WO2014172227A1 - Parallel memories for multidimensional data access - Google Patents
Parallel memories for multidimensional data access Download PDFInfo
- Publication number
- WO2014172227A1 WO2014172227A1 PCT/US2014/033915 US2014033915W WO2014172227A1 WO 2014172227 A1 WO2014172227 A1 WO 2014172227A1 US 2014033915 W US2014033915 W US 2014033915W WO 2014172227 A1 WO2014172227 A1 WO 2014172227A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- memories
- patch
- multidimensional
- window
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
- G01B11/2513—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/22—Measuring arrangements characterised by the use of optical techniques for measuring depth
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
- G01B11/2518—Projection by scanning of the object
- G01B11/2527—Projection by scanning of the object with phase change by in-plane movement of the patern
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
- G01B11/2545—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with one projection direction and several detection directions, e.g. stereo
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/4205—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/44—Grating systems; Zone plate systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1876—Diffractive Fresnel lenses; Zone plates; Kinoforms
- G02B5/189—Structurally combined with optical elements not having diffractive power
- G02B5/1895—Structurally combined with optical elements not having diffractive power such optical elements having dioptric power
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/3003—Monitoring arrangements specially adapted to the computing system or computing system component being monitored
- G06F11/3024—Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system component is a central processing unit [CPU]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/0207—Addressing or allocation; Relocation with multidimensional access, e.g. row/column, matrix
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/0223—User address space allocation, e.g. contiguous or non contiguous base addressing
- G06F12/0292—User address space allocation, e.g. contiguous or non contiguous base addressing using tables or multilevel address translation means
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0653—Monitoring storage devices or systems
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0655—Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
- G06F3/0659—Command handling arrangements, e.g. command buffers, queues, command scheduling
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0668—Interfaces specially adapted for storage systems adopting a particular infrastructure
- G06F3/0671—In-line storage system
- G06F3/0683—Plurality of storage devices
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/30003—Arrangements for executing specific machine instructions
- G06F9/3004—Arrangements for executing specific machine instructions to perform operations on memory
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/30003—Arrangements for executing specific machine instructions
- G06F9/3004—Arrangements for executing specific machine instructions to perform operations on memory
- G06F9/30043—LOAD or STORE instructions; Clear instruction
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/30098—Register arrangements
- G06F9/3012—Organisation of register space, e.g. banked or distributed register file
- G06F9/30123—Organisation of register space, e.g. banked or distributed register file according to context, e.g. thread buffers
- G06F9/30127—Register windows
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
- G06T1/60—Memory management
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/55—Depth or shape recovery from multiple images
- G06T7/586—Depth or shape recovery from multiple images from multiple light sources, e.g. photometric stereo
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/64—Three-dimensional objects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/10—Processing, recording or transmission of stereoscopic or multi-view image signals
- H04N13/106—Processing image signals
- H04N13/128—Adjusting depth or disparity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/239—Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/25—Image signal generators using stereoscopic image cameras using two or more image sensors with different characteristics other than in their location or field of view, e.g. having different resolutions or colour pickup characteristics; using image signals from one sensor to control the characteristics of another sensor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/254—Image signal generators using stereoscopic image cameras in combination with electromagnetic radiation sources for illuminating objects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/271—Image signal generators wherein the generated image signals comprise depth maps or disparity maps
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N17/00—Diagnosis, testing or measuring for television systems or their details
- H04N17/002—Diagnosis, testing or measuring for television systems or their details for television cameras
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/10—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
- H04N23/11—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/56—Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/10—Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
- H04N25/11—Arrangement of colour filter arrays [CFA]; Filter mosaics
- H04N25/13—Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
- H04N25/131—Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements including elements passing infrared wavelengths
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/61—Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4"
- H04N25/611—Correction of chromatic aberration
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/30—Transforming light or analogous information into electric information
- H04N5/33—Transforming infrared radiation
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/20—Input arrangements for video game devices
- A63F13/21—Input arrangements for video game devices characterised by their sensors, purposes or types
- A63F13/213—Input arrangements for video game devices characterised by their sensors, purposes or types comprising photodetecting means, e.g. cameras, photodiodes or infrared cells
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/4233—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/12—Classification; Matching
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30244—Camera pose
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N2013/0074—Stereoscopic image analysis
- H04N2013/0081—Depth or disparity estimation from stereoscopic image signals
Definitions
- Standard image and signal processing algorithms generally process data within a sample window (e.g. a Gaussian blur). If this window "slides" neatly in raster order, producing this sample window is relatively straightforward and, to a large degree, does not become markedly more difficult as the sample window increases in size (e.g. larger radius Gaussian blurs).
- a sample window e.g. a Gaussian blur
- sample windows that are computed upon are generally arbitrarily-located windows within a larger search space.
- a similar situation occurs if the analysis is data-dependent. Producing sample windows for these more advanced algorithms is a much more difficult problem.
- One solution stores the data representing the larger search space in a buffer and uses a series of random memory accesses into that buffer to gradually construct the required sample.
- this solution creates a bottleneck at the memory, limiting the speed of computation. This is because real memory has limited I/O capacity (i.e.
- An alternative solution avoids the memory bottleneck by creating multiple identical copies of the larger search space using multiple buffers. In this way, parallel data items are produced within the requested window, only limited by the number of parallel buffers. This solution is amenable to a direct hardware implementation. However, having multiple copies comes at a significant resource cost, as essentially the amount of memories needed is proportional to the window size if normalized to a constant performance requirement.
- one or more of various aspects of the subject matter described herein are directed towards distributing multidimensional data among memories such that a patch / window of the multidimensional data is able to filled in parallel data read operations.
- the number of memories is determined based upon a product of a length of each dimension of the patch that is used in processing the multidimensional data.
- the memories are read to fill a positioned patch of data with the multidimensional data associated with a position of the patch via a parallel read of each of the memories.
- a distribution process is configured to determine a number of memories based upon multidimensional patch dimensions.
- the distribution process loads the memories with data from a multidimensional array in an interleaved manner, in which the interleaving provides that any patch of data (that corresponds to the multidimensional patch dimensions) that is filled by reading the memories has each data access unit (one or more items read or written together as a unit) read from a different memory.
- One or more aspects are directed towards loading multidimensional data into a plurality of memories, determining addresses in each of the memories based upon a position of a window, and filling a data window with a single parallel read of the plurality of memories.
- Data corresponding to the window data is output, and the process repeated for different window positions.
- the window data may be rotated to provide the data corresponding to the window data.
- FIGURE 1 is a block diagram representing example components that may be used to load multidimensional data for parallel reading, including into and from field programmable gate array (FPGA) memories, according to one or more example implementations .
- FIGS. 2A and 2B are representations of how data may be loaded into memories in an interleaved manner for subsequent parallel reading, according to one or more example implementations.
- FIG. 3 is a representation of a window of data being filled by parallel memory reads, according to one or more example implementations.
- FIG. 4 is a representation of a window of data being filled by parallel memory reads, in which horizontal rotation of the data is performed based upon the window position to provide a consistent return pattern, according to one or more example implementations .
- FIG. 5 is a representation of a window of data being filled by parallel memory reads, in which horizontal and vertical rotation of the data is performed based upon the window position to provide a consistent return pattern, according to one or more example implementations .
- FIG. 6 is a representation of how a subset of multidimensional data may be buffered, according to one or more example implementations.
- FIG. 7 is a representation of how memories may be arranged with section-based offsets, according to one or more example implementations.
- FIG. 8 is a representation of how two lines of a memory may be read, according to one or more example implementations.
- FIG. 9 is a flow diagram representing example steps taken to load memories in an interleaved manner for parallel reading, according to one or more example
- FIG. 10 is a flow diagram representing example steps taken to read patch / window data in parallel and if necessary rotate the data, according to one or more example implementations.
- FIG. 11 is a block diagram representing an exemplary non-limiting computing system or operating environment, in the form of a gaming system, into which one or more aspects of various embodiments described herein can be implemented.
- Various aspects of the technology described herein are generally directed towards dividing data to be processed among separate memories (comprising a "patch cache"), each memory holding a different, but interleaved, portion of the data.
- the interleaving is based upon the data to be processed (such as image data or other real-world sampled data) being physically or time adjacent, e.g., pixels in an image are adjacent other ones.
- the division and interleaving are based upon the dimensions of the patch (e.g., window size in two-dimensional data processing).
- the data are arranged such that each access into the "patch cache" needs to get one and only one value from each memory within the cache. This provides fast single- cycle access and a large degree of aggregate parallel bandwidth.
- the technology described herein provides a memory architecture that capitalizes on the natural physical spatial locality of the image or other real-world data to maintain high performance without duplication. This allows extremely high performance with little resource overhead.
- any of the examples herein are non-limiting. For instance, benefits are readily apparent in hardware / FPGA / ASIC scenarios, however the technology may be used in other scenarios. Further, two-dimensional image data are used in some of the examples to help convey the concepts in a way that is relatively easy to understand, however image data is only one type of data, and other types of data, including in more than two dimensions, may benefit from the technology described herein. As such, the present invention is not limited to any particular embodiments, aspects, concepts, structures, functionalities or examples described herein. Rather, any of the embodiments, aspects, concepts, structures, functionalities or examples described herein are non-limiting, and the present invention may be used various ways that provide benefits and advantages in data processing and/or connected components in general.
- FIG. 1 shows an example system in which a multidimensional array 102 of data to be processed, (e.g., two-dimensional image data) is processed by an array processing component 104.
- the array processing component 104 is coupled to a data distributing process 106 that writes the array data into a plurality of independent (e.g., FPGA) memories 108(1) - 108(4), e.g., collectively arranged as a patch cache 110.
- the distributing process is shown as being coded into the cache 110, but may be a separate process, and may be incorporated into the array processing component. Note that only four independent memories 108(1) - 108(4,) are shown in FIG. 1, but that any practical number may be used, and that the number depends on the dimensions of the patch.
- the array processing component 104 is coupled to a data fetching process 112 that reads a patch of data in parallel from the patch cache 110 / independent memories 108(1) - 108(4).
- the array processing component 104 processes each patch, and uses the processing on one or more patches to ultimately provide results 114.
- the array processing component also may be in hardware, e.g., the patch cache.
- the data is divided among separate memories, each holding a different, but interleaved, portion of the data.
- the total memory is thus divided among the separate memories; e.g., if a single, serially accessed memory held the data in D space, each of the divided, parallel memories hold D / P ofthe data.
- the dimensions of the data may be enumerated as N, N', N' ' and so forth, up to the number of data dimensions.
- Each of the dimensions of the patch may be enumerated as P, P', P" and so forth.
- the patch cache 110 is organized as an array of independent memories.
- the number of independent memories (M) is the product of each of the lengths of dimensions in the patch.
- FIG. 2A shows an arrangement to produce a 2x2 patch into a two-dimensional 4x4 space. That is, the patch has dimensions P and P' (each of length two), while the data has dimensions N and N' (each of length four).
- the sixteen data items are alphabetically represented in FIG. 2A by letters A through P, and by the array indices (0, 0) to (3, 3).
- Data may be written into the cache in raster order, organized by some dimension from N to N' to N" and so forth. These writes are generally low width (e.g., in FIG. 2A only one value wide), but wider data may be accepted.
- data may come in as one-dimensional strips.
- a system may accept small length strips; this may be expanded to full-width N length strips or even higher order multi-dimensional strips.
- the cache 110 accepts the data and writes it in a round-robin style by dimension. For example, if data arrives in raster-order, first along dimension N, then by dimension N', and so forth, the data for each dimension is written into each of the dimensions in the patch array in turn. This proceeds in a round-robin manner among the first dimension of the patch array across the entire length of first data dimension, wrapping on the first dimension of the patch array. Subsequent data along progressively higher dimensions of the data are distributed round-robin across progressively higher dimensions of the patch array, again wrapping each dimension of the patch array. If the dimension order of the data is higher than the dimension order of the patch, the round-robin ordering restarts at the first dimension of the patch.
- This distribution (e.g., for three dimensions) may be represented as:
- the MemW and MemX memories are in the first row of the dimension PxP' array (along the P dimension) and the MemY and MemZ memories are in the second row of the dimension PxP' array (again, along the P dimension but this time in the next P' dimension row).
- the first two data points A and B enter the cache and are placed into the MemW and MemX memories, respectively.
- the third data point C enters the cache, the length of the P dimension has been exhausted, but the N dimension has not.
- the P dimension will wrap around and the third and fourth data points C and D are placed in the MemW and MemX memories, respectively.
- the second, third and so forth time slices across the N" dimensions wrap back to the first P dimension in the same MemW, MemX, MemW, MemX, MemY, MemZ, MemY, MemZ, MemW, MemX ... arrangement.
- the output from each memory can be re-arranged along each dimension to a consistent orientation.
- the top left pixel in any 2x2 patch (represented by the dashed boxes) may come from any of the four memories in the array.
- the order does not correspond to the patch order.
- B, C, F, G is desired as the patch data, however the order corresponding to MemW, MemX, MemY and MemZ is C, B, G and F.
- the order is irrelevant, e.g., if the array processing component 104 is simply summing the returned values.
- other applications expect the data to be returned in a consistent manner, e.g., top left, top right, and lower left, lower right.
- the data 330 from the patch 332 in FIG. 3 needs no reordering.
- the data 440 from the patch 442 in FIG. 4 needs a horizontal shift of each row to obtain the ordered data 444, namely B, C, F, G.
- the data 550 in patch 552 in FIG. 5 needs both horizontal shifting (data 554) and vertical shifting (data 556) to get F, G, J, and K.
- the row data in FIG. 5 needs to be accessed via an offset to account for the next vertical row, e.g., memory MemW is arranged as A (0,0), C (2, 0), I (0, 2) and K (2,2).
- MemW is considered as having two sections that correspond to this offset, namely section 0 containing A (0,0) and C (2, 0), and section 1 containing I (0, 2) and K (2,2). This section-based offset addressing allows the patch window to be filled with the correct data when positioned at any row, as in FIG. 5.
- Rotation may be efficiently accomplished by a series of shift registers.
- the rotations e.g., in two dimensions
- any patch (window) dimensions are determined according to: X Rot - X % A-wX
- a w x and A W Y define the access window, that is, the patch dimensions, and X and Y are the starting coordinates of the patch.
- An entire array (e.g., a full set of image data) need not be put into the cache at the same time.
- a part (e.g., a band) of an image 660 may be written to the memories, and read back and processed.
- the band being read is between YLOW and YHIGH, indicated by the dashed horizontal lines.
- the patch / access window 662 needs to be able to be positioned (aligned on pixels) anywhere in the band, and is defined by A w x (patch width) and A W Y (patch height), which, for example, may be the 2x2 window in the above examples.
- one part of the memories may be written while reading from another part. Thus, as a line is freed, it may be written while the next line is being processed.
- the reading needs to pause when new writes are needed.
- dual ported memory there may be times when both ports are being used for reads; if this is not the case, reads and writes can occur on the same cycle. However, this opportunity may not occur, or the writes may fall behind the reads, whereby some pausing of the reads needs to occur.
- FIG. 7 shows each memory is divided into sections, e.g., sec 0 or sec 1, to provide the offset into the data to match the patch's vertical row position as described above.
- the section number is calculated from the 7-coordinate in order to give the starting address for the part of the memory that contains the line being accessed.
- FIG. 8 shows another alternative, in which instead of one item of data (e.g., pixel) being returned for a read, two pixels are returned as a unit. This may be because the pixels are eight bits wide and the memory is sixteen bits wide, for example, so two pixels are read at once.
- the term "access unit” refers to whatever reading and writing scheme is in place, e.g., one-byte reads, two-byte reads, four-byte reads and so on. Note that the scheme in use affects the number of memories needed; for example, if the patch is 4x4 and each memory provides two pixels, then two memories across and four memories down are needed.
- FIG. 9 is a flow diagram showing example steps for interleaving data among memories based upon a window (patch) size.
- FIG. 9 is generally described with respect to two dimensions, and assumes that the data will fit in the memories (whether as a whole or via a band at a time as described above).
- Step 902 obtains the patch dimensions, e.g., as part of a setup process performed by the array processing algorithm.
- Step 904 represents allocating memories according to the patch dimensions, e.g., a 2x2 patch has four memories, a 3x3 nine, a 4x4 sixteen, and so on.
- Step 906 selects the first dimension of data, e.g., the X-dimension starting at coordinate zero.
- Step 908 selects the memories based upon the X- dimension, such as the first two of four memories for a 2x2 patch, the first three for a 3x3 patch, and so on.
- Step 910 represents the interleaving of the data along the X-axis among the selected memories, e.g., alternating between them. Note that the data wraps in the selected memories as needed, as described above. This continues until the first dimension is exhausted, that is, the entire line is placed in the selected memories.
- step 914 evaluates whether the second dimension is exhausted, e.g., the last row has been placed into the memories. If not, at step 916 the first dimension is "reset" (e.g., the X-coordinate returns to zero) and the next dimension incremented, e.g., the 7-coordinate is moved to the next line.
- Step 908 selects the next memories, e.g., not the ones used previously. For example, with a 2x2 patch, every other row is placed into a different pair of the memories; for a 3x3 patch, every third row into a different set of three memories, and so on. In this way, every value in a window is in a different memory.
- FIG. 10 represents reading the data, beginning at step 1002 where the window data (e.g., the starting coordinate and size) are received. Note that in a sliding window scenario, the logic of FIG. 10 may simply receive a "next position" command and move the window horizontally until it needs to move down to the next line.
- the window data e.g., the starting coordinate and size
- Step 1004 represents computing the address in each memory for the data points in the access window, e.g., using the address computations described above. Note that rather than the full computation, in a sliding window scenario the previous computation may be used to determine the next location in each memory because the window position and underlying memory changes regularly.
- Step 1006 reads the memories at their respective addresses, in parallel, into a set of shift registers or the like. As described above, step 1008 performs any needed X rotation, and step 1010 any needed 7 rotation. At this time, the window is output, filled with the correct data in the correct order.
- FIG. 11 illustrates an example of a suitable computing and networking environment / system 1100 into which computer-related examples and implementations described herein may be implemented, for example.
- the computing and networking environment 1100 may program an FPGA with data and/or logic to perform multidimensional array processing as described herein, provide input data (e.g., capture images), receive output data, and so forth.
- the computing and networking environment 1100 also may implement the technology described in FIGS. 1 - 10 in software, at least in part.
- FIG. 11 is a functional block diagram of an example gaming and media system 1100 and shows functional components in more detail.
- Console 1101 has a central processing unit (CPU) 1102, and a memory controller 1103 that facilitates processor access to various types of memory, including a flash Read Only Memory (ROM) 1104, a Random Access Memory (RAM) 1106, a hard disk drive 1108, and portable media drive 1109.
- the CPU 1102 includes a level 1 cache 1110, and a level 2 cache 1112 to temporarily store data and hence reduce the number of memory access cycles made to the hard drive, thereby improving processing speed and throughput.
- the CPU 1102, the memory controller 1103, and various memory devices are interconnected via one or more buses (not shown).
- the details of the bus that is used in this implementation are not particularly relevant to understanding the subject matter of interest being discussed herein.
- a bus may include one or more of serial and parallel buses, a memory bus, a peripheral bus, and a processor or local bus, using any of a variety of bus architectures.
- bus architectures can include an Industry Standard Architecture (ISA) bus, a Micro Channel Architecture (MCA) bus, an Enhanced ISA (EISA) bus, a Video Electronics
- VESA Standards Association
- PCI Peripheral Component Interconnects
- the CPU 1102, the memory controller 1103, the ROM 1104, and the RAM 1106 are integrated onto a common module 1114. In this
- the ROM 1104 is configured as a flash ROM that is connected to the memory controller 1103 via a Peripheral Component Interconnect (PCI) bus or the like and a ROM bus or the like (neither of which are shown).
- the RAM 1106 may be configured as multiple Double Data Rate Synchronous Dynamic RAM (DDR SDRAM) modules that are independently controlled by the memory controller 1103 via separate buses (not shown).
- DDR SDRAM Double Data Rate Synchronous Dynamic RAM
- the hard disk drive 1108 and the portable media drive 1109 are shown connected to the memory controller 1103 via the PCI bus and an AT Attachment (ATA) bus 1116.
- ATA AT Attachment
- dedicated data bus structures of different types can also be applied in the alternative.
- a three-dimensional graphics processing unit 1120 and a video encoder 1122 form a video processing pipeline for high speed and high resolution (e.g., High Definition) graphics processing. Data are carried from the graphics processing unit 1120 to the video encoder 1122 via a digital video bus (not shown).
- An audio processing unit 1124 and an audio codec (coder/decoder) 1126 form a corresponding audio processing pipeline for multi-channel audio processing of various digital audio formats. Audio data are carried between the audio processing unit 1124 and the audio codec 1126 via a communication link (not shown).
- the video and audio processing pipelines output data to an A/V
- (audio/video) port 1128 for transmission to a television or other display / speakers.
- the video and audio processing components 1120, 1122, 1124, 1126 and 1128 are mounted on the module 1114.
- FIG. 11 shows the module 1114 including a USB host controller 1130 and a network interface (NW I/F) 1132, which may include wired and/or wireless components.
- the USB host controller 1130 is shown in communication with the CPU 1102 and the memory controller 1103 via a bus (e.g., PCI bus) and serves as host for peripheral controllers 1134.
- the network interface 1132 provides access to a network (e.g., Internet, home network, etc.) and may be any of a wide variety of various wire or wireless interface components including an Ethernet card or interface module, a modem, a Bluetooth module, a cable modem, and the like.
- the console 1101 includes a controller support subassembly 1140, for supporting four game controllers 1141(1) - 1141(4).
- the controller support subassembly 1140 includes any hardware and software components needed to support wired and/or wireless operation with an external control device, such as for example, a media and game controller.
- a front panel I/O subassembly 1142 supports the multiple functionalities of a power button 1143, an eject button 1144, as well as any other buttons and any LEDs (light emitting diodes) or other indicators exposed on the outer surface of the console 1101.
- the subassemblies 1140 and 1142 are in communication with the module 1114 via one or more cable assemblies 1146 or the like.
- the console 1101 can include additional controller
- the illustrated implementation also shows an optical I/O interface 1148 that is configured to send and receive signals (e.g., from a remote control 1149) that can be communicated to the module 1114.
- signals e.g., from a remote control 1149
- Memory units (MUs) 1150(1) and 1150(2) are illustrated as being connectable to MU ports "A" 1152(1) and "B" 1152(2), respectively.
- Each MU 1150 offers additional storage on which games, game parameters, and other data may be stored.
- the other data can include one or more of a digital game component, an executable gaming application, an instruction set for expanding a gaming application, and a media file.
- each MU 1150 can be accessed by the memory controller 1103.
- a system power supply module 1154 provides power to the components of the gaming system 1100.
- a fan 1156 cools the circuitry within the console 1101.
- An application 1160 comprising machine instructions is typically stored on the hard disk drive 1108.
- various portions of the application 1160 are loaded into the RAM 1106, and/or the caches 1110 and 1112, for execution on the CPU 1102.
- the application 1160 can include one or more program modules for performing various display functions, such as controlling dialog screens for presentation on a display (e.g., high definition monitor), controlling transactions based on user inputs and controlling data transmission and reception between the console 1101 and externally connected devices.
- the gaming system 1100 may be operated as a standalone system by connecting the system to high definition monitor, a television, a video projector, or other display device. In this standalone mode, the gaming system 1100 enables one or more players to play games, or enjoy digital media, e.g., by watching movies, or listening to music.
- gaming system 1100 may further be operated as a participating component in a larger network gaming community or system.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- General Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Software Systems (AREA)
- Optics & Photonics (AREA)
- Human Computer Interaction (AREA)
- Materials Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- Quality & Reliability (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Image Processing (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Controls And Circuits For Display Device (AREA)
- Lenses (AREA)
- User Interface Of Digital Computer (AREA)
- Image Analysis (AREA)
- Measurement Of Optical Distance (AREA)
- Transforming Electric Information Into Light Information (AREA)
- Color Television Image Signal Generators (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201480021493.5A CN105229696A (zh) | 2013-04-15 | 2014-04-14 | 用于多维数据存取的并行存储器 |
| EP14723271.4A EP2987131A1 (en) | 2013-04-15 | 2014-04-14 | Parallel memories for multidimensional data access |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361812232P | 2013-04-15 | 2013-04-15 | |
| US61/812,232 | 2013-04-15 | ||
| US13/918,892 US9760770B2 (en) | 2013-04-15 | 2013-06-14 | Parallel memories for multidimensional data access |
| US13/918,892 | 2013-06-14 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2014172227A1 true WO2014172227A1 (en) | 2014-10-23 |
Family
ID=51686521
Family Applications (8)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2014/033911 Ceased WO2014172223A1 (en) | 2013-04-15 | 2014-04-14 | Super-resolving depth map by moving pattern projector |
| PCT/US2014/033915 Ceased WO2014172227A1 (en) | 2013-04-15 | 2014-04-14 | Parallel memories for multidimensional data access |
| PCT/US2014/033996 Ceased WO2014172276A1 (en) | 2013-04-15 | 2014-04-14 | Active stereo with adaptive support weights from a separate image |
| PCT/US2014/033919 Ceased WO2014172231A1 (en) | 2013-04-15 | 2014-04-14 | Active stereo with satellite device or devices |
| PCT/US2014/033910 Ceased WO2014172222A1 (en) | 2013-04-15 | 2014-04-14 | Intensity-modulated light pattern for active stereo |
| PCT/US2014/033909 Ceased WO2014172221A1 (en) | 2013-04-15 | 2014-04-14 | Extracting true color from a color and infrared sensor |
| PCT/US2014/033917 Ceased WO2014172229A1 (en) | 2013-04-15 | 2014-04-14 | Diffractive optical element with undiffracted light expansion for eye safe operation |
| PCT/US2014/033916 Ceased WO2014172228A1 (en) | 2013-04-15 | 2014-04-14 | Robust stereo depth system |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2014/033911 Ceased WO2014172223A1 (en) | 2013-04-15 | 2014-04-14 | Super-resolving depth map by moving pattern projector |
Family Applications After (6)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2014/033996 Ceased WO2014172276A1 (en) | 2013-04-15 | 2014-04-14 | Active stereo with adaptive support weights from a separate image |
| PCT/US2014/033919 Ceased WO2014172231A1 (en) | 2013-04-15 | 2014-04-14 | Active stereo with satellite device or devices |
| PCT/US2014/033910 Ceased WO2014172222A1 (en) | 2013-04-15 | 2014-04-14 | Intensity-modulated light pattern for active stereo |
| PCT/US2014/033909 Ceased WO2014172221A1 (en) | 2013-04-15 | 2014-04-14 | Extracting true color from a color and infrared sensor |
| PCT/US2014/033917 Ceased WO2014172229A1 (en) | 2013-04-15 | 2014-04-14 | Diffractive optical element with undiffracted light expansion for eye safe operation |
| PCT/US2014/033916 Ceased WO2014172228A1 (en) | 2013-04-15 | 2014-04-14 | Robust stereo depth system |
Country Status (11)
| Country | Link |
|---|---|
| US (14) | US10268885B2 (enExample) |
| EP (9) | EP2987323B1 (enExample) |
| JP (1) | JP6469080B2 (enExample) |
| KR (2) | KR102207768B1 (enExample) |
| CN (8) | CN105230003B (enExample) |
| AU (1) | AU2014254219B2 (enExample) |
| BR (1) | BR112015025819A8 (enExample) |
| CA (1) | CA2907895C (enExample) |
| MX (1) | MX357307B (enExample) |
| RU (1) | RU2663329C2 (enExample) |
| WO (8) | WO2014172223A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10817493B2 (en) | 2017-07-07 | 2020-10-27 | Raytheon Company | Data interpolation |
Families Citing this family (202)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20120072245A (ko) * | 2010-12-23 | 2012-07-03 | 한국전자통신연구원 | 스테레오 영상 정합 장치 및 방법 |
| EP2826237A4 (en) * | 2012-03-13 | 2015-08-19 | Dolby Lab Licensing Corp | LIGHTING SYSTEM AND METHOD FOR IMAGE AND OBJECT ENLARGEMENT |
| EP2700920B1 (en) | 2012-08-23 | 2016-06-22 | ams AG | Light sensor system and method for processing light sensor signals |
| US10268885B2 (en) | 2013-04-15 | 2019-04-23 | Microsoft Technology Licensing, Llc | Extracting true color from a color and infrared sensor |
| US9467680B2 (en) | 2013-12-12 | 2016-10-11 | Intel Corporation | Calibration of a three-dimensional acquisition system |
| WO2015098288A1 (ja) * | 2013-12-27 | 2015-07-02 | ソニー株式会社 | 画像処理装置、および画像処理方法 |
| US9720506B2 (en) * | 2014-01-14 | 2017-08-01 | Microsoft Technology Licensing, Llc | 3D silhouette sensing system |
| CN105939837B (zh) * | 2014-01-16 | 2019-05-10 | 惠普发展公司,有限责任合伙企业 | 对用于增材制造系统的切片数据进行处理 |
| US11265534B2 (en) * | 2014-02-08 | 2022-03-01 | Microsoft Technology Licensing, Llc | Environment-dependent active illumination for stereo matching |
| US9842424B2 (en) * | 2014-02-10 | 2017-12-12 | Pixar | Volume rendering using adaptive buckets |
| US20170078649A1 (en) | 2014-03-07 | 2017-03-16 | Brown University | Method and system for unsynchronized structured lighting |
| US10005126B2 (en) * | 2014-03-19 | 2018-06-26 | Autodesk, Inc. | Systems and methods for improved 3D printing |
| US9674493B2 (en) * | 2014-03-24 | 2017-06-06 | Omnivision Technologies, Inc. | Color image sensor with metal mesh to detect infrared light |
| WO2015152829A1 (en) * | 2014-04-03 | 2015-10-08 | Heptagon Micro Optics Pte. Ltd. | Structured-stereo imaging assembly including separate imagers for different wavelengths |
| GB201407270D0 (en) * | 2014-04-24 | 2014-06-11 | Cathx Res Ltd | 3D data in underwater surveys |
| US9823842B2 (en) | 2014-05-12 | 2017-11-21 | The Research Foundation For The State University Of New York | Gang migration of virtual machines using cluster-wide deduplication |
| US9533449B2 (en) | 2014-06-19 | 2017-01-03 | Autodesk, Inc. | Material deposition systems with four or more axes |
| US10252466B2 (en) | 2014-07-28 | 2019-04-09 | Massachusetts Institute Of Technology | Systems and methods of machine vision assisted additive fabrication |
| CN106461378B (zh) * | 2014-08-08 | 2019-10-25 | 塞姆布有限公司 | 具有用于非接触式测量的扫描系统的车辆装备 |
| US10455212B1 (en) * | 2014-08-25 | 2019-10-22 | X Development Llc | Projected pattern motion/vibration for depth sensing |
| JP6397698B2 (ja) * | 2014-08-28 | 2018-09-26 | 任天堂株式会社 | 情報処理端末、情報処理プログラム、情報処理端末システム、および情報処理方法 |
| US9507995B2 (en) * | 2014-08-29 | 2016-11-29 | X Development Llc | Combination of stereo and structured-light processing |
| DE102014113389A1 (de) * | 2014-09-17 | 2016-03-17 | Pilz Gmbh & Co. Kg | Verfahren und Vorrichtung zum Identifizieren von Strukturelementen eines projizierten Strukturmusters in Kamerabildern |
| CN107073827B (zh) | 2014-09-26 | 2022-06-10 | 惠普发展公司有限责任合伙企业 | 用于增材制造的光照 |
| EP3018587B1 (en) * | 2014-11-05 | 2018-08-29 | Renesas Electronics Europe GmbH | Memory access unit |
| JP6302399B2 (ja) * | 2014-11-17 | 2018-03-28 | キヤノン株式会社 | 近距離無線通信部を備える画像形成装置、その制御方法、及びプログラム |
| EP3043159B1 (en) * | 2015-01-08 | 2019-12-18 | ams AG | Method for processing light sensor signals and light sensor system |
| CN107003116A (zh) * | 2014-12-15 | 2017-08-01 | 索尼公司 | 图像捕捉装置组件、三维形状测量装置和运动检测装置 |
| EP3040941B1 (en) * | 2014-12-29 | 2017-08-02 | Dassault Systèmes | Method for calibrating a depth camera |
| US11562286B2 (en) * | 2015-02-06 | 2023-01-24 | Box, Inc. | Method and system for implementing machine learning analysis of documents for classifying documents by associating label values to the documents |
| DE102015202182A1 (de) * | 2015-02-06 | 2016-08-11 | Siemens Aktiengesellschaft | Vorrichtung und Verfahren zur sequentiellen, diffraktiven Musterprojektion |
| US9699394B2 (en) | 2015-03-09 | 2017-07-04 | Microsoft Technology Licensing, Llc | Filter arrangement for image sensor |
| JP6484071B2 (ja) * | 2015-03-10 | 2019-03-13 | アルプスアルパイン株式会社 | 物体検出装置 |
| CN106032059B (zh) * | 2015-03-13 | 2019-11-26 | 三纬国际立体列印科技股份有限公司 | 立体打印方法与立体打印装置 |
| KR102238794B1 (ko) * | 2015-03-25 | 2021-04-09 | 한국전자통신연구원 | 영상 촬영 장치의 촬영 속도 증가 방법 |
| WO2016157601A1 (ja) | 2015-03-30 | 2016-10-06 | 富士フイルム株式会社 | 距離画像取得装置及び距離画像取得方法 |
| EP3081384B1 (en) * | 2015-04-17 | 2019-11-13 | Canon Kabushiki Kaisha | Image processing apparatus, image processing method, and program |
| CN108307675B (zh) | 2015-04-19 | 2020-12-25 | 快图有限公司 | 用于vr/ar应用中的深度增强的多基线相机阵列系统架构 |
| US9751263B2 (en) * | 2015-04-20 | 2017-09-05 | Xerox Corporation | Injection molding to finish parts printed with a three-dimensional object printer |
| EP3886343A3 (en) * | 2015-05-18 | 2021-11-24 | Lasermotive, Inc. | Multi-layered safety system |
| US9683834B2 (en) * | 2015-05-27 | 2017-06-20 | Intel Corporation | Adaptable depth sensing system |
| US9495584B1 (en) * | 2015-06-05 | 2016-11-15 | Digital Signal Corporation | System and method for facial recognition using images captured from a target illuminated with infrared light |
| US11054664B2 (en) * | 2015-06-18 | 2021-07-06 | Apple Inc. | Monitoring DOE performance using software scene evaluation |
| US9824278B2 (en) * | 2015-06-24 | 2017-11-21 | Netflix, Inc. | Determining native resolutions of video sequences |
| KR102660109B1 (ko) * | 2015-07-13 | 2024-04-24 | 코닌클리케 필립스 엔.브이. | 이미지에 대한 깊이 맵을 결정하기 위한 방법 및 장치 |
| US10510149B2 (en) | 2015-07-17 | 2019-12-17 | ams Sensors Singapore Pte. Ltd | Generating a distance map based on captured images of a scene |
| US10699476B2 (en) | 2015-08-06 | 2020-06-30 | Ams Sensors Singapore Pte. Ltd. | Generating a merged, fused three-dimensional point cloud based on captured images of a scene |
| WO2017030507A1 (en) | 2015-08-19 | 2017-02-23 | Heptagon Micro Optics Pte. Ltd. | Generating a disparity map having reduced over-smoothing |
| CN106550228B (zh) * | 2015-09-16 | 2019-10-15 | 上海图檬信息科技有限公司 | 获取三维场景的深度图的设备 |
| US20170116779A1 (en) * | 2015-10-26 | 2017-04-27 | Microsoft Technology Licensing, Llc | Volumetric representation of objects |
| US10554956B2 (en) | 2015-10-29 | 2020-02-04 | Dell Products, Lp | Depth masks for image segmentation for depth-based computational photography |
| US10021371B2 (en) | 2015-11-24 | 2018-07-10 | Dell Products, Lp | Method and apparatus for gross-level user and input detection using similar or dissimilar camera pair |
| KR102323217B1 (ko) * | 2015-12-21 | 2021-11-08 | 삼성전자주식회사 | 매크로 픽셀의 노이즈를 제어하는 뎁스 센서, 3차원 카메라 및 제어 방법 |
| US9800795B2 (en) * | 2015-12-21 | 2017-10-24 | Intel Corporation | Auto range control for active illumination depth camera |
| US10761497B2 (en) | 2016-01-14 | 2020-09-01 | Microsoft Technology Licensing, Llc | Printing 3D objects with automatic dimensional accuracy compensation |
| CN106980630B (zh) * | 2016-01-19 | 2020-03-10 | 菜鸟智能物流控股有限公司 | 一种数据旋转展示方法及装置 |
| KR20240051334A (ko) * | 2016-02-18 | 2024-04-19 | 애플 인크. | 인사이드-아웃 위치, 사용자 신체 및 환경 추적을 갖는 가상 및 혼합 현실을 위한 머리 장착 디스플레이 |
| US11244478B2 (en) * | 2016-03-03 | 2022-02-08 | Sony Corporation | Medical image processing device, system, method, and program |
| DE102016106121B4 (de) | 2016-04-04 | 2025-12-31 | Carl Zeiss Ag | Verfahren und Vorrichtung zum Bestimmen von Parametern zur Brillenanpassung |
| WO2017193013A1 (en) * | 2016-05-06 | 2017-11-09 | Zhang, Yunbo | Determining manufacturable models |
| EP3273685A4 (en) * | 2016-06-08 | 2018-01-24 | Panasonic Intellectual Property Management Co., Ltd. | Projection system |
| US10659764B2 (en) * | 2016-06-20 | 2020-05-19 | Intel Corporation | Depth image provision apparatus and method |
| US10609359B2 (en) * | 2016-06-22 | 2020-03-31 | Intel Corporation | Depth image provision apparatus and method |
| US10638060B2 (en) * | 2016-06-28 | 2020-04-28 | Intel Corporation | Color correction of RGBIR sensor stream based on resolution recovery of RGB and IR channels |
| CN106210568A (zh) * | 2016-07-15 | 2016-12-07 | 深圳奥比中光科技有限公司 | 图像处理方法以及装置 |
| US10241244B2 (en) | 2016-07-29 | 2019-03-26 | Lumentum Operations Llc | Thin film total internal reflection diffraction grating for single polarization or dual polarization |
| US10192311B2 (en) * | 2016-08-05 | 2019-01-29 | Qualcomm Incorporated | Methods and apparatus for codeword boundary detection for generating depth maps |
| CN106204414A (zh) * | 2016-08-05 | 2016-12-07 | 蓝普金睛(北京)科技有限公司 | 一种动态图像缓存的方法及系统 |
| CN106375740B (zh) * | 2016-09-28 | 2018-02-06 | 华为技术有限公司 | 生成rgb图像的方法、装置和系统 |
| CN106447588A (zh) * | 2016-09-30 | 2017-02-22 | 天津大学 | 菲涅耳变换域混沌双随机相位编码光学图像加密方法 |
| JP6645394B2 (ja) * | 2016-10-03 | 2020-02-14 | 株式会社デンソー | 画像センサ |
| US10456984B2 (en) | 2016-12-16 | 2019-10-29 | Massachusetts Institute Of Technology | Adaptive material deposition for additive manufacturing |
| WO2018123801A1 (ja) * | 2016-12-28 | 2018-07-05 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | 三次元モデル配信方法、三次元モデル受信方法、三次元モデル配信装置及び三次元モデル受信装置 |
| US10372974B2 (en) * | 2017-01-11 | 2019-08-06 | Microsoft Technology Licensing, Llc | 3D imaging recognition by stereo matching of RGB and infrared images |
| CN108399633A (zh) * | 2017-02-06 | 2018-08-14 | 罗伯团队家居有限公司 | 用于立体视觉的方法和装置 |
| CN106908391A (zh) * | 2017-02-10 | 2017-06-30 | 广东欧珀移动通信有限公司 | 终端中盖板玻璃颜色识别方法和装置 |
| CN106909320B (zh) * | 2017-02-20 | 2020-01-21 | 北京中科睿芯科技有限公司 | 一种多维数据扩充传输的方法、装置以及系统 |
| US10827129B2 (en) * | 2017-02-24 | 2020-11-03 | Sony Corporation | Image processing apparatus and imaging apparatus |
| US10955814B2 (en) | 2017-04-24 | 2021-03-23 | Autodesk, Inc. | Closed-loop robotic deposition of material |
| US11181886B2 (en) * | 2017-04-24 | 2021-11-23 | Autodesk, Inc. | Closed-loop robotic deposition of material |
| CN107084686B (zh) * | 2017-04-26 | 2019-04-30 | 西安交通大学 | 一种无运动部件的动态多光刀扫描测量方法 |
| CN110692084B (zh) * | 2017-05-31 | 2023-05-09 | 惠普发展公司,有限责任合伙企业 | 用于导出场景的拓扑信息的装置和机器可读存储介质 |
| US20180347967A1 (en) * | 2017-06-01 | 2018-12-06 | RGBDsense Information Technology Ltd. | Method and apparatus for generating a random coding pattern for coding structured light |
| KR102346031B1 (ko) | 2017-07-25 | 2022-01-03 | 삼성디스플레이 주식회사 | 표시 장치 및 이의 구동 방법 |
| KR102402477B1 (ko) * | 2017-08-04 | 2022-05-27 | 엘지이노텍 주식회사 | ToF 모듈 |
| US10586342B2 (en) * | 2017-08-31 | 2020-03-10 | Facebook Technologies, Llc | Shifting diffractive optical element for adjustable depth sensing resolution |
| US10962790B2 (en) | 2017-09-05 | 2021-03-30 | Facebook Technologies, Llc | Depth measurement using a pulsed structured light projector |
| US20190072771A1 (en) * | 2017-09-05 | 2019-03-07 | Facebook Technologies, Llc | Depth measurement using multiple pulsed structured light projectors |
| DE102017215850B4 (de) | 2017-09-08 | 2019-12-24 | Robert Bosch Gmbh | Verfahren zur Herstellung eines diffraktiven optischen Elements, LIDAR-System mit einem diffraktiven optischen Element und Kraftfahrzeug mit einem LIDAR-System |
| CN107884066A (zh) * | 2017-09-29 | 2018-04-06 | 深圳奥比中光科技有限公司 | 基于泛光功能的光传感器及其3d成像装置 |
| US10310281B1 (en) * | 2017-12-05 | 2019-06-04 | K Laser Technology, Inc. | Optical projector with off-axis diffractive element |
| US10545457B2 (en) | 2017-12-05 | 2020-01-28 | K Laser Technology, Inc. | Optical projector with off-axis diffractive element and conjugate images |
| CN109889799B (zh) * | 2017-12-06 | 2020-08-25 | 西安交通大学 | 基于rgbir摄像头的单目结构光深度感知方法及装置 |
| US10628952B2 (en) | 2017-12-11 | 2020-04-21 | Google Llc | Dual-band stereo depth sensing system |
| DE102017222708A1 (de) * | 2017-12-14 | 2019-06-19 | Conti Temic Microelectronic Gmbh | 3D-Umfelderfassung mittels Projektor und Kameramodulen |
| US11227371B2 (en) * | 2017-12-14 | 2022-01-18 | Nec Corporation | Image processing device, image processing method, and image processing program |
| JP6939501B2 (ja) * | 2017-12-15 | 2021-09-22 | オムロン株式会社 | 画像処理システム、画像処理プログラム、および画像処理方法 |
| CN108133494A (zh) * | 2018-01-17 | 2018-06-08 | 南京华捷艾米软件科技有限公司 | 利用rgb-ir同时生成深度图和彩色图的系统和方法 |
| DE102019000272B4 (de) * | 2018-01-19 | 2023-11-16 | Cognex Corporation | System zum bilden einer homogenisierten beleuchtungslinie, die als eine linie mit geringem speckle bildlich erfasst werden kann |
| US10317684B1 (en) | 2018-01-24 | 2019-06-11 | K Laser Technology, Inc. | Optical projector with on axis hologram and multiple beam splitter |
| CN108319437B (zh) * | 2018-02-28 | 2019-01-11 | 上海熙香艺享电子商务有限公司 | 内容大数据密集程度分析平台 |
| CN108490632B (zh) * | 2018-03-12 | 2020-01-10 | Oppo广东移动通信有限公司 | 激光投射模组、深度相机和电子装置 |
| WO2019182881A1 (en) * | 2018-03-20 | 2019-09-26 | Magik Eye Inc. | Distance measurement using projection patterns of varying densities |
| US10643341B2 (en) * | 2018-03-22 | 2020-05-05 | Microsoft Technology Licensing, Llc | Replicated dot maps for simplified depth computation using machine learning |
| US10565720B2 (en) | 2018-03-27 | 2020-02-18 | Microsoft Technology Licensing, Llc | External IR illuminator enabling improved head tracking and surface reconstruction for virtual reality |
| US10771766B2 (en) * | 2018-03-30 | 2020-09-08 | Mediatek Inc. | Method and apparatus for active stereo vision |
| CN108564613A (zh) * | 2018-04-12 | 2018-09-21 | 维沃移动通信有限公司 | 一种深度数据获取方法及移动终端 |
| EP3797026A4 (en) | 2018-05-22 | 2022-03-02 | Mantle Inc. | Method and system for automated toolpath generation |
| US10878590B2 (en) * | 2018-05-25 | 2020-12-29 | Microsoft Technology Licensing, Llc | Fusing disparity proposals in stereo matching |
| CN108917640A (zh) * | 2018-06-06 | 2018-11-30 | 佛山科学技术学院 | 一种激光盲孔深度检测方法及其系统 |
| FI128523B (en) * | 2018-06-07 | 2020-07-15 | Ladimo Oy | Modeling of topography of a 3D surface |
| KR102545980B1 (ko) | 2018-07-19 | 2023-06-21 | 액티브 서지컬, 인크. | 자동화된 수술 로봇을 위한 비전 시스템에서 깊이의 다중 모달 감지를 위한 시스템 및 방법 |
| US11067820B2 (en) * | 2018-07-31 | 2021-07-20 | Himax Technologies Limited | Structured light projector and three-dimensional image sensing module |
| CN109102540B (zh) * | 2018-08-16 | 2022-01-28 | 杭州电子科技大学 | 基于fpga的标记面积块下限分离分道方法 |
| TWI676781B (zh) * | 2018-08-17 | 2019-11-11 | 鑑微科技股份有限公司 | 三維掃描系統 |
| US10761337B2 (en) * | 2018-08-24 | 2020-09-01 | Himax Technologies Limited | Projecting apparatus for spreading non-diffracted light |
| JP6907277B2 (ja) | 2018-08-30 | 2021-07-21 | コグネックス・コーポレイション | 歪みが低減された物体の3次元再構成を生成するための方法及び装置 |
| US11039122B2 (en) * | 2018-09-04 | 2021-06-15 | Google Llc | Dark flash photography with a stereo camera |
| US10791277B2 (en) * | 2018-09-11 | 2020-09-29 | Cognex Corporation | Methods and apparatus for optimizing image acquisition of objects subject to illumination patterns |
| CN109146953B (zh) * | 2018-09-11 | 2021-12-10 | 杭州电子科技大学 | 基于fpga的标记面积块上限分离分道方法 |
| US20200082160A1 (en) * | 2018-09-12 | 2020-03-12 | Kneron (Taiwan) Co., Ltd. | Face recognition module with artificial intelligence models |
| KR102562360B1 (ko) * | 2018-10-05 | 2023-08-02 | 엘지이노텍 주식회사 | 깊이 정보를 획득하는 방법 및 카메라 모듈 |
| CN109532021B (zh) * | 2018-10-10 | 2020-08-25 | 浙江大学 | 基于结构光线性异常点的3d打印熔积缺陷逐层检测方法 |
| US11176694B2 (en) * | 2018-10-19 | 2021-11-16 | Samsung Electronics Co., Ltd | Method and apparatus for active depth sensing and calibration method thereof |
| US11480793B2 (en) * | 2018-10-24 | 2022-10-25 | Google Llc | Systems, devices, and methods for aligning a lens in a laser projector |
| JP7146576B2 (ja) * | 2018-10-29 | 2022-10-04 | 芝浦機械株式会社 | 積層造形装置、積層造形方法、及びプログラム |
| WO2020091764A1 (en) | 2018-10-31 | 2020-05-07 | Hewlett-Packard Development Company, L.P. | Recovering perspective distortions |
| US11024037B2 (en) | 2018-11-15 | 2021-06-01 | Samsung Electronics Co., Ltd. | Foreground-background-aware atrous multiscale network for disparity estimation |
| US10628968B1 (en) * | 2018-12-05 | 2020-04-21 | Toyota Research Institute, Inc. | Systems and methods of calibrating a depth-IR image offset |
| CN118570606A (zh) * | 2018-12-14 | 2024-08-30 | 苹果公司 | 机器学习辅助的图像预测 |
| CN109798838B (zh) * | 2018-12-19 | 2020-10-27 | 西安交通大学 | 一种基于激光散斑投射的ToF深度传感器及其测距方法 |
| CN109741386B (zh) * | 2018-12-26 | 2020-07-31 | 豪威科技(武汉)有限公司 | 立体视觉系统的增强方法及立体视觉系统 |
| CA3125166A1 (en) | 2018-12-28 | 2020-07-02 | Activ Surgical, Inc. | User interface elements for orientation of remote camera during surgery |
| CN113993474A (zh) | 2018-12-28 | 2022-01-28 | 艾科缇弗外科公司 | 在微创手术中优化可达性、工作空间和灵巧性的系统和方法 |
| US10917568B2 (en) | 2018-12-28 | 2021-02-09 | Microsoft Technology Licensing, Llc | Low-power surface reconstruction |
| US11333895B1 (en) | 2019-01-11 | 2022-05-17 | Facebook Technologies, Llc | Systems and methods for structured light projector operational safety |
| JP7211835B2 (ja) * | 2019-02-04 | 2023-01-24 | i-PRO株式会社 | 撮像システムおよび同期制御方法 |
| CN110087057B (zh) * | 2019-03-11 | 2021-10-12 | 歌尔股份有限公司 | 一种投影仪的深度图像获取方法和装置 |
| US20200292297A1 (en) * | 2019-03-15 | 2020-09-17 | Faro Technologies, Inc. | Three-dimensional measurement device |
| US12292564B2 (en) | 2019-04-08 | 2025-05-06 | Activ Surgical, Inc. | Systems and methods for medical imaging |
| CN113950279B (zh) | 2019-04-08 | 2023-04-14 | 艾科缇弗外科公司 | 用于医疗成像的系统和方法 |
| US11039118B2 (en) | 2019-04-17 | 2021-06-15 | XRSpace CO., LTD. | Interactive image processing system using infrared cameras |
| WO2020214821A1 (en) | 2019-04-19 | 2020-10-22 | Activ Surgical, Inc. | Systems and methods for trocar kinematics |
| EP3731175A1 (en) * | 2019-04-26 | 2020-10-28 | XRSpace CO., LTD. | Interactive image processing system using infrared cameras |
| CN110111390A (zh) * | 2019-05-15 | 2019-08-09 | 湖南科技大学 | 基于双目视觉光流跟踪的薄壁件全向振动测量方法及系统 |
| CN110012206A (zh) * | 2019-05-24 | 2019-07-12 | Oppo广东移动通信有限公司 | 图像获取方法、图像获取装置、电子设备和可读存储介质 |
| CN110209363A (zh) * | 2019-05-30 | 2019-09-06 | 大连理工大学 | 基于遗传算法的智能3d打印路径规划方法 |
| EP3760966B1 (en) * | 2019-07-02 | 2024-06-26 | Topcon Corporation | Method of optical coherence tomography imaging and method of processing oct data |
| EP4017340A4 (en) | 2019-08-21 | 2023-12-13 | Activ Surgical, Inc. | Systems and methods for medical imaging |
| CN110524874B (zh) * | 2019-08-23 | 2022-03-08 | 源秩科技(上海)有限公司 | 光固化3d打印装置及其打印方法 |
| US11270110B2 (en) | 2019-09-17 | 2022-03-08 | Boston Polarimetrics, Inc. | Systems and methods for surface modeling using polarization cues |
| CN112559037B (zh) * | 2019-09-25 | 2024-04-12 | 阿里巴巴集团控股有限公司 | 一种指令执行方法、单元、装置及系统 |
| CN114746717A (zh) | 2019-10-07 | 2022-07-12 | 波士顿偏振测定公司 | 利用偏振进行表面法线感测的系统和方法 |
| US11796829B1 (en) * | 2019-10-31 | 2023-10-24 | Meta Platforms Technologies, Llc | In-field illuminator for eye depth sensing |
| US10890839B1 (en) * | 2019-11-06 | 2021-01-12 | Himax Technologies Limited | Structured light imaging device |
| KR20220103962A (ko) * | 2019-11-27 | 2022-07-25 | 트리나미엑스 게엠베하 | 디스플레이를 통한 깊이 측정 |
| JP7329143B2 (ja) | 2019-11-30 | 2023-08-17 | ボストン ポーラリメトリックス,インコーポレイティド | 偏光キューを用いた透明な物体のセグメンテーションのためのシステム及び方法 |
| CN113009705A (zh) * | 2019-12-19 | 2021-06-22 | 苏州苏大维格科技集团股份有限公司 | 一种消除零级衍射影响的结构光组件 |
| US11132804B2 (en) * | 2020-01-07 | 2021-09-28 | Himax Technologies Limited | Hybrid depth estimation system |
| EP4081933A4 (en) | 2020-01-29 | 2024-03-20 | Intrinsic Innovation LLC | Systems and methods for characterizing object pose detection and measurement systems |
| EP4085424A4 (en) | 2020-01-30 | 2024-03-27 | Intrinsic Innovation LLC | SYSTEMS AND METHODS OF DATA SYNTHESIS FOR TRAINING STATISTICAL MODELS ON DIFFERENT IMAGING MODALITIES INCLUDING POLARIZED IMAGES |
| WO2021171695A1 (ja) * | 2020-02-28 | 2021-09-02 | 富士フイルム株式会社 | 撮像システム、撮像システムの制御方法、及びプログラム |
| CN113365035B (zh) * | 2020-03-04 | 2022-10-21 | 合肥君正科技有限公司 | 一种图像色彩还原的校准系统 |
| US11503266B2 (en) * | 2020-03-06 | 2022-11-15 | Samsung Electronics Co., Ltd. | Super-resolution depth map generation for multi-camera or other environments |
| CN111246073B (zh) * | 2020-03-23 | 2022-03-25 | 维沃移动通信有限公司 | 成像装置、方法及电子设备 |
| WO2021222090A1 (en) | 2020-04-30 | 2021-11-04 | Siemens Healthcare Diagnostics Inc. | Apparatus, method for calibrating an apparatus and device therefor |
| CN111678457B (zh) * | 2020-05-08 | 2021-10-01 | 西安交通大学 | 一种OLED透明屏下ToF装置及测距方法 |
| WO2021243088A1 (en) | 2020-05-27 | 2021-12-02 | Boston Polarimetrics, Inc. | Multi-aperture polarization optical systems using beam splitters |
| CN111787084A (zh) * | 2020-06-23 | 2020-10-16 | 杭州数澜科技有限公司 | 一种圈选对象的方法和装置 |
| KR102788915B1 (ko) | 2020-09-10 | 2025-03-31 | 삼성전자주식회사 | 증강 현실 장치 및 그 제어 방법 |
| CN114268774A (zh) * | 2020-09-16 | 2022-04-01 | Oppo广东移动通信有限公司 | 图像采集方法、图像传感器、装置、设备以及存储介质 |
| US11657529B2 (en) * | 2020-10-12 | 2023-05-23 | Black Sesame Technologies Inc. | Multiple camera system with flash for depth map generation |
| DE102020133085A1 (de) | 2020-12-11 | 2022-06-15 | Dürr Assembly Products GmbH | Verfahren zur Vermessung der Kotflügelkante eines Fahrzeugs in einem Prüfstand |
| CN112959661B (zh) * | 2021-01-26 | 2024-02-02 | 深圳市创必得科技有限公司 | Lcd光固化3d打印均光优化补偿方法及装置 |
| EP4281289A4 (en) * | 2021-01-29 | 2025-01-01 | Essentium IPCO, LLC | CONTOUR SMOOTHING FOR THREE-DIMENSIONALLY PRINTED MATERIAL EXTRUSION PARTS |
| CN112859330B (zh) * | 2021-02-18 | 2025-03-25 | 嘉兴驭光光电科技有限公司 | 衍射光学元件及设计方法、光学投影装置以及车辆 |
| US12020455B2 (en) | 2021-03-10 | 2024-06-25 | Intrinsic Innovation Llc | Systems and methods for high dynamic range image reconstruction |
| US12069227B2 (en) | 2021-03-10 | 2024-08-20 | Intrinsic Innovation Llc | Multi-modal and multi-spectral stereo camera arrays |
| US11954886B2 (en) | 2021-04-15 | 2024-04-09 | Intrinsic Innovation Llc | Systems and methods for six-degree of freedom pose estimation of deformable objects |
| US11290658B1 (en) | 2021-04-15 | 2022-03-29 | Boston Polarimetrics, Inc. | Systems and methods for camera exposure control |
| US12067746B2 (en) | 2021-05-07 | 2024-08-20 | Intrinsic Innovation Llc | Systems and methods for using computer vision to pick up small objects |
| US20240223878A1 (en) * | 2021-05-26 | 2024-07-04 | Nippon Telegraph And Telephone Corporation | Cracking image inspection system and method |
| US12175741B2 (en) | 2021-06-22 | 2024-12-24 | Intrinsic Innovation Llc | Systems and methods for a vision guided end effector |
| US12340538B2 (en) | 2021-06-25 | 2025-06-24 | Intrinsic Innovation Llc | Systems and methods for generating and using visual datasets for training computer vision models |
| US11636623B2 (en) * | 2021-06-28 | 2023-04-25 | Motional Ad Llc | Systems and methods for camera alignment using pre-distorted targets |
| US12172310B2 (en) | 2021-06-29 | 2024-12-24 | Intrinsic Innovation Llc | Systems and methods for picking objects using 3-D geometry and segmentation |
| US11689813B2 (en) | 2021-07-01 | 2023-06-27 | Intrinsic Innovation Llc | Systems and methods for high dynamic range imaging using crossed polarizers |
| US12293535B2 (en) | 2021-08-03 | 2025-05-06 | Intrinsic Innovation Llc | Systems and methods for training pose estimators in computer vision |
| JP7791983B2 (ja) * | 2021-08-06 | 2025-12-24 | ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド | 非平面状の表面を3dプリントするためのシステムおよび方法 |
| US11852439B2 (en) * | 2021-11-24 | 2023-12-26 | Wrap Technologies, Inc. | Systems and methods for generating optical beam arrays |
| CN114371554B (zh) * | 2021-12-31 | 2024-08-13 | 嘉兴驭光光电科技有限公司 | 用于分束的衍射光学元件及其设计方法、结构光投射器 |
| US12288362B2 (en) | 2022-01-21 | 2025-04-29 | Motional Ad Llc | Active alignment of an optical assembly with intrinsic calibration |
| CN116800947A (zh) * | 2022-03-16 | 2023-09-22 | 安霸国际有限合伙企业 | 用于大规模生产过程的快速rgb-ir校准验证 |
| CN118922685A (zh) | 2022-03-30 | 2024-11-08 | 索尼集团公司 | 信息处理装置、信息处理方法和信息处理程序 |
| US12501180B2 (en) | 2022-05-25 | 2025-12-16 | Samsung Electronics Co., Ltd. | RGB-NIR processing and calibration |
| KR20230174621A (ko) * | 2022-06-21 | 2023-12-28 | 삼성전자주식회사 | 깊이 맵 생성을 위한 전자 장치 및 그 동작 방법 |
| US12244937B2 (en) * | 2022-07-29 | 2025-03-04 | Texas Instruments Incorporated | RGB-IR pixel pattern conversion via conversion engine |
| US11972504B2 (en) * | 2022-08-10 | 2024-04-30 | Zhejiang Lab | Method and system for overlapping sliding window segmentation of image based on FPGA |
| KR102674408B1 (ko) * | 2022-12-28 | 2024-06-12 | 에이아이다이콤 (주) | 비 접촉식 의료 영상 제어 시스템 |
| US12207003B2 (en) | 2023-03-02 | 2025-01-21 | e-con Systems India Private | System and method for IR subtraction in an RGB-IR image sensor using FPGA |
| US12499622B2 (en) | 2023-03-23 | 2025-12-16 | Microsoft Technology Licensing, Llc. | Late stage reprojection using tessellated mesh |
| CN116448250A (zh) * | 2023-06-14 | 2023-07-18 | 国网山西省电力公司超高压变电分公司 | 一种电力设备红外热成像辅助定位装置及辅助定位方法 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0085210A1 (en) * | 1982-01-29 | 1983-08-10 | International Business Machines Corporation | Image processing system |
| WO2006016303A2 (en) * | 2004-08-11 | 2006-02-16 | Philips Intellectual Property & Standards Gmbh | Stripe-based image data storage |
| WO2007132399A1 (en) * | 2006-05-09 | 2007-11-22 | Koninklijke Philips Electronics N.V. | Programmable data processing circuit |
Family Cites Families (160)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3938102A (en) | 1974-08-19 | 1976-02-10 | International Business Machines Corporation | Method and apparatus for accessing horizontal sequences and rectangular sub-arrays from an array stored in a modified word organized random access memory system |
| US5351152A (en) | 1991-07-23 | 1994-09-27 | The Board Of Governers Of Wayne State University | Direct-view stereoscopic confocal microscope |
| US5471326A (en) | 1993-04-30 | 1995-11-28 | Northrop Grumman Corporation | Holographic laser scanner and rangefinder |
| US5586200A (en) | 1994-01-07 | 1996-12-17 | Panasonic Technologies, Inc. | Segmentation based image compression system |
| US5739906A (en) | 1996-06-07 | 1998-04-14 | The United States Of America As Represented By The Secretary Of Commerce | Interferometric thickness variation test method for windows and silicon wafers using a diverging wavefront |
| US6105139A (en) | 1998-06-03 | 2000-08-15 | Nec Usa, Inc. | Controller-based power management for low-power sequential circuits |
| TW495749B (en) | 1998-08-03 | 2002-07-21 | Matsushita Electric Industrial Co Ltd | Optical head |
| JP3450792B2 (ja) | 1999-03-25 | 2003-09-29 | キヤノン株式会社 | 奥行き画像計測装置及び方法、並びに複合現実感提示システム |
| US6751344B1 (en) | 1999-05-28 | 2004-06-15 | Champion Orthotic Investments, Inc. | Enhanced projector system for machine vision |
| GB0008303D0 (en) | 2000-04-06 | 2000-05-24 | British Aerospace | Measurement system and method |
| US6826299B2 (en) | 2000-07-31 | 2004-11-30 | Geodetic Services, Inc. | Photogrammetric image correlation and measurement system and method |
| US6850872B1 (en) | 2000-08-30 | 2005-02-01 | Microsoft Corporation | Facial image processing methods and systems |
| US7554737B2 (en) | 2000-12-20 | 2009-06-30 | Riake Corporation | Illumination device and method using adaptable source and output format |
| US6895115B2 (en) | 2001-04-23 | 2005-05-17 | The United States Of America As Represented By The United States National Aeronautics And Space Administration | Method for implementation of recursive hierarchical segmentation on parallel computers |
| WO2003005733A1 (en) | 2001-07-06 | 2003-01-16 | Explay Ltd. | An image projecting device and method |
| JP4635392B2 (ja) | 2001-08-09 | 2011-02-23 | コニカミノルタホールディングス株式会社 | 3次元物体の表面形状モデリング装置、および、プログラム |
| US6940538B2 (en) | 2001-08-29 | 2005-09-06 | Sony Corporation | Extracting a depth map from known camera and model tracking data |
| RU2237284C2 (ru) | 2001-11-27 | 2004-09-27 | Самсунг Электроникс Ко., Лтд. | Способ генерирования структуры узлов, предназначенных для представления трехмерных объектов с использованием изображений с глубиной |
| US7762964B2 (en) | 2001-12-10 | 2010-07-27 | Candela Corporation | Method and apparatus for improving safety during exposure to a monochromatic light source |
| JP4075418B2 (ja) | 2002-03-15 | 2008-04-16 | ソニー株式会社 | 画像処理装置及び画像処理方法、印刷物製造装置及び印刷物製造方法、並びに印刷物製造システム |
| US6771271B2 (en) | 2002-06-13 | 2004-08-03 | Analog Devices, Inc. | Apparatus and method of processing image data |
| US7399220B2 (en) | 2002-08-02 | 2008-07-15 | Kriesel Marshall S | Apparatus and methods for the volumetric and dimensional measurement of livestock |
| CN1176351C (zh) | 2002-10-09 | 2004-11-17 | 天津大学 | 动态多分辨率的三维数字成像的方法及装置 |
| CN1186671C (zh) | 2002-10-09 | 2005-01-26 | 天津大学 | 投影结构光的产生方法及装置 |
| JP2004135209A (ja) | 2002-10-15 | 2004-04-30 | Hitachi Ltd | 広視野高解像度映像の生成装置及び方法 |
| GB2395261A (en) | 2002-11-11 | 2004-05-19 | Qinetiq Ltd | Ranging apparatus |
| US7103212B2 (en) | 2002-11-22 | 2006-09-05 | Strider Labs, Inc. | Acquisition of three-dimensional images by an active stereo technique using locally unique patterns |
| US7154157B2 (en) | 2002-12-30 | 2006-12-26 | Intel Corporation | Stacked semiconductor radiation sensors having color component and infrared sensing capability |
| JP3938120B2 (ja) | 2003-09-17 | 2007-06-27 | ノーリツ鋼機株式会社 | 画像処理装置、方法、及びプログラム |
| FR2870621B1 (fr) | 2004-05-21 | 2006-10-27 | Inst Francais Du Petrole | Methode pour generer un maillage hybride conforme en trois dimensions d'une formation heterogene traversee par une ou plusieurs discontinuites geometriques dans le but de realiser des simulations |
| JP4011039B2 (ja) | 2004-05-31 | 2007-11-21 | 三菱電機株式会社 | 撮像装置及び信号処理方法 |
| DE102004029552A1 (de) | 2004-06-18 | 2006-01-05 | Peter Mäckel | Verfahren zur Sichtbarmachung und Messung von Verformungen von schwingenden Objekten mittels einer Kombination einer synchronisierten, stroboskopischen Bildaufzeichnung mit Bildkorrelationsverfahren |
| US7315383B1 (en) * | 2004-07-09 | 2008-01-01 | Mohsen Abdollahi | Scanning 3D measurement technique using structured lighting and high-speed CMOS imager |
| WO2006025271A1 (ja) | 2004-09-03 | 2006-03-09 | Konica Minolta Opto, Inc. | カップリングレンズ及び光ピックアップ装置 |
| JP4883517B2 (ja) | 2004-11-19 | 2012-02-22 | 学校法人福岡工業大学 | 三次元計測装置および三次元計測方法並びに三次元計測プログラム |
| US7719533B2 (en) | 2004-11-24 | 2010-05-18 | General Electric Company | Graph extraction labelling and visualization |
| US7367682B2 (en) | 2004-12-07 | 2008-05-06 | Symbol Technologies, Inc. | Color image projection arrangement and method |
| JP2008537190A (ja) | 2005-01-07 | 2008-09-11 | ジェスチャー テック,インコーポレイテッド | 赤外線パターンを照射することによる対象物の三次元像の生成 |
| JP4506501B2 (ja) | 2005-02-21 | 2010-07-21 | 株式会社日立製作所 | 画像合成装置及び撮像システム |
| US7512262B2 (en) | 2005-02-25 | 2009-03-31 | Microsoft Corporation | Stereo-based image processing |
| US7295771B2 (en) | 2005-04-25 | 2007-11-13 | Delphi Technologies, Inc. | Method and apparatus for minimizing ambient illumination effects in a vision system |
| JP4577126B2 (ja) | 2005-07-08 | 2010-11-10 | オムロン株式会社 | ステレオ対応づけのための投光パターンの生成装置及び生成方法 |
| CN101288105B (zh) | 2005-10-11 | 2016-05-25 | 苹果公司 | 用于物体重现的方法和系统 |
| US20070145273A1 (en) | 2005-12-22 | 2007-06-28 | Chang Edward T | High-sensitivity infrared color camera |
| US7821552B2 (en) | 2005-12-27 | 2010-10-26 | Sanyo Electric Co., Ltd. | Imaging apparatus provided with imaging device having sensitivity in visible and infrared regions |
| JP4466569B2 (ja) | 2006-01-10 | 2010-05-26 | 株式会社豊田中央研究所 | カラー画像再生装置 |
| DE102006007170B4 (de) | 2006-02-08 | 2009-06-10 | Sirona Dental Systems Gmbh | Verfahren und Anordnung zur schnellen und robusten chromatisch konfokalen 3D-Messtechnik |
| KR101331543B1 (ko) | 2006-03-14 | 2013-11-20 | 프라임센스 엘티디. | 스페클 패턴을 이용한 3차원 센싱 |
| JP5592070B2 (ja) | 2006-03-14 | 2014-09-17 | プライム センス リミティド | 三次元検知のために深度変化させる光照射野 |
| US7970177B2 (en) * | 2006-03-23 | 2011-06-28 | Tyzx, Inc. | Enhancing stereo depth measurements with projected texture |
| GB0718706D0 (en) | 2007-09-25 | 2007-11-07 | Creative Physics Ltd | Method and apparatus for reducing laser speckle |
| EP2064676B1 (en) | 2006-09-21 | 2011-09-07 | Thomson Licensing | A method and system for three-dimensional model acquisition |
| ATE556397T1 (de) | 2006-09-28 | 2012-05-15 | Bea Sa | Sensor zur präsenzdetektion |
| WO2008133650A2 (en) | 2006-11-07 | 2008-11-06 | Rudolph Technologies, Inc. | Method and system for providing a high definition triangulation system |
| EP2618102A2 (en) | 2006-11-21 | 2013-07-24 | Mantisvision Ltd. | 3d geometric modeling and 3d video content creation |
| US8090194B2 (en) | 2006-11-21 | 2012-01-03 | Mantis Vision Ltd. | 3D geometric modeling and motion capture using both single and dual imaging |
| US8167999B2 (en) | 2007-01-10 | 2012-05-01 | 3D Systems, Inc. | Three-dimensional printing material system with improved color, article performance, and ease of use |
| US8326020B2 (en) | 2007-02-28 | 2012-12-04 | Sungkyunkwan University Foundation | Structural light based depth imaging method and system using signal separation coding, and error correction thereof |
| US7683962B2 (en) | 2007-03-09 | 2010-03-23 | Eastman Kodak Company | Camera using multiple lenses and image sensors in a rangefinder configuration to provide a range map |
| FR2914422B1 (fr) | 2007-03-28 | 2009-07-03 | Soitec Silicon On Insulator | Procede de detection de defauts de surface d'un substrat et dispositif mettant en oeuvre ledit procede. |
| CA2684567A1 (en) | 2007-04-23 | 2008-11-06 | California Institute Of Technology | Single-lens, single-aperture, single-sensor 3-d imaging device |
| JP2008288629A (ja) * | 2007-05-15 | 2008-11-27 | Sony Corp | 画像信号処理装置、撮像素子、および画像信号処理方法、並びにコンピュータ・プログラム |
| WO2008142846A1 (ja) * | 2007-05-18 | 2008-11-27 | Panasonic Corporation | 立体画像表示装置 |
| JP5018282B2 (ja) | 2007-07-04 | 2012-09-05 | マツダ株式会社 | 製品の3次元形状モデルデータ作成方法 |
| EP2186337A4 (en) | 2007-08-08 | 2011-09-28 | Tony Mayer | NONTRETRO-REFLECTIVE NUMBER PLATE PICTURE SYSTEM |
| US7933056B2 (en) | 2007-09-26 | 2011-04-26 | Che-Chih Tsao | Methods and systems of rapid focusing and zooming for volumetric 3D displays and cameras |
| GB2465739A (en) | 2007-10-02 | 2010-06-02 | Doubleshot Inc | Laser beam pattern projector |
| WO2009046268A1 (en) | 2007-10-04 | 2009-04-09 | Magna Electronics | Combined rgb and ir imaging sensor |
| IL191615A (en) | 2007-10-23 | 2015-05-31 | Israel Aerospace Ind Ltd | A method and system for producing tie points for use in stereo adjustment of stereoscopic images and a method for identifying differences in the landscape taken between two time points |
| US8384997B2 (en) * | 2008-01-21 | 2013-02-26 | Primesense Ltd | Optical pattern projection |
| US7958468B2 (en) | 2008-02-21 | 2011-06-07 | Oracle America, Inc. | Unidirectional relabeling for subcircuit recognition |
| US7861193B2 (en) | 2008-02-21 | 2010-12-28 | Oracle America, Inc. | Reuse of circuit labels for verification of circuit recognition |
| US8788990B2 (en) | 2008-02-21 | 2014-07-22 | Oracle America, Inc. | Reuse of circuit labels in subcircuit recognition |
| US8368753B2 (en) | 2008-03-17 | 2013-02-05 | Sony Computer Entertainment America Llc | Controller with an integrated depth camera |
| US9173554B2 (en) | 2008-03-18 | 2015-11-03 | Novadaq Technologies, Inc. | Imaging system for combined full-color reflectance and near-infrared imaging |
| US8405727B2 (en) * | 2008-05-01 | 2013-03-26 | Apple Inc. | Apparatus and method for calibrating image capture devices |
| NZ567986A (en) | 2008-05-02 | 2010-08-27 | Auckland Uniservices Ltd | Real-time stereo image matching system |
| US8866920B2 (en) | 2008-05-20 | 2014-10-21 | Pelican Imaging Corporation | Capturing and processing of images using monolithic camera array with heterogeneous imagers |
| JP5317169B2 (ja) | 2008-06-13 | 2013-10-16 | 洋 川崎 | 画像処理装置、画像処理方法およびプログラム |
| JP4513905B2 (ja) | 2008-06-27 | 2010-07-28 | ソニー株式会社 | 信号処理装置、信号処理方法、プログラム及び記録媒体 |
| KR101530930B1 (ko) | 2008-08-19 | 2015-06-24 | 삼성전자주식회사 | 패턴투영장치, 이를 구비한 3차원 이미지 형성장치, 및 이에 사용되는 초점 가변 액체렌즈 |
| EP2166304A1 (de) * | 2008-09-23 | 2010-03-24 | Sick Ag | Beleuchtungseinheit und Verfahren zur Erzeugung eines selbstunähnlichen Musters |
| US8442940B1 (en) | 2008-11-18 | 2013-05-14 | Semantic Research, Inc. | Systems and methods for pairing of a semantic network and a natural language processing information extraction system |
| JP5430138B2 (ja) | 2008-12-17 | 2014-02-26 | 株式会社トプコン | 形状測定装置およびプログラム |
| CN101509764A (zh) | 2009-02-27 | 2009-08-19 | 东南大学 | 一种快速获取物体三维形状的方法 |
| DE102009001889A1 (de) | 2009-03-26 | 2010-09-30 | Robert Bosch Gmbh | Lasermarkierung mit Koordinatensystem |
| US8823775B2 (en) | 2009-04-30 | 2014-09-02 | Board Of Regents, The University Of Texas System | Body surface imaging |
| WO2011013079A1 (en) | 2009-07-30 | 2011-02-03 | Primesense Ltd. | Depth mapping based on pattern matching and stereoscopic information |
| US8204904B2 (en) | 2009-09-30 | 2012-06-19 | Yahoo! Inc. | Network graph evolution rule generation |
| KR101173668B1 (ko) | 2009-10-27 | 2012-08-20 | 서울대학교산학협력단 | 다중 공간 주파수를 이용한 3차원 물체의 깊이 측정 방법 및 그 장치 |
| US9047674B2 (en) | 2009-11-03 | 2015-06-02 | Samsung Electronics Co., Ltd. | Structured grids and graph traversal for image processing |
| KR101377325B1 (ko) | 2009-12-21 | 2014-03-25 | 한국전자통신연구원 | 스테레오 영상, 다시점 영상 및 깊이 영상 획득 카메라 장치 및 그 제어 방법 |
| US20130278631A1 (en) | 2010-02-28 | 2013-10-24 | Osterhout Group, Inc. | 3d positioning of augmented reality information |
| US20110222757A1 (en) | 2010-03-10 | 2011-09-15 | Gbo 3D Technology Pte. Ltd. | Systems and methods for 2D image and spatial data capture for 3D stereo imaging |
| JP2011191221A (ja) | 2010-03-16 | 2011-09-29 | Sanyo Electric Co Ltd | 物体検出装置および情報取得装置 |
| US8619143B2 (en) | 2010-03-19 | 2013-12-31 | Pixim, Inc. | Image sensor including color and infrared pixels |
| KR20110132260A (ko) | 2010-05-29 | 2011-12-07 | 이문기 | 모니터 기반 증강현실 시스템 |
| US8670029B2 (en) | 2010-06-16 | 2014-03-11 | Microsoft Corporation | Depth camera illuminator with superluminescent light-emitting diode |
| EP2400261A1 (de) | 2010-06-21 | 2011-12-28 | Leica Geosystems AG | Optisches Messverfahren und Messsystem zum Bestimmen von 3D-Koordinaten auf einer Messobjekt-Oberfläche |
| GB2481459B (en) | 2010-06-25 | 2017-05-03 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E V | Capturing a surface structure of an object surface |
| US8357899B2 (en) | 2010-07-30 | 2013-01-22 | Aptina Imaging Corporation | Color correction circuitry and methods for dual-band imaging systems |
| US9036158B2 (en) | 2010-08-11 | 2015-05-19 | Apple Inc. | Pattern projector |
| DE102010039246A1 (de) | 2010-08-12 | 2012-02-16 | Robert Bosch Gmbh | Verfahren zum Kalibrieren eines Messsystems und Vorrichtung zum Durchführen des Verfahrens |
| US20120056982A1 (en) | 2010-09-08 | 2012-03-08 | Microsoft Corporation | Depth camera based on structured light and stereo vision |
| US8903119B2 (en) | 2010-10-11 | 2014-12-02 | Texas Instruments Incorporated | Use of three-dimensional top-down views for business analytics |
| JP5787508B2 (ja) | 2010-11-11 | 2015-09-30 | キヤノン株式会社 | 回折光学素子及び光学系 |
| US20120154397A1 (en) | 2010-12-03 | 2012-06-21 | Old Dominion University Research Foundation | Method and system for generating mesh from images |
| KR101694292B1 (ko) | 2010-12-17 | 2017-01-09 | 한국전자통신연구원 | 스테레오 영상 정합 장치 및 그 방법 |
| CN102867328B (zh) | 2011-01-27 | 2014-04-23 | 深圳泰山在线科技有限公司 | 一种物体表面重建的系统 |
| US9247238B2 (en) | 2011-01-31 | 2016-01-26 | Microsoft Technology Licensing, Llc | Reducing interference between multiple infra-red depth cameras |
| DE102011004663B4 (de) * | 2011-02-24 | 2018-11-22 | Robert Bosch Gmbh | Vorrichtung zur Fahrzeugvermessung |
| KR101289595B1 (ko) | 2011-02-28 | 2013-07-24 | 이경자 | 격자패턴투영장치 |
| KR101792501B1 (ko) | 2011-03-16 | 2017-11-21 | 한국전자통신연구원 | 특징기반의 스테레오 매칭 방법 및 장치 |
| KR101801355B1 (ko) | 2011-03-25 | 2017-11-24 | 엘지전자 주식회사 | 회절 소자와 광원을 이용한 대상물의 거리 인식 장치 |
| US8718748B2 (en) | 2011-03-29 | 2014-05-06 | Kaliber Imaging Inc. | System and methods for monitoring and assessing mobility |
| CN103477186B (zh) | 2011-04-07 | 2016-01-27 | 松下知识产权经营株式会社 | 立体摄像装置 |
| CN102760234B (zh) | 2011-04-14 | 2014-08-20 | 财团法人工业技术研究院 | 深度图像采集装置、系统及其方法 |
| US8760499B2 (en) | 2011-04-29 | 2014-06-24 | Austin Russell | Three-dimensional imager and projection device |
| WO2012151173A1 (en) | 2011-05-02 | 2012-11-08 | Faro Technologies, Inc. | Three-dimensional scanner for hand-held phones |
| US9536312B2 (en) | 2011-05-16 | 2017-01-03 | Microsoft Corporation | Depth reconstruction using plural depth capture units |
| US9245307B2 (en) | 2011-06-01 | 2016-01-26 | Empire Technology Development Llc | Structured light projection for motion detection in augmented reality |
| CN102831380A (zh) | 2011-06-15 | 2012-12-19 | 康佳集团股份有限公司 | 一种基于深度图像感应的肢体动作识别方法及系统 |
| US9530192B2 (en) | 2011-06-30 | 2016-12-27 | Kodak Alaris Inc. | Method for determining stereo quality score and automatically improving the quality of stereo images |
| US9369632B2 (en) | 2011-07-29 | 2016-06-14 | Hewlett-Packard Development Company, L.P. | Projection capture system, programming and method |
| DE102011052802B4 (de) * | 2011-08-18 | 2014-03-13 | Sick Ag | 3D-Kamera und Verfahren zur Überwachung eines Raumbereichs |
| US8867825B2 (en) | 2011-08-30 | 2014-10-21 | Thompson Licensing | Method and apparatus for determining a similarity or dissimilarity measure |
| EP2754129A4 (en) | 2011-09-07 | 2015-05-06 | Commw Scient Ind Res Org | SYSTEM AND METHOD FOR IMPRINTING THREE-DIMENSIONAL SURFACES |
| US9285871B2 (en) | 2011-09-30 | 2016-03-15 | Microsoft Technology Licensing, Llc | Personal audio/visual system for providing an adaptable augmented reality environment |
| US20130095920A1 (en) * | 2011-10-13 | 2013-04-18 | Microsoft Corporation | Generating free viewpoint video using stereo imaging |
| US9248623B2 (en) | 2011-10-14 | 2016-02-02 | Makerbot Industries, Llc | Grayscale rendering in 3D printing |
| US9098908B2 (en) | 2011-10-21 | 2015-08-04 | Microsoft Technology Licensing, Llc | Generating a depth map |
| US20140098342A1 (en) | 2011-11-04 | 2014-04-10 | The General Hospital Corporation | System and method for corneal irradiation |
| JP5910043B2 (ja) * | 2011-12-02 | 2016-04-27 | 富士通株式会社 | 撮像装置、画像処理プログラム、画像処理方法、および画像処理装置 |
| JP5898484B2 (ja) | 2011-12-19 | 2016-04-06 | キヤノン株式会社 | 情報処理装置、情報処理装置の制御方法、およびプログラム |
| CN102572485B (zh) | 2012-02-02 | 2015-04-22 | 北京大学 | 一种自适应加权立体匹配算法、立体显示采集装置及系统 |
| US20130229396A1 (en) | 2012-03-05 | 2013-09-05 | Kenneth J. Huebner | Surface aware, object aware, and image aware handheld projector |
| JP5994715B2 (ja) | 2012-04-10 | 2016-09-21 | パナソニックIpマネジメント株式会社 | 計算機ホログラム型表示装置 |
| KR20130120730A (ko) | 2012-04-26 | 2013-11-05 | 한국전자통신연구원 | 변이 공간 영상의 처리 방법 |
| US9514522B2 (en) | 2012-08-24 | 2016-12-06 | Microsoft Technology Licensing, Llc | Depth data processing and compression |
| US9332243B2 (en) | 2012-10-17 | 2016-05-03 | DotProduct LLC | Handheld portable optical scanner and method of using |
| US10674135B2 (en) | 2012-10-17 | 2020-06-02 | DotProduct LLC | Handheld portable optical scanner and method of using |
| US9117267B2 (en) | 2012-10-18 | 2015-08-25 | Google Inc. | Systems and methods for marking images for three-dimensional image generation |
| US20140120319A1 (en) | 2012-11-01 | 2014-05-01 | Benjamin E. Joseph | 3d mapping using structured light and formation of custom surface contours |
| KR20140075163A (ko) | 2012-12-11 | 2014-06-19 | 한국전자통신연구원 | 구조광 방식을 활용한 패턴 프로젝팅 방법 및 장치 |
| US10049281B2 (en) | 2012-11-12 | 2018-08-14 | Shopperception, Inc. | Methods and systems for measuring human interaction |
| WO2014083485A1 (en) | 2012-11-29 | 2014-06-05 | Koninklijke Philips N.V. | Laser device for projecting a structured light pattern onto a scene |
| DE202012104890U1 (de) | 2012-12-14 | 2013-03-05 | Faro Technologies, Inc. | Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung |
| US9298945B2 (en) | 2012-12-26 | 2016-03-29 | Elwha Llc | Ad-hoc wireless sensor package |
| US9292927B2 (en) | 2012-12-27 | 2016-03-22 | Intel Corporation | Adaptive support windows for stereoscopic image correlation |
| US9251590B2 (en) | 2013-01-24 | 2016-02-02 | Microsoft Technology Licensing, Llc | Camera pose estimation for 3D reconstruction |
| US20140241612A1 (en) | 2013-02-23 | 2014-08-28 | Microsoft Corporation | Real time stereo matching |
| US20140293011A1 (en) * | 2013-03-28 | 2014-10-02 | Phasica, LLC | Scanner System for Determining the Three Dimensional Shape of an Object and Method for Using |
| US9191643B2 (en) | 2013-04-15 | 2015-11-17 | Microsoft Technology Licensing, Llc | Mixing infrared and color component data point clouds |
| US10268885B2 (en) | 2013-04-15 | 2019-04-23 | Microsoft Technology Licensing, Llc | Extracting true color from a color and infrared sensor |
| US20140320605A1 (en) | 2013-04-25 | 2014-10-30 | Philip Martin Johnson | Compound structured light projection system for 3-D surface profiling |
| CN103308517B (zh) | 2013-05-21 | 2015-09-30 | 谢绍鹏 | 中药颜色客观化方法及中药图像获取装置 |
| US10311746B2 (en) | 2016-06-14 | 2019-06-04 | Orcam Technologies Ltd. | Wearable apparatus and method for monitoring posture |
| CN113874912A (zh) | 2019-04-12 | 2021-12-31 | 爱荷华大学研究基金会 | 用于预测、预防和减轻工作场所伤害的系统和方法 |
| CN113345069B (zh) | 2020-03-02 | 2025-02-18 | 京东方科技集团股份有限公司 | 三维人体模型的建模方法、装置、系统及存储介质 |
| CN115211683A (zh) | 2022-06-10 | 2022-10-21 | 重庆第二师范学院 | 一种基于智能座椅的坐姿矫正方法、系统、设备和介质 |
-
2013
- 2013-06-11 US US13/915,622 patent/US10268885B2/en active Active
- 2013-06-11 US US13/915,626 patent/US20140307055A1/en not_active Abandoned
- 2013-06-14 US US13/918,892 patent/US9760770B2/en active Active
- 2013-06-20 US US13/923,135 patent/US9959465B2/en active Active
- 2013-06-21 US US13/924,464 patent/US10929658B2/en active Active
- 2013-06-21 US US13/924,485 patent/US9922249B2/en active Active
- 2013-06-21 US US13/924,475 patent/US9697424B2/en not_active Expired - Fee Related
- 2013-06-24 US US13/925,762 patent/US9928420B2/en active Active
- 2013-11-24 US US14/088,408 patent/US20140309764A1/en not_active Abandoned
-
2014
- 2014-04-14 EP EP14724934.6A patent/EP2987323B1/en active Active
- 2014-04-14 EP EP14724942.9A patent/EP2987138B1/en active Active
- 2014-04-14 MX MX2015014577A patent/MX357307B/es active IP Right Grant
- 2014-04-14 EP EP14727992.1A patent/EP2986936B1/en active Active
- 2014-04-14 CN CN201480021958.7A patent/CN105230003B/zh active Active
- 2014-04-14 AU AU2014254219A patent/AU2014254219B2/en not_active Ceased
- 2014-04-14 KR KR1020157032633A patent/KR102207768B1/ko not_active Expired - Fee Related
- 2014-04-14 CA CA2907895A patent/CA2907895C/en active Active
- 2014-04-14 CN CN201480021199.4A patent/CN105229412B/zh active Active
- 2014-04-14 CN CN201480021487.XA patent/CN105143817B/zh active Active
- 2014-04-14 EP EP14723271.4A patent/EP2987131A1/en not_active Ceased
- 2014-04-14 CN CN201480021460.0A patent/CN105229411B/zh active Active
- 2014-04-14 CN CN201480021519.6A patent/CN105247859B/zh active Active
- 2014-04-14 EP EP14725861.0A patent/EP2986931A1/en not_active Ceased
- 2014-04-14 WO PCT/US2014/033911 patent/WO2014172223A1/en not_active Ceased
- 2014-04-14 WO PCT/US2014/033915 patent/WO2014172227A1/en not_active Ceased
- 2014-04-14 WO PCT/US2014/033996 patent/WO2014172276A1/en not_active Ceased
- 2014-04-14 BR BR112015025819A patent/BR112015025819A8/pt not_active Application Discontinuation
- 2014-04-14 EP EP14726261.2A patent/EP2987320B1/en active Active
- 2014-04-14 WO PCT/US2014/033919 patent/WO2014172231A1/en not_active Ceased
- 2014-04-14 CN CN201480021493.5A patent/CN105229696A/zh active Pending
- 2014-04-14 RU RU2015143654A patent/RU2663329C2/ru not_active IP Right Cessation
- 2014-04-14 WO PCT/US2014/033910 patent/WO2014172222A1/en not_active Ceased
- 2014-04-14 KR KR1020157032651A patent/KR102130187B1/ko active Active
- 2014-04-14 WO PCT/US2014/033909 patent/WO2014172221A1/en not_active Ceased
- 2014-04-14 EP EP14725312.4A patent/EP2986935B1/en active Active
- 2014-04-14 WO PCT/US2014/033917 patent/WO2014172229A1/en not_active Ceased
- 2014-04-14 EP EP20184935.3A patent/EP3757510B1/en active Active
- 2014-04-14 JP JP2016508993A patent/JP6469080B2/ja not_active Expired - Fee Related
- 2014-04-14 CN CN201480021528.5A patent/CN105210112B/zh active Active
- 2014-04-14 CN CN201480021422.5A patent/CN105308650B/zh active Active
- 2014-04-14 EP EP14724600.3A patent/EP2987132B1/en active Active
- 2014-04-14 WO PCT/US2014/033916 patent/WO2014172228A1/en not_active Ceased
- 2014-04-15 US US14/253,696 patent/US9508003B2/en active Active
-
2018
- 2018-02-05 US US15/889,188 patent/US10816331B2/en active Active
- 2018-03-05 US US15/912,555 patent/US10928189B2/en active Active
- 2018-03-27 US US15/937,851 patent/US20180218210A1/en not_active Abandoned
-
2023
- 2023-03-20 US US18/186,933 patent/US12305974B2/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0085210A1 (en) * | 1982-01-29 | 1983-08-10 | International Business Machines Corporation | Image processing system |
| WO2006016303A2 (en) * | 2004-08-11 | 2006-02-16 | Philips Intellectual Property & Standards Gmbh | Stripe-based image data storage |
| WO2007132399A1 (en) * | 2006-05-09 | 2007-11-22 | Koninklijke Philips Electronics N.V. | Programmable data processing circuit |
Non-Patent Citations (3)
| Title |
|---|
| CHIHOUB A ET AL: "A BAND PROCESSING IMAGING LIBRARY FOR A TRICORE-BASED DIGITAL STILL CAMERA", REAL-TIME IMAGING, ACADEMIC PRESS LIMITED, GB, vol. 7, no. 4, 1 August 2001 (2001-08-01), pages 327 - 337, XP001124987 * |
| I. KUON ET AL.: "FPGA Architecture: Survey and Challenges", FOUNDATIONS AND TRENDS IN ELECTRONIC DESIGN AUTOMATION, vol. 2, no. 2, 2007, pages 135 - 253, XP002726220 * |
| YAMAGUCHI K ET AL: "Interleaved pixel lookup for embedded computer vision", COMPUTER VISION AND PATTERN RECOGNITION, CVPR WORKSHOPS 2008. IEEE, PISCATAWAY, NJ, USA, 23 June 2008 (2008-06-23), pages 1 - 8, XP031285708 * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10817493B2 (en) | 2017-07-07 | 2020-10-27 | Raytheon Company | Data interpolation |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9760770B2 (en) | Parallel memories for multidimensional data access | |
| Palenstijn et al. | Performance improvements for iterative electron tomography reconstruction using graphics processing units (GPUs) | |
| US8902228B2 (en) | Optimizing resolve performance with tiling graphics architectures | |
| CA2742586C (en) | System, data structure, and method for simultaneously retrieving multi-dimensional data with zero data contention | |
| US10950305B1 (en) | Selective pixel output | |
| US10649795B2 (en) | Method of and apparatus for providing an output surface in a data processing system | |
| US20180144538A1 (en) | Method and apparatus for performing tile-based rendering | |
| KR20180054797A (ko) | 프리-페칭에 의한 효율적 디스플레이 프로세싱 | |
| US20240070800A1 (en) | Accessing local memory of a gpu executing a first kernel when executing a second kernel of another gpu | |
| CN110400367A (zh) | 降低渲染延迟的系统和方法 | |
| US9195501B2 (en) | Instruction culling in graphics processing unit | |
| US20130207983A1 (en) | Central processing unit, gpu simulation method thereof, and computing system including the same | |
| CN115943421B (zh) | 单通道的渲染和后处理滤波 | |
| US8212825B1 (en) | System and method for geometry shading | |
| JP2018522307A (ja) | グラフィックス処理のための表面フォーマットに基づく適応メモリアドレススキャニング | |
| US9009441B2 (en) | Memory channel selection in a multi-channel memory | |
| JP2016529593A (ja) | 立体シーンのインターリーブ方式のタイル型レンダリング | |
| WO2020092110A1 (en) | Parallel texture sampling | |
| US8681154B1 (en) | Adaptive rendering of indistinct objects | |
| US10230933B2 (en) | Processing three-dimensional (3D) image through selectively processing stereoscopic images | |
| CN107909537A (zh) | 一种基于卷积神经网络的图像处理方法及移动终端 | |
| CN107209926B (zh) | 具有拜耳映射的图形处理单元 | |
| CN114511657A (zh) | 一种数据处理方法及相关装置 | |
| US9508315B2 (en) | Ordering rays in rendered graphics for coherent shading | |
| EP2400455A1 (en) | System, data structure, and method for transposing multi-dimensional data to switch between vertical and horizontal filters |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 201480021493.5 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14723271 Country of ref document: EP Kind code of ref document: A1 |
|
| DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2014723271 Country of ref document: EP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |