WO2014175387A1 - 酸化鉄ナノ磁性粒子粉およびその製造方法、当該酸化鉄ナノ磁性粒子粉を含む酸化鉄ナノ磁性粒子薄膜およびその製造方法 - Google Patents

酸化鉄ナノ磁性粒子粉およびその製造方法、当該酸化鉄ナノ磁性粒子粉を含む酸化鉄ナノ磁性粒子薄膜およびその製造方法 Download PDF

Info

Publication number
WO2014175387A1
WO2014175387A1 PCT/JP2014/061585 JP2014061585W WO2014175387A1 WO 2014175387 A1 WO2014175387 A1 WO 2014175387A1 JP 2014061585 W JP2014061585 W JP 2014061585W WO 2014175387 A1 WO2014175387 A1 WO 2014175387A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron oxide
thin film
phase
oxide nanomagnetic
sample
Prior art date
Application number
PCT/JP2014/061585
Other languages
English (en)
French (fr)
Inventor
慎一 大越
まりえ 吉清
飛鳥 生井
裕子 所
和香 太郎良
吉田 貴行
田中 学
Original Assignee
国立大学法人 東京大学
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, Dowaエレクトロニクス株式会社 filed Critical 国立大学法人 東京大学
Priority to EP14788025.6A priority Critical patent/EP2990382B1/en
Priority to US14/787,186 priority patent/US9916922B2/en
Priority to CN201480023656.3A priority patent/CN105143109B/zh
Publication of WO2014175387A1 publication Critical patent/WO2014175387A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0054Coated nanoparticles, e.g. nanoparticles coated with organic surfactant
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Definitions

  • the present invention relates to a high-density magnetic recording medium, an iron oxide nanomagnetic particle powder used for electromagnetic wave absorption and a method for producing the same, an iron oxide nanomagnetic particle thin film containing the iron oxide nanomagnetic particle powder, and a method for producing the same.
  • the ⁇ -Fe 2 O 3 phase is an extremely rare phase among iron oxides.
  • the present inventors made this the first single phase by the chemical nanoparticle synthesis method using the reverse micelle method and the sol-gel method. Got.
  • the obtained ⁇ -Fe 2 O 3 phase was found to exhibit a huge coercive force of 20 kOe (1.59 ⁇ 10 6 A / m) at room temperature. This was the maximum value of the oxide magnetic material.
  • the ⁇ -Fe 2 O 3 phase was also found to exhibit electromagnetic wave absorption due to the natural resonance phenomenon at a very high frequency of 182 GHz, which was the highest absorption frequency of the magnetic material.
  • the ⁇ -Fe 2 O 3 phase has a huge magnetic anisotropy.
  • single-phase ⁇ -iron oxide could be synthesized with metal-substituted ⁇ -iron oxide ( ⁇ -M x Fe (2-x) O 3 ), but single-phase ⁇ -Fe without metal-substituted elements. 2 O 3 is known to be difficult to synthesize, and for example, it was thought that a single phase could not be obtained by a normal sol-gel method. Furthermore, in order to increase the recording density of the magnetic recording medium, it is essential to make fine particles as described above. However, there is a problem that the coercive force is greatly reduced with the formation of fine particles. Generally, when the substitution element M is added to ⁇ iron oxide, the coercive force is lowered.
  • ⁇ iron oxide not containing the substitution element it is expected that a magnetic powder having fine particles and high coercive force can be obtained. it can. Furthermore, when a heterogeneous phase such as ⁇ iron oxide or ⁇ iron oxide precipitates, the coercive force may be significantly reduced. Therefore, it has been thought that it is desirable to synthesize ⁇ iron oxide by suppressing the precipitation of foreign phases such as ⁇ iron oxide and ⁇ iron oxide to a level at which the coercive force does not decrease.
  • ⁇ iron oxide that does not contain the substitution element has unique magnetic properties, and is expected to be developed as a magnetic recording material and a magneto-optical material. For this development, it is required to obtain a thin film containing single-phase ⁇ -Fe 2 O 3 .
  • the present invention has been made under the above-described circumstances, and the problem to be solved includes iron oxide nanomagnetic particles having ferromagnetic properties even with an average particle size of 15 nm or less, preferably 10 nm or less. It is to provide iron oxide nanomagnetic particle powder and a method for producing the same. Furthermore, it is providing the iron oxide nanomagnetic particle thin film containing the said iron oxide nanomagnetic particle, and its manufacturing method.
  • an average particle diameter of 15 nm or less, or even 10 nm is obtained if the iron oxide nanomagnetic particle powder is a single phase of ⁇ -Fe 2 O 3 phase. It has been found that even if it is below, it has ferromagnetic properties and can be applied as a high-density magnetic recording material.
  • iron oxide nanomagnetic particles having a single-phase ⁇ -Fe 2 O 3 phase and an average particle size of 15 nm or less, and further 10 nm or less. I found out.
  • the above-mentioned (iron oxide hydroxide) nano-particles covered with silicon oxide are coated on a suitable substrate and subjected to heat treatment to have a single-phase nano-sized ⁇ -Fe 2 O 3 phase.
  • the present invention has been completed by conceiving that an iron oxide nanomagnetic particle thin film containing fine particle powder can be obtained.
  • the first invention for solving the above-described problem is An iron oxide nanomagnetic particle powder comprising iron oxide nanomagnetic particles having a single phase ⁇ -Fe 2 O 3 and an average particle diameter of 15 nm or less.
  • the second invention is The iron oxide nanomagnetic particle powder according to the first invention, wherein the single phase ⁇ -Fe 2 O 3 does not contain a substitution element.
  • the third invention is The iron oxide nanomagnetic particle powder according to the first or second invention, wherein the coercive force is 0.35 kOe or more.
  • the fourth invention is: The iron oxide nanomagnetic particle powder according to any one of the first to third inventions, wherein the iron oxide nanomagnetic particle powder has an ⁇ -Fe 2 O 3 phase in addition to a single phase ⁇ -Fe 2 O 3 , An iron oxide nanomagnetic particle powder comprising iron oxide nanomagnetic particle powder having a ⁇ -Fe 2 O 3 phase.
  • the fifth invention is: An iron oxide nanomagnetic particle thin film comprising the iron oxide nanomagnetic particle powder according to any one of the first to fourth inventions.
  • the sixth invention is: An iron oxide nanomagnetic particle thin film comprising the iron oxide nanomagnetic particle powder according to any one of the first to fourth inventions and SiO 2 .
  • the seventh invention A method for producing iron oxide nanoparticle powder comprising iron oxide nanomagnetic particles having a single phase ⁇ -Fe 2 O 3 and an average particle diameter of 15 nm or less, An iron oxide nanomagnetic particle comprising: coating ⁇ -FeO (OH) nanoparticles with silicon oxide, and then heat-treating the ⁇ -FeO (OH) nanoparticles coated with the silicon oxide in an oxidizing atmosphere. It is a manufacturing method of powder.
  • the eighth invention Air is used as said oxidizing atmosphere, It is a manufacturing method of the iron oxide nano magnetic particle powder as described in 7th invention characterized by the above-mentioned.
  • the ninth invention The method for producing iron oxide nanomagnetic particle powder according to the seventh or eighth invention, wherein the ⁇ -FeO (OH) nanoparticle has an average particle diameter of 15 nm or less.
  • the tenth invention is A method for producing an iron oxide nanomagnetic particle thin film comprising iron oxide nanomagnetic particles having a single phase ⁇ -Fe 2 O 3 and an average particle size of 15 nm or less, Iron oxide nanomagnetic particle thin film is obtained by applying a dispersion containing ⁇ -FeO (OH) nanoparticles coated with silicon oxide on a substrate and then heat-treating in an oxidizing atmosphere. This is a method for producing a nanomagnetic particle thin film.
  • the eleventh invention is The method for producing an iron oxide nanomagnetic particle thin film according to the tenth invention, wherein air is used as the oxidizing atmosphere.
  • the iron oxide nanomagnetic particle powder according to the present invention had excellent magnetic properties such as a coercive force of 0.35 kOe or more while having an average particle diameter of 15 nm or less. Furthermore, from the viewpoint of development as a high-density magnetic recording material and a magneto-optical material, iron oxide nanomagnetic particles including fine particles having a single-phase nano-sized ⁇ -Fe 2 O 3 phase having an average particle diameter considered to be optimal A thin film could be obtained.
  • FIG. 2 is a schematic conceptual diagram of crystal structures of an ⁇ -Fe 2 O 3 phase, an ⁇ -Fe 2 O 3 phase, and a ⁇ -Fe 2 O 3 phase.
  • XRD X-ray diffraction
  • It is a Rietveld analysis result with respect to the XRD pattern of the sample which concerns on an Example.
  • It is a TEM photograph of the sample concerning an example. It is a graph which shows the variation in the particle size of the sample which concerns on an Example. It is a graph which shows the magnetization-external magnetic field curve of the sample which concerns on an Example.
  • FIG. 6 is a cross-sectional SEM photograph of an iron oxide nanomagnetic particle thin film according to Example 5.
  • FIG. 6 is a schematic diagram of a cross section of an iron oxide nanomagnetic particle thin film according to Example 5.
  • FIG. 6 is a graph showing the transmittance of the UV-vis spectrum of the iron oxide nanomagnetic particle thin film according to Example 5.
  • 6 is a graph showing the UV-vis spectrum absorbance of the iron oxide nanomagnetic particle thin film according to Example 5. It is a graph which shows the wavelength dependence of the Faraday ellipticity (FE) in the room temperature of the iron oxide nanomagnetic particle thin film which concerns on Example 5.
  • FE Faraday ellipticity
  • FR Faraday rotation angle
  • FIG. 6 is a graph showing a magnetization-external magnetic field curve in the iron oxide nanomagnetic particle thin film according to Example 5.
  • the iron oxide nanomagnetic particle powder according to the present invention is an iron oxide nanomagnetic particle powder containing iron oxide nanomagnetic particles having a single phase of ⁇ -Fe 2 O 3 and an average particle size of 15 nm or less.
  • FIG. 2 shows a schematic conceptual diagram of the structure of the ⁇ -Fe 2 O 3 phase, the later-described ⁇ -Fe 2 O 3 phase and ⁇ -Fe 2 O 3 phase.
  • large black spheres indicate iron ions
  • small gray spheres indicate oxygen ions.
  • Example 3 shows X-ray powder diffraction (XRD) patterns of Example Samples 1 to 4 of the iron oxide nanomagnetic particle powder according to the present invention.
  • XRD X-ray powder diffraction
  • the sample 1 is a sample according to Example 1 to be described later, and is baked at 950 ° C. in the manufacturing process.
  • the sample 2 is a sample according to Example 2 to be described later and is baked at 1000 ° C.
  • Sample 3 is a sample according to Example 3 to be described later and fired at 1020 ° C.
  • Sample 4 is a sample according to Example 4 to be described later and fired at 1026 ° C.
  • the example sample is a sample according to Comparative Example 1 described later and is fired at 1000 ° C.
  • FIG. 4 shows the Rietveld analysis results for the XRD patterns of the samples 1 to 4 and the comparative sample.
  • the ⁇ -Fe 2 O 3 phase of the iron oxide nanomagnetic particles constituting the iron oxide nanomagnetic particle powder according to the present invention does not contain a metal element other than Fe as a substitution element. .
  • FIG. 5 shows TEM photographs of the sample samples 1 to 4 and the comparative sample.
  • the average particle size is 5.2 to 9.4 nm, which is 15 nm or less, and the variation in particle size is as small as ⁇ 1.7 to 2.8 nm.
  • the average particle size was 10.6 nm, and the variation in particle size was ⁇ 3.3 nm.
  • FIG. 6 is a graph showing the variation in particle diameter of the sample samples 1 to 4 and the comparative sample.
  • Example Samples 1 to 3 the magnetization-external magnetic field curve at 300 K was measured.
  • the saturation magnetization of Example Sample 4 is 14.1 emu / g
  • the coercive force is 6.7 kOe
  • the residual magnetization is 5.2 emu / g
  • both are ferromagnetic materials.
  • FIG. 7 shows a graph showing the magnetization-external magnetic field curves of the example samples 1 to 4 and the comparative example sample.
  • FIG. 8 is a graph showing the relationship between the average particle diameter and the coercive force of the iron oxide nanomagnetic particle powders of Examples Samples 1 to 4 and Comparative Example Sample according to the present invention. From the plot of the coercive force against the average particle size of each sample, it was found that the coercive force decreases as the average particle size decreases. The plot of FIG. 8 is considered to indicate the particle size dependence of the coercive force.
  • Example Samples 1 to 4 have a higher coercive force with respect to the average particle diameter than the Comparative Example sample. This is because in Comparative Example 1, a ⁇ -Fe 2 O 3 phase, which is a different phase, is generated, and the coercive force is greatly reduced.
  • the great effect of the present invention is to realize the synthesis of single-phase ⁇ -Fe 2 O 3 having an average particle size of 15 nm or less, thereby synthesizing ⁇ -Fe 2 O 3 having a high coercive force while being fine particles. It is the first success.
  • the coercive force has a particle size dependency. As the particle size is reduced, the coercive force increases and becomes maximum when a single domain structure is achieved. This is because the domain wall movement occurs in the multi-domain structure, whereas the single domain is magnetized only by the rotational magnetization process. When the particle size is further reduced, the coercive force decreases, and the coercive force becomes zero in the superparamagnetic region. This phenomenon is explained by the fact that when the particle becomes very small, the influence of thermal fluctuation increases and the spin is easily reversed. The tendency seen in FIG. 8 corresponds to the decrease of the coercive force seen in the region of the single domain structure of FIG.
  • FIG. 1 is a conceptual diagram of the manufacturing method of the iron oxide nanomagnetic particle powder concerning this invention.
  • Iron oxide (III) hydroxide nanoparticles ( ⁇ -FeO (OH)) having an average particle size of 15 nm or less and pure water are mixed, and the iron (Fe) equivalent concentration is 0.01 mol / L or more, 1 mol / L A dispersion of L or less was prepared.
  • the deposited precipitate was collected and washed with pure water, and then dried at about 60 ° C. Further, the dried precipitate was pulverized to obtain a pulverized powder.
  • the pulverized powder was heat-treated at 900 ° C. or higher and lower than 1200 ° C., preferably 950 ° C. or higher and 1150 ° C. or lower for 0.5 to 10 hours, preferably 2 to 5 hours in an oxidizing atmosphere to obtain heat-treated powder. .
  • the obtained heat-treated powder is pulverized and then added to a sodium hydroxide (NaOH) aqueous solution having a liquid temperature of 60 ° C. or higher and 70 ° C. or lower, and stirred for 15 hours or longer and 30 hours or shorter.
  • NaOH sodium hydroxide
  • the oxide was removed, and iron oxide nanomagnetic particle powder that was a single phase of ⁇ -Fe 2 O 3 phase was produced.
  • the use of air as the oxidizing atmosphere is preferable from the viewpoints of cost and workability.
  • the produced iron oxide nanomagnetic particle powder which is a single phase of the ⁇ -Fe 2 O 3 phase, is separated and collected by filtration, centrifugation, etc., washed with water, and ⁇ -Fe 2 O 3 according to the present invention.
  • An iron oxide nanomagnetic particle powder containing iron oxide nanomagnetic particles having a single phase and an average particle size of 15 nm or less was obtained.
  • iron oxide nanomagnetic particle powder containing iron oxide nanomagnetic particles having an average particle size of 10 nm or less could be obtained by controlling the firing conditions (see Examples 1 and 2 described later). Furthermore, no element other than Fe and O in the produced iron oxide nanomagnetic particle powder was detected at 1.0% by weight or more. Therefore, it is considered that the iron oxide nanomagnetic particles that are a single phase of the generated ⁇ -Fe 2 O 3 phase do not contain a substitution element.
  • the conventional sol-gel method uses a fine particle having a particle size of 15 nm or less to oxidize with a high coercive force.
  • the iron nanomagnetic particles could not be synthesized.
  • a single-phase ⁇ iron oxide can be synthesized without containing a substitution element. Therefore, ⁇ iron oxide having a high coercive force is synthesized with fine particles of 15 nm or less. I understand what I can do.
  • the obtained dispersion was applied to a suitable substrate such as a quartz substrate by a coating method such as a spin coating method to form a film. Then, the film is subjected to heat treatment in an oxidizing atmosphere at 900 ° C. or more and less than 1200 ° C., preferably 950 ° C. or more and 1150 ° C. or less for 0.5 to 10 hours, preferably 2 to 5 hours.
  • the iron oxide nanomagnetic particle thin film according to the present invention was obtained.
  • the use of air as the oxidizing atmosphere is preferable from the viewpoints of cost and workability.
  • the coercive force of the iron oxide nanomagnetic particle thin film according to the present invention was about 3 kOe at room temperature. Furthermore, it was also found that the thin film has a magneto-optical effect. As a result of SQUID measurement on the thin film, it was also found that the result of the Faraday effect and the coercive force coincide.
  • the coercive force is 0.35 kOe or more
  • the iron oxide nanomagnetism is a single phase of ⁇ -Fe 2 O 3 phase that can be expected to be applied in the field of magnetic recording, magnetic shielding, etc. and has an average particle size of 15 nm or less.
  • the particles, the iron oxide nanomagnetic particle powder containing the particles, and the iron oxide nanomagnetic particle thin film containing the iron oxide nanomagnetic particle powder were obtained.
  • the iron oxide nanomagnetic particles can have a higher density than crystals having an ⁇ -Fe 2 O 3 phase according to the prior art.
  • the method for producing iron oxide nanomagnetic particle powder according to the present invention uses iron oxide hydroxide (III) nanoparticles ( ⁇ -FeO (OH)) having an average particle size of 15 nm or less as a starting material,
  • An iron oxide nanomagnetic particle powder including a single phase of -Fe 2 O 3 phase, an average particle size of 15 nm or less, small variation in particle size, and iron oxide nanomagnetic particles having ferromagnetism can be more easily obtained than conventional techniques.
  • I was able to synthesize.
  • the ⁇ -Fe 2 O 3 phase was obtained in a wider firing temperature region than in the prior art.
  • the firing temperature utilizing the wide firing temperature region, it becomes possible to control the particle size of the iron oxide nanomagnetic particle powder, and control of the magnetic properties by the particle size control, especially the coercive force is greatly changed. It turns out that it is possible.
  • the above-described coercive force is 3.5 kOe, which is a single phase of ⁇ -Fe 2 O 3 phase and has an average particle size of 15 nm or less. Iron nanomagnetic particles and iron oxide nanomagnetic particle powder containing the same were obtained. From the above, the present invention is expected to be industrially applied in various applications from the viewpoint of the simplicity of the synthesis method and the safety and stability of the material.
  • the coercive force of the iron oxide nanomagnetic particle thin film according to the present invention is about 3 kOe at room temperature, and has a magneto-optic effect.
  • the thin film has very suitable characteristics as a magnetic recording material.
  • a ferromagnetic thin film containing such small particle diameter particles is obtained, although it is a material having a simple Fe 2 O 3 composition, it is considered to have a wide range of applications.
  • Example 1 A 1 L Erlenmeyer flask was charged with 420 mL of pure water and 8.0 g of iron (III) oxide hydroxide nanoparticle ( ⁇ -FeO (OH)) sol having an average particle diameter of about 6 nm and stirred until a uniform dispersion was obtained. To this, 19.2 mL of a 25% aqueous ammonia solution was added dropwise and stirred at 50 ° C. for 30 minutes. Furthermore, 24 mL of tetraethoxysilane (TEOS) was added dropwise to this dispersion, and the mixture was stirred at 50 ° C. for 20 hours, and then allowed to cool to room temperature.
  • TEOS tetraethoxysilane
  • the obtained heat-treated powder is pulverized in an agate mortar and then stirred with a 5 mol / L sodium hydroxide (NaOH) aqueous solution at a liquid temperature of 65 ° C. for 24 hours. Removed. Next, the heat-treated powder from which the silicon oxide was removed was collected by filtration and washed with water to obtain an iron oxide nanomagnetic particle powder sample that was a single phase of ⁇ -Fe 2 O 3 phase according to Example 1. .
  • the synthesis conditions are shown in Table 1. The same applies to Examples 2 to 4 below.
  • ⁇ -Fe 2 O 3 phase was found to be 100%. Specifically, for the XRD pattern of the sample, the phase fractions of the ⁇ -Fe 2 O 3 phase, ⁇ -Fe 2 O 3 phase, and ⁇ -Fe 2 O 3 phase were determined by Rietveld analysis.
  • An XRD pattern relating to the obtained sample is shown as Example Sample 1 in FIG. 3, a Rietveld analysis result for the XRD pattern is shown as Example Sample 1 in FIG. 4, and measurement results are shown in Table 2. The same applies to Examples 2 to 4 and Comparative Example 1.
  • the obtained sample was observed with the transmission electron microscope (TEM) and the average particle diameter was calculated
  • the photograph was taken by taking a photograph with a magnification of 1 million times of the sample, measuring the largest diameter and the smallest diameter of each sample particle from the photograph, and calculating the average value.
  • the average value of the particle diameters obtained for at least 100 independent sample particles was taken as the average particle diameter of the sample powder.
  • a TEM photograph relating to the obtained sample is shown as Example Sample 1 in FIG. 5, a graph showing variation in the particle size of the sample is shown as Example Sample 1 in FIG. 6, and the measurement results are shown in Table 2.
  • the magnetic properties (saturation magnetization, coercive force, remanent magnetization) of the obtained sample were measured. Specifically, the measurement was performed using a SQUID (superconducting quantum interferometer) of MPMS7 manufactured by Quantum Design Co., Ltd. at a maximum applied magnetic field of 50 kOe and a temperature of 300K. A graph showing the magnetization-external magnetic field curve relating to the obtained sample is shown as Example Sample 1 in FIG. 7, and the measurement results are shown in Table 2. The same applies to Examples 2 to 4 and Comparative Example 1.
  • Example 2 The same procedure as in Example 1 was performed except that the pulverized powder was loaded into a furnace and heat treated at 1002 ° C. for 4 hours in an air atmosphere to obtain a heat treated powder, and ⁇ -Fe 2 O according to Example 2 was used. An iron oxide nanomagnetic particle powder sample which is a single phase of three phases was obtained. The same operation as in Example 1 was performed, and the Rietveld analysis of the XRD pattern related to the obtained sample was performed. As a result, it was found that the ⁇ -Fe 2 O 3 phase was 100%. Further, when the obtained sample was observed with a transmission electron microscope (TEM) at a magnification of 100,000, the average particle diameter was 7.8 nm.
  • TEM transmission electron microscope
  • Example Sample 2 in FIG. 3 The XRD pattern relating to the obtained sample is shown as Example Sample 2 in FIG. 3, the Rietveld analysis result for the XRD pattern is shown as Example Sample 2 in FIG. 4, and the TEM photograph is shown as Example Sample 2 in FIG.
  • a graph showing the variation in particle size of the sample is shown as Example Sample 2 in FIG. 6, a graph showing the magnetization-external magnetic field curve is shown as Example Sample 2 in FIG. 7, and the measurement results are shown in Table 2.
  • the measurement conditions are the same as in Example 1.
  • Example 3 The same procedure as in Example 1 was performed except that the pulverized powder was charged in a furnace and heat treated at 1020 ° C. for 4 hours in an air atmosphere to obtain heat treated powder.
  • ⁇ -Fe 2 O according to Example 3 An iron oxide nanomagnetic particle powder sample which is a single phase of three phases was obtained.
  • the same operation as in Example 1 was performed, and the Rietveld analysis of the XRD pattern related to the obtained sample was performed. As a result, it was found that the ⁇ -Fe 2 O 3 phase was 100%. Further, when the obtained sample was observed with a transmission electron microscope (TEM) at a magnification of 100,000, the average particle diameter was 9.4 nm.
  • TEM transmission electron microscope
  • An XRD pattern relating to the obtained sample is shown as an example sample 3 in FIG. 3, a Rietveld analysis result for the XRD pattern is shown as an example sample 3, and a TEM photograph is shown as an example sample 3 in FIG.
  • a graph showing the variation in the particle size of the sample is shown as Example Sample 3 in FIG. 6, a graph showing the magnetization-external magnetic field curve is shown as Example Sample 3 in FIG. 7, and the measurement results are shown in Table 2.
  • the measurement conditions are the same as in Example 1.
  • Example 4 The same procedure as in Example 1 was performed except that the pulverized powder was loaded into a furnace and heat treated at 1026 ° C. for 4 hours in an air atmosphere to obtain heat treated powder, and ⁇ -Fe 2 O according to Example 4 was used. An iron oxide nanomagnetic particle powder sample which is a single phase of three phases was obtained. The same operation as in Example 1 was performed, and the Rietveld analysis of the XRD pattern related to the obtained sample was performed. As a result, it was found that the ⁇ -Fe 2 O 3 phase was 100%. Further, when the obtained sample was observed with a transmission electron microscope (TEM) at a magnification of 100,000, the average particle diameter was 10.6 nm.
  • TEM transmission electron microscope
  • An XRD pattern relating to the obtained sample is shown as an example sample 4 in FIG. 3, a Rietveld analysis result for the XRD pattern is shown as an example sample 4, and a TEM photograph is shown as an example sample 4 in FIG.
  • a graph showing the variation in the particle size of the sample is shown as Example Sample 4 in FIG. 6, a graph showing the magnetization-external magnetic field curve is shown as Example Sample 4 in FIG. 7, and the measurement results are shown in Table 2.
  • the measurement conditions are the same as in Example 1.
  • the collected precipitate was washed with pure water and dried at 65 ° C. overnight, and then pulverized in an agate mortar to obtain a pulverized powder.
  • the pulverized powder was loaded into a furnace and heat treated at 1000 ° C. for 4 hours in an air atmosphere to obtain heat treated powder.
  • the obtained heat-treated powder is pulverized in an agate mortar and then stirred with a 5 mol / L sodium hydroxide (NaOH) aqueous solution at a liquid temperature of 65 ° C. for 24 hours. Removed.
  • the heat-treated powder from which silicon oxide was removed was collected by filtration and washed with water to obtain an iron oxide nanomagnetic particle powder sample according to Comparative Example 1.
  • Example 2 Thereafter, the same operation as in Example 1 was performed, and the Rietveld analysis of the XRD pattern of the obtained sample was performed. As a result, the ⁇ -Fe 2 O 3 phase was 66%, and the ⁇ -Fe 2 O 3 phase. was found to be 34%. Further, when the obtained sample was observed with a transmission electron microscope (TEM) at a magnification of 600,000, the average particle size was 8.8 nm. The measurement results are shown in Table 2. The measurement conditions are the same as in Example 1.
  • Example 5 Synthesis of iron oxide nanomagnetic particle thin film
  • 8.0 g converted to Fe 2 O 3
  • iron (III) oxide hydroxide nanoparticle ⁇ -FeO (OH)
  • ⁇ -FeO (OH) iron oxide hydroxide nanoparticle having an average particle diameter of about 6 nm
  • TEOS tetraethoxysilane
  • the obtained dispersion was formed on a quartz substrate by spin coating. Then, an iron oxide nanomagnetic particle thin film in which single-phase nanosized ⁇ -Fe 2 O 3 fine particles are dispersed and contained in silicon oxide is subjected to heat treatment in a furnace at 1000 ° C. for 4 hours in an air atmosphere. Obtained.
  • FIG. 11 shows an X-ray diffraction (XRD) pattern of the iron oxide nanomagnetic particle thin film according to Example 5 obtained by the manufacturing method described above.
  • XRD X-ray diffraction
  • single-phase nano-sized ⁇ -Fe 2 O 3 fine particles having an average particle diameter of 9 nm are formed in silicon oxide having a thickness of 570 nm, for example. It is thought that it is in a state of being dispersed and included.
  • FIG. 15 The UV-vis spectrum transmittance graph of the iron oxide nanomagnetic particle thin film according to Example 5 is shown in FIG. 15, and the absorbance graph is shown in FIG. A graph of the wavelength dependence of the Faraday ellipticity (FE) at room temperature of the thin film is shown in FIG. 17, and a graph of the wavelength dependence of the Faraday rotation angle (FR) is shown in FIG.
  • FIG. 19 shows a graph of the result of measuring the dependence of the Faraday ellipticity on the external magnetic field at a wavelength of 390 nm where the signal of the Faraday ellipticity relating to the thin film was most strongly observed.
  • FIG. 19 shows a graph of the result of measuring the dependence of the Faraday ellipticity on the external magnetic field at a wavelength of 390 nm where the signal of the Faraday ellipticity relating to the thin film was most strongly observed.
  • the solid line is the eye guide. Furthermore, the graph of the result of having performed SQUID measurement with respect to the said thin film is shown in FIG. In FIG. 20, the solid line is the eye guide. From the above results, it was found that the coercive force of the thin film at room temperature was 3 kOe. It was also found that a magneto-optical effect can be obtained. It was also found that the Faraday effect and the coercive force were in agreement.
  • the iron oxide nanomagnetic particle thin film according to Example 5 is a transparent ⁇ -Fe 2 O 3 thin film having a thickness of about 570 nm and an average particle size of 9 nm and single-phase nano-sized ⁇ -Fe 2 O 3 fine particles.
  • the coercive force of about 3 kOe possessed by the thin film is considered to be very suitable as a magnetic recording material.
  • the fact that such a ferromagnetic thin film having a small particle diameter was obtained with a material having a simple Fe 2 O 3 composition can be expected to have a wide range of applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)

Abstract

 平均粒径15nm以下、好ましくは10nm以下でも強磁性の特性を有する酸化鉄ナノ磁性粒子粉とその製造方法、当該酸化鉄ナノ磁性粒子粉を含む酸化鉄ナノ磁性粒子薄膜とその製造方法を提供する。出発原料として、β-FeO(OH)(酸化水酸化鉄)ナノ微粒子を用い、当該(酸化水酸化鉄)ナノ微粒子をシリコン酸化物で覆って大気雰囲気下で熱処理することで、単相のε-Fe23相であり、平均粒径15nm以下、さらには10nm以下の酸化鉄ナノ磁性粒子を生成させる。さらに当該酸化鉄ナノ磁性粒子を用いて、酸化鉄ナノ磁性粒子薄膜を得る。

Description

酸化鉄ナノ磁性粒子粉およびその製造方法、当該酸化鉄ナノ磁性粒子粉を含む酸化鉄ナノ磁性粒子薄膜およびその製造方法
 本発明は、高密度磁気記録媒体や電磁波吸収に用いられる酸化鉄ナノ磁性粒子粉およびその製造方法、当該酸化鉄ナノ磁性粒子粉を含む酸化鉄ナノ磁性粒子薄膜およびその製造方法に関する。
 ε-Fe23相は酸化鉄の中でも極めて稀な相であるが、本発明者らは2004年に、逆ミセル法とゾルゲル法を用いた化学的ナノ微粒子合成法により初めて単相としてこれを得た。そして、得られたε-Fe23相は、室温において20kOe(1.59×106A/m)という巨大な保磁力を示すことを見出した。これは酸化物磁性体最大の値であった。また、当該ε-Fe23相は、182GHzという非常に高い周波数において自然共鳴現象による電磁波吸収を示すことも見出し、これは、磁性体最高の吸収周波数であった。このように、当該ε-Fe23相は巨大な磁気異方性を有する。
 本発明者らは特許文献1として、金属置換型ε-MxFe(2-x)3相を有する微粒子を開示した。
特開2008-174405号公報
 高密度磁気記録という観点から、粒径の小さい磁性材料の開発は非常に重要である。しかしながら、従来の磁性フェライトは磁気異方性が小さいため、粒径が10nm以下の微粒子になると強磁性の特性が失われてしまう。
 一方、磁気記録媒体用途の磁性材料は、記録の高密度化のために粒径が小さいことが望まれると伴に、記録媒体において良好な保磁力分布(SFD)を得るために、粒径のバラツキが小さいことが望まれる。
 これまで、金属置換型ε酸化鉄(ε-MxFe(2-x)3)では単相のε酸化鉄は合成可能であったが、金属置換元素を含まない単相のε-Fe23は合成が難しいことが知られており、例えば、通常のゾルゲル法では単相が得られないと考えられていた。
 さらに、磁気記録媒体の記録密度を高めるためには、前述の通り、微粒子化が必須となる。しかし、当該微粒子化に伴って、保磁力が大幅に低下してしまうという問題があった。一般的に、ε酸化鉄へ置換元素Mを添加すると保磁力は低下してしまうため、置換元素を含まないε酸化鉄を合成できれば、微粒子でかつ高保磁力を有する磁性粉を得られることが期待できる。さらに、α酸化鉄やγ酸化鉄などの異相が析出すると、保磁力が著しく低下してしまう場合がある。そこで、α酸化鉄やγ酸化鉄などの異相の析出を、保磁力が低下しない水準に抑制し、ε酸化鉄を合成することが望ましいことに想到した。
 さらに、当該置換元素を含まないε酸化鉄は、特異な磁気的特性を有し、磁気記録材料および磁気光学材料としての展開が期待される。当該展開の為には、単相のε-Fe23を含む薄膜を得ることが求められる。
 本発明は、上述の状況の下で為されたものであり、その解決しようとする課題は、15nm以下、好ましくは10nm以下の平均粒径でも強磁性の特性を有する酸化鉄ナノ磁性粒子を含む酸化鉄ナノ磁性粒子粉、および、その製造方法を提供することである。さらに、当該酸化鉄ナノ磁性粒子を含む酸化鉄ナノ磁性粒子薄膜とその製造方法を提供することである。
 上述の課題を解決する為、本発明者らが研究を行った結果、ε-Fe23相の単相である酸化鉄ナノ磁性粒子粉であれば、平均粒径が15nm以下さらには10nm以下であっても強磁性の特性を有し、高密度磁気記録材料としての適用が可能になることを知見した。
 一方、従来の技術に係る、ε-Fe23相を有する微粒子粉を得る合成法として、
(1)逆ミセル法とゾルゲル法の組み合わせによる合成法(ロッド型のε-Fe23相を有する結晶)、
(2)メソポーラスシリカを鋳型に用いたナノ微粒子合成法、が挙げられる。
 しかし、いずれの合成法においても少量の試料しか得られず、得られる酸化鉄ナノ磁性粒子の平均粒径も25nmより大きい。
 また、ε-Fe23相を主相とする酸化鉄ナノ磁性粒子粉の合成法としては、
(3)ゾルゲル法による合成法、
(4)立方晶酸化鉄をシリコン酸化物で覆われた状態において熱処理する合成法、等の報告があるが、生成する酸化鉄ナノ磁性粒子にはα-Fe23相などの磁気特性を低下させる不純物相が含まれる。
 以上の課題を解決する為、本発明者等らが研究を行った結果、出発原料として、β-FeO(OH)(酸化水酸化鉄)ナノ微粒子を用い、当該(酸化水酸化鉄)ナノ微粒子をシリコン酸化物で覆って大気雰囲気下で熱処理することで、単相のε-Fe23相であり、平均粒径15nm以下、さらには10nm以下の酸化鉄ナノ磁性粒子が生成することを知見した。
 さらに、上述した(酸化水酸化鉄)ナノ微粒子をシリコン酸化物で覆ったものを、適宜な基板上に塗布して熱処理を加えることで、単相ナノサイズのε-Fe23相を有する微粒子粉を含む酸化鉄ナノ磁性粒子薄膜を得ることが出来ることにも想到し、本発明を完成したものである。
 即ち、上述の課題を解決するための第1の発明は、
 単相ε-Fe23であって、平均粒径が15nm以下である酸化鉄ナノ磁性粒子を含むことを特徴とする酸化鉄ナノ磁性粒子粉である。
 第2の発明は、
 前記単相ε-Fe23が、置換元素を含んでいないことを特徴とする第1の発明に記載の酸化鉄ナノ磁性粒子粉である。
 第3の発明は、
 保磁力が0.35kOe以上であることを特徴とする第1または第2の発明に記載の酸化鉄ナノ磁性粒子粉である。
 第4の発明は、
 第1から第3の発明のいずれかに記載の酸化鉄ナノ磁性粒子粉であって、単相ε-Fe23に加え、α-Fe23相を有する酸化鉄ナノ磁性粒子粉、および/または、γ-Fe23相を有する酸化鉄ナノ磁性粒子粉を含むことを特徴とする酸化鉄ナノ磁性粒子粉である。
 第5の発明は、
 第1から第4の発明のいずれかに記載の酸化鉄ナノ磁性粒子粉を含むことを特徴とする酸化鉄ナノ磁性粒子薄膜である。
 第6の発明は、
 第1から第4の発明のいずれかに記載の酸化鉄ナノ磁性粒子粉と、SiO2とを含むことを特徴とする酸化鉄ナノ磁性粒子薄膜である。
 第7の発明は、
 単相ε-Fe23であって、平均粒径が15nm以下である酸化鉄ナノ磁性粒子を含む酸化鉄ナノ微粒子粉の製造方法であって、
 β-FeO(OH)ナノ微粒子をシリコン酸化物で被覆した後、当該シリコン酸化物で被覆したβ-FeO(OH)ナノ微粒子を酸化性雰囲気下で熱処理することを特徴とする酸化鉄ナノ磁性粒子粉の製造方法である。
 第8の発明は、
 前記酸化性雰囲気として大気を用いることを特徴とする第7の発明に記載の酸化鉄ナノ磁性粒子粉の製造方法である。
 第9の発明は、
 前記β-FeO(OH)ナノ微粒子として、平均粒径15nm以下のものを用いることを特徴とする第7または第8の発明に記載の酸化鉄ナノ磁性粒子粉の製造方法である。
 第10の発明は、
 単相ε-Fe23であって、平均粒径が15nm以下である酸化鉄ナノ磁性粒子を含む酸化鉄ナノ磁性粒子薄膜の製造方法であって、
 シリコン酸化物で被覆したβ-FeO(OH)ナノ微粒子を含む分散液を基板上に塗布した後に、酸化性雰囲気下で熱処理することで酸化鉄ナノ磁性粒子薄膜を得ることを特徴とする酸化鉄ナノ磁性粒子薄膜の製造方法である。
 第11の発明は、
 前記酸化性雰囲気として大気を用いることを特徴とする第10の発明に記載の酸化鉄ナノ磁性粒子薄膜の製造方法である。
 本発明に係る酸化鉄ナノ磁性粒子粉は、平均粒径15nm以下でありながら、保磁力が0.35kOe以上と、優れた磁気特性を有していた。
 さらに、高密度磁気記録材料および磁気光学材料としての展開という観点から、最適と考えられる平均粒径を有する単相ナノサイズのε-Fe23相を有する微粒子を含む、酸化鉄ナノ磁性粒子薄膜を得ることが出来た。
本発明に係る酸化鉄ナノ磁性粒子粉の製造方法の概念図である。 ε-Fe23相、α-Fe23相、およびγ-Fe23相の結晶構造の模式的な概念図である。 実施例に係る試料のX線回折(XRD)パターンである。 実施例に係る試料のXRDパターンに対するリートベルト解析結果である。 実施例に係る試料のTEM写真である。 実施例に係る試料の粒径のバラツキを示すグラフである。 実施例に係る試料の磁化-外部磁場曲線を示すグラフである。 本発明に係る酸化鉄ナノ磁性粒子粉における平均粒径と保磁力との関係を示すグラフである。 酸化鉄ナノ磁性粒子粉における保磁力の粒径依存性を示す模式的なグラフである。 本発明に係る酸化鉄ナノ磁性粒子薄膜の合成方法を示す模式図である。 実施例5に係る酸化鉄ナノ磁性粒子薄膜のXRDパターンおよびリートベルト解析結果である。 実施例5に係る酸化鉄ナノ磁性粒子薄膜の外観である。 実施例5に係る酸化鉄ナノ磁性粒子薄膜断面SEM写真である。 実施例5に係る酸化鉄ナノ磁性粒子薄膜断面の模式図である。 実施例5に係る酸化鉄ナノ磁性粒子薄膜のUV-visスペクトルの透過率を示すグラフである。 実施例5に係る酸化鉄ナノ磁性粒子薄膜のUV-visスペクトルの吸光度を示すグラフである。 実施例5に係る酸化鉄ナノ磁性粒子薄膜の室温におけるファラデー楕円率(FE)の波長依存性を示すグラフである。 実施例5に係る酸化鉄ナノ磁性粒子薄膜の室温におけるファラデー回転角(FR)の波長依存性を示すグラフである。 実施例5に係る酸化鉄ナノ磁性粒子薄膜の、波長390nmにおける、ファラデー楕円率の外部磁場依存性を示すグラフである。 実施例5に係る酸化鉄ナノ磁性粒子薄膜における、磁化-外部磁場曲線を示すグラフである。
(本発明に係る酸化鉄ナノ磁性粒子と酸化鉄ナノ磁性粒子粉)
 本発明に係る酸化鉄ナノ磁性粒子粉は、ε-Fe23相の単相で、平均粒径15nm以下である酸化鉄ナノ磁性粒子を含む酸化鉄ナノ磁性粒子粉である。ここで、ε-Fe23相、後述するα-Fe23相およびγ-Fe23相の有する構造の模式的な概念図を図2に示す。尚、図2において、大きい黒色の球は鉄イオンを示し、小さい灰色の球は酸素イオンを示している。
 次に、本発明に係る酸化鉄ナノ磁性粒子粉の実施例試料1~4のX線粉末回折(XRD)パターンを図3に示す。尚、図3において、黒いバーはε-Fe23相のピークを示し、丸印はγ-Fe23相のピークを示している。
 尚、当該試料1は後述する実施例1に係る試料であって製造工程において、950℃焼成されたものであり、試料2は後述する実施例2に係る試料であって1000℃焼成されたものであり、試料3は後述する実施例3に係る試料であって1020℃焼成されたものであり、試料4は後述する実施例4に係る試料であって1026℃焼成されたものであり、比較例試料は後述する比較例1に係る試料であって1000℃焼成されたものである。
 各試料のXRDパターンのリートベルト解析を行ったところ、試料1~4においてε-Fe23相が100%であり、比較例試料ではε-Fe23相が66%、γ-Fe23相が34%であることが判明した。即ち、試料1~4はε-Fe23単相の酸化鉄ナノ磁性粒子粉であることが判明した。尚、当該試料1~4、比較例試料のXRDパターンに対するリートベルト解析結果を図4に示す。尚、図4において、黒いドットは観測値を示し、黒線は解析値を示し、灰色線は観測値と解析値との差分を示し、黒いバーはε-Fe23相のブラッグピーク位置を示している。
 以上の結果から、本発明に係る酸化鉄ナノ磁性粒子粉を構成する酸化鉄ナノ磁性粒子のε-Fe23相は、Fe以外の金属元素を置換元素として含有していないことが理解できる。
 次に、実施例試料1~4、比較例試料について透過型電子顕微鏡(TEM)観察を行ったところ、実施例試料1~4においては、球状の酸化鉄ナノ磁性粒子が観察された。尚、当該実施例試料1~4、比較例試料のTEM写真を図5に示す。
 また、実施例試料1~3において、平均粒径は5.2~9.4nmと15nm以下であり、粒径のバラツキは±1.7~2.8nmと小さいものであり、実施例試料4は平均粒径10.6nmであり、粒径のバラツキは±3.3nmであった。尚、当該実施例試料1~4、比較例試料の粒径のバラツキを示すグラフを図6に示す。
 次に、実施例試料1~3について、300Kにおける磁化-外部磁場曲線測定したところ飽和磁化は10.8~13.3emu/g、保磁力は0.35~3.5kOe、残留磁化は0.6~4.0emu/gであり、実施例試料4の飽和磁化は14.1emu/g、保磁力は6.7kOe、残留磁化は5.2emu/gであり、いずれも強磁性体であることが判明した。尚、当該実施例試料1~4、比較例試料の磁化-外部磁場曲線を示すグラフを図7に示す。
 本発明に係る実施例試料1~4、比較例試料の酸化鉄ナノ磁性粒子粉における平均粒径と保磁力との関係を示すグラフである図8に示す。各試料の平均粒径に対する保磁力のプロットより、平均粒径の減少に伴い保磁力も小さくなることが判明した。当該図8のプロットは、保磁力の粒径依存性を示していると考えられる。ここで、比較例試料に対し、実施例試料1~4は、平均粒径に対して、より高い保磁力を有することが判明した。これは、比較例1では異相であるγ-Fe23相が生成しており、保磁力が大きく低下したためである。
 すなわち、本発明による大きな効果は、平均粒径15nm以下で単相のε-Fe23の合成を実現し、それによって微粒子でありながら高い保磁力を有するε-Fe23の合成に初めて成功したものである。
 図9に示すように、一般的に保磁力には、粒径依存性があることが知られている。粒径を小さくしていくと保磁力は増加し、単磁区構造になったところで最大となる。これは、多磁区構造では磁壁移動が起きるのに対し、単磁区では回転磁化過程のみで磁化するためである。粒径をさらに小さくすると保磁力は減少していき、超常磁性領域では保磁力はゼロとなる。この現象は、粒子が非常に小さくなると熱揺らぎの影響が大きくなり、スピンが反転しやすくなることで説明される。図8で見られる傾向は、図9の単磁区構造の領域で見られる保磁力の減少に対応しており、本発明に係るε-Fe23相の磁気異方性が大きいことにより、超常磁性状態に達する粒径が小さく、平均粒径15nm以下、さらには10nm以下の磁性体が得られたと考えられる。
(本発明に係る酸化鉄ナノ磁性粒子粉の製造方法)
 ここで、本発明に係る酸化鉄ナノ磁性粒子粉の製造方法について、本発明に係る酸化鉄ナノ磁性粒子粉の製造方法の概念図である図1を参照しながら説明する。
 平均粒径15nm以下の酸化水酸化鉄(III)ナノ微粒子(β-FeO(OH))と純水とを混合して、鉄(Fe)換算濃度が0.01モル/L以上、1モル/L以下の分散液を調製した。
 当該分散液へ、前記酸化水酸化鉄(III)1モルあたり3~30モルのアンモニアを、アンモニア水溶液の滴下により添加して、0~100℃、好ましくは20~60℃で撹拌した。
 さらに、当該アンモニアを添加した分散液へ、前記酸化水酸化鉄(III)1モルあたり0.5~15モルのテトラエトキシシラン(TEOS)を滴下し、15時間以上、30時間以下で撹拌した後、室温まで放冷した。
 当該放冷した分散液へ、前記酸化水酸化鉄(III)1モルあたり1~30モルの硫酸アンモニウムを加えて沈殿を析出させた。
 当該析出した沈殿物を採集し純水で洗浄した後、60℃程度で乾燥させた。さらに当該乾燥した沈殿物を粉砕して粉砕粉を得た。
 当該粉砕粉を酸化性雰囲気下、900℃以上、1200℃未満、好ましくは950℃以上、1150℃以下で、0.5~10時間、好ましくは2~5時間の熱処理を施し熱処理粉を得た。得られた熱処理粉を、解粒処理したのち、液温60℃以上70℃以下の水酸化ナトリウム(NaOH)水溶液に添加し、15時間以上、30時間以下攪拌することにより、当該熱処理粉からシリコン酸化物を除去し、ε-Fe23相の単相である酸化鉄ナノ磁性粒子粉を生成させた。
 尚、上記酸化性雰囲気として大気を用いることは、コスト、作業性の観点から好ましい。
 次いで、濾過処理や遠心分離等により、生成したε-Fe23相の単相である酸化鉄ナノ磁性粒子粉を分離・採集し水洗を行って、本発明に係るε-Fe23相の単相であり平均粒径15nm以下である酸化鉄ナノ磁性粒子を含む酸化鉄ナノ磁性粒子粉を得た。さらに、焼成条件の制御により平均粒径10nm以下である酸化鉄ナノ磁性粒子を含む酸化鉄ナノ磁性粒子粉を得ることも出来た(後述する実施例1、2参照。)。
 さらに、生成した酸化鉄ナノ磁性粒子粉においてFe、O以外の元素であって1.0重量%以上の検出をされたものはなかった。従って、生成したε-Fe23相の単相である酸化鉄ナノ磁性粒子は置換元素を含んでいないと考えられる。
(本発明に係る酸化鉄ナノ磁性粒子粉の製造方法と、従来の技術に係るゾルゲル法との比較)
 ここで、本発明に係る酸化鉄ナノ磁性粒子粉の製造方法と、従来の依技術に係るゾルゲル法とを、粒子サイズと保磁力の観点から比較する。
 従来の技術に係るゾルゲル法では、後述の比較例1に示すとおり、単相であり平均粒径15nm以下のε酸化鉄を得ることが出来なかった。その結果として、保磁力の高いε酸化鉄は得られなかった。また、置換元素として、Alを置換させたAl置換ε酸化鉄は同様に低い保磁力しか得られないことから、従来の技術に係るゾルゲル法では、粒径15nm以下の微粒子で保磁力の高い酸化鉄ナノ磁性粒子を合成できなかった。これに対し、本発明に係る酸化鉄ナノ磁性粒子粉の製造方法では、置換元素を含まず、単相のε酸化鉄が合成できるため、15nm以下の微粒子で保磁力の高いε酸化鉄を合成できることが理解できる。
(本発明に係る酸化鉄ナノ磁性粒子薄膜の製造方法)
 本発明に係る酸化鉄ナノ磁性粒子薄膜の合成方法について、図10を参照しながら説明する。
 上記(本発明に係る酸化鉄ナノ磁性粒子粉の製造方法)にて説明したものと同様に、平均粒径15nm以下の酸化水酸化鉄(III)ナノ微粒子(β-FeO(OH))と純水とを混合して、鉄(Fe)換算濃度が0.01モル/L以上、1モル/L以下の分散液を調製した。
 当該分散液へ、前記酸化水酸化鉄(III)1モルあたり3~30モルのアンモニアを、アンモニア水溶液の滴下により添加して、0~100℃、好ましくは20~60℃で撹拌した。
 さらに、当該アンモニアを添加した分散液へ、前記酸化水酸化鉄(III)1モルあたり0.5~15モルのテトラエトキシシラン(TEOS)を滴下し、15時間以上、30時間以下で撹拌した後、室温まで放冷した。
 得られた分散液を、スピンコート法等の塗布方法を用いて、石英基板等の適宜な基板上に塗布して成膜した。そして、当該成膜を、酸化性雰囲気下、900℃以上、1200℃未満、好ましくは950℃以上、1150℃以下で、0.5~10時間、好ましくは2~5時間の熱処理を施すことにより、本発明に係る酸化鉄ナノ磁性粒子薄膜を得ることが出来た。
 尚、上記酸化性雰囲気として大気を用いることは、コスト、作業性の観点から好ましい。
(本発明に係る酸化鉄ナノ磁性粒子薄膜の構造、形態)
 上述の製造方法により得られた、本発明に係る酸化鉄ナノ磁性粒子薄膜のX線回折(XRD)パターンおよびリートベルト解析(図11)から、ε-Fe23相を有する微粒子であることが判明した。またシェラー式の適用により、当該ナノサイズのε-Fe23相を有する微粒子の平均粒径は、9nm程度であることが判明した。得られた磁性粒子薄膜は、図12の写真に示すように透明であり、図13に示す断面SEM写真から、その膜厚が約570nmであることが判明した。したがって、図14の模式図に示すように、シリコン酸化物中に単相ナノサイズのε-Fe23相を有する微粒子が分散して含まれている形態であると考えられる。
(本発明に係る酸化鉄ナノ磁性粒子薄膜の磁気光学特性、磁気特性)
 また、本発明に係る酸化鉄ナノ磁性粒子薄膜の保磁力は、室温で3kOe程度を有していた。さらに、当該薄膜は、磁気光学効果を有していることも判明した。そして、当該薄膜に対するSQUID測定の結果、ファラデー効果の結果と保磁力とが合致していることも判明した。
(まとめ)
 本発明において、保磁力が0.35kOe以上と、磁気記録、磁気遮蔽等の分野での応用が期待できるε-Fe23相の単相であり平均粒径15nm以下である酸化鉄ナノ磁性粒子と、それを含む酸化鉄ナノ磁性粒子粉、および、当該酸化鉄ナノ磁性粒子粉を含む酸化鉄ナノ磁性粒子薄膜が得られた。磁気記録材料としての応用において当該酸化鉄ナノ磁性粒子は、従来の技術に係るε-Fe23相を有する結晶よりもさらなる高密度化が可能になる。
 また、本発明に係る酸化鉄ナノ磁性粒子粉の製造方法は、出発原料として、平均粒径15nm以下の酸化水酸化鉄(III)ナノ微粒子(β-FeO(OH))を用いることにより、ε-Fe23相の単相であり平均粒径15nm以下で、粒径のバラツキが小さく、強磁性を有する酸化鉄ナノ磁性粒子を含む酸化鉄ナノ磁性粒子粉を、従来の技術より簡便に合成することが出来た。さらに、従来の技術に比べ、より広い焼成温度領域でε-Fe23相が得られた。そして、当該広い焼成温度領域を活用した焼成温度制御により、酸化鉄ナノ磁性粒子粉の粒径を制御することが可能になり、当該粒径制御による磁気特性の制御、特に保磁力を大きく変化させることが可能であることが判明した。例えば、焼成温度を1020℃とした場合では、上述した保磁力が3.5kOeと磁気記録に適した値を示す、ε-Fe23相の単相であり平均粒径15nm以下である酸化鉄ナノ磁性粒子と、それを含む酸化鉄ナノ磁性粒子粉が得られた。
 以上のことから、本発明は、合成法の簡便性や材料の安全性・安定性という観点からも、様々な用途での工業的応用が期待される。
 上述したように、本発明に係る酸化鉄ナノ磁性粒子薄膜の保磁力は、室温で3kOe程度を有し、磁気光学効果を有している。この結果、当該薄膜は、磁気記録材料として非常に適した特性を有している。本発明によれば、単純なFe23組成を有する材料でありながら、このような小粒径粒子を含む強磁性体薄膜が得られたことから、広い応用面を有すると考えられる。
 以下、実施例を参照しながら本発明を説明する。
[実施例1]
 1L三角フラスコに、純水420mLと平均粒径約6nmの酸化水酸化鉄(III)ナノ微粒子(β-FeO(OH))のゾル8.0gを入れ、均一分散液となるまで撹拌した。
 ここに、25%アンモニア水溶液19.2mLを滴下し、50℃で30分間攪拌した。さらにこの分散液に、テトラエトキシシラン(TEOS)24mLを滴下し、50℃で20時間攪拌した後、室温まで放冷した。当該分散液が室温まで放冷したら、硫酸アンモニウム20gを加えて沈殿を析出させた。当該析出した沈殿物を遠心分離処理により採集した。採集した沈殿物を純水で洗浄し、シャーレに移して60℃乾燥機中で乾燥させた後、メノウ製乳鉢で粉砕し粉砕粉とした。
 当該粉砕粉を炉内に装填し、大気雰囲気下、951℃、4時間の熱処理を施し熱処理粉とした。得られた熱処理粉を、メノウ製乳鉢で解粒処理したのち、5モル/Lの水酸化ナトリウム(NaOH)水溶液で、液温65℃、24時間攪拌することにより、熱処理粉からシリコン酸化物を除去した。次いで、濾過処理により、シリコン酸化物が除去された熱処理粉を採集し水洗を行って、実施例1に係るε-Fe23相の単相である酸化鉄ナノ磁性粒子粉試料を得た。
 当該合成条件を表1に示す。以下、実施例2~4も同様である。
 得られた試料に係るXRDパターンのリートベルト解析を行ったところ、ε-Fe23相が100%であることが判明した。具体的には、試料のXRDパターンについて、α-Fe23相、γ-Fe23相、ε-Fe23相の相分率をリートベルト解析により求めた。
 得られた試料に係るXRDパターンを図3において実施例試料1として示し、当該XRDパターンに対するリートベルト解析結果を図4において実施例試料1として示し、さらに測定結果を表2に示す。以下、実施例2~4、比較例1も同様である。
 また、得られた試料を透過型電子顕微鏡(TEM)にて観察して平均粒径を求めたところ、5.2nmであった。具体的には、TEMにより試料の100万倍の写真を撮影し、当該写真から各試料粒子における最も大きな径と最も小さな径を測定し、その平均値を算出することにより求めた。独立した各試料粒子の少なくとも100個以上について求めた粒子径の平均値を、試料の粉末の平均粒子径とした。
 得られた試料に係るTEM写真を図5において実施例試料1として示し、試料の粒度のバラツキを示すグラフを図6において実施例試料1として示し、さらに測定結果を表2に示す。
 また、得られた試料の磁気特性(飽和磁化、保磁力、残留磁化)を測定した。具体的には、カンタムデザイン社製MPMS7のSQUID(超伝導量子干渉計)を用い、最大印加磁界50kOe、温度300Kで測定した。
 得られた試料に係る磁化-外部磁場曲線を示すグラフを図7において実施例試料1として示し、さらに測定結果を表2に示す。以下、実施例2~4、比較例1も同様である。
[実施例2]
 粉砕粉を炉内に装填し、大気雰囲気下、1002℃、4時間の熱処理を施し熱処理粉とした以外は、実施例1と同様の操作を行って、実施例2に係るε-Fe23相の単相である酸化鉄ナノ磁性粒子粉試料を得た。
 実施例1と同様の操作を行って、得られた試料に係るXRDパターンのリートベルト解析を行ったところ、ε-Fe23相が100%であることが判明した。また、得られた試料を透過型電子顕微鏡(TEM)にて10万倍で観察したところ、平均粒径は7.8nmであった。
 得られた試料に係るXRDパターンを図3において実施例試料2として示し、当該XRDパターンに対するリートベルト解析結果を図4において実施例試料2として示し、TEM写真を図5において実施例試料2として示し、試料の粒度のバラツキを示すグラフを図6において実施例試料2として示し、磁化-外部磁場曲線を示すグラフを図7において実施例試料2として示し、さらに測定結果を表2に示す。尚、測定条件は実施例1と同様である。
[実施例3]
 粉砕粉を炉内に装填し、大気雰囲気下、1020℃、4時間の熱処理を施し熱処理粉とした以外は、実施例1と同様の操作を行って、実施例3に係るε-Fe23相の単相である酸化鉄ナノ磁性粒子粉試料を得た。
 実施例1と同様の操作を行って、得られた試料に係るXRDパターンのリートベルト解析を行ったところ、ε-Fe23相が100%であることが判明した。また、得られた試料を透過型電子顕微鏡(TEM)にて10万倍で観察したところ、平均粒径は9.4nmであった。
 得られた試料に係るXRDパターンを図3において実施例試料3として示し、当該XRDパターンに対するリートベルト解析結果を図4において実施例試料3として示し、TEM写真を図5において実施例試料3として示し、試料の粒度のバラツキを示すグラフを図6において実施例試料3として示し、磁化-外部磁場曲線を示すグラフを図7において実施例試料3として示し、さらに測定結果を表2に示す。尚、測定条件は実施例1と同様である。
[実施例4]
 粉砕粉を炉内に装填し、大気雰囲気下、1026℃、4時間の熱処理を施し熱処理粉とした以外は、実施例1と同様の操作を行って、実施例4に係るε-Fe23相の単相である酸化鉄ナノ磁性粒子粉試料を得た。
 実施例1と同様の操作を行って、得られた試料に係るXRDパターンのリートベルト解析を行ったところ、ε-Fe23相が100%であることが判明した。また、得られた試料を透過型電子顕微鏡(TEM)にて10万倍で観察したところ、平均粒径は10.6nmであった。
 得られた試料に係るXRDパターンを図3において実施例試料4として示し、当該XRDパターンに対するリートベルト解析結果を図4において実施例試料4として示し、TEM写真を図5において実施例試料4として示し、試料の粒度のバラツキを示すグラフを図6において実施例試料4として示し、磁化-外部磁場曲線を示すグラフを図7において実施例試料4として示し、さらに測定結果を表2に示す。尚、測定条件は実施例1と同様である。
[比較例1]
 1L三角フラスコに、純水413mLとFe(NO33・9H2O20.6gとを入れ、均一溶液となるまで撹拌した。ここに、25%アンモニア(NH3)水溶液34mLを純水379mLで希釈したものを滴下し30分攪拌した。さらにこの溶液に、テトラエトキシシラン(Si(OC254)33.9mLを滴下した。20時間攪拌した後、室温まで放冷した。当該分散液が室温まで放冷したら、沈殿物を遠心分離処理により採集した。採集した沈殿物を純水で洗浄し65℃で一晩乾燥させた後、メノウ製乳鉢で粉砕し、粉砕粉とした。
 当該粉砕粉を炉内に装填し、大気雰囲気下、1000℃、4時間の熱処理を施し熱処理粉とした。得られた熱処理粉を、メノウ製乳鉢で解粒処理したのち、5モル/Lの水酸化ナトリウム(NaOH)水溶液で、液温65℃、24時間攪拌することにより、熱処理粉からシリコン酸化物を除去した。次いで、濾過処理により、シリコン酸化物が除去された熱処理粉を採集し水洗を行って、比較例1に係る酸化鉄ナノ磁性粒子粉試料を得た。
 この後は、実施例1と同様の操作を行って、得られた試料に係るXRDパターンのリートベルト解析を行ったところ、ε-Fe23相が66%、γ-Fe23相が34%であることが判明した。また、得られた試料を透過型電子顕微鏡(TEM)にて60万倍で観察したところ、平均粒径は8.8nmであった。
 さらに測定結果を表2に示す。尚、測定条件は実施例1と同様である。
[実施例5]
(酸化鉄ナノ磁性粒子薄膜の合成)
 実施例1と同様に、1L三角フラスコに、純水420mLと平均粒径約6nmの酸化水酸化鉄(III)ナノ微粒子(β-FeO(OH))のゾル8.0g(Fe23換算で濃度10質量%)を入れ、均一分散液となるまで撹拌した。
 ここに、25%アンモニア水溶液19.2mLを、1~2滴/secで滴下し、50℃で30分間攪拌した。さらにこの分散液に、テトラエトキシシラン(TEOS)24mLを2~3滴/secで滴下し、50℃で20時間攪拌した後、室温まで放冷し分散液を得た。
 得られた分散液を、スピンコート法により石英基板上に製膜した。そして、大気雰囲気下、1000℃の炉内で4時間の熱処理を施し、単相ナノサイズε-Fe23微粒子がシリコン酸化物中に分散して含まれている酸化鉄ナノ磁性粒子薄膜を得た。
(酸化鉄ナノ磁性粒子薄膜の構造、形態)
 上述の製造方法により得られた、実施例5に係る酸化鉄ナノ磁性粒子薄膜のX線回折(XRD)パターンを図11に示す。
 当該XRDパターンに対し、リートベルト解析を行ったところ、シリコン酸化物中に単相ナノサイズε-Fe23微粒子が含まれている形態であることが判明した。またシェラー式の適用により、当該単相ナノサイズε-Fe23微粒子の平均粒径は9nmであることが判明した。
 得られた酸化鉄ナノ磁性粒子薄膜の外観写真を図12に、当該薄膜の断面SEM写真を図13に示す。図13に示す断面SEM写真より、当該薄膜の膜厚は、570士10nmであると求められた。そして、上述した酸化水酸化鉄とテトラエトキシシランとの仕込み組成から、ε-Fe23とSiO2との体積比は、ε-Fe23:SiO2=1:16と見積もられる。
 以上の結果から、当該薄膜の断面の構造は、図14に模式的に示すように、例えば平均粒径9nmの単相ナノサイズε-Fe23微粒子が、例えば厚さ570nmシリコン酸化物中に分散して含まれている状態であると考えられる。
(酸化鉄ナノ磁性粒子薄膜の磁気光学特性、磁気特性)
 実施例5に係る酸化鉄ナノ磁性粒子薄膜のUV-visスペクトルの透過率のグラフを図15に、吸光度のグラフを図16に示す。
 そして、当該薄膜の室温におけるファラデー楕円率(FE)の波長依存性のグラフを図17に示し、ファラデー回転角(FR)の波長依存性のグラフを図18に示す。
 また、当該薄膜に係るファラデー楕円率のシグナルが最も強く観察された波長390nmにおいて、ファラデー楕円率の外部磁場依存性を測定した結果のグラフを図19に示す。尚、図19において実線はアイガイドである。
 さらに、当該薄膜に対しSQUID測定を行った結果のグラフを図20に示す。尚、図20において実線はアイガイドである。
 以上の結果から、当該薄膜の室温における保磁力は3kOeであることが判明した。そして、磁気光学効果が得られることも判明した。さらに、ファラデー効果の結果と保磁力とが合致していることも判明した。
(まとめ)
 実施例5に係る酸化鉄ナノ磁性粒子薄膜は、透明なε-Fe23薄膜であって、厚みは約570nmであり、平均粒径9nmの単相ナノサイズのε-Fe23微粒子が分散したものであった。当該薄膜の有する約3kOeの保磁力は、磁気記録材料として非常に適していると考えられる。さらに、単純なFe23組成を有する材料でこのような小粒径の強磁性体薄膜が得られたことは、広い応用分野が期待出来る。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (11)

  1.  単相ε-Fe23であって、平均粒径が15nm以下である酸化鉄ナノ磁性粒子を含むことを特徴とする酸化鉄ナノ磁性粒子粉。
  2.  前記単相ε-Fe23が、置換元素を含んでいないことを特徴とする請求項1に記載の酸化鉄ナノ磁性粒子粉。
  3.  保磁力が0.35kOe以上であることを特徴とする請求項1または2に記載の酸化鉄ナノ磁性粒子粉。
  4.  請求項1から3のいずれかに記載の酸化鉄ナノ磁性粒子粉であって、単相ε-Fe23に加え、α-Fe23相を有する酸化鉄ナノ磁性粒子粉、および/または、γ-Fe23相を有する酸化鉄ナノ磁性粒子粉を含むことを特徴とする酸化鉄ナノ磁性粒子粉。
  5.  請求項1から4のいずれかに記載の酸化鉄ナノ磁性粒子粉を含むことを特徴とする酸化鉄ナノ磁性粒子薄膜。
  6.  請求項1から4のいずれかに記載の酸化鉄ナノ磁性粒子粉と、SiO2とを含むことを特徴とする酸化鉄ナノ磁性粒子薄膜。
  7.  単相ε-Fe23であって、平均粒径が15nm以下である酸化鉄ナノ磁性粒子を含む酸化鉄ナノ磁性粒子粉の製造方法であって、
     β-FeO(OH)ナノ微粒子をシリコン酸化物で被覆した後、当該シリコン酸化物で被覆したβ-FeO(OH)ナノ微粒子を酸化性雰囲気下で熱処理することを特徴とする酸化鉄ナノ磁性粒子粉の製造方法。
  8.  前記酸化性雰囲気として大気を用いることを特徴とする請求項7に記載の酸化鉄ナノ磁性粒子粉の製造方法。
  9.  前記β-FeO(OH)ナノ微粒子として、平均粒径15nm以下のものを用いることを特徴とする請求項7または8に記載の酸化鉄ナノ磁性粒子粉の製造方法。
  10.  単相ε-Fe23であって、平均粒径が15nm以下である酸化鉄ナノ磁性粒子を含む酸化鉄ナノ磁性粒子薄膜の製造方法であって、
     シリコン酸化物で被覆したβ-FeO(OH)ナノ微粒子を含む分散液を基板上に塗布した後に、酸化性雰囲気下で熱処理することで酸化鉄ナノ磁性粒子薄膜を得ることを特徴とする酸化鉄ナノ磁性粒子薄膜の製造方法。
  11.  前記酸化性雰囲気として大気を用いることを特徴とする請求項10に記載の酸化鉄ナノ磁性粒子薄膜の製造方法。
PCT/JP2014/061585 2013-04-26 2014-04-24 酸化鉄ナノ磁性粒子粉およびその製造方法、当該酸化鉄ナノ磁性粒子粉を含む酸化鉄ナノ磁性粒子薄膜およびその製造方法 WO2014175387A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14788025.6A EP2990382B1 (en) 2013-04-26 2014-04-24 Magnetic iron oxide nanoparticle powder, process for producing same, thin film of magnetic iron oxide nanoparticles comprising said magnetic iron oxide nanoparticle powder, and process for producing same
US14/787,186 US9916922B2 (en) 2013-04-26 2014-04-24 Iron oxide magnetic nanoparticle powder and method of producing the same, iron oxide magnetic nanoparticle thin film containing the iron oxide magnetic nanoparticle powder and method of producing the same
CN201480023656.3A CN105143109B (zh) 2013-04-26 2014-04-24 氧化铁纳米磁性颗粒粉及其制造方法、包含该氧化铁纳米磁性颗粒粉的氧化铁纳米磁性颗粒薄膜及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013094467 2013-04-26
JP2013-094467 2013-04-26
JP2013-213154 2013-10-10
JP2013213154A JP6133749B2 (ja) 2013-04-26 2013-10-10 酸化鉄ナノ磁性粒子粉およびその製造方法、当該酸化鉄ナノ磁性粒子粉を含む酸化鉄ナノ磁性粒子薄膜およびその製造方法

Publications (1)

Publication Number Publication Date
WO2014175387A1 true WO2014175387A1 (ja) 2014-10-30

Family

ID=51791953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061585 WO2014175387A1 (ja) 2013-04-26 2014-04-24 酸化鉄ナノ磁性粒子粉およびその製造方法、当該酸化鉄ナノ磁性粒子粉を含む酸化鉄ナノ磁性粒子薄膜およびその製造方法

Country Status (5)

Country Link
US (1) US9916922B2 (ja)
EP (1) EP2990382B1 (ja)
JP (1) JP6133749B2 (ja)
CN (1) CN105143109B (ja)
WO (1) WO2014175387A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047559A1 (ja) * 2014-09-24 2016-03-31 Dowaエレクトロニクス株式会社 鉄系酸化物磁性粒子粉および鉄系酸化物磁性粒子粉の製造方法
JP5966064B1 (ja) * 2014-09-24 2016-08-10 Dowaエレクトロニクス株式会社 鉄系酸化物磁性粒子粉および鉄系酸化物磁性粒子粉の製造方法
CN107635924A (zh) * 2015-06-12 2018-01-26 国立大学法人东京大学 ε氧化铁及其制造方法、磁性涂料和磁记录介质
CN108026403A (zh) * 2015-10-05 2018-05-11 M技术株式会社 包含涂覆硅氧化物的氧化铁粒子的涂布用涂覆硅氧化物的氧化铁组成物
CN109195914A (zh) * 2016-06-02 2019-01-11 M技术株式会社 覆盖有硅化合物的氧化物粒子及其制造方法、和含有其的覆盖有硅化合物的氧化物组合物

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10359678B2 (en) 2014-04-07 2019-07-23 The Regents Of The University Of California Highly tunable magnetic liquid crystals
JPWO2016121860A1 (ja) * 2015-01-29 2017-11-24 慎一 大越 酸化鉄系強磁性膜及び酸化鉄系強磁性膜の製造方法
JP2016172649A (ja) * 2015-03-16 2016-09-29 Jfeケミカル株式会社 酸化鉄粉末の製造方法
CN104843798B (zh) * 2015-04-14 2017-01-18 齐齐哈尔医学院 高压静电螺旋牵引制备超微超顺磁性氧化铁纳米颗粒装置
JP6985652B2 (ja) * 2015-04-20 2021-12-22 株式会社セルモエンターティメントジャパン 磁性材料、該磁性材料を用いためがね、レンズおよびめがね用アクセサリー
WO2016199937A1 (ja) * 2015-06-12 2016-12-15 国立大学法人 東京大学 イプシロン酸化鉄とその製造方法、磁性塗料および磁気記録媒体
US10919778B2 (en) 2015-07-27 2021-02-16 Dowa Electronics Materials Co., Ltd. Method for producing iron-based oxide magnetic particle powder
EP3360850A4 (en) 2015-10-09 2019-05-15 Nippon Soda Co., Ltd. Iron oxyhydroxide-NANO DISPERSION LIQUID
CN108698852A (zh) 2016-01-20 2018-10-23 国立大学法人东京大学 磁性材料、磁性调色剂、和磁性粉末
CN105689731B (zh) * 2016-01-28 2017-07-07 湖北大学 一种Fe3Si磁性纳米颗粒粉体的低温制备方法
US10255938B2 (en) 2016-02-01 2019-04-09 Maxell Holdings, Ltd. Magnetic recording medium using ϵ-iron oxide particle magnetic powder
WO2018074162A1 (ja) * 2016-10-17 2018-04-26 ソニー株式会社 磁性粉末およびその製造方法、ならびに磁気記録媒体
JP2018092691A (ja) 2016-11-30 2018-06-14 富士フイルム株式会社 ε−酸化鉄型強磁性粉末およびその製造方法ならびにε−酸化鉄型強磁性粉末含有組成物
FR3059551B1 (fr) * 2016-12-05 2019-05-17 Centre National De La Recherche Scientifique Materiau cœur organique magnetique-ecorce inorganique, son procede de preparation et ses utilisations pour la delivrance magneto-stimulee de substances d'interet
CN106835314B (zh) * 2016-12-12 2019-07-05 湖北福临花纺织有限公司 一种磁疗保健再生纤维素纤维
US10614847B2 (en) 2016-12-28 2020-04-07 Maxell Holdings, Ltd. Magnetic recording medium
US11600421B2 (en) * 2017-04-14 2023-03-07 The Diller Corporation Laminate with induction coils
US10861487B2 (en) 2017-06-05 2020-12-08 Maxell Holdings, Ltd. High recording density magnetic recording medium and recording/reproduction mechanism for the same
JP6981783B2 (ja) 2017-06-09 2021-12-17 富士フイルム株式会社 コアシェル粒子、コアシェル粒子の焼成物、コアシェル粒子の製造方法、イプシロン型酸化鉄系化合物粒子、イプシロン型酸化鉄系化合物粒子の製造方法、磁気記録媒体、及び磁気記録媒体の製造方法
CN107364898B (zh) * 2017-09-15 2018-12-28 扬州大学 一种铅离子诱导生长ε-氧化铁纳米棒的方法
JP6900286B2 (ja) 2017-09-27 2021-07-07 富士フイルム株式会社 コアシェル粒子、コアシェル粒子の焼成物、コアシェル粒子の製造方法、イプシロン型酸化鉄系化合物粒子、イプシロン型酸化鉄系化合物粒子の製造方法、磁気記録媒体、及び磁気記録媒体の製造方法
US10627678B2 (en) * 2017-12-13 2020-04-21 Boe Technology Group Co., Ltd. Display apparatus having transparent magnetic layer, and fabricating method thereof
JP7023459B2 (ja) * 2018-02-09 2022-02-22 シチズンファインデバイス株式会社 磁界センサ素子及び磁界センサ装置
CN111819642B (zh) * 2018-03-29 2024-06-11 国立大学法人东京大学 铁系氧化物磁性粉及其制造方法
CN108776156B (zh) * 2018-06-06 2021-05-25 常州工学院 一维α-Fe2O3纳米棒的制备方法及基于α-Fe2O3纳米棒的丙酮传感器
JP6968045B2 (ja) 2018-08-28 2021-11-17 富士フイルム株式会社 β−オキシ水酸化鉄系化合物の粉体、β−オキシ水酸化鉄系化合物ゾル、ε−酸化鉄系化合物の粉体の製造方法、及び磁気記録媒体の製造方法
CN109231974B (zh) * 2018-10-19 2021-02-26 扬州大学 一种溶胶-凝胶自燃烧合成ε型氧化铁纳米永磁体的方法
JP2021054711A (ja) * 2019-09-30 2021-04-08 国立大学法人 東京大学 鉄系酸化物磁性粉およびその製造方法
JP7497258B2 (ja) 2020-09-08 2024-06-10 Dowaエレクトロニクス株式会社 置換型ε酸化鉄磁性粒子粉および置換型ε酸化鉄磁性粒子粉の製造方法
US20240001347A1 (en) 2020-12-09 2024-01-04 Dic Corporation Iron oxide particles and method for producing iron oxide particles
RU2752330C1 (ru) * 2021-01-27 2021-07-26 федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» Способ получения нанокристаллической эпсилон-фазы оксида железа
CN114031121A (zh) * 2021-11-09 2022-02-11 淮北师范大学 一种多孔磁性氧化物纳米片及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063199A (ja) * 2006-09-08 2008-03-21 Univ Of Tokyo ε酸化鉄系の磁性材料
JP2008063201A (ja) * 2006-09-08 2008-03-21 Univ Of Tokyo 磁気特性を改善したε酸化鉄粉末
JP2008063200A (ja) * 2006-09-08 2008-03-21 Univ Of Tokyo 分散性の良いε酸化鉄粉末
JP2008100871A (ja) * 2006-10-19 2008-05-01 Univ Of Tokyo ε酸化鉄の製法
JP2008174405A (ja) 2007-01-16 2008-07-31 Univ Of Tokyo ε−Fe2O3結晶の製法
JP2009206476A (ja) * 2008-01-31 2009-09-10 Univ Of Tokyo 磁性材スラリー、その磁性材スラリーの製造方法、磁性薄膜及び磁性体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008061399A (ja) * 2006-08-31 2008-03-13 Mitsumi Electric Co Ltd Acアダプタ
CN101693558A (zh) * 2009-09-30 2010-04-14 南京大学 一种羟基氧化铁和氧化铁纳米材料的制备方法
WO2012101752A1 (ja) * 2011-01-25 2012-08-02 Tdk株式会社 磁性材料及び磁石、並びに磁性材料の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063199A (ja) * 2006-09-08 2008-03-21 Univ Of Tokyo ε酸化鉄系の磁性材料
JP2008063201A (ja) * 2006-09-08 2008-03-21 Univ Of Tokyo 磁気特性を改善したε酸化鉄粉末
JP2008063200A (ja) * 2006-09-08 2008-03-21 Univ Of Tokyo 分散性の良いε酸化鉄粉末
JP2008100871A (ja) * 2006-10-19 2008-05-01 Univ Of Tokyo ε酸化鉄の製法
JP2008174405A (ja) 2007-01-16 2008-07-31 Univ Of Tokyo ε−Fe2O3結晶の製法
JP2009206476A (ja) * 2008-01-31 2009-09-10 Univ Of Tokyo 磁性材スラリー、その磁性材スラリーの製造方法、磁性薄膜及び磁性体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S.PONCE-CASTANEDA ET AL., JOURANL OF SOL-GEL SCIENCE AND TECHNOLOGY, vol. 27, 2003, pages 247 - 254, XP055294008 *
See also references of EP2990382A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047559A1 (ja) * 2014-09-24 2016-03-31 Dowaエレクトロニクス株式会社 鉄系酸化物磁性粒子粉および鉄系酸化物磁性粒子粉の製造方法
JP5966064B1 (ja) * 2014-09-24 2016-08-10 Dowaエレクトロニクス株式会社 鉄系酸化物磁性粒子粉および鉄系酸化物磁性粒子粉の製造方法
JP2016174135A (ja) * 2014-09-24 2016-09-29 Dowaエレクトロニクス株式会社 鉄系酸化物磁性粒子粉および鉄系酸化物磁性粒子粉の製造方法
US10504548B2 (en) 2014-09-24 2019-12-10 Dowa Electronics Materials Co., Ltd. Iron-based oxide magnetic particle powder and method for producing iron-based oxide magnetic particle powder
CN107635924B (zh) * 2015-06-12 2019-11-15 国立大学法人东京大学 ε氧化铁及其制造方法、磁性涂料和磁记录介质
CN107635924A (zh) * 2015-06-12 2018-01-26 国立大学法人东京大学 ε氧化铁及其制造方法、磁性涂料和磁记录介质
CN108137989A (zh) * 2015-10-05 2018-06-08 M技术株式会社 包含涂覆硅氧化物的氧化铁粒子的多层涂膜用组成物
EP3360937A4 (en) * 2015-10-05 2019-04-24 M. Technique Co., Ltd. COMPOSITION FOR A MULTILAYER COATING FILM WITH SILICONE OXIDE-COATED IRON OXIDE PARTICLES
US10350148B2 (en) 2015-10-05 2019-07-16 M. Technique Co., Ltd. Composition for laminated coating film comprising iron oxide particles coated with silicon oxide
CN108026403A (zh) * 2015-10-05 2018-05-11 M技术株式会社 包含涂覆硅氧化物的氧化铁粒子的涂布用涂覆硅氧化物的氧化铁组成物
CN108137989B (zh) * 2015-10-05 2020-09-22 M技术株式会社 包含涂覆硅氧化物的氧化铁粒子的多层涂膜用组成物
CN108026403B (zh) * 2015-10-05 2021-05-07 M技术株式会社 包含涂覆硅氧化物的氧化铁粒子的涂布用涂覆硅氧化物的氧化铁组成物
CN109195914A (zh) * 2016-06-02 2019-01-11 M技术株式会社 覆盖有硅化合物的氧化物粒子及其制造方法、和含有其的覆盖有硅化合物的氧化物组合物
CN109195914B (zh) * 2016-06-02 2021-12-28 M技术株式会社 覆盖有硅化合物的氧化物粒子及其制造方法、和含有其的覆盖有硅化合物的氧化物组合物

Also Published As

Publication number Publication date
CN105143109A (zh) 2015-12-09
CN105143109B (zh) 2017-08-15
EP2990382A1 (en) 2016-03-02
JP2014224027A (ja) 2014-12-04
JP6133749B2 (ja) 2017-05-24
EP2990382B1 (en) 2024-04-10
US9916922B2 (en) 2018-03-13
US20160104560A1 (en) 2016-04-14
EP2990382A4 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP6133749B2 (ja) 酸化鉄ナノ磁性粒子粉およびその製造方法、当該酸化鉄ナノ磁性粒子粉を含む酸化鉄ナノ磁性粒子薄膜およびその製造方法
El-Shater et al. Synthesis, characterization, and magnetic properties of Mn nanoferrites
JP6676493B2 (ja) 鉄系酸化物磁性粒子粉の製造方法
Zhang et al. Cr3+ substituted spinel ferrite nanoparticles with high coercivity
WO2015194647A1 (ja) 酸化鉄ナノ磁性粉およびその製造方法
Kiani et al. Structural, magnetic and microwave absorption properties of SrFe12− 2x (Mn0. 5Cd0. 5Zr) xO19 ferrite
Dippong et al. Structure and magnetic properties of CoFe2O4/SiO2 nanocomposites obtained by sol-gel and post annealing pathways
Nikzad et al. Presence of neodymium and gadolinium in cobalt ferrite lattice: structural, magnetic and microwave features for electromagnetic wave absorbing
Yadav et al. Facile synthesis of substantially magnetic hollow nanospheres of maghemite (γ-Fe 2 O 3) originated from magnetite (Fe 3 O 4) via solvothermal method
Li et al. Hollow CoFe2O4–Co3Fe7 microspheres applied in electromagnetic absorption
Dhanda et al. Structural, optical and magnetic properties along with antifungal activity of Ag-doped Ni-Co nanoferrites synthesized by eco-friendly route
WO2019189282A1 (ja) 鉄系酸化物磁性粉およびその製造方法
Harikrishnan et al. Effect of annealing temperature on the structural and magnetic properties of CTAB-capped SrFe12O19 platelets
Fu et al. Preparation and magnetic properties of SrFe12O19/SiO2 nanocomposites with core–shell structure
Agusu et al. Crystal and microstructure of MnFe2O4 synthesized by ceramic method using manganese ore and iron sand as raw materials
Aslam et al. Structural, optical and magnetic elucidation of co-doping of Nd3+ and Pr3+ on lithium nanoferrite and its technological application
Suo et al. Effect of Al 3+ ion-substituted Ni–Mg–Co ferrite prepared by sol–gel auto-combustion on lattice structure and magnetic properties
Layek et al. Room temperature ferromagnetism in Fe-doped CuO nanoparticles
Kershi Rare-earth ions as a key influencer on the magnetic, spectroscopic and elastic properties of ErγZn0. 2Co0. 8Fe2− γO4 nanoparticles
He Comparison study on magnetic property of Co 0.5 Zn 0.5 Fe 2 O 4 powders by template-assisted sol–gel and hydrothermal methods
Wahsh et al. Synthesis and magneto-optical properties of cobalt ferrite/silica nanoparticles doped with Cd 2+ ions
Xu et al. Structure and magnetic properties of multi-morphological CoFe2O4/CoFe nanocomposites by one-step hydrothermal synthesis
Sahoo et al. Shape dependent multiferroic behavior in Bi2Fe4O9 nanoparticles
Ghanbari et al. Magnetic properties of La/Ni-substituted strontium hexaferrite nanoparticles prepared by coprecipitation at optimal conditions
Yan et al. A study of NiZnCu-ferrite/SiO2 nanocomposites with different ferrite contents synthesized by sol–gel method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480023656.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14787186

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014788025

Country of ref document: EP