩尔含量为 15%〜45%, 且所 述人参皂苷 Rh2、 所述人参皂苷 Rh3和所述人参皂苷 Rk2的总摩尔含量在 70%以上。
其中, 较佳地, 所述人参皂苷 Rh2的摩尔含量为 15%〜25%, 所述人参 皂苷 Rh3 的摩尔含量为 35%〜45%, 所述人参皂苷 Rk2 的摩尔含量为 15%〜25%, 且所述人参皂苷 Rh2、 所述人参皂苷 Rh3和所述人参皂苷 Rk2 的总摩尔含量在 80%以上;
更佳地, 所述人参皂苷 Rh2、 所述人参皂苷 Rh3 和所述人参皂苷 Rk2 的摩尔比为 (0.8〜1.2) : ( 1.8-2.2) : (0.8〜1.2), 且所述人参皂苷 Rh2、 所述 人参皂苷 Rh3和所述人参皂苷 Rk2的总摩尔含量在 90%以上;
最佳地, 所述人参皂苷 Rh2、 所述人参皂苷 Rh3 和所述人参皂苷 Rk2 的摩尔比为 1:2:1。
在该较佳实施方式六中, 除了所述的人参皂苷 Rh2、 所述的人参皂苷 Rh3和所述的人参皂苷 Rk2之外, 其余成分均为其他种类的皂苷。
在本发明的较佳实施方式七中,所述的皂苷纳米胶束,其为 Rg2/Rk4/Rg6 型人参皂苷纳米胶束,其包含人参皂苷 Rg2、人参皂苷 Rk4和人参皂苷 Rg6, 所述人参皂苷 Rg2的质量含量为 15%〜45%, 所述人参皂苷 Rk4的质量含量 为 15%〜45%, 所述人参皂苷 Rg6的质量含量为 15%〜45%, 且所述人参皂苷 Rg2、 所述人参皂苷 Rk4和所述人参皂苷 Rg6的总质量含量在 70%以上。 其中, 较佳地, 所述人参皂苷 Rg2的质量含量为 15%〜25%, 所述人参 皂苷 Rk4 的质量含量为 35%〜45%, 所述人参皂苷 Rg6 的质量含量为 15%〜25%, 且所述人参皂苷 Rg2、 所述人参皂苷 Rk4和所述人参皂苷 Rg6 的总质量含量在 80%以上;
更佳地, 所述人参皂苷 Rg2、 所述人参皂苷 Rk4和所述人参皂苷 Rg6 的质量比为 (0.8〜1.2) : ( 1.8-2.2) : (0.8〜1.2), 且所述人参皂苷 Rg2、 所述 人参皂苷 Rk4和所述人参皂苷 Rg6的总质量含量在 90%以上;
最佳地, 所述人参皂苷 Rg2、 所述人参皂苷 Rk4和所述人参皂苷 Rg6 的质量比为 1:2:1, 且所述人参皂苷 Rg2、 所述人参皂苷 Rk4和所述人参皂 苷 Rg6的总质量含量在 95%以上。
或者, 所述的皂苷纳米胶束, 其包含人参皂苷 Rg2、 人参皂苷 Rk4和人 参皂苷 Rg6,所述人参皂苷 Rg2的摩尔含量为 15%〜45%,所述人参皂苷 Rk4 的摩尔含量为 15%〜45%, 所述人参皂苷 Rg6的摩尔含量为 15%〜45%, 且所 述人参皂苷 Rg2、 所述人参皂苷 Rk4和所述人参皂苷 Rg6的总摩尔含量在 70%以上。
其中, 较佳地, 所述人参皂苷 Rg2的摩尔含量为 15%〜25%, 所述人参 皂苷 Rk4 的摩尔含量为 35%〜45%, 所述人参皂苷 Rg6 的摩尔含量为 15%〜25%, 且所述人参皂苷 Rg2、 所述人参皂苷 Rk4和所述人参皂苷 Rg6 的总摩尔含量在 80%以上;
更佳地, 所述人参皂苷 Rg2、 所述人参皂苷 Rk4和所述人参皂苷 Rg6 的摩尔比为 (0.8〜1.2) : ( 1.8-2.2) : (0.8〜1.2), 且所述人参皂苷 Rg2、 所述 人参皂苷 Rk4和所述人参皂苷 Rg6的总摩尔含量在 90%以上;
最佳地, 所述人参皂苷 Rg2、 所述人参皂苷 Rk4和所述人参皂苷 Rg6 的摩尔比为 1 :2:1, 且所述人参皂苷 Rg2、 所述人参皂苷 Rk4和所述人参皂 苷 Rg6的总摩尔含量在 95%以上。 在该较佳实施方式七中, 除了所述的人参皂苷 Rg2、 所述的人参皂苷 Rk4和所述的人参皂苷 Rg6之外, 其余成分均为其他种类的皂苷。在这种情 况下,该 Rg2/Rk4/Rg6型人参皂苷纳米胶束为 Rg2/Rk4/Rg6型人参皂苷纳米 反胶束。
特别指出的是, 当 Rg2/Rk4/Rg6型人参皂苷纳米胶束中, 还含有会形成 正胶束的如式 1所示的皂苷时, 例如, 含有微量的人参皂苷 Rg3、 人参皂苷 Rg5和人参皂苷 Rkl中的一种或多种时,该 Rg2/Rk4/Rg6型人参皂苷纳米胶 束为 Rg2/Rk4/Rg6型人参皂苷纳米正胶束。
在本发明的较佳实施方式八中, 所述的皂苷纳米胶束, 其为 HSE型人 参皂苷纳米正胶束, 其包含人参皂苷 Rg2、 人参皂苷 Rg3、 人参皂苷 Rhl、 人参皂苷 Rg5、人参皂苷 Rk4、人参皂苷 Rh4、人参皂苷 Rkl、人参皂苷 Rg6 和人参皂苷 Rk3, 其中, 所述人参皂苷 Rg2、 人参皂苷 Rg3和人参皂苷 Rhl 的总质量含量为 15%〜45%, 所述人参皂苷 Rg5、 人参皂苷 Rk4和人参皂苷 Rh4的总质量含量为 15%〜45%, 所述人参皂苷 Rkl、 人参皂苷 Rg6和人参 皂苷 Rk3的总质量含量为 15%〜45%, 且所述人参皂苷 Rg2、 人参皂苷 Rg3、 人参皂苷 Rhl、人参皂苷 Rg5、人参皂苷 Rk4、人参皂苷 Rh4、人参皂苷 Rkl、 人参皂苷 Rg6和人参皂苷 Rk3的总质量含量在 70%以上。
其中, 较佳地, 所述人参皂苷 Rg2、人参皂苷 Rg3和人参皂苷 Rhl的总 质量含量为 15%〜25%, 所述人参皂苷 Rg5、 人参皂苷 Rk4和人参皂苷 Rh4 的总质量含量为 35%〜45%, 所述人参皂苷 Rkl、 人参皂苷 Rg6和人参皂苷 Rk3的总质量含量为 15%〜25%, 且所述人参皂苷 Rg2、人参皂苷 Rg3、人参 皂苷 Rhl、 人参皂苷 Rg5、 人参皂苷 Rk4、 人参皂苷 Rh4、 人参皂苷 Rkl、 人参皂苷 Rg6和人参皂苷 Rk3的总质量含量在 80%以上;
更佳地, 所述人参皂苷 Rg2、 人参皂苷 Rg3和人参皂苷 Rhl的总质量, 所述人参皂苷 Rg5、人参皂苷 Rk4和人参皂苷 Rh4的总质量, 以及所述人参 皂苷 Rkl、人参皂苷 Rg6和人参皂苷 Rk3的总质量之间的质量比为(0.8〜1.2): ( 1.8-2.2): (0.8〜1.2),且所述人参皂苷 Rg2、人参皂苷 Rg3、人参皂苷 Rhl、 人参皂苷 Rg5、人参皂苷 Rk4、人参皂苷 Rh4、人参皂苷 Rkl、人参皂苷 Rg6 和人参皂苷 Rk3的总质量含量在 95%以上;
最佳地, 所述人参皂苷 Rg2、 人参皂苷 Rg3和人参皂苷 Rhl的总质量, 所述人参皂苷 Rg5、人参皂苷 Rk4和人参皂苷 Rh4的总质量, 以及所述人参 皂苷 Rkl、 人参皂苷 Rg6和人参皂苷 Rk3的总质量之间的质量比为 1 :2:1。
或者, 所述的皂苷纳米胶束, 其包含人参皂苷 Rg2、 人参皂苷 Rg3、 人 参皂苷 Rhl、 人参皂苷 Rg5、 人参皂苷 Rk4、 人参皂苷 Rh4、 人参皂苷 Rkl、 人参皂苷 Rg6和人参皂苷 Rk3, 其中, 所述人参皂苷 Rg2、 人参皂苷 Rg3和 人参皂苷 Rhl的总摩尔含量为 15%〜45%,所述人参皂苷 Rg5、人参皂苷 Rk4 和人参皂苷 Rh4的总摩尔含量为 15%〜45%, 所述人参皂苷 Rkl、 人参皂苷 Rg6和人参皂苷 Rk3的总摩尔含量为 15%〜45%, 且所述人参皂苷 Rg2、 人 参皂苷 Rg3、 人参皂苷 Rhl、 人参皂苷 Rg5、 人参皂苷 Rk4、 人参皂苷 Rh4、 人参皂苷 Rkl、 人参皂苷 Rg6和人参皂苷 Rk3的总摩尔含量在 70%以上。
其中, 较佳地, 所述人参皂苷 Rg2、人参皂苷 Rg3和人参皂苷 Rhl的总 摩尔含量为 15%〜25%, 所述人参皂苷 Rg5、 人参皂苷 Rk4和人参皂苷 Rh4 的总摩尔含量为 35%〜45%, 所述人参皂苷 Rkl、 人参皂苷 Rg6和人参皂苷 Rk3的总摩尔含量为 15%〜25%, 且所述人参皂苷 Rg2、人参皂苷 Rg3、人参 皂苷 Rhl、 人参皂苷 Rg5、 人参皂苷 Rk4、 人参皂苷 Rh4、 人参皂苷 Rkl、 人参皂苷 Rg6和人参皂苷 Rk3的总摩尔含量在 80%以上;
更佳地,所述人参皂苷 Rg2、人参皂苷 Rg3和人参皂苷 Rhl的总摩尔量, 所述人参皂苷 Rg5、人参皂苷 Rk4和人参皂苷 Rh4的总摩尔量, 以及所述人 参皂苷 Rkl、 人参皂苷 Rg6 和人参皂苷 Rk3 的总摩尔量之间的摩尔比为
(0.8-1.2) : ( 1.8-2.2) : (0.8〜1.2), 且所述人参皂苷 Rg2、 人参皂苷 Rg3、 人参皂苷 Rhl、人参皂苷 Rg5、人参皂苷 Rk4、人参皂苷 Rh4、人参皂苷 Rkl、 人参皂苷 Rg6和人参皂苷 Rk3的总摩尔含量在 95%以上; 最佳地,所述人参皂苷 Rg2、人参皂苷 Rg3和人参皂苷 Rhl的总摩尔量, 所述人参皂苷 Rg5、人参皂苷 Rk4和人参皂苷 Rh4的总摩尔量, 以及所述人 参皂苷 Rkl、 人参皂苷 Rg6和人参皂苷 Rk3的总摩尔量之间的摩尔量比为 1:2:1。
在该较佳实施方式八中, 除了人参皂苷 Rg2、 人参皂苷 Rg3、 人参皂苷 Rhl , 人参皂苷 Rg5、 人参皂苷 Rk4、 人参皂苷 Rh4、 人参皂苷 Rkl、 人参 皂苷 Rg6和人参皂苷 Rk3之外, 其余成分均为其他种类的皂苷。
本发明还提供了一种皂苷纳米胶束的制备方法, 其包括下述步骤: 将所 述如式 1所示的皂苷与能够溶解皂苷的有机溶剂混合, 然后除去有机溶剂, 即得。
其中,所述能够溶解皂苷的有机溶剂可为本领域常规的用于溶解人参皂 苷和 /或三七皂苷的有机溶剂, 较佳地为甲醇、 乙醇、 Ν,Ν-二甲基甲酰胺 (DMF)、 正丁醇、 丙醇、 四氢呋喃和吡啶中的一种或多种。
其中, 所述混合的方法和条件可为本领域常规的方法和条件, 以混合均 匀为准。 所述混合的温度较佳地为 30°C〜80°C。
其中, 所述除去有机溶剂的方法和条件可为本领域常规的方法和条件。 所述除去有机溶剂较佳地为在 30°C〜80°C下进行减压浓缩干燥。 所述除去有 机溶剂更佳地为:在所述的减压浓缩干燥后,在 30°C〜80°C下进行真空干燥, 至干燥失重低于质量百分比 3%。
本发明还提供了一种皂苷纳米胶束的制备方法, 其包括下述步骤:
( 1 ) 以五加科植物提取物和 /或葫芦科植物提取物为原料, 在酸性水溶 液中进行酸解反应, 得含皂苷混合物的反应液;
(2)将步骤(1 )所得的含皂苷混合物的反应液经纯化去除杂质后, 再 与能够溶解皂苷的有机溶剂混合, 除去有机溶剂, 即得皂苷纳米胶束;
或者, 将步骤 (1 ) 所得的含皂苷混合物的反应液经纯化分离后, 得到 各种皂苷单体, 将其中的如式 1所示的人参皂苷的一种或多种, 与能够溶解 皂苷的有机溶剂混合, 除去有机溶剂, 即得皂苷纳米胶束。
步骤 (1 ) 中, 所述的五加科植物提取物为本领域常规所述, 一般为五 加科植物的根、 茎、 叶和果实中一种或多种的提取物。 所述的五加科植物较 佳地为中国人参 (Panax ginseng) , 高丽参 ίΡ. Sinensis J. W 、 西洋参 quique folius 、 日本人参 (P. japonicus ) ^ 越南人参 (P. vientnamensis ) ^ 假人 参 P. pseudogi騰 ng 和三七 P. notoginseng 中的一种或多种。 所述的葫 芦科植物提取物为本领域常规所述, 一般为葫芦科绞股蓝植物中的根、 茎、 叶和果实中一种或多种的提取物。 所述的葫芦科植物较佳地为绞股蓝 ( Gynostemma pentaphyllum )。
步骤 (1 ) 中, 所述五加科植物提取物和 /或葫芦科植物提取物较佳地满 足下述条件: 人参总皂苷质量百分含量 60%、 优选 80%、 更优选 90%; 或者含有质量百分含量 60%、 优选 80%、 更优选 90%的下述人参皂苷 化合物中的任一种: 人参皂苷 Rbl、 人参皂苷 Rb2、 人参皂苷 Rb3、 人参皂 苷 Re、 人参皂苷 Rc、 人参皂苷 Rd、 人参皂苷 Rgl、 人参皂苷 Rg2、 人参皂 苷 Rg3、 人参皂苷 Rhl、 人参皂苷 Rh2、 人参皂苷 Rh3、 人参皂苷 Fl、 人参 皂苷 F2和三七皂苷 Rl, 进一步优选人参皂苷 Rbl、 人参皂苷 Re或人参皂 苷 F2。 所述五加科植物提取物和 /或葫芦科植物提取物均市售可得, 或者按 照现有技术文献记载方法获得, 如 CN200610093610.6所述的方法。
步骤 (1 ) 中, 所述的酸性水溶液可为本领域常规所述, 所述酸性水溶 液中的酸性物质可为有机酸和 /或无机酸, 较佳地为柠檬酸、 醋酸、 甲酸、 草 酸、 琥珀酸、 水杨酸、 酒石酸、 苹果酸、 枸椽酸、 甲磺酸、 苯甲酸、 盐酸、 硝酸、 硫酸和磷酸中的一种或多种, 更佳地为醋酸和 /或柠檬酸。
步骤 (1 ) 中, 所述的酸性水溶液的 pH值较佳地 6.5, 进一步较佳地 为以醋酸和 /或柠檬酸调整 pH值 6.5; 更佳地, 所述的酸性水溶液的 pH值 3, 最佳地为以醋酸和 /或柠檬酸调整 pH值 3。
步骤 (1 ) 中, 所述的酸解反应的条件可为本领域常规条件。 所述的酸 解反应的温度较佳地为 60°C〜100°C, 更佳地为 80°C〜90°C。所述的酸解反应 的时间较佳地为 2小时〜 48小时, 更佳地为 3小时〜 6小时。
步骤 (2) 中, 所述纯化去除杂质的方法可为本领域常规所述, 只需要 将步骤 (1 ) 中的所述含皂苷混合物的反应液中除皂苷混合物以外的杂质去 除即可, 较佳地, 所述纯化去除杂质的方法为下述方法一或方法二;
方法一包括如下步骤:
(a) 将步骤 (1 ) 所得的含皂苷混合物的反应液冷却、 静置和除沉淀;
(b)将经步骤(a)处理后的反应液用碱调节 pH至碱性, 获得沉淀物;
(c)在 30°C〜80°C下, 将沉淀物和有机溶剂混合, 得皂苷混合液, 所述 的有机溶剂为甲醇、 乙醇、正丁醇、丙醇、 四氢呋喃和吡啶中的一种或多种;
(d) 将步骤 (c) 中皂苷混合液冷却至 5°C以下, 除沉淀, 之后干燥即 可。
步骤 (a) 中, 所述的冷却、 静置为本领域常规操作, 所述冷却较佳地 为冷却至 -20°C〜30°C, 所述静置的时间较佳地为 4小时以上。 所述的除沉淀 为本领域常规操作, 一般为过滤或离心。
步骤 (b) 中, 所述的碱为本领域常规, 可为有机碱和 /或无机碱; 所述 的有机碱较佳地为甲醇钠、 乙醇钠、 醋酸钾、 醋酸钠、 三乙胺、 氨水、 甲醇 胺、叔丁醇钾和叔丁醇钠中的一种或多种,所述的无机碱较佳地为氢氧化钠、 氢氧化钾、 氢氧化钙、 碳酸钾、 碳酸钠、 碳酸氢钾和碳酸氢钠中的一种或多 种,更佳地为碳酸钠和 /或碳酸氢钠。所述碱在所述反应液中的浓度较佳地为 0.05mol/L〜l mol/L。 所述的调节 pH至碱性较佳地为调节 pH至 8〜14。
步骤 (b) 中, 所述的沉淀物较佳地按本领域常规进行干燥, 再进行步 骤 (c), 所述干燥为: 在 30°C〜80°C烘干, 至干燥失重低于质量百分比 5%。
步骤 (c) 中, 所述有机溶剂的使用量为本领域常规, 较佳地为溶解所 述的沉淀物的量, 更佳地为使所述沉淀物与所述有机溶剂的体积比为 (1: 1 ) 〜(1:5)。 所述的混合的温度较佳地为 30°C〜80°C。 步骤 (d) 中, 所述冷却的温度较佳地为 -20°C〜5°C。 所述的除沉淀为本 领域常规操作, 一般过滤即可。 所述的干燥的方式可为本领域常规, 较佳地 为减压浓缩干燥。
所述的方法二包括如下步骤:
51、 将步骤 (1 ) 所得的含皂苷混合物的反应液用碱调节 pH至 8〜14, 除沉淀后得溶液 A;
52、 以正丁醇萃取步骤 SI所得的溶液 A中皂苷, 得正丁醇层, 再以水 洗涤正丁醇层, 之后将正丁醇层中溶剂除去即可。
步骤 S1中, 所述的碱在同前述步骤 (b) 中所述。
步骤 S2中, 所述的萃取的次数可为本领域常规, 较佳地为 1〜5次。 所 述的正丁醇与所述的溶液 A的体积比较佳地为 (1:0.5) 〜 (1:4)。 所述的正 丁醇与所述的水洗涤中水的体积比较佳地为 (1:0.5 ) 〜 (1:4)。 所述的将正 丁醇层中溶剂除去的操作可为本领域常规, 较佳地为减压浓缩干燥。
步骤 (2) 中, 所述纯化分离的方法和条件可为本领域常规的方法和条 件, 较佳地为柱层析分离。
步骤 (2) 中, 所述的皂苷单体为人参皂苷 Rg2、 人参皂苷 Rg3、 人参 皂苷 Rg4、 人参皂苷 Rg5、 人参皂苷 Rg6、 人参皂苷 Rhl、 人参皂苷 Rh2、 人参皂苷 Rh3、 人参皂苷 Rh4、 人参皂苷 Rf、 人参皂苷 Rs3、人参皂苷 Rkl、 人参皂苷 Rk2、 人参皂苷 Rk3、 人参皂苷 Rk4、 人参皂苷、 人参皂苷 F4、 三 七皂苷 R2和三七皂苷 T5中的一种或多种。
步骤 (2) 中, 所述的能够溶解皂苷的有机溶剂较佳地为甲醇、 乙醇、 Ν,Ν-二甲基甲酰胺 (DMF)、 正丁醇、 丙醇、 四氢呋喃和吡啶中的一种或多 种。 其中, 所述的混合为本领域常规操作, 以混合均匀为准。 所述混合的温 度较佳地为 30°C〜80°C。 所述的除去有机溶剂的方式可为本领域常规, 较佳 地为在 30°C〜80°C减压浓缩干燥;更佳地为:在所述减压浓缩干燥后,在 30°C 〜80°C下进行真空干燥, 至干燥失重低于质量百分比 3%。 在本发明的一较佳实施方式中,所述的皂苷纳米胶束的制备方法包括如 下步骤:
( )将醋酸、水和皂苷质量百分含量大于 60%的五加科植物提取物和 /或葫芦科植物提取物混合,所述醋酸的用量为 4ml/g〜6ml/g五加科植物提取 物和 /或葫芦科植物提取物,所述醋酸水溶液的浓度为体积百分比 40%〜60%; 之后于 80°C〜90°C反应 3 小时〜 5 小时, 反应结束后, 把反应液冷却、 静置 4〜24小时并除沉淀;
(2' ) 将步骤 ( ) 处理后的反应液用 Na2C03中和, 静置、 获得沉淀 物;
(3 ' ) 在 30°C〜80°C下, 将步骤 (2' ) 所得的沉淀物和无水乙醇混合, 然后冷却至 5°C以下, 静置 4小时〜 24小时, 除沉淀, 之后减压浓缩得浓缩 物; 重复进行该步骤 (3' ) 的前述操作 1〜3次;
(4' ) 然后将步骤 (3 ' ) 所得的浓缩物干燥, 即得皂苷纳米胶束; 其中, 步骤( )所述的皂苷为下述皂苷化合物中的任一种: 人参总皂 苷 Ra0、人参总皂苷 Ral、人参总皂苷 Ra2、人参总皂苷 Ra3、人参皂苷 Rbl、 人参皂苷 Malonyl-Rbl、 人参皂苷 Rb2、 人参皂苷 Malonyl-Rb2、 人参皂苷 Rb3、 人参皂苷 Malonyl-Rb3、 人参皂苷 Rgl、 人参皂苷 Malonyl-Rgl、 人参 皂苷 Rc、 人参皂苷 Malonyl-Rc、 人参皂苷 F2、 人参皂苷 Re、 人参皂苷 Rd、 人参皂苷 Malonyl-Rd、 西洋参皂苷 Rl、 人参皂苷 Rsl、 人参皂苷 Rs2、 三七 皂苷 D、 三七皂苷 、 三七皂苷 Rl、 三七皂苷 R3、 三七皂苷 R4、 三七皂苷 R6、 三七皂苷 I、 三七皂苷 Fa、 三七皂苷 Fc、 三七皂苷 Fd、 三七皂苷 Fe、 三七皂苷 T、 三七皂苷 L、 三七皂苷 0、 三七皂苷 P、 三七皂苷 Q、 三七皂 苷8、 七叶胆苷 IX和绞股蓝皂苷 XVII。 其中, 人参皂苷 Malonyl-Rgl为丙 二酰基人参皂苷 Rgl。 本发明中, Malonyl也意为丙二酰基。
当所述的皂苷为人参总皂苷时, 所述的皂苷纳米胶束为 HSE型人参皂 苷纳米正胶束; 当所述的皂苷为人参皂苷 Rbl 时, 所述的皂苷纳米胶束为 Rg3型皂苷纳米正胶束; 所述的皂苷为人参皂苷 F2时, 所述的皂苷纳米胶 束为 Rh2型人参皂苷纳米正胶束; 当所述的皂苷为人参皂苷 Re时, 所述的 皂苷纳米胶束为 Rg2型人参皂苷纳米反胶束。
在本发明的另一较佳实施方式中,所述的皂苷纳米胶束的制备方法包括 如下步骤:
( 1 " )将柠檬酸、 水和皂苷含量大于 60%的五加科植物提取物和 /或葫 芦科植物提取物混合, 所述柠檬酸的用量为 4ml/g〜6ml/g五加科植物提取物 和 /或葫芦科植物提取物,所述柠檬酸水溶液的浓度为体积百分比 40%〜60%; 之后于 80°C〜90°C反应 3小时〜 6小时;
(2〃 )将步骤(1〃 )反应所得的反应液冷却至 15°C〜30°C后用 Na2C03 中和, 除沉淀后得溶液 A;
(3〃 )在步骤(2〃 )所得溶液 A、水和正丁醇混合,进行萃取分离 1〜4 次;
(4〃 )将步骤(3〃 )萃取分离所得的正丁醇层水洗 1〜3次后, 将正丁 醇层减压浓缩得固体物;
(5〃 )在55 〜65 下, 在步骤(4〃 )所得的固体物和无水乙醇混合, 然后冷却至 5°C以下, 静置 4〜24小时, 除沉淀, 之后减压浓缩得浓缩物; 重 复进行该步骤 (5〃 ) 的前述操作 1〜3次;
(6〃 ) 将步骤 (5〃 ) 所得的浓缩物干燥, 即得皂苷纳米胶束; 步骤(1〃 )所述的皂苷为下述皂苷化合物中的任一种:人参总皂苷 Ra0、 人参总皂苷 Ral、 人参总皂苷 Ra2、 人参总皂苷 Ra3、 人参皂苷 Rbl、 人参 皂苷 Malonyl-Rbl、 人参皂苷 Rb2、 人参皂苷 Malonyl-Rb2、 人参皂苷 Rb3、 人参皂苷 Malonyl-Rb3、 人参皂苷 Rgl、 人参皂苷 Malony-Rgl、 人参皂苷 Rc、 人参皂苷 Malonyl-Rc、 人参皂苷 F2、 人参皂苷 Re、 人参皂苷 Rd、 人参 皂苷 Malonyl-Rd、 西洋参皂苷 Rl、 人参皂苷 Rsl、 人参皂苷 Rs2、 三七皂苷 D、 三七皂苷^ 三七皂苷 Rl、 三七皂苷 R3、 三七皂苷 R4、 三七皂苷 R6、 三七皂苷 I、 三七皂苷 Fa、 三七皂苷 Fc、 三七皂苷 Fd、 三七皂苷 Fe、 三七 皂苷 T、 三七皂苷 三七皂苷 0、 三七皂苷?、 三七皂苷(5、 三七皂苷8、 七叶胆苷 IX和绞股蓝皂苷 XVII。
当所述的皂苷为总皂苷时, 所述的皂苷纳米胶束为 HSE型人参皂苷纳 米正胶束; 当所述的皂苷为人参皂苷 Rbl 时, 所述的皂苷纳米胶束为 Rg3 型人参皂苷纳米正胶束; 所述的皂苷为人参皂苷 F2时, 所述的皂苷纳米胶 束为 Rh2型人参皂苷纳米正胶束; 当所述的皂苷为人参皂苷 Re时, 所述的 皂苷纳米胶束为 Rg2型人参皂苷纳米反胶束。
本发明还提供了如前所述的制备方法所制得的皂苷纳米胶束。
本发明还提供了一种皂苷纳米正胶束的制备方法, 其包括下述步骤: 将皂苷纳米反胶束、能够溶解皂苷的有机溶剂和皂苷纳米正胶束的晶种 混合, 去除有机溶剂, 即得; 其中, 所述皂苷纳米正胶束的晶种为: 为-11 或 -OH、且^为亲水基的所述如式 1所示的皂苷中的一种或多种; 所述的皂 苷纳米反胶束为由前述的制备方法所制得的皂苷纳米反胶束以及如前所述 的任意的皂苷纳米反胶束中的一种或多种。
其中, 所述皂苷纳米正胶束的晶种中, 较佳地为糖基或改性糖基, 更 佳地为前述示出的更佳的、 具体的 ^基团中除 -H和 -OH以外的任一种。 所 述的皂苷纳米正胶束的晶种最佳地为人参皂苷 Rg3、人参皂苷 Rg5和人参皂 苷 Rkl中的一种或多种。
其中,所述的皂苷纳米反胶束为可按照本发明前述的制备方法制得的任 意的皂苷纳米反胶束和 /或如前所述的任意的皂苷纳米反胶束, 较佳地为 Rg2/Rk4/Rg6型人参皂苷纳米反胶束。
其中,所述能够溶解皂苷的有机溶剂可为本领域常规的用于溶解人参皂 苷和 /或三七皂苷的有机溶剂, 较佳地为甲醇、 乙醇、 Ν,Ν-二甲基甲酰胺 (DMF)、 正丁醇、 丙醇、 四氢呋喃和吡啶中的一种或多种。
其中, 所述混合的方法和条件可为本领域常规的方法和条件, 以混合均 匀为准。 所述混合的温度较佳地为 30°C〜80°C。
其中, 所述除去有机溶剂的方法和条件可为本领域常规的方法和条件。 所述除去有机溶剂较佳地为在 30°C〜80°C下进行减压浓缩干燥。 所述除去有 机溶剂更佳地为:在所述的减压浓缩干燥后,在 30°C〜80°C下进行真空干燥, 至干燥失重低于质量百分比 3%。
本发明还提供了如前所述的制备方法所制得的皂苷纳米正胶束。
本发明还提供了如前所述的皂苷纳米胶束作为脂溶性化合物或组合物 的水性助溶剂或药物载体的应用, 所述的皂苷纳米胶束为皂苷纳米正胶束。
其中, 所述的脂溶性化合物或组合物可为本领域常规的脂溶性化合物, 较佳地为大豆异黄酮、 小豆蔻明、 白藜芦醇、 辅酶 Q10、 维生素 A、 维生素 D、 维生素 E、 维生素 K、 银杏提取物、 褪黑素、 番茄红素和 β-胡萝卜素中 的一种或多种。所述的脂溶性化合物或组合物与所述皂苷纳米正胶束的质量 比较佳地为 (1 : 1 ) 〜(15: 1 ), 更佳地为 1 :9。
本发明中, 所述的水性助溶剂的含义为: 在水溶液体系中, 能够增大难 溶于水的物质的溶解度的助溶剂。
本发明还提供了如前所述的皂苷纳米胶束在制备难溶于水的药物的药 物制剂、保健品或化妆品中的应用,所述的皂苷纳米胶束为皂苷纳米正胶束。
其中, 所述的难溶于水的药物可为本领域常规的难溶于水的药物, 较佳 地为紫杉醇、 多西他赛、 卡巴他赛、 盐酸伊立替康、 盐酸拓扑替康、 羟喜树 碱、 米诺地尔、 阿奇霉素、 盐酸表柔比星、 盐酸多柔比星、 盐酸氨柔比星、 他克莫司、 氟尿嘧啶、 硫酸长春新碱、 硫酸长春碱、 硫酸长春地辛、 酒石酸 长春瑞滨、 石杉碱甲、 高三尖杉酯碱、 三尖杉酯碱、 埃博霉素 、 埃博霉素 Β、 埃博霉素( 、 埃博霉素0、 埃博霉素£、 埃博霉素?、 硼替佐米、 磷酸依 托泊甙、 盐酸吉西他滨、 磷酸氟达拉滨、 氟伐他汀、 普伐他汀、 辛伐他汀、 洛伐他丁、 辛伐他汀、 美伐他汀、 西立伐他汀、 罗伐他汀、 阿托伐他汀钙和 瑞苏伐他汀钙中的一种或多种。 所述的难溶于水的药物与所述皂苷纳米正胶 束的质量比较佳地为 (1:3 ) 〜(1: 12), 更佳地为 1 :6。
本发明还提供了一种药物组合物, 其包含如前所述的皂苷纳米胶束和所 述难溶于水的药物; 所述皂苷纳米胶束为皂苷纳米正胶束。
其中,所述的难溶于水的药物与所述皂苷纳米正胶束的质量比较佳地为 ( 1:3 ) 〜(1: 12), 更佳地为 1:6。
本发明还提供了如前所述的皂苷纳米胶束作为水溶性化合物或组合物 的脂性助溶剂或药物载体的应用, 所述的皂苷纳米胶束为皂苷纳米反胶束。
其中, 所述的水溶性化合物或组合物可为本领域常规的水溶性化合物, 较佳地为肽、 多肽、 蛋白质、 核酸(DNA或 RNA (优选 RNAi)或其片段)、 胰岛素、 促红细胞生成素、 瘦素、 生长因子、 生长激素释放激素、 集落刺激 因子、 水溶性激素 (甲状旁腺激素或其片段或类似物)、 促黄体激素释放激 素(LHRH)及其类似物(例如, 那法瑞林、 布舍瑞林、戈舍瑞林)、干扰素、 细胞因子、 多糖(例如, 肝素)、 肝素类化合物、 DNA、 RNA片段及其质粒、 RNA干扰剂及其免疫剂和疫苗剂中的一种或多种。 所述的水溶性化合物或 组合物与所述皂苷纳米反胶束的质量比较佳地为(1: 1 ) 〜(15: 1 ), 更佳地为 1:9。
本发明中, 所述的脂性助溶剂的含义为: 在油、 脂类体系中, 能够增大 难溶于脂的物质的溶解度的助溶剂。
本发明还提供了一种药物组合物, 其包含如前所述的皂苷纳米胶束和所 述的水溶性化合物或组合物; 所述皂苷纳米胶束为皂苷纳米反胶束。
其中,所述的水溶性化合物或组合物与所述皂苷纳米反胶束的质量比较 佳地为 (1:1 ) 〜 (15: 1 ), 更佳地为 1:9。
在符合本领域常识的基础上, 上述各优选条件, 可任意组合, 即得本发 明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于: 1、 本发明皂苷纳米胶束属首创, 其中, 正胶束应用于食品、 保健品及 化妆品等中的脂溶性相关组分, 使脂溶性相关组分在水中或醇中溶解, 实现 纳米化, 对商品开发的应用范围起重要作用; 并且, 在实际使用时, 相关组 分输送至作用部位, 在生理条件下发生水解反应, 释放, 发挥疗效或效果, 而其中人参皂苷和 /或三七皂苷也同时发挥疗效或者助益作用。
2、 本发明皂苷纳米胶束作为药物载体或应用于药物, 正胶束包封难溶 于水的药物活性成分, 载药能力更强、生物兼容性更高, 载药量至少 99.5%, 得到的载药胶束于葡萄糖溶液中放置 10小时以上, 包封率仍不低于 90%, 其作为药物成分的传达介质, 能够替代现有的药物载体如医药品助溶剂或聚 合物胶束, 克服现有助溶剂或聚合物胶束存在的安全性问题, 意义重大; 反 胶束能够作为水溶性药物或水溶性成份的助溶剂或复方制剂, 也可用作水溶 性药物或成份的载药胶束。
图 1为实施例 2的反应物中各成分随时间变化关系图。
图 2为应用实施例 1的载药人参皂苷纳米胶束的粒径分布图。
图 3为应用实施例 1〜2的载药胶束溶液及其对比的成像图。
图 4为应用实施例 Ί的载药人参皂苷纳米胶束的粒径分布图。
图 5为应用实施例 8的载药人参皂苷纳米胶束的粒径分布图。
图 6为应用实施例 12的白藜芦醇载药胶束溶液及其对比的成像图。 图 7为实施例 1的人参皂苷纳米胶束于 5%葡萄糖溶液中的粒径分布图。 图 8为实施例 2的人参皂苷纳米胶束于 5%葡萄糖溶液中的粒径分布图。 图 9为实施例 1的 HSE型人参皂苷纳米胶束的透射电镜照片。
图 10为实施例 2的 Rg3/Rg5/Rkl型人参皂苷纳米胶束的透射电镜照片。 图 11为实施例 5的 Rg2/Rk4/Rg6型人参皂苷纳米反胶束的透射电镜照 片。 图 12为应用实施例 1的紫杉醇载药人参皂苷纳米胶束的透射电镜照片。 具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在 所述的实施例范围之中。 下列实施例中未注明具体条件的实验方法, 按照常 规方法和条件, 或按照商品说明书选择。
下述实施例中使用的各人参皂苷化合物均市售可得, 也可以按照现有文 献的下述方法制得:
以选自中国人参 ί Panax ginseng 、 高丽参 P. Sinensis丄Ven 、 西洋参 ( P. quique folius )、 曰本人参 ( P. japonicus )、 越南人参 ( P. vientnamensis )、 西伯禾 ll亚人参 ( Eleutherococcus senticosus ) > 假人参 (P. pseudoginseng ) 禾口 三七 P. rwtogi g 及绞股蓝的根、 茎、 叶为原料, 根据中国发明申请专 利 CN200610093610.6所述的方法, 制成人参总皂苷; 之后利用大孔吸附树 脂法(例如中国发明专利 CN201010527369.X所述的方法) 将人参皂苷分成 主要由人参皂苷 Re和人参皂苷 Rgl组成的混合皂苷 A和主要由人参皂苷 Fl、 人参皂苷 Rg2、 人参皂苷 F2、 三七皂苷 Fe、 人参皂苷 Rd、 人参皂苷 Rb2、人参皂苷 Rc、人参皂苷 Rbl和人参皂苷 Rb3组成的混合皂苷 B, 接着 用重结晶或氧化铝柱层析的方法获得组成更加简单的人参皂苷的混合物(例 如中国发明专利 CN200610093615.9所述的方法),最后通过柱层析的方法分 别获得人参皂苷单体: 人参皂苷 Rbl、 人参皂苷 Rb2、 人参皂苷 Rb3、 人参 皂苷 Re、 人参皂苷 Rd、 人参皂苷 Rgl、 人参皂苷 Rg2、 人参皂苷 Rg3、 人 参皂苷 Rhl、 人参皂苷 Rh2、 人参皂苷 Rh3、 人参皂苷 Fl、 人参皂苷 F2和 三七皂苷 Rl。
下述实施例中所采用的人参皂苷单体制备方法, 举例如下:
利用西洋参根提取物制备人参皂苷 Rbl、 人参皂苷 Rb3、 人参皂苷 Rd、 人参皂苷 Re等单体: 取质量含量为 81%的人参根皂苷 300g, 溶解于 4L甲醇中, 超声辅助溶 解后, 再加入 6L纯化水, 制备成 40v/v%甲醇水溶液的人参皂苷上样液。
将 10L 上样液泵入制备柱中 (内径 200mm, 高 2000mm, 柱内填装 l(^m-C18),流速 500ml/min,梯度流动相洗脱,先 40v/v%甲醇水洗脱 200L, 50v/v%甲醇水洗脱 200L, 60v/v%甲醇水洗脱 400L, 90v/v%甲醇水洗脱 200L, 在线紫外监测, 分段收集分别得到 Rbl段、 Rb3段、 Rd段、 Re段等, 各收 集液先经纳滤膜浓缩至 1L以下, 再用正丁醇萃取 3遍, 合并正丁醇, 浓缩 至干, 烘干后, 分别得到 28.5g的 91.8%的人参皂苷 Re, 6.8g的 90.3%的人 参皂苷 Rbl, 3.6g的 90.1%的人参皂苷 Rb3, 36.0g的 92.5%的人参皂苷 Rd。
按上述方法, 反复过柱、 进行制备, 分别得到 500g的 90%以上人参皂 苷 Re, 500g的 90%以上人参皂苷 Rbl, 500g的 90%以上人参皂苷 Rb3和 500g的 90%以上人参皂苷 Rd。
实施例 1
利用人参总皂苷制备 HSE型人参皂苷纳米胶束的制备方法:
1 )、 取质量含量为 81%的人参根皂苷 100g放入反应瓶, 加入 5(^ %醋 酸溶液 500ml, 在 90°C温度下加水分解处理 4小时, 反应结束后, 把反应物 瓶室温放置 12小时后, 用 0.4μηι滤纸过滤, 去除不溶物 9.1g; 滤液用 2.4L 的 10wt%Na2CO3中和后,静置沉淀,并用 ΙΟμιη滤纸过滤,收集获得沉淀物。
2)、 把沉淀物用 1.0L的无水乙醇加热至 60°C溶解后, 在 4°C温度下放 置 2小时, 并用 Ι.Ομιη滤纸过滤除沉淀, 把滤液减压浓缩; 之后将此减压浓 缩物投入 0.4L无水乙醇溶解后,再于在 4 °C温度下放置 2小时候用 Ι.Ομιη滤 纸过滤, 减压浓缩干燥, 即制备得到 HSE型人参皂苷纳米胶束 153g。
将本实施例 1使用的原料, 以及制得的 HSE型人参皂苷纳米胶束, 进 行 HPLC检测分析成分, 结果如下表 2所示。
HPLC 检测分析条件为 : 色谱柱 ZORBAX Eclipse XDB- C18 4.6x250mm; 检测波长 UV/Vis, 203mm; 流速 1.0ml/min; 柱温 50°C ; 系统运行时间 80min; 流动相 (梯度) 如下表 1所示。
表 1 HPLC检测流动相 (梯度) 变化
Figure imgf000042_0001
表 2 实施例 1原料和 HSE型人参皂苷纳米胶束成分含量
Figure imgf000042_0002
Figure imgf000043_0001
实施例 2
利用人参皂苷 Rbl制备 Rg3/Rg5/Rkl型人参皂苷纳米胶束的制备方法:
( 1 )取 100g人参皂苷 Rbl放入反应槽,加入 pH为 3.0柠檬酸溶液 50ml, 在 80°C温度下, 加水 50ml分解处理 1〜6小时;
(2) 将步骤 (1 ) 反应所得的反应液室温放置冷却到 30°C后用 10wt% 碳酸钠中和后, 用 0.45μηι滤纸过滤, 去除沉淀, 得滤液。
(3 ) 将滤液中加入 200ml的水和 100ml的正丁醇萃取分离, 共 2次; 之后将萃取分离的正丁醇 200ml加水 70ml水洗后, 将正丁醇层减压浓缩得 固体物, 将固体物于 500ml乙醇溶解后在 5 °C温度下, 冷藏放置 3小时, 之 后用 0.45μιη滤纸过滤;再将滤液减压浓缩后粉碎,得到 33g的 Rg3/Rg5/Rkl 型人参皂苷纳米胶束。
本实施例在制备过程中, 对反应液如实施例 1所述的同样条件下 HPLC 分析监测成分,随时间变化反应液中各成分质量百分比如下表 3和图 1所示, 在此条件下,如表 3所示制备人参皂苷纳米胶束组合物,随着反应时间加长, 人参皂苷 Rbl 变得越来越少, 最终制得 Rg3:Rkl :Rg5= ( 1:1 Rg3/Rg5/Rkl型人参皂苷纳米胶束。
表 3 实施例 2反应物中各成分随时间变化关系
Figure imgf000044_0001
本实施例制备得到的 Rg3/Rg5/Rkl 型人参皂苷纳米胶束可以代替现有 的聚氧乙烯蓖麻油或者吐温 -80。
实施例 3
利用人参皂苷 Rb3制备 Rg3/Rg5/Rkl型人参皂苷纳米胶束的制备方法: 取 100g人参皂苷 Rb3放入反应槽, 同实施例 2的方法, 可得 38g的 Rg3/Rg5/Rkl型人参皂苷纳米胶束。进行同实施例 1的 HPLC检测分析成分, 结果如下表 4所示。
表 4 实施例 3原料人参皂苷 Rb3和人参皂苷纳米胶束成分含量
Figure imgf000044_0002
Rkl 21.6%
其他未知杂质合计 9.9% 9.0%
合计 100.0% 100.0%
实施例 4
利用人参皂苷 Rd制备 Rg3/Rg5/Rkl型人参皂苷纳米胶束的制备方法: 取 100g人参皂苷 Rd放入反应槽, 同实施例 2 的方法, 可得 23g 的
Rg3/Rg5/Rkl型人参皂苷纳米胶束。进行同实施例 1的 HPLC检测分析成分, 结果如下表 5所示。
表 5 实施例 4原料人参皂苷 Rd和人参皂苷纳米胶束成分含量
Figure imgf000045_0001
实施例 5
利用人参皂苷 Re制备 Rg2/Rk4/Rg6型人参皂苷纳米反胶束的制备方法: 取 100g人参皂苷 Re放入反应槽, 同实施例 2 的方法, 可得 30g 的
Rg2/Rk4/Rg6型人参皂苷纳米反胶束。 进行同实施例 1的 HPLC检测分析成 分, 结果如下表 6所示。
表 6 实施例 5原料人参皂苷 Re和人参皂苷纳米反胶束成分含量 人参皂苷 人参皂苷 Re原料 kg2/Rk4/ g6型人参皂苷纳米反胶束 Re 91.4% 1.5%
Rg2 _ 22.2%
Rk4 _ 39.3%
Rg6 _ 20.9%
其他未知杂质合计 8.6% 16.1%
合计 100.0% 100.0%
实施例 ό
利用人参皂苷 Re制备 Rg2/Rk4/Rg6型人参皂苷纳米正胶束的制备方法: 取 100g人参皂苷 Re放入反应槽, 同实施例 5的方法, 可制得 30g的 Rg2/Rk4/Rg6型人参皂苷纳米反胶束。
取 10g的 Rg2/Rk4/Rg6型人参皂苷纳米反胶束,用 200ml无水乙醇溶解, 减压浓缩至 100ml, 加入少量 Rg3/Rg5/Rkl胶束晶种, 冷却结晶, 抽虑, 烘 干, 即得 5.4g的 Rg2/Rk4/Rg6型人参皂苷纳米正胶束。
将本实施例使用的原料人参皂苷 Re, 以及制得的 Rg2/Rk4/Rg6型人参 皂苷纳米正胶束, 进行同实施例 1的 HPLC检测分析成分, 结果如下表 7所 示。
表 7 实施例 6原料人参皂苷 Re和人参皂苷纳米胶束成分含量
Figure imgf000046_0001
实施例 7
利用人参皂苷 F2制备 Rh2型人参皂苷纳米胶束的制备方法:
取 100g人参皂苷 F2, 同实施例 1的方法, 可制得 16g的 Rh2型人参皂 苷纳米胶束。
所述的人参皂苷 F2由下述方法制得:
取高纯度的 200g人参皂苷 Rbl放入反应槽, 加入 500ml纯化水, 加入 alpha-半乳糖苷酶, 在 30°C温度下, 酶解 4〜44小时 (更佳地为 8〜12小时。 用 200ml的正丁醇萃取 3次, 合并正丁醇, 降压浓缩干燥得到 136g人参皂 苷 F2。
将本实施例使用的原料人参皂苷 Rbl, 制得的人参皂苷 F2以及制得的 Rh2型人参皂苷纳米胶束, 进行同实施例 1的 HPLC检测分析成分, 结果如 下表 8所示。
表 8 实施例 7原料人参皂苷 Rbl、 F2和人参皂苷纳米胶束成分含量
Figure imgf000047_0001
实施例 8
利用 Rg3/Rg5/Rkl型人参皂苷纳米胶束原料制备 Rg5/Rkl型人参皂苷纳 米胶束的制备方法:
取 100g的 Rg3/Rg5/Rkl型人参皂苷纳米胶束原料, 采用同前述的人参 皂苷单体制备方法进行分离, 经柱层析分离、 分段、 纳滤膜浓缩、 正丁醇萃 取、 降压浓缩、 干燥后制备得到 36g的 Rg5:Rkl=l:l的混合物。 再将 36g混 合物溶解于 200ml无水乙醇中, 再降压浓缩至干, 制备得到 36g的 Rg5/Rkl 型人参皂苷纳米胶束。进行同实施例 1的 HPLC检测分析成分, 结果如下表 9所示。
表 9 实施例 8的 Rg5/Rkl人参皂苷纳米胶束成分含量
Figure imgf000048_0001
实施例 9
利用 Rg3/Rg5/Rkl型人参皂苷纳米胶束原料制备 Rg5型人参皂苷纳米胶 束的制备方法:
同实施例 8的方法, 取 Rg5富集段, 经纳滤膜浓缩、 正丁醇萃取、 降压 浓缩、干燥后制备得到 8.6g的 Rg5单体。再将 8.6g混合物溶解于 50ml无水 乙醇中, 再降压浓缩至干, 制备得到 8.6g的 Rg5型人参皂苷纳米胶束。 进 行同实施例 1的 HPLC检测分析成分, 结果如下表 10所示。
表 10 实施例 9的 Rg5型人参皂苷纳米胶束成分含量
Figure imgf000048_0002
b3 3.6%
Rg3-S 19.8% 1.4%
Rg3-R 2.7% 0.1%
Rg5 43.3% 92.6%
Rkl 21.6% 2.1% 其他未知杂质合计 9.0% 3.8%
合计 100.0% 100.0% 实施例 10
利用 Rg3/Rg5/Rkl型人参皂苷纳米胶束原料制备 Rkl型人参皂苷纳米胶 束的制备方法:
同实施例 8的方法, 取 Rkl富集段, 经纳滤膜浓缩、 正丁醇萃取、 降压 浓缩、干燥后制备得到 2.6g的 Rkl单体。再将 2.6g混合物溶解于 20ml无水 乙醇中, 再降压浓缩至干, 制备得到 2.6g的 Rkl型人参皂苷纳米胶束。 进 行同实施例 1的 HPLC检测分析成分, 结果如下表 11所示。
Figure imgf000049_0001
实施例 11
利用 Rg2/Rk4/Rg6型人参皂苷纳米胶束原料制备 Rk4/Rg6型人参皂苷纳 米反胶束的制备方法:
取 100g的 Rg2/Rk4/Rg6型人参皂苷纳米胶束原料, 采用同前述的人参 皂苷单体制备方法进行分离, 经柱层析分离、 分段、 纳滤膜浓缩、 正丁醇萃 取、 降压浓缩、 干燥后制备得到 27g的 Rk4:Rg6=l:l的混合物。 再将 27g混 合物溶解于 200ml无水乙醇中, 再降压浓缩至干, 制备得到 27g的 Rk4/Rg6 型人参皂苷纳米反胶束。进行同实施例 1的 HPLC检测分析成分, 结果如下 表 12所示。
表 12 实施例 11的 Rk4/Rg6型人参皂苷纳米反胶束成分含量
Figure imgf000050_0001
实施例 12
利用 Rg2/Rk4/Rg6型人参皂苷纳米胶束原料制备 Rk4型人参皂苷纳米反 胶束的制备方法:
同实施例 11的方法, 取 Rk4富集段, 经纳滤膜浓缩、 正丁醇萃取、 降 压浓缩、 干燥后制备得到 3.3g的 Rk4单体。 再将 3.3g混合物溶解于 20ml 无水乙醇中, 再降压浓缩至干, 制备得到 3.3g的 Rk4型人参皂苷纳米反胶 束。 进行同实施例 1的 HPLC检测分析成分, 结果如下表 13所示。 表 13 实施例 12的 Rk4型人参皂苷纳米反胶束成分含量
Figure imgf000051_0001
实施例 13
利用 Rg2/Rk4/Rg6型人参皂苷纳米胶束原料制备 Rg6型人参皂苷纳米反 胶束的制备方法:
同实施例 11的方法, 取 Rg6富集段, 经纳滤膜浓缩、 正丁醇萃取、 降 压浓缩、 干燥后制备得到 3.0g的 Rg6单体。 再将 3.0g混合物溶解于 20ml 无水乙醇中, 再降压浓缩至干, 制备得到 3.0g的 Rg6型人参皂苷纳米反胶 束。 进行同实施例 1的 HPLC检测分析成分, 结果如下表 14所示。
表 14 实施例 13的 Rg6型人参皂苷纳米反胶束成分含量
Figure imgf000051_0002
合计 100.0% 100.0% 实施例 14-43
实施例 14〜43中的各成分含量如下表 15〜18所示,将各成分在乙醇溶解, 之后除去有机溶剂, 即得人参皂苷纳米胶束。
表 15 实施例 14〜19的成分及用量
Figure imgf000052_0001
27 15 15 45 25
28 45 15 15 25
29 25 35 20 20
30 25 35 25 15
31 20 40 20 20
表 18 实施例 32〜43的成分及用量
Figure imgf000053_0001
应用实施例 1
紫杉醇与 Rg3/Rg5/Rkl型载药胶束:
把紫杉醇 (Paclitaxel) 30mg和 180mg的实施例 2的 Rg3/Rg5/Rkl型人 参皂苷纳米胶束加入到 5ml小瓶中并且加入无水乙醇 2.0ml, 然后用漩涡搅 拌机溶解后用 0.45μηι滤纸过滤后, 即可制备得到紫杉醇胶束包封溶解液。 经检测粒径分布, 结果如图 2所示。
将上述紫杉醇胶束包封溶解液加入 75ml市售注射用葡萄糖溶液, 室温 静置 12小时后的成像图如图 3B所示; 作为对比将市售北京协和制药厂的 30mg的紫杉醇注射剂, 加入 75ml市售注射用葡萄糖溶液, 室温静置 12小 时后的成像图如图 3D所示; 可以明显看出紫杉醇胶束溶液澄清透明。 经检 测, 人参皂苷纳米胶束载药量至少 99.5%, 得到的载药胶束于葡萄糖溶液中 放置 10小时以上, 包封率仍不低于 90%。
除上述外,还制备了药物和人参皂苷纳米胶束的质量为下述组合的紫杉 醇胶束包封溶解液: 10mg与 30mg、 10mg与 120mg或者 10mg与 60mg。
应用实施例 2
紫杉醇与 Rg5/Rkl型载药胶束:
把紫杉醇(Paclitaxel) 30mg和 180mg的实施例 8的 Rg5/Rkl型人参皂 苷纳米胶束加入到 5ml小瓶中并且加入无水乙醇 2.0ml, 然后用漩涡搅拌机 溶解后用 0.45μηι滤纸过滤后, 即可制备得到紫杉醇胶束包封溶解液。
将上述紫杉醇胶束包封溶解液加入 75ml市售注射用葡萄糖溶液, 室温 静置 12小时;作为对比将市售北京协和制药厂的 30mg的紫杉醇注射剂,加 入 75ml市售注射用葡萄糖溶液, 室温静置 12小时; 可以明显看出紫杉醇胶 束溶液澄清透明, 而对比样品较为浑浊。 经检测, 人参皂苷纳米胶束载药量 至少 99.5%, 得到的载药胶束于葡萄糖溶液中放置 10小时以上, 包封率仍 不低于 90%。
除上述外,还制备了药物和人参皂苷纳米胶束的质量为下述组合的紫杉 醇胶束包封溶解液: 10mg与 30mg、 10mg与 120mg或者 10mg与 60mg。
应用实施例 3
紫杉醇与 Rg5型载药胶束: 把紫杉醇(Paclitaxel) 30mg和 180mg的实施例 9的 Rg5型人参皂苷纳 米胶束加入到 5ml小瓶中并且加入无水乙醇 2.0ml, 然后用漩涡搅拌机溶解 后用 0.45μηι滤纸过滤后, 即可制备得到紫杉醇胶束包封溶解液。
将上述紫杉醇胶束包封溶解液加入 75ml市售注射用葡萄糖溶液, 室温 静置 12小时;作为对比将市售北京协和制药厂的 30mg的紫杉醇注射剂,加 入 75ml市售注射用葡萄糖溶液, 室温静置 12小时; 可以明显看出紫杉醇胶 束溶液澄清透明, 而对比样品较为浑浊。 经检测, 人参皂苷纳米胶束载药量 至少 99.5%, 得到的载药胶束于葡萄糖溶液中放置 10小时以上, 包封率仍 不低于 90%。
除上述外,还制备了药物和人参皂苷纳米胶束的质量为下述组合的紫杉 醇胶束包封溶解液: 10mg与 30mg、 10mg与 120mg或者 10mg与 60mg。
应用实施例 4
紫杉醇与 Rh2型载药胶束:
把紫杉醇(Paclitaxel) 30mg和 180mg的实施例 7的 Rh2型人参皂苷纳 米胶束加入到 5ml小瓶中并且加入无水乙醇 2.0ml, 然后用漩涡搅拌机溶解 后用 0.45μηι滤纸过滤后, 即可制备得到紫杉醇胶束包封溶解液。
将上述紫杉醇胶束包封溶解液加入 75ml市售注射用葡萄糖溶液, 室温 静置 12小时;作为对比将市售北京协和制药厂的 30mg的紫杉醇注射剂,加 入 75ml市售注射用葡萄糖溶液, 室温静置 12小时; 可以明显看出紫杉醇胶 束溶液澄清透明, 而对比样品较为浑浊。 经检测, 人参皂苷纳米胶束载药量 至少 99.5%, 得到的载药胶束于葡萄糖溶液中放置 10小时以上, 包封率仍 不低于 90%。
除上述外,还制备了药物和人参皂苷纳米胶束的质量为下述组合的紫杉 醇胶束包封溶解液: 10mg与 30mg、 10mg与 120mg或者 10mg与 60mg。
应用实施例 5
紫杉醇与 Rg2/Rk4/Rg6型正胶束载药胶束: 把紫杉醇 (Paclitaxel) 30mg和 180mg的实施例 6的 Rg2/Rk4/Rg6型人 参皂苷纳米正胶束加入到 5ml小瓶中并且加入无水乙醇 2.0ml, 然后用漩涡 搅拌机溶解后用 0.45μηι滤纸过滤后,即可制备得到紫杉醇胶束包封溶解液。
将上述紫杉醇胶束包封溶解液加入 75ml市售注射用葡萄糖溶液, 室温 静置 12小时;作为对比将市售北京协和制药厂的 30mg的紫杉醇注射剂,加 入 75ml市售注射用葡萄糖溶液, 室温静置 12小时; 可以明显看出紫杉醇胶 束溶液澄清透明, 而对比样品较为浑浊。 经检测, 人参皂苷纳米胶束载药量 至少 99.5%, 得到的载药胶束于葡萄糖溶液中放置 10小时以上, 包封率仍 不低于 90%。
除上述外,还制备了药物和人参皂苷纳米胶束的质量为下述组合的紫杉 醇胶束包封溶解液: 10mg与 30mg、 10mg与 120mg或者 10mg与 60mg。
应用实施例 6
多西他赛无水物与 Rg5/Rkl型载药胶束:
把多西他赛无水物 (Docetael.anhydrous) 30mg和 180mg的实施例 8的 Rg5/Rkl型人参皂苷纳米胶束加入到 5ml小瓶中并且加入无水乙醇 2.0ml, 然后用漩涡搅拌机溶解后用 0.45μηι滤纸过滤后, 即可制备得到多西他赛无 水物胶束包封溶解液。
将上述多西他赛无水物胶束包封溶解液加入 75ml市售注射用葡萄糖溶 液,室温静置 12小时;作为对比将市售山东齐鲁制药厂的 20mg的紫杉醇注 射剂, 加入 75ml市售注射用葡萄糖溶液, 室温静置 12小时; 可以明显看出 紫杉醇胶束溶液澄清透明, 而对比样品较为浑浊。 经检测, 人参皂苷纳米胶 束载药量至少 99.5%, 得到的载药胶束于葡萄糖溶液中放置 10小时以上, 包封率仍不低于 90%。
除上述外,还制备了药物和人参皂苷纳米胶束的质量为下述组合的多西 他赛无水物胶束包封溶解液: 10mg与 30mg、 10mg与 120mg或者 10mg与 60mg。 应用实施例 7
多西他赛无水物与 Rg3/Rg5/Rkl型载药胶束:
把多西他赛无水物 (Docetaxel anhydrous) 20mg和 120mg的实施例 2 的 Rg3/Rg5/Rkl型人参皂苷纳米胶束加入到 5ml小瓶, 再加入无水乙醇 2.0ml, 用漩涡搅拌机溶解后用 0.45μηι滤纸过滤后, 制备得到多西他赛无水 物胶束包封溶解液。 经检测粒径分布, 结果如图 4所示。
将上述多西他赛无水物胶束包封溶解液加入 75ml市售注射用葡萄糖溶 液,室温静置 12小时后的成像图如图 3A所示; 作为对比将市售江苏恒瑞医 药股份有限公司 20mg的多西他赛注射液, 加入 75ml市售注射用葡萄糖溶 液, 室温静置 12小时后的成像图如图 3C所示; 可以明显看出多西他赛无水 物胶束溶液澄清透明, 而对比样品较为浑浊。 经检测, 人参皂苷纳米胶束载 药量至少 99.5%, 得到的载药胶束于葡萄糖溶液中放置 10小时以上, 包封 率仍不低于 90%。
除上述外,还制备了药物和人参皂苷纳米胶束的质量为下述组合的多西 他赛无水物胶束包封溶解液: 10mg与 30mg、 10mg与 120mg或者 10mg与 60mg。
应用实施例 8
多西他赛三水化合物与 Rh2型载药胶束:
把多西他赛三水化物 (Docetaxel trihydrate) 20mg和 120mg的实施例 7 的 Rh2型人参皂苷纳米胶束加入到 5ml小瓶, 再加入无水乙醇 2.0ml, 用漩 涡搅拌机溶解后用 0.45μηι滤纸过滤后, 制备得到多西他赛三水化物胶束包 封溶解液。 经检测粒径分布, 结果如图 5所示。 经检测, 人参皂苷纳米胶束 载药量至少 99.5%, 得到的载药胶束于葡萄糖溶液中放置 10小时以上, 包 封率仍不低于 90%。
除上述外,还制备了药物和人参皂苷纳米胶束的质量为下述组合的多西 他赛三水化物胶束包封溶解液: 10mg与 30mg、 10mg与 120mg或者 10mg 与 60mg。
应用实施例 9
米诺地尔与 HSE型载药胶束:
把米诺地尔(Minoxidil) 20mg和 120mg的实施例 1的 HSE型人参皂苷 纳米胶束加入到 5ml小瓶, 再加入无水乙醇 2.0ml, 用漩涡搅拌机溶解后用 0.45 μιη滤纸过滤后, 制备得到米诺地尔胶束包封溶解液。 经检测, 人参皂 苷纳米胶束载药量至少 99.5%, 得到的载药胶束于葡萄糖溶液中放置 10小 时以上, 包封率仍不低于 90%。
除上述外,还制备了药物和人参皂苷纳米胶束的质量为下述组合的米诺 地尔胶束包封溶解液: 10mg与 30mg、 10mg与 120mg或者 10mg与 60mg。
应用实施例 10
大豆异黄酮与 HSE型载药胶束:
把大豆异黄酮 (Isoflavone40%) l .Og和 9.0g的实施例 1的 HSE型人参 皂苷纳米胶束加入到 50ml烧杯,再加入无水乙醇 10ml再用漩涡搅拌机溶解 后, 用 0.45 μιη滤纸过滤后, 减压浓缩后干燥, 制备得到包封的大豆异黄酮 纳米胶束。 经检测, 人参皂苷纳米胶束载药量至少 99.5%, 得到的载药胶束 于葡萄糖溶液中放置 10小时以上, 包封率仍不低于 90%。
除上述外,还制备了药物和人参皂苷纳米胶束的质量为下述组合的包封 的大豆异黄酮纳米胶束: 10mg与 10mg、 10mg与 120mg或者 10mg与 90mg。
应用实施例 11
小豆蔻明与 HSE型载药胶束:
把化妆品中难溶性成分小豆蔻明 (Cardamonin) l.Og和 9.0g的实施例 1 的 HSE型人参皂苷纳米胶束加入到 50ml小瓶, 再加入无水乙醇 10ml再用 漩涡搅拌机溶解后用 0.45μηι滤纸过滤后, 减压浓缩后, 干燥制备得到包封 小豆蔻明纳米胶束。 经检测, 人参皂苷纳米胶束载药量至少 99.5%, 得到的 载药胶束于葡萄糖溶液中放置 10小时以上, 包封率仍不低于 90%。 除上述外,还制备了难溶性成分和人参皂苷纳米胶束的质量为下述组合 的包封小豆蔻明纳米胶束: lOmg与 10mg、10mg与 120mg或者 lOmg与 90mg。
应用实施例 12
白藜芦醇与 Rg2/Rk4/Rg6型正胶束的载药胶束:
把白藜芦醇 l .Og和 9.0g的实施例 6的 Rg2/Rk4/Rg6型人参皂苷纳米正 胶束加入到 50ml 小瓶, 再加入无水乙醇 10ml 再用漩涡搅拌机溶解后用 0.45μηι滤纸, 过滤后得滤液, 将减压浓缩后, 干燥制备得到包封白藜芦醇 纳米胶束。
其中, 前述滤液的成像图如图 6Α所示, 作为对比将 l .Og的白藜芦醇加 入到 50ml小瓶, 再加入无水乙醇 10ml, 溶解后, 得到的成像图如图 6B所 示; 可以明显看出白藜芦醇载药胶束溶液澄清透明, 而对比样品较为浑浊。 经检测, 人参皂苷纳米胶束载药量至少 99.5%, 得到的载药胶束于葡萄糖溶 液中放置 10小时以上, 包封率仍不低于 90%。
除上述外,还制备了白藜芦醇和人参皂苷纳米胶束的质量为下述组合的 包封白藜芦醇纳米胶束: lOmg与 10mg、 lOmg与 120mg或者 lOmg与 90mg。
应用实施例 13
维生素 C与 Rk4型反胶束的载药胶束:
把 30mg维生素 C和 180mg的实施例 12的 Rk4型人参皂苷纳米反胶束 加入到 50ml烧杯, 再加入无水乙醇 2ml再用漩涡搅拌机溶解后, 用 0.45 μιη 滤纸过滤后,减压浓缩后干燥,制备得到包封的维生素 C纳米胶束。经检测, 人参皂苷纳米胶束载药量至少 99.5%, 得到的载药胶束于橄榄油溶液中放置 10小时以上, 包封率仍不低于 90%。
除上述外,还制备了药物和人参皂苷纳米胶束的质量为下述组合的包封 的维生素 C纳米胶束: lOmg与 10mg、 lOmg与 120mg或者 lOmg与 90mg。
应用实施例 14
维生素 C与 Rg6型反胶束的载药胶束: 把 30mg维生素 C和 180mg的实施例 13的 Rg6型人参皂苷纳米反胶束 加入到 50ml烧杯, 再加入无水乙醇 2ml再用漩涡搅拌机溶解后, 用 0.45 μιη 滤纸过滤后,减压浓缩后干燥,制备得到包封的维生素 C纳米胶束。经检测, 人参皂苷纳米胶束载药量至少 99.5%, 得到的载药胶束于橄榄油溶液中放置 10小时以上, 包封率仍不低于 90%。
除上述外,还制备了药物和人参皂苷纳米胶束的质量为下述组合的包封 的维生素 C纳米胶束: 10mg与 10mg、 10mg与 120mg或者 10mg与 90mg。
应用实施例 15
维生素 C与 Rk4/Rg6型反胶束的载药胶束:
把 30mg维生素 C和 180mg的实施例 11的 Rk4/Rg6型人参皂苷纳米反 胶束加入到 50ml烧杯,再加入无水乙醇 2ml再用漩涡搅拌机溶解后,用 0.45 μιη滤纸过滤后, 减压浓缩后干燥, 制备得到包封的维生素 C纳米胶束。 经 检测, 人参皂苷纳米胶束载药量至少 99.5%, 得到的载药胶束于橄榄油溶液 中放置 10小时以上, 包封率仍不低于 90%。
除上述外,还制备了药物和人参皂苷纳米胶束的质量为下述组合的包封 的维生素 C纳米胶束: 10mg与 10mg、 10mg与 120mg或者 10mg与 90mg。
应用实施例 16
维生素 C与 Rg2/Rk4/Rg6型反胶束的载药胶束:
把 30mg维生素 C和 180mg的实施例 5的 Rg2/Rk4/Rg6型人参皂苷纳米 反胶束加入到 50ml烧杯, 再加入无水乙醇 2ml再用漩涡搅拌机溶解后, 用 0.45 μιη滤纸过滤后,减压浓缩后干燥,制备得到包封的维生素 C纳米胶束。 经检测, 人参皂苷纳米胶束载药量至少 99.5%, 得到的载药胶束于橄榄油溶 液中放置 10小时以上, 包封率仍不低于 90%。
除上述外,还制备了药物和人参皂苷纳米胶束的质量为下述组合的包封 的维生素 C纳米胶束: 10mg与 10mg、 10mg与 120mg或者 10mg与 90mg。
效果实施例 人参皂苷纳米胶束的颗粒度测定、人参皂苷纳米胶束及应用例的颗粒测 定:
1、 样品制备及测定方法
粒度分析仪的机型与分析条件如下: 机型 ELS800; 检测条件: 直径 1855.3謹; 多分散度 20994e-001 ; 扩散参数 2.5347e-008; 温度 23.2°C ; 溶 剂为水; 折射率 0.9242; 粘度 0.9242; 光散射强度 6560CPS。
实施例 1的人参皂苷纳米胶束 480mg,加入到 5ml小瓶并且加入无水乙 醇 2.0ml, 利用漩涡搅拌机搅拌溶解, 溶解后用 0.45μηι滤纸过滤后取 lml 溶解到 99ml的 5%葡萄糖溶液。用粒度分析仪测定得到结果如图 7所示, 数 据结果记录于表 19中。
表 19 实施例 1的人参皂苷纳米胶束的粒度分析仪结果
Figure imgf000061_0001
实施例 2的人参皂苷纳米胶束 480mg,加入到 5ml小瓶并且加入无水乙 醇 2.0ml, 利用漩涡搅拌机搅拌溶解, 溶解后用 0.45μηι滤纸过滤后取 lml 溶解到 99ml的 5%葡萄糖溶液。用粒度分析仪测定得到结果如图 8所示, 数 据结果记录于表 20中。
表 20 实施例 2人参皂苷纳米胶束的粒度分析仪结果 粒径 (nm) 该粒径所占比例 (%) 该粒径以下所占总比例 (%)
1.4 1.8 1.8
2.3 5.2 7.0
2.8 6.4 13.4
3.9 9.1 22.6
4.6 14.4 36.9
6.5 9.1 46.1
7.7 5.8 51.9
10.9 3.2 55.1
1293.9 11.1 79.6
1534.5 10.5 90.1
1820.0 9.9 100.0 将应用实施例 1的载药胶束, 用粒度分析仪测定得到结果如图 2所示, 数据结果记录于表 21中。
表 21 应用实施例 1人参皂苷纳米胶束的粒度分析仪结果
Figure imgf000062_0001
将应用实施例 7的载药胶束, 用粒度分析仪测定得到结果如图 4所示, 数据结果记录于表 22中。
表 22应用实施例 7人参皂苷纳米胶束的粒度分析仪结果
Figure imgf000062_0002
53.2 4.0 8.3
62.8 8.5 16.7
74.1 13.9 30.6
87.5 14.0 44.6
103.2 13.4 58.1
121.8 11.8 69.8
143.7 9.4 79.2
169.6 7.0 86.3
200.1 3.5 89.8
236.2 2.1 91.9
278.7 0.6 92.5
1048.4 2.5 95.0
1237.2 2.4 97.4
1460.0 2.6 100.0 将应用实施例 8的载药胶束, 用粒度分析仪测定得到结果如图 5所示, 数据结果记录于表 23中。
表 23 应用实施例 8人参皂苷纳米胶束的粒度分析仪结果
Figure imgf000063_0001
738.7 5.4 72.4
871.4 5.0 77.4
1027.8 9.0 86.4
1212.3 7.4 93.8
1430.0 6.2 100.0
2、 本发明的皂苷纳米胶束与目前常见的高分子聚合物胶束的性能参数 比较, 结果如下表 24所示:
表 24 皂苷纳米胶束与常见高分子聚合物胶束的性能参数比较
Figure imgf000064_0001
Figure imgf000065_0001
3、 皂苷纳米胶束的微观形貌测试, 采用 JEM-1400型透射电镜进行: 分别取 180mg的实施例 1、 实施例 2和实施例 5的人参皂苷纳米胶束, 以及应用实施例 1的紫杉醇载药人参皂苷纳米胶束,加入 2.5mL的乙醇进行 超声分散, 然后进行透射电镜测试, 各样品的测试结果如图 9〜12所示。
其中, 图 9为实施例 1的 HSE型人参皂苷纳米胶束的透射电镜照片, 图 10为实施例 2的 Rg3/Rg5/Rkl型人参皂苷纳米胶束的透射电镜照片, 图 11为实施例 5的 Rg2/Rk4/Rg6型人参皂苷纳米反胶束的透射电镜照片, 图 12为应用实施例 1的紫杉醇载药人参皂苷纳米胶束的透射电镜照片。从图中 可见, 本发明的皂苷纳米胶束基本呈圆球形, 具有通常的胶束结构, 并且结 构稳定。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理 解, 这些仅是举例说明, 在不背离本发明的原理和实质的前提下, 可以对这 些实施方式做出多种变更或修改。 因此, 本发明的保护范围由所附权利要求 书限定。

Claims

权利要求 种皂苷纳米胶束, 其特征在于, 其包含如式 1所示的
皂苷;
Figure imgf000066_0001
式 1 ;
其中, 和 R2分别独立地为 -H或亲水基, R3为 -H或 -OH, R4为亲油基。
2、 如权利要求 1所述的皂苷纳米胶束, 其特征在于, 所述的亲水基为 -OH、 糖基、 改性糖基、 脂肪酰基、 氨基酸基、 有机酸酯基和硫酸盐; 其中, 所述改性糖基为聚合物型改性糖基、 脂肪酰基改性糖基、 氨基酸基改性糖基 或有机酸酯基改性糖基; 和 /或, 和 不同时为-11。
3、 如权利要求 2所述的皂苷纳米胶束, 其特征在于, 和 分别独立 地为下述基团中的任一种:
( 1 ) -H、 -OH; 其中, -H为氢基, -OH为羟基;
(2) R6, 其中, R6为下述基团中的任一种: -0-Glc、 -0-Rha、 -0-Lyx、 -O-XyL -O-Ara(p), -O-Ara(f), -0-Glc(2→l)Glc、 -0-Glc(6→l)Glc、 -0-Glc(2 →l)Rha、 -0-Glc(2→l)XyK -0-Glc(6→ l)Xyl、 -0-Glc(6→ l)Rha、 -0-Glc(2 →l)Ara(p)、 -0-Glc(6→l)Ara(p)、 -0-Glc(2→l)Ara(f)、 -0-Glc(6→l)Ara(f)、 -0-Glc(2→l)Glc(2→ l)Glc、 -0-Glc(2→ l)Glc(2→ l)XyL -0-Glc(6→l)Glc(6→ l)Xyl、 -0-Glc(2→l)Glc(4→l)Xyl、 -0-Glc(2→ l)Lyx、 -0-Glc(6→ l)Lyx、 -0-Glc(2→ 1 )Glc(2→ 1 )Rha、 -0-Glc(2→ 1 )Glc(2→ 1 )Lyx、 -0-Glc(2→ 1 )Glc(2 → l)Ara(f)、 -0-Glc(2→ l)Glc(2→ l)Ara(p)、 -0-Glc(2→ l)Glc(6→ l)Glc、 -0-Glc(2→ 1 )Glc(6→ 1 )Rha、 -0-Glc(2→ 1 )Glc(6→ 1 )Xyl、 -0-Glc(2→ 1 )Glc(6 → l)Lyx、 -0-Glc(2→ l)Glc(6→ l)Ara(f)、 -0-Glc(2→ l)Glc(6→ l)Ara(p)、 -0-Glc(6→l)Glc(2→ l)Glc、 -0-Glc(6→ l)Glc(2→ l)Rha、 -0-Glc(6→l)Glc(2→ 1 )Xyl、 -0-Glc(6→ 1 )Glc(2→ 1 )Lyx、 -0-Glc(6→ 1 )Glc(2→ 1 )Ara(f)、 -0-Glc(6 → l)Glc(2→ l)Ara(p)、 -0-Glc(6→l)Glc(6→ l)Glc、 -0-Glc(6→ l)Glc(6→ l)Rha、 -0-Glc(6→l)Glc(6→ l)Lyx、 -0-Glc(6→ l)Glc(6→ l)Ara(f), -0-Glc(6→l)Glc(6 →l)Ara(p); 其中, Glc为吡喃葡萄糖基, Xyl为吡喃木糖基, Rha为吡喃鼠 李糖基, Am(p)为吡喃阿拉伯糖基, Am(f)为呋喃阿拉伯糖基, Lyx为来苏糖 基;
(3 ) R7, R7为所述 ^中的一个以上的羟基被 ^取代后所形成的基团; 其中, R5为下述基团中的任一种:
I ) -mPEG、 -Z-mPEG、 -mPEO、 -Z-PEO、 -mPW、 -Z-PVP、 -mEPEG 或 -Z-EPEG;其中, m为 H、垸基或酰基, Z为 -CO(CH2)aCO-、 -NH(CH2)aCO-、 -NH(CH2)bX-或 -CO-Ar-CH2-; 其中, X为 0、 S或 NH, Ar为芳基, a为 1〜8 的整数, b为 1〜10的整数;
ID c4〜c22的直链脂肪酰基、 磷酸酯基、 丁二酸酯基、 正丁酸酯基、 磺 酸酯基、 苹果酸酯基或硫酸钠盐;
III) Boc-甘氨酸、 Boc-丙氨酸、 Boc-精氨酸、 Boc-赖氨酸、 Boc-丝氨酸、 乙酰苯丙氨酸、 乙酰脯氨酸、 乙酰苯丙氨酸、 天冬酰胺、 天冬氨酸、 半胱氨 酸、 谷氨酰胺、 谷氨酸、 组氨酸、 异亮氨酸、 亮氨酸、 蛋氨酸、 苯丙氨酸、 脯氨酸、 苏氨酸、 色氨酸、 酪氨酸或缬氨酸中的任一种中的羧基去氢后所形 成的基团;
(4) -0-PEO、 -0-PVP, -0-PEG、 -0-MPEG、 -0-EPEG、 -0-Glc(2→l)Glc(6 →l)Mal或 -0-Glc(2→l)Glc(6→l)Ac; 其中, Mai为丙二酰基, Ac为乙酰基,
PEG为聚乙二醇, PEO为聚氧乙烯, MPEG为单甲氧基封端的聚乙二醇, EPEG为环氧封端的聚乙二醇, PVP为聚维酮; (5) R8, R8为下述基团中的任一种:
I ) -mPEG、 -Z-mPEG、 -mPE0、 -Z-PE0、 -mPW、 -Z-PVP、 -mEPEG 或 -Z-EPEG;其中, m为 H、垸基或酰基, Z为 -CO(CH2)aCO-、 -NH(CH2)aCO-、 -NH(CH2)bX-或 -CO-Ar-CH2-; 其中, X为 0、 S或 NH, Ar为芳基, a为 1〜8 的整数, b为 1〜10的整数;
ID c4〜c22的直链脂肪酰基、 磷酸酯基、 丁二酸酯基、 正丁酸酯基、 磺 酸酯基、 苹果酸酯基或硫酸钠盐;
III) Boc-甘氨酸、 Boc-丙氨酸、 Boc-精氨酸、 Boc-赖氨酸、 Boc-丝氨酸、 乙酰苯丙氨酸、 乙酰脯氨酸、 乙酰苯丙氨酸、 天冬酰胺、 天冬氨酸、 半胱氨 酸、 谷氨酰胺、 谷氨酸、 组氨酸、 异亮氨酸、 亮氨酸、 蛋氨酸、 苯丙氨酸、 脯氨酸、 苏氨酸、 色氨酸、 酪氨酸或缬氨酸中的任一种中的羧基去氢后所形 成的基团;
并且, 和 不同时为-11。
4、 如权利要求 3所述的皂苷纳米胶束, 其特征在于, 所述 PEG、 PEO、 PVP和 EPEG的分子量分别独立地为 200〜20000; 和 /或, 所述的直链脂肪酰 基为硬脂酰基或棕榈酰基;
和 /或, 当 R6为 -0-Glc、 -0-Rha、 -0-Lyx、 -O-XyK -O-Ara(p)或 -O-Ara(f) 时, R7为 R6中的 1〜4个羟基被所述 R5取代后所形成的基团;当 R6为 -0-Glc(2 →l)Glc、 -0-Glc(6→l)Glc、 -0-Glc(2→l)Rha、 -0-Glc(2→l)Xyl、 -0-Glc(6→ l)Xyl、 -0-Glc(6→l)Rha、 -0-Glc(2→l)Ara(p)、 -0-Glc(6→l)Ara(p)、 -0-Glc(2 →l)Ara(f), -0-Glc(6→l)Ara(f)、 -0-Glc(2→l)Lyx或 -0-Glc(6→l)Lyx时, R7 为 R6中的 1〜7个羟基被所述 取代后所形成的基团; 当 1 6为-0-01 2→ 1 )Glc(4→ 1 )Xyl、 -0-Glc(2→ 1 )Glc(2→ 1 )Rha、 -0-Glc(2→ 1 )Glc(2→ 1 )Lyx、 -0-Glc(2→ l)Glc(2→ l)Ara(f)、 -0-Glc(2→ l)Glc(2→ l)Ara(p)、 -0-Glc(2→ 1 )Glc(6→ 1 )Glc、 -0-Glc(2→ 1 )Glc(6→ 1 )Rha、 -0-Glc(2→ 1 )Glc(6→ 1 )Xyl、 -0-Glc(2→l)Glc(6→ l)Lyx、 -0-Glc(2→ l)Glc(6→ l)Ara(f)、 -0-Glc(2→l)Glc(6 →l)Ara(p)、 -0-Glc(6→l)Glc(2→l)Glc、 -0-Glc(6→l)Glc(2→l)Rha、 -0-Glc(6 → l)Glc(2→ l)Xyl、 -0-Glc(6→ l)Glc(2→ l)Lyx、 -0-Glc(6→ l)Glc(2→ l)Ara(f), -0-Glc(6→l)Glc(2→ l)Ara(p)、 -0-Glc(6→ l)Glc(6→ l)Glc、 -0-Glc(6→l)Glc(6 → l)Rha、 -0-Glc(6→l)Glc(6→ l)Lyx、 -0-Glc(6→ l)Glc(6→ l)Ara(f)或 -0-Glc(6 →l)Glc(6→l)Ara(p)时, R7为 R6中的 1〜10个羟基被所述 R5取代后所形成的 基团。
5、 如权利要求 1〜4任一项所述的皂苷纳米胶束, 其特征在于, R4为式 2、 式 3或式 4所示的基
Figure imgf000069_0001
其中, R9、 R1Q和 R 立地为 Cr^ 的垸基, d为 1〜3的整数;
Figure imgf000069_0002
其中, R12、 !^和! 〜^的垸基, e为 1〜3的整数;
Figure imgf000069_0003
其中, R15和 R16分别独立地为 (^ 3的垸基, f为 1〜3的整数。
6、 如权利要求 5所述的的皂苷纳米胶束, 其特征在于, 为式 2-1、 式 3-1或式 4-1所示的基
Figure imgf000069_0004
式 3-1 ;
Figure imgf000070_0001
式 4-1
7、 如权利要求 1〜4任一项所述的皂苷纳米胶束, 其特征在于, 如式 1 所示的皂苷为 A型皂苷、 B型皂苷和 C型皂苷; 或者, 如式 1所示的皂苷 为 B型皂苷和 /或 C型皂苷; 其中, 所述 A型皂苷为如式 1-1所示的皂苷的 一种或多种,所述 B型皂苷为如式 1-2所示的皂苷的一种或多种, 所述 C型 皂苷为如式 -3所示的皂苷的一种或多种;
Figure imgf000070_0002
Figure imgf000071_0001
1-3。
8、 如权利要求 7所述的皂苷纳米胶束, 其特征在于, 当如式 1所示的 皂苷为所述 A型皂苷、 B型皂苷和 C型皂苷时, 所述 A型皂苷、 B型皂苷 和 C型皂苷的摩尔比较佳地为 (0.8〜1.2) : ( 1.8-2.2) : (0.8〜1.2)。
9、 如权利要求 7所述的皂苷纳米胶束, 其特征在于, 所述的皂苷为所 述 A型皂苷、 B型皂苷或 C型皂苷; 所述的皂苷的质量含量在 70%以上, 较佳地在 80%以上, 更佳地在 90%以上, 最佳地在 95%以上;
或者, 所述的皂苷纳米胶束由所述 B型皂苷或所述 C型皂苷所形成, 所述的皂苷的摩尔含量在 70%以上,较佳地在 80%以上,更佳地在 90%以上, 最佳地在 95%以上。
10、 如权利要求 7所述的皂苷纳米胶束, 其特征在于, 所述的皂苷为所 述 A型皂苷、 B型皂苷和 C型皂苷中的任两种皂苷; 该两种皂苷的质量含 量分别在 25%以上, 该两种皂苷的总质量含量在 70%以上; 较佳地, 该两种 皂苷的质量比为 0.8〜1.2, 且该两种皂苷的总质量含量在 90%以上; 更佳地, 该两种皂苷的质量比为 1 : 1, 且该两种皂苷的总质量含量在 95%以上;
或者, 所述的皂苷纳米胶束由所述 B型皂苷和所述 C型皂苷所形成, 所述 B型皂苷和 C型皂苷的摩尔含量分别在 25%以上, 所述 B型皂苷和 C 型皂苷的总摩尔含量在 70%以上; 较佳地, 所述 B型皂苷和所述 C型皂苷 的摩尔比为 0.8〜1.2,且所述 B型皂苷和 C型皂苷的总摩尔含量在 90%以上; 更佳地,所述 B型皂苷和 C型皂苷的摩尔比为 1 : 1, 且所述 B型皂苷和 C型 皂苷的总摩尔含量在 95%以上。 11、 如权利要求 7所述的皂苷纳米胶束, 其特征在于, 所述的皂苷为所 述的 A型皂苷、 B型皂苷和 C型皂苷, 所述 A型皂苷、 所述 B型皂苷和所 述 C型皂苷的质量含量分别在 15%〜45%, 所述 A型皂苷、 所述 B型皂苷和 所述 C型皂苷的总质量含量在 70%以上; 较佳地, 所述 A型皂苷的质量含 量为 15%〜25%,所述 B型皂苷的质量含量为 35%〜45%,所述 C型皂苷的质 量含量为 15%〜25%, 且所述 A型皂苷、 所述 B型皂苷和所述 C型皂苷的总 质量含量在 80%以上; 更佳地, 所述 A型皂苷、 所述 B型皂苷和所述 C型 皂苷的质量比为 (0.8-1.2) : ( 1.8-2.2) : (0.8-1.2) , 且所述 A型皂苷、 所述 B型皂苷和所述 C型皂苷的总质量含量在 90%以上; 最佳地, 所述 A型皂 苷、 所述 B型皂苷和所述 C型皂苷的质量比为 1 :2: 1, 且所述 A型皂苷、 所 述 B型皂苷和所述 C型皂苷的总质量含量在 95%以上;
或者, 所述的皂苷纳米胶束由所述 A型皂苷、 所述 B型皂苷和所述 C 型皂苷所形成, 所述 A型皂苷、 所述 B型皂苷和所述 C型皂苷的摩尔含量 分别在 15%〜45%, 所述 A型皂苷、 所述 B型皂苷和所述 C型皂苷的总摩尔 含量在 70%以上; 较佳地, 所述 A型皂苷的摩尔含量为 15%〜25%, 所述 B 型皂苷的摩尔含量为 35%〜45%, 所述 C型皂苷的摩尔含量为 15%〜25%, 且 所述 A型皂苷、 所述 B型皂苷和所述 C型皂苷的总摩尔含量在 80%以上; 更佳地,所述 A型皂苷、所述 B型皂苷和所述 C型皂苷的摩尔比为 (0.8〜1.2): ( 1.8-2.2): (0.8〜1.2), 且所述 A型皂苷、 所述 B型皂苷和所述 C型皂苷的 总摩尔含量在 90%以上; 最佳地, 所述 A型皂苷、 所述 B型皂苷和所述 C 型皂苷的摩尔比为 1 :2: 1, 且所述 A型皂苷、 所述 B型皂苷和所述 C型皂苷 的总摩尔含量在 95%以上。
12、 如权利要求 1所述的皂苷纳米胶束, 其特征在于, 其包含人参皂苷 Rg5, 所述的人参皂苷 Rg5的质量含量在 50%以上; 其中, 所述的人参皂苷 Rg5 的质量含量较佳地在 70%以上, 进一步较佳地在 85%以上, 更佳地在 90%以上, 最佳地为 95%以上; 或者, 所述的皂苷纳米胶束, 其包含人参皂苷 Rg5, 所述的人参皂苷 Rg5的摩尔含量在 50%以上,较佳地在 70%以上,进一步较佳地在 85%以上, 更佳地在 90%以上, 最佳地为 95%以上。
13、 如权利要求 1所述的皂苷纳米胶束, 其特征在于, 其包含人参皂苷 Rkl , 所述的人参皂苷 Rkl的质量含量在 50%以上; 其中, 所述的人参皂苷 Rkl 的质量含量较佳地在 70%以上, 进一步较佳地在 85%以上, 更佳地在 90%以上, 最佳地为 95%以上;
或者, 所述的皂苷纳米胶束, 其包含人参皂苷 Rkl, 所述的人参皂苷 Rkl的摩尔含量在 50%以上,较佳地在 70%以上,进一步较佳地在 85%以上, 更佳地在 90%以上, 最佳地为 95%以上。
14、 如权利要求 1所述的皂苷纳米胶束, 其特征在于, 其包含人参皂苷 Rk4, 所述的人参皂苷 Rk4的质量含量在 50%以上; 其中, 所述的人参皂苷 Rk4 的质量含量较佳地在 70%以上, 进一步较佳地在 85%以上, 更佳地在 90%以上, 最佳地为 95%以上;
或者, 所述的皂苷纳米胶束, 其包含人参皂苷 Rk4, 所述的人参皂苷 Rk4的摩尔含量在 50%以上,较佳地在 70%以上,进一步较佳地在 85%以上, 更佳地在 90%以上, 最佳地为 95%以上。
15、 如权利要求 1所述的皂苷纳米胶束, 其特征在于, 其包含人参皂苷 Rg6, 所述的人参皂苷 Rg6的质量含量在 50%以上; 其中, 所述的人参皂苷 Rg6 的质量含量较佳地在 70%以上, 进一步较佳地在 85%以上, 更佳地在 90%以上, 最佳地为 95%以上;
或者, 所述的皂苷纳米胶束, 其包含人参皂苷 Rg6, 所述的人参皂苷 Rg6的摩尔含量在 50%以上,较佳地在 70%以上,进一步较佳地在 85%以上, 更佳地在 90%以上, 最佳地为 95%以上。
16、 如权利要求 1所述的皂苷纳米胶束, 其特征在于, 其包含人参皂苷 Rg5和人参皂苷 Rkl, 所述人参皂苷 Rg5的质量含量在 15%以上, 所述的人 参皂苷 Rkl的质量含量在 15%以上,且所述的人参皂苷 Rg5和人参皂苷 Rkl 的总质量含量在 50%以上; 其中, 较佳地, 所述人参皂苷 Rg5的质量含量在 25%以上, 所述的人参皂苷 Rkl的质量含量在 25%以上, 且所述的人参皂苷 Rg5和人参皂苷 Rkl的总质量含量在 80%以上; 或者, 较佳地, 所述人参皂 苷 Rg5的质量含量为 25%〜60%,所述人参皂苷 Rkl的质量含量为 25%〜60%, 且所述的人参皂苷 Rg5和人参皂苷 Rkl的总质量含量在 70%以上; 进一步 较佳地, 所述人参皂苷 Rg5的质量含量为 35%〜50%, 所述人参皂苷 Rkl的 质量含量为 35%〜50%, 且所述人参皂苷 Rg5和所述人参皂苷 Rkl的总质量 含量在 80%以上; 更佳地, 所述人参皂苷 Rg5和所述人参皂苷 Rkl的质量 比为 0.8〜1.2,且所述人参皂苷 Rg5和所述人参皂苷 Rkl的总质量含量在 80% 以上; 进一步更佳地, 所述人参皂苷 Rg5和所述人参皂苷 Rkl 的质量比为 0.8-1.2, 且所述人参皂苷 Rg5和所述人参皂苷 Rkl的总质量含量在 90%以 上; 最佳地, 所述人参皂苷 Rg5和所述人参皂苷 Rkl的质量比为 1:1, 且所 述人参皂苷 Rg5和所述人参皂苷 Rkl的总质量含量在 95%以上;
或者, 所述的皂苷纳米胶束, 其包含人参皂苷 Rg5和人参皂苷 Rkl, 所 述人参皂苷 Rg5的摩尔含量在 15%以上, 所述的人参皂苷 Rkl 的摩尔含量 在 15%以上, 且所述的人参皂苷 Rg5和人参皂苷 Rkl的总摩尔含量在 50% 以上; 其中, 较佳地, 所述人参皂苷 Rg5的摩尔含量在 25%以上, 所述的人 参皂苷 Rkl的摩尔含量在 25%以上,且所述的人参皂苷 Rg5和人参皂苷 Rkl 的总摩尔含量在 80%以上; 或者, 较佳地, 所述人参皂苷 Rg5的摩尔含量为 25%〜60%, 所述人参皂苷 Rkl的摩尔含量为 25%〜60%, 且所述的人参皂苷 Rg5和人参皂苷 Rkl的总摩尔含量在 70%以上; 进一步较佳地, 所述人参皂 苷 Rg5的摩尔含量为 35%〜50%,所述人参皂苷 Rkl的摩尔含量为 35%〜50%, 且所述人参皂苷 Rg5和所述人参皂苷 Rkl的总摩尔含量在 80%以上; 更佳 地, 所述人参皂苷 Rg5和所述人参皂苷 Rkl的摩尔比为 0.8〜1.2, 且所述人 参皂苷 Rg5和所述人参皂苷 Rkl的总摩尔含量在 80%以上; 进一步更佳地, 所述人参皂苷 Rg5和所述人参皂苷 Rkl的摩尔比为 0.8〜1.2, 且所述人参皂 苷 Rg5和所述人参皂苷 Rkl 的总摩尔含量在 90%以上; 最佳地, 所述人参 皂苷 Rg5和所述人参皂苷 Rkl的摩尔比为 1:1,且所述人参皂苷 Rg5和所述 人参皂苷 Rkl的总摩尔含量在 95%以上。
17、 如权利要求 1所述的皂苷纳米胶束, 其特征在于, 其包含人参皂苷 Rk4和人参皂苷 Rg6, 所述人参皂苷 Rk4的质量含量在 15%以上, 所述人参 皂苷 Rg6的质量含量在 15%以上, 且所述人参皂苷 Rk4和人参皂苷 Rg6的 总质量含量在 50%以上; 其中, 较佳地, 所述人参皂苷 Rk4 的质量含量为 25%〜60%, 所述人参皂苷 Rg6的质量含量为 25%〜60%, 且所述的人参皂苷 Rk4和人参皂苷 Rg6的总质量含量在 70%以上; 进一步较佳地, 所述人参皂 苷 Rk4的质量含量为 35%〜50%,所述人参皂苷 Rg6的质量含量为 35%〜50%, 且所述人参皂苷 Rk4和所述人参皂苷 Rg6的总质量含量在 80%以上; 更佳 地, 所述人参皂苷 Rk4和所述人参皂苷 Rg6的质量比为 0.8〜1.2, 且所述人 参皂苷 Rk4和所述人参皂苷 Rg6的总质量含量在 90%以上; 最佳地, 所述 人参皂苷 Rk4和所述人参皂苷 Rg6的质量比为 1:1,且所述人参皂苷 Rk4和 所述人参皂苷 Rg6的总质量含量在 95%以上;
或者, 所述的皂苷纳米胶束, 其包含人参皂苷 Rk4和人参皂苷 Rg6, 所 述人参皂苷 Rk4的摩尔含量在 15%以上, 所述人参皂苷 Rg6的摩尔含量在 15%以上, 且所述人参皂苷 Rk4和人参皂苷 Rg6的总摩尔含量在 50%以上; 其中, 较佳地, 所述人参皂苷 Rk4的摩尔含量为 25%〜60%, 所述人参皂苷 Rg6的摩尔含量为 25%〜60%, 且所述的人参皂苷 Rk4和人参皂苷 Rg6的总 摩尔含量在 70%以上; 进一步较佳地, 所述人参皂苷 Rk4 的摩尔含量为 35%〜50%,所述人参皂苷 Rg6的摩尔含量为 35%〜50%,且所述人参皂苷 Rk4 和所述人参皂苷 Rg6的总摩尔含量在 80%以上; 更佳地, 所述人参皂苷 Rk4 和所述人参皂苷 Rg6的摩尔比为 0.8〜1.2, 且所述人参皂苷 Rk4和所述人参 皂苷 Rg6的总摩尔含量在 90%以上; 最佳地, 所述人参皂苷 Rk4和所述人 参皂苷 Rg6的摩尔比为 1:1,且所述人参皂苷 Rk4和所述人参皂苷 Rg6的总 摩尔含量在 95%以上。
18、 如权利要求 1所述的皂苷纳米胶束, 其特征在于, 其包含人参皂苷 Rg3、 人参皂苷 Rg5 和人参皂苷 Rkl, 所述人参皂苷 Rg3 的质量含量为 15%〜45%, 所述人参皂苷 Rg5的质量含量为 15%〜45%, 所述人参皂苷 Rkl 的质量含量为 15%〜45%, 且所述的人参皂苷 Rg3、 所述的人参皂苷 Rg5和 所述人参皂苷 Rkl的总质量含量在 70%以上; 其中, 较佳地, 所述人参皂苷 Rg3的质量含量为 15%〜25%, 所述人参皂苷 Rg5的质量含量为 35%〜45%, 所述人参皂苷 Rkl的质量含量为 15%〜25%, 且所述的人参皂苷 Rg3、 所述 人参皂苷 Rg5和所述人参皂苷 Rkl 的总质量含量在 80%以上; 更佳地, 所 述人参皂苷 Rg3、 所述人参皂苷 Rg5 和所述人参皂苷 Rkl 的质量比为 (0.8〜1.2) : ( 1.8-2.2) : ( 0.8-1.2) , 且所述人参皂苷 Rg3、 所述人参皂苷 Rg5和所述人参皂苷 Rkl的总质量含量在 90%;最佳地,所述人参皂苷 Rg3、 所述人参皂苷 Rg5和所述人参皂苷 Rkl的质量比为 1:2:1 ;
或者, 所述的皂苷纳米胶束, 其包含人参皂苷 Rg3、 人参皂苷 Rg5和人 参皂苷 Rkl,所述人参皂苷 Rg3的摩尔含量为 15%〜45%,所述人参皂苷 Rg5 的摩尔含量为 15%〜45%, 所述人参皂苷 Rkl的摩尔含量为 15%〜45%, 且所 述的人参皂苷 Rg3、所述的人参皂苷 Rg5和所述人参皂苷 Rkl的总摩尔含量 在 70%以上; 其中, 较佳地, 所述人参皂苷 Rg3的摩尔含量为 15%〜25%, 所述人参皂苷 Rg5的摩尔含量为 35%〜45%, 所述人参皂苷 Rkl的摩尔含量 为 15%〜25%, 且所述的人参皂苷 Rg3、 所述人参皂苷 Rg5和所述人参皂苷 Rkl的总摩尔含量在 80%以上; 更佳地, 所述人参皂苷 Rg3、 所述人参皂苷 Rg5和所述人参皂苷 Rkl的摩尔比为(0.8〜1.2) : ( 1.8-2.2) : (0.8-1.2), 且 所述人参皂苷 Rg3、所述人参皂苷 Rg5和所述人参皂苷 Rkl的总摩尔含量在 90%; 最佳地, 所述人参皂苷 Rg3、 所述人参皂苷 Rg5和所述人参皂苷 Rkl 的摩尔比为 1:2:1。 19、 如权利要求 1所述的皂苷纳米胶束, 其特征在于, 其包含人参皂苷 Rh2、 人参皂苷 Rh3 和人参皂苷 Rk2, 所述人参皂苷 Rh2 的质量含量为 15%〜45%, 所述人参皂苷 Rh3的质量含量为 15%〜45%, 所述人参皂苷 Rk2 的质量含量为 15%〜45%, 且所述人参皂苷 Rh2、 所述人参皂苷 Rh3和所述 人参皂苷 Rk2的总质量含量在 70%以上; 其中, 较佳地, 所述人参皂苷 Rh2 的质量含量为 15%〜25%, 所述人参皂苷 Rh3的质量含量为 35%〜45%, 所述 人参皂苷 Rk2的质量含量为 15%〜25%, 且所述人参皂苷 Rh2、 所述人参皂 苷 Rh3和所述人参皂苷 Rk2的总质量含量在 80%以上; 更佳地, 所述人参 皂苷 Rh2、 所述人参皂苷 Rh3和所述人参皂苷 Rk2的质量比为 (0.8〜1.2) :
( 1.8-2.2) : (0.8〜1.2), 且所述人参皂苷 Rh2、 所述人参皂苷 Rh3和所述人 参皂苷 Rk2的总质量含量在 90%以上; 最佳地, 所述人参皂苷 Rh2、所述人 参皂苷 Rh3和所述人参皂苷 Rk2的质量比为 1:2:1 ;
或者, 所述的皂苷纳米胶束, 其包含人参皂苷 Rh2、 人参皂苷 Rh3和人 参皂苷 Rk2,所述人参皂苷 Rh2的摩尔含量为 15%〜45%,所述人参皂苷 Rh3 的摩尔含量为 15%〜45%, 所述人参皂苷 Rk2的摩尔含量为 15%〜45%, 且所 述人参皂苷 Rh2、 所述人参皂苷 Rh3和所述人参皂苷 Rk2的总摩尔含量在 70%以上; 其中, 较佳地, 所述人参皂苷 Rh2的摩尔含量为 15%〜25%, 所 述人参皂苷 Rh3的摩尔含量为 35%〜45%, 所述人参皂苷 Rk2的摩尔含量为 15%〜25%, 且所述人参皂苷 Rh2、 所述人参皂苷 Rh3和所述人参皂苷 Rk2 的总摩尔含量在 80%以上; 更佳地, 所述人参皂苷 Rh2、 所述人参皂苷 Rh3 和所述人参皂苷 Rk2的摩尔比为(0.8〜1.2) : ( 1.8-2.2) : (0.8〜1.2), 且所述 人参皂苷 Rh2、所述人参皂苷 Rh3和所述人参皂苷 Rk2的总摩尔含量在 90% 以上; 最佳地, 所述人参皂苷 Rh2、 所述人参皂苷 Rh3和所述人参皂苷 Rk2 的摩尔比为 1:2:1。
20、 如权利要求 1所述的皂苷纳米胶束, 其特征在于, 其包含人参皂苷 Rg2、 人参皂苷 Rk4 和人参皂苷 Rg6, 所述人参皂苷 Rg2 的质量含量为 15%〜45%, 所述人参皂苷 Rk4的质量含量为 15%〜45%, 所述人参皂苷 Rg6 的质量含量为 15%〜45%, 且所述人参皂苷 Rg2、 所述人参皂苷 Rk4和所述 人参皂苷 Rg6的总质量含量在 70%以上; 其中, 较佳地, 所述人参皂苷 Rg2 的质量含量为 15%〜25%, 所述人参皂苷 Rk4的质量含量为 35%〜45%, 所述 人参皂苷 Rg6的质量含量为 15%〜25%, 且所述人参皂苷 Rg2、 所述人参皂 苷 Rk4和所述人参皂苷 Rg6的总质量含量在 80%以上; 更佳地, 所述人参 皂苷 Rg2、 所述人参皂苷 Rk4和所述人参皂苷 Rg6的质量比为 (0.8〜1.2) : ( 1.8-2.2) : (0.8-1.2), 且所述人参皂苷 Rg2、 所述人参皂苷 Rk4和所述人 参皂苷 Rg6的总质量含量在 90%以上; 最佳地, 所述人参皂苷 Rg2、所述人 参皂苷 Rk4和所述人参皂苷 Rg6的质量比为 1:2:1, 且所述人参皂苷 Rg2、 所述人参皂苷 Rk4和所述人参皂苷 Rg6的总质量含量在 95%以上;
或者, 所述的皂苷纳米胶束, 其包含人参皂苷 Rg2、 人参皂苷 Rk4和人 参皂苷 Rg6,所述人参皂苷 Rg2的摩尔含量为 15%〜45%,所述人参皂苷 Rk4 的摩尔含量为 15%〜45%, 所述人参皂苷 Rg6的摩尔含量为 15%〜45%, 且所 述人参皂苷 Rg2、 所述人参皂苷 Rk4和所述人参皂苷 Rg6的总摩尔含量在 70%以上; 其中, 较佳地, 所述人参皂苷 Rg2的摩尔含量为 15%〜25%, 所 述人参皂苷 Rk4的摩尔含量为 35%〜45%, 所述人参皂苷 Rg6的摩尔含量为 15%〜25%, 且所述人参皂苷 Rg2、 所述人参皂苷 Rk4和所述人参皂苷 Rg6 的总摩尔含量在 80%以上; 更佳地, 所述人参皂苷 Rg2、 所述人参皂苷 Rk4 和所述人参皂苷 Rg6的摩尔比为(0.8〜1.2) : ( 1.8-2.2) : (0.8-1.2), 且所述 人参皂苷 Rg2、所述人参皂苷 Rk4和所述人参皂苷 Rg6的总摩尔含量在 90% 以上; 最佳地, 所述人参皂苷 Rg2、 所述人参皂苷 Rk4和所述人参皂苷 Rg6 的摩尔比为 1 :2:1, 且所述人参皂苷 Rg2、 所述人参皂苷 Rk4和所述人参皂 苷 Rg6的总摩尔含量在 95%以上。
21、 如权利要求 1所示的皂苷纳米胶束, 其特征在于, 其包含人参皂苷 Rg2、 人参皂苷 Rg3、 人参皂苷 Rhl、 人参皂苷 Rg5、 人参皂苷 Rk4、 人参 皂苷 Rh4、 人参皂苷 Rkl、 人参皂苷 Rg6和人参皂苷 Rk3, 其中, 所述人参 皂苷 Rg2、 人参皂苷 Rg3和人参皂苷 Rhl的总质量含量为 15%〜45%, 所述 人参皂苷 Rg5、 人参皂苷 Rk4和人参皂苷 Rh4的总质量含量为 15%〜45%, 所述人参皂苷 Rkl、 人参皂苷 Rg6 和人参皂苷 Rk3 的总质量含量为 15%〜45%, 且所述人参皂苷 Rg2、 人参皂苷 Rg3、 人参皂苷 Rhl、 人参皂苷 Rg5、 人参皂苷 Rk4、 人参皂苷 Rh4、 人参皂苷 Rkl、 人参皂苷 Rg6和人参 皂苷 Rk3的总质量含量在 70%以上; 其中, 较佳地, 所述人参皂苷 Rg2、 人 参皂苷 Rg3和人参皂苷 R 的总质量含量为 15%〜25%,所述人参皂苷 Rg5、 人参皂苷 Rk4和人参皂苷 Rh4 的总质量含量为 35%〜45%, 所述人参皂苷 Rkl、 人参皂苷 Rg6和人参皂苷 Rk3的总质量含量为 15%〜25%, 且所述人 参皂苷 Rg2、 人参皂苷 Rg3、 人参皂苷 Rhl、 人参皂苷 Rg5、 人参皂苷 Rk4、 人参皂苷 Rh4、人参皂苷 Rkl、人参皂苷 Rg6和人参皂苷 Rk3的总质量含量 在 80%以上; 更佳地, 所述人参皂苷 Rg2、 人参皂苷 Rg3和人参皂苷 Rhl 的总质量, 所述人参皂苷 Rg5、人参皂苷 Rk4和人参皂苷 Rh4的总质量, 以 及所述人参皂苷 Rkl、人参皂苷 Rg6和人参皂苷 Rk3的总质量之间的质量比 为(0.8〜1.2) : ( 1.8-2.2) : (0.8-1.2), 且所述人参皂苷 Rg2、 人参皂苷 Rg3、 人参皂苷 Rhl、人参皂苷 Rg5、人参皂苷 Rk4、人参皂苷 Rh4、人参皂苷 Rkl、 人参皂苷 Rg6和人参皂苷 Rk3的总质量含量在 95%以上; 最佳地, 所述人 参皂苷 Rg2、 人参皂苷 Rg3和人参皂苷 Rhl的总质量, 所述人参皂苷 Rg5、 人参皂苷 Rk4和人参皂苷 Rh4的总质量, 以及所述人参皂苷 Rkl、人参皂苷 Rg6和人参皂苷 Rk3的总质量之间的质量比为 1:2:1 ;
或者, 所述的皂苷纳米胶束, 其包含人参皂苷 Rg2、 人参皂苷 Rg3、 人 参皂苷 Rhl、 人参皂苷 Rg5、 人参皂苷 Rk4、 人参皂苷 Rh4、 人参皂苷 Rkl、 人参皂苷 Rg6和人参皂苷 Rk3, 其中, 所述人参皂苷 Rg2、 人参皂苷 Rg3和 人参皂苷 Rhl的总摩尔含量为 15%〜45%,所述人参皂苷 Rg5、人参皂苷 Rk4 和人参皂苷 Rh4的总摩尔含量为 15%〜45%, 所述人参皂苷 Rkl、 人参皂苷 Rg6和人参皂苷 Rk3的总摩尔含量为 15%〜45%, 且所述人参皂苷 Rg2、 人 参皂苷 Rg3、 人参皂苷 Rhl、 人参皂苷 Rg5、 人参皂苷 Rk4、 人参皂苷 Rh4、 人参皂苷 Rkl、 人参皂苷 Rg6和人参皂苷 Rk3的总摩尔含量在 70%以上; 其中, 较佳地, 所述人参皂苷 Rg2、人参皂苷 Rg3和人参皂苷 Rhl的总摩尔 含量为 15%〜25%, 所述人参皂苷 Rg5、 人参皂苷 Rk4和人参皂苷 Rh4的总 摩尔含量为 35%〜45%, 所述人参皂苷 Rkl、 人参皂苷 Rg6和人参皂苷 Rk3 的总摩尔含量为 15%〜25%, 且所述人参皂苷 Rg2、人参皂苷 Rg3、人参皂苷 Rhl , 人参皂苷 Rg5、 人参皂苷 Rk4、 人参皂苷 Rh4、 人参皂苷 Rkl、 人参 皂苷 Rg6和人参皂苷 Rk3的总摩尔含量在 80%以上; 更佳地, 所述人参皂 苷 Rg2、 人参皂苷 Rg3和人参皂苷 Rhl的总摩尔量, 所述人参皂苷 Rg5、 人 参皂苷 Rk4和人参皂苷 Rh4的总摩尔量, 以及所述人参皂苷 Rkl、人参皂苷 Rg6 和人参皂苷 Rk3 的总摩尔量之间的摩尔比为 (0.8〜1.2) : ( 1.8-2.2) : (0.8-1.2), 且所述人参皂苷 Rg2、 人参皂苷 Rg3、 人参皂苷 Rhl、 人参皂苷 Rg5、 人参皂苷 Rk4、 人参皂苷 Rh4、 人参皂苷 Rkl、 人参皂苷 Rg6和人参 皂苷 Rk3的总摩尔含量在 95%以上; 最佳地, 所述人参皂苷 Rg2、 人参皂苷 Rg3和人参皂苷 Rhl的总摩尔量,所述人参皂苷 Rg5、人参皂苷 Rk4和人参 皂苷 Rh4的总摩尔量, 以及所述人参皂苷 Rkl、 人参皂苷 Rg6和人参皂苷 Rk3的总摩尔量之间的摩尔量比为 1:2:1。
22、 一种皂苷纳米胶束的制备方法, 其特征在于, 其包括下述步骤: 将 如权利要求 1〜21任一项中的如式 1所示的皂苷与能够溶解皂苷的有机溶剂 混合, 然后除去有机溶剂, 即得。
23、 如权利要求 22所述的制备方法, 其特征在于, 所述能够溶解皂苷 的有机溶剂为甲醇、 乙醇、 Ν,Ν-二甲基甲酰胺、 正丁醇、 丙醇、 四氢呋喃和 吡啶中的一种或多种; 和 /或, 所述混合的温度为 30°C〜80°C ; 和 /或, 所述 除去有机溶剂为在 30°C〜80°C下进行减压浓缩干燥, 所述除去有机溶剂较佳 地为: 在所述的减压浓缩干燥后, 在 30°C〜80°C下进行真空干燥, 至干燥失 重低于质量百分比 3%。
24、 一种皂苷纳米胶束的制备方法, 其特征在于, 其包括下述步骤:
(1) 以五加科植物提取物和 /或葫芦科植物提取物为原料, 在酸性水溶 液中进行酸解反应, 得含皂苷混合物的反应液;
(2)将步骤(1)所得的含皂苷混合物的反应液经纯化去除杂质后, 再 与能够溶解皂苷的有机溶剂混合, 除去有机溶剂, 即得皂苷纳米胶束;
或者, 将步骤 (1) 所得的含皂苷混合物的反应液经纯化分离后, 得到 各种皂苷单体, 将其中的如式 1所示的人参皂苷的一种或多种, 与能够溶解 皂苷的有机溶剂混合, 除去有机溶剂, 即得皂苷纳米胶束。
25、 如权利要求 24所述的制备方法, 其特征在于, 步骤 (1) 中, 所述 的五加科植物为中国人参 (Panax ginseng), 高丽参 (R Sinensis J. Wen)、 西 洋参 quique folius 、日本人参 " pow'c^)、越南人参 vientnamensis 、 假人参 R pseudoginseng) 和三七 (P. notoginseng) 中的一种或多种, 所述 的葫戶科植物为绞股蓝 ( Gynostemma pentaphyllum );
和 /或, 步骤(1) 中, 所述五加科植物提取物和 /或葫芦科植物提取物满 足下述条件: 人参总皂苷质量百分含量 60%、 优选 80%、 更优选 90%; 或者含有质量百分含量 60%、 优选 80%、 更优选 90%的下述人参皂苷 化合物中的任一种: 人参皂苷 Rbl、 人参皂苷 Rb2、 人参皂苷 Rb3、 人参皂 苷 Re、 人参皂苷 Rc、 人参皂苷 Rd、 人参皂苷 Rgl、 人参皂苷 Rg2、 人参皂 苷 Rg3、 人参皂苷 Rhl、 人参皂苷 Rh2、 人参皂苷 Rh3、 人参皂苷 Fl、 人参 皂苷 F2和三七皂苷 Rl, 进一步优选人参皂苷 Rbl、 人参皂苷 Re或人参皂 苷 F2;
和 /或, 步骤 (1) 中, 所述酸性水溶液中的酸性物质为柠檬酸、 醋酸、 甲酸、 草酸、 琥珀酸、 水杨酸、 酒石酸、 苹果酸、 枸椽酸、 甲磺酸、 苯甲酸、 盐酸、 硝酸、 硫酸和磷酸中的一种或多种, 较佳地为醋酸和 /或柠檬酸; 和 /或, 步骤 (1) 中, 所述的酸性水溶液的 pH值 6.5, 较佳地为以醋 酸和 /或柠檬酸调整 pH值 6.5; 更佳地, 所述的酸性水溶液的 pH值 3, 最佳地为以醋酸和 /或柠檬酸调整 pH值 3;
和 /或, 步骤(1 ) 中, 所述的酸解反应的温度为 60°C〜100°C, 较佳地为 80°C〜90°C ; 所述的酸解反应的时间为 2小时〜 48小时, 较佳地为 3小时〜 6 小时。
26、 如权利要求 24或 25所述的制备方法, 其特征在于, 步骤 (2) 中, 所述纯化去除杂质的方法为下述方法一或方法二;
方法一包括如下步骤:
(a) 将步骤 (1 ) 所得的含皂苷混合物的反应液冷却、 静置和除沉淀;
(b)将经步骤(a)处理后的反应液用碱调节 pH至碱性, 获得沉淀物;
(c)在 30°C〜80°C下, 将沉淀物和有机溶剂混合, 得皂苷混合液, 所述 的有机溶剂为甲醇、 乙醇、正丁醇、丙醇、 四氢呋喃和吡啶中的一种或多种;
(d) 将步骤 (c) 中皂苷混合液冷却至 5°C以下, 除沉淀, 之后干燥即 可;
所述的方法二包括如下步骤:
51、 将步骤 (1 ) 所得的含皂苷混合物的反应液用碱调节 pH至 8〜14, 除沉淀后得溶液 A;
52、 以正丁醇萃取步骤 SI所得的溶液 A中皂苷, 得正丁醇层, 再以水 洗涤正丁醇层, 之后将正丁醇层中溶剂除去即可。
27、 如权利要求 26所述的制备方法, 其特征在于, 步骤 (a) 中, 所述 冷却为冷却至 -20°C〜30°C, 所述静置的时间为 4小时以上;
和 /或, 步骤(b) 中, 所述的碱为有机碱和 /或无机碱; 所述的有机碱较 佳地为甲醇钠、 乙醇钠、 醋酸钾、 醋酸钠、 三乙胺、 氨水、 甲醇胺、 叔丁醇 钾和叔丁醇钠中的一种或多种,所述的无机碱较佳地为氢氧化钠、氢氧化钾、 氢氧化钙、 碳酸钾、 碳酸钠、 碳酸氢钾和碳酸氢钠中的一种或多种, 更佳地 为碳酸钠和 /或碳酸氢钠; 所述碱在所述反应液中的浓度较佳地为
0.05mol/L〜l mol/L;
和 /或, 步骤 (b) 中, 所述的调节 pH至碱性为调节 pH至 8〜14;
和 /或, 步骤 (b) 中, 所述的沉淀物进行干燥, 再进行步骤 (c), 所述 干燥为: 在 30°C〜80°C烘干, 至干燥失重低于质量百分比 5%;
和 /或, 步骤(c) 中, 所述有机溶剂的使用量为溶解所述的沉淀物的量, 较佳地为使所述沉淀物与所述有机溶剂的体积比为 (1:1 ) 〜 (1:5 );
和 /或, 步骤 (c) 中, 所述的混合的温度为 30°C〜80°C ;
和 /或, 步骤 (d) 中, 所述冷却的温度为 -20°C〜5°C ;
和 /或, 步骤 (d) 中, 所述的干燥的方式为减压浓缩干燥;
和 /或, 步骤 S1中, 所述的碱为有机碱和 /或无机碱; 所述的有机碱较佳 地为甲醇钠、 乙醇钠、 醋酸钾、 醋酸钠、 三乙胺、 氨水、 甲醇胺、 叔丁醇钾 和叔丁醇钠中的一种或多种, 所述的无机碱较佳地为氢氧化钠、 氢氧化钾、 氢氧化钙、 碳酸钾、 碳酸钠、 碳酸氢钾和碳酸氢钠中的一种或多种, 更佳地 为碳酸钠和 /或碳酸氢钠; 所述碱在所述反应液中的浓度较佳地为 0.05mol/L〜l mol/L;
和 /或, 步骤 S2中, 所述的萃取的次数为 1〜5次; 所述的正丁醇与所述 的溶液 A的体积比为 ( 1:0.5 ) 〜(1 :4); 所述的正丁醇与所述的水洗涤中水 的体积比为 (1:0.5 ) 〜 (1 :4); 所述的将正丁醇层中溶剂除去的操作为减压 浓缩干燥。
28、 如权利要求 24或 25所述的制备方法, 其特征在于, 步骤 (2) 中, 所述纯化分离为柱层析分离;
和 /或, 步骤(2) 中, 所述的皂苷单体为人参皂苷 Rg2、 人参皂苷 Rg3、 人参皂苷 Rg4、人参皂苷 Rg5、人参皂苷 Rg6、人参皂苷 Rhl、人参皂苷 Rh2、 人参皂苷 Rh3、 人参皂苷 Rh4、 人参皂苷 Rf、 人参皂苷 Rs3、人参皂苷 Rkl、 人参皂苷 Rk2、 人参皂苷 Rk3、 人参皂苷 Rk4、 人参皂苷、 人参皂苷 F4、 三 七皂苷 R2和三七皂苷 T5中的一种或多种。 29、 如权利要求 24或 25所述的制备方法, 其特征在于, 步骤 (2) 中, 所述的能够溶解皂苷的有机溶剂为甲醇、乙醇、 Ν,Ν-二甲基甲酰胺、正丁醇、 丙醇、 四氢呋喃和吡啶中的一种或多种;
和 /或, 步骤 (2) 中, 所述混合的温度为 30°C〜80°C ;
和 /或, 步骤 (2) 中, 所述的除去有机溶剂的方式为在 30°C〜80°C减压 浓缩干燥; 所述的除去有机溶剂的方式较佳地为: 在所述减压浓缩干燥后, 在 30°C〜80°C下进行真空干燥, 至干燥失重低于质量百分比 3%。
30、 如权利要求 24所述的制备方法, 其特征在于, 其包括如下步骤: ( )将醋酸、水和皂苷质量百分含量大于 60%的五加科植物提取物和
/或葫芦科植物提取物混合,所述醋酸的用量为 4ml/g〜6ml/g五加科植物提取 物和 /或葫芦科植物提取物,所述醋酸水溶液的浓度为体积百分比 40%〜60%; 之后于 80°C〜90°C反应 3 小时〜 5 小时, 反应结束后, 把反应液冷却、 静置 4〜24小时并除沉淀;
(2' ) 将步骤 ( ) 处理后的反应液用 Na2C03中和, 静置、 获得沉淀 物;
(3 ' ) 在 30°C〜80°C下, 将步骤 (2' ) 所得的沉淀物和无水乙醇混合, 然后冷却至 5°C以下, 静置 4小时〜 24小时, 除沉淀, 之后减压浓缩得浓缩 物; 重复进行该步骤 (3' ) 的前述操作 1〜3次;
(4' ) 然后将步骤 (3 ' ) 所得的浓缩物干燥, 即得皂苷纳米胶束; 其中, 步骤( )所述的皂苷为下述皂苷化合物中的任一种: 人参总皂 苷 Ra0、人参总皂苷 Ral、人参总皂苷 Ra2、人参总皂苷 Ra3、人参皂苷 Rbl、 人参皂苷 Malonyl-Rbl、 人参皂苷 Rb2、 人参皂苷 Malonyl-Rb2、 人参皂苷 Rb3、 人参皂苷 Malonyl-Rb3、 人参皂苷 Rgl、 人参皂苷 Malonyl-Rgl、 人参 皂苷 Rc、 人参皂苷 Malonyl-Rc、 人参皂苷 F2、 人参皂苷 Re、 人参皂苷 Rd、 人参皂苷 Malonyl-Rd、 西洋参皂苷 Rl、 人参皂苷 Rsl、 人参皂苷 Rs2、 三七 皂苷 D、 三七皂苷 、 三七皂苷 Rl、 三七皂苷 R3、 三七皂苷 R4、 三七皂苷 R6、 三七皂苷 I、 三七皂苷 Fa、 三七皂苷 Fc、 三七皂苷 Fd、 三七皂苷 Fe、 三七皂苷 T、 三七皂苷 L、 三七皂苷 0、 三七皂苷 P、 三七皂苷 Q、 三七皂 苷8、 七叶胆苷 IX和绞股蓝皂苷 XVII。
31、 如权利要求 24所述的制备方法, 其特征在于, 其包括如下步骤:
( 1 " )将柠檬酸、 水和皂苷含量大于 60%的五加科植物提取物和 /或葫 芦科植物提取物混合, 所述柠檬酸的用量为 4ml/g〜6ml/g五加科植物提取物 和 /或葫芦科植物提取物,所述柠檬酸水溶液的浓度为体积百分比 40%〜60%; 之后于 80°C〜90°C反应 3小时〜 6小时;
(2〃 )将步骤(1〃 )反应所得的反应液冷却至 15°C〜30°C后用 Na2C03 中和, 除沉淀后得溶液 A;
(3〃 )在步骤(2〃 )所得溶液 A、水和正丁醇混合,进行萃取分离 1〜4 次;
(4〃 )将步骤(3〃 )萃取分离所得的正丁醇层水洗 1〜3次后, 将正丁 醇层减压浓缩得固体物;
(5〃 )在55 〜65 下, 在步骤(4〃 )所得的固体物和无水乙醇混合, 然后冷却至 5°C以下, 静置 4〜24小时, 除沉淀, 之后减压浓缩得浓缩物; 重 复进行该步骤 (5〃 ) 的前述操作 1〜3次;
(6〃 ) 将步骤 (5〃 ) 所得的浓缩物干燥, 即得皂苷纳米胶束; 步骤(1〃 )所述的皂苷为下述皂苷化合物中的任一种:人参总皂苷 RaO、 人参总皂苷 Ral、 人参总皂苷 Ra2、 人参总皂苷 Ra3、 人参皂苷 Rbl、 人参 皂苷 Malonyl-Rbl、 人参皂苷 Rb2、 人参皂苷 Malonyl-Rb2、 人参皂苷 Rb3、 人参皂苷 Malonyl-Rb3、 人参皂苷 Rgl、 人参皂苷 Malony-Rgl、 人参皂苷 Rc、 人参皂苷 Malonyl-Rc、 人参皂苷 F2、 人参皂苷 Re、 人参皂苷 Rd、 人参 皂苷 Malonyl-Rd、 西洋参皂苷 Rl、 人参皂苷 Rsl、 人参皂苷 Rs2、 三七皂苷 D、 三七皂苷^ 三七皂苷 Rl、 三七皂苷 R3、 三七皂苷 R4、 三七皂苷 R6、 三七皂苷 I、 三七皂苷 Fa、 三七皂苷 Fc、 三七皂苷 Fd、 三七皂苷 Fe、 三七 皂苷 T、 三七皂苷 三七皂苷 0、 三七皂苷?、 三七皂苷(5、 三七皂苷8、 七叶胆苷 IX和绞股蓝皂苷 XVII。
32、 一种如权利要求 24〜31任一项所述的制备方法所制得的皂苷纳米胶 束。
33、 一种皂苷纳米正胶束的制备方法, 其特征在于, 其包括下述步骤: 将皂苷纳米反胶束、能够溶解皂苷的有机溶剂和皂苷纳米正胶束的晶种 混合, 去除有机溶剂, 即得; 其中, 所述皂苷纳米正胶束的晶种为: 为-11 或 -ΟΗ、且 ^为亲水基的如权利要求 1〜7任一项中的如式 1所示的皂苷中的 一种或多种;所述的皂苷纳米反胶束为由如权利要求 22〜31中任一项所述的 制备方法所制得的皂苷纳米反胶束以及如权利要求 1〜11、 14〜15、 17、 20和 32中任一项所述的皂苷纳米胶束中的皂苷纳米反胶束中的一种或多种。
34、 如权利要求 33所述的制备方法, 其特征在于, 所述皂苷纳米正胶 束的晶种中, 为糖基或改性糖基; 所述的皂苷纳米正胶束的晶种较佳地为 人参皂苷 Rg3、 人参皂苷 Rg5和人参皂苷 Rkl中的一种或多种;
和 /或, 所述的皂苷纳米反胶束为如权利要求 20所述的皂苷纳米胶束; 和 /或, 所述能够溶解皂苷的有机溶剂为甲醇、 乙醇、 Ν,Ν-二甲基甲酰 胺、 正丁醇、 丙醇、 四氢呋喃和吡啶中的一种或多种;
和 /或, 所述混合的温度为 30°C〜80°C ;
和 /或, 所述除去有机溶剂为在 30°C〜80°C下进行减压浓缩干燥; 所述除 去有机溶剂较佳地为: 在所述的减压浓缩干燥后, 在 30°C〜80°C下进行真空 干燥, 至干燥失重低于质量百分比 3%。
35、一种如权利要求 33或 34所述的制备方法所制得的皂苷纳米正胶束。
36、 一种如权利要求 1〜21、 32和 35中任一项所述的皂苷纳米胶束作为 脂溶性化合物或组合物的水性助溶剂或药物载体的应用, 其特征在于, 所述 的皂苷纳米胶束为皂苷纳米正胶束;
其中, 所述的脂溶性化合物或组合物较佳地为大豆异黄酮、 小豆蔻明、 白藜芦醇、 辅酶 Q10、 维生素 A、 维生素 D、 维生素 E、 维生素 K、 银杏提 取物、 褪黑素、 番茄红素和 β-胡萝卜素中的一种或多种; 和 /或, 所述的脂 溶性化合物或组合物与所述皂苷纳米正胶束的质量比较佳地为 (1 : 1 ) 〜 ( 15: 1 ), 更佳地为 1 :9。
37、 一种如权利要求 1〜21、 32和 35中任一项所述的皂苷纳米胶束在制 备难溶于水的药物的药物制剂、 保健品或化妆品中的应用, 其特征在于, 所 述的皂苷纳米胶束为皂苷纳米正胶束;
其中, 所述的难溶于水的药物较佳地为紫杉醇、 多西他赛、 卡巴他赛、 盐酸伊立替康、 盐酸拓扑替康、 羟喜树碱、 米诺地尔、 阿奇霉素、 盐酸表柔 比星、盐酸多柔比星、盐酸氨柔比星、他克莫司、氟尿嘧啶、硫酸长春新碱、 硫酸长春碱、 硫酸长春地辛、 酒石酸长春瑞滨、 石杉碱甲、 高三尖杉酯碱、 三尖杉酯碱、 埃博霉素 、 埃博霉素8、 埃博霉素( 、 埃博霉素0、 埃博霉 素 Ε、 埃博霉素 F、 硼替佐米、 磷酸依托泊甙、 盐酸吉西他滨、 磷酸氟达拉 滨、 氟伐他汀、 普伐他汀、 辛伐他汀、 洛伐他丁、 辛伐他汀、 美伐他汀、 西 立伐他汀、 罗伐他汀、 阿托伐他汀钙和瑞苏伐他汀钙中的一种或多种; 和 / 或, 所述的难溶于水的药物与所述皂苷纳米正胶束的质量比较佳地为 (1 :3 ) 〜(1 : 12), 更佳地为 1 :6。
38、 一种药物组合物, 其特征在于, 其包含如权利要求 1〜21、 32和 35 任一项中的所述的皂苷纳米胶束和如权利要求 37中所述的难溶于水的药物; 所述的皂苷纳米胶束为皂苷纳米正胶束;
其中,所述的难溶于水的药物与所述皂苷纳米正胶束的质量比较佳地为 ( 1 :3 ) 〜(1 : 12), 更佳地为 1 :6。
39、 一种如权利要求 1〜21、 32和 35中任一项所述的皂苷纳米胶束作为 水溶性化合物或组合物的脂性助溶剂或药物载体的应用, 其特征在于, 所述 的皂苷纳米胶束为皂苷纳米反胶束;
其中, 所述的水溶性化合物或组合物较佳地为肽、多肽、蛋白质、核酸、 胰岛素、 促红细胞生成素、 瘦素、 生长因子、 生长激素释放激素、 集落刺激 因子、 水溶性激素、 促黄体激素释放激素及其类似物、 干扰素、 细胞因子、 多糖、 肝素类化合物、 DNA、 RNA片段及其质粒、 RNA干扰剂及其免疫剂 和疫苗剂中的一种或多种;和 /或,所述的水溶性化合物或组合物与所述皂苷 纳米反胶束的质量比较佳地为 (1:1 ) 〜 (15: 1 ), 更佳地为 1 :9。
40、 一种药物组合物, 其特征在于, 其包含如权利要求 1〜21、 32和 35 任一项中的所述的皂苷纳米胶束和如权利要求 39 中所述的水溶性化合物或 组合物; 所述的皂苷纳米胶束为皂苷纳米反胶束;
其中,所述的水溶性化合物或组合物与所述皂苷纳米反胶束的质量比较 佳地为 (1:1 ) 〜 (15: 1 ), 更佳地为 1:9。
PCT/CN2013/088558 2013-04-28 2013-12-04 皂苷纳米胶束及其制备方法、应用和药物组合物 WO2014176900A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015514348A JP5952494B2 (ja) 2013-04-28 2013-12-04 サポニンナノミセル、並びにその調製方法、応用及び医薬組成物
CN201380026612.1A CN104602679A (zh) 2013-04-28 2013-12-04 皂苷纳米胶束及其制备方法、应用和药物组合物
US14/370,885 US9421269B2 (en) 2013-04-28 2013-12-04 Saponin nano micelle, preparing method, application and pharmaceutical composition thereof
EP13870395.4A EP2815746B1 (en) 2013-04-28 2013-12-04 Saponin nano-micelle and preparation method, use and pharmaceutical composition thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310155639.2 2013-04-28
CN201310155639.2A CN103271891B (zh) 2013-04-28 2013-04-28 人参皂苷纳米胶束及其制备方法、应用和药物组合物

Publications (1)

Publication Number Publication Date
WO2014176900A1 true WO2014176900A1 (zh) 2014-11-06

Family

ID=49054118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088558 WO2014176900A1 (zh) 2013-04-28 2013-12-04 皂苷纳米胶束及其制备方法、应用和药物组合物

Country Status (5)

Country Link
US (1) US9421269B2 (zh)
EP (1) EP2815746B1 (zh)
JP (1) JP5952494B2 (zh)
CN (2) CN103271891B (zh)
WO (1) WO2014176900A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185509A1 (ja) * 2015-05-15 2016-11-24 金氏高麗人参株式会社 ジンセノサイド組成物

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103271891B (zh) * 2013-04-28 2016-01-06 福建南方制药股份有限公司 人参皂苷纳米胶束及其制备方法、应用和药物组合物
MX2018000286A (es) * 2015-07-16 2018-02-19 Marinomed Biotech Ag Metodo para mejorar la solubilidad acuosa de farmacos insolubles o ligeramente solubles en agua.
US11510859B2 (en) 2015-07-16 2022-11-29 Marinomed Biotech Ag Method for improving aqueous solubility of water-insoluble or slightly water-soluble drugs
AU2016309847B2 (en) * 2015-08-19 2019-10-31 Xiamen Ginposome Pharmaceutical Co., Ltd. Liposomes with ginsenoside as membrane material and preparations and use thereof
KR102598793B1 (ko) * 2015-09-23 2023-11-07 (주)아모레퍼시픽 인삼 유래의 엑소좀 유사 베지클을 포함하는 미백용 조성물
CN106852928A (zh) * 2015-12-09 2017-06-16 北京康爱营养科技股份有限公司 一种药物组合物及其用途
KR101732876B1 (ko) * 2016-01-08 2017-05-08 부산대학교 산학협력단 희귀 진세노사이드 CSH1(Rg6)을 유효성분으로 함유하는 항암제 내성 억제용 약학조성물
WO2017119767A1 (ko) * 2016-01-08 2017-07-13 부산대학교 산학협력단 희귀 진세노사이드 CSH1(Rg6)을 유효성분으로 함유하는 항암제 내성 억제용 조성물
BE1023538B1 (fr) * 2016-04-22 2017-04-26 Sil'innov Scrl Silices mésoporeuses et leur procédé de synthèse
CN106109482A (zh) * 2016-07-29 2016-11-16 陕西巨子生物技术有限公司 一种具有抗肿瘤活性的二醇组稀有人参皂苷组合物
CN106420776A (zh) * 2016-07-29 2017-02-22 陕西巨子生物技术有限公司 一种包含稀有人参皂苷Rk1的稀有人参皂苷组合物
CN106109483B (zh) * 2016-07-29 2020-02-07 陕西巨子生物技术有限公司 具有抗肿瘤活性的二醇组/三醇组稀有人参皂苷组合物
US20180050005A1 (en) * 2016-08-16 2018-02-22 Janssen Pharmaceutica Nv Concentrated Solution of 17-Hydroxydocosahexaenoic Acid
CN106550945B (zh) * 2016-10-26 2019-03-22 中国中医科学院中药研究所 人参皂苷混合物及其在作为双向端粒调节剂中的应用
KR101996713B1 (ko) * 2017-01-18 2019-07-04 가천대학교 산학협력단 진세노사이드 및 인지질 기반 지질나노입자 및 이의 제조방법
CN108339000B (zh) * 2017-01-22 2021-08-03 上海弘医堂生物医药科技有限公司 一种人参属植物提取物及其药物组合物和应用
CN107320448A (zh) * 2017-08-29 2017-11-07 天津中医药大学 一种包裹人参皂苷Rg3的球形胶束及其制备方法与应用
JP7018642B2 (ja) * 2017-09-25 2022-02-14 株式会社バスクリン 植物由来成分のマイクロエマルション製剤
CN108420793B (zh) * 2017-12-26 2021-09-24 厦门本素药业有限公司 一种空白混合胶束及其制备方法和应用
CN108273042A (zh) * 2018-04-25 2018-07-13 福州大学 一种人参皂苷-胰岛素纳米凝胶及其制备方法与应用
CN109045053B (zh) * 2018-07-02 2021-06-04 西安巨子生物基因技术股份有限公司 治疗白细胞减少症的人参皂苷组合物与应用
CN109223582A (zh) * 2018-10-31 2019-01-18 延边大学 具有抗皮肤衰老功能的二醇型人参皂苷纳米乳及其制备方法
CN110613724B (zh) * 2018-11-07 2021-03-12 山东大学齐鲁医院 一种具有治疗肝细胞癌功效的药物
CN109875956A (zh) * 2019-04-03 2019-06-14 福州大学 一种人参皂苷-华法林自组装纳米凝胶及其应用
WO2020209567A1 (ko) * 2019-04-09 2020-10-15 충남대학교산학협력단 진세노사이드 rg2, rg4, rg6 및 rh1을 포함하는 혼합물(rgx-365)을 유효성분으로 포함하는 미세먼지에 의한 호흡기 질환 예방 또는 치료용 조성물 및 이의 제조방법
CN111358803B (zh) * 2020-04-24 2021-05-07 陕西巨子生物技术有限公司 包含稀有人参皂苷Rg6和F4的改善睡眠药物组合物
CN113827487B (zh) * 2021-09-23 2022-10-14 茵素科技(广州)有限公司 一种壳材、纳米载体及其用途
CN113786369A (zh) * 2021-11-05 2021-12-14 青岛科技大学 一种含人参总皂苷的天然抗氧化纳米组合物及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101824065A (zh) 2009-12-03 2010-09-08 吉林农业大学 人参皂苷次级苷Rh1的脂肪酸单酯类化合物及制备方法
CN102174191A (zh) 2011-03-07 2011-09-07 天津科技大学 聚乙二醇和脂溶性化合物的连接物在生物催化中的应用
CN102603847A (zh) 2010-11-18 2012-07-25 吉林农业大学 人参皂苷Rh2脂肪酸酯类化合物制备方法及其医药用途
CN102766187A (zh) 2012-06-21 2012-11-07 李晓辉 人参皂苷Compound-K酯类衍生物及其在制备防治动脉粥状硬化的药物中的应用
CN103271891A (zh) * 2013-04-28 2013-09-04 福建南方制药股份有限公司 人参皂苷纳米胶束及其制备方法、应用和药物组合物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ500779A (en) * 1997-05-20 2001-06-29 Galenica Pharmaceuticals Inc Triterpene saponin analogs having adjuvant and immunostimulatory activity
JP4777776B2 (ja) * 2003-08-18 2011-09-21 ユーユー インコーポレイテッド 酢を利用した人参製剤及びこれの製造方法
KR100557779B1 (ko) * 2004-06-11 2006-03-07 주식회사 유니젠 집중력 및 기억력 저하의 예방 또는 개선을 위한 인삼조성물
KR100740609B1 (ko) * 2004-06-11 2007-07-18 주식회사 유니젠 진세노사이드를 포함하는 혈관 협착 및 재협착 예방 또는치료용 조성물
CA2614700C (en) * 2005-07-14 2011-07-19 National Institute Of Pharmaceutical R&D Co., Ltd. Medicinal composition containing ginseng secondary glycosides, its preparation method and application
CN1869055A (zh) * 2006-06-21 2006-11-29 海南亚洲制药有限公司 一种从人参叶中提取分离人参皂苷单体的方法
CN1869059B (zh) 2006-06-21 2012-04-18 海南亚洲制药有限公司 从人参叶中制备人参皂苷单体的方法
CN102453072A (zh) 2010-10-26 2012-05-16 中国医学科学院药物研究所 人参皂苷Rg1的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101824065A (zh) 2009-12-03 2010-09-08 吉林农业大学 人参皂苷次级苷Rh1的脂肪酸单酯类化合物及制备方法
CN102603847A (zh) 2010-11-18 2012-07-25 吉林农业大学 人参皂苷Rh2脂肪酸酯类化合物制备方法及其医药用途
CN102174191A (zh) 2011-03-07 2011-09-07 天津科技大学 聚乙二醇和脂溶性化合物的连接物在生物催化中的应用
CN102766187A (zh) 2012-06-21 2012-11-07 李晓辉 人参皂苷Compound-K酯类衍生物及其在制备防治动脉粥状硬化的药物中的应用
CN103271891A (zh) * 2013-04-28 2013-09-04 福建南方制药股份有限公司 人参皂苷纳米胶束及其制备方法、应用和药物组合物

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CAO MAN; ZHANG JIE; SONG XINBO; MA BAIPING: "Advances in ginsenoside Rh2 and its derivatives", WORLD SCIENCE AND TECHNOLOGY-MODERNIZATION OF TRADITIONAL CHINESE MEDICINE AND MATERIA MEDICA, vol. 14, no. 6, 2012
DAI, XINGXING ET AL.: "Mesoscopic Simulation Study on Influencing Factors on Micellization of Ginsenoside Ro, MODERNIZATION OF TRADITIONAL CHINESE MEDICINE AND MATERIA MEDICA", SEMINAR: CHINESE MEDICINE INFORMATION ENGINEERING, vol. 14, no. 4, April 2012 (2012-04-01), pages 1767 AND 1772, XP008174581 *
LI, WENYUAN ET AL.: "The Advance of Nano-micelles Used as Drug Delivery", CHINA LICENSED PHARMACIST, vol. 16, no. 12, December 2009 (2009-12-01), pages 36 - 39, XP008174632 *
LIU MEI; WANG LI; HU KAILI; FENG JIANFANG: "Modification and stability of ginsenoside Rgl PEG", CHINA JOURNAL OF CHINESE MATERIA MEDICA, vol. 37, no. 10, May 2012 (2012-05-01), pages 1378 - 1382
See also references of EP2815746A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185509A1 (ja) * 2015-05-15 2016-11-24 金氏高麗人参株式会社 ジンセノサイド組成物

Also Published As

Publication number Publication date
JP5952494B2 (ja) 2016-07-13
CN104602679A (zh) 2015-05-06
CN103271891B (zh) 2016-01-06
CN103271891A (zh) 2013-09-04
EP2815746A1 (en) 2014-12-24
EP2815746A4 (en) 2015-09-09
JP2015516990A (ja) 2015-06-18
EP2815746B1 (en) 2020-09-09
US9421269B2 (en) 2016-08-23
US20150297727A1 (en) 2015-10-22

Similar Documents

Publication Publication Date Title
WO2014176900A1 (zh) 皂苷纳米胶束及其制备方法、应用和药物组合物
Tang et al. Nucleosome-inspired nanocarrier obtains encapsulation efficiency enhancement and side effects reduction in chemotherapy by using fullerenol assembled with doxorubicin
Wang et al. In vitro and in vivo anticancer activity of a novel puerarin nanosuspension against colon cancer, with high efficacy and low toxicity
Gao et al. Studies on pharmacokinetics and tissue distribution of oridonin nanosuspensions
Xiong et al. Design and evaluation of a novel potential carrier for a hydrophilic antitumor drug: Auricularia auricular polysaccharide-chitosan nanoparticles as a delivery system for doxorubicin hydrochloride
Fernandes et al. Doxorubicin-loaded nanocarriers: A comparative study of liposome and nanostructured lipid carrier as alternatives for cancer therapy
CN109833298A (zh) 以人参皂苷衍生物为膜材的新型空白脂质体、其制备方法及应用
Hesami et al. Synthesis and characterization of chitosan nanoparticles loaded with greater celandine (Chelidonium majus L.) essential oil as an anticancer agent on MCF-7 cell line
WO2017021983A1 (en) Particulate delivery systems
Deng et al. Tea saponins as natural emulsifiers and cryoprotectants to prepare silymarin nanoemulsion
Suo et al. Lentinan as a natural stabilizer with bioactivities for preparation of drug–drug nanosuspensions
Tian et al. Fabrication of nanosuspensions to improve the oral bioavailability of total flavones from Hippophae rhamnoides L. and their comparison with an inclusion complex
Shang et al. Metal ions-mediated self-assembly of nanomedicine for combinational therapy against triple-negative breast cancer
Mi et al. Structural characterization and anti-inflammatory properties of green synthesized chitosan/compound K‑gold nanoparticles
Shi et al. Construction of inulin-based selenium nanoparticles to improve the antitumor activity of an inulin-type fructan from chicory
EP3638214B1 (en) Nanoparticles as delivery vehicles of active ingredients and methods for the production thereof
EP3616726B1 (en) Protein particle wrapped with medicine insoluble in water and preparation method therefor
Rajput et al. Design of lactoferrin functionalized carboxymethyl dextran coated egg albumin nanoconjugate for targeted delivery of capsaicin: Spectroscopic and cytotoxicity studies
CN111202719A (zh) 一种活性天然产物纳米载药系统及其制备方法与应用
CN101254184B (zh) 丹参酚酸b磷脂复合物及其制备方法
Noreen et al. Polymeric complex nanocarriers of Mangifera indica gum & chitosan for methotrexate delivery: Formulation, characterization, and in vitro toxicological assessment
CN113244234B (zh) 一种金色酰胺醇酯-半枝莲碱-棕榈酸酯自组装纳米粒及其制备方法和应用
Polat et al. Recent advances in chitosan-based systems for delivery of anticancer drugs
CN110960491A (zh) 一种负载丹参酮ⅡA的水溶性壳聚糖/γ-聚谷氨酸纳米复合物的制备方法及应用
KR20200064786A (ko) 알로에 활성성분을 함유하는 나노입자 및 이를 함유하는 화장료조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14370885

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013870395

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015514348

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE