JP2008537190A - 赤外線パターンを照射することによる対象物の三次元像の生成 - Google Patents

赤外線パターンを照射することによる対象物の三次元像の生成 Download PDF

Info

Publication number
JP2008537190A
JP2008537190A JP2007550469A JP2007550469A JP2008537190A JP 2008537190 A JP2008537190 A JP 2008537190A JP 2007550469 A JP2007550469 A JP 2007550469A JP 2007550469 A JP2007550469 A JP 2007550469A JP 2008537190 A JP2008537190 A JP 2008537190A
Authority
JP
Japan
Prior art keywords
image
dimensional
pixels
pixel
dimensional object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007550469A
Other languages
English (en)
Inventor
クー,ジン
Original Assignee
ジェスチャー テック,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジェスチャー テック,インコーポレイテッド filed Critical ジェスチャー テック,インコーポレイテッド
Publication of JP2008537190A publication Critical patent/JP2008537190A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2545Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with one projection direction and several detection directions, e.g. stereo
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/143Sensing or illuminating at different wavelengths
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/145Illumination specially adapted for pattern recognition, e.g. using gratings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/08Indexing scheme for image data processing or generation, in general involving all processing steps from image acquisition to 3D model generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/12Acquisition of 3D measurements of objects
    • G06V2201/121Acquisition of 3D measurements of objects using special illumination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N2013/0074Stereoscopic image analysis
    • H04N2013/0081Depth or disparity estimation from stereoscopic image signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Artificial Intelligence (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Generation (AREA)

Abstract

概略の態様によれば、画像処理は、三次元対象物に赤外線パターンを投射することと、前記パターンを前記三次元対象物に投射している間に前記三次元対象物の第1画像、第2画像、及び第3画像を生成することとを含む。前記第1画像および前記第2画像は前記三次元対象物と前記パターンとを含んでいる。前記第1画像と前記第2画像とは、それぞれ第1カメラと第2カメラにおいて赤外線フィルタによってフィルタリングされた光を捕捉することによって生成される。前記第3画像は、前記三次元対象物は含んでいるが前記パターンは含んでいない。該画像処理はまた、前記第1画像の複数のピクセルの一部と前記第2画像の複数のピクセルの一部との第1ペア対応関係を確立することを含む。該画像処理はさらに、前記第1ペア対応関係と前記第3画像とに基づいて、前記三次元対象物の三次元構造を描く二次元画像を生成することを含む。

Description

本開示は、画像処理に関する。
==関連出願の相互参照==
本願は、2005年1月7日に出願された米国仮出願シリアル番号60/641752「CREATING 3D IMAGES OF OBJECTS BY ILLUMINATING WITH INFRARED PATTERNS」に基づく優先権を主張するものである。この仮出願の内容の全体を本願明細書に援用する。
三次元デジタル化市場には、様々な目的の工業製品が存在する。例えば、医療用途、娯楽産業用途(例えば、三次元ゲーム、映画、アニメーションなど)、ファッションデザイン(例えば、三次元衣類デザイン、衣装合わせ、美容整形など)、遺跡の修復および/または保存、犯罪捜査用途(例えば、犯罪現場捜査)、オンライン商品展示(例えば、オンライン博物館・美術館、オンラインストアなど)などが挙げられる。
三次元デジタル化技法は概ね、能動検知と受動検知の2種類に分類される。第一の分類に属する技法である能動検知では通常、測定/観察する場面に向かって特定のエネルギー(例えば、光および/または音など)を発して、その反射エネルギーを受け取る、またはその反射パターンを観察し、光学または音響学での物理法則を利用してその場面におけるセンサーから対象物への距離を導き出す。能動検知では通常、光照射部品の複雑かつ高度な光学設計が必要となり、また、通常、三次元的捕捉を実行しやすくするために、制御された周囲照明を必要とする。この分類に入るセンサーは、走査システムの特定部品を物理的に動かすという通常の必要性(例えば、この分類に入るレーザー放射部品は、対象物の異なる線を走査するために動かす必要がある)から走査手順を実行するためにある程度の時間が通常は必要となるため、一般的には静的場面/対象物を検知することに限定される。能動三次元検知技法としては、レーザースキャン、モアレ縞形成、タイム・オブ・フライト、構造化光照射などが挙げられる。
一方、二番目の分類に属する技法である受動検知では通常、場面に向かってエネルギーを放射することはない。その代わりにこの技法では、例えば輝度および/または色などその場面で得られる特定の信号を捕捉する。そして、センサー構成情報と共にこれらの信号を分析してその場面の三次元情報を得る。立体視(2つ以上のカメラ)が、受動三次元感知の典型的な例である。
受動検知では通常、複雑な光学設計は必要ない。例えば、立体視システムは通常、場面/対象物のスナップショットを撮影して単純な装置で三次元情報を復元する。場面/対象物から三次元情報と色・質感情報との両方を捕捉するために、一つのシステムでさらに多くのカメラを統合させたシステムもある。さらに、十分に速いコンピュータCPUタイムを持ったシステムでは動的な場面を扱うことがある。2つの視界を合わせるのに十分な特徴を立体キューが確実に有するようにするために、立体視系システムでは通常、場面/対象物上に何らかの追加の特徴を導入する必要がある。このようなパターンをその表面に投影するために、プロジェクタ(例えば、スライドプロジェクタ、LCDなど)がよく使用される。このようなシステムでは、(1)特徴が重ねられた画像と、(2)特徴が重ねられていない場面/対象物の色・質感画像との両方を捕捉するために、該パターンをオン・オフする。このためには一般的に、パターンをオン・オフするための特定の機構が必要となる。さらに、着目する対象物が人間である場合、その人の顔にパターンを照射することはその人の目に不快感をもたらす可能性が生じる。
公知のステレオシステムでは、2つのステレオ視界の間の対応関係を確立する。一般的に、この対応関係又はマッチングの計算のための主に2種類の方法がある。第1の方法は、特徴に基づく方法であり、例えば角、端、線分などの場面に関する様々な情報を含む画像におけるこれらの位置の対応関係を作成する。第2の方法は、領域に基づくマッチング方法であり、画像の局部領域におけるピクセルの類似性に基づいて2つの視界を対応付ける。特徴に基づく方法(第1の方法)は、表面の質感特徴情報を使用し、限られた数のピクセルに対して対応関係を生成する。領域に基づく方法(第2の方法)は一般的に、計算にかかるコストは高くなるが、高密度の対応関係を生成できる。三次元デジタル化の場合、三次元の表面をサンプルする解像度が高いほど、通常は表面をより良く捕捉できる。特徴に基づくステレオマッチング方法は通常、この目的に十分な数の対応付けされた点を提供しない。領域に基づくステレオマッチング方法は通常、表面において十分な数の三次元サンプルを生成することができるが、特に高解像度の読取りをするので計算時間が長くなることがある。
ここで開示する少なくとも一つ実施形態は、立体視受動検知技法を基にした三次元デジタイザシステムを提供する。このようなデジタイザシステムは、部品の物理的な動きを必要としないので、リアルタイムで場面を捕捉できる。このデジタイザシステムはまた、場面にパターンを投射するために赤外線フィルタを使用し、これによってシステムは、計測画像とテクスチャ画像の両方を同時に捕捉できる。これらの特徴によって、このシステムは、静的対象物だけではなく、動的な場面の3次元再現にも適している。このシステムの単純かつ明快な原理は、複雑な機械的または電気的設計、または特別な整備を必要としない。このシステムは、通常の事務所環境で動作し、制御された周囲照明を必要とせず、ゆえに移動及び使用が容易である。このシステムはまた、立体視のパターンとして基準ストライプを使用し、画面間の対応関係を効率的に正確に特定することを助ける後述する対応付け伝播技法を使用してもよい。システムはまた、センサーおよび数値計算によるノイズを効率的に処理するために、カルマンフィルター及び非均一有理Bスプライン表面合わせを使用してフィルタリングとスムージングを実行してもよい。
概略の態様によれば、画像を処理することは、三次元対象物に赤外線パターンを投射することを含む。画像を処理することは、さらに、前記三次元対象物に前記パターンを投射している間に前記三次元対象物の第1画像と、第2画像と、第3画像とを生成することを含む。前記第1画像は前記三次元対象物と前記パターンとを含み、前記第1画像は複数のピクセルを有する二次元デジタル画像である。前記第1画像は、第1カメラにおいて赤外線フィルタによってフィルタリングされた光を捕捉することによって生成される。前記第2画像は前記三次元対象物と前記パターンとを含み、前記第2画像は複数のピクセルを有する二次元デジタル画像である。前記第2画像は、第2カメラにおいて赤外線フィルタによってフィルタリングされた光を捕捉することによって生成される。前記第1カメラと前記第2カメラは、既知の物理的関係を持つ第1ステレオペアとして配列されている。前記第3画像は、前記三次元対象物を含み前記パターンを含まない、複数のピクセルを有する二次元デジタル画像である。画像を処理することは、さらに、前記第1画像の前記複数のピクセルの一部と前記第2画像の前記複数のピクセルの一部との間に第1ペア対応関係を確立することを含む。画像を処理することは、さらに、前記第1ペア対応関係と前記第3画像とに基づいて、前記三次元対象物の三次元構造を描く二次元画像を作成することを含む。
上記の概略の態様に係る実施形態は、以下の特徴の一つ以上を含んでよい。例えば、前記赤外線パターンを投射することは、ランダムでない赤外線パターンを投射することを含んでもよい。前記パターンには、縦方向のストライプが含まれていてもよい。前記光は赤外線以外の光でもあってもよい。前記第3画像は、第3カメラにおいてフィルタリングされていない光を捕捉することによって生成されてもよい。前記第3カメラはテクスチャカメラであってもよい。
前記第1ペア対応関係を確立することは、前記第1画像の最初のピクセルと前記第2画像の対応するピクセルとの間の対応関係を決定することを含んでもよい。前記第1ペア対応関係を確立することは、また、前記第1画像の最初のピクセルと前記第2画像のこれに対応するピクセルとの間の前記対応関係に基づいて、前記第1画像の他のピクセルと前記第2画像の対応するピクセルとの間の対応関係を決定することを含んでよい。
前記第1ペア対応を確立することは、前記第1画像の第1の特定の水平線上に位置する第1の最初のピクセルと、前記第1の最初のピクセルに対応する第1対応ピクセルとの間の対応関係を決定することを含んでもよい。前記第1対応ピクセルは、前記第2画像の前記第1の特定の水平線上に位置していてもよい。前記第1ペア対応を確立することはまた、前記第1画像の前記第1の特定の水平線上に位置する他のピクセルと、前記他のピクセルに対応する対応ピクセルとの間の対応を決定することを含んでもよい。前記対応ピクセルは、前記第2画像の前記第1の特定の水平線上に位置していてもよい。前記第1ペア対応関係を確立することはまた、前記第1画像の第2の特定の水平線上に位置する第2の最初のピクセルと、前記第2の最初のピクセルに対応する第2対応ピクセルとの間の対応関係を決定することを含んでもよい。前記第2対応ピクセルは、前記第2画像の前記第2の特定の水平線上に位置していてもよい。前記第1ペア対応関係を確立することはまた、前記第1画像の前記第2の特定の水平線上に位置する他のピクセルと、前記他のピクセルに対応する対応ピクセルとの間の対応関係を決定することを含んでもよい。前記対応ピクセルは、前記第2画像の前記第2の特定の水平線上に位置していてもよい。
前記第1ペア対応関係を確立することは、前記第1画像の各水平線上の最初のピクセルと、前記第2画像の各水平線上の対応するピクセルとの間の対応を決定することを含んでもよい。前記第1画像の他のピクセルと前記第2画像の対応するピクセルとの間の対応関係が、前記第1画像の各水平線上の前記最初のピクセルと前記第2画像の各水平線上のこれに対応するピクセルとの間の前記対応関係に基づいて決定されてもよい。前記第1の最初のピクセルが、前記第1の特定の水平線上の複数の前記パターンピクセルから算出される重心パターンピクセルであってもよい。
前記第1画像の前記第2の特定の水平線に位置する前記他のピクセルのうち少なくとも一つの対応関係を決定することは、前記第2の特定の水平線上に位置する少なくとも一つの他のピクセルの決定された対応関係に基づいて行われてもよい。
前記第1画像の前記第2の特定の水平線上に位置する前記他のピクセルのうち少なくとも一つの対応関係を決定することは、前記第1の特定の水平線上に位置する少なくとも一つのピクセルの決定された対応関係に基づいて行われてもよい。前記第1の特定の水平線上に位置する前記少なくとも一つのピクセルが、前記第2の特定の水平線上に位置する前記他のピクセルのうちの前記少なくとも一つと同じストライプ縁上にあってもよい。
前記三次元構造を描く前記二次元画像を構築することは、前記第1ペア対応関係に基づいて第1の三次元点のセットを形成することと、前記第1の三次元点のセットに基づいて第1の三次元表面モデルを生成することとを含んでもよい。
前記三次元対象物の第4画像は、前記三次元対象物に前記パターンを投射している間に生成されてもよい。前記第4画像は、複数のピクセルを有する二次元デジタル画像であってもよく、第4カメラにおいて赤外線フィルタによってフィルタリングされた光を捕捉することによって生成されてもよい。
前記三次元対象物の第5画像は、前記三次元対象物に前記パターンを投射している間に生成されてもよい。前記第5画像は、複数のピクセルを有する二次元デジタル画像であってもよく、第5カメラにおいて赤外線フィルタによってフィルタリングされた光を捕捉することによって生成されてもよい。前記第4カメラと前記第5カメラとは、既知の物理的関係を有する第2ステレオペアとして配列されてもよい。第2ペア対応関係が、前記第4画像の前記複数のピクセルの一部と前記第5画像の前記複数のピクセルの一部との間で確立されてもよい。前記三次元対象物の三次元構造を描く前記二次元画像の構築は、前記第2ペア対応関係にさらに基づいて行われてもよい。
前記三次元像を描く前記二次元画像を構築することは、前記第1ペア対応関係に基づいて第1の三次元表面モデルを生成することと、前記第2ペア対応関係に基づいて第2の三次元表面モデルを生成することと、前記第1と第2の三次元表面モデルを位置合わせすることとを含んでもよい。前記第1と第2の三次元表面モデルを位置合わせすることは、前記第1と第2の三次元表面モデルの共通の表面を特定することを含んでもよい。レジストレーション行列の最初の推定を行うために、前記共通の表面を使用してもよい。前記第1と第2の三次元表面モデルの間で最も近い点同士を特定するために、レジストレーション行列の前記最初の推定を使用してもよい。
前記第1の三次元表面モデルを生成することは、前記第1ペア対応関係に基づいて第1の三次元点のセットを形成することと、前記第1の三次元点のセットに基づいて前記第1の三次元表面モデルを生成することとを含んでもよい。前記第2の三次元表面モデルを生成することは、前記第2ペア対応関係に基づいて第2の三次元点のセットを作成することと、前記第2の三次元点のセットに基づいて前記第2の三次元表面モデルを生成することとを含んでもよい。
統合された三次元表面モデルを作成するために、位置合わせの後に前記第1と第2の三次元表面モデルを統合してもよい。前記統合された三次元表面モデルにテクスチャを加えてもよい。
別の概略の態様によれば、画像を処理するシステムが、第2カメラに接続された第1カメラを有する第1ステレオカメラペアと、第4カメラに接続された第3カメラを有する第2ステレオカメラペアとを備えている。前記システムはまた、4つの赤外線フィルタのセットであって、それぞれが4つのカメラの1つに作用可能に接続されている赤外線フィルタのセットと、プロジェクタとを備えている。前記システムはさらに、前記4つのカメラと前記プロジェクタとに接続されたコンピュータ読み取り可能な媒体を備えている。前記コンピュータ読み取り可能な媒体は、三次元対象物に前記プロジェクタから赤外線パターンを投射するための命令を含んでいる。前記コンピュータ読み取り可能な媒体はまた、前記パターンを前記三次元対象物に投射している間に、前記三次元対象物の第1画像と、第2画像と、第3画像とを生成するための命令も含んでいる。前記第1画像は、前記三次元対象物と前記パターンとを含んでおり、複数のピクセルを有する二次元デジタル画像である。前記第1画像は、第1カメラにおいて赤外線フィルタによりフィルタリングされた光を捕捉することによって生成される。前記第2画像は、前記三次元対象物と前記パターンとを含んでおり、複数のピクセルを有する二次元デジタル画像である。前記第2画像は、第2カメラにおいて赤外線フィルタによりフィルタリングされた光を捕捉することによって生成される。前記第1カメラと第2カメラとは、既知の物理的関係を有する第1ステレオペアとして配列されている。前記第3画像は、前記三次元対象物を含み前記パターンを含まない、複数のピクセルを有する二次元デジタル画像である。前記第3画像は、テクスチャカメラで光を捕捉することによって生成される。前記コンピュータ読み取り可能な媒体はまた、前記第1画像の前記複数のピクセルの一部と前記第2画像の前記複数のピクセルの一部との間に第1ペア対応関係を確立するための命令も含んでいる。前記コンピュータ読み取り可能な媒体はさらに、前記第1ペア対応関係と前記第3画像とに基づいて、前記三次元対象物の三次元構造を描く二次元画像を構築することも含んでいる。
上記概略の態様に係る実施形態は、以下の特徴の一つ以上を有していてもよい。例えば、前記プロジェクタが可視領域と赤外線領域の光を生成できる光源を有していてもよい。前記プロジェクタが第5の赤外線フィルタを有していてもよい。前記コンピュータ読み取り可能な媒体が、処理装置と記憶装置のうち一つ以上を備えていてもよい。
別の概略の態様によれば、コンピュータ読み取り可能な媒体は、三次元対象物の捕捉された第1画像と、第2画像と、第3画像とにアクセスするための命令を含んでいる。前記第1画像は、前記三次元対象物にパターンを投射している間に捕捉され、前記三次元対象物と前記パターンとを含んでいる。前記第1画像は、複数のピクセルを有する二次元デジタル画像である。前記第1画像は、第1カメラにおいて赤外線フィルタによってフィルタリングされた光を捕捉することによって作成される。前記第2画像は、前記三次元対象物に前記パターンを投射している間に捕捉され、前記三次元対象物と前記パターンとを含んでいる。前記第2画像は、複数のピクセルを有する二次元デジタル画像であり、第2カメラにおいて赤外線フィルタによってフィルタリングされた光を捕捉することによって生成される。前記第3画像は、前記三次元対象物に前記パターンを投射している間に捕捉され、前記三次元対象物を含み前記パターンを含まない。前記第3画像は複数のピクセルを有する二次元デジタル画像である。前記コンピュータ読み取り可能な媒体はまた、前記第1画像の前記複数のピクセルの一部と前記第2画像の前記複数のピクセルの一部との間に第1ペア対応関係を確立するための命令も含んでいる。前記第1ペア対応関係は、前記第1画像と前記第2画像とを捕捉する間、既知の物理的関係を有する第1ステレオペアとして配列された前記第1カメラと前記第2カメラとに基づいて確立される。前記コンピュータ読み取り可能な媒体はまた、前記第1ペア対応関係と前記第3画像とに基づいて、前記三次元対象物の三次元構造を描く二次元画像を構築するための命令も含んでいる。
様々な態様、実施形態、特徴を、例えば、方法、装置、方法を実行するための装置、プログラムまたは他の命令セット、プログラムまたは他の命令セットを含む装置、コンピュータ読み取り可能な媒体のうちの一つ以上を使用して実施してもよい。前記コンピュータ読み取り可能な媒体は、例えば、命令群、ソフトウェア、画像、他のデータを含んでもよい。
一つ以上の実施形態の詳細を、添付の図面と以下の記載において説明する。他の特徴は、以下の記載と図面と請求項から明らかとなるであろう。
図1を参照すると、三次元デジタル化システム100の一つの実施形態が示されている。三次元デジタル化システム100は、5台のカメラ102、104、106、108、110を備えている。カメラは、2対のステレオペア101aと101b、すなわちカメラ102および104から成るステレオペア101aと、カメラ108および110から成るステレオペア101bと、一台のテクスチャカメラ106として配列されている。システム100はさらに、パターンプロジェクタ112と、5つの赤外線フィルタ114(ステレオカメラ102、104、108、110それぞれに1つずつ、およびパターンプロジェクタ112に1つ)と、パターンを有するスライド116とを備えている。一例として、縦線パターンを有するスライド116が示されている。カメラ102、104、106、108、110は、ワイヤ120を介してコンピュータプロセッサ118に接続されている。
三次元デジタル化システム100は、動的または静的場面の三次元情報を捕捉することができる。システム100は、対象物を照らすために赤外照射を使用し、赤外線フィルタ114を使用する。システム100は、プロジェクタ112と、フィルタ114と、所望のパターンを有するスライド116とを使用して所望のパターンを対象物に照射する。プロジェクタ112は、可視領域の光と赤外線領域の光とを生成できる通常の光源を有していてよい。その通常の光は、主に赤外光のみが照射されるようにフィルタリングされる。別の実施形態では、該プロジェクタは、赤外光源を備え、フィルタ114を持たなくてもよい。システム100は、赤外線フィルタ114を一つずつそれぞれ備えたステレオカメラ102、104、108、110を使用して、重畳されたパターンを捕捉する。また、システム100は、テクスチャカメラ106を使用して対象物の色・質感を同時に捕捉できる。カメラ106は、赤外線フィルタ114を有していないため可視光と赤外光を含む全ての入射光を受け取るが、可視光は通常、赤外光よりもかなり強いため、捕捉した画像に赤外線パターンを目に見えるようには表示しない。システム100は、ワイヤ120を介してこの情報をコンピュータプロセッサ118に送る。コンピュータプロセッサ118は、テクスチャを持った一つの三次元表面を作成するために、この情報を用いる後述の処理200を行ってよい。赤外照射と赤外線フィルタとの使用は、撮影中の対象物に可視的模様が当たらない技法を実現する。対象物が一人の人間の顔である場合、可視的模様がないということは、そのパターンがその人の注意をそらすことがないので、利点となり得る。また、赤外照射と赤外線フィルタの使用は、パターンをオン・オフする必要がないため、全ての画像を同時に取込むことを可能にする(例えばファイヤーワイヤーカード、USBインタフェースなどの速度に依存する)。さらに、パターンをオン・オフする必要がないので、画像を捕捉するためにカメラを制御する以外は、追加のハードウェア制御を必要とすることなく画像を取込むことができる。
図2を参照すると、処理200は、例えば対象物の三次元再現を実行するためにシステム100を使用する。処理200は、画像の取得(202)を含む。システム100を使用する一つの実施形態では、画像の取得(202)の一部として、パターンを三次元対象物に投射している間に第1のステレオ画像と、第2のステレオ画像と、テクスチャ画像とを生成する。第1ステレオ画像は、ステレオペア101aによって生成され、三次元対象物の第1画像と第2画像とを含んでいる。第1画像は、カメラ102において赤外線フィルタ114によってフィルタリングされた光を捕捉することによって生成される。第2画像は、カメラ104において赤外線フィルタ114によってフィルタリングされた光を捕捉することによって生成される。第1画像はパターンが付けられた三次元対象物を含み、ピクセルを含む二次元デジタル画像であってよい。同様に、第2画像はパターンが付けられた三次元対象物を含み、ピクセルを有する二次元デジタル画像である。第2ステレオ画像は、ステレオペア101bによって生成され、三次元対象物の第3画像と第4画像とを含む。第3画像は、カメラ108において赤外線フィルタ114によってフィルタリングされた光を捕捉することによって生成され、ピクセルを有する二次元デジタル画像である。同様に、第4画像は、カメラ110において赤外線フィルタ114によってフィルタリングされた光を捕捉することによって生成され、ピクセルを有する二次元デジタル画像である。
上述の実施形態では、三次元対象物のテクスチャ画像は、テクスチャカメラ106においてフィルタリングされていない光を捕捉することによって生成される。テクスチャ画像は、赤外線パターンを示すことなく三次元対象物を含み、ピクセルを有する二次元デジタル画像である。
処理200は、(工程201を囲む破線で示すように)選択肢として、カメラ102、104、106、108、110の一つ以上または全てのキャリブレーション(201)を含む。キャリブレーション(201)の一部として、例えば外部パラメータおよび内部パラメータなどの、一つ以上の、通常は複数のカメラパラメータを決定して変更してよい。外部パラメータは、基準座標システムに対するカメラの平行移動および回転を含む。内部パラメータは、カメラの焦点距離パラメータ、画像中心パラメータ、レンズ歪みパラメータを含む。本実施形態におけるキャリブレーションはシステムセットアップの間に実行され、内部パラメータと外部パラメータの両方が格納され後で三次元再現処理で使用される。システム100は、カメラ102、104、106、108、110の一つを他のカメラに対して動かした場合、再キャリブレーションが必要となる場合がある。キャリブレーションは通常、人間による入力を含むが、必ずしも人間による入力を必要としなくてもよい。処理200における他の工程、特にその後に続く工程は、通常、人間による入力なしに自動的に実行される。
処理200は、第1の三次元表面モデル(第1メッシュとも呼ぶ)の生成(204)を含む。第1の三次元表面モデルの生成(204)は、カメラパラメータの一つ以上と、第1ステレオ画像とを使用してよい。カメラパラメータを使用して、当技術では周知の技法に従って第1ステレオ画像を修正してもよい。一つの実施形態における修正工程の一部として、外部パラメータおよび内部パラメータを使用して、ステレオペア101aで捕捉された各画像に対して3×3修正行列を算出する。これらの修正行列は、ステレオペア101aの2つの画像を変換して、各画像の対応するピクセルが同じ水平位置を持つようにする。第1ステレオ画像を使用して、第1画像の各ピクセルと第2画像の各ピクセルとの間の第1ペア対応関係を確立する。第1ペア対応関係を使用して、三次元点群の第1セットを確立する。そしてこの第1セットを使用して第1の三次元表面モデルを生成(204)する。
同様に、処理200は、第2の三次元表面モデル(第2メッシュとも呼ぶ)の生成(206)を含む。第2の三次元表面モデルの生成は、カメラパラメータの一つ以上と、第2ステレオ画像とを使用してよい。カメラパラメータを使用して、当技術では周知の技法に従って第2ステレオ画像を修正してよい。一つの実施形態において、前述のとおり、外部パラメータおよび内部パラメータを使用して、ステレオペア101bで捕捉された各画像に対して3×3修正行列を算出する。これらの修正行列は、ステレオペア101bの2つの画像を変換して、各画像の対応するピクセルが同じ水平位置を持つようにする。第2ステレオ画像を使用して、第3画像の各ピクセルと第4画像の各ピクセルとの間の第2ペア対応関係を確立する。第2ペア対応関係を使用して、三次元点群の第2セットを生成する。そしてこの第2セットを使用して第2の三次元表面モデルを生成(206)する。
第1および第2の三次元表面モデルの生成工程(204および206)の一部として、例えば、ステレオマッチング方法を使用する。一つのステレオマッチング方法は、三次元対象物にストライプ群のセットから成る所定のパターンを投射することを含む。この所定のパターンによって、第1画像のストライプピクセルと第2画像のストライプピクセルとの間に第1ペア対応関係を確立するのに十分な情報が提供される。同様に、この所定のパターンによって、第3画像のストライプピクセルと第4画像のストライプピクセルとの間に第2ペア対応関係を確立するのに十分な情報が提供される。対象物の再現される三次元画像の解像度は、対象物の三次元表面を算出するためにストライプを使用するため、ストライプの解像度によって決まる。従って、投射されるパターンの一部としてより多くのストライプを使用すれば、表面上のより多くの三次元点がサンプルされ、より多くの表面詳細が捕捉される。デジタル化する対象物の複雑さに応じて適切なパターンを選択することができる。例えば、詳細物がより少ない表面(例えばフットボールのボールなど)では、詳細物がより多い表面(例えば人間の顔など)よりも少ないストライプで足りる。
一つの実施形態では、前記ステレオマッチングは視差伝播手法を含む。視差伝播手法は、ステレオペア101aと101bそれぞれの2つの画像において最初の対応するピクセルペアを特定することを含む。最初の対応するピクセルペアは、シードとも称される。最初の対応するピクセルの特定を目的として、アンカー位置を提供するために基準ストライプを使用してもよい。2つの画像それぞれにおけるこの基準ストライプをストライプの第1対応ペアと見なしてもよい。図3A〜図3Bに示す一つの実施形態では、基準ストライプ308はその他のストライプ306よりも幅が広い。別の実施形態では、基準ストライプ308はその他のストライプ306と同じ幅を有していてもよい。
最初の対応するピクセルを特定した後、視差伝播手法では、図11〜図13に関して後でさらに詳細に説明するように、最初の対応するピクセルを一つ以上の方向に伝播させる。最初の対応するピクセルの伝播工程の一部として、一つ以上の奥行き不連続が発生する可能性を考慮する。第1画像302、第2画像304、第3画像312、第4画像314それぞれで、対象物(例えば図3Aの顔など)の下顎の面と首の面の間に奥行き不連続310が発生している。奥行き不連続は、異なる奥行きを有する2つ(またはそれ以上)の物理的な表面の接合部において発生する。奥行き不連続によって、2つの画像を対応付けるために視差伝播手法で使用するストライプが変形するため、2つの画像での最初の対応するピクセルの伝播が困難になる。例えば、奥行き不連続によって、物理的に同一のストライプが、後で図4についてさらに述べるように、対象物(例えば図3Aの顔など)の下顎/首の領域、首/衣服の領域、および/または鼻の領域におけるいくつかの分断された線分として表示される場合がある。さらに、奥行き不連続によって、後で図5についてさらに述べるとおり、2つのストライプが互いに接合して一つのストライプになることもある。
図4は、画像302、304、312、314の一つに投射されたストライプパターン400の一例を、画像を省略して示す。図示のように、奥行き不連続によって、ストライプ402、404、406を含むストライプパターン400が変形している。例えば、ストライプ402は、パターンが投射された対象物(例えば図3Aの顔など)の下顎/首の領域に該当する領域412で分断されている。同様に、ストライプ404は、パターンが投射された対象物(例えば図3Aの顔など)の鼻に該当する領域414で分断されている。ストライプ406は、領域420に隣接するストライプ端部416を有している。領域420は、パターンが投射された対象物(例えば図3Aの顔など)の顔面下部と肩の間のスペースに該当する。一つの実施形態では、視差伝播手法において、上述した奥行き不連続を考慮する。例えば、視差伝播手法では、後に図7A〜図7Cについて詳細に説明するように、ストライプ端部416が伝播を止めるようにストライプ端部416をマークするため、ストライプ端部416間を最初の対応するピクセルが伝播することはない。
上述したとおり、奥行き不連続が、2つのストライプ部分を互いに結合させる場合がある。図5は、ステレオカメラ102、104、108、110の一つで捕捉されたストライプパターン500の一例を示す図である。図4と同様に、ストライプパターン500が画像に投射され、その画像を取り除いてパターン500のみを示している。ストライプパターン500は、ストライプ502と504とを含む。ストライプ502は、ストライプ端部508を含む。ストライプ502が奥行き不連続のためにストライプ端部508で分断され、ストライプ502の下方部分がストライプ504の下方部分506へとずれている。最初の対応するピクセルが単にストライプ504に沿って伝播されると、誤った対応付けを招く可能性が高い。これは、視差伝播の一部として、後に図11〜図13について詳細に説明するとおり、最初の対応するピクセルの最良の視差を見つけるために小ウィンドウ(例えば、±3ピクセル)を使用するからである。この「視差」とは、最初の対応するピクセル間の列位置の差異を意味する。最初の対応するピクセル間の列位置の差異が最小のときに最良の視差となる。しかし、奥行き不連続によって2つのストライプ部分が互いに結合することになれば、この最良の視差は調査ウィンドウから外れてしまう可能性がある。従って、最初の対応するピクセルが、奥行き不連続が発生しているストライプに沿って伝播される場合(例えば部分506に沿って)、誤った対応付けが生成される。視差伝播手法の一つの実施形態には、後に図13についてより詳細に説明するとおり、この問題に対処するためのいくつかの手法が取り入れられている。
上述したとおり、視差伝播手法の一つの実施形態には、最初の対応するピクセルを特定することが含まれている。最初の対応するピクセルを特定する方法としては、使用するパターンの種類によっていくつか考えられる。一つの実施形態では、最初の対応するピクセルを特定するために特別な基準ストライプを使用する。図3A〜図3Bに示す本実施形態では、投射されたパターンは、その他のストライプ306よりも幅の広い基準ストライプ308を含み、基準ストライプ308がその画像の中で特異な存在となるようになっている。従って、最初の対応するピクセルを特定することは、2つの画像中の基準ストライプ308の位置を特定することによって達成される。
図6は、ラスターラインとも呼ばれる水平方向の線614群を含むグリッド600と、ストライプ602、604、606、608、610とを例示する図である。ストライプ602、604、606、608、610は、対象物(例えば、図3Aの顔など)に重畳されたストライプパターンを構成する。基準ストライプとも呼ばれるストライプ602は、ストライプ604、606、608、610とは異なる。基準ストライプ602は、投射されたパターンの中央に位置しており、その幅はw’である。基準ストライプ602の幅w’は、ストライプ604、606、608、610の幅wの約2倍である。ストライプ602、604、606、608、610は、互いから距離dの範囲内に位置している。一つの実施形態では、距離dは幅wと同じ値である。別の実施形態では、距離dは幅wよりも長くても短くてもよい。
ストライプ602、604、606、608、610は、奥行き不連続によって異なる位置で分断されることがある。例えば、基準ストライプ602は、対象物(例えば、図3Aの顔など)の下顎/首の領域に該当している可能性のある領域611において分断されている。基準ストライプ602はまた、対象物(例えば、図3Aの顔など)の首/衣服の領域において分断されている可能性がある。また、奥行き不連続によって、基準ストライプ602の一部が他の投射されたストライプの一部と結合して、画像の中で一つのストライプを形成することもある。このように奥行き不連続によって、画像302、304、312、314において基準ストライプを完全に復元することが困難となる場合がある。しかし、よく見てみると、「他よりも広い」という特性は、基準ストライプ602に沿った至るところで保持されていることが分かる。よって、基準ストライプ602に属する部分を特定するのにこの特性を利用してよい。
影およびオクルージョン(像一体)は通常、画像の中に幅が広いストライプを作り出し、これが基準ストライプの様相を呈すことがある。すなわち、影およびオクルージョンが基準ストライプ602の特定を困難にする。視差伝播手法では、影およびオクルージョンによって作成されたストライプを、基準ストライプ602を選択する際に考慮されるストライプ群から排除する。このために、一つの実施形態では、視差伝播手法において大多数のストライプの幅wを勝者独り占め方式に従って推定する。勝者独り占め方式は当技術分野では周知である。勝者独り占め方式では、幅wを決定するために投票方式が使用される。投票方式に基づいて、縁ストライプピクセル(例えば、ストライプの左右縁にそれぞれ位置するストライプピクセル)がそのストライプの幅に関して票を投じる。一つの実施形態では、右縁ストライプピクセルが、自身の局部ストライプの幅について票を投じるために自身に最も近い左縁ピクセルを見る。例えば、右縁ストライプピクセル616は、ストライプ604の幅について票を投じるために最も近い左縁のストライプピクセル618を見る。ストライプ604の別の縁ストライプピクセルおよび全ラスターライン614上の他のストライプの縁ストライプピクセルも同様にして票を投じる。勝者独り占め方式は、全ストライプに亘って最多票を集めた幅を、大多数のストライプの幅wとして選択する。視差伝播手法は、幅wの2倍よりも広い幅を有するストライプは影およびオクルージョンによって生成されたものである可能性が高いため、基準ストライプ602を選択する際に考慮されるストライプから除外される。
撮影される対象物(例えば、図3Aの顔など)の特徴によって、ステレオペア101aおよび101bのそれぞれで捕捉された画像にさらなるストライプが生成されることがある。例えば、対象物が人間の顔である場合、眉毛および顔の毛によって、投射されたストライプパターンの間に小さなストライプが現れることもある。この小さいストライプはノイズデータとも呼ばれ、平均法を用いる場合、幅wの推定に影響を与える。平均法では、幅wを算出するために全ラスターライン614上の全ストライプの幅の平均を取る。よって平均法では、ノイズデータの幅が幅wの算出で使用されてしまう。しかし、勝者独り占め方式では、全ストライプに亘って最多票を獲得した幅wを選択することによって、ノイズデータをよけるようにする。ノイズデータの幅が数票獲得したとしても、大多数のストライプの幅wほど多くの票を得ることは通常はない。その結果、視差伝播手法は、通常、ノイズデータの影響を低減する。
幅wを決定した後に、基準ストライプ602上の基準ストライプピクセルを特定する。図7A〜図7Bは、ステレオペア101aおよび101bのそれぞれで捕捉された画像の基準ストライプピクセルを特定して最初の対応するピクセルを見つけ出すための処理700を例示する図である。処理700は、ラスターライン614ごとの輝度プロファイルの抽出(702)を含む。図7Cを参照すると、輝度プロファイル701には、曲線703が含まれている。曲線703は、1つのラスターライン614に位置する各ピクセルの輝度の値を表す。曲線703は、極大点703a、703b、703c、703dと、極小点703e、703f、703g、703hと、調査ウィンドウ705とを含む。処理700は、ラスターライン614ごとの輝度プロファイルの局所極点(例えば、極大点および極小点)の算出(704)を含む。極大点を算出するために、3ピクセル幅の調査ウィンドウ705を使用する。調査ウィンドウ705は、曲線703の開始部分703iから曲線703の終了部分703jまで曲線703を調査し、調査ウィンドウ705の中心にあるピクセルの輝度がその近傍のピクセルの輝度よりも大きいと、そのたびにその中心にあるピクセルの位置と輝度を局所極大点データベースに格納する。このようにして、極大点703a、703b、703c、703dの位置と輝度を特定して、局所極大点データベースに格納する。極大点を特定するのと同様に、調査ウィンドウ705は、曲線703の開始部分703iから曲線703の終了部分703jまで曲線703を調査し、調査ウィンドウ705の中心のピクセルの輝度がその近傍のピクセルの輝度よりも小さいと、そのたびにその中心のピクセルの位置と値を局所極小点データベースに格納する。このようにして、極小点703e、703f、703g、703hの位置と輝度を特定する。
処理700は、また、各ラスターライン614に沿った輝度プロファイルの極小点で、基準ストライプ上にあると想定される点、kを特定すること(706)も含む。kは以下のようにして求められる:
kn * = argmax (|Xi-Xj|*|((Inti+Intj)/2)-Intk|) (式1)
ここで、iおよびjは輝度プロファイルの隣接する2つの極大点を示す添え字であり、XおよびXはその2つの極大点の位置を示し、IntはXでの輝度値を、IntはXでの輝度値を示し、kは極大点XおよびXの間の極小点を示し、Intは局所極小点kでの輝度を示し、nはラスターライン614を示す添え字である。式1によって、基本的に、ラスターライン614ごとに(すなわち「n」ごとに)基準ストライプ602上のピクセルを見つけ出す。ラスターライン614ごとの基準ストライプ602上のピクセルを特定するために、式1で、極小点kごとに、kに隣接する極大点の間の距離に、これら極大点の輝度の平均と極小点の輝度の差を掛けて面積を算出する。式1によって、この面積を最大にする極小点kを見つける。基準ストライプ602は他のストライプよりも幅が広く輝度が低いので、基準ストライプ上のピクセル場合に最大面積となるため、kは基準ストライプ上のピクセルを示している。例えば、図7Cから分かるとおり、基準ストライプ602が幅2dであるため、極大点703bと703cとの間の距離は3dであり、これは他の隣接する極大点間の距離よりも大きい。さらに、基準ストライプ602は他のストライプよりも輝度が低いため、kでの輝度は他の極小点での輝度よりも低い。
は、各ラスターライン614の基準ストライプピクセルの候補と見なされる。処理700はまた、データベースへのkの格納(708)を含む。例えば、データベースは、各ラスターライン614のkを含むベクトルR={k ,n=1,2...N}であってもよい。ここで、Nは、ステレオぺア101aおよび101bのそれぞれで捕捉された画像内のラスターライン614の本数である。例えばベクトルRは、基準ストライプ602上のピクセル626、628、630、632の位置を含んでいる。処理700は、ステレオペア101aおよび101bのそれぞれの画像全てに対して実行される。よって処理700は、4つのベクトルR1,L、R1,R、R2,L、R2,Rを生成する。R1,L、R1,Rにはステレオペア101aの左画像および右画像の基準ストライプピクセル候補のセットが含まれており、1はステレオペア101aを、Lはステレオペア101aの左画像を、Rはステレオペア101aの右画像を指している。一方、R2,L、R2,Rにはステレオペア101bの左画像および右画像の基準ストライプピクセル候補のセットが含まれており、2はステレオペア101bを、Lはステレオペア101bの左画像を、Rはステレオペア101bの右画像を指している。
処理700は、誤って特定された基準ストライプピクセルを取り除くために、ステレオペア101aと101bのそれぞれの2つの画像の基準ストライプピクセルの対応付けを行うこと(710)を含む。2つの画像の基準ストライプピクセルの対応付け(710)は、R1,Lの基準ストライプピクセルを、R1,R内の同じラスターライン614位置を持つ対応する基準ストライプピクセルと対応付けることを含む。R1,L内のどの基準ストライプピクセルにも、R1,R内に対応するピクセルがあるはずである。このような対応付けのたびに、R1,Lの基準ストライプピクセルとその対応するR1,Rのピクセルとの対応付けスコアを、対応付けスコア関数を用いて計算し、後に図8について詳細に説明するように、対応付けられたピクセルの対応の質を評価する。また、対応相手として特定されたこのピクセルの近傍のピクセル(例えば、±3ピクセルなど)についても対応付けスコアを測定する。最も高い対応付けスコアを生成するピクセル(例えば、R1,Lの基準ストライプピクセルに最も類似しているピクセル)を、R1,Lの基準ストライプピクセルの実際の対応相手と見なす。従って、一つの実施形態では、指定された基準ストライプピクセルの最良の対応相手を決定するために、7つの対応付けスコアを計算する。この7つには、R1,Rの対応する基準ストライプピクセルの1つの対応付けスコアと、その対応する基準ストライプピクセルの両側の±3ピクセルの6つの対応付けスコアが含まれる。
同様に、2つの画像の基準ストライプピクセルの対応付け(710)は、R2,Lの基準ストライプピクセルを、R2,R内の同じラスターライン位置を持つ対応する基準ストライプピクセルと対応付けることを含む。このような対応付けのたびに、後に図8について詳細に説明するように、対応付けられたピクセルの対応の質を判定するために対応付けスコアを計算する。前述のように、対応相手として特定されたこのピクセルの近傍のピクセル(例えば、±3ピクセル)についても対応付けスコアを測定する。最も高い対応付けスコアを生成するピクセル(例えば、R2,Lの基準ストライプピクセルに最も類似しているピクセル)を、R2,Lの基準ストライプピクセルの実際の対応相手と見なす。従って、一つの実施形態では、指定された基準ストライプピクセルの最良の対応相手を決定するために、7つの対応付けスコアを計算する。この7つには、R2,Rの対応する基準ストライプピクセルの1つの対応付けスコアと、その対応する基準ストライプピクセルの両側の±3ピクセルの6つの対応付けスコアが含まれる。
工程(710)は、対象物(例えば、図3Aの顔など)の鼻の領域または下顎/首の領域辺りの奥行き不連続によって生じたノイズおよび/または影のために誤って特定された基準ストライプピクセルを取り除く。例えば、R1,Lのある基準ストライプピクセルに対応するピクセルがR1,Rにない場合、そのストライプピクセルは基準ストライプ602上のものではない可能性が高いので、R1,Lから取り除かれる。一方、R1,Lの基準ストライプピクセルがR1,Rの対応する基準ストライプピクセルと対応付けられる場合、これは、その基準ストライプピクセルが基準ストライプのものであるということをさらに示唆する。
処理700にはさらに、当技術では周知であるRANSACに基づく平面合わせアルゴリズムを用いた基準ストライプ602の位置の確認(712)を含む。基準ストライプ602の位置の確認(712)の一部として、対応付けられた基準ストライプピクセル群の三次元点群を算出する。三次元点群は、当技術分野では周知のステレオ三角測量技法に基づいて、対応付けされた基準ストライプピクセル群とカメラパラメータとを使用して算出する。これは、基準ストライプ602に沿った多数の位置の三次元点を生成する。基準ストライプ602は、光平面が対象物(例えば図3Aの顔など)の表面と交差した結果である。光平面は、光源とスライド116の基準垂直線によって形成される。光源は、スライド116の基準垂直線の左縁に光を投射して、光の進行方向に平行であると言える向きを持った左縁垂直平面を形成する(すなわち、その平面の法線ベクトルがその平面を形成する光の進行方向に対して垂直となる)。同様に、光源は基準ストライプ602の右縁および中央に光を投射して、右縁垂直平面および中央垂直平面を形成する。これらの平面が対象物(例えば図3Aの顔など)の表面と交差することによって、ステレオペアの101aおよび101bのそれぞれで捕捉された画像内の基準ストライプ602の対応する点が形成される。これら対応付けられた基準ストライプピクセルの三次元点は、これら対応付けられた基準ストライプピクセルが基準ストライプ602の中央に位置する可能性が高いので、中央垂直平面の上にあるはずである。RANSACに基づく平面合わせアルゴリズム(「RPA」)を使用して、中央平面パラメータ(例えば、中央平面の法線ベクトルおよび中央平面の位置)を算出する。工程712では、これら中央平面パラメータを使用して三次元点群のその中央平面までの距離を求める。その平面から遠すぎる三次元点は無視される。すなわち、平面から遠すぎる点は基準ストライプ上にはないと推定される。
基準ストライプ602の位置を確認した(712)後、処理700は、ステレオペア101aおよび101bのそれぞれで捕捉された画像の最初の対応するピクセルの特定(714)を行う。一つの実施形態では、最初の対応するピクセルの特定(714)は、2つの画像における対応付けされた基準ストライプピクセル群の左にある最も近い縁ストライプピクセル群を特定することを含む。別の実施形態では、最初の対応するピクセルの特定(714)は、2つの画像の対応付けられた基準ストライプピクセル群の右にある最も近い縁ストライプピクセル群を特定することを含む。例えば、再度図6を参照すると、基準ストライプピクセル626、628、630、632に最も近い縁ストライプピクセルは、縁ストライプピクセル612、634、636、638である。縁ストライプピクセル612、634、636、638および他方の画像中の対応するピクセルが、最初の対応するピクセルとして特定される。
最初の対応するピクセルを特定した(714)後、最初の対応するピクセルが、後で図11〜図13について説明するとおり、ステレオペア101aおよび101bのそれぞれで捕捉された画像において一つ以上の方向に伝播される。
別の実施形態では、基準ストライプとして特別なストライプを含まない(例えば、全ストライプは同じ幅である)パターンが使用される。従って、このような実施形態は、特別な基準ストライプを利用することなくステレオペア101aおよび101bのそれぞれで捕捉された画像間で最初の対応するピクセルを特定するためのアルゴリズムを備えている。この方法に基づいて特定された最初の対応するピクセル対は、必ずしも同じストライプに属するとは限らない。
図8は、全ストライプが同じ幅である実施形態に従って最初の対応するピクセルを特定するための処理800を例示する図である。処理800は、平均化関数を用いて第1ペア画像と第2ペア画像のラスターライン614ごとの重心ピクセルを特定すること(802)を含む。第1ペア画像は、ステレオカメラ102によって作成された第1画像とステレオカメラ104によって作成された第2画像とを含む。第2ペア画像は、ステレオカメラ108によって作成された第3画像とステレオカメラ110によって作成された第4画像とを含む。重心ピクセルは、各ラスターライン614上の縁ストライプピクセル全ての平均である。処理800は、前処理として、当技術分野では周知のエッジ抽出およびエッジ連結を用いて重心ピクセルが縁ストライプピクセルであるかどうかを判断すること(806)を含む。重心ピクセルが縁ストライプピクセルではない場合、処理800は、その重心ピクセルに最も近い縁ストライプピクセルを重心ストライプピクセルとして設定する(806および808)。例えば、グリッド900は、ストライプ902、904、906、908、910と、ラスターライン912とを含む。グリッド900はさらに、一つのラスターライン912上に位置する重心ピクセル914を含む。この重心ピクセル914は縁ストライプピクセルではないため、重心ピクセル914に最も近い縁ストライプピクセルである縁ストライプピクセル916が、重心ストライプピクセルとして設定される。
処理800は、各ラスターライン614上の最初の対応するピクセルを特定すること(810)を含む。最初の対応するピクセルの特定(810)の一部として、第1画像の各ラスターライン614の重心ストライプピクセルを、第2画像の対応する重心ストライプピクセルと対応付ける。同様に、第3画像の各ラスターライン614の重心ストライプピクセルを、第4画像の対応する重心ストライプピクセルと対応付ける。ここで、例えば、前述したのと同じ処理、すなわち、対応する位置からスタートして調査ウィンドウにおいて最も良い対応付けスコアを確認する処理を使用してもよい。
例えば、図10は、第1画像と第2画像の最初の対応するピクセルを特定するためのグリッド1000aと1000bとを例示する図である。グリッド1000aには、ストライプ1002、1004、1006、1008、1010と、ラスターライン1012とが含まれている。ストライプ1002、1004、1006、1008、1010は、ステレオカメラ102で捕捉されたストライプである。グリッド1000aにはさらに、重心ストライプピクセルpと、ストライプピクセルnおよびnとが含まれている。重心ストライプピクセルpは、ストライプ1006上に位置している。ストライプピクセルnはストライプ1002上に、nは1008上に位置している。グリッド1000bには、ストライプ1014、1016、1018、1020、1022と、ラスターライン1012とが含まれている。ストライプ1014、1016、1018、1020、1022は、ステレオカメラ104で捕捉されたストライプである。グリッド1000bにはさらに、ストライプピクセルp’、n’、n’が含まれている。ストライプピクセルp’は、ストライプ1018上に位置している。ストライプピクセルn’はストライプ1014上に、n’は1020上に位置している。最初の対応するピクセルを特定することの一部として、第1グリッド1000aの重心ストライプピクセルpが、第2グリッド1000bの対応する重心ストライプピクセルp’と対応付けられる。ピクセルpとp’とは、彼らのラスターライン1012の最初の対応するピクセルの最初の候補と見なす。
処理800には、ピクセルpとp’との対応具合を評価すること(812)が含まれている。ピクセルpとp’の対応付けの質を評価すること(812)の一部として、局地ウィンドウ(15×15)での正規化ゼロ平均相互相関(「NZMCC」)が、対応付けスコア関数m(p,p’)として利用される。NZMCCは当技術分野では周知の手法である。式2によって例示される対応付けスコア関数m(p,p’)は、輝度対応付けスコア関数mint(p,p’)と勾配対応付けスコア関数meg(p,p’)との線型結合である。式3によって例示される輝度対応付けスコア関数mint(p,p’)は、2つのピクセルの輝度を示す輝度マップにおけるピクセルpとp’との間の類似度を求める。式4によって例示される勾配対応付けスコア関数meg(p,p’)は、2つのピクセルの輝度の傾きを示す勾配マップにおけるピクセルpとp’との間の類似度を求める。対応付けスコア関数m(p,p’)は、次のように定義される:
m(p, p’)=αmeg(p, p’)+(1-α)mint(p, p’) (式2)
mint(p, p’)=ΣΩ(I(p)-μ)*(I’(p’)- μ’)/σσ’ (式3)
meg(p, p’)= ΣΩ(E(p)-μE)*(E’(p’)- μ’E)/σEσ’E (式4)
ここで、Ωは画像I内のピクセルpの周囲領域15×15を表し、Ω’は画像I’内のピクセルp’の対応する周囲領域を表す。I(p)は画像I内のpにおける輝度の値を、I’(p’)は画像I’ 内のp’ における輝度の値を表す。(μ,σ)はI内の周囲領域Ωにおける平均と標準偏差を、(μ’,σ’)はI’ 内の周囲領域Ω’における平均と標準偏差を表す。E(p)は勾配マップEのpにおける勾配の値を、E’(p’)は勾配マップE’のp’における勾配の値を表す。そして、(μ,σ)は勾配マップEの平均と標準偏差を、(μ,σ)は勾配マップE’内の平均と標準偏差を表す。αは0〜1の間の値の重み付け係数であり、この値に依って、式2の輝度対応付けスコア関数または勾配対応付けスコア関数を強調する。一つの実施形態では、勾配対応付けスコア関数の方に重みが置かれるように、αの値は0.6である。
式2は基本的に、2つのピクセルpとp’との対応の質を求める。最良の対応の質を生成する縁ストライプピクセルp’を特定するためのいくかの方法がある。一つの実施形態では、対応付けスコア関数m(p,p’)を利用して重心ストライプピクセルpに最も類似した縁ストライプピクセルp’を特定する。最も類似した縁ストライプピクセルp’を特定することの一部として、グリッド1000aの重心ストライプピクセルpと、グリッド1000bでこのpと同じラスターライン上に位置する全ての縁ストライプピクセルに対して、対応付けスコア関数m(p,p’)を算出する。そして、最も高い対応付けスコアを生成した縁ストライプピクセルをpの対応相手とする。この手法は、必ずしも結果が最良の対応付けとなるとは限らない。対応していないピクセルの対応付けスコアが、対応しているピクセルの対応付けスコアよりも高くなる可能性があるため、誤った対応付けという結果となる場合がある。例えば、対応付けスコアm(p,n’)が対応付けスコアm(p,p’)よりも高くなることがある。すなわち、この実施形態では、p’ではなくn’がpの最良の対応相手として選択される可能性がある。
別の実施形態では、対応付けサポート関数Mを利用して、重心ストライプピクセルpに最も類似したピクセルp’を特定する。式5は、近隣の縁ストライプピクセル(nとn’)および(nとn’)が、対応付けられたピクセルpおよびp’と同程度の対応付けスコアを生成するかどうかを調べるために使用される対応付けサポート関数Mの一つの実施形態を例示する:
M(p, p’)= Σi=1 Am(ni, ni’)+ Σj=1 Bm(nj, nj’) (式5)
ここで、iはpおよびp’の左側のストライプを、jはpおよびp’の右側のストライプを示す添え字である。Aはpおよびp’の左側のストライプの本数であり、Bはpおよびp’の右側のストライプの本数である。M(p,p’)を算出することの一部として、縁ストライプピクセルn(pの左側i番目のストライプの)を特定する。同様に、縁ストライプピクセルn’(p’の左側i番目のストライプの)を特定する。pとp’が良好な対応相手である場合、グリッド1000aの縁ストライプピクセルn(pの左側i番目のストライプ)は、グリッド1000bの縁ストライプピクセルn’(p’の左側i番目のストライプ)と対応付けられるとみなすことは合理的であるため、nとn’は対応関係のあるピクセルである可能性が高い。pとp’の左側の各ストライプのnとn’との対応付けスコアを算出し、合計する。
同様に、M(p,p’)を算出することの一部として、縁ストライプピクセルn(pの左側j番目のストライプの)を特定し、縁ストライプピクセルn’(p’の左側j番目のストライプの)を特定する。pとp’が良好な対応相手である場合、グリッド1000aの縁ストライプピクセルn(pの右側j番目のストライプ)は、グリッド1000bの縁ストライプピクセルn’(p’の右側j番目のストライプ)と対応付けられるとみなすことは合理的であるため、nとn’は対応関係のあるピクセルである可能性が高い。pとp’の右側の各ストライプのnとn’との対応付けスコアを算出し、合計する。pとp’が良好な対応相手である場合、近隣のピクセルの対応付けスコアは通常は高く、pとp’の対応付けサポートが高いという結果となる。pとp’が良好な対応相手ではない場合、近隣のピクセルの対応付けスコアも通常は低く、pとp’の対応付けサポートは低いという結果となる。
処理800は、重心ストライプピクセルの最終的な対応関係を決定すること(814)を含む。最終的な対応関係を決定すること(814)の一部として、対応付けサポート関数Mを最大にするピクセルpがpの対応相手とされる。この場合の式は、
p*=argmax p’(M(p, p’)) (式6)
である。
p’の範囲は、重心ストライプピクセルpと同じラスターライン1012上に位置するグリッド1000b内の全てのストライプピクセルを含む。式6は基本的に、pに最も類似したピクセルを特定する。対応付けスコアm(p,p)が必要なしきい値よりも高い場合、後で図11〜図13についてより詳細に述べるとおり、(p,p)を視差伝播処理の最初の対応するピクセルとする。一つの実施形態では、しきい値は0.8である。
対応付けサポート関数Mを含む手法は、対応していないピクセルが対応しているピクセルよりも高い対応付けスコアを生成する事態を避けることができるため、対応付けアルゴリズムを補強する。前述したとおり、正しい対応相手であるp’よりもn’の方が高い対応付けスコアを生成し、pの良好な対応相手としてn’が選択される結果となる可能性がある。しかし、pとn’は誤った対応ペアであるため、彼らの近隣のストライプの縁ピクセルの対応付けスコアは通常低くなる。よって、pとn’の対応付けサポートは通常低くなり、pとn’が良好な対応相手ではないことを示す。このように、この方法は、ミスマッチを特定し、それを取り除き、そしてより確実な対応関係を作成する。
処理800は、ラスターライン1012ごとに最初の対応するピクセルの特定を続ける。処理800は、全ラスターライン1012の最初の対応するピクセルを特定し終えた後に、これらの最初の対応するピクセルの正しさと確実さをさらに保証するために、2つの追加の工程を実行してよい。2つの工程は、最初の対応するピクセルsおよびs’の局所的および全体的なサポートを調べることを含む。最初の対応するピクセルsとs’とはペアの縁ストライプピクセルであり、位置(x,y)と(x’,y’)を含んでいる。なお、xは列を、yは行を表す。前述したとおり、各画像は修正されているので、行位置yとy’は同じである。しかし、列位置xとx’は異なる。xとx’の差を視差と呼ぶ。
最初の対応するピクセルsとs’の局所的サポートを調べることは、最初の対応するピクセルsとs’の視差を求め、その視差を近隣のラスターライン1012上に位置する最初の対応するピクセルnとn’の視差と比較することを含む。最初の対応するピクセルnとn’の視差が最初の対応するピクセルsとs’の視差と同等であれば、近隣のラスターライン1012上に位置するその最初の対応するピクセルnとn’をサポーターと見なす。最初の対応するピクセルsとs’の近傍にあるサポーターの数が、その近傍のピクセルの数の半分に満たない場合、最初の対応するピクセルsとs’は良好ではない対応相手と見なされ、捨てられる。最初の対応するピクセルsとs’の局所的サポートを調べることは、通常は近傍の対応ピクセルからの強いサポートのない奥行き不連続近辺の誤った対応関係を取り除くのを助ける。
最初の対応するピクセルsとs’の全体的サポートを調べることは、これらの視差のヒストグラムを構築することを含む。最初の対応するピクセルペア群の視差のヒストグラムを算出し、このヒストグラムを使用して視差の分布を分析する。ヒストグラムでは、良好な視差は通常、強いサポートを示す。すなわち、最初の対応するピクセルペアの多くが良好な視差を有する。一方、良好でない視差は弱いサポートを示す。すなわち、良好な視差を持つ最初の対応するピクセルペアが少ない。よって、ヒストグラムは、サポートが弱い最初の対応するピクセルペアを特定し、除外するのを助ける。
上記の方法の一つに基づいて最初の対応するピクセルを特定した後、最初の対応するピクセルペアそれぞれの視差を、図11〜図13について説明するとおり一つ以上の方向へ伝播させる。再度図3A〜図3Bを参照して、視差伝播を使用して、第1画像302内の次の縁ストライプピクセルと第2画像304の対応する縁ストライプピクセルとの間の対応関係を確立する。同様に、視差伝播を使用して、第3画像312内の次の縁ストライプピクセルと第4画像314の対応する縁ストライプピクセルとの間の対応関係を確立する。
図11は、画像302、304、312、314で一つ以上の方向に視差伝播を実行するための処理1100を例示する図である。処理1100は、投射されたストライプの奥行き不連続を識別すること(1102)を含む。奥行き不連続を識別すること(1102)の一部として、各ストライプの明示的終端部分および暗示的終端部分をマークし、視差伝播処理の間に明示的終端部分および暗示的終端部分につき当たれば、所定の方向に向かう視差伝播ルーチンを停止する。再度図4を参照して、明示的終端部分群は、ストライプ406のストライプ終端416と、ストライプ404の領域414と、ストライプ402の領域412とを含む。前述したとおり、ストライプ終端416は、パターンが投射された対象物に奥行き不連続が存在しているということを示す(例えば、図3Aの顔の顔面下部と肩の間)。暗示的終端部分群は、あるストライプ上のピクセルで、他のストライプの明示的終端部分に隣接しているピクセルを含む。暗示的終端部分は例えば、奥行き不連続のために2つのストライプ部分が完全に結合している場合に生じることがある。例えば、再度図5を参照すると、ストライプ504は、ストライプ502の明示的終端部分508に隣接するピクセル部分510を含む。ピクセル部分510を暗示的終端部分としてマークし、ピクセル部分510の周りのピクセルが奥行き不連続を示している可能性が高いので、ピクセル部分510で視差伝播を停止させる。従って、工程1102は、暗示的終端部分を特定しマークすることによって、2つのストライプが奥行き不連続のために結合している状況を効率的に処理するよう試みる。
処理1100は、ステレオペア101aおよび101bのそれぞれで捕捉された画像における次のピクセル間の対応関係を確立するために3つの視差伝播パス(1104、1106、1108)を含む。第1パスは、水平方向に(例えば、ストライプ群を横切って左右両方向に)視差を伝播すること(1104)を含む。第2パスは、垂直方向に(例えば、ストライプに沿って上下両方向に)視差を伝播すること(1106)を含む。第3パスは、再び水平方向に(例えば、ストライプ群を横切って左右両方向に)視差を伝播すること(1108)を含む。
図12は、第1パスにおいて水平方向に視差を伝播するための処理1200を例示する図である。処理1200は、各ラスターライン614上の最初の対応するピクセルペアのそれぞれの視差を計算すること(1202)を含む。幾つかのラスターライン614が、奥行き不連続のために最初の対応するピクセルを持っていない場合がある。
前述のとおり、画像は修正されているので各画像の対応するピクセルは同じラスターラインに位置するが、列位置は異なっていると推定される。よって、最初の対応するピクセルの近隣のピクセルの対応関係を見つけることを、最初の対応するピクセルのラスターライン614に沿って実行する。処理1200は、基準画像の各ラスターライン614上の最初の対応するピクセルの左に視差を伝播すること(1204)を含む。ステレオペア101aの基準画像は、第1画像302であっても、または第2画像304であってもよい。また、ステレオペア101bの基準画像は、第3画像312であっても、または第4画像314であってもよい。一つの実施形態では、第1画像302がステレオペア101aの基準画像とされ、また、第3画像312がステレオペア101bの基準画像とされる。再度図6を参照して、左に視差を伝播していくこと(1204)の一部として、最初の対応するピクセル612の左にある縁ストライプピクセル616を基準画像において特定する。左への視差伝播(1204)は、基準画像の縁ストライプピクセル616と他方の画像の対応するピクセルとの対応関係を確立する。基準画像の縁ストライプピクセル616と他方の画像の対応するピクセルとの対応関係を確立するために、工程1202で算出された最初の対応するピクセル612の視差を使用する。最初の対応するピクセル612の視差は、他方の画像の対応するピクセルの位置の最初の推測を与える。従って、そのような位置にあるピクセル616’(図示せず)を縁ストライプピクセル616の最初の対応相手と見なす。そして、対応付けられたピクセル(616、616’)の対応付けスコアを算出する。さらに、ストライプピクセル616と、ピクセル616’のいくつかの近隣ピクセル(例えば±3ピクセル)それぞれとの対応付けスコアも算出する。最も高い対応付けスコアになったピクセル(例えば、縁ストライプピクセル616に最も類似するピクセル)を、ストライプピクセル616の実際の対応相手と見なす。最も高い対応付けスコアをしきい値と比較して、最も高い対応付けスコアがしきい値よりも高ければ、その対応関係は良好であると判断する(1206)。対応付けスコアがしきい値よりも低ければ、その対応関係は悪いと判断する(1206)。低い対応付けスコアとなり、対応相手を特定できないピクセルが3つ連続する場合、その視差伝播ルーチンを停止させる(1208)。対応付けスコアは、例えばNZMCCを使用して計算してよい。
対応付けが成功すれば、処理1200は、新しく対応付けられたピクセルの視差を計算してその視差をデフォルト視差として設定する(1212)。
また、最初の対応するピクセルの左に視差を伝播すること(1204)は、基準画像上の縁ストライプピクセル616の左にある次の端ストライプピクセル618を特定し、基準画像の縁ストライプピクセル618と他方の画像の対応するピクセルとの間の対応関係を確立すること(1214)を含む。縁ストライプピクセル618と対応するピクセルとの間の対応関係を確立するために、新しいデフォルト視差を使用して、工程1204と同じようにストライプピクセル618の対応関係を特定する。視差伝播はこの新たに対応付けられたピクセルからさらに進み、このストライプの明示的または暗示的終端に属する縁ストライプピクセルに達すると停止する(1216および1218)。
最初の対応するピクセルの左への視差伝播が完了した後は、最初の対応するピクセルの右側へも同様に視差が伝播する。処理1200を各ラスターライン614について実行する。その結果、処理1200によって、ステレオペア101aおよび101bのそれぞれで捕捉された画像内に、対応付けられた水平方向の帯のセットが作成される。この対応付けられた帯は、各ストライプの縁に沿っていると推定される。
図13は、第2パスで垂直方向に視差を伝播するための処理1300を例示する図である。これまでの水平方向視差伝播によって、大多数のストライプは縁の一部がすでに対応付けられている可能性がある。例えば、再度図6を参照すると、基準ストライプ602は、まだ対応付けられていない部分Nと、すでに対応付けられた縁ストライプピクセル634および638とを含む。処理1300は、ストライプパターンの全てのストライプ縁について、基準画像のまだ対応付けられていない部分Nを特定すること(1302)を含む。対応付けられていない部分Nは、端N1とN2とを含む。処理1300は、端N1の上の対応付けられた縁ストライプピクセル634と、端N2の下の対応付けられた縁ストライプピクセル638とを特定すること(1304)を含む。処理1300は、対応付けられた縁ストライプピクセル634と638のそれぞれの視差を比較すること(1306)を含む。対応付けられた縁ストライプピクセル634と638のそれぞれの視差の差がしきい値より大きければ、これらの視差は基準ストライプ602に沿って伝播されない(1307および1308)。そしてこの部分Nは不確定部分としてマークされる。一つの実施形態では、しきい値は3である。対応付けられたピクセルの視差がしきい値より下であれば(例えば3未満など)、処理1300は、対応付けられている縁ストライプピクセル634と638のそれぞれの視差に基づいて、基準画像のまだ対応付けられてない部分Nと他方の画像の対応する部分との間の対応関係を特定する(1307および1310)。一つの実施形態では、2つの画像の未対応付け部分N間の対応関係を見つけるために、部分Nの中心から2つの端N1とN2に向かって伝播を実行する。または、部分Nの上端から下端へ伝播を実行してもよいし、下端から上端へ伝播してもよい。処理1300は、他のストライプ604、606、608についても実行される。一つの実施形態では、処理1300はストライプパターンの左上から始まってストライプパターンの右下へと進んでもよい。または、処理1300は、ストライプパターンの右上から始まってストライプパターンの左下へと進んでもよい。結果として、各ストライプの未対応付け部分Nは、他方の画像の対応する部分と対応付けられる可能性がある。
視差伝播のこれまでの2つのパスの実行後に、第3パスを実行できる。第3パスでは、第2パスについて前に説明した不確定部分のような未対応付けストライプ部分の対応付けを試みる。第3パスでは、第1パスと同じ処理(処理1200)を使用する。この段階でまだ対応付けされていないストライプは、横方向の近隣が第2パスにおいて対応付けされている場合があり、この新たに対応付けされた近隣が、未だ対応付けされていないピクセルの対応付けを可能にする視差値を提供する場合がある。
3つのパスの後、どの縁ストライプピクセルが対応付けられているのかを示す最終的な対応マップが得られる。伝播処理1200および1300を通して、各ストライプピクセルの対応関係を特定するための調査ウィンドウは小さい(例えば、±3ピクセルなど)。このため、この視差伝播手法が要求する計算量は少ない。この視差伝播手法を使用しない場合、第1画像のピクセルを第2画像の対応するピクセルと対応付ける処理は、対応するピクセルを特定するために第2画像のラスターライン614に沿ってかなり大きな調査ウィンドウを必要とすることがある。これは、第1画像のピクセルの対応相手候補を見つけるために、第2画像のラスターライン614に沿った大多数のピクセルを評価する必要がある場合があるからである。このため、各ピクセルの調査ウィンドウは視差伝播手法における調査ウィンドウよりも通常かなり大きくなり、要求する計算量が多くなる。
再び図11を参照すると、これまでに確立された対応付けは、整数の精度である。対象物のほぼ平らな表面に対応する対応付けられたピクセルペア群は、同じ整数の視差を有する場合がある。三次元画像においてこれら対応付けられたピクセルペア群は、その対象物において若干異なる奥行きを持っている場合でも、同じ奥行きにあるように表示される。よって、整数の視差の場合、通常、大きな奥行きの差がある対応付けられたピクセル間でのみ対象物の奥行きの変化が示されるため、再現される三次元画像は滑らかで連続的なものとならないことがある。この場合、再現される画像が階段状となってしまうことがある。滑らかで連続的な表面を構築する(1110)ために、一つの実施形態では、処理1100は、対応付けをサブピクセル精度へとさらに精緻化することを含む。サブピクセル精緻化によって奥行き差の解像度が高まり、これにより、ほぼ平らな表面に対応する対応付けられたピクセルが、再現された三次元画像において実際の対応する奥行きで表示される。対応付けをサブピクセル精度へと精緻化することの一部として、曲線放物線合わせ法を使用する。曲線放物線合わせ法に従って、ピクセル(x,y)が対応付けスコアmで(x’,y)と対応付けられる場合、(x,y)と(x’−1,y)との間の対応付けスコアmと、(x,y)と(x’+1,y)との間の対応付けスコアmも、図8について上述したとおり式2を使用して計算する。滑らかで連続的な表面を構築すること(1110)の一部として、3点(x’−1,m),(x’,m)、(x’+1,m)に1つの放物線を合わせ、その放物線上で最大となるmとこれに対応するxとを特定する。対応付けられたピクセル(x,y)を(x,y)の最終的な対応相手とする。対応付けのサブピクセル精緻化によって、工程1110は滑らかな三次元表面を生成する。
最終の対応マップでは誤って対応付けられたピクセルが存在することがあり、これらのピクセルは、表面上でスパイクとなって現れる。処理1100は、このようなミスマッチのピクセルを取り除くべくミスマッチ検出処理を実行すること(1112)を含む。この検出処理は、図14について後に説明する三次元メッシュに基づいてもよい。対応付けられたピクセルごとに近隣のピクセルを特定し、その対応付けられたピクセルと近隣ピクセルの対応する三次元点を、ステレオ三角測量技法を用いて算出する。対応付けられたピクセルの三次元点と近隣ピクセルの三次元点との間の距離が所定のしきい値よりも大きい場合、処理1100は、その対応付けられたピクセルをミスマッチと見なす。例えば、qi,j(j=1,2,… N)が着目するピクセルpの近隣ピクセルであるとすると、Qi,jとPが、対応する三次元点である。そして、処理1100は、jごとにPとQi,jとの間の距離が所定のしきい値よりも大きいかどうか判断する。Pの近隣の三次元点の総数に対する、しきい値よりも大きい距離の近隣三次元点の数の比率が大きければ、処理1100は、これはミスマッチの結果による点であると見なしてもよい。
図14は、テクスチャ(質感)を持った単一の三次元表面モデルを作成するための処理1400を例示する図である。処理1400は、ステレオペア101aと101bのそれぞれの三次元点群を生成すること(1402)を含む。三次元点群の生成では、ステレオ三角測量を使用してもよい。当技術分野では周知のステレオ三角測量では、対応付けられたピクセルの視差とカメラパラメータとを使用して三次元点群を算出する。
処理1400は、ステレオペア101aと101bのそれぞれの三次元表面モデルを作成し表面を連続的にすること(1404)を含む。三次元表面モデルは、三次元メッシュ化など周知の技法に従って、三次元点群を用いてステレオペア101aおよび101bのそれぞれに対して作成される。
一つの実施形態では、三次元表面モデルを作成することの一部として、当技術分野では周知のドローネー三角分割法アルゴリズムを使用して、基準画像での対応付けられたピクセルについて三角分割を行う。そして、対応する三次元点が三次元メッシュを形成する。
一般的に三次元点群は、ステレオ三角測量での数値誤差に加えて、ステレオ対応付け処理によってノイズが多い。さらに、対応付けられたピクセルは表面に投射されたときに奥行き不連続によって変形したストライプから抽出されるために、一般的に三次元メッシュは不規則である。このため、メッシュ内の三角形群は、形状とサイズが非常に異なることがある。よって、一つの実施形態は、所定の解像度の画像グリッドに一致した新しい三次元表面モデル(例えばメッシュ)を構築することを含む。
この新しい三次元表面モデルを構築するとき、当技術分野では標準的な処理であるが、矩形グリッドを画像面に重畳する。カルマンフィルタリング・スムージング法を使用して新しい三次元表面モデルをさらに加工する。この手順は当技術分野では周知である。再メッシュ化とカルマンフィルタリング・スムージング法の結果として、対応する二次元表面モデルが該画像グリッドに一致し、ノイズが抑制され、表面が平滑化された三次元表面モデルが生成される。必要があれば、当技術分野では周知のとおり、上述の処理で得られた三次元点群に1つのNURB表面を合わせることによってさらなる平滑化が得られる場合がある。
再度図14を参照すると、工程(1404)は、2つの三次元表面モデル(ステレオペア101aと101bのそれぞれに一つずつ)を生成する。処理1400は、2つの三次元表面モデルを使用し、ステレオペア101aと101bの統合された単一の三次元表面モデルを作成する(1406)。
再度図2を参照すると、単一の統合三次元表面モデルを作成すること(1406)は、第1の三次元表面モデルと第2の三次元表面モデルとのレジストレーションを行うこと(208)を含む。第1の三次元表面モデルと第2の三次元表面モデルとをレジストレーションすることは当技術分野では周知である。レジストレーションとは、個々の座標システムを有する場合があるステレオペア101aと101bからのデータを位置合わせして、それらのデータを単一の座標システムに変換できるようにする処理を指している。ステレオペア101aと101bとを同じ基準システムを使用してキャリブレートしたとしても、ステレオペア101aと101bによって得られるデータは、キャリブレーション処理での、またはステレオペア101a、101bそれぞれでの誤差によって、ずれがあることがある。
第1の三次元表面モデルと第2の三次元表面モデルとのレジストレーション(208)によって、第1の三次元表面モデルが第2の三次元表面モデルと位置合わせされる。一つの実施形態では、第1の三次元表面モデルと第2の三次元表面モデルとを位置合わせするために、第1の三次元表面モデルと第2の三次元表面モデルの間の固定変換行列(R,t)を算出し、この行列を第1の三次元表面モデルまたは第2の三次元表面モデルのいずれかに適用することによって、一方の三次元表面モデルを他方の三次元表面モデルに位置合わせする。
固定変換行列(R,t)の算出は2つの工程を含んでもよい。まず、2つの三次元表面モデルを大まかに位置合わせる第一変換行列を算出する。次に、Iterative Closest Point(「ICP」)を用いて第一変換行列を繰り返し調整し、最終的に第1の三次元表面モデルと第2の三次元表面モデルとを位置合わせする。
図15を参照すると、処理1500を第一変換行列の算出に使用してもよい。処理1500は、第1の三次元表面モデルと第2の三次元表面モデル内の注目する領域を特定すること(1502)を含む。再度図3A〜3Bを参照すると、ステレオペア101aと101bのそれぞれで捕捉された画像は、各カメラの位置が異なるため、正確には同一の物理的表面領域をカバーしていない。各画像には他方の画像と重複している領域が存在し、各画像にはその画像だけでカバーされた領域も存在する。図3A〜3Bでは、重複している領域としては、人物の顔の鼻がある領域が挙げられる。従って、例えば、鼻を含む領域を第1の三次元表面モデルと第2の三次元表面モデルの注目する領域として選択してもよい。第1の三次元表面モデルと第2の三次元表面モデルの作成では三角分割技法が使用されているので、第1の三次元表面モデルと第2の三次元表面モデルの各点は1つの三角形によって表わされる。シード三角形とも呼ばれる鼻に対応する三角形を、中央領域にある三角形として特定する。この三角形はカメラに最も近い。
処理1700は、注目領域を拡張すること(1504)を含む。注目領域を拡張することの一部として、シード三角形と縁を共有している三角形を特定する。このように、すでに注目領域にある三角形と縁を共有する他の三角形を取り込み、三角形群の合計面積が所定の量に達するまで拡張を続ける。一つの実施形態では、所定の面積とは10,000mmである。結果として、注目領域を拡張させること(1504)は、2つの三次元表面モデルの間の粗い対応関係を与える2つの領域を生成する。
処理1500はさらに、第1の三次元表面モデルと第2の三次元表面モデルとの間の第一変換行列を見つけること(1506)を含む。第一変換行列を見つけることは、上記の方法で見つけた2つの注目領域に基づいて行われる。この2つの対応付けされた領域での頂点をRG={p1i,i=1,2…n}、RG={p2j,j=1,2…n}とする。nとnは2つの領域それぞれの頂点の数である。RGとRGとを使用して第一並進ベクトルTと第一回転行列Rとを算出する。RGとRGの重心CとCとを算出する。T=C−Cである。次にM1,COVとM2,COVをRGとRGの共分散行列とする。そして、これら2つの行列の固有ベクトルを使用して、第一回転行列RとRを作成する。第一回転行列RとRは、グローバル座標システムに関する2つの点セットの回転行列である。そして、RGとRGとの間の第一回転行列をR=R*R−1 と推定する。Rは2つの点群の間の第一回転行列である。そして、第一変換行列Mは、第一並進ベクトルTと第一回転ベクトルRとから構成される(M={R,T})。
次に、Mを初期値とし、さらにM行列を調整するICPアルゴリズムを使用する。ICPによって、最終的に2つの三次元表面モデルが位置合わせされる。
図16A〜図16Bを参照すると、レジストレーション前の第1の三次元表面モデル1601と第2の三次元表面モデル1602とが例示されている。図16Aを参照すると、第1の三次元表面モデル1601と第2の三次元表面モデル1602とが白黒で示されており、それぞれ白と黒のストライプを含む。第1の三次元表面モデル1601は、例えば「下顎」の下に示したようにより明るいグレースケール線で示されており、符号1601が付けられている。第2の三次元表面モデル1602は、例えば「顔面下部」に示したようにより暗いグレースケール線で示されており、符号1602が付けられている。レジストレーションの前は、第1の三次元表面モデル1601のストライプと第2の三次元表面モデル1602のストライプとは、異なる位置に表示される。例えば、第1の三次元表面モデルの基準ストライプ1603と、第2の三次元表面モデルの基準ストライプ1603とは、同じ位置でなく互いに隣接して示されている。従って、ストライプ間の間隔が非常に狭く、ストライプパターンがはっきりしていない。図16Bを参照すると、第1の三次元表面モデル1601は青色で、第2の三次元表面モデル1602は黄色で示されている。レジストレーションの前は、黄色のストライプは青色のストライプの間に現れる。
図17A〜図17Bは、レジストレーション後の第1の三次元表面モデル1601と第2の三次元表面モデル1602を例示する図である。図17Aを参照すると、第1の三次元表面モデル1601と第2の三次元表面モデル1602とが白黒で表示されている。図16Aについて前述したとおり、第1の三次元表面モデル1601は、例えば「下顎」の下に示したようにより明るいグレースケール線で示されており、符号1601が付けられている。第2の三次元表面モデル1602は、例えば「顔面下部」に示したようにより暗いグレースケール線で示されており、符号1602が付けられている。図示のとおり、レジストレーションによって、第1の三次元表面モデル1601の縦方向のストライプと第2の三次元表面モデル1602の縦方向のストライプとが位置合わせされている。例えば、三次元表面モデル1601と1602内の両方の基準ストライプ1603が重なっており、図16A〜図16Bのストライプよりもはっきりとしたストライプを形成している。従って、図17A〜図17Bでのストライプ間の間隔は、図16A〜図16Bでのストライプ間の間隔よりも広い。図17Bを参照すると、第1の三次元表面モデル1601と第2の三次元表面モデル1602とがカラーで表示されている。第1の三次元表面モデル1601は青色で、第2の三次元表面モデル1602は黄色で示されている。レジストレーション後は、青色ストライプと黄色ストライプが互いに重なり合って、ストライプ間に広い間隔を形成し、ストライプパターンをよりはっきりとさせている。例えば、下顎の領域1605は、図16A〜図16Bよりも図17A〜図17Bの方がよく示されている。
再度図2を参照すると、第1の三次元表面モデルと第2の三次元表面モデルとを統合すること(210)は、レジストレーションされた第1と第2の三次元表面モデルを結合し、図18で示すように単一の表面モデル2202を作成する。第1の三次元表面モデルと第2の三次元表面モデルとの統合は当技術分野では周知である。
再度図2を参照すると、処理200は、統合された三次元表面モデルにテクスチャを加えること(212)を含む。統合された三次元表面モデルにテクスチャを加えることは、当技術分野では周知である。一つの実施形態では、統合された三次元表面モデルにテクスチャを加えることの一部として、カメラパラメータと、テクスチャカメラ106からの画像と、統合された三次元表面モデルとが使用される。統合された三次元表面モデルはテクスチャカメラ106と座標システムが同じであるため、この表面モデルの各三次元点を単に画像面上に投射し、テクスチャ座標を生成する。このように、統合された三次元表面モデルにテクスチャを加えること(212)によって、単一のテクスチャ付き三次元表面が生成される。この単一のテクスチャ付き三次元表面は、例えば工程214および216によるテクスチャ付き三次元表面のレンダリング(214)またはエクスポート(216)によって、ユーザーに提示される。図20を参照すると、最終的なテクスチャ付けされた表面モデル2204の3つの画像が例示されている。
図19を参照すると、別の実施形態では、処理1900は、三次元対象物に赤外線パターンを投射して(1902)、パターンを三次元対象物に投射している間に第1画像と第2画像とを生成すること(1904)を含む。第1画像は、カメラ102において赤外線フィルタ114によりフィルタリングされた光を捕捉することによって生成されてもよい。第2画像は、カメラ104において赤外線フィルタ114によりフィルタリングされた光を捕捉することによって生成されてもよい。第1画像はパターンが付けられた三次元対象物を含み、ピクセルを含む二次元デジタル画像であってよい。同様に、第2画像はパターンが付けられた三次元対象物を含み、ピクセルを有する二次元デジタル画像であってよい。処理1900は、第1画像のピクセルの一部と第2画像のピクセルの一部との間に第1ペア対応関係を確立すること(1906)を含む。
処理1900は、三次元対象物にパターンを投射している間に三次元対象物の第3画像を生成すること(1908)を含む。一つの実施形態では、第3画像はテクスチャ画像であってもよく、テクスチャカメラ106においてフィルタリングされていない光を捕捉することによって生成される。テクスチャ画像は、赤外線パターンを示すことなく三次元対象物を含み、ピクセルを有する二次元デジタル画像であってよい。処理1900は、第1ペア対応関係と第3画像とに基づいて二次元画像を構築すること(1910)を含む。
本発明またはその特徴は、少なくとも部分的には、様々な装置において実施することができる。例えばコンパクトディスク(CD)、処理装置、またはその他のコンピュータ読み取り可能な媒体に、開示された方法のいずれかを実行するプログラム、命令、またはコードが含まれてもよい。さらに、開示された方法のいずれかを実行するツールが提供されてもよい。このツールは、例えば、コンピュータ読み取り可能な媒体、処理装置、カメラ、プロジェクタ、またはこれらおよび他の部品の組み合わせを含む。処理装置は、例えば、プロセッサ、コンピュータ、プログラム可能な論理装置、または集積回路を含む。
本発明はまた、持ち運び可能な装置を使用して実施されてもよい。持ち運び可能な装置の例としては、携帯型コンピュータまたは他の処理装置、携帯電話、個人用デジタル装置、例えばポケベルまたは携帯電子メール装置(例えばBlackberry(登録商標))などのメッセージング装置、例えばiPod(登録商標)などの携帯音楽プレーヤー、又は、他の電子携帯メッセージ装置、娯楽装置、企業・組織の装置、又はゲーム機器が挙げられる。
開示された実施形態は、三次元対象物(例えば、図3Aの顔)に縦方向のストライプのパターンが投射されるが、他のパターンが三次元対象物に投射されてもよい。例えば、横線のパターン、対角線のパターン、および/または同心の円などが三次元対象物に投射されてもよい。
最後に、発明を実施するために、様々な技術を使用し、組み合わせ、修正してもよい。そのような技術には、様々なハードウェア、ソフトウェア、ファームウェア、集積化部品、個別部品、処理装置、メモリまたは記憶装置、通信装置、レンズ、フィルタ、表示装置、および投射装置が含まれる。
また、開示されたシステムおよび方法は、概ね、顔の3D画像を構築する状況において説明されているが、他の対象物の3D画像を構築する能力も考慮されている。
幾つかの実施形態について説明したが、様々な修正が可能であることは理解されよう。例えば、異なるシステム、処理、及び他の手法の構成要素群を組み合わせ、補足し、修正し、再配置し、又は取去って、発明を実施してもよい。さらに、発明を実施するために様々な技術を使用し、組み合わせ、修正してもよい。そのような技術には、様々なハードウェア、ソフトウェア、ファームウェア、集積化部品、個別部品、処理装置、メモリまたは記憶装置、通信装置、レンズ、フィルタ、表示装置、投射装置が含まれる。従って、他の実施形態も、添付の請求項の範囲内に入る。
三次元デジタル化システムを例示する図である。 図1の三次元デジタル化システムを用いる処理を例示する図である。 第1ステレオペアで捕捉されたパターンを含む第1画像と第2画像とを例示する図である。 第2ステレオペアで捕捉されたパターンを含む第3画像と第4画像とを例示する図である。 図3A〜図3Bの画像のうちの一つに重畳された第1のストライプパターンを例示する図である。 図3A〜図3Bの画像のうちの一つに重畳された第2のストライプパターンを例示する図である。 縦方向のストライプと水平線とのセットを含むグリッドを例示する図である。 特別なストライプを有するパターンにおいて最初の対応するピクセルを特定する処理を例示する図である。 特別なストライプを有するパターンにおいて最初の対応するピクセルを特定する処理を例示する図である。 図6の水平線の一つに位置するピクセルの輝度値を表す曲線を含む輝度プロファイルを例示する図である。 基準ストライプを有していないパターンにおいて最初の対応するピクセルを特定するための処理を例示する図である。 ストライプピクセルではない重心ピクセルを例示する図である。 重心ストライプピクセルを有する第1グリッドと、前記重心ストライプピクセルに対応するピクセルを有する第2グリッドとを例示する図である。 2つの画像で視差を伝播するための処理を例示する図である。 水平方向に視差を伝播するための処理を例示する図である。 垂直方向に視差を伝播するための処理を例示する図である。 テクスチャが加えられた単一の三次元表面モデルを作成するための処理を例示する図である。 第一変換行列を算出するための処理を例示する図である。 位置合わせ前の第1の三次元表面モデルと第2の三次元表面モデルとを例示する図である。 位置合わせ前の第1の三次元表面モデルと第2の三次元表面モデルとを例示する図である。 位置合わせ後の図16A〜図16Bの第1の三次元表面モデルと第2の三次元表面モデルとを例示する図である。 位置合わせ後の図16A〜図16Bの第1の三次元表面モデルと第2の三次元表面モデルとを例示する図である。 テクスチャが加えられていない単一の三次元表面モデルと、テクスチャが加えられた単一の三次元表面モデルとを例示する図である。 対象物の三次元画像を再構築するための処理を例示する図である。

Claims (23)

  1. 三次元対象物に赤外線パターンを投射することと、
    前記三次元対象物の第1画像であって、(i)前記三次元対象物と前記パターンとを含み、(ii)複数のピクセルを有する二次元デジタル画像であり、(iii)第1カメラにおいて赤外線フィルタによってフィルタリングされた光を捕捉することによって生成される第1画像を、前記三次元対象物に前記パターンを投射している間に生成することと、
    前記三次元対象物の第2画像であって、(i)前記三次元対象物と前記パターンとを含み、(ii)複数のピクセルを有する二次元デジタル画像であり、(iii)前記第1カメラと既知の物理的関係を有する第1ステレオペアを成すよう配置された第2カメラにおいて、赤外線フィルタによってフィルタリングされた光を捕捉することによって生成される第2画像を、前記三次元対象物に前記パターンを投射している間に生成することと、
    前記第1画像の前記複数のピクセルの一部と前記第2画像の前記複数のピクセルの一部との間の第1ペア対応関係を確立することと、
    前記三次元対象物の第3画像であって、(i)前記三次元対象物を含むが、前記パターンは含まず、(ii)複数のピクセルを有する二次元デジタル画像である第3画像を、前記三次元対象物に前記パターンを投射している間に生成することと、
    前記第1ペア対応関係と前記第3画像とに基づいて、前記三次元対象物の三次元構造を描く二次元画像を構築することと
    を含む方法。
  2. 前記赤外線パターンを投射することは、ランダムでない赤外線パターンを投射することを含む請求項1に記載の方法。
  3. 前記第1ペア対応関係を確立することは、
    前記第1画像における最初のピクセルと、前記第2画像における対応するピクセルとの間の対応関係を決定することと、
    前記第1画像における該最初のピクセルと前記第2画像における該対応するピクセルとの間の該対応関係に基づいて、前記第1画像における別の幾つかのピクセルと、これらにそれぞれ対応する前記第2画像における対応ピクセルとの間の対応関係を決定することと
    を含む請求項1に記載の方法。
  4. 前記第1ペア対応関係を確立することは、
    前記第1画像における、第1の特定の水平線上に位置する第1の最初のピクセルと、前記第1の最初のピクセルに対応する第1対応ピクセルであって、前記第2画像において前記第1の特定の水平線上に位置する第1対応ピクセルとの間の対応関係を決定することと、
    前記第1画像における、前記第1の特定の水平線上に位置する別の幾つかのピクセルと、これら幾つかのピクセルにそれぞれ対応する対応ピクセルであって、前記第2画像において前記第1の特定の水平線上に位置する対応ピクセルとの間の対応関係を決定することと、
    前記第1画像における、第2の特定の水平線上に位置する第2の最初のピクセルと、前記第2の最初のピクセルに対応する第2対応ピクセルであって、前記第2画像において前記第2の特定の水平線上に位置する第2対応ピクセルとの間の対応関係を決定することと、
    前記第1画像における、前記第2の特定の水平線上に位置する別の幾つかのピクセルと、これら幾つかのピクセルにそれぞれ対応する対応ピクセルであって、前記第2画像において前記第2の特定の水平線上に位置する対応ピクセルとの間の対応関係を決定することと
    を含む請求項1に記載の方法。
  5. 前記第1ペア対応関係を確立することは、
    前記第1画像における各水平線上の最初のピクセルと、前記第2画像における各水平線上の対応するピクセルとの間の対応関係を決定することと、
    前記第1画像における各水平線上の前記最初のピクセルと前記第2画像における各水平線上の前記対応するピクセルとの間の前記対応関係に基づいて、前記第1画像における別の幾つかのピクセルと、これらにそれぞれ対応する前記第2画像における対応ピクセルとの間の対応関係を決定することと
    を含む請求項1に記載の方法。
  6. 前記パターンが縦方向の複数のストライプを備える請求項1に記載の方法。
  7. 前記第1の最初のピクセルは、前記第1の特定の水平線上における複数のパターンピクセル(pattern pixels)から算出された重心パターンピクセルである請求項5に記載の方法。
  8. 前記第1画像における、前記第2の特定の水平線上に位置する前記別の幾つかのピクセルのうちの少なくとも一つのピクセルの対応関係は、前記第2の特定の水平線上に位置する少なくとも一つの他のピクセルについて決定された対応関係に基づいて決定される請求項4に記載の方法。
  9. 前記第1画像における、前記第2の特定の水平線上に位置する前記別の幾つかのピクセルのうちの少なくとも一つのピクセルの対応関係は、前記第1の特定の水平線上に位置する少なくとも一つのピクセルについて決定された対応関係に基づいて決定される請求項4に記載の方法。
  10. 前記第1の特定の水平線上に位置する前記少なくとも一つのピクセルは、前記第2の特定の水平線上に位置する前記別の幾つかのピクセルのうちの前記少なくとも一つのピクセルと同じストライプ縁上にある請求項9に記載の方法。
  11. 前記三次元構造を描く前記二次元画像を構築することは、
    前記第1ペア対応関係に基づいて第1の三次元点のセットを形成することと、
    前記第1の三次元点のセットに基づいて第1の三次元表面モデルを生成することと
    を含む請求項1に記載の方法。
  12. 前記三次元対象物の第4画像であって、複数のピクセルを有する二次元デジタル画像であり、第4カメラにおいて赤外線フィルタによってフィルタリングされた光を捕捉することによって生成される第4画像を、前記三次元対象物に前記パターンを投射している間に生成することと、
    前記三次元対象物の第5画像であって、複数のピクセルを有する二次元デジタル画像であり、前記第4カメラと既知の物理的関係を有する第2ステレオペアを成すよう配置された第5カメラにおいて赤外線フィルタによってフィルタリングされた光を捕捉することによって生成される第5画像を、前記三次元対象物に前記パターンを投射している間に生成することと、
    前記第4画像の前記複数のピクセルの一部と前記第5画像の前記複数のピクセルの一部との間に第2ペア対応関係を確立することと
    をさらに含み、
    前記三次元対象物の三次元構造を描く前記二次元画像の構築は、前記第2ペア対応関係に更に基づいて行われる請求項1に記載の方法。
  13. 前記三次元構造を描く前記二次元画像を構築することは、
    前記第1ペア対応関係に基づいて第1の三次元表面モデルを生成することと、
    前記第2ペア対応関係に基づいて第2の三次元表面モデルを生成することと、
    前記第1と第2の三次元表面モデルをレジストレーション(register)することと
    を含む請求項12に記載の方法。
  14. 前記レジストレーションすることは、
    前記第1と第2の三次元表面モデルの共通の表面を特定することと、
    前記共通の表面に基づいてレジストレーション行列の最初の推定を行うことと、
    レジストレーション行列の前記最初の推定に基づいて、前記第1と第2の三次元表面モデルの間で最も近い点同士を特定することと
    を含む請求項13に記載の方法。
  15. 前記第1の三次元表面モデルを生成することは、前記第1ペア対応関係に基づいて第1の三次元点のセットを形成することと、
    前記第1の三次元点のセットに基づいて前記第1の三次元表面モデルを生成することと
    を含み、
    前記第1の三次元表面モデルを生成することは、
    前記第2ペア対応関係に基づいて第2の三次元点のセットを形成することと、
    前記第2の三次元点のセットに基づいて前記第2の三次元表面モデルを生成することと
    を含む請求項13に記載の方法。
  16. 統合された三次元表面モデルを生成するために、前記レジストレーションの後に前記第1と第2の三次元表面モデルを統合することと、
    前記統合された三次元表面モデルにテクスチャを加えることと
    をさらに含む請求項13に記載の方法。
  17. 前記第3画像を生成することは、第3カメラにおいてフィルタリングされていない光を捕捉することによって前記第3画像を生成することを含む請求項1に記載の方法。
  18. 前記第3カメラはテクスチャカメラである請求項17に記載の方法。
  19. 第2カメラに接続された第1カメラを有する第1ステレオカメラペアと、
    第4カメラに接続された第3カメラを有する第2ステレオカメラペアと、
    4つの赤外線フィルタのセットであって、それぞれが前記4つのカメラの1つに作用可能に接続されている赤外線フィルタのセットと、
    プロジェクタと、
    前記4つのカメラと前記プロジェクタとに接続されたコンピュータ読み取り可能な媒体であって、少なくとも次のこと、即ち
    三次元対象物に前記プロジェクタから赤外線パターンを投射することと、
    前記三次元対象物の第1画像であって、(i)前記三次元対象物と前記パターンとを含み、(ii)複数のピクセルを有する二次元デジタル画像であり、(iii)第1カメラにおいて赤外線フィルタによってフィルタリングされた光を捕捉することによって生成される第1画像を、前記三次元対象物に前記パターンを投射している間に生成することと、
    前記三次元対象物の第2画像であって、(i)前記三次元対象物と前記パターンとを含み、(ii)複数のピクセルを有する二次元デジタル画像であり、(iii)前記第1カメラと既知の物理的関係を有する第1ステレオペアを成すよう配置された第2カメラにおいて、赤外線フィルタによってフィルタリングされた光を捕捉することによって生成される第2画像を、前記三次元対象物に前記パターンを投射している間に生成することと、
    前記第1画像の前記複数のピクセルの一部と前記第2画像の前記複数のピクセルの一部との間の第1ペア対応関係を確立することと、
    前記三次元対象物の第3画像であって、(i)前記三次元対象物を含むが、前記パターンは含まず、(ii)複数のピクセルを有する二次元デジタル画像であり、(iii)テクスチャカメラで光を捕捉することによって生成される第3画像を、前記三次元対象物に前記パターンを投射している間に生成することと、
    前記第1ペア対応関係と前記第3画像とに基づいて、前記三次元対象物の三次元構造を描く二次元画像を構築することと
    を実行するための命令を含むコンピュータ読み取り可能な媒体と
    を備えるシステム。
  20. 前記プロジェクタは、可視領域と赤外線領域の光を生成できる光源を備える請求項19に記載のシステム。
  21. 前記プロジェクタは、第5の赤外線フィルタを備える請求項20に記載のシステム。
  22. 前記コンピュータ読み取り可能な媒体は、処理装置と記憶装置のうち一つ以上を備える請求項19に記載のシステム。
  23. 三次元対象物にパターンを投射している間に捕捉された前記三次元対象物の第1画像であって、(i)前記三次元対象物と前記パターンとを含み、(ii)複数のピクセルを有する二次元デジタル画像であり、(iii)第1カメラにおいて赤外線フィルタによってフィルタリングされた光を捕捉することによって生成された第1画像にアクセスすることと、
    前記三次元対象物に前記パターンを投射している間に捕捉された前記三次元対象物の第2画像であって、(i)前記三次元対象物と前記パターンとを含み、(ii)複数のピクセルを有する二次元デジタル画像であり、(iii)第2カメラにおいて赤外線フィルタによりフィルタリングされた光を捕捉することによって生成された第2画像にアクセスすることと、
    前記第1画像と前記第2画像とを捕捉する間、既知の物理的関係を有する第1ステレオペアとして配列された前記第1カメラと前記第2カメラとに基づいて、前記第1画像の前記複数のピクセルの一部と前記第2画像の前記複数のピクセルの一部との間の第1ペア対応関係を確立することと、
    前記三次元対象物に前記パターンを投射している間に捕捉された前記三次元対象物の第3画像であって、(i)前記三次元対象物を含むが、前記パターンは含まず、(ii)複数のピクセルを有する二次元デジタル画像である第3画像にアクセスすることと、
    前記第1ペア対応関係と前記第3画像とに基づいて、前記三次元対象物の三次元構造を描く二次元画像を構築することと
    を少なくとも実行するための命令を含むコンピュータ読み取り可能な媒体。
JP2007550469A 2005-01-07 2006-01-09 赤外線パターンを照射することによる対象物の三次元像の生成 Pending JP2008537190A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US64175205P 2005-01-07 2005-01-07
PCT/US2006/000345 WO2006074310A2 (en) 2005-01-07 2006-01-09 Creating 3d images of objects by illuminating with infrared patterns

Publications (1)

Publication Number Publication Date
JP2008537190A true JP2008537190A (ja) 2008-09-11

Family

ID=36648180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007550469A Pending JP2008537190A (ja) 2005-01-07 2006-01-09 赤外線パターンを照射することによる対象物の三次元像の生成

Country Status (5)

Country Link
US (6) US7430312B2 (ja)
EP (1) EP1851527A2 (ja)
JP (1) JP2008537190A (ja)
CN (1) CN101198964A (ja)
WO (1) WO2006074310A2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133751A (ja) * 2008-12-02 2010-06-17 Topcon Corp 形状測定装置およびプログラム
JP2013015452A (ja) * 2011-07-05 2013-01-24 Ohbayashi Corp 鉄筋領域抽出装置、鉄筋領域抽出方法及び鉄筋領域抽出プログラム
KR101327433B1 (ko) * 2011-12-08 2013-11-11 주식회사 엔티리서치 역구배를 가지는 대상물체의 입체형상 측정 장치
JP2014188095A (ja) * 2013-03-26 2014-10-06 Kitasato Institute 遠隔診断システム
WO2015098288A1 (ja) 2013-12-27 2015-07-02 ソニー株式会社 画像処理装置、および画像処理方法
JP2022554409A (ja) * 2019-12-13 2022-12-28 ソニーグループ株式会社 マルチスペクトルボリュメトリックキャプチャ
JP7512711B2 (ja) 2020-07-01 2024-07-09 コニカミノルタ株式会社 システム

Families Citing this family (453)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8352400B2 (en) 1991-12-23 2013-01-08 Hoffberg Steven M Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore
US7966078B2 (en) 1999-02-01 2011-06-21 Steven Hoffberg Network media appliance system and method
US6990639B2 (en) 2002-02-07 2006-01-24 Microsoft Corporation System and process for controlling electronic components in a ubiquitous computing environment using multimodal integration
US7665041B2 (en) 2003-03-25 2010-02-16 Microsoft Corporation Architecture for controlling a computer using hand gestures
US8745541B2 (en) 2003-03-25 2014-06-03 Microsoft Corporation Architecture for controlling a computer using hand gestures
US7983835B2 (en) 2004-11-03 2011-07-19 Lagassey Paul J Modular intelligent transportation system
CN101198964A (zh) * 2005-01-07 2008-06-11 格斯图尔泰克股份有限公司 使用红外图案照射创建对象的三维图像
JP5631535B2 (ja) 2005-02-08 2014-11-26 オブロング・インダストリーズ・インコーポレーテッド ジェスチャベースの制御システムのためのシステムおよび方法
US7697827B2 (en) 2005-10-17 2010-04-13 Konicek Jeffrey C User-friendlier interfaces for a camera
US8537112B2 (en) * 2006-02-08 2013-09-17 Oblong Industries, Inc. Control system for navigating a principal dimension of a data space
US8370383B2 (en) 2006-02-08 2013-02-05 Oblong Industries, Inc. Multi-process interactive systems and methods
US9075441B2 (en) * 2006-02-08 2015-07-07 Oblong Industries, Inc. Gesture based control using three-dimensional information extracted over an extended depth of field
US8537111B2 (en) * 2006-02-08 2013-09-17 Oblong Industries, Inc. Control system for navigating a principal dimension of a data space
US9823747B2 (en) 2006-02-08 2017-11-21 Oblong Industries, Inc. Spatial, multi-modal control device for use with spatial operating system
US9910497B2 (en) * 2006-02-08 2018-03-06 Oblong Industries, Inc. Gestural control of autonomous and semi-autonomous systems
US8531396B2 (en) 2006-02-08 2013-09-10 Oblong Industries, Inc. Control system for navigating a principal dimension of a data space
KR101311896B1 (ko) * 2006-11-14 2013-10-14 삼성전자주식회사 입체 영상의 변위 조정방법 및 이를 적용한 입체 영상장치
US7945107B2 (en) * 2007-03-16 2011-05-17 Massachusetts Institute Of Technology System and method for providing gradient preservation for image processing
US8005238B2 (en) 2007-03-22 2011-08-23 Microsoft Corporation Robust adaptive beamforming with enhanced noise suppression
KR101345303B1 (ko) * 2007-03-29 2013-12-27 삼성전자주식회사 스테레오 또는 다시점 영상의 입체감 조정 방법 및 장치
JP5905662B2 (ja) 2007-04-24 2016-04-20 オブロング・インダストリーズ・インコーポレーテッド プロテイン、プール、およびスロークス処理環境
CN101689244B (zh) * 2007-05-04 2015-07-22 高通股份有限公司 用于紧凑设备的基于相机的用户输入
US8005237B2 (en) 2007-05-17 2011-08-23 Microsoft Corp. Sensor array beamformer post-processor
KR101545008B1 (ko) * 2007-06-26 2015-08-18 코닌클리케 필립스 엔.브이. 3d 비디오 신호를 인코딩하기 위한 방법 및 시스템, 동봉된 3d 비디오 신호, 3d 비디오 신호용 디코더에 대한 방법 및 시스템
JP5943547B2 (ja) * 2007-08-17 2016-07-05 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company 非接触測定を行う装置および方法
US8629976B2 (en) 2007-10-02 2014-01-14 Microsoft Corporation Methods and systems for hierarchical de-aliasing time-of-flight (TOF) systems
US8390623B1 (en) * 2008-04-14 2013-03-05 Google Inc. Proxy based approach for generation of level of detail
US10642364B2 (en) 2009-04-02 2020-05-05 Oblong Industries, Inc. Processing tracking and recognition data in gestural recognition systems
US8723795B2 (en) 2008-04-24 2014-05-13 Oblong Industries, Inc. Detecting, representing, and interpreting three-space input: gestural continuum subsuming freespace, proximal, and surface-contact modes
US9495013B2 (en) 2008-04-24 2016-11-15 Oblong Industries, Inc. Multi-modal gestural interface
US9740922B2 (en) 2008-04-24 2017-08-22 Oblong Industries, Inc. Adaptive tracking system for spatial input devices
US9684380B2 (en) 2009-04-02 2017-06-20 Oblong Industries, Inc. Operating environment with gestural control and multiple client devices, displays, and users
US9952673B2 (en) 2009-04-02 2018-04-24 Oblong Industries, Inc. Operating environment comprising multiple client devices, multiple displays, multiple users, and gestural control
US9740293B2 (en) 2009-04-02 2017-08-22 Oblong Industries, Inc. Operating environment with gestural control and multiple client devices, displays, and users
KR101733443B1 (ko) 2008-05-20 2017-05-10 펠리칸 이매징 코포레이션 이종 이미저를 구비한 모놀리식 카메라 어레이를 이용한 이미지의 캡처링 및 처리
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US8866920B2 (en) 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
JP2011525283A (ja) * 2008-06-18 2011-09-15 オブロング・インダストリーズ・インコーポレーテッド 車両インターフェース用ジェスチャ基準制御システム
US8385557B2 (en) 2008-06-19 2013-02-26 Microsoft Corporation Multichannel acoustic echo reduction
US8325909B2 (en) 2008-06-25 2012-12-04 Microsoft Corporation Acoustic echo suppression
US8203699B2 (en) 2008-06-30 2012-06-19 Microsoft Corporation System architecture design for time-of-flight system having reduced differential pixel size, and time-of-flight systems so designed
US8284240B2 (en) * 2008-08-06 2012-10-09 Creaform Inc. System for adaptive three-dimensional scanning of surface characteristics
US8427424B2 (en) 2008-09-30 2013-04-23 Microsoft Corporation Using physical objects in conjunction with an interactive surface
US8908016B2 (en) * 2008-10-06 2014-12-09 Mantivision Ltd. Method and system for providing three-dimensional and range inter-planar estimation
US20120075296A1 (en) * 2008-10-08 2012-03-29 Strider Labs, Inc. System and Method for Constructing a 3D Scene Model From an Image
US8254724B2 (en) * 2008-11-06 2012-08-28 Bausch & Lomb Incorporated Method and apparatus for making and processing aberration measurements
US9586135B1 (en) 2008-11-12 2017-03-07 David G. Capper Video motion capture for wireless gaming
US10086262B1 (en) 2008-11-12 2018-10-02 David G. Capper Video motion capture for wireless gaming
US9383814B1 (en) 2008-11-12 2016-07-05 David G. Capper Plug and play wireless video game
CN102246201B (zh) * 2008-12-12 2014-04-02 松下电器产业株式会社 图像处理装置及图像处理方法
US8681321B2 (en) 2009-01-04 2014-03-25 Microsoft International Holdings B.V. Gated 3D camera
US8565476B2 (en) 2009-01-30 2013-10-22 Microsoft Corporation Visual target tracking
US8577085B2 (en) 2009-01-30 2013-11-05 Microsoft Corporation Visual target tracking
US8294767B2 (en) 2009-01-30 2012-10-23 Microsoft Corporation Body scan
US8448094B2 (en) 2009-01-30 2013-05-21 Microsoft Corporation Mapping a natural input device to a legacy system
US8267781B2 (en) 2009-01-30 2012-09-18 Microsoft Corporation Visual target tracking
US7996793B2 (en) 2009-01-30 2011-08-09 Microsoft Corporation Gesture recognizer system architecture
US20100199231A1 (en) 2009-01-30 2010-08-05 Microsoft Corporation Predictive determination
US8565477B2 (en) 2009-01-30 2013-10-22 Microsoft Corporation Visual target tracking
US8295546B2 (en) 2009-01-30 2012-10-23 Microsoft Corporation Pose tracking pipeline
US8487938B2 (en) 2009-01-30 2013-07-16 Microsoft Corporation Standard Gestures
US8588465B2 (en) 2009-01-30 2013-11-19 Microsoft Corporation Visual target tracking
US8577084B2 (en) 2009-01-30 2013-11-05 Microsoft Corporation Visual target tracking
US8682028B2 (en) 2009-01-30 2014-03-25 Microsoft Corporation Visual target tracking
US8624962B2 (en) 2009-02-02 2014-01-07 Ydreams—Informatica, S.A. Ydreams Systems and methods for simulating three-dimensional virtual interactions from two-dimensional camera images
US8517834B2 (en) * 2009-02-17 2013-08-27 Softkinetic Studios Sa Computer videogame system with body position detector that requires user to assume various body positions
EP2401575B1 (en) * 2009-02-25 2019-12-25 Dimensional Photonics International, Inc. Method and apparatus for generating a display of a three-dimensional surface
US8773355B2 (en) 2009-03-16 2014-07-08 Microsoft Corporation Adaptive cursor sizing
US9256282B2 (en) 2009-03-20 2016-02-09 Microsoft Technology Licensing, Llc Virtual object manipulation
US8988437B2 (en) 2009-03-20 2015-03-24 Microsoft Technology Licensing, Llc Chaining animations
US9313376B1 (en) 2009-04-01 2016-04-12 Microsoft Technology Licensing, Llc Dynamic depth power equalization
US10824238B2 (en) 2009-04-02 2020-11-03 Oblong Industries, Inc. Operating environment with gestural control and multiple client devices, displays, and users
US9317128B2 (en) 2009-04-02 2016-04-19 Oblong Industries, Inc. Remote devices used in a markerless installation of a spatial operating environment incorporating gestural control
US9015638B2 (en) 2009-05-01 2015-04-21 Microsoft Technology Licensing, Llc Binding users to a gesture based system and providing feedback to the users
US8660303B2 (en) 2009-05-01 2014-02-25 Microsoft Corporation Detection of body and props
US9898675B2 (en) 2009-05-01 2018-02-20 Microsoft Technology Licensing, Llc User movement tracking feedback to improve tracking
US8340432B2 (en) 2009-05-01 2012-12-25 Microsoft Corporation Systems and methods for detecting a tilt angle from a depth image
US8503720B2 (en) 2009-05-01 2013-08-06 Microsoft Corporation Human body pose estimation
US8253746B2 (en) 2009-05-01 2012-08-28 Microsoft Corporation Determine intended motions
US8181123B2 (en) 2009-05-01 2012-05-15 Microsoft Corporation Managing virtual port associations to users in a gesture-based computing environment
US8638985B2 (en) * 2009-05-01 2014-01-28 Microsoft Corporation Human body pose estimation
US8649554B2 (en) 2009-05-01 2014-02-11 Microsoft Corporation Method to control perspective for a camera-controlled computer
US9498718B2 (en) 2009-05-01 2016-11-22 Microsoft Technology Licensing, Llc Altering a view perspective within a display environment
US9377857B2 (en) 2009-05-01 2016-06-28 Microsoft Technology Licensing, Llc Show body position
US8942428B2 (en) 2009-05-01 2015-01-27 Microsoft Corporation Isolate extraneous motions
TR201011109T2 (tr) * 2009-05-21 2011-08-22 Yed�Tepe �N�Vers�Tes� Bir yüzey tarama sistemi.
US9182814B2 (en) 2009-05-29 2015-11-10 Microsoft Technology Licensing, Llc Systems and methods for estimating a non-visible or occluded body part
US9383823B2 (en) 2009-05-29 2016-07-05 Microsoft Technology Licensing, Llc Combining gestures beyond skeletal
US8625837B2 (en) 2009-05-29 2014-01-07 Microsoft Corporation Protocol and format for communicating an image from a camera to a computing environment
US8693724B2 (en) 2009-05-29 2014-04-08 Microsoft Corporation Method and system implementing user-centric gesture control
US8542252B2 (en) 2009-05-29 2013-09-24 Microsoft Corporation Target digitization, extraction, and tracking
US8744121B2 (en) 2009-05-29 2014-06-03 Microsoft Corporation Device for identifying and tracking multiple humans over time
US9400559B2 (en) 2009-05-29 2016-07-26 Microsoft Technology Licensing, Llc Gesture shortcuts
US8379101B2 (en) 2009-05-29 2013-02-19 Microsoft Corporation Environment and/or target segmentation
US8856691B2 (en) 2009-05-29 2014-10-07 Microsoft Corporation Gesture tool
US8509479B2 (en) 2009-05-29 2013-08-13 Microsoft Corporation Virtual object
US8418085B2 (en) 2009-05-29 2013-04-09 Microsoft Corporation Gesture coach
US8320619B2 (en) 2009-05-29 2012-11-27 Microsoft Corporation Systems and methods for tracking a model
US8487871B2 (en) 2009-06-01 2013-07-16 Microsoft Corporation Virtual desktop coordinate transformation
US8390680B2 (en) 2009-07-09 2013-03-05 Microsoft Corporation Visual representation expression based on player expression
US9159151B2 (en) 2009-07-13 2015-10-13 Microsoft Technology Licensing, Llc Bringing a visual representation to life via learned input from the user
WO2011127459A1 (en) 2010-04-09 2011-10-13 Zoll Medical Corporation Systems and methods for ems device communications interface
US9582889B2 (en) * 2009-07-30 2017-02-28 Apple Inc. Depth mapping based on pattern matching and stereoscopic information
US8264536B2 (en) 2009-08-25 2012-09-11 Microsoft Corporation Depth-sensitive imaging via polarization-state mapping
US9141193B2 (en) 2009-08-31 2015-09-22 Microsoft Technology Licensing, Llc Techniques for using human gestures to control gesture unaware programs
US8908958B2 (en) * 2009-09-03 2014-12-09 Ron Kimmel Devices and methods of generating three dimensional (3D) colored models
GB0915904D0 (en) * 2009-09-11 2009-10-14 Renishaw Plc Non-contact object inspection
US8330134B2 (en) 2009-09-14 2012-12-11 Microsoft Corporation Optical fault monitoring
US8508919B2 (en) 2009-09-14 2013-08-13 Microsoft Corporation Separation of electrical and optical components
US8760571B2 (en) 2009-09-21 2014-06-24 Microsoft Corporation Alignment of lens and image sensor
US8976986B2 (en) 2009-09-21 2015-03-10 Microsoft Technology Licensing, Llc Volume adjustment based on listener position
US8428340B2 (en) 2009-09-21 2013-04-23 Microsoft Corporation Screen space plane identification
US9014546B2 (en) 2009-09-23 2015-04-21 Rovi Guides, Inc. Systems and methods for automatically detecting users within detection regions of media devices
US8452087B2 (en) 2009-09-30 2013-05-28 Microsoft Corporation Image selection techniques
US8723118B2 (en) 2009-10-01 2014-05-13 Microsoft Corporation Imager for constructing color and depth images
US8963829B2 (en) 2009-10-07 2015-02-24 Microsoft Corporation Methods and systems for determining and tracking extremities of a target
US7961910B2 (en) 2009-10-07 2011-06-14 Microsoft Corporation Systems and methods for tracking a model
US8867820B2 (en) 2009-10-07 2014-10-21 Microsoft Corporation Systems and methods for removing a background of an image
US8564534B2 (en) 2009-10-07 2013-10-22 Microsoft Corporation Human tracking system
US9933852B2 (en) 2009-10-14 2018-04-03 Oblong Industries, Inc. Multi-process interactive systems and methods
US9971807B2 (en) 2009-10-14 2018-05-15 Oblong Industries, Inc. Multi-process interactive systems and methods
US9400548B2 (en) 2009-10-19 2016-07-26 Microsoft Technology Licensing, Llc Gesture personalization and profile roaming
US8988432B2 (en) 2009-11-05 2015-03-24 Microsoft Technology Licensing, Llc Systems and methods for processing an image for target tracking
US8843857B2 (en) 2009-11-19 2014-09-23 Microsoft Corporation Distance scalable no touch computing
US8514491B2 (en) 2009-11-20 2013-08-20 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
TWI393070B (zh) * 2009-12-14 2013-04-11 Nat Applied Res Laboratories 建立人臉模型的方法
US9244533B2 (en) 2009-12-17 2016-01-26 Microsoft Technology Licensing, Llc Camera navigation for presentations
US20110150271A1 (en) 2009-12-18 2011-06-23 Microsoft Corporation Motion detection using depth images
US8320621B2 (en) 2009-12-21 2012-11-27 Microsoft Corporation Depth projector system with integrated VCSEL array
CN101742349B (zh) * 2010-01-05 2011-07-20 浙江大学 一种对三维场景的表达方法及其电视系统
US8631355B2 (en) 2010-01-08 2014-01-14 Microsoft Corporation Assigning gesture dictionaries
US9268404B2 (en) 2010-01-08 2016-02-23 Microsoft Technology Licensing, Llc Application gesture interpretation
US9019201B2 (en) 2010-01-08 2015-04-28 Microsoft Technology Licensing, Llc Evolving universal gesture sets
US8933884B2 (en) 2010-01-15 2015-01-13 Microsoft Corporation Tracking groups of users in motion capture system
US8334842B2 (en) 2010-01-15 2012-12-18 Microsoft Corporation Recognizing user intent in motion capture system
EP2526376B1 (en) * 2010-01-20 2018-04-25 JRB Engineering Pty Ltd Optical overhead wire measurement
US8676581B2 (en) 2010-01-22 2014-03-18 Microsoft Corporation Speech recognition analysis via identification information
US8265341B2 (en) 2010-01-25 2012-09-11 Microsoft Corporation Voice-body identity correlation
US8864581B2 (en) 2010-01-29 2014-10-21 Microsoft Corporation Visual based identitiy tracking
US20110187678A1 (en) * 2010-01-29 2011-08-04 Tyco Electronics Corporation Touch system using optical components to image multiple fields of view on an image sensor
US8891067B2 (en) 2010-02-01 2014-11-18 Microsoft Corporation Multiple synchronized optical sources for time-of-flight range finding systems
CN102713980A (zh) * 2010-02-01 2012-10-03 英特尔公司 从地理参考图像提取及映射三维特征
US8619122B2 (en) 2010-02-02 2013-12-31 Microsoft Corporation Depth camera compatibility
US8687044B2 (en) 2010-02-02 2014-04-01 Microsoft Corporation Depth camera compatibility
US8717469B2 (en) 2010-02-03 2014-05-06 Microsoft Corporation Fast gating photosurface
US8499257B2 (en) 2010-02-09 2013-07-30 Microsoft Corporation Handles interactions for human—computer interface
US8659658B2 (en) 2010-02-09 2014-02-25 Microsoft Corporation Physical interaction zone for gesture-based user interfaces
US8522308B2 (en) * 2010-02-11 2013-08-27 Verizon Patent And Licensing Inc. Systems and methods for providing a spatial-input-based multi-user shared display experience
US8633890B2 (en) 2010-02-16 2014-01-21 Microsoft Corporation Gesture detection based on joint skipping
US8928579B2 (en) 2010-02-22 2015-01-06 Andrew David Wilson Interacting with an omni-directionally projected display
US8730309B2 (en) 2010-02-23 2014-05-20 Microsoft Corporation Projectors and depth cameras for deviceless augmented reality and interaction
US8655069B2 (en) 2010-03-05 2014-02-18 Microsoft Corporation Updating image segmentation following user input
US8422769B2 (en) 2010-03-05 2013-04-16 Microsoft Corporation Image segmentation using reduced foreground training data
US8411948B2 (en) 2010-03-05 2013-04-02 Microsoft Corporation Up-sampling binary images for segmentation
US20110222757A1 (en) 2010-03-10 2011-09-15 Gbo 3D Technology Pte. Ltd. Systems and methods for 2D image and spatial data capture for 3D stereo imaging
US20110223995A1 (en) 2010-03-12 2011-09-15 Kevin Geisner Interacting with a computer based application
US8279418B2 (en) 2010-03-17 2012-10-02 Microsoft Corporation Raster scanning for depth detection
JP5035372B2 (ja) * 2010-03-17 2012-09-26 カシオ計算機株式会社 三次元モデリング装置、三次元モデリング方法、ならびに、プログラム
US8213680B2 (en) 2010-03-19 2012-07-03 Microsoft Corporation Proxy training data for human body tracking
US8514269B2 (en) 2010-03-26 2013-08-20 Microsoft Corporation De-aliasing depth images
US8523667B2 (en) 2010-03-29 2013-09-03 Microsoft Corporation Parental control settings based on body dimensions
US8605763B2 (en) 2010-03-31 2013-12-10 Microsoft Corporation Temperature measurement and control for laser and light-emitting diodes
US9098873B2 (en) 2010-04-01 2015-08-04 Microsoft Technology Licensing, Llc Motion-based interactive shopping environment
US9646340B2 (en) 2010-04-01 2017-05-09 Microsoft Technology Licensing, Llc Avatar-based virtual dressing room
US8351651B2 (en) 2010-04-26 2013-01-08 Microsoft Corporation Hand-location post-process refinement in a tracking system
US8379919B2 (en) 2010-04-29 2013-02-19 Microsoft Corporation Multiple centroid condensation of probability distribution clouds
US8593402B2 (en) 2010-04-30 2013-11-26 Verizon Patent And Licensing Inc. Spatial-input-based cursor projection systems and methods
US8284847B2 (en) 2010-05-03 2012-10-09 Microsoft Corporation Detecting motion for a multifunction sensor device
US8885890B2 (en) 2010-05-07 2014-11-11 Microsoft Corporation Depth map confidence filtering
US8498481B2 (en) 2010-05-07 2013-07-30 Microsoft Corporation Image segmentation using star-convexity constraints
WO2011143501A1 (en) 2010-05-12 2011-11-17 Pelican Imaging Corporation Architectures for imager arrays and array cameras
EP2386998B1 (en) * 2010-05-14 2018-07-11 Honda Research Institute Europe GmbH A Two-Stage Correlation Method for Correspondence Search
US8457353B2 (en) 2010-05-18 2013-06-04 Microsoft Corporation Gestures and gesture modifiers for manipulating a user-interface
KR101665567B1 (ko) * 2010-05-20 2016-10-12 삼성전자주식회사 3차원 뎁스 영상 시간 보간 방법 및 장치
CN102474647B (zh) * 2010-05-25 2015-08-19 松下电器(美国)知识产权公司 图像编码装置、图像编码方法以及集成电路
US8803888B2 (en) 2010-06-02 2014-08-12 Microsoft Corporation Recognition system for sharing information
US8751215B2 (en) 2010-06-04 2014-06-10 Microsoft Corporation Machine based sign language interpreter
US9008355B2 (en) 2010-06-04 2015-04-14 Microsoft Technology Licensing, Llc Automatic depth camera aiming
US9557574B2 (en) 2010-06-08 2017-01-31 Microsoft Technology Licensing, Llc Depth illumination and detection optics
US8330822B2 (en) 2010-06-09 2012-12-11 Microsoft Corporation Thermally-tuned depth camera light source
US9384329B2 (en) 2010-06-11 2016-07-05 Microsoft Technology Licensing, Llc Caloric burn determination from body movement
US8749557B2 (en) 2010-06-11 2014-06-10 Microsoft Corporation Interacting with user interface via avatar
US8675981B2 (en) 2010-06-11 2014-03-18 Microsoft Corporation Multi-modal gender recognition including depth data
US8982151B2 (en) 2010-06-14 2015-03-17 Microsoft Technology Licensing, Llc Independently processing planes of display data
US8670029B2 (en) 2010-06-16 2014-03-11 Microsoft Corporation Depth camera illuminator with superluminescent light-emitting diode
US8558873B2 (en) 2010-06-16 2013-10-15 Microsoft Corporation Use of wavefront coding to create a depth image
US8296151B2 (en) 2010-06-18 2012-10-23 Microsoft Corporation Compound gesture-speech commands
US8381108B2 (en) 2010-06-21 2013-02-19 Microsoft Corporation Natural user input for driving interactive stories
US8416187B2 (en) 2010-06-22 2013-04-09 Microsoft Corporation Item navigation using motion-capture data
US8248118B2 (en) * 2010-08-09 2012-08-21 Texas Instruments Incorporated High-speed frequency divider and a phase locked loop that uses the high-speed frequency divider
US8704890B2 (en) * 2010-08-19 2014-04-22 Olympus Corporation Inspection apparatus and measuring method
US9075434B2 (en) 2010-08-20 2015-07-07 Microsoft Technology Licensing, Llc Translating user motion into multiple object responses
US8613666B2 (en) 2010-08-31 2013-12-24 Microsoft Corporation User selection and navigation based on looped motions
US8704879B1 (en) 2010-08-31 2014-04-22 Nintendo Co., Ltd. Eye tracking enabling 3D viewing on conventional 2D display
US9167289B2 (en) 2010-09-02 2015-10-20 Verizon Patent And Licensing Inc. Perspective display systems and methods
US20120058824A1 (en) 2010-09-07 2012-03-08 Microsoft Corporation Scalable real-time motion recognition
US8437506B2 (en) 2010-09-07 2013-05-07 Microsoft Corporation System for fast, probabilistic skeletal tracking
US8988508B2 (en) 2010-09-24 2015-03-24 Microsoft Technology Licensing, Llc. Wide angle field of view active illumination imaging system
US8681255B2 (en) 2010-09-28 2014-03-25 Microsoft Corporation Integrated low power depth camera and projection device
US8548270B2 (en) 2010-10-04 2013-10-01 Microsoft Corporation Time-of-flight depth imaging
US9484065B2 (en) 2010-10-15 2016-11-01 Microsoft Technology Licensing, Llc Intelligent determination of replays based on event identification
US9025019B2 (en) 2010-10-18 2015-05-05 Rockwell Automation Technologies, Inc. Time of flight (TOF) sensors as replacement for standard photoelectric sensors
US8957856B2 (en) 2010-10-21 2015-02-17 Verizon Patent And Licensing Inc. Systems, methods, and apparatuses for spatial input associated with a display
BRPI1004814B1 (pt) * 2010-10-22 2020-11-10 Audaces Automação E Informática Industrial Ltda. sistema de marcadores visuais para fixação e digitalização de moldes de vestuário e método de digitalização de moldes de vestuário utilizando ditos marcadores visuais
US8592739B2 (en) 2010-11-02 2013-11-26 Microsoft Corporation Detection of configuration changes of an optical element in an illumination system
US8866889B2 (en) 2010-11-03 2014-10-21 Microsoft Corporation In-home depth camera calibration
US8667519B2 (en) 2010-11-12 2014-03-04 Microsoft Corporation Automatic passive and anonymous feedback system
US10726861B2 (en) 2010-11-15 2020-07-28 Microsoft Technology Licensing, Llc Semi-private communication in open environments
US9349040B2 (en) 2010-11-19 2016-05-24 Microsoft Technology Licensing, Llc Bi-modal depth-image analysis
US10234545B2 (en) 2010-12-01 2019-03-19 Microsoft Technology Licensing, Llc Light source module
US8553934B2 (en) 2010-12-08 2013-10-08 Microsoft Corporation Orienting the position of a sensor
US8618405B2 (en) 2010-12-09 2013-12-31 Microsoft Corp. Free-space gesture musical instrument digital interface (MIDI) controller
US8408706B2 (en) 2010-12-13 2013-04-02 Microsoft Corporation 3D gaze tracker
US8878950B2 (en) 2010-12-14 2014-11-04 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using super-resolution processes
US8920241B2 (en) 2010-12-15 2014-12-30 Microsoft Corporation Gesture controlled persistent handles for interface guides
US9171264B2 (en) 2010-12-15 2015-10-27 Microsoft Technology Licensing, Llc Parallel processing machine learning decision tree training
US8884968B2 (en) 2010-12-15 2014-11-11 Microsoft Corporation Modeling an object from image data
US8448056B2 (en) 2010-12-17 2013-05-21 Microsoft Corporation Validation analysis of human target
US8803952B2 (en) 2010-12-20 2014-08-12 Microsoft Corporation Plural detector time-of-flight depth mapping
US8385596B2 (en) 2010-12-21 2013-02-26 Microsoft Corporation First person shooter control with virtual skeleton
US9848106B2 (en) 2010-12-21 2017-12-19 Microsoft Technology Licensing, Llc Intelligent gameplay photo capture
US8994718B2 (en) 2010-12-21 2015-03-31 Microsoft Technology Licensing, Llc Skeletal control of three-dimensional virtual world
US9821224B2 (en) 2010-12-21 2017-11-21 Microsoft Technology Licensing, Llc Driving simulator control with virtual skeleton
US9823339B2 (en) 2010-12-21 2017-11-21 Microsoft Technology Licensing, Llc Plural anode time-of-flight sensor
US9123316B2 (en) 2010-12-27 2015-09-01 Microsoft Technology Licensing, Llc Interactive content creation
US8488888B2 (en) 2010-12-28 2013-07-16 Microsoft Corporation Classification of posture states
US9036898B1 (en) * 2011-01-18 2015-05-19 Disney Enterprises, Inc. High-quality passive performance capture using anchor frames
US8587583B2 (en) 2011-01-31 2013-11-19 Microsoft Corporation Three-dimensional environment reconstruction
US8401242B2 (en) 2011-01-31 2013-03-19 Microsoft Corporation Real-time camera tracking using depth maps
US8401225B2 (en) 2011-01-31 2013-03-19 Microsoft Corporation Moving object segmentation using depth images
US9247238B2 (en) 2011-01-31 2016-01-26 Microsoft Technology Licensing, Llc Reducing interference between multiple infra-red depth cameras
US8724887B2 (en) 2011-02-03 2014-05-13 Microsoft Corporation Environmental modifications to mitigate environmental factors
US8942917B2 (en) 2011-02-14 2015-01-27 Microsoft Corporation Change invariant scene recognition by an agent
US8497838B2 (en) 2011-02-16 2013-07-30 Microsoft Corporation Push actuation of interface controls
US9329469B2 (en) 2011-02-17 2016-05-03 Microsoft Technology Licensing, Llc Providing an interactive experience using a 3D depth camera and a 3D projector
US9480907B2 (en) 2011-03-02 2016-11-01 Microsoft Technology Licensing, Llc Immersive display with peripheral illusions
US9551914B2 (en) 2011-03-07 2017-01-24 Microsoft Technology Licensing, Llc Illuminator with refractive optical element
US9067136B2 (en) 2011-03-10 2015-06-30 Microsoft Technology Licensing, Llc Push personalization of interface controls
US8571263B2 (en) 2011-03-17 2013-10-29 Microsoft Corporation Predicting joint positions
US8718748B2 (en) 2011-03-29 2014-05-06 Kaliber Imaging Inc. System and methods for monitoring and assessing mobility
US9470778B2 (en) 2011-03-29 2016-10-18 Microsoft Technology Licensing, Llc Learning from high quality depth measurements
US9298287B2 (en) 2011-03-31 2016-03-29 Microsoft Technology Licensing, Llc Combined activation for natural user interface systems
US9760566B2 (en) 2011-03-31 2017-09-12 Microsoft Technology Licensing, Llc Augmented conversational understanding agent to identify conversation context between two humans and taking an agent action thereof
US9842168B2 (en) 2011-03-31 2017-12-12 Microsoft Technology Licensing, Llc Task driven user intents
US10642934B2 (en) 2011-03-31 2020-05-05 Microsoft Technology Licensing, Llc Augmented conversational understanding architecture
US8503494B2 (en) 2011-04-05 2013-08-06 Microsoft Corporation Thermal management system
US8824749B2 (en) 2011-04-05 2014-09-02 Microsoft Corporation Biometric recognition
US8620113B2 (en) 2011-04-25 2013-12-31 Microsoft Corporation Laser diode modes
US8702507B2 (en) 2011-04-28 2014-04-22 Microsoft Corporation Manual and camera-based avatar control
US9259643B2 (en) 2011-04-28 2016-02-16 Microsoft Technology Licensing, Llc Control of separate computer game elements
US8811719B2 (en) 2011-04-29 2014-08-19 Microsoft Corporation Inferring spatial object descriptions from spatial gestures
US10671841B2 (en) 2011-05-02 2020-06-02 Microsoft Technology Licensing, Llc Attribute state classification
US8888331B2 (en) 2011-05-09 2014-11-18 Microsoft Corporation Low inductance light source module
WO2012155119A1 (en) 2011-05-11 2012-11-15 Pelican Imaging Corporation Systems and methods for transmitting and receiving array camera image data
US9064006B2 (en) 2012-08-23 2015-06-23 Microsoft Technology Licensing, Llc Translating natural language utterances to keyword search queries
US9137463B2 (en) 2011-05-12 2015-09-15 Microsoft Technology Licensing, Llc Adaptive high dynamic range camera
CN102194249B (zh) * 2011-05-19 2013-12-25 北京航空航天大学 一种利用红外线和可见光相结合的水流建模数据捕获装置
US8788973B2 (en) 2011-05-23 2014-07-22 Microsoft Corporation Three-dimensional gesture controlled avatar configuration interface
BR112013029691B1 (pt) * 2011-05-24 2020-10-06 Koninklijke Philips N.V Método de determinação de informações da posição de superfícies 3d a partir de uma imagem 2d, e scanner de objetos 3d para determinação de informações de posições 3d
US8760395B2 (en) 2011-05-31 2014-06-24 Microsoft Corporation Gesture recognition techniques
US9594430B2 (en) 2011-06-01 2017-03-14 Microsoft Technology Licensing, Llc Three-dimensional foreground selection for vision system
US8526734B2 (en) 2011-06-01 2013-09-03 Microsoft Corporation Three-dimensional background removal for vision system
US9724600B2 (en) 2011-06-06 2017-08-08 Microsoft Technology Licensing, Llc Controlling objects in a virtual environment
US8897491B2 (en) 2011-06-06 2014-11-25 Microsoft Corporation System for finger recognition and tracking
US8597142B2 (en) 2011-06-06 2013-12-03 Microsoft Corporation Dynamic camera based practice mode
WO2012168322A2 (en) 2011-06-06 2012-12-13 3Shape A/S Dual-resolution 3d scanner
US9208571B2 (en) 2011-06-06 2015-12-08 Microsoft Technology Licensing, Llc Object digitization
US9098110B2 (en) 2011-06-06 2015-08-04 Microsoft Technology Licensing, Llc Head rotation tracking from depth-based center of mass
US9013489B2 (en) 2011-06-06 2015-04-21 Microsoft Technology Licensing, Llc Generation of avatar reflecting player appearance
US8929612B2 (en) 2011-06-06 2015-01-06 Microsoft Corporation System for recognizing an open or closed hand
US10796494B2 (en) 2011-06-06 2020-10-06 Microsoft Technology Licensing, Llc Adding attributes to virtual representations of real-world objects
US9597587B2 (en) 2011-06-08 2017-03-21 Microsoft Technology Licensing, Llc Locational node device
US8837813B2 (en) 2011-07-01 2014-09-16 Sharp Laboratories Of America, Inc. Mobile three dimensional imaging system
US8786730B2 (en) 2011-08-18 2014-07-22 Microsoft Corporation Image exposure using exclusion regions
WO2013043751A1 (en) 2011-09-19 2013-03-28 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
IN2014CN02708A (ja) 2011-09-28 2015-08-07 Pelican Imaging Corp
US9098908B2 (en) * 2011-10-21 2015-08-04 Microsoft Technology Licensing, Llc Generating a depth map
US9557836B2 (en) 2011-11-01 2017-01-31 Microsoft Technology Licensing, Llc Depth image compression
US9117281B2 (en) 2011-11-02 2015-08-25 Microsoft Corporation Surface segmentation from RGB and depth images
US8854426B2 (en) 2011-11-07 2014-10-07 Microsoft Corporation Time-of-flight camera with guided light
US8724906B2 (en) 2011-11-18 2014-05-13 Microsoft Corporation Computing pose and/or shape of modifiable entities
US8509545B2 (en) 2011-11-29 2013-08-13 Microsoft Corporation Foreground subject detection
US9710958B2 (en) * 2011-11-29 2017-07-18 Samsung Electronics Co., Ltd. Image processing apparatus and method
US8803800B2 (en) 2011-12-02 2014-08-12 Microsoft Corporation User interface control based on head orientation
US8635637B2 (en) 2011-12-02 2014-01-21 Microsoft Corporation User interface presenting an animated avatar performing a media reaction
US9100685B2 (en) 2011-12-09 2015-08-04 Microsoft Technology Licensing, Llc Determining audience state or interest using passive sensor data
US8630457B2 (en) 2011-12-15 2014-01-14 Microsoft Corporation Problem states for pose tracking pipeline
US8879831B2 (en) 2011-12-15 2014-11-04 Microsoft Corporation Using high-level attributes to guide image processing
US8971612B2 (en) 2011-12-15 2015-03-03 Microsoft Corporation Learning image processing tasks from scene reconstructions
US8811938B2 (en) 2011-12-16 2014-08-19 Microsoft Corporation Providing a user interface experience based on inferred vehicle state
US9342139B2 (en) 2011-12-19 2016-05-17 Microsoft Technology Licensing, Llc Pairing a computing device to a user
JP5841427B2 (ja) * 2011-12-28 2016-01-13 株式会社キーエンス 画像処理装置及び画像処理方法
US9070019B2 (en) 2012-01-17 2015-06-30 Leap Motion, Inc. Systems and methods for capturing motion in three-dimensional space
US9501152B2 (en) 2013-01-15 2016-11-22 Leap Motion, Inc. Free-space user interface and control using virtual constructs
US8638989B2 (en) 2012-01-17 2014-01-28 Leap Motion, Inc. Systems and methods for capturing motion in three-dimensional space
US8693731B2 (en) 2012-01-17 2014-04-08 Leap Motion, Inc. Enhanced contrast for object detection and characterization by optical imaging
US10691219B2 (en) 2012-01-17 2020-06-23 Ultrahaptics IP Two Limited Systems and methods for machine control
US9679215B2 (en) 2012-01-17 2017-06-13 Leap Motion, Inc. Systems and methods for machine control
US11493998B2 (en) 2012-01-17 2022-11-08 Ultrahaptics IP Two Limited Systems and methods for machine control
US9720089B2 (en) 2012-01-23 2017-08-01 Microsoft Technology Licensing, Llc 3D zoom imager
JP2013170861A (ja) * 2012-02-20 2013-09-02 Dainippon Screen Mfg Co Ltd 撮像装置、試料保持プレートおよび撮像方法
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
EP2635022A1 (en) * 2012-02-29 2013-09-04 Flir Systems AB A method and system for performing alignment of a projection image to detected infrared (IR) radiation information
EP2634747A1 (en) 2012-02-29 2013-09-04 Flir Systems AB A method and system for projecting a visible representation of infrared radiation
US9338447B1 (en) * 2012-03-14 2016-05-10 Amazon Technologies, Inc. Calibrating devices by selecting images having a target having fiducial features
US8898687B2 (en) 2012-04-04 2014-11-25 Microsoft Corporation Controlling a media program based on a media reaction
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9210401B2 (en) 2012-05-03 2015-12-08 Microsoft Technology Licensing, Llc Projected visual cues for guiding physical movement
CA2775700C (en) 2012-05-04 2013-07-23 Microsoft Corporation Determining a future portion of a currently presented media program
US9183461B2 (en) 2012-05-11 2015-11-10 Intel Corporation Systems and methods for row causal scan-order optimization stereo matching
ITMI20120811A1 (it) * 2012-05-11 2013-11-12 Polishape 3D S R L Dispositivo e metodo di scansione fotogrammetrico
US9188433B2 (en) 2012-05-24 2015-11-17 Qualcomm Incorporated Code in affine-invariant spatial mask
CN104395929B (zh) 2012-06-21 2017-10-03 微软技术许可有限责任公司 使用深度相机的化身构造
US9836590B2 (en) 2012-06-22 2017-12-05 Microsoft Technology Licensing, Llc Enhanced accuracy of user presence status determination
WO2014005123A1 (en) 2012-06-28 2014-01-03 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays, optic arrays, and sensors
US20140002674A1 (en) 2012-06-30 2014-01-02 Pelican Imaging Corporation Systems and Methods for Manufacturing Camera Modules Using Active Alignment of Lens Stack Arrays and Sensors
US9163938B2 (en) 2012-07-20 2015-10-20 Google Inc. Systems and methods for image acquisition
US8436853B1 (en) * 2012-07-20 2013-05-07 Google Inc. Methods and systems for acquiring and ranking image sets
US20140028861A1 (en) * 2012-07-26 2014-01-30 David Holz Object detection and tracking
US9473760B2 (en) * 2012-08-08 2016-10-18 Makerbot Industries, Llc Displays for three-dimensional printers
US9696427B2 (en) 2012-08-14 2017-07-04 Microsoft Technology Licensing, Llc Wide angle depth detection
US8619082B1 (en) 2012-08-21 2013-12-31 Pelican Imaging Corporation Systems and methods for parallax detection and correction in images captured using array cameras that contain occlusions using subsets of images to perform depth estimation
US20140055632A1 (en) 2012-08-23 2014-02-27 Pelican Imaging Corporation Feature based high resolution motion estimation from low resolution images captured using an array source
US20140092281A1 (en) 2012-09-28 2014-04-03 Pelican Imaging Corporation Generating Images from Light Fields Utilizing Virtual Viewpoints
JP2015533248A (ja) 2012-09-28 2015-11-19 ゾール メディカル コーポレイションZOLL Medical Corporation Ems環境内で三次元対話をモニタするためのシステム及び方法
US9275459B2 (en) * 2012-10-05 2016-03-01 Qualcomm Incorporated Method and apparatus for calibrating an imaging device
US9117267B2 (en) 2012-10-18 2015-08-25 Google Inc. Systems and methods for marking images for three-dimensional image generation
US8781171B2 (en) 2012-10-24 2014-07-15 Honda Motor Co., Ltd. Object recognition in low-lux and high-lux conditions
US9285893B2 (en) 2012-11-08 2016-03-15 Leap Motion, Inc. Object detection and tracking with variable-field illumination devices
WO2014078443A1 (en) 2012-11-13 2014-05-22 Pelican Imaging Corporation Systems and methods for array camera focal plane control
KR102086509B1 (ko) * 2012-11-23 2020-03-09 엘지전자 주식회사 3차원 영상 획득 방법 및 장치
US8882310B2 (en) 2012-12-10 2014-11-11 Microsoft Corporation Laser die light source module with low inductance
US9519968B2 (en) 2012-12-13 2016-12-13 Hewlett-Packard Development Company, L.P. Calibrating visual sensors using homography operators
US20210390330A1 (en) * 2012-12-20 2021-12-16 Sarine Technologies Ltd. System and method for determining the traceability of gemstones based on gemstone modeling
US9857470B2 (en) 2012-12-28 2018-01-02 Microsoft Technology Licensing, Llc Using photometric stereo for 3D environment modeling
US20140192158A1 (en) * 2013-01-04 2014-07-10 Microsoft Corporation Stereo Image Matching
US10609285B2 (en) 2013-01-07 2020-03-31 Ultrahaptics IP Two Limited Power consumption in motion-capture systems
US9626015B2 (en) 2013-01-08 2017-04-18 Leap Motion, Inc. Power consumption in motion-capture systems with audio and optical signals
US9459697B2 (en) 2013-01-15 2016-10-04 Leap Motion, Inc. Dynamic, free-space user interactions for machine control
US9251590B2 (en) 2013-01-24 2016-02-02 Microsoft Technology Licensing, Llc Camera pose estimation for 3D reconstruction
US9052746B2 (en) 2013-02-15 2015-06-09 Microsoft Technology Licensing, Llc User center-of-mass and mass distribution extraction using depth images
US9462164B2 (en) 2013-02-21 2016-10-04 Pelican Imaging Corporation Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9940553B2 (en) 2013-02-22 2018-04-10 Microsoft Technology Licensing, Llc Camera/object pose from predicted coordinates
US20140241612A1 (en) * 2013-02-23 2014-08-28 Microsoft Corporation Real time stereo matching
WO2014133974A1 (en) 2013-02-24 2014-09-04 Pelican Imaging Corporation Thin form computational and modular array cameras
US9135516B2 (en) 2013-03-08 2015-09-15 Microsoft Technology Licensing, Llc User body angle, curvature and average extremity positions extraction using depth images
WO2014138695A1 (en) 2013-03-08 2014-09-12 Pelican Imaging Corporation Systems and methods for measuring scene information while capturing images using array cameras
US8866912B2 (en) 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9092657B2 (en) 2013-03-13 2015-07-28 Microsoft Technology Licensing, Llc Depth image processing
US9124831B2 (en) 2013-03-13 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
WO2014153098A1 (en) 2013-03-14 2014-09-25 Pelican Imaging Corporation Photmetric normalization in array cameras
US9274606B2 (en) 2013-03-14 2016-03-01 Microsoft Technology Licensing, Llc NUI video conference controls
CA2902430C (en) * 2013-03-15 2020-09-01 Uber Technologies, Inc. Methods, systems, and apparatus for multi-sensory stereo vision for robotics
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US9445003B1 (en) 2013-03-15 2016-09-13 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9438888B2 (en) 2013-03-15 2016-09-06 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
WO2014200589A2 (en) 2013-03-15 2014-12-18 Leap Motion, Inc. Determining positional information for an object in space
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US9953213B2 (en) 2013-03-27 2018-04-24 Microsoft Technology Licensing, Llc Self discovery of autonomous NUI devices
US20140307055A1 (en) * 2013-04-15 2014-10-16 Microsoft Corporation Intensity-modulated light pattern for active stereo
US9069415B2 (en) * 2013-04-22 2015-06-30 Fuji Xerox Co., Ltd. Systems and methods for finger pose estimation on touchscreen devices
US9916009B2 (en) 2013-04-26 2018-03-13 Leap Motion, Inc. Non-tactile interface systems and methods
US9442186B2 (en) 2013-05-13 2016-09-13 Microsoft Technology Licensing, Llc Interference reduction for TOF systems
US9829984B2 (en) 2013-05-23 2017-11-28 Fastvdo Llc Motion-assisted visual language for human computer interfaces
US10281987B1 (en) 2013-08-09 2019-05-07 Leap Motion, Inc. Systems and methods of free-space gestural interaction
US9721383B1 (en) 2013-08-29 2017-08-01 Leap Motion, Inc. Predictive information for free space gesture control and communication
US9462253B2 (en) 2013-09-23 2016-10-04 Microsoft Technology Licensing, Llc Optical modules that reduce speckle contrast and diffraction artifacts
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9632572B2 (en) 2013-10-03 2017-04-25 Leap Motion, Inc. Enhanced field of view to augment three-dimensional (3D) sensory space for free-space gesture interpretation
US9443310B2 (en) 2013-10-09 2016-09-13 Microsoft Technology Licensing, Llc Illumination modules that emit structured light
US9996638B1 (en) 2013-10-31 2018-06-12 Leap Motion, Inc. Predictive information for free space gesture control and communication
US9674563B2 (en) 2013-11-04 2017-06-06 Rovi Guides, Inc. Systems and methods for recommending content
US9426343B2 (en) 2013-11-07 2016-08-23 Pelican Imaging Corporation Array cameras incorporating independently aligned lens stacks
US9769459B2 (en) 2013-11-12 2017-09-19 Microsoft Technology Licensing, Llc Power efficient laser diode driver circuit and method
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US9508385B2 (en) 2013-11-21 2016-11-29 Microsoft Technology Licensing, Llc Audio-visual project generator
EP3075140B1 (en) 2013-11-26 2018-06-13 FotoNation Cayman Limited Array camera configurations incorporating multiple constituent array cameras
US10489856B2 (en) * 2013-12-19 2019-11-26 Chicago Mercantile Exchange Inc. Hybrid index derived using a kalman filter
US9971491B2 (en) 2014-01-09 2018-05-15 Microsoft Technology Licensing, Llc Gesture library for natural user input
US9613262B2 (en) 2014-01-15 2017-04-04 Leap Motion, Inc. Object detection and tracking for providing a virtual device experience
US10241616B2 (en) 2014-02-28 2019-03-26 Hewlett-Packard Development Company, L.P. Calibration of sensors and projector
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US9990046B2 (en) 2014-03-17 2018-06-05 Oblong Industries, Inc. Visual collaboration interface
CN103888674B (zh) * 2014-04-15 2017-08-11 聚晶半导体股份有限公司 影像撷取装置及影像撷取方法
US9582731B1 (en) * 2014-04-15 2017-02-28 Google Inc. Detecting spherical images
US9616350B2 (en) * 2014-05-21 2017-04-11 Universal City Studios Llc Enhanced interactivity in an amusement park environment using passive tracking elements
CN105451009B (zh) * 2014-06-13 2017-12-29 联想(北京)有限公司 一种信息处理方法及电子设备
DE202014103729U1 (de) 2014-08-08 2014-09-09 Leap Motion, Inc. Augmented-Reality mit Bewegungserfassung
DE102014013677B4 (de) * 2014-09-10 2017-06-22 Faro Technologies, Inc. Verfahren zum optischen Abtasten und Vermessen einer Umgebung mit einem Handscanner und unterteiltem Display
GB2553022B (en) * 2014-09-22 2018-12-05 Shanghai United Imaging Healthcare Co Ltd System and method for image composition
JP2017531976A (ja) 2014-09-29 2017-10-26 フォトネイション ケイマン リミテッド アレイカメラを動的に較正するためのシステム及び方法
US9738036B2 (en) * 2014-12-01 2017-08-22 Cranial Technologies, Inc. Method of manufacture of a surgical model for an anatomical feature
US9712806B2 (en) * 2014-12-19 2017-07-18 Datalogic ADC, Inc. Depth camera system using coded structured light
BR112017011343B1 (pt) * 2014-12-19 2022-01-18 Essity Hygiene And Health Aktiebolag Produto absorvente descartável
US9978135B2 (en) * 2015-02-27 2018-05-22 Cognex Corporation Detecting object presence on a target surface
JP2016162392A (ja) * 2015-03-05 2016-09-05 セイコーエプソン株式会社 3次元画像処理装置および3次元画像処理システム
JP6552230B2 (ja) * 2015-03-18 2019-07-31 キヤノン株式会社 計測装置
US9646411B2 (en) * 2015-04-02 2017-05-09 Hedronx Inc. Virtual three-dimensional model generation based on virtual hexahedron models
US20160321838A1 (en) * 2015-04-29 2016-11-03 Stmicroelectronics S.R.L. System for processing a three-dimensional (3d) image and related methods using an icp algorithm
US20160360185A1 (en) * 2015-06-03 2016-12-08 Empire Technology Development Llc Three-dimensional imaging sensor calibration
KR102114969B1 (ko) 2015-06-08 2020-06-08 삼성전자주식회사 광학 장치 및 깊이 정보 생성 방법
AT517744B1 (de) * 2015-10-13 2018-12-15 3D Elements Gmbh Vorrichtung zum Generieren eines dreidimensionalen Abbildes
AT15954U1 (de) * 2015-10-13 2018-10-15 3D Elements Gmbh Trägermodul zum lösbaren Verbinden mit einer Aufnahmekabine
KR102368597B1 (ko) * 2015-11-11 2022-03-02 삼성전자주식회사 영상 촬영 장치 및 이의 제어 방법
WO2017090027A1 (en) * 2015-11-24 2017-06-01 Ilmoby Awareness Systems Ltd. A system and method to create three-dimensional models in real-time from stereoscopic video photographs
US10412280B2 (en) 2016-02-10 2019-09-10 Microsoft Technology Licensing, Llc Camera with light valve over sensor array
US10257932B2 (en) 2016-02-16 2019-04-09 Microsoft Technology Licensing, Llc. Laser diode chip on printed circuit board
US10462452B2 (en) 2016-03-16 2019-10-29 Microsoft Technology Licensing, Llc Synchronizing active illumination cameras
WO2017176301A1 (en) * 2016-04-06 2017-10-12 Carestream Health, Inc. Hybrid oct and surface contour dental imaging
US10529302B2 (en) 2016-07-07 2020-01-07 Oblong Industries, Inc. Spatially mediated augmentations of and interactions among distinct devices and applications via extended pixel manifold
UA115518U (xx) * 2016-07-25 2017-04-25 Спосіб кодування за допомогою комп'ютерної системи та відтворення стереопари за допомогою електронного пристрою
US10834377B2 (en) * 2016-08-29 2020-11-10 Faro Technologies, Inc. Forensic three-dimensional measurement device
JP6822234B2 (ja) * 2017-03-15 2021-01-27 セイコーエプソン株式会社 プロジェクターシステム
CN109003676B (zh) * 2017-06-06 2021-11-05 苏州笛卡测试技术有限公司 一种牙齿美学设计方法与装置
US10810773B2 (en) * 2017-06-14 2020-10-20 Dell Products, L.P. Headset display control based upon a user's pupil state
EP3645964B1 (en) * 2017-06-30 2023-08-23 Dental Imaging Technologies Corporation Surface mapping using an intraoral scanner with penetrating capabilities
US10438408B2 (en) * 2017-07-28 2019-10-08 The Boeing Company Resolution adaptive mesh for performing 3-D metrology of an object
US10354444B2 (en) 2017-07-28 2019-07-16 The Boeing Company Resolution adaptive mesh that is generated using an intermediate implicit representation of a point cloud
US10732284B2 (en) * 2017-07-28 2020-08-04 The Boeing Company Live metrology of an object during manufacturing or other operations
WO2019034808A1 (en) 2017-08-15 2019-02-21 Nokia Technologies Oy CODING AND DECODING VOLUMETRIC VIDEO
WO2019034807A1 (en) 2017-08-15 2019-02-21 Nokia Technologies Oy SEQUENTIAL CODING AND DECODING OF VOLUMETRIC VIDEO
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
US10535151B2 (en) 2017-08-22 2020-01-14 Microsoft Technology Licensing, Llc Depth map with structured and flood light
US10699442B2 (en) 2017-08-29 2020-06-30 Faro Technologies, Inc. Articulated arm coordinate measuring machine having a color laser line probe
US10591276B2 (en) 2017-08-29 2020-03-17 Faro Technologies, Inc. Articulated arm coordinate measuring machine having a color laser line probe
US10967862B2 (en) 2017-11-07 2021-04-06 Uatc, Llc Road anomaly detection for autonomous vehicle
ES2659089A1 (es) * 2017-11-23 2018-03-13 Fundación Instituto De Investigación Sanitaria Fundación Jimenez-Díaz Dispositivo y procedimiento de obtención de medidas mecánicas, geométricas y dinámicas de superficies ópticas
US10917628B2 (en) * 2018-04-02 2021-02-09 Mediatek Inc. IR pattern characteristics for active stereo matching
TWI719440B (zh) * 2018-04-02 2021-02-21 聯發科技股份有限公司 立體匹配方法及相應立體匹配裝置
US10753736B2 (en) * 2018-07-26 2020-08-25 Cisco Technology, Inc. Three-dimensional computer vision based on projected pattern of laser dots and geometric pattern matching
US10909373B1 (en) * 2018-08-24 2021-02-02 Snap Inc. Augmented reality system using structured light
DE102018214699A1 (de) * 2018-08-30 2020-03-05 Robert Bosch Gmbh Personenerkennungseinrichtung und Verfahren
US11592820B2 (en) 2019-09-13 2023-02-28 The Boeing Company Obstacle detection and vehicle navigation using resolution-adaptive fusion of point clouds
DE112020004391T5 (de) 2019-09-17 2022-06-02 Boston Polarimetrics, Inc. Systeme und verfahren zur oberflächenmodellierung unter verwendung von polarisationsmerkmalen
CN112581512A (zh) * 2019-09-27 2021-03-30 鲁班嫡系机器人(深圳)有限公司 图像匹配、3d成像及姿态识别方法、装置及系统
MX2022004163A (es) 2019-10-07 2022-07-19 Boston Polarimetrics Inc Sistemas y metodos para la deteccion de estandares de superficie con polarizacion.
CN114787648B (zh) 2019-11-30 2023-11-10 波士顿偏振测定公司 用于使用偏振提示进行透明对象分段的系统和方法
US11195303B2 (en) 2020-01-29 2021-12-07 Boston Polarimetrics, Inc. Systems and methods for characterizing object pose detection and measurement systems
CN115428028A (zh) 2020-01-30 2022-12-02 因思创新有限责任公司 用于合成用于在包括偏振图像的不同成像模态下训练统计模型的数据的系统和方法
US11320312B2 (en) 2020-03-06 2022-05-03 Butlr Technologies, Inc. User interface for determining location, trajectory and behavior
US11022495B1 (en) * 2020-03-06 2021-06-01 Butlr Technologies, Inc. Monitoring human location, trajectory and behavior using thermal data
WO2021236468A1 (en) * 2020-05-19 2021-11-25 Intelligent Security Systems Corporation Technologies for analyzing behaviors of objects or with respect to objects based on stereo imageries therof
WO2021243088A1 (en) 2020-05-27 2021-12-02 Boston Polarimetrics, Inc. Multi-aperture polarization optical systems using beam splitters
US12020455B2 (en) 2021-03-10 2024-06-25 Intrinsic Innovation Llc Systems and methods for high dynamic range image reconstruction
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11844380B2 (en) * 2021-05-07 2023-12-19 Cranial Technologies, Inc. Pediatric head covering for use with three-dimensional imaging
CN113343917B (zh) * 2021-06-30 2024-05-31 上海申瑞继保电气有限公司 基于直方图的变电站设备识别方法
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers
CN113793282B (zh) * 2021-09-17 2023-10-24 中国科学院长春光学精密机械与物理研究所 一种空间相机传函测试图像莫尔条纹模糊去除方法
US11948234B1 (en) * 2023-08-30 2024-04-02 Illuscio, Inc. Systems and methods for dynamic enhancement of point cloud animations

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4175862A (en) * 1975-08-27 1979-11-27 Solid Photography Inc. Arrangement for sensing the geometric characteristics of an object
US4657393A (en) * 1983-12-29 1987-04-14 Robotic Vision Systems, Inc. Pattern optimization when measuring depth to a surface using lens focusing
DK160903C (da) * 1988-06-23 1997-04-07 Lumetech As Fremgangsmåde til lokalisering af uønskede forekomster i et stykke fiskekød ved belysning
US6400996B1 (en) 1999-02-01 2002-06-04 Steven M. Hoffberg Adaptive pattern recognition based control system and method
USRE38420E1 (en) 1992-08-12 2004-02-10 British Broadcasting Corporation Derivation of studio camera position and motion from the camera image
US5435554A (en) 1993-03-08 1995-07-25 Atari Games Corporation Baseball simulation system
US5864360A (en) * 1993-08-26 1999-01-26 Canon Kabushiki Kaisha Multi-eye image pick-up apparatus with immediate image pick-up
JP3727954B2 (ja) 1993-11-10 2005-12-21 キヤノン株式会社 撮像装置
DE4415167A1 (de) 1994-04-29 1995-11-02 Siemens Ag Telekommunikationsanordnung zum Übertragen von Bildern
US5561526A (en) * 1994-05-26 1996-10-01 Lockheed Missiles & Space Company, Inc. Three-dimensional measurement device and system
US5557410A (en) * 1994-05-26 1996-09-17 Lockheed Missiles & Space Company, Inc. Method of calibrating a three-dimensional optical measurement system
US5852672A (en) * 1995-07-10 1998-12-22 The Regents Of The University Of California Image system for three dimensional, 360 DEGREE, time sequence surface mapping of moving objects
US6127990A (en) 1995-11-28 2000-10-03 Vega Vista, Inc. Wearable display and methods for controlling same
EP1009969B1 (en) * 1996-06-13 2003-11-05 K.U. Leuven Research & Development Method and system for acquiring a three-dimensional shape description
US6075905A (en) 1996-07-17 2000-06-13 Sarnoff Corporation Method and apparatus for mosaic image construction
US6858826B2 (en) * 1996-10-25 2005-02-22 Waveworx Inc. Method and apparatus for scanning three-dimensional objects
JPH1186038A (ja) * 1997-03-03 1999-03-30 Sega Enterp Ltd 画像処理装置、画像処理方法及び媒体並びにゲーム機
JP3968477B2 (ja) 1997-07-07 2007-08-29 ソニー株式会社 情報入力装置及び情報入力方法
US6195104B1 (en) 1997-12-23 2001-02-27 Philips Electronics North America Corp. System and method for permitting three-dimensional navigation through a virtual reality environment using camera-based gesture inputs
US7015951B1 (en) * 1998-05-08 2006-03-21 Sony Corporation Picture generating apparatus and picture generating method
DE19821611A1 (de) * 1998-05-14 1999-11-18 Syrinx Med Tech Gmbh Verfahren zur Erfassung der räumlichen Struktur einer dreidimensionalen Oberfläche
US6252623B1 (en) * 1998-05-15 2001-06-26 3Dmetrics, Incorporated Three dimensional imaging system
US6072496A (en) 1998-06-08 2000-06-06 Microsoft Corporation Method and system for capturing and representing 3D geometry, color and shading of facial expressions and other animated objects
US6377700B1 (en) * 1998-06-30 2002-04-23 Intel Corporation Method and apparatus for capturing stereoscopic images using image sensors
US6125197A (en) * 1998-06-30 2000-09-26 Intel Corporation Method and apparatus for the processing of stereoscopic electronic images into three-dimensional computer models of real-life objects
US6195455B1 (en) * 1998-07-01 2001-02-27 Intel Corporation Imaging device orientation information through analysis of test images
US6262803B1 (en) * 1998-09-10 2001-07-17 Acuity Imaging, Llc System and method for three-dimensional inspection using patterned light projection
US6628819B1 (en) 1998-10-09 2003-09-30 Ricoh Company, Ltd. Estimation of 3-dimensional shape from image sequence
US6771809B1 (en) * 2000-04-28 2004-08-03 Orametrix, Inc. Method and system for registering data
US6532299B1 (en) * 2000-04-28 2003-03-11 Orametrix, Inc. System and method for mapping a surface
US6744932B1 (en) * 2000-04-28 2004-06-01 Orametrix, Inc. System and method for mapping a surface
US6728423B1 (en) * 2000-04-28 2004-04-27 Orametrix, Inc. System and method for mapping a surface
US7068836B1 (en) * 2000-04-28 2006-06-27 Orametrix, Inc. System and method for mapping a surface
US6738508B1 (en) * 2000-04-28 2004-05-18 Orametrix, Inc. Method and system for registering data
US6744914B1 (en) * 2000-04-28 2004-06-01 Orametrix, Inc. Method and system for generating a three-dimensional object
US6413084B1 (en) * 2000-04-28 2002-07-02 Ora Metrix, Inc. Method and system of scanning
US7015950B1 (en) 1999-05-11 2006-03-21 Pryor Timothy R Picture taking method and apparatus
US6542249B1 (en) * 1999-07-20 2003-04-01 The University Of Western Ontario Three-dimensional measurement method and apparatus
US6341016B1 (en) * 1999-08-06 2002-01-22 Michael Malione Method and apparatus for measuring three-dimensional shape of object
US6788210B1 (en) * 1999-09-16 2004-09-07 The Research Foundation Of State University Of New York Method and apparatus for three dimensional surface contouring and ranging using a digital video projection system
US7187412B1 (en) 2000-01-18 2007-03-06 Hewlett-Packard Development Company, L.P. Pointing device for digital camera display
US6377353B1 (en) * 2000-03-07 2002-04-23 Pheno Imaging, Inc. Three-dimensional measuring system for animals using structured light
US6535114B1 (en) 2000-03-22 2003-03-18 Toyota Jidosha Kabushiki Kaisha Method and apparatus for environment recognition
WO2001093593A1 (fr) * 2000-05-31 2001-12-06 Thomson Licensing S.A. Dispositif et procede de codage video avec filtrage recursif compense en mouvement
US6509559B1 (en) * 2000-06-20 2003-01-21 Ppt Vision, Inc. Binary optical grating and method for generating a moire pattern for 3D imaging
JP3867512B2 (ja) * 2000-06-29 2007-01-10 富士ゼロックス株式会社 画像処理装置および画像処理方法、並びにプログラム
US6754370B1 (en) * 2000-08-14 2004-06-22 The Board Of Trustees Of The Leland Stanford Junior University Real-time structured light range scanning of moving scenes
US6573912B1 (en) * 2000-11-07 2003-06-03 Zaxel Systems, Inc. Internet system for virtual telepresence
US20020153188A1 (en) 2000-12-08 2002-10-24 Brandt Kenneth A. Selectable control parameters on a power machine with four-wheel steering
US7176440B2 (en) * 2001-01-19 2007-02-13 Honeywell International Inc. Method and apparatus for detecting objects using structured light patterns
WO2002075245A1 (en) * 2001-03-13 2002-09-26 Solutionix Co., Ltd. Apparatus and method for measuring three dimensional shape with multi-stripe patterns
US6897966B2 (en) * 2001-05-25 2005-05-24 Poster-Miller, Inc. Non-contacting mensuration system
US7061628B2 (en) * 2001-06-27 2006-06-13 Southwest Research Institute Non-contact apparatus and method for measuring surface profile
US20030067537A1 (en) * 2001-10-04 2003-04-10 Myers Kenneth J. System and method for three-dimensional data acquisition
US20030067538A1 (en) * 2001-10-04 2003-04-10 Myers Kenneth J. System and method for three-dimensional data acquisition
US20050110868A1 (en) * 2001-10-04 2005-05-26 Myers Kenneth J. System and method for inputting contours of a three-dimensional subject to a computer
JP3984018B2 (ja) * 2001-10-15 2007-09-26 ペンタックス株式会社 3次元画像検出装置及び3次元画像検出用アダプタ
US20030098841A1 (en) 2001-11-26 2003-05-29 Jessica Broussard Powered, remotely controllable computer display device
US7136171B2 (en) * 2001-12-19 2006-11-14 General Electric Company Method for the extraction of image features caused by structure light using template information
KR100415313B1 (ko) 2001-12-24 2004-01-16 한국전자통신연구원 동영상에서 상관 정합과 시스템 모델을 이용한 광류와카메라 움직임 산출 장치
DE10219054B4 (de) * 2002-04-24 2004-08-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Bestimmung der räumlichen Koordinaten eines Gegenstandes
DE10224735A1 (de) * 2002-06-04 2004-01-08 Holberg, Christof, Dr. Verfahren, Vorrichtung und Computerprogrammprodukt zur Erzeugung eines dreidimensionalen Modells
US6974964B1 (en) * 2002-06-17 2005-12-13 Bu-Chin Wang Method and apparatus for three-dimensional surface scanning and measurement of a moving object
JP3902109B2 (ja) * 2002-10-02 2007-04-04 本田技研工業株式会社 赤外線カメラ特性確認治具
JP4230999B2 (ja) 2002-11-05 2009-02-25 ディズニー エンタープライゼス インコーポレイテッド ビデオ作動インタラクティブ環境
US7146036B2 (en) * 2003-02-03 2006-12-05 Hewlett-Packard Development Company, L.P. Multiframe correspondence estimation
US7680299B2 (en) * 2003-02-13 2010-03-16 Nec Corporation Unauthorized person detection device and unauthorized person detection method
CN1771741A (zh) * 2003-02-14 2006-05-10 李宗琦 3d照相机系统及其方法
US7127101B2 (en) * 2003-03-10 2006-10-24 Cranul Technologies, Inc. Automatic selection of cranial remodeling device trim lines
US7242798B2 (en) * 2003-03-10 2007-07-10 Cranial Technologies, Inc. Automatic selection of cranial remodeling device configuration
US7162075B2 (en) * 2003-03-10 2007-01-09 Cranial Technologies, Inc. Three-dimensional image capture system
US7665041B2 (en) 2003-03-25 2010-02-16 Microsoft Corporation Architecture for controlling a computer using hand gestures
US8745541B2 (en) 2003-03-25 2014-06-03 Microsoft Corporation Architecture for controlling a computer using hand gestures
US7333133B2 (en) 2003-03-31 2008-02-19 Spatial Integrated Systems, Inc. Recursive least squares approach to calculate motion parameters for a moving camera
US7463280B2 (en) * 2003-06-03 2008-12-09 Steuart Iii Leonard P Digital 3D/360 degree camera system
ATE404952T1 (de) * 2003-07-24 2008-08-15 Cognitens Ltd Verfahren und system zur dreidimensionalen oberflächenrekonstruktion eines objekts
US20050111705A1 (en) * 2003-08-26 2005-05-26 Roman Waupotitsch Passive stereo sensing for 3D facial shape biometrics
IL157877A0 (en) * 2003-09-11 2004-03-28 Imagine It S Happening Ltd Color edge based 3d scanner
US20050088515A1 (en) * 2003-10-23 2005-04-28 Geng Z. J. Camera ring for three-dimensional (3D) surface imaging
US7929752B2 (en) * 2003-10-31 2011-04-19 Nano Picture Co., Ltd. Method for generating structured-light pattern
US7312819B2 (en) 2003-11-24 2007-12-25 Microsoft Corporation Robust camera motion analysis for home video
KR100594971B1 (ko) 2004-01-09 2006-06-30 삼성전자주식회사 지자기 센서를 이용한 입력장치 및 이를 이용한 입력신호생성방법
EP1706839B1 (en) * 2004-01-15 2014-11-12 Technion Research & Development Foundation Limited Three-dimensional video scanner
WO2005082075A2 (en) * 2004-02-25 2005-09-09 The University Of North Carolina At Chapel Hill Systems and methods for imperceptibly embedding structured light patterns in projected color images
US7421112B2 (en) * 2004-03-12 2008-09-02 General Electric Company Cargo sensing system
US7259758B2 (en) 2004-06-21 2007-08-21 Microsoft Corporation System and method for reducing latency in display of computer-generated graphics
CN101198964A (zh) * 2005-01-07 2008-06-11 格斯图尔泰克股份有限公司 使用红外图案照射创建对象的三维图像
US7379566B2 (en) 2005-01-07 2008-05-27 Gesturetek, Inc. Optical flow based tilt sensor
WO2006084385A1 (en) * 2005-02-11 2006-08-17 Macdonald Dettwiler & Associates Inc. 3d imaging system
US7474415B2 (en) * 2006-09-13 2009-01-06 Chung Shan Institute Of Science And Technology, Armaments Bureau, M.N.D. Measurement method of three-dimensional profiles and reconstruction system thereof using subpixel localization with color gratings and picture-in-picture switching on single display
US7889197B2 (en) * 2007-01-26 2011-02-15 Captivemotion, Inc. Method of capturing, processing, and rendering images
US9799117B2 (en) * 2013-09-30 2017-10-24 Lenovo (Beijing) Co., Ltd. Method for processing data and apparatus thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133751A (ja) * 2008-12-02 2010-06-17 Topcon Corp 形状測定装置およびプログラム
JP2013015452A (ja) * 2011-07-05 2013-01-24 Ohbayashi Corp 鉄筋領域抽出装置、鉄筋領域抽出方法及び鉄筋領域抽出プログラム
KR101327433B1 (ko) * 2011-12-08 2013-11-11 주식회사 엔티리서치 역구배를 가지는 대상물체의 입체형상 측정 장치
JP2014188095A (ja) * 2013-03-26 2014-10-06 Kitasato Institute 遠隔診断システム
WO2015098288A1 (ja) 2013-12-27 2015-07-02 ソニー株式会社 画像処理装置、および画像処理方法
CN105829829A (zh) * 2013-12-27 2016-08-03 索尼公司 图像处理装置和图像处理方法
JPWO2015098288A1 (ja) * 2013-12-27 2017-03-23 ソニー株式会社 画像処理装置、および画像処理方法
CN105829829B (zh) * 2013-12-27 2019-08-23 索尼公司 图像处理装置和图像处理方法
US10469827B2 (en) 2013-12-27 2019-11-05 Sony Corporation Image processing device and image processing method
JP2022554409A (ja) * 2019-12-13 2022-12-28 ソニーグループ株式会社 マルチスペクトルボリュメトリックキャプチャ
JP7494298B2 (ja) 2019-12-13 2024-06-03 ソニーグループ株式会社 マルチスペクトルボリュメトリックキャプチャ
JP7512711B2 (ja) 2020-07-01 2024-07-09 コニカミノルタ株式会社 システム

Also Published As

Publication number Publication date
EP1851527A2 (en) 2007-11-07
US8218858B2 (en) 2012-07-10
CN101198964A (zh) 2008-06-11
US7953271B2 (en) 2011-05-31
US20060210146A1 (en) 2006-09-21
US20110038530A1 (en) 2011-02-17
US7570805B2 (en) 2009-08-04
WO2006074310A3 (en) 2008-02-21
US20080199071A1 (en) 2008-08-21
US9234749B2 (en) 2016-01-12
US7822267B2 (en) 2010-10-26
US20120301013A1 (en) 2012-11-29
US7430312B2 (en) 2008-09-30
US20110262032A1 (en) 2011-10-27
WO2006074310A2 (en) 2006-07-13
US20090003686A1 (en) 2009-01-01

Similar Documents

Publication Publication Date Title
JP2008537190A (ja) 赤外線パターンを照射することによる対象物の三次元像の生成
EP3392831B1 (en) Three-dimensional sensor system and three-dimensional data acquisition method
US8452081B2 (en) Forming 3D models using multiple images
US8432435B2 (en) Ray image modeling for fast catadioptric light field rendering
US8447099B2 (en) Forming 3D models using two images
JP4195096B2 (ja) 3次元表面形状再構築のための装置
AU2019203928B2 (en) Face location detection
US20100328308A1 (en) Three Dimensional Mesh Modeling
Shen et al. Virtual mirror rendering with stationary rgb-d cameras and stored 3-d background
US20130335535A1 (en) Digital 3d camera using periodic illumination
WO2012096747A1 (en) Forming range maps using periodic illumination patterns
US8917317B1 (en) System and method for camera calibration
WO2020075252A1 (ja) 情報処理装置、プログラム及び情報処理方法
JP2023508501A (ja) 3次元座標と2次元特徴点との関連付け
WO2018056802A1 (en) A method for estimating three-dimensional depth value from two-dimensional images
JP2004280776A (ja) 画像内のオブジェクトの形状を決定する方法
JP2008204318A (ja) 画像処理装置、画像処理方法及び画像処理プログラム
TWI595446B (zh) 擴充實境中基於深度攝影機之遮蔽邊緣品質改善方法
CN111489384A (zh) 基于互视角的遮挡评估方法及装置、设备、系统和介质
CN117197385A (zh) 三维模型的平面重建的测试方法、装置、电子设备及介质
McKeon et al. Three-Dimensional Facial Imaging using a Static Light Screen and a Dynamic
JP2001143082A (ja) 物体の三次元形状モデル作製装置