WO2014171328A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2014171328A1
WO2014171328A1 PCT/JP2014/059652 JP2014059652W WO2014171328A1 WO 2014171328 A1 WO2014171328 A1 WO 2014171328A1 JP 2014059652 W JP2014059652 W JP 2014059652W WO 2014171328 A1 WO2014171328 A1 WO 2014171328A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
width direction
groove
circumferential
pneumatic tire
Prior art date
Application number
PCT/JP2014/059652
Other languages
English (en)
French (fr)
Inventor
充 平間
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to EP14786104.1A priority Critical patent/EP2987655B1/en
Priority to US14/784,867 priority patent/US10611192B2/en
Priority to CN201480012581.9A priority patent/CN105026182B/zh
Priority to RU2015149106A priority patent/RU2610736C1/ru
Publication of WO2014171328A1 publication Critical patent/WO2014171328A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/11Tread patterns in which the raised area of the pattern consists only of isolated elements, e.g. blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0348Narrow grooves, i.e. having a width of less than 4 mm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0353Circumferential grooves characterised by width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/036Narrow grooves, i.e. having a width of less than 3 mm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0365Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0374Slant grooves, i.e. having an angle of about 5 to 35 degrees to the equatorial plane
    • B60C2011/0376Slant grooves, i.e. having an angle of about 5 to 35 degrees to the equatorial plane characterised by width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1209Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe straight at the tread surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1213Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe sinusoidal or zigzag at the tread surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • B60C2011/1245Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern being arranged in crossing relation, e.g. sipe mesh

Definitions

  • the present invention relates to a pneumatic tire with improved braking performance on ice.
  • Patent Document 1 Conventionally, a technology for improving performance on ice (braking performance and drive performance) is known for studless tires (see, for example, Patent Document 1).
  • the pneumatic tire disclosed in Patent Document 1 has a tread pattern in which a plurality of blocks are densely arranged in a lattice shape.
  • anisotropy when anisotropy is given to the shape of a block formed by grooves, only the drag force against an external force in a specific direction is increased, and the specific performance of the tire performance tends to be improved.
  • anisotropy when anisotropy is given to the shape of the block in the tire circumferential direction to increase the resistance against external force in the tire circumferential direction, the braking performance on ice and the braking performance on snow are improved.
  • the drainage performance tends to be improved.
  • the first grounding side (stepping side) of the block defined by the groove is the V-shaped apex, so that water is removed from the groove. It is possible to efficiently drain and improve drainage performance.
  • an object of the present invention is to provide a pneumatic tire in which braking performance on ice, braking performance on snow, and drainage performance are improved in a well-balanced manner.
  • the pneumatic tire according to the present invention has a circumferential main groove, and a plurality of circumferential narrow grooves, and a plurality of widthwise narrow grooves intersecting the circumferential narrow grooves, and a small block row is partitioned and formed. It is a pneumatic tire.
  • the circumferential narrow grooves are disposed at a soot tire width direction density of 0.06 [lines / mm] or more and 0.2 [lines / mm] or less.
  • the narrow groove in the width direction has at least one bent portion. The bending angle at the bent portion is 40 [°] or more and 160 [°] or less.
  • the arrangement density of the circumferential narrow grooves in the tire width direction is improved, and the bending angle of the bent portions is improved on the premise that the bent portions are provided in the widthwise narrow grooves. Added.
  • the braking performance on ice, the braking performance on snow, and the drainage performance are improved in a well-balanced manner.
  • FIG. 1 is a plan view showing a tread portion of a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is an enlarged plan view showing the periphery of the circled portion of the tread portion shown in FIG.
  • FIG. 3 is a plan view showing a tread portion of the pneumatic tire according to the embodiment of the present invention.
  • FIG. 4 is a plan view showing the relationship between the small blocks B1 adjacent in the tire circumferential direction in the pneumatic tire shown in FIG. 1 or FIG. 3, and (a) shows the tire circumferential region where the small blocks are the same. (B) shows a case where the small blocks have the same tire circumferential direction region.
  • FIG. 1 is a plan view showing a tread portion of a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is an enlarged plan view showing the periphery of the circled portion of the tread portion shown in FIG.
  • FIG. 3 is a plan view showing a tread portion of the pneumatic tire according to the embodiment of the
  • FIG. 5 is a plan view showing a sipe arrangement mode for one of the two blocks B1 and B1 adjacent to each other in the tire circumferential direction shown in FIG. 2, and (a) shows the sipe extending in the tire width direction.
  • (B) is an example in which the sipe extends in parallel with the tire width direction narrow groove.
  • the tire radial direction means a direction orthogonal to the rotational axis of the pneumatic tire
  • the tire radial inner side is the side toward the rotational axis in the tire radial direction
  • the tire radial outer side is in the tire radial direction.
  • the tire circumferential direction refers to a circumferential direction with the rotation axis as a central axis.
  • the tire width direction means a direction parallel to the rotation axis
  • the inner side in the tire width direction means the side toward the tire equatorial plane CL (tire equator line) in the tire width direction
  • the outer side in the tire width direction means the tire width direction. Is the side away from the tire equatorial plane CL.
  • the tire equatorial plane CL is a plane that is orthogonal to the rotational axis of the pneumatic tire and passes through the center of the tire width of the pneumatic tire.
  • the basic form 1 is a form for a pneumatic tire in which the rotation direction is specified.
  • FIG. 1 is a plan view showing a tread portion of a pneumatic tire according to an embodiment of the present invention (a view of a grounded tire viewed from directly above).
  • the pneumatic tire 1 shown in the figure is a tire in which the rotation direction shown in FIG. 1 (the tire rolling direction when the vehicle is moving forward) is defined. In the pneumatic tire 1, the stepping side in FIG. 1 is grounded before the kicking side.
  • the tread portion 10 of the pneumatic tire 1 shown in FIG. 1 is made of a rubber material (tread rubber), is exposed at the outermost side in the tire radial direction of the pneumatic tire 1, and the surface thereof is the contour of the pneumatic tire 1.
  • the surface of the tread portion 10 is formed as a tread surface 12 that is a surface that comes into contact with the road surface when a vehicle (not shown) on which the pneumatic tire 1 is mounted travels.
  • grooves 14 and 18 extending in the tire circumferential direction and grooves 22 inclined with respect to the tire circumferential direction are respectively provided on the tread surface 12 to form the tread pattern shown in FIG. Has been.
  • the specific configuration of the grooves 14 to 22 is as follows.
  • the tread surface 12 is provided with two circumferential main grooves 14 that are symmetric about the tire equatorial plane CL. Between the two circumferential main grooves 14 and on both outer sides in the tire width direction of each circumferential main groove 14, a linear circumference that is narrower than the circumferential main groove 14 and extends in the tire circumferential direction. A plurality of directional narrow grooves 18 are provided.
  • the tread surface 12 is narrower than the circumferential main groove 14 in the tire width direction between the two circumferential main grooves 14 and on both outer sides in the tire width direction of each circumferential main groove 14.
  • a plurality of narrow grooves 22 extending in a zigzag manner are provided.
  • there is a circumferential thick groove (circumferential main groove 14 in FIG. 1) that is wider than the circumferential narrow groove 18 and extends substantially in the tire circumferential direction.
  • the land portion defined between the circumferential grooves is regarded as a rib.
  • the widthwise thick groove that is wider than the widthwise narrow groove 22 and extends substantially in the tire width direction in the tire widthwise region in which the widthwise narrow groove 22 is disposed.
  • the land portion defined between the circumferential thick grooves and the land portion defined between the widthwise thick grooves is regarded as a block.
  • the groove width of the circumferential main groove 14 can be 4.0 [mm] or more.
  • the groove width refers to the maximum dimension of the groove in a direction perpendicular to the direction in which the groove extends.
  • the circumferential narrow grooves 18 are arranged with a density in the tire width direction of 0.06 [lines / mm] or more and 0.2 [lines / mm] or less. It is installed.
  • the density in the tire width direction of the circumferential narrow grooves 18 means that the circumferential narrow grooves 18 per unit length in the tire width direction in the tire width direction region between the ground contact ends E shown in FIG. It means the number of arrangement.
  • the narrow groove 22 in the width direction has at least one bent portion in the example shown in FIG.
  • one bent portion is formed between adjacent circumferential narrow grooves 18 (for example, between the circumferential narrow grooves 18 a and 18 b) with respect to one width-direction narrow groove 22.
  • FIG. 2 is an enlarged plan view showing the periphery of the circled portion of the tread portion shown in FIG.
  • the bending angle ⁇ at the bent portion of the block B1 is not less than 40 [°] and not more than 160 [°].
  • the bent portion is not limited to one formed by two straight lines between the circumferential narrow grooves 18a and 18b adjacent to each other in the tire width direction, and although not shown, these grooves 18a and 18b. Those extending in a curved line are also included.
  • the angle is an angle formed by straight lines extending from both ends of the bent portion in the tire width direction to the apex of the bent portion.
  • each small block B1 is set. Can be suppressed from being excessively reduced with respect to the length in the tire width direction. As a result, each of the small blocks B1 is prevented from falling down in the tire circumferential direction, and a sufficient resistance against an external force in the tire circumferential direction is ensured, thereby exhibiting excellent braking performance on ice and excellent braking performance on snow. can do.
  • the edge extending in the width direction can be made sufficiently long. As a result, the resistance against the external force in the tire circumferential direction can be increased, and as a result, excellent braking performance on ice and excellent braking performance on snow can be exhibited.
  • the said effect can be show
  • the shape of the small block B1 partitioned by the width direction narrow groove 22 is anisotropic, In FIG. 1, anisotropy in the tire circumferential direction is given.
  • the drag force against the external force in the tire circumferential direction can be increased as compared with the drag force against the external force in the other direction, and as a result, excellent braking performance on ice and excellent braking performance on snow can be exhibited. .
  • the first grounding side (stepping side) of the block B1 defined by the widthwise narrow groove 22 is the apex of the V-shape. It can be. Thereby, water can be efficiently discharged
  • the tire is attached to the edge of the small block B1 that is partitioned by the widthwise narrow groove 22.
  • the edge component in the width direction is sufficiently provided.
  • the resistance against the external force in the tire circumferential direction can be increased, and as a result, excellent braking performance on ice and excellent braking performance on snow can be exhibited.
  • the edge of the small block B1 defined by the widthwise narrow groove 22 has a sufficient edge component in the tire circumferential direction. As a result, it is possible to increase the resistance against the external force in the tire width direction, thereby realizing excellent turning performance on ice and excellent turning performance on snow.
  • the said effect can be show
  • the pneumatic tire according to the present embodiment is improved on the arrangement density of the circumferential narrow grooves in the tire width direction, and on the premise that a bent portion is provided in the wide narrow grooves. Improvements have been made to the bending angle of the bent portion. As a result, the pneumatic tire according to the present embodiment can improve the braking performance on ice, the braking performance on snow, and the drainage performance in a well-balanced manner.
  • the pneumatic tire which concerns on this Embodiment shown above has the same meridional cross-sectional shape as the conventional pneumatic tire.
  • the meridional cross-sectional shape of the pneumatic tire refers to a cross-sectional shape of the pneumatic tire that appears on a plane perpendicular to the tire equatorial plane CL.
  • the pneumatic tire according to the present embodiment has a bead portion, a sidewall portion, a shoulder portion, and a tread portion from the inner side in the tire radial direction toward the outer side in a tire meridian cross-sectional view.
  • the pneumatic tire extends from the tread portion to the bead portions on both sides and wound around the pair of bead cores, and on the outer side in the tire radial direction of the carcass layer.
  • a belt layer and a belt reinforcing layer are sequentially formed.
  • the pneumatic tire of the present embodiment includes normal manufacturing processes, that is, a tire material mixing process, a tire material processing process, a green tire molding process, a vulcanization process, and an inspection process after vulcanization. It is obtained through the process.
  • a concave portion and a convex portion corresponding to the tread pattern shown in FIG. Sulfur is performed.
  • FIG. 2 is a form for a pneumatic tire whose rotation direction is not specified.
  • FIG. 3 is a plan view showing the tread portion of the pneumatic tire according to the embodiment of the present invention (a view of the grounded tire viewed from directly above).
  • the pneumatic tire 1 shown in the figure has a tread pattern that is symmetrical with respect to the tire equatorial plane CL.
  • the same reference numerals as those shown in FIG. 1 denote the same components as those shown in FIG.
  • the tread portion 11 of the pneumatic tire 2 shown in FIG. 3 is made of a rubber material (tread rubber) in the same manner as in the basic form 1 shown in FIG.
  • the surface is the contour of the pneumatic tire 2.
  • the surface of the tread portion 11 is formed as a tread surface 13 that is a surface that comes into contact with the road surface when a vehicle (not shown) on which the pneumatic tire 2 is mounted travels.
  • the plurality of circumferential narrow grooves 18 and the plurality of width narrow grooves 24 intersecting with the circumferential narrow grooves 18 are used to form small blocks in both the tire width direction and the tire circumferential direction.
  • a column is formed.
  • the circumferential narrow grooves 18 are arranged with a tire width direction density of 0.06 [mm / mm] or more and 0.2 [lines / mm] or less. It is installed.
  • the width direction narrow groove 24 has at least one bent portion as shown in FIG. 1, and the bent angle ⁇ at the bent portion is 40 [°] or more.
  • the arrangement density in the tire width direction of the circumferential narrow grooves is improved, and on the premise that the bent portion is provided in the width narrow grooves. Improvements have been made to the bending angle of the bent portion.
  • the pneumatic tire according to the present embodiment can improve the braking performance on ice, the braking performance on snow, and the drainage performance in a well-balanced manner.
  • the interval between the narrow grooves 22 (24) in the width direction refers to the distance between the center lines in the groove width direction of the narrow grooves 22a and 22b (24a and 24b) adjacent in the tire circumferential direction.
  • interval of the circumferential direction fine grooves 18 means the distance between each groove width direction centerline of the circumferential direction fine grooves 18a and 18b adjacent to a tire width direction.
  • the center line in the groove width direction refers to a line passing through the midpoint of the groove width measured in a direction perpendicular to the extending direction of the groove.
  • each small block B1 (B2) By making the interval between the width direction narrow grooves 22a and 22b (24a and 24b) 0.8 times or more of the interval between the circumferential direction narrow grooves 18a and 18b, the tire circumferential direction length of each small block B1 (B2) It can further be suppressed that the height is excessively reduced with respect to the length in the tire width direction. As a result, each of the small blocks B1 (B2) is prevented from falling in the tire circumferential direction, the resistance against the external force in the tire circumferential direction is further increased, and the braking performance on ice and the braking performance on snow are further improved. Can do.
  • each small block B1 (B2) by making the space
  • the edge extending in the tire width direction can be further increased. Thereby, the resistance against the external force in the tire circumferential direction can be further increased, and the braking performance on ice and the braking performance on snow can be further improved.
  • the said effect can be show
  • the region of the central portion 50 [%] in the tire width direction region of the bent portion is a region on one side of the bent portion in the tire width direction when attention is paid to one bent portion.
  • the fall of the small block B1 in the tire width direction and the fall in the tire circumferential direction can be suppressed in a balanced manner on both sides of the apex A in the tire width direction, turning performance on ice and snow, and on ice and snow. Both braking performances can be further improved.
  • the above effect can be achieved at a higher level by allowing the apex of the bent portion to be present in the central portion 25 [%] of the tire circumferential direction region of the bent portion.
  • the groove width of the circumferential narrow groove 18 is 1.0 [mm] or more in each of FIGS. It is preferably less than 0 [mm] (additional form 3).
  • the groove width of the circumferential narrow groove 18 refers to a groove dimension measured in a direction perpendicular to the extending direction of the circumferential narrow groove 18.
  • the drainage performance on ice can be further enhanced by setting the groove width of the circumferential narrow groove 18 to 1.0 [mm] or more. Further, by setting the groove width to less than 4.0 [mm], when an external force in the tire width direction is applied, the block B1 adjacent to the tire width direction that is partitioned by the common circumferential narrow groove 18 is formed. The members (blocks B2) contact each other and support each other. Thereby, falling of the small block B1 (B2) in the tire width direction is suppressed, and excellent turning performance on ice and excellent turning performance on snow can be realized.
  • the said effect can be show
  • the groove width of the widthwise narrow groove 22 (24) is 1.0 [mm]. It is preferable that it is less than 4.0 [mm] (additional form 4).
  • the groove width of the widthwise narrow groove 22 (24) refers to a groove dimension measured in a direction perpendicular to the extending direction of the widthwise narrow groove 22 (24).
  • the groove width of the width direction narrow groove 22 (24) By making the groove width of the width direction narrow groove 22 (24) to be 1.0 [mm] or more, not only the drainage performance on ice can be further improved, but also the snow column shear force increases on the snow, Excellent braking performance can be achieved.
  • the groove width of the width-direction narrow groove 22 (24) by setting the groove width of the width-direction narrow groove 22 (24) to less than 4.0 [mm], in particular, external forces in the tire circumferential direction (small blocks B2) contact each other and support each other. Thereby, the falling of the small block B1 (B2) in the tire circumferential direction is suppressed, and the braking performance on ice and the braking performance on snow can be further enhanced.
  • the said effect can be show
  • FIG. 4 is a plan view showing the relationship between the small blocks B1 adjacent to each other in the tire circumferential direction in the pneumatic tire shown in FIG. 1 or FIG. 4, (a) is a case where small blocks do not have the same tire circumferential direction area
  • the area other than the small block B1 (B11, B12, B13, B14) indicates a groove area that partitions the small block B1.
  • the example shown in FIG. 4 is an example for the block B1 in FIGS. 1 and 3. However, the description of the block B1 shown below also applies to the block B2 shown in FIG.
  • the arrowhead rear end portion of the arrow-shaped small block B11 having anisotropy in the tire circumferential direction and the arrow-shaped small block B12 having anisotropy in the tire circumferential direction are used. Only a groove exists in the tire circumferential direction region (the region where the tire circumferential direction line segment X is continuous in the tire width direction in the figure) between the tip of the arrow feather. That is, in the example shown in FIG. 4A, these small blocks B11 and B12 do not have the same tire width direction region.
  • the arrow feather rear end portion of the arrow-shaped small block B13 having anisotropy in the tire circumferential direction and the arrow feather-shaped having anisotropy in the tire circumferential direction In the tire circumferential direction region (the region where the tire circumferential direction line segment Y continues in the tire width direction in the same figure) between the tip of the small block B14 and the arrow blade, one of the small blocks B13 and B14 is provided. There is also a department. That is, in the example shown in FIG. 4B, these small blocks B13 and B14 have the same tire circumferential direction region.
  • the form shown in FIG. 4B is assumed.
  • the tire circumferential direction dimension of the groove interposed between the small blocks B13 and B14 is smaller than that in the example shown in FIG.
  • the small blocks B13 and B14 come into contact with each other and support each other.
  • the falling of the small blocks B13 and B14 in the tire circumferential direction is further suppressed, and the braking performance on ice and the braking performance on snow can be further enhanced.
  • the tire width direction dimension of the groove interposed between the small blocks B13 and B14 is smaller than that in the example shown in FIG. 4 (a). For this reason, when an external force in the tire width direction is applied to the small blocks B13 and B14, the small blocks B13 and B14 support each other in the region Y. Thereby, falling of the small blocks B13 and B14 in the tire width direction is further suppressed, and the turning performance on ice and the turning performance on snow can be further enhanced.
  • sipe In the basic form and the form obtained by adding at least one of the additional forms 1 to 5 to the basic form, at least one sipe is formed in at least one of the small blocks B1 and B2 in FIGS. (Additional form 6) is preferred.
  • sipe refers to a groove having a groove width of 0.4 [mm] or more and less than 1.0 [mm].
  • the edge by sipe formation contains many components in the tire circumferential direction, the resistance against the external force in the tire width direction is further increased, and the turning performance on ice and the turning performance on snow can be greatly enhanced. Further, when the edge due to sipe formation includes a large amount of the tire width direction component, the resistance against the external force in the tire circumferential direction is further increased, and the braking performance on ice and the braking performance on snow can be greatly enhanced.
  • FIG. 5 is a plan view showing a sipe arrangement mode for one of two blocks B1 and B1 adjacent to each other in the tire circumferential direction shown in FIG. 2, and (a) shows the sipe S1 in the tire width direction.
  • the sipe S2 extends in parallel with the tire width direction narrow groove 22.
  • the arrangement of the sipes is not particularly limited.
  • FIG. 5 (a) when the sipe S1 is extended in the tire width direction, the tire width direction component of the edge due to the sipe formation is maximized, so that the drag force against the external force in the tire circumferential direction is increased.
  • the braking performance on ice and the braking performance on snow can be made extremely high. Further, as shown in FIG.
  • the sipe S2 when the sipe S2 extends in parallel with the widthwise narrow groove 22, one arrow-shaped small block B1 is divided into the same shape by the sipe S2.
  • the small block piece B1a and the small block piece B1b divided by the sipe S2 perform substantially the same movement with respect to the external force from the tire circumferential direction and the external force from the diamond width direction. For this reason, uneven wear such as local heel and toe wear in the vicinity of the sipe S2 can be suppressed, and the durability performance of the tire can be further enhanced.
  • the tire size is 205 / 55R16, and it has one of the tread patterns shown in FIGS. 1 and 3 and the conditions shown in Table 1 (the arrangement density of the circumferential narrow grooves in the tire width direction (circumferential narrow groove density), bending)
  • the bending angle (bending angle) at the portion, the interval between the narrow grooves in the width direction (interval ratio) with respect to the interval between the circumferential narrow grooves, and the apex of the bent portion is the region of the central portion 50 [%] of the tire circumferential direction region (Specific region) or not (bent region), groove width of circumferential narrow groove, groove width of narrow groove in the width direction, tire circumferential direction region where small blocks adjacent in the tire circumferential direction are the same
  • the pneumatic tires of Examples 1 to 14 according to whether or not they have (the presence or absence of the same region in the tire circumferential direction) and whether or not at least one sipe is formed in the small block (the presence or absence of sipe). Produced.
  • the tire size is 205 / 55R16
  • the conventional tread pattern is the same as the tread pattern of Example 1 except that the narrow groove in the width direction extends linearly in the tire width direction without having a bent portion.
  • An example pneumatic tire was made.
  • test tires of Examples 1 to 14 and the conventional example manufactured as described above was assembled on a 16 ⁇ 6.5J rim at an air pressure of 230 kPa and mounted on a sedan type vehicle having a displacement of 1800 CC.
  • the braking performance on snow and drainage performance were evaluated. These results are also shown in Table 1.
  • the air of Examples 1 to 14 belonging to the technical scope of the present invention (with improvements in the arrangement density of the circumferential narrow grooves in the tire width direction and the bending angle of the bent portion).
  • the braking performance on ice, the braking performance on snow, and the drainage performance are improved in a well-balanced manner, compared with the conventional pneumatic tire, which does not belong to the technical scope of the present invention. I know that.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 氷上での制動性能と、雪上での制動性能と、排水性能とをバランス良く改善した空気入りタイヤを提供する。周方向細溝(18)は、0.06[本/mm]から0.2[本/mm]の タイヤ幅方向密度で配設されている。上記幅方向細溝(22)は少なくとも1つの屈曲部を有する。上記屈曲部における屈曲角は40[°]以上160[°]以下である。

Description

空気入りタイヤ
 本発明は、氷上での制動性能等を改善した空気入りタイヤに関する。
 従来、スタッドレスタイヤについて、氷上性能(制動性能及び駆動性能)を改善した技術が知られている(例えば、特許文献1参照)。特許文献1に開示された空気入りタイヤは、複数のブロックを格子状に密集配置させたトレッドパターンを有する。
国際公開第2010/032606号
 一般に、溝によって区画形成されるブロックの形状に異方性を与えた場合には、特定の方向の外力に対する抗力のみが大きくなり、タイヤ性能のうち、特定の性能が改善される傾向にある。例えば、ブロックの形状にタイヤ周方向において異方性を与えることで、タイヤ周方向の外力に対する抗力を大きくした場合には、氷上での制動性能や雪上での制動性能が改善される。
 また、ブロックを区画形成する溝の形状に異方性を与えた場合には、排水性能が改善される傾向にある。例えば、V字型のタイヤ幅方向溝を配設した場合には、この溝により区画形成されたブロックの最初に接地する側(踏み込み側)をV字の頂点とすることで、水を溝から効率的に排出して、排水性能を向上させることができる。
 特許文献1に開示された空気入りタイヤについては、各ブロックの形状がいずれの方向においても異方性を有していない。このため、上記空気入りタイヤによっては、氷上での制動性能、雪上での制動性能及び排水性能がバランス良く発揮されるか不明である。
 本発明は、上記事情に鑑みてなされたものであって、特に、氷上での制動性能と、雪上での制動性能と、排水性能とをバランス良く改善した、空気入りタイヤを提供することを目的とする。
 本発明に係る空気入りタイヤは、周方向主溝を有するとともに、複数の周方向細溝と、上記周方向細溝と交差する複数の幅方向細溝と、により小ブロック列が区画形成された空気入りタイヤである。上記周方向細溝は、0.06[本/mm]以上0.2[本/mm]以下の タイヤ幅方向密度で配設されている。上記幅方向細溝は少なくとも1つの屈曲部を有する。上記屈曲部における屈曲角は40[°]以上160[°]以下である。
 本発明に係る空気入りタイヤでは、周方向細溝のタイヤ幅方向における配設密度について改良を加えるとともに、幅方向細溝に屈曲部を設けることを前提に、この屈曲部の屈曲角について改良を加えている。その結果、本発明に係る空気入りタイヤによれば、特に、氷上での制動性能と、雪上での制動性能と、排水性能とがバランス良く改善される。
図1は、本発明の実施の形態に係る空気入りタイヤのトレッド部を示す平面図である。 図2は、図1に示すトレッド部の丸囲み部分周辺を拡大して示す平面図である。 図3は、本発明の実施の形態に係る空気入りタイヤのトレッド部を示す平面図である。 図4は、図1又は図3に示す空気入りタイヤにおける、タイヤ周方向に隣り合う小ブロックB1同士の関係を示す平面図であり、(a)は小ブロック同士が同一のタイヤ周方向領域を有さない場合であり、(b)は小ブロック同士が同一のタイヤ周方向領域を有する場合である。 図5は、図2に示すタイヤ周方向に隣り合う2つのブロックB1、B1のうちの1つについて、サイプの配設態様を示す平面図であり、(a)はサイプがタイヤ幅方向に延在する例であり、(b)はサイプがタイヤ幅方向細溝に平行に延在する例である。
 以下に、本発明に係る空気入りタイヤの実施の形態(以下に示す、基本形態及び付加的形態1から6)を、図面に基づいて詳細に説明する。なお、これらの実施の形態は、本発明を限定するものではない。また、上記実施の形態の構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。さらに、上記実施の形態に含まれる各種形態は、当業者が自明の範囲内で任意に組み合わせることができる。
[基本形態]
 以下に、本発明に係る空気入りタイヤについて、その基本形態を説明する。以下の説明において、タイヤ径方向とは、空気入りタイヤの回転軸と直交する方向をいい、タイヤ径方向内側とはタイヤ径方向において回転軸に向かう側、タイヤ径方向外側とはタイヤ径方向において回転軸から離れる側をいう。また、タイヤ周方向とは、上記回転軸を中心軸とする周り方向をいう。さらに、タイヤ幅方向とは、上記回転軸と平行な方向をいい、タイヤ幅方向内側とはタイヤ幅方向においてタイヤ赤道面CL(タイヤ赤道線)に向かう側、タイヤ幅方向外側とはタイヤ幅方向においてタイヤ赤道面CLから離れる側をいう。なお、タイヤ赤道面CLとは、空気入りタイヤの回転軸に直交するとともに、空気入りタイヤのタイヤ幅の中心を通る平面である。
(基本形態1)
 基本形態1は、回転方向が指定された空気入りタイヤについての形態である。図1は、本発明の実施の形態に係る空気入りタイヤのトレッド部を示す平面図(接地したタイヤを真上から見た図)である。同図に示す空気入りタイヤ1は、図1に示す回転方向(車両が前進している状態でのタイヤ転動向き)が定められているタイヤである。この空気入りタイヤ1では、図1の踏み込み側が蹴り出し側よりも先に接地する。図1に示す空気入りタイヤ1のトレッド部10は、ゴム材(トレッドゴム)からなり、空気入りタイヤ1のタイヤ径方向の最も外側で露出し、その表面が空気入りタイヤ1の輪郭となる。このトレッド部10の表面は、空気入りタイヤ1を装着する車両(図示せず)が走行した際に路面と接触する面であるトレッド表面12として形成されている。
 トレッド表面12には、図1に示すように、タイヤ周方向に延在する溝14、18と、タイヤ周方向に対して傾斜する溝22とがそれぞれ設けられ、同図に示すトレッドパターンが形成されている。溝14から22の具体的構成は、以下のとおりである。
 即ち、トレッド表面12には、タイヤ赤道面CLについて対称である2本の周方向主溝14が設けられている。2本の周方向主溝14の間及び各周方向主溝14のタイヤ幅方向両外側には、周方向主溝14に対して幅狭であってタイヤ周方向に延在する直線状の周方向細溝18が複数配設されている。
 また、トレッド表面12には、2本の周方向主溝14の間及び各周方向主溝14のタイヤ幅方向両外側に、周方向主溝14に対して幅狭であってタイヤ幅方向にジグザグに延在する幅方向細溝22が複数配設されている。
 以上により、図1に示す例では、複数の周方向細溝18と、これら周方向細溝18と交差する複数の幅方向細溝22と、により、タイヤ幅方向及びタイヤ周方向の双方に、小ブロック列が形成されている。なお、本実施の形態においては、周方向細溝18よりも幅広であって、略タイヤ周方向に延在する周方向太溝(図1に示すところでは周方向主溝14)が存在する場合には、この周方向太溝間に区画形成された陸部をリブとみなすものとする。また、本実施の形態においては、幅方向細溝22が配設されているタイヤ幅方向領域に、幅方向細溝22よりも幅広であって、略タイヤ幅方向に延在する幅方向太溝(図1には存在しない)がさらに存在する場合には、上記周方向太溝間に区画形成されるとともに、幅方向太溝間に区画形成された陸部を、ブロックとみなすものとする。
 また、本実施の形態において、周方向主溝14の溝幅は、4.0[mm]以上とすることができる。ここで、溝幅とは、溝が延在する方向に垂直な方向における当該溝の最大寸法をいう。
 このような前提の下、本実施の形態(基本形態1)においては、周方向細溝18が0.06[本/mm]以上0.2[本/mm]以下の タイヤ幅方向密度で配設されている。ここで、周方向細溝18のタイヤ幅方向密度とは、図1に示す両接地端E同士の間のタイヤ幅方向領域における、タイヤ幅方向の単位長さ当たりの、周方向細溝18の配設本数を意味する。
 さらに、本実施の形態においては、幅方向細溝22が、少なくとも1つの、図1に示す例では、複数の屈曲部を有する。即ち、図1に示す例では、1本の幅方向細溝22に関し、隣り合う周方向細溝18間(例えば、周方向細溝18a、18b間)に1つの屈曲部が形成されている。
 図2は、図1に示すトレッド部の丸囲み部分周辺を拡大して示す平面図である。本実施の形態においては、図2に示すように、ブロックB1の屈曲部における屈曲角θが40[°]以上160[°]以下となっている。屈曲部は、図2に示すように、タイヤ幅方向に隣り合う周方向細溝18a、18b間において、2本の直線によって構成されているものに限られず、図示しないがこれらの溝18a、18b間において曲線状に延在するものも含まれる。屈曲部が曲線状に延在する場合には、上記角度は、屈曲部のタイヤ幅方向両端部からそれぞれ屈曲部の頂点まで延在させた直線同士のなす角とする。
<作用等>
 本実施の形態に係る空気入りタイヤにおいては、周方向細溝18を、0.06[本/mm]以上の タイヤ幅方向密度で配設することで、各小ブロックB1のタイヤ周方向長さをそのタイヤ幅方向長さに対して過度に小さくすることを抑制することができる。これにより、各小ブロックB1のタイヤ周方向への倒れ込みを抑制して、タイヤ周方向の外力に対する抗力を十分に確保して、氷上での優れた制動性能及び雪上での優れた制動性能を発揮することができる。
 また、本実施の形態の空気入りタイヤにおいては、周方向細溝18を、0.2[本/mm]以下の タイヤ幅方向密度で配設することで、各小ブロックB1に形成されるタイヤ幅方向に延在するエッジを十分に長くすることができる。これにより、タイヤ周方向の外力に対する抗力を高め、ひいては氷上での優れた制動性能及び雪上での優れた制動性能を発揮することができる。
 なお、周方向細溝18のタイヤ幅方向配設密度を0.08[本/mm]以上0.12[本/mm]以下とすることで、上記効果をそれぞれさらに高いレベルで奏することができる。
 さらに、本実施の形態の空気入りタイヤにおいては、幅方向細溝22に少なくとも1つの屈曲部を設けることで、幅方向細溝22により区画形成された小ブロックB1の形状に、異方性、図1に示すところではタイヤ周方向に関する異方性、を与えている。これにより、タイヤ周方向の外力に対する抗力を、その他の方向の外力に対する抗力と比べて大きくすることができ、ひいては氷上での優れた制動性能及び雪上での優れた制動性能を発揮することができる。
 そして、このように、幅方向細溝22に少なくとも1つの屈曲部を設けることで、幅方向細溝22により区画形成されたブロックのB1の最初に接地する側(踏み込み側)をV字の頂点とすることができる。これにより、水を幅方向溝22から効率的に排出して、排水性能を向上させることができる。
 加えて、本実施の形態の空気入りタイヤおいては、屈曲部における屈曲角θを40[°]以上とすることで、幅方向細溝22により区画形成される小ブロックB1のエッジに、タイヤ幅方向のエッジ成分を十分に持たせている。これにより、タイヤ周方向の外力に対する抗力を大きくすることができ、ひいては氷上での優れた制動性能及び雪上での優れた制動性能を発揮することができる。また、屈曲部における屈曲角θを160[°]以下とすることで、幅方向細溝22により区画形成される小ブロックB1のエッジに、タイヤ周方向のエッジ成分を十分に持たせている。これにより、タイヤ幅方向の外力に対する抗力を大きくすることができ、ひいては氷上での優れた旋回性能及び雪上での優れた旋回性能を実現することができる。
 なお、屈曲部における屈曲角θを60[°]以上140[°]以下とすることで、上記効果をそれぞれさらに高いレベルで奏することができる。
 以上に示すように、本実施の形態に係る空気入りタイヤは、周方向細溝のタイヤ幅方向における配設密度について改良を加えるとともに、幅方向細溝に屈曲部を設けることを前提に、この屈曲部の屈曲角について改良を加えている。その結果、本実施の形態に係る空気入りタイヤによれば、特に、氷上での制動性能と、雪上での制動性能と、排水性能とをバランス良く改善することができる。
 なお、以上に示す、本実施の形態に係る空気入りタイヤは、図示しないが、従来の空気入りタイヤと同様の子午断面形状を有する。ここで、空気入りタイヤの子午断面形状とは、タイヤ赤道面CLと垂直な平面上に現れる空気入りタイヤの断面形状をいう。本実施の形態の空気入りタイヤは、タイヤ子午断面視で、タイヤ径方向内側から外側に向かって、ビード部、サイドウォール部、ショルダー部及びトレッド部を有する。そして、空気入りタイヤは、例えば、タイヤ子午断面視で、トレッド部から両側のビード部まで延在して一対のビードコアの周りで巻回されたカーカス層と、上記カーカス層のタイヤ径方向外側に順次形成された、ベルト層及びベルト補強層とを備える。
 また、本実施の形態の空気入りタイヤは、通常の各製造工程、即ち、タイヤ材料の混合工程、タイヤ材料の加工工程、グリーンタイヤの成型工程、加硫工程及び加硫後の検査工程等を経て得られるものである。本実施の形態の空気入りタイヤを製造する場合には、特に、加硫用金型の内壁に、図1に示すトレッドパターンに対応する凹部及び凸部を形成し、この金型を用いて加硫を行う。
(基本形態2)
 基本形態2は、回転方向が指定されていない空気入りタイヤについての形態である。図3は、本発明の実施の形態に係る空気入りタイヤのトレッド部を示す平面図(接地したタイヤを真上から見た図)である。同図に示す空気入りタイヤ1は、タイヤ赤道面CLに対して対称であるトレッドパターンを有する。同図に示す参照符号中、図1に示す参照符号と同一の参照符号については、図1に示す構成要素と同じ構成要素を示す。
 図3に示す空気入りタイヤ2のトレッド部11は、図1に示す基本形態1と同様に、ゴム材(トレッドゴム)からなり、空気入りタイヤ2のタイヤ径方向の最も外側で露出し、その表面が空気入りタイヤ2の輪郭となる。このトレッド部11の表面は、空気入りタイヤ2を装着する車両(図示せず)が走行した際に路面と接触する面であるトレッド表面13として形成されている。
 図3に示す例においても、複数の周方向細溝18と、これら周方向細溝18と交差する複数の幅方向細溝24と、により、タイヤ幅方向及びタイヤ周方向の双方に、小ブロック列が形成されている。
 このような前提の下、本実施の形態(基本形態2)においても、周方向細溝18が0.06[本/mm]以上0.2[本/mm]以下の タイヤ幅方向密度で配設されている。そして、幅方向細溝24が少なくとも1つの、図1に示すところでは複数の屈曲部を有し、この屈曲部における屈曲角θが40[°]以上となっている。
 以上に示すように、基本形態2に係る空気入りタイヤにおいても、周方向細溝のタイヤ幅方向における配設密度について改良を加えるとともに、幅方向細溝に屈曲部を設けることを前提に、この屈曲部の屈曲角について改良を加えている。その結果、本実施の形態に係る空気入りタイヤによれば、特に、氷上での制動性能と、雪上での制動性能と、排水性能とをバランス良く改善することができる。
 [付加的形態]
 次に、本発明に係る空気入りタイヤの上記基本形態に対して、任意選択的に実施可能な、付加的形態1から7を説明する。
(付加的形態1)
 基本形態(基本形態1、2)においては、図1、3のそれぞれにおいて、幅方向細溝22(24)同士の間隔が、周方向細溝18同士の間隔の0.8倍以上1.5倍以下であること(付加的形態1)が好ましい。
 ここで、幅方向細溝22(24)同士の間隔とは、タイヤ周方向に隣り合う幅方向細溝22a、22b(24a、24b)のそれぞれの溝幅方向中心線同士間の距離をいう。同様に、周方向細溝18同士の間隔とは、タイヤ幅方向に隣り合う周方向細溝18a、18bのそれぞれの溝幅方向中心線同士間の距離をいう。なお、上記溝幅方向中心線とは、溝の延在方向に垂直な方向に測定した溝幅の中点を通る線をいう。
 幅方向細溝22a、22b(24a、24b)同士の間隔を、周方向細溝18a、18b同士の間隔の0.8倍以上とすることで、各小ブロックB1(B2)のタイヤ周方向長さをそのタイヤ幅方向長さに対して過度に小さくすることをさらに抑制することができる。これにより、各小ブロックB1(B2)のタイヤ周方向への倒れ込みを抑制して、タイヤ周方向の外力に対する抗力をさらに高めて、氷上での制動性能及び雪上での制動性能をさらに向上させることができる。
 また、幅方向細溝22a、22b(24a、24b)同士の間隔を、周方向細溝18a、18b同士の間隔の1.5倍以下とすることで、各小ブロックB1(B2)に形成されるタイヤ幅方向に延在するエッジをさらに長くすることができる。これにより、タイヤ周方向の外力に対する抗力をさらに高めて、氷上での制動性能及び雪上での制動性能をさらに向上させることができる。
 なお、幅方向細溝22(24)同士の間隔を、周方向細溝18同士の間隔の1.0倍以上1.2倍以下とすることで、上記効果をそれぞれさらに高いレベルで奏することができる。
(付加的形態2)
 基本形態及び基本形態に付加的形態1を加えた形態においては、図1、3のそれぞれにおいて、屈曲部の頂点が、屈曲部のタイヤ周方向領域の中央部50[%]の領域に存在すること(付加的形態2)が好ましい。
 ここで、屈曲部のタイヤ幅方向領域の中央部50[%]の領域とは、図2に示すように、1つの屈曲部に着目した場合に、その屈曲部のタイヤ幅方向の一方側の端部から他方側の端部までのタイヤ幅方向領域R内における、タイヤ幅方向の中央部50[%]の領域RCをいう。
 図2において、屈曲部の頂点Aを領域RCに存在させることで、同一の小ブロックに連なって形成される、頂点Aよりもタイヤ幅方向の一方側の溝部分によって形成されたエッジと、他方側の溝部分によって形成されたエッジと、における、タイヤ幅方向のエッジ成分の大きさ及びタイヤ周方向のエッジ成分の大きさが過度に異なるものとなることを抑制することができる。これにより、タイヤ幅方向の外力に対する、上記の2つのエッジによる抗力の差異、及び、タイヤ周方向の外力に対する、上記の2つのエッジによる抗力の差異、を抑制することができる。その結果、小ブロックB1のタイヤ幅方向への倒れ込みとタイヤ周方向への倒れ込みとを、頂点Aのタイヤ幅方向両側においてバランス良く抑制することができ、氷上及び雪上での旋回性能並びに氷上及び雪上での制動性能の双方をさらに高めることができる。
 なお、屈曲部の頂点を、屈曲部のタイヤ周方向領域の中央部25[%]の領域に存在させることで、上記効果をさらに高いレベルで奏することができる。
(付加的形態3)
 基本形態及び基本形態に付加的形態1、2の少なくともいずれかを加えた形態においては、図1、3のそれぞれにおいて、周方向細溝18の溝幅が、1.0[mm]以上4.0[mm]未満であること(付加的形態3)が好ましい。ここで、周方向細溝18の溝幅とは、周方向細溝18の延在方向に垂直な方向に測った溝寸法をいう。
 周方向細溝18の溝幅を1.0[mm]以上とすることで、氷上での排水性能をさらに高めることができる。また、上記溝幅を4.0[mm]未満とすることで、タイヤ幅方向の外力が加わった場合に、共通の周方向細溝18によって区画形成された、タイヤ幅方向に隣り合うブロックB1同士(ブロックB2同士)が接触して互いに支え合う。これにより、小ブロックB1(B2)のタイヤ幅方向への倒れ込みが抑制され、氷上での優れた旋回性能及び雪上での優れた旋回性能を実現することができる。
 なお、周方向細溝18の溝幅を2.0[mm]以上3.0[mm]以下とすることで、上記効果をそれぞれさらに高いレベルで奏することができる。
(付加的形態4)
 基本形態及び基本形態に付加的形態1から3の少なくともいずれかを加えた形態においては、図1、3のそれぞれにおいて、幅方向細溝22(24)の溝幅が、1.0[mm]以上4.0[mm]未満であること(付加的形態4)が好ましい。ここで、幅方向細溝22(24)の溝幅とは、幅方向細溝22(24)の延在方向に垂直な方向に測った溝寸法をいう。
 幅方向細溝22(24)の溝幅を1.0[mm]以上とすることで、氷上での排水性能をさらに高めることができのみならず、雪上においては雪柱せん断力が高まり、雪上での優れた制動性能を実現することができる。また、幅方向細溝22(24)の溝幅を4.0[mm]未満とすることで、特に、タイヤ周方向の外力(小ブロックB2同士)が接触して互いに支え合う。これにより、小ブロックB1(B2)のタイヤ周方向への倒れ込みが抑制され、氷上での制動性能及び雪上での制動性能をさらに高めることができる。
 なお、幅方向細溝22(24)の溝幅を2.0[mm]以上3.0[mm]以下とすることで、上記効果をそれぞれさらに高いレベルで奏することができる。
(付加的形態5)
 基本形態及び基本形態に付加的形態1から4の少なくともいずれかを加えた形態においては、図1、3のそれぞれにおいて、タイヤ周方向に隣接する小ブロックB1同士(小ブロックB2同士)が、同一のタイヤ周方向領域を有すること(付加的形態5)が好ましい。
 図4は、図1又は図3に示す空気入りタイヤにおける、タイヤ周方向に隣り合う小ブロックB1同士の関係を示す平面図である。図4中、(a)は小ブロック同士が同一のタイヤ周方向領域を有さない場合であり、(b)は小ブロック同士が同一のタイヤ周幅方向領域を有する場合である。同図中、小ブロックB1(B11、B12、B13、B14)以外の領域は小ブロックB1を区画形成する溝の領域を示す。なお、図4に示す例は図1、3のブロックB1についての例であるが、以下に示すブロックB1についての説明は、図3に示すブロックB2についても当てはまる。
 図4(a)に示す例では、タイヤ周方向に異方性を有する矢羽状の小ブロックB11の矢羽後端部と、タイヤ周方向に異方性を有する矢羽状の小ブロックB12の矢羽先端部と、の間のタイヤ周方向領域(同図においてタイヤ周方向線分Xがタイヤ幅方向に連なる領域)には、溝のみが存在する。即ち、図4(a)に示す例では、これら小ブロックB11、B12が同一のタイヤ幅方向領域を有しない。
 これに対し、図4(b)に示す例では、タイヤ周方向に異方性を有する矢羽状の小ブロックB13の矢羽後端部と、タイヤ周方向に異方性を有する矢羽状の小ブロックB14の矢羽先端部と、の間のタイヤ周方向領域(同図においてタイヤ周方向線分Yがタイヤ幅方向に連なる領域)には、溝のみならず、小ブロックB13、B14の一部も存在する。即ち、図4(b)に示す例では、これら小ブロックB13、B14が同一のタイヤ周方向領域を有する。
 本実施の形態(付加的形態5)では、図4(b)に示す形態が想定されている。同図に示す例は、図4(a)に示す例と比較して、小ブロックB13、B14間に介在する溝のタイヤ周方向寸法が小さい。このため、小ブロックB13、B14にタイヤ周方向の外力が加わると、小ブロックB13、B14が領域Yにおいて接触して互いに支え合う。これにより、小ブロックB13、B14のタイヤ周方向への倒れ込みがさらに抑制され、氷上での制動性能及び雪上での制動性能をさらに高めることができる。
 同様に、図4(b)に示す例では、図4(a)に示す例と比較して、小ブロックB13、B14間に介在する溝のタイヤ幅方向寸法が小さい。このため、小ブロックB13、B14にタイヤ幅方向の外力が加わると、小ブロックB13、B14が領域Yにおいて互いに支え合う。これにより、小ブロックB13、B14のタイヤ幅方向への倒れ込みがさらに抑制され、氷上での旋回性能及び雪上での旋回性能をさらに高めることができる。
(付加的形態6)
 基本形態及び基本形態に付加的形態1から5の少なくともいずれかを加えた形態においては、図1、3のそれぞれにおいて、小ブロックB1、B2の少なくともいずれかに、少なくとも1本のサイプが形成されていること(付加的形態6)が好ましい。ここで、サイプとは、溝幅が0.4[mm]以上1.0[mm]未満の溝をいう。
 小ブロックB1、B2の少なくともいずれかに、少なくとも1本のサイプを形成することで、小ブロックからなる小ブロック群にさらに多くのエッジを持たせることができる。これにより、サイプ形成によるエッジがタイヤ周方向成分を多く含む場合には、タイヤ幅方向の外力に対する抗力がさらに高まり、氷上での旋回性能及び雪上での旋回性能を大幅に高めることができる。また、サイプ形成によるエッジがタイヤ幅方向成分を多く含む場合には、タイヤ周方向の外力に対する抗力がさらに高まり、氷上での制動性能及び雪上での制動性能を大幅に高めることができる。
 図5は、図2に示すタイヤ周方向に隣り合う2つのブロックB1、B1のうちの1つについて、サイプの配設態様を示す平面図であり、(a)はサイプS1がタイヤ幅方向に延在する例であり、(b)はサイプS2がタイヤ幅方向細溝22に平行に延在する例である。本実施の形態において、サイプの配設態様は、特に限定されない。例えば、図5(a)に示すように、サイプS1をタイヤ幅方向に延在させた場合には、サイプ形成によるエッジのタイヤ幅方向成分が最大となるため、タイヤ周方向の外力に対する抗力が最大となり、氷上での制動性能及び雪上での制動性能を極めて高くすることができる。また、図5(b)に示すように、サイプS2を幅方向細溝22と平行に延在させた場合には、1つの矢羽状の小ブロックB1をサイプS2によって同じ形状に分割することとなり、サイプS2によって分割された小ブロック片B1aと小ブロック片B1bとが、タイヤ周方向からの外力及びダイヤ幅方向からの外力に対して、いずれも、略同じ動きをする。このため、サイプS2近傍における局所的なヒールアンドトゥ摩耗等の偏摩耗を抑制してタイヤの耐久性能をさらに高めることができる。
 タイヤサイズを205/55R16とし、図1、3に示すいずれかのトレッドパターンを有するとともに、表1に示す諸条件(周方向細溝のタイヤ幅方向配設密度(周方向細溝密度)、屈曲部における屈曲角(屈曲角)、周方向細溝同士の間隔に対する幅方向細溝同士の間隔(間隔比)、屈曲部の頂点が屈曲部のタイヤ周方向領域の中央部50[%]の領域(特定領域)に存在するか否か(屈曲部の領域)、周方向細溝の溝幅、幅方向細溝の溝幅、タイヤ周方向に隣接する小ブロック同士が同一のタイヤ周方向領域を有するか否か(タイヤ周方向同一領域の有無)、及び小ブロックに少なくとも1本のサイプが形成されているか否か(サイプの有無))に従い、実施例1から実施例14の空気入りタイヤを作製した。なお、図1に示す例は、タイヤの回転方向が指定された例であり、図3に示す例は、タイヤの回転方向が指定されていない例である。
 これに対し、タイヤサイズを205/55R16とし、幅方向細溝が屈曲部を持たずにタイヤ幅方向に直線状に延在すること以外は、実施例1のトレッパターンと同じトレッドパターンを有する従来例の空気入りタイヤを作製した。
 このよう作製した、実施例1から実施例14及び従来例の各試験タイヤを、16x6.5Jのリムに空気圧230kPaで組み付け、排気量1800CCのセダン型車両に装着し、氷上での制動性能と、雪上での制動性能と、排水性能とについて評価を行った。これらの結果を表1に併記する。
(氷上での制動性能)
 氷盤路面において、時速40kmで走行した状態からの制動距離を測定して従来例を基準(100)とした指数評価を行った。この評価は、数値が大きいほど、氷上での制動性能が優れていることを示す。
(雪上での制動性能)
 圧雪路面において、時速40kmで走行した状態からの制動距離を測定して従来例を基準(100)とした指数評価を行った。この評価は、数値が大きいほど、雪上での制動性能が優れていることを示す。
(排水性能)
 水深5[mm]のウェット路面を停止から加速して行く過程において、タイヤのグリップがなくなりタイヤが空転したときの速度を計測して従来例を基準(100)とした指数評価を行った。この評価は、数値が大きいほど、排水性能が優れていることを示す。
Figure JPOXMLDOC01-appb-T000001
 なお、表1中、項目「屈曲部の領域」において、「特定領域外」とは、図2における頂点Aが細溝18aから屈曲部のタイヤ周方向領域の20[%]の位置にある場合であり、「特定領域内」とは、図2における頂点Aが細溝18aから屈曲部のタイヤ周方向領域の50[%]の位置にある場合である。また、項目「タイヤ周方向同一領域の有無」において、「無し」とは、図4(a)における寸法Xが0.1[mm]の場合であり、「有り」とは、図4(b)における寸法Yが1.0[mm]の場合である。さらに、項目「サイプの有無」において、「有り」とは、図5(b)に示すような形状のサイプS2を各小ブロックに形成した場合である。
 表1によれば、本発明の技術的範囲に属する(周方向細溝のタイヤ幅方向における配設密度と、屈曲部の屈曲角とについて改良を加えた)実施例1から実施例14の空気入りタイヤについては、いずれも、本発明の技術的範囲に属しない、従来例の空気入りタイヤよりも、氷上での制動性能と、雪上での制動性能と、排水性能とがバランス良く改善されていることが判る。
 1、2  空気入りタイヤ
 10、11  トレッド部
 12、13  トレッド表面
 14  周方向主溝
 18、18a、18b  周方向細溝
 22、22a、22b、24、24a、24b  幅方向細溝
 A  屈曲部の頂点
 B1、B11、B12、B13、B14、B2  小ブロック
 B1a、B1b  小ブロック片
 CL  タイヤ赤道面
 E  接地端
 R  屈曲部のタイヤ幅方向の一方側の端部から他方側の端部までのタイヤ幅方向領域
 RC  領域R内における、タイヤ幅方向の中央部50[%]の領域
 S1、S2  サイプ
 X  小ブロックB11の矢羽後端部と小ブロックB12の矢羽先端部との間のタイヤ周方向領域
 Y  小ブロックB13の矢羽後端部と小ブロックB14の矢羽先端部との間のタイヤ周方向領域
 θ  屈曲部における屈曲角

Claims (7)

  1.  周方向主溝を有するとともに、
     複数の周方向細溝と、前記周方向細溝と交差する複数の幅方向細溝と、により小ブロック列が区画形成された
    空気入りタイヤにおいて、
     前記周方向細溝が、0.06[本/mm]以上0.2[本/mm]以下の タイヤ幅方向密度で配設され、
     前記幅方向細溝が少なくとも1つの屈曲部を有し、
     前記屈曲部における屈曲角が40[°]以上160[°]以下である
    空気入りタイヤ。
  2.  前記幅方向細溝同士の間隔は、前記周方向細溝同士の間隔の0.8倍以上1.5倍以下である、請求項1に記載の空気入りタイヤ。
  3.  前記屈曲部の頂点は、前記屈曲部のタイヤ幅方向領域の中央部50[%]の領域に存在する、請求項1又は2に記載の空気入りタイヤ。
  4.  前記周方向細溝の溝幅は、1.0[mm]以上4.0[mm]未満である、請求項1から3のいずれか1項に記載の空気入りタイヤ。
  5.  前記幅方向細溝の溝幅は、1.0[mm]以上4.0[mm]未満である、請求項1から4のいずれか1項に記載の空気入りタイヤ。
  6.  タイヤ周方向に隣接する前記小ブロック同士が、同一のタイヤ周方向領域を有する、請求項1から5のいずれか1項に記載の空気入りタイヤ。
  7.  前記小ブロックの少なくともいずれかに、少なくとも1本のサイプが形成されている、請求項1から6のいずれか1項に記載の空気入りタイヤ。
PCT/JP2014/059652 2013-04-17 2014-04-01 空気入りタイヤ WO2014171328A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14786104.1A EP2987655B1 (en) 2013-04-17 2014-04-01 Pneumatic tire
US14/784,867 US10611192B2 (en) 2013-04-17 2014-04-01 Pneumatic tire
CN201480012581.9A CN105026182B (zh) 2013-04-17 2014-04-01 充气轮胎
RU2015149106A RU2610736C1 (ru) 2013-04-17 2014-04-01 Пневматическая шина

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-086684 2013-04-17
JP2013086684A JP6424415B2 (ja) 2013-04-17 2013-04-17 空気入りタイヤ

Publications (1)

Publication Number Publication Date
WO2014171328A1 true WO2014171328A1 (ja) 2014-10-23

Family

ID=51731280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059652 WO2014171328A1 (ja) 2013-04-17 2014-04-01 空気入りタイヤ

Country Status (6)

Country Link
US (1) US10611192B2 (ja)
EP (1) EP2987655B1 (ja)
JP (1) JP6424415B2 (ja)
CN (1) CN105026182B (ja)
RU (1) RU2610736C1 (ja)
WO (1) WO2014171328A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108688413A (zh) * 2017-03-30 2018-10-23 住友橡胶工业株式会社 轮胎

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108349320B (zh) * 2015-11-12 2020-09-22 株式会社普利司通 轮胎

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003011618A (ja) * 2001-06-29 2003-01-15 Sumitomo Rubber Ind Ltd スタッドレスタイヤ
JP2003226116A (ja) * 2002-02-04 2003-08-12 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
WO2010032606A1 (ja) 2008-09-16 2010-03-25 株式会社ブリヂストン 空気入りタイヤ

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT385953B (de) * 1986-11-14 1988-06-10 Pschaida Edmund Eine laufflaeche aufweisende schichte aus elastischem material, insbesondere fuer fahrzeugreifen, sowie verfahren zur herstellung eines mit einer laufschichte aus elastischem material versehenen fahrzeugreifens
US4926919A (en) * 1988-11-14 1990-05-22 The Goodyear Tire & Rubber Company Vehicle tire with rib type tread pattern having sipes across the ribs
JPH02189205A (ja) * 1989-01-13 1990-07-25 Bridgestone Corp タイヤブロック
JPH0310913A (ja) * 1989-06-08 1991-01-18 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JPH0316810A (ja) * 1989-06-14 1991-01-24 Bridgestone Corp 空気入りタイヤ
US5204036A (en) * 1989-12-29 1993-04-20 Macmillan Kenneth T Method of molding tires
JP3690836B2 (ja) * 1995-05-25 2005-08-31 横浜ゴム株式会社 スタッドレスタイヤ
IT1277253B1 (it) * 1995-10-09 1997-11-05 Pirelli Metodo per la previsione ed il controllo dell'usura del battistrada in un pneumatico e relativo pneumatico
JP4035177B2 (ja) * 1995-12-14 2008-01-16 株式会社ブリヂストン スタッドレス空気入りタイヤ
JP2001246911A (ja) * 1999-12-28 2001-09-11 Bridgestone Corp 空気入りタイヤ
JP4136285B2 (ja) 2000-07-17 2008-08-20 東洋ゴム工業株式会社 空気入りタイヤ
JP4262650B2 (ja) * 2004-08-11 2009-05-13 東洋ゴム工業株式会社 空気入りタイヤ
JP4657795B2 (ja) 2005-05-09 2011-03-23 東洋ゴム工業株式会社 空気入りタイヤ
JP4899650B2 (ja) * 2006-06-07 2012-03-21 横浜ゴム株式会社 空気入りタイヤ
JP5012357B2 (ja) * 2007-09-20 2012-08-29 横浜ゴム株式会社 空気入りタイヤ
JP4107393B1 (ja) * 2007-10-12 2008-06-25 横浜ゴム株式会社 空気入りタイヤ
JP5331433B2 (ja) * 2008-10-03 2013-10-30 株式会社ブリヂストン 空気入りタイヤ
EP2418102B1 (en) * 2009-04-10 2014-10-08 Bridgestone Corporation Pneumatic tire
RU2492063C9 (ru) * 2009-05-25 2013-11-20 Бриджстоун Корпорейшн Пневматическая шина
CN102883895B (zh) * 2010-03-12 2015-03-25 株式会社普利司通 充气轮胎
JP5746522B2 (ja) * 2011-03-03 2015-07-08 株式会社ブリヂストン 空気入りタイヤ
JP5816011B2 (ja) * 2011-07-13 2015-11-17 株式会社ブリヂストン 空気入りタイヤ
JP6356608B2 (ja) * 2012-10-17 2018-07-11 株式会社ブリヂストン 空気入りタイヤ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003011618A (ja) * 2001-06-29 2003-01-15 Sumitomo Rubber Ind Ltd スタッドレスタイヤ
JP2003226116A (ja) * 2002-02-04 2003-08-12 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
WO2010032606A1 (ja) 2008-09-16 2010-03-25 株式会社ブリヂストン 空気入りタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2987655A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108688413A (zh) * 2017-03-30 2018-10-23 住友橡胶工业株式会社 轮胎
CN108688413B (zh) * 2017-03-30 2022-05-27 住友橡胶工业株式会社 轮胎

Also Published As

Publication number Publication date
CN105026182B (zh) 2017-09-15
CN105026182A (zh) 2015-11-04
JP6424415B2 (ja) 2018-11-21
JP2014210459A (ja) 2014-11-13
EP2987655A1 (en) 2016-02-24
EP2987655B1 (en) 2019-11-06
US10611192B2 (en) 2020-04-07
RU2610736C1 (ru) 2017-02-15
EP2987655A4 (en) 2016-12-14
US20160059640A1 (en) 2016-03-03

Similar Documents

Publication Publication Date Title
JP5696817B1 (ja) 空気入りタイヤ
JP6241157B2 (ja) 空気入りタイヤ
US9150058B2 (en) Pneumatic tire
JP6092059B2 (ja) 空気入りタイヤ
US20170190222A1 (en) Pneumatic Tire
JP5975004B2 (ja) 空気入りタイヤ
WO2014126048A1 (ja) 空気入りタイヤ
JP5368180B2 (ja) 空気入りタイヤ
US20170066291A1 (en) Tire
JP2016137763A (ja) 空気入りタイヤ
WO2015053024A1 (ja) 空気入りタイヤ
WO2014171328A1 (ja) 空気入りタイヤ
JP6241149B2 (ja) 空気入りタイヤ
JP5506463B2 (ja) 空気入りタイヤ
JP6241158B2 (ja) 空気入りタイヤ
JP6314370B2 (ja) 空気入りタイヤ
JP6241150B2 (ja) 空気入りタイヤ
JP6241151B2 (ja) 空気入りタイヤ
JP6206010B2 (ja) 空気入りタイヤ
JP2016055814A (ja) 空気入りタイヤ
JP2015182652A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480012581.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14786104

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14784867

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015149106

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014786104

Country of ref document: EP