WO2014171260A1 - 燃料電池の製造方法及び製造装置 - Google Patents

燃料電池の製造方法及び製造装置 Download PDF

Info

Publication number
WO2014171260A1
WO2014171260A1 PCT/JP2014/057900 JP2014057900W WO2014171260A1 WO 2014171260 A1 WO2014171260 A1 WO 2014171260A1 JP 2014057900 W JP2014057900 W JP 2014057900W WO 2014171260 A1 WO2014171260 A1 WO 2014171260A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
pressing
cell module
load
fuel
Prior art date
Application number
PCT/JP2014/057900
Other languages
English (en)
French (fr)
Inventor
敬士 市原
秋男 保科
渡辺 弘
和弘 影山
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP14785473.1A priority Critical patent/EP2988355B1/en
Priority to CN201480021272.8A priority patent/CN105210224B/zh
Priority to CA2909568A priority patent/CA2909568C/en
Priority to US14/782,806 priority patent/US9627706B2/en
Priority to JP2015512371A priority patent/JP6056964B2/ja
Publication of WO2014171260A1 publication Critical patent/WO2014171260A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a method and an apparatus for manufacturing a fuel cell.
  • a fuel cell is formed by stacking a plurality of fuel cell modules in which a predetermined number of fuel cells are stacked to form a stack, covering the side of the stack with a casing, placing plates on both ends in the stacking direction, and fastening with bolts or the like It is obtained by doing.
  • the fuel cells constituting the fuel cell module are sealed between the fuel cells and between the fuel cell modules so that the fuel, the oxidant, and the cooling water flowing through the laminated body do not leak.
  • the central portion is a portion where fuel gas or oxidant flows and power generation occurs, and a seal member cannot be provided at that portion, so the seal member is placed on the outer periphery of the fuel cell module.
  • the thickness in the stacking direction of the modules is not uniform between the outer peripheral portion where the seal member is provided and the central portion where the seal member is not provided. There is a case. If there is a difference between the thickness of the central portion and the thickness of the outer peripheral portion of the module, the sealing member may not be sufficiently compressed, so that good sealing performance may not be obtained. For this reason, it is desirable that the thickness of the module be uniform between the central portion and the outer peripheral portion.
  • an object of the present invention is to provide a fuel cell manufacturing method and a manufacturing apparatus that can secure the compression amount of the seal member disposed in the fuel cell module. .
  • the present invention for achieving the above object is a method of manufacturing a fuel cell having a fuel cell module in which a plurality of fuel cells each having a membrane electrode assembly sandwiched between a pair of separators are stacked.
  • a seal member is disposed on the outer peripheral portion of the opposing end surface between at least one fuel cell and another adjacent fuel cell, and the fuel cells are stacked to form a fuel.
  • the thickness in the stacking direction of the fuel cell modules is controlled by controlling the load pressing the fuel cell module.
  • the fuel cell manufacturing apparatus includes a seal member disposition portion that disposes a seal member on an outer peripheral portion of an end surface facing between at least one fuel cell and another adjacent fuel cell, and a seal.
  • a stacking unit that stacks fuel cells arranged with members to form a fuel cell module, a pressing unit that presses the fuel cell module in the stacking direction of the fuel cells, and a control unit that controls at least the operation of the pressing unit; Have.
  • the control unit controls the thickness of the fuel cell module in the stacking direction by controlling a load that presses the fuel cell module with the pressing unit.
  • FIG. 1A is a time chart showing a method for manufacturing a fuel cell according to Embodiment 1 of the present invention
  • FIG. 1B is a flowchart showing a method for manufacturing a fuel cell
  • FIG. It is a flowchart shown in detail about a module manufacturing process.
  • It is explanatory drawing which shows the sealing member arrangement
  • FIG. It is explanatory drawing which shows the sealing member arrangement
  • FIG. It is explanatory drawing which shows the press process of the laminated body. It is explanatory drawing which shows the time of forming the same laminated body (stacking).
  • FIG. 9A is a cross-sectional view taken along line 9-9 of FIG. 8 showing the cell structure of the fuel cell
  • FIG. 9B is a cross-sectional view showing a modification of FIG. 9A.
  • FIGS. 5 and 6 are the laminates. It is explanatory drawing which shows the time of forming (stacking).
  • the fuel cell manufacturing method according to the present invention can be summarized as a module including a sealing member arranging step (see FIGS. 1A, 2 and 3) and a pressing step (see FIGS. 1A and 4). Manufacturing (see ST10 in the figure, FIG. 1 (B)), and an assembly process (see ST30 in FIG. 1 (B), FIG. 5 and FIG. 6) in which modules are stacked and fastened to form a stack. Have. Details will be described later.
  • FIG. 7 is an explanatory view showing the fuel cell according to the embodiment
  • FIG. 8 is an exploded perspective view showing the configuration of the fuel cell
  • FIG. 9A is a line 9-9 in FIG. 8 showing the cell structure of the fuel cell
  • 9B is a cross-sectional view showing a modification of FIG. 9A
  • FIG. 10 is a plan view showing the fuel cell module.
  • a fuel cell 100 according to Embodiment 1 includes a membrane electrode assembly (Mebrane Electrode Assembly, hereinafter referred to as MEA) 31 in which an anode 31b and a cathode 31c are joined to both sides of an electrolyte membrane 31a.
  • MEA Membrane Electrode Assembly
  • the fuel cell 30 is sandwiched between a pair of separators 32a and 32b.
  • the fuel cell 30 is configured as a fuel cell module 40 by stacking, for example, about 8 cells. Two or more fuel cell modules 40 are stacked to form a stacked body 50.
  • the seal member 70 is disposed between the MEA 31 and the separator 32a, between the MEA 31 and the separator 32b, and between the adjacent separator 32a and the separator 32b, and a pressing load is applied.
  • the present invention relates to a process for forming a seal portion.
  • a seal member 80 is disposed between the fuel cell modules 40 in a state where the seal member 80 is adhered to the plate member 81.
  • the thickness in the stacking direction of the laminated body 50 is controlled by controlling the load that presses the laminated body 50. is doing. Details will be described below.
  • the fuel cell 100 is formed by stacking a predetermined number of unit battery cells (fuel cell) 30 that generate an electromotive force by a reaction between an anode gas such as hydrogen and a cathode gas such as oxygen.
  • the fuel cell module 40 is formed, and a predetermined number of the fuel cell modules 40 are stacked to form a stacked body 50.
  • the laminated body 50 is not an essential configuration and can be configured by one fuel cell module.
  • a current collector plate 34, an insulating plate 35, and an end plate 36 are disposed at both ends of the laminate 50.
  • the fuel battery cell 30 includes an MEA 31, separators 32 a and 32 b disposed on both surfaces of the MEA 31, and a frame 33.
  • the separator disposed on the anode side of the MEA 31 is referred to as an anode separator 32a
  • the separator disposed on the cathode side is referred to as a cathode separator 32b.
  • the MEA 31 includes, for example, a solid polymer electrolyte membrane 31a that is a polymer electrolyte membrane that allows hydrogen ions to pass therethrough, an anode 31b, and a cathode 31c, as shown in FIG. 9A.
  • the MEA 31 has a laminated structure in which a solid polymer electrolyte membrane 31a is sandwiched from both sides by an anode 31b and a cathode 31c.
  • the anode 31b has an electrode catalyst layer, a water repellent layer, and a gas diffusion layer, and is formed in a thin plate shape.
  • the cathode 31c has an electrode catalyst layer, a water repellent layer, and a gas diffusion layer, and is configured in a thin plate shape like the anode 31b.
  • the electrode catalyst layers of the anode 31b and the cathode 31c include an electrode catalyst in which a catalyst component is supported on a conductive carrier and a polymer electrolyte.
  • the gas diffusion layers of the anode 31b and the cathode 31c are made of, for example, carbon paper or carbon felt.
  • the separators 32a and 32b are formed by forming a thin conductive metal plate into a predetermined shape using a mold. As shown in FIG. 9A, the separators 32a and 32b have a wave shape (so-called corrugated shape) 32c in which convex portions and concave portions are alternately formed in an active region contributing to power generation (a central portion in contact with the MEA).
  • a wave shape so-called corrugated shape
  • an anode gas flow path 37a for circulating the anode gas is formed in a region on the contact side with the anode 21b.
  • a cathode gas flow path 37b for flowing a cathode gas is formed in a region on the contact side with the cathode among the irregular shapes of the cathode separator 32b.
  • the anode separator 32a has a cooling flow path 37c through which a cooling medium such as cooling water for cooling the fuel cell module 40 flows on the surface opposite to the side in contact with the anode 31b.
  • the cathode separator 32b forms a cooling channel 37c through which a cooling medium such as cooling water for cooling the fuel cell module 40 flows on the surface opposite to the side in contact with the cathode 31c.
  • the frame 33 is a rectangular plate member made of an electrically insulating resin or the like.
  • the frame 33 holds the outer periphery of the MEA 31.
  • the current collector plate 34 is joined to each end of the laminate 50.
  • the current collector plate 34 is formed of a conductive member that does not allow gas to pass, such as dense carbon.
  • the current collector plate 34 is formed with a protrusion 34a so that the power collected by the current collector plate 34 can be taken out to the outside.
  • the insulating plate 35 is formed in a rectangular plate shape, and is disposed at both ends of the laminated body 50 to insulate the current collector plate 34.
  • the end plate 36 is made of metal, for example, and carries a pair of insulating plates 35 in a state of being biased from both sides.
  • the separators 32a and 32b, the frame 33, the current collector plate 34, the insulating plate 35, the end plate 36, and the plate member 81 to be described later are formed in a rectangular plate shape, and at one end in the longitudinal direction, a cathode gas supply port 38a,
  • the medium supply port 38b and the anode gas supply port 38c are formed by through holes, and the anode gas discharge port 38d, the medium discharge port 38e, and the cathode gas discharge port 38f are formed by through holes at the other end in the longitudinal direction.
  • the tension plates 39a and 39b are flat members that cover the side surface corresponding to the long side of the fuel cell 30 among the side surfaces in the stacking direction of the fuel cell 30. Flange portions are provided at both ends of the tension plates 39a, 39b in the cell stacking direction, and the fuel cell 30 is pressurized by being fastened to the end plate 36 with bolts 43 or the like from both ends.
  • the tension guides 39c and 39d are members having a U-shaped cross section attached to a surface orthogonal to the tension plates 39a and 39b.
  • the tension guides 39c and 39d are attached to the side surface corresponding to the short side of the fuel cell 30 in FIGS. 5 and 6, thereby preventing the displacement of the fuel cell 30 in the horizontal direction.
  • the seal member 70 is disposed between the MEA 31 and the anode separator 32a, between the MEA 31 and the cathode separator 32b, and between the adjacent anode separator 32a and the cathode separator 32b.
  • the material of the sealing member 70 is not specifically limited, For example, a thermosetting resin can be mentioned.
  • the plate member 81 is disposed between the adjacent fuel cell modules 40. Seal members 80 are provided on the outer peripheral portions of both surfaces of the plate member 81. Although the material of the sealing member 80 is not specifically limited, Elastic members, such as rubber
  • Sealing member 70 seals between MEA 31 and anode separator 32a through which fuel flows in fuel cell module 40, between MEA 31 and cathode separator 32b through which an oxidizing agent flows, and between separator 32a and separator 32b through which a cooling medium flows. Is done. Further, the sealing member 80 is disposed between the fuel cell modules 40, whereby the cooling medium flowing between the fuel cell modules 40 is sealed. In this specification, the seal member 70 is disposed between the MEA 31 and the anode separator 32a constituting the fuel cell module 40 and between the MEA 31 and the cathode separator 32b, and between the adjacent fuel cell modules 40.
  • the arrangement of the seal member 80 corresponds to the arrangement of the seal member on the outer peripheral portion of the end surface facing between adjacent fuel cells. Further, the arrangement of the seal member is not limited to FIG. 9A, and as shown in FIG. 9B, the seal member 70 is arranged between the frame bodies 33 of the adjacent MEAs 31, thereby providing fuel, oxidant, And the cooling medium can be sealed. This is because the fuel, the oxidant, and the cooling medium that flow inside the fuel cell module can be sealed even if the seal member 70 is disposed as shown in FIG. 9B.
  • FIG. 11 is a schematic perspective view showing an assembly apparatus for a laminate according to Embodiment 1
  • FIG. 12 is a perspective view showing a state in which the fuel cell module is held by a jig.
  • FIG. 13 is an explanatory view showing a case where the laminated body is pressed by a pressing portion and a case where the stacked body is not pressed.
  • 14 and 15 are explanatory diagrams for explaining the formation of the seal portion by pressing the fuel cell module.
  • the assembly apparatus 200 of the laminated body 50 includes a fuel cell module 40 and a laminated body obtained by laminating an application unit 20 (corresponding to a sealing member arrangement unit) that applies the sealing member 70, an MEA 31, separators 32a and 32b, and a plate member 81. 50, a pressing unit 10 that presses the fuel cell module 40 from the stacking direction of the fuel cells 30, and a control unit 60 that controls at least the operation of the pressing unit 10. (See FIGS. 2 to 4 and FIG. 11).
  • the pressing unit 10 approaches and separates in the stacking direction of the stacked body 50, and receives the stacked body 50 that places the stacked body 50 and presses the stacked body 50 and presses the stacked body 50. And a jig 12.
  • the pressing unit 10 includes an elastic member 13 (corresponding to a buffer member) connected to the pressing jig 11, a detection unit 14 that detects a pressing load applied by the pressing jig 11, the pressing jig 11 and the receiving jig. It has the holding
  • the pressing jig 11 moves close to and away from the receiving jig 12 in conjunction with the movement of the pressing member 16 that generates a force for moving the pressing jig 11 toward the jig 12.
  • the pressing jig 11 has an area sufficiently larger than the area of the laminated body 50 when the laminated body 50 is viewed in plan, and in the first embodiment, the pressing surface is formed flat.
  • the receiving jig 12 has the MEA 31 and the separators 32a and 32b placed thereon, the placing surface is formed flat, and has the same area as the pressing surface of the pushing jig 11. Further, insertion holes through which connecting bolts 17 for positioning the pressing jig 11 and the receiving jig 12 are inserted are formed at the four corners of the pressing jig 11 and the receiving jig 12.
  • the holding portion 15 is fastened to a connecting bolt 17 that connects the pressing jig 11 and the receiving jig 12 by inserting them through insertion holes provided in the pressing jig 11 and the receiving jig 12, and a screw portion of the connecting bolt 17. And a nut 18 to be operated.
  • a connecting bolt 17 that connects the pressing jig 11 and the receiving jig 12 by inserting them through insertion holes provided in the pressing jig 11 and the receiving jig 12, and a screw portion of the connecting bolt 17.
  • a nut 18 to be operated.
  • the elastic member 13 prevents the laminate 50 from being cracked or the like due to a sudden excessive input to the laminate 50 when the laminate 50 is pressed with a predetermined load.
  • the seal member 70 contracts and the load applied to the laminate 50 varies.
  • the seal member 70 is provided. It is possible to relieve the load change due to the temperature change and prevent the laminate 50 from being damaged due to the stress concentration.
  • FIG. 17 is an explanatory view showing a modification of the jig structure in the laminate assembly apparatus according to the first embodiment.
  • the elastic member 13 is configured by a coil spring as shown in FIG. 4 and the like, but may be configured by a leaf spring 13a as shown in FIG.
  • a configuration such as a coil spring or a leaf spring, it is possible to form a seal portion by the seal members 70 and 80 without damaging the laminated body 50 while having a simple configuration.
  • the detection unit 14 is a member that detects a pressing load by which the pressing jig 11 presses the stacked body 50, and in the present embodiment, a load cell is used, but the present invention is not limited to this.
  • the separators 32a and 32b constituting the MEA 31 in the fuel battery cell 30 have a so-called corrugated so-called wave shape 32c as described above.
  • the central portion 41 shown in FIG. 10 corresponds to the power generation portion. Therefore, the seal member 70 cannot be applied, and the seal member 70 is applied only to the outer peripheral portion 42. Therefore, if a load is applied when the seal member 70 is cured, stress tends to concentrate on the boundary between the outer peripheral portion 42 where the seal member 70 is applied and the central portion 41 where the seal member 70 is not applied.
  • the load is absorbed in the wave shape 32c similarly to the elastic member 13, and stress is concentrated on the boundary between the central portion 41 and the outer peripheral portion 42. It is possible to prevent the laminated body 50 from being damaged, and to enable the thickness management of the laminated body 50 by the pressing load.
  • the coating unit 20 includes a coating machine 21, an arm 22 that moves the coating machine 21 in a certain direction, and a rail 23 that moves the arm 22 in a direction that intersects the direction in which the coating machine 21 moves.
  • the application machine 21 may be, for example, an injection type having a gun shape, but is not limited thereto.
  • the arm 22 attaches the applicator 21 so as to be movable, and moves the applicator 21 to position the applicator 21 at a predetermined position of the MEA 31 and the separators 32a and 32b constituting the laminate 50.
  • the movement of the applicator 21 can be realized by, for example, providing the applicator 21 with a rotatable roller and providing the arm 22 with an arm rail serving as a roller path of the applicator 21, but is not limited thereto.
  • the rail 23 is installed, for example, on the side wall of the assembling apparatus 200 and is arranged in a direction different from the moving direction of the coating machine 21 as a path that enables the arm 22 to move.
  • the applicator 21 and the arm 22 are moved, the applicator 21 is arranged at a predetermined position in the MEA 31 and the separators 32a and 32b by combining the moving direction of the applicator 21 and the moving direction of the arm 22, and a seal member. 70 can be applied.
  • the movement of the arm 22 can also be realized by providing a rotatable arm roller on the arm 22 and moving the rail 23 by the arm roller, but is not limited thereto.
  • the stacking unit 90 is configured by a hand robot on which the MEA 31, separators 32 a and 32 b, and the plate member 81 that configure the stacked body 50 are placed.
  • the stacking operation can be performed manually.
  • the control unit 60 includes a CPU, a RAM, a ROM, an input / output interface, and the like, and controls the operations of the pressing unit 10, the coating unit 20, and the stacking unit 50, but controls only the operation of the pressing unit 10. Can be configured.
  • the assembling apparatus 300 that forms the laminated body includes a support base 110, a reference base 120 (corresponding to a clamping member), columns 131 and 132, a column interval adjusting jig 150, reference side columns 161 and 162, and a control. Part 180, load application member 310 (corresponding to a clamping member), and pressing member 320 (corresponding to a clamping member).
  • the reference table 120 is installed on the support table 110, and fuel cell components such as the fuel cell module 40 and the plate member 81 are stacked on the reference table 120. The components of the fuel cell to be stacked are positioned and aligned by inserting columns 131 and 132 at the position of the medium supply port or the medium discharge port.
  • the reference side columns 161 and 162 have the column interval adjusting jig 150 placed thereon.
  • the column interval adjusting jig 150 adjusts the interval between the columns 131 and 132.
  • the load applying member 310 and the pressing member 320 are controlled by the control unit 180 and sandwich the fuel cell components together with the reference table 120 in a state where the stacked body 50, the current collector plate 34, the insulating plate 35, and the end plate 36 are stacked. Applying a pressing load. In this state, the tension plates 39a and 39b and the tension guides 39c and 39d are attached and bolted to complete the fuel cell.
  • the seal member 70 is applied to the outer peripheral portion 42 of the separator 32a constituting the laminate 50, the MEA 31 is laminated, the separator 32b is laminated, and the seal member 70 is applied.
  • a fuel cell 30 is formed, a plurality of fuel cells 30 are stacked to form a fuel cell module 40, and a seal member 80 is disposed between the fuel cell modules 40 to form a stack 50.
  • a pressing step in which the stacked body 50 is pressed by the pressing portion 10 from the stacking direction of the cells 30.
  • the case where the fuel cell module 40 is configured by two fuel cell units 30 and the stacked body 50 is configured by two fuel cell modules 40 is described as an example, but is not limited thereto. .
  • the assembly apparatus 200 receives and cures the MEA 31 or the separators 32a and 32b constituting the fuel cell module 30 as shown in FIG. It mounts on the tool 12 and arrange
  • an anode separator 32a is placed as an example.
  • the fuel battery cell 30 is formed. If another fuel cell 30 is formed in the same manner, the components constituting the fuel cell module 40 are stacked.
  • step ST 13 in FIG. 1C the pressing jig 11, the elastic member 13, the detection unit 14, the holding unit 15, the pressing member 16, and the like are arranged to apply a pressing load. If the applied load does not fall within ⁇ 10% of the target value F (step ST14: NO in FIG. 1C), the applied load is adjusted. When the applied load is within F ⁇ 10% (step ST14 in FIG. 1C: YES), the nut 18 is fastened to the connecting bolt 17 to fix the thickness of the fuel cell module 40, and the seal member 70 is cured. (Step ST15 in FIG. 1C).
  • the value of ⁇ 10% is an example, and can be set to another value.
  • the fuel cell module 40 is completed through the above steps. When the fuel cell module 40 is completed, it is removed from the assembling apparatus 200.
  • step ST20 in FIG. 1B a leak test and an insulation resistance test are performed to check whether the module is completed without any problems. If there is a problem in the inspection (step ST20 in FIG. 1B: NO), the module is manufactured again (step ST10 in FIG. 1B). If there is no problem (step ST20 in FIG. 1B: YES), the process proceeds to manufacture of the stacked body (stack) 50.
  • the end plate 36, the insulating plate 35, the current collector plate 34, and the fuel cell module 40 are set on the columns 131 and 132 of the assembling apparatus 300, and the seal member 80 is disposed on both sides of the fuel cell module 40.
  • the stuck plate member 81 is laminated. In this embodiment, as an example, two fuel cells 30 are stacked to prepare two fuel cell modules 40.
  • step ST30 in FIG. 1B When two fuel cell modules 40 are stacked, a current collecting plate 34, an insulating plate 35, and an end plate 36 are set thereon. Then, tension plates 39a and 39b and tension guides 39c and 39d, which are housings, are attached and fastened with bolts 43 (step ST30 in FIG. 1B). . Then, the laminate 50 is subjected to leak inspection and power generation performance confirmation. If there is a problem (step ST40 in FIG. 1B: NO), load application of the laminate is performed again (step ST30 in FIG. 1B). ). If there is no problem in the performance of the laminated body 50 (step ST40 in FIG. 1B: YES), the product is shipped.
  • FIG. 16 is an explanatory diagram showing the relationship between the load applied to the laminate and the thickness of the laminate in the stacking direction. As can be seen from FIG. 16, as the load is applied to the stacked body 50, the thickness of the stacked body 50 decreases.
  • the sealing member 70 since power generation is performed in the central portion 41, the sealing member 70 cannot be applied to the central portion 41, and the sealing member 70 is applied only to the outer peripheral portion 42.
  • the thickness of the central portion 41 of the fuel cell module 40 becomes as shown in FIGS. 13 to 15.
  • a phenomenon occurs in which a difference in thickness occurs, such as H1 and the thickness of the outer peripheral portion 42 being H2.
  • a load applied when the laminate 50 is pressed to cure the seal member 70 (hereinafter referred to as a curing load of the seal member 70) is, for example, the assembly of the end plate 36 to the laminate 50. Therefore, it is necessary to make it less than the pinching load when pinching from both sides.
  • the outer peripheral portion 42 is prevented from being excessively crushed and the thickness difference between the central portion 41 and the outer peripheral portion 42 is prevented during stacking. As a result, the seal portion can be reliably formed.
  • the curing load of the seal member 70 can be set to be equal to or less than the minimum load when the fuel cell 100 is used (non-power generation) in addition to the pinching load by the end plate 36.
  • the minimum load in the usage environment of the fuel cell 100 is smaller than the load at the time of the clamping. Since the seal member 70 needs to form a seal part in the use environment state of the fuel cell 100, the central portion 41 in the module 40 can be reduced by setting the curing load of the seal member to be equal to or less than the minimum load in the use environment. It is possible to prevent the difference in thickness from the outer peripheral portion 42 from occurring, and to reliably form the seal portion.
  • the curing load of the seal member 70 may be equal to or lower than the minimum load at which the separators 32a and 32b come into contact with the MEA 31 in the power generation unit 41.
  • the minimum load at which the separators 32a and 32b come into contact with the MEA 31 is equal to or less than the above-described pinching load and is equal to or less than the minimum load in the operating environment of the fuel cell, but the fuel cell can generate power. Therefore, by making the curing load of the seal member 70 equal to or less than the minimum load at which the separators 32a and 32b come into contact with the MEA 31, it is possible to ensure the power generation of the fuel cell and to reliably form the seal portion.
  • sealing members 70 and 80 are disposed on the laminate 50 in order to seal fuel, oxidant, etc.
  • the sealing members 70 and 80 are disposed on the outer peripheral portion 42 because the sealing members 70 and 80 cannot be disposed on the central portion 41 which is a power generation unit. Is done. If the seal members 70 and 80 (especially the seal member 80) are not sufficiently crushed, a seal portion is not formed. If there is a difference in thickness between the central portion 41 and the outer peripheral portion 42, the seal member is sufficiently pressed. Not crushed. Therefore, when assembling the fuel cell 100 by stacking the fuel cells 30, it is necessary to eliminate the difference in thickness between the central portion 41 and the outer peripheral portion 42 so that a seal portion is formed. However, for example, even if the distance between the MEA 31 and the separators 32a and 32 is adjusted using a spacer or the like, the difference in thickness between the central portion 41 and the outer peripheral portion 42 may not be eliminated due to variations.
  • Embodiment 1 when the laminated body 50 is pressed by the pressing portion 10, the thickness of the laminated body 50 is controlled by controlling the pressing load that presses the laminated body 50, not the thickness of the laminated body 50. Is configured to control. Therefore, in the first embodiment, variations such as the thickness of the stacked body 50 when assembling the fuel cell 100 can be taken into consideration, and the stacking is performed so that there is no difference in thickness between the central portion 41 and the outer peripheral portion 42. The body 50 can be pressed, and the amount of compression of the seal member can be secured to improve the sealing performance.
  • the pressing load when the laminated body 50 is pressed and the seal member 70 is cured in the pressing step is equal to or less than the pinching load that sandwiches the laminated body 50 with the load adding member 310 and the pressing member 320 when the fuel cell 100 is assembled. It is said. Therefore, when the fuel cell 100 is formed, if the end plate 36 sandwiches the both ends of the stacked body 50, the central portion 41 can be crushed to the thickness of the outer peripheral portion 42, and the thickness of the stacked body 50 can be made uniform. A seal part can be formed reliably.
  • the pressing load when the laminated body 50 is pressed and the seal member 70 is cured in the pressing step can be set to be equal to or lower than the minimum load when the fuel cell 100 is used (when power is not generated). Since the minimum load in the use environment is equal to or less than the squeezing load by the end plate 36, the center part 41 can be crushed to the thickness of the outer peripheral part 42 in the fuel cell assembly and fuel cell use environment in the same manner as described above. A seal part can be formed reliably.
  • the pressing load when the laminated body 50 is pressed and the seal member 70 is cured in the pressing step can be set to be equal to or lower than the minimum load at which the separators 32a and 32b contact the MEA 31.
  • the minimum load at which the separators 32a and 32b come into contact with the MEA 31 is equal to or less than the load at the time of clamping by the end plate 36 and the environment in which the fuel cell is used. Therefore, by setting the pressing load below the minimum load at which the MEA 31 and the separators 32a and 32b are in contact with each other, the power generation of the fuel cell 100 is ensured, and the central portion 41 is also provided when assembling the fuel cell and using the fuel cell 100.
  • the seal part can be reliably formed by crushing to the thickness of the outer peripheral part 42.
  • the pressing load is monitored by the detection unit 14 made of a load cell or the like, and the state in which the stacked body 50 is pressed by the holding unit 15 is held. Therefore, it is possible to reliably prevent an excessive pressing load from being applied to the laminated body 50, to prevent a difference in thickness between the central portion 41 and the outer peripheral portion 42, and to reliably form a seal portion.
  • the pressing member 11 uses the elastic member 13 made of a plate spring 13a or the like to hold the laminated body 50 together with the holding portion 15, the load applied to the laminated body 50 due to a temperature change when the seal member 70 is cured.
  • the load fluctuation can be reduced even when the fluctuation occurs. Therefore, it is possible to prevent the stress on the laminated body 50 from being caused by the stress concentration.
  • the so-called corrugated so-called wave shape 32c formed in the separators 32a and 32b can function as an elastic member like a leaf spring. Therefore, even when a pressing load is applied to cure the seal member 70, stress is prevented from concentrating on the boundary between the central portion 41 and the outer peripheral portion 42 to prevent the laminated body 50 from being damaged.
  • the thickness management of the body 50 can be enabled.
  • FIG. 18 is a cross-sectional view showing a jig structure in the laminate assembly apparatus according to the second embodiment.
  • the laminated body 50 is pressed by a single jig called the pressing jig 11, but it can also be configured as follows.
  • the pressing jig 11 a that presses the central portion 41 corresponding to the power generation portion in the stacked body 50 and the outer portion 42 that is outward from the central portion 41 are provided.
  • a pressing jig is constituted by the annular pressing jig 11b to be pressed.
  • the load applied by the pressing jig 11a and the load applied by the pressing jig 11b can be made different from each other by adjusting the spring constants of the elastic member 13b and the elastic member 13c connected to the pressing member 16, for example.
  • the other configuration of the assembling apparatus 200a is the same as that of the first embodiment except that the detection units 14a and 14b that detect the pressing loads of the pressing jigs 11a and 11b are provided, and thus the description thereof is omitted.
  • the load applied to the central portion 41 and the outer portion 42 in the laminate 50 is configured to be added separately. Therefore, even if the thickness dimension variation in the surface direction of the laminate 50 is larger, the difference in thickness between the central portion 41 and the outer peripheral portion 42 can be achieved by pressing the central portion 41 and the outer peripheral portion 42 separately. Can be more easily eliminated and uniformized, and the seal portion can be reliably formed.
  • FIG. 19 is an explanatory view showing a jig structure in the assembly apparatus for a laminate according to the third embodiment.
  • the laminate 50 is pressed by using the pressing jig 11 having a flat pressing surface for pressing the laminated body 50 and the seal member 70 is cured.
  • the pressing jig has the following configuration. can do.
  • the pressing jig 11c constituting the fuel cell module assembling apparatus 200b in the third embodiment is not flat on the pressing surface that presses the laminated body 50, and the power generation portion pressing portion 11d that presses the central portion 41 that hits the power generation portion; And an outward pressing portion 11e that presses outward of the power generation portion pressing portion 11d. Since an automobile or the like on which the fuel cell 100 is mounted may guarantee use in a cold region, it is necessary to consider that the laminated body 50 forms a seal portion with the seal member 70 even in cold weather.
  • the assembly apparatus 200b for the stacked body 50 according to the third embodiment is configured such that the power generation unit pressing portion 11d has a step 11f in the stacking direction of the outer portion pressing portion 11e on the pressing jig 31c.
  • the height of the step 11f in FIG. 17 can be the amount of heat shrinkage within the guaranteed temperature of the seal member 70, but is not limited to this.
  • the step 11f is provided in the pushing jig 11c so that the seal portion can be formed even when the seal member 70 is thermally contracted.
  • the present invention is not limited to this.
  • angular part of the electric power generation part press part 11d which presses the center part 41 can be formed in the curved surface shape 11h.
  • the contact surface pressure between the stacked body 50 and the curved surface shape 11h does not become excessive even during pressing, and the stacked body 50 is damaged.
  • the seal part can be formed without any problem.
  • a fuel cell module is formed by stacking a plurality of fuel cells, and a stack is configured by stacking a plurality of fuel cell modules.
  • the present invention is not limited to this, and the present invention is not limited to this.
  • the present invention can also be applied to the case where the seal member 70 is disposed in a single fuel cell module in which a plurality of layers are stacked to form a seal portion.
  • the gas diffusion layer constituting the MEA 31 and the corrugated shape 32c of the separators 32a and 32b exist in the central portion 41, but the outer peripheral portion 42. There is no such configuration in this part. Therefore, when the fuel cell module 40 is pressed to cure the seal member or the like, among the outer peripheral portion 42, the short side direction of the outer peripheral portion 42 that is relatively far from the central portion 41 and the longitudinal direction that is relatively close to the central portion 41, The crushing allowance may vary when a load is applied, which may affect the sealing performance. On the other hand, a part of the jig 11 in FIG.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】燃料電池モジュールに配置されたシール部材の圧縮量を確保できる燃料電池の製造方法及び製造装置を提供する 【解決手段】本発明は、アノード31bとカソード31cとを電解質膜31aの両側に接合したMEA31が一対のセパレータ32a、32bによって挟持された燃料電池セル30aを複数積層した積層体30を有する燃料電池100の製造方法であって、少なくとも隣接する燃料電池セル30の間にシール部材70を塗布した燃料電池セルを積層して燃料電池モジュールを形成するシール部材配置工程と、燃料電池セルの積層方向において燃料電池モジュールを押圧し、シール部材によるシール部位を形成する押圧工程と、有し、押圧工程では、燃料電池モジュールを押圧する荷重を制御することによって燃料電池モジュールの積層方向における厚さを制御する。

Description

燃料電池の製造方法及び製造装置
 本発明は燃料電池の製造方法及び製造装置に関する。
 燃料電池は、燃料電池セルを所定枚数積層した燃料電池モジュールをさらに複数積層して積層体とし、当該積層体の側面を筐体で覆い、積層方向の両端にプレートを配置してボルト等で締結することによって得られる。燃料電池モジュールを構成する燃料電池セルと燃料電池セルの間及び燃料電池モジュール同士の間は、積層体の内部を流れる燃料、酸化剤、及び冷却水が洩れないようにシールされている。燃料電池モジュールを平面視した際の中央部は、燃料ガスや酸化剤が流れて発電が起こる部位であり、当該部位にシール部材を設けることはできないため、シール部材は燃料電池モジュールの外周部に設けられる。
 このように、シール部材は燃料電池モジュールの外周部にのみ設けられるため、シール部材が設けられた外周部とシール部材が設けられていない中央部とではモジュールの積層方向の厚さが均一とならない場合がある。モジュールにおける中央部の厚さと外周部の厚さに差が生じていると、シール部材が十分圧縮されないことによって良好なシール性が得られないおそれがある。そのため、モジュールの厚さは中央部と外周部とで均一になっていることが望まれる。モジュールの厚さを均一に保つ技術としては、例えばセパレータによって挟持された膜電極接合体の外周であって、膜電極接合体とセパレータとの間に間隔保持構造(いわゆるスペーサー)を配置する、といったものがある(特許文献1参照)。
特開2010-272474号公報
 特許文献1のように燃料電池モジュールの厚さをスペーサーによって規制しようとすると、スペーサーが寸法バラつきによって想定よりも薄く形成された場合、モジュールの外周部はスペーサーに合わせて想定よりも過度に押し潰されてしまう。モジュールの外周部が過度に押し潰されてシール部材によるシール部位が形成されると、燃料電池モジュールを燃料電池に必要なだけ積層し、積層方向における両端にプレートを配置して挟圧しても、中央部は外周部の厚さまで潰れず、燃料電池モジュールの厚さを均一にできない場合がある。そのような場合には、中央部の膨らみによってシール部材が十分に圧縮されず、良好なシール性が得られない、といった問題がある。
 そこで本発明は、上述した課題を解決するためになされたものであり、燃料電池モジュールに配置されたシール部材の圧縮量を確保できる燃料電池の製造方法及び製造装置を提供することを目的とする。
 上記目的を達成する本発明は、膜電極接合体が一対のセパレータによって挟持された燃料電池セルを複数積層した燃料電池モジュールを有する燃料電池の製造方法である。本発明に係る燃料電池の製造方法は、少なくとも一の燃料電池セルと隣接する他の燃料電池セルとの間において対向する端面の外周部にシール部材を配置し、燃料電池セルを積層して燃料電池モジュールを形成するシール部材配置工程と、燃料電池セルの積層方向において燃料電池モジュールを押圧し、シール部材によるシール部位を形成する押圧工程と、を有する。本発明に係る燃料電池の製造方法では、燃料電池モジュールを押圧する荷重を制御することによって燃料電池モジュールの積層方向における厚さを制御することを特徴とする。
 また、本発明に係る燃料電池の製造装置は、少なくとも一の燃料電池セルと隣接する他の燃料電池セルとの間において対向する端面の外周部にシール部材を配置するシール部材配置部と、シール部材が配置された燃料電池セルを積層して燃料電池モジュールを形成する積層部と、燃料電池セルの積層方向において燃料電池モジュールを押圧する押圧部と、少なくとも押圧部の動作を制御する制御部と、を有する。本発明に係る燃料電池の製造装置では、制御部が押圧部によって燃料電池モジュールを押圧する荷重を制御することによって積層方向における燃料電池モジュールの厚さを制御することを特徴とする。
図1(A)は本発明の実施形態1に係る燃料電池の製造方法について示すタイムチャート、図1(B)は燃料電池の製造方法について示すフローチャート、図1(C)は同製造方法の中でもモジュール製造工程について詳細に示すフローチャートである。 同実施形態1に係る積層体の組み立て工程におけるシール部材配置工程を示す説明図である。 同実施形態1に係る積層体の組み立て工程におけるシール部材配置工程を示す説明図である。 同積層体の押圧工程を示す説明図である。 同積層体を形成する(スタッキングする)際を示す説明図である。 同積層体を形成する(スタッキングする)際を示す説明図である。 同実施形態1に係る燃料電池を示す斜視図である。 同燃料電池の構成を示す分解斜視図である。 図9(A)は同燃料電池のセル構造を示す図8の9-9線に沿う断面図、図9(B)は図9(A)の変形例を示す断面図である。 同燃料電池モジュールを示す平面図である。 同燃料電池を構成する積層体の組み立て装置を示す概略斜視図である。 同積層電池を構成する積層体を治具によって挟持した状態を示す斜視図である。 押圧部によって同燃料電池モジュールを押圧した場合と押圧していない場合とを示す説明図である。 燃料電池モジュールの押圧によるシール部位の形成について説明する説明図である。 燃料電池モジュールの押圧によるシール部位の形成について説明する説明図である。 同積層体に付加する荷重と積層体の厚さとの関係を示すグラフである。 同積層体の組み立て装置における治具構造の変形例を示す説明図である。 本発明の実施形態2に係る燃料電池モジュールの組み立て装置における治具構造を示す説明図である。 本発明の実施形態3に係る積層体の組み立て装置における治具構造を示す説明図である。 実施形態3に係る同積層体の組み立て装置における治具構造の変形例を示す説明図である。 実施形態3に係る同積層体の組み立て装置における治具構造の変形例を示す説明図である。
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、以下の記載は特許請求の範囲に記載される技術的範囲や用語の意義を限定するものではない。また、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。
 (実施形態1)
 図1(A)、図1(B)は本発明の実施形態1に係る燃料電池の製造方法について示すタイムチャート及びフローチャート、図1(C)は同製造方法の中でもモジュール製造工程について詳細に示すフローチャートである。図2、図3は同実施形態1に係る積層体の組み立て工程におけるシール部材配置工程を示す説明図、図4は同積層体の押圧工程を示す説明図、図5及び図6は同積層体を形成する(スタッキングする)際を示す説明図である。
 本発明に係る燃料電池の製造方法は、概説すれば、シール部材配置工程(図1(A)、図2、図3参照)及び押圧工程(図1(A)、図4参照)を含むモジュールの製造(図、図1(B)のST10参照)と、モジュールを積層し、締結してスタックを形成する組付け工程(図1(B)のST30、図5及び図6参照)と、を有する。詳細については後述する。
 図7は同実施形態に係る燃料電池を示す説明図、図8は同燃料電池の構成を示す分解斜視図、図9(A)は同燃料電池のセル構造を示す図8の9-9線に沿う断面図、図9(B)は図9(A)の変形例を示す断面図、図10は同燃料電池モジュールを示す平面図である。
 図7~図10を参照して実施形態1に係る燃料電池100は、アノード31bとカソード31cとを電解質膜31aの両側に接合した膜電極接合体(Membrane Electrode Assembly 以下、MEAと称する)31が一対のセパレータ32a、32bによって挟持された燃料電池セル30を有する。燃料電池セル30は、例えば8セル程度積層されて燃料電池モジュール40として構成される。燃料電池モジュール40は、2以上積層されて積層体50として構成される。実施形態1は燃料電池100の製造の中でも、MEA31とセパレータ32aとの間、MEA31とセパレータ32bとの間及び隣接するセパレータ32aとセパレータ32bとの間にシール部材70を配置して押圧荷重を加え、シール部位を形成する工程に関するものである。また、燃料電池モジュール40同士の間には、シール部材80がプレート部材81に貼付された状態で配置される。実施形態1ではシール部材70、80を配置した積層体50を押圧してシール部位を形成する際に、積層体50を押圧する荷重を制御することによって積層体50の積層方向の厚さを制御している。以下、詳述する。
 まず、本実施形態に係る燃料電池100について説明する。燃料電池100は、図8及び図9(A)に示すように水素等のアノードガスと酸素等のカソードガスの反応により起電力を生じる単位電池セル(燃料電池セル)30を所定数だけ積層して燃料電池モジュール40とし、燃料電池モジュール40を所定数積層して積層体50を形成している。しかし、積層体50は必須の構成ではなく、一つの燃料電池モジュールによって構成することができる。積層体50の両端には集電板34、絶縁板35及びエンドプレート36を配置している。
 燃料電池セル30は、図9(A)に示すようにMEA31と、MEA31の両面にそれぞれ配置されるセパレータ32a、32bと、枠体33と、を有する。以下、MEA31のアノード側に配置されるセパレータをアノードセパレータ32aと称し、カソード側に配置されるセパレータをカソードセパレータ32bと称する。
 MEA31は、図9(A)に示すように例えば水素イオンを通す高分子電解質膜である固体高分子電解質膜31aと、アノード31bと、カソード31cと、を有する。MEA31は、アノード31bとカソード31cによって、固体高分子電解質膜31aをその両側から挟み込んだ積層構造となっている。アノード31bは、電極触媒層、撥水層、ガス拡散層と、を有し、薄板状に形成されている。カソード31cは、電極触媒層、撥水層、及びガス拡散層、を有し、アノード31bと同様に薄板状に構成されている。アノード31b及びカソード31cの電極触媒層は、導電性の担体に触媒成分が担持された電極触媒と高分子電解質を含んでいる。また、アノード31b及びカソード31cのガス拡散層は、例えばカーボンペーパー、又はカーボンフェルト等から形成されている。
 セパレータ32a、32bは、板厚の薄い導電性金属板を金型で所定形状に成形することにより形成される。セパレータ32a、32bは、図9(A)に示すように、発電に寄与するアクティブ領域(MEAと接する中央部分の領域)に、凸部と凹部を交互に形成した波形状(いわゆるコルゲート形状)32cを有する。
 アノードセパレータ32aの凸凹形状の中でも、アノード21bと接触側の領域にはアノードガスを流通させるためのアノードガス流路37aが形成される。同様に、カソードセパレータ32bの凸凹形状の中でも、カソードとの接触側の領域にはカソードガスを流通させるためのカソードガス流路37bが形成される。また、アノードセパレータ32aは、アノード31bと接触する側とは反対側の面に燃料電池モジュール40を冷却する冷却水などの冷却媒体を流す冷却流路37cを形成している。同様に、カソードセパレータ32bは、カソード31cと接触する側とは反対側の面に燃料電池モジュール40を冷却する冷却水などの冷却媒体を流す冷却流路37cを形成している。
 枠体33は、電気絶縁性を有する樹脂等からなる長方形の板状部材である。枠体33は、MEA31の外周を保持する。
 集電板34は、積層体50の両端にそれぞれ接合される。集電板34は、例えば緻密質カーボンのようなガスを透過させない導電性部材から形成されている。集電板34には突起部34aが形成され、集電板34で集電された電力を外部に取り出せるように構成されている。
 絶縁板35は、長方形からなる板状に形成し、積層体50の両端に配置されて集電板34を絶縁する。
 エンドプレート36は例えば金属からなり、対になって一対の絶縁板35を両側から付勢した状態で担持する。セパレータ32a、32b、枠体33、集電板34、絶縁板35、エンドプレート36、及び後述するプレート部材81は、長方形からなる板状で形成し、長手方向の一端にカソードガス供給口38a、媒体供給口38b、アノードガス供給口38cを貫通孔で形成し、長手方向における他端にアノードガス排出口38d、媒体排出口38e、及びカソードガス排出口38fを貫通孔で形成している。
 テンションプレート39a、39bは、燃料電池セル30の積層方向における側面の中でも燃料電池セル30の長辺にあたる側面を覆う平板状部材である。テンションプレート39a、39bのセルの積層方向における両端にはフランジ部が設けられ、両端からエンドプレート36にボルト43等で締結することにより燃料電池セル30が加圧される。
 テンションガイド39c、39dは、テンションプレート39a、39bと直交する面に取り付けられる断面がコの字状の部材である。テンションガイド39c、39dが図5、図6における燃料電池セル30の短辺にあたる側面に取付けられることによって、燃料電池セル30の水平方向における位置ズレが防止される。
 シール部材70は、図9(A)に示すように、MEA31とアノードセパレータ32aとの間、MEA31とカソードセパレータ32bとの間、及び隣接するアノードセパレータ32aとカソードセパレータ32bとの間に配置されている。シール部材70の材料は特に限定されないが、例えば熱硬化性樹脂を挙げることができる。
 プレート部材81は、隣接する燃料電池モジュール40と燃料電池モジュール40との間に配置されている。プレート部材81の両面外周部にはシール部材80が設けられている。シール部材80の材料は特に限定されないが、ゴムなどの弾性部材を挙げることができる。
 シール部材70によって燃料電池モジュール40内において燃料が流れるMEA31とアノードセパレータ32aとの間、酸化剤が流れるMEA31とカソードセパレータ32bとの間、及び冷却媒体が流れるセパレータ32aとセパレータ32bとの間がシールされる。また、燃料電池モジュール40同士の間にシール部材80が配置されることによって、燃料電池モジュール40同士の間を流れる冷却媒体のシールが行われる。なお、本明細書では燃料電池モジュール40を構成するMEA31とアノードセパレータ32aとの間及びMEA31とカソードセパレータ32bとの間にシール部材70を配置すること、及び隣接する燃料電池モジュール40同士の間にシール部材80を配置することは、隣接する燃料電池セル同士の間において対向する端面の外周部にシール部材を配置することにあたる。また、シール部材の配置は図9(A)に限定されず、図9(B)に示すように、隣接するMEA31の枠体33の間にシール部材70を配置することによって燃料、酸化剤、及び冷却媒体をシールすることができる。図9(B)のようにシール部材70を配置しても燃料電池モジュールの内部を流れる燃料、酸化剤、及び冷却媒体をシール出来るからである。
 次に本実施形態に係る燃料電池モジュールを複数積層した積層体の組み立て装置について説明する。実施形態1に係る積層体の組み立て装置200及び組付け装置300は燃料電池の製造装置の一部であり、燃料電池の製造装置におけるその他の装置構成は公知のものであるため、説明を省略する。図11は実施形態1に係る積層体の組み立て装置を示す概略斜視図、図12は同燃料電池モジュールを治具によって挟持した状態を示す斜視図である。図13は押圧部によって同積層体を押圧した場合と押圧していない場合とを示す説明図である。図14及び図15は燃料電池モジュールの押圧によるシール部位の形成について説明する説明図である。
 積層体50の組み立て装置200は、シール部材70を塗布する塗布部20(シール部材配置部に相当)と、MEA31、セパレータ32a、32b、及びプレート部材81を積層して燃料電池モジュール40及び積層体50を形成する積層部90と、燃料電池モジュール40において燃料電池モジュール40を燃料電池セル30の積層方向から押圧する押圧部10と、少なくとも押圧部10の動作を制御する制御部60と、を有する(図2~図4、図11参照)。
 押圧部10は、積層体50の積層方向に接近離間し、積層体50を押圧する押し治具11と、積層体50を載置し、押し治具11によって押圧された積層体50を受け止める受け治具12と、を有する。また、押圧部10は、押し治具11に接続される弾性部材13(緩衝部材に相当)と、押し治具11が付加する押圧荷重を検出する検出部14と、押し治具11及び受け治具12によって積層体50が押圧された状態を保持する保持部15と、押圧部材16と、を有する。
 押し治具11は、押し治具11を受け治具12に向けて移動させる力を発生させる押圧部材16の動きと連動し、受け治具12に近接離間する。押し治具11は積層体50を平面視した際に積層体50の面積よりも十分に大きい面積を有しており、実施形態1では押圧面がフラットに形成されている。
 受け治具12は、MEA31やセパレータ32a、32bを載置させ、載置面がフラットに形成され、押し治具11の押圧面と同等の面積を有するように形成されている。また、押し治具11及び受け治具12の四隅には、押し治具11と受け治具12との位置合わせを行なう連結ボルト17を挿通させる挿通穴が形成されている。
 保持部15は、押し治具11と受け治具12に設けられた挿通穴に挿通させて押し治具11と受け治具12とを連結する連結ボルト17と、連結ボルト17のネジ部に締結されるナット18とを有する。連結ボルト17にナット18を締結することによって、押し治具11と受け治具12との位置合わせが行われ、押し治具11と受け治具12との間隔の調整及び間隔の保持が行われる。
 弾性部材13は、積層体50を所定の荷重で押圧する際に積層体50に急激に過大な入力が入って積層体50に亀裂などが生じることを防止する。また、シール部材70を塗布して硬化させる際に温度変化があるとシール部材70が収縮などを起こして積層体50に付加される荷重が変動するが、弾性部材13を設けることによってシール部材70の温度変化による荷重の変化を緩和し、応力集中によって積層体50に傷等が発生することを防止できる。
 図17は実施形態1に係る積層体の組み立て装置における治具構造の変形例を示す説明図である。実施形態1において弾性部材13は、図4等に示すようにコイルばねによって構成しているが、これに以外にも例えば図15に示すように板バネ13aによって構成することができる。コイルばねや板バネのような構成を用いることによって、簡易な構成でありながら積層体50を破損させることなくシール部材70、80によるシール部位を形成することができる。
 検出部14は、押し治具11が積層体50を押圧する押圧荷重を検知する部材であり、本実施形態ではロードセルを用いているがこれに限定されない。
 また、燃料電池セル30においてMEA31を構成するセパレータ32a、32bは上記のように凹凸状のいわゆる波形状32cを有する。燃料電池セル30を積層した燃料電池モジュールにおいて図10に示す中央部41は発電部に当るため、シール部材70を塗布することはできず、シール部材70は外周部42にのみ塗布される。そのため、シール部材70を硬化させる際に荷重を付加すると、シール部材70の塗布されている外周部42とシール部材70の塗布されていない中央部41との境界には応力が集中しやすい。これに対し、発電部である中央部41に波形状32cを設けることによって、弾性部材13と同様に波形状32cに荷重を吸収させ、中央部41と外周部42の境界に応力が集中することを防止して積層体50の破損を防止し、押圧荷重による積層体50の厚さ管理を可能にすることができる。
 塗布部20は、塗布機21と、塗布機21を一定方向に移動させるアーム22と、塗布機21が移動する方向と交差する方向にアーム22を移動させるレール23と、を有する。
 塗布機21は、例えばガンの形状をしたインジェクションタイプのものを挙げることができるが、これに限定されない。アーム22は、塗布機21を移動可能に取り付け、塗布機21を移動させることによって積層体50を構成するMEA31やセパレータ32a、32bの所定の位置に塗布機21を位置づける。塗布機21の移動は、例えば塗布機21に回転可能なローラーを設け、アーム22に塗布機21のローラーの経路となるアームレールを設けることによって実現することができるが、これに限定されない。
 レール23は、例えば組み立て装置200の側壁に設置され、アーム22を移動可能にする経路として塗布機21の移動方向と異なる方向に配置される。これによって、塗布機21及びアーム22を移動させれば、塗布機21の移動方向とアーム22の移動方向を組み合わせてMEA31やセパレータ32a、32bにおける所定の位置に塗布機21を配置してシール部材70を塗布することができる。アーム22の移動についても、アーム22に回転可能なアームローラーを設け、アームローラーがレール23を移動することによって実現することができるが、これに限定されない。
 積層部90は、図3に示すように積層体50を構成するMEA31、セパレータ32a、32b、及びプレート部材81を載置するハンドロボットから構成している。しかし、この他にも例えば人手によって積層作業を行うことができる。
 制御部60は、CPU、RAM、ROM、及び入出力インターフェース等によって構成され、押圧部10、塗布部20、及び積層部50の動作を制御するが、押圧部10の動作のみを制御するように構成することができる。
 積層体を形成する組付け装置300は、支持台110と、基準台120(挟持部材に相当)と、柱131、132と、柱間隔調整治具150と、基準側柱161、162と、制御部180と、荷重付加部材310(挟持部材に相当)と、押圧部材320(挟持部材に相当)と、を有する。基準台120は支持台110の上に設置され、基準台120の上に燃料電池モジュール40やプレート部材81などの燃料電池の構成部品が積層される。積層される燃料電池の構成部品は媒体供給口または媒体排出口の位置に柱131、132が挿通され、位置決め及び整列がなされる。基準側柱161、162は柱間隔調整治具150を載置させる。柱間隔調整治具150は、柱131、と柱132の間隔を調整する。荷重付加部材310及び押圧部材320は、制御部180によって制御され、積層体50や集電板34、絶縁板35及びエンドプレート36を積層した状態で燃料電池の構成部品を基準台120と共に挟持し、押圧荷重を付与する。その状態でテンションプレート39a、39bやテンションガイド39c、39dを取り付けてボルト締結することで燃料電池ができあがる。
 次に本実施形態に係る積層体の組み立て方法について説明する。実施形態1に係る積層体の組み立て工程は、積層体50を構成するセパレータ32aの外周部42にシール部材70を塗布して、MEA31を積層し、セパレータ32bを積層してシール部材70を塗布して燃料電池セル30を形成し、燃料電池セル30を複数積層して燃料電池モジュール40を形成し、燃料電池モジュール40同士の間にシール部材80を配置して積層体50を形成するシール部材配置工程と、セル30の積層方向から押圧部10によって積層体50を押圧する押圧工程と、を有する。なお、実施形態1では燃料電池モジュール40が2つの燃料電池セル30から構成され、積層体50が2つの燃料電池モジュール40から構成される場合について説明するが、あくまで一例であり、これに限定されない。
 モジュールの製造(図1(B)のステップST10)において、シール部材配置工程では、まず、組み立て装置200において図2に示すように燃料電池モジュール30を構成するMEA31またはセパレータ32a、32bとを受け治具12に載置し、載置した際の部材の上面にシール部材70を塗布することによってセパレータ32a上に配置する(図1(C)のステップST11)。実施形態1では一例としてアノードセパレータ32aを載置している。
 次に、図3に示すように塗布部20によってシール部材70を配置したMEA31をセパレータ32aに載置し、さらにMEA31の上にシール部材70を配置したカソードセパレータ32bを載置する(図1(C)のステップST12)。これにより燃料電池セル30が形成される。同様にして燃料電池セル30をもう1セル形成したら、燃料電池モジュール40を構成する部品が積層される。
 この状態で押し治具11、弾性部材13、検出部14、保持部15、及び押圧部材16などの構成を配置して押圧荷重を付与する(図1(C)のステップST13)。付与荷重が狙い値であるFの±10%以内にならなければ(図1(C)のステップST14:NO)付与荷重を調整する。付与荷重がF±10%以内になれば(図1(C)のステップST14:YES)、連結ボルト17にナット18を締め付けて燃料電池モジュール40の厚さを固定し、シール部材70を硬化させる(図1(C)のステップST15)。なお、±10%の値は例示であって、他の値に設定することができる。上記工程によって燃料電池モジュール40が完成する。燃料電池モジュール40が完成したら、組み立て装置200から取り外す。
 次の工程ではモジュールが問題なく出来上がっているかを確認するために、リーク検査や絶縁抵抗の検査を行う(図1(B)のステップST20)。検査で問題があれば(図1(B)のステップST20:NO)モジュールの製造を再度行う(図1(B)のステップST10)。問題がなければ(図1(B)のステップST20:YES)、積層体(スタック)50の製造に進む。積層体の製造では、組付け装置300の柱131,132にエンドプレート36、絶縁板35、集電板34及び燃料電池モジュール40をセットし、燃料電池モジュール40の上にシール部材80が両面に貼付されたプレート部材81を積層する。本実施形態では一例として燃料電池セル30を2セル積層して燃料電池モジュール40を2つ用意する。
 燃料電池モジュール40を2つ積層したら、その上に集電板34、絶縁板35、エンドプレート36をセットする。そして、筐体であるテンションプレート39a、39b、テンションガイド39c、39dを取り付けてボルト43で締結する(図1(B)のステップST30)。。そして、積層体50としてリーク検査や発電性能の確認を行ない、問題があれば(図1(B)のステップST40:NO)積層体の荷重付与などを再度行う(図1(B)のステップST30)。積層体50の性能に問題がなければ(図1(B)のステップST40:YES)出荷する。
 ここで燃料電池モジュールに塗布したシール部材を硬化させる際の荷重について説明する。図16は積層体に付加する荷重と積層体の積層方向における厚さとの関係を示す説明図である。図16からもわかるように、積層体50に荷重を付加すればする程、積層体50の厚さは減少する。
 また、上述したように、中央部41では発電が行われるため、中央部41にシール部材70を塗布することはできず、シール部材70は外周部42にのみ塗布される。
 このようにシール部材70の塗布部位は外周部42に限定されているため、押し治具11による押圧を解除すると図13~図15に示すように燃料電池モジュール40の中央部41の厚さがH1、外周部42の厚さがH2といったように厚さに差が生じるという現象が起こる。このような現象を考慮すると、積層体50を押圧してシール部材70を硬化させる際に付加する荷重(以下、シール部材70の硬化荷重と記載)は、例えば積層体50にエンドプレート36を組み付けて両側から挟圧する際の挟圧荷重以下にする必要がある。
 シール部材70の硬化荷重がエンドプレート36による挟圧荷重よりも大きい場合には(図16のa1がシール部材70の硬化荷重、a2がスタッキング時の挟圧(組付け)荷重の場合)、スタッキング時にシール部材70が塗布された外周部42の厚さまで中央部41を押し潰すことができず、中央部41の厚さ(図12のb1)と外周部42の厚さ(図12のb2)の差を解消することができないためである。
 シール部材70の硬化荷重をエンドプレート36による挟圧荷重以下とすることによって、外周部42が過度に潰されることを防止してスタッキング時に中央部41と外周部42との厚さの差を防止し、シール部位を確実に形成することができる。
 また、シール部材70の硬化荷重は、エンドプレート36による挟圧荷重以下の他に、燃料電池100の使用環境時(非発電時)における最低荷重以下とすることができる。燃料電池100の使用時には燃料電池100の内部に燃料、酸化剤、および冷却水が供給されるため、燃料電池100はエンドプレート36を組付けて挟圧した時よりも膨張する。つまり、燃料電池100の使用環境時における最低荷重は上記挟圧時の荷重よりも小さいことになる。シール部材70は燃料電池100の使用環境状態においてシール部位を形成している必要があるため、シール部材の硬化荷重を使用環境時の最低荷重以下とすることによっても、モジュール40における中央部41と外周部42との厚さの差が生じることを防止して、シール部位を確実に形成することができる。
 さらに、シール部材70の硬化荷重は、上記以外にも発電部41においてセパレータ32a、32bがMEA31と接触する最低荷重以下とすることもできる。燃料電池100が発電するためには、セパレータ32a、32bによってMEA31の両面に燃料および酸化剤が流れる空間を形成できるように少なくともMEA31にセパレータ32a、32bを接触させる必要がある。MEA31にセパレータ32a、32bが接触する最低荷重は上記挟圧荷重以下であり、燃料電池の使用環境時における最低荷重以下であるが、燃料電池を発電させることはできる。そのため、シール部材70の硬化荷重をMEA31にセパレータ32a、32bが接触する最低荷重以下とすることによっても燃料電池の発電を確保すると共にシール部位を確実に形成することが出来る。
 次に実施形態1に係る発明の作用、効果について説明する。
 燃料や酸化剤等をシールするために、積層体50にシール部材70、80を配置する際は、発電部である中央部41には配置できないため、外周部42にシール部材70、80が配置される。シール部材70、80(特にシール部材80)は十分に押し潰されなければシール部位が形成されず、中央部41と外周部42との厚さに差が生じていればシール部材が十分に押し潰されない。そのため、燃料電池セル30を積層して燃料電池100を組み立てる際にはシール部位が形成されるように中央部41と外周部42との厚さの差をなくす必要がある。しかし、例えばスペーサー等を用いてMEA31とセパレータ32a、32との間の間隔を調整してもバラつきによって中央部41と外周部42との厚さの差を解消できない場合がある。
 これに対し、実施形態1では積層体50を押圧部10によって押圧する際には、積層体50の厚さではなく、積層体50を押圧する押圧荷重を制御することによって積層体50の厚さを制御するように構成している。そのため、実施形態1では燃料電池100を組み立てる際の積層体50の厚さ等のばらつきを考慮することができ、中央部41と外周部42との間で厚さに差が生じないように積層体50を押圧することができ、シール部材の圧縮量を確保してシール性を良好にすることができる。
 また、押圧工程において積層体50を押圧してシール部材70を硬化させる際の押圧荷重は、燃料電池100を組み立てる際に積層体50を荷重付加部材310及び押圧部材320によって挟圧する挟圧荷重以下としている。そのため、燃料電池100を形成する際に積層体50の両端からエンドプレート36によって挟圧すれば、中央部41を外周部42の厚さまで潰すことができ、積層体50の厚さを均一にしてシール部位を確実に形成することが出来る。
 また、押圧工程において積層体50を押圧してシール部材70を硬化させる際の押圧荷重は燃料電池100の使用環境時(非発電時)における最低荷重以下とすることもできる。使用環境時における最低荷重はエンドプレート36による挟圧荷重以下であるため、上記と同様に燃料電池組み立て時及び燃料電池の使用環境時において中央部41を外周部42の厚さまで潰すことができ、シール部位を確実に形成することができる。
 また、押圧工程において積層体50を押圧してシール部材70を硬化させる際の押圧荷重は、セパレータ32a、32bがMEA31に接触する最低荷重以下とすることもできる。セパレータ32a、32bがMEA31に接触する最低荷重は、エンドプレート36による挟圧時及び燃料電池の使用環境時の荷重以下である。そのため、上記押圧荷重をMEA31とセパレータ32a、32bとが接触する最低荷重以下とすることによって、燃料電池100の発電を確保しつつ、燃料電池組み立て時および燃料電池100の使用時にも中央部41を外周部42の厚さまで押し潰してシール部位を確実に形成することが出来る。
 また、押し治具11によって押圧荷重を付加する際にはロードセル等からなる検出部14によって押圧荷重をモニタリングし、保持部15によって積層体50を押圧した状態を保持するように構成している。そのため、積層体50に押圧荷重が過剰に付加されることを確実に防止して中央部41と外周部42との厚さの差を防止し、シール部位を確実に形成することが出来る。
 また、押し治具11に板バネ13aなどからなる弾性部材13を用いて保持部15と共に積層体50を押圧した状態を保持すれば、シール部材70の硬化時に温度変化によって積層体50への荷重変動が生じた際にも当該荷重変動を緩和することができる。よって、積層体50に応力集中が起こって傷等が発生することを防止できる。
 また、セパレータ32a、32bに形成された凹凸のいわゆる波形状32cは、板ばねのように弾性部材として機能させることができる。そのため、シール部材70を硬化させるために押圧荷重を付加した際にも中央部41と外周部42の境界に応力が集中することを防止して積層体50の破損を防止し、押圧荷重による積層体50の厚さ管理を可能にすることができる。
 (実施形態2)
 図18は実施形態2に係る積層体の組み立て装置における治具構造を示す断面図である。実施形態1では積層体50を押し治具11という単一の治具によって押圧したが、以下のように構成することもできる。
 図18に示すように、実施形態2に燃料電池の組み立て装置200aでは、積層体50において発電部にあたる中央部41を押圧する押し治具11aと中央部41よりも外方にあたる外方部42を押圧する環状の押し治具11bとによって押し治具が構成されている。押し治具11aが付加する荷重と押し治具11bが付加する荷重とは、例えば押圧部材16に接続した弾性部材13bと弾性部材13cのばね定数を調整することによって異なる荷重にできる。なお、組み立て装置200aにおけるその他の構成は押し治具11a、11bの押圧加重をそれぞれ検出する検出部14a、14bが設けられる点以外については実施形態1と同様であるため、説明を省略する。
 実施形態2に係る積層体50の組み立て装置200aによれば、積層体50における中央部41と外方部42に付加する荷重を別個に付加するように構成している。そのため、積層体50の面方向における厚さ寸法のばらつきがより大きい場合であっても、中央部41と外周部42とを別個に押圧できることによって中央部41と外周部42との厚さの差をより容易に解消して均一化し、シール部位を確実に形成することが出来る。
 (実施形態3)
 図19は実施形態3に係る積層体の組み立て装置における治具構造を示す説明図である。実施形態1では、積層体50を押圧する押圧面が平坦な押し治具11を使用して積層体50を押圧し、シール部材70を硬化させたが、押し治具は以下のような構成とすることができる。
 実施形態3における燃料電池モジュールの組み立て装置200bを構成する押し治具11cは、積層体50を押圧する押圧面が平坦ではなく、発電部に当る中央部41を押圧する発電部押圧部11dと、発電部押圧部11dの外方を押圧する外方押圧部11eとを有する。燃料電池100を搭載する自動車などは寒冷地における使用も保証することがあるため、積層体50については寒冷時においてもシール部材70によってシール部位を形成することを考慮する必要がある。これに対し、実施形態3に係る積層体50の組み立て装置200bは、押し治具31cに発電部押圧部11dが外方部押圧部11eの積層方向において段差11fを有するように構成している。図17における段差11fの高さは、シール部材70の保証温度内における熱収縮量とすることができるが、これに限定されない。
 このようにシール部材70の温度変化による収縮等を考慮して押し治具11cに段差11fを設けることによって、積層体50における中央部41と外周部42との収縮量が異なるような場合においても中央部41と外周部42との厚さの差を防止し、シール部位を確実に形成することが出来る。
 なお、本発明は上述した実施形態にのみ限定されず、特許請求の範囲において種々の変更が可能である。
 図20、21は実施形態3の積層体の組み立て装置における治具構造の変形例を示す説明図である。実施形態3では押し治具11cに段差11fを設けることによって、シール部材70が熱収縮した場合にもシール部位を形成できるようにしたと説明したが、これに限定されない。段差を設けた押し治具11gについては、中央部41を押圧する発電部押圧部11dの角部を曲面形状11hに形成することができる。発電部押圧部11dの角部を曲面形状11hに形成することによって、押圧の際にも積層体50と曲面形状11hとの接触面圧が過大にならず、積層体50に傷等を生じさせることなくシール部位を形成することが出来る。
 また、シール部材70の温度変化による熱収縮等を考慮して設けた段差11fは、図21に示すように押し治具だけでなく、受け治具にも設けることができる。また、実施形態1から3では燃料電池セルを複数積層して燃料電池モジュールを形成し、燃料電池モジュールを複数積層して積層体を構成したが、これに限定されず、本発明は燃料電池セルを複数積層した単一の燃料電池モジュールにシール部材70を配置してシール部位を形成する場合にも適用できる。
 また、燃料電池モジュール40を構成するMEA31とセパレータ32a、32bの間の中でも中央部41の部分にはMEA31を構成するガス拡散層やセパレータ32a、32bの波形状32cが存在するが、外周部42の部分にはそのような構成が存在しない。そのため、燃料電池モジュール40を押圧してシール部材などを硬化させる際に外周部42の中でも中央部41から比較的遠い外周部42の短手方向と中央部41から比較的近い長手方向とでは、荷重をかけた際のつぶれ代がばらつくことがあり、シール性に影響を与える可能性がある。これに対し、図4の治具11の短手方向と接する部位には治具11に一部穴を空けてポンプに接続し、外周部42における長手方向と短手方向のつぶれ代の差を解消することができる。このような構成を設けることによって、シール部材硬化時における中央部41と外周部42との間のつぶれ量の差を解消もしくは低減させることができる。
 本出願は、2013年4月15日に出願された日本特許出願番号2013-085251号に基づいており、その開示内容は参照され、全体として組み込まれている。
10 押圧部、
100 燃料電池、
11、11a、11b、11c、11g 押し治具、
11d 発電部押圧部、
11e 外方押圧部、
11f 段差、
11h 曲面形状、
110 支持台、
12 受け治具、
120 基準台、
13、13b、13c 弾性部材、
13a 板バネ、
131、132 支持柱、
14、14a、14b、14c 検出部、
15 保持部、
150 柱間隔調整治具、
16 押圧部材、
161、162 基準側柱、
17 連結ボルト、
18 ナット、
20 塗布部、
200、200a、200b 燃料電池モジュールの組み立て装置、
21 塗布機、
22 アーム、
23 レール、
30 燃料電池セル、
300 積層体の組付け装置、
31 膜電極接合体(MEA)、
31a 固体高分子電解質膜、
31b アノード、
31c カソード、
310 荷重付加部材、
32a、32b セパレータ、
320 押圧部材、
33 枠体、
34 集電板、
34a 突起部、
35 絶縁板、
38a カソードガス供給口、
38b 媒体供給口、
38c アノードガス供給口、
38d アノードガス排出口、
38e 媒体供給口、
38f カソードガス排出口、
36 エンドプレート、
37a アノードガス流路、
37b カソードガス流路、
37c 冷却媒体流路、
39a、39b テンションプレート、
39c、39d テンションガイド、
40 燃料電池モジュール、
41 中央部(発電部)、
42 外方部、
43 ボルト、
50 積層体、
60、180 制御部、
70、80 シール部材、
81 プレート部材、
90 積層部、
a1 シール部材硬化時の荷重、
a2 燃料電池スタッキング時の組付け荷重、
b1 スタッキング時の厚さ、
b2 シール部材硬化時の厚さ、
H1 押圧荷重付加時において中央部が膨らんだ際の積層方向厚さ、
H2 押圧荷重付加時における周辺部の積層方向厚さ。

Claims (13)

  1.  アノードとカソードとを電解質膜の両側に接合した膜電極接合体が一対のセパレータによって挟持された燃料電池セルを複数積層した燃料電池モジュールを有する燃料電池の製造方法であって、
     少なくとも一の前記燃料電池セルと隣接する他の前記燃料電池セルとの間において対向する端面の外周部にシール部材を配置し、前記燃料電池セルを積層して前記燃料電池モジュールを形成するシール部材配置工程と、
     前記燃料電池セルの積層方向において前記燃料電池モジュールを押圧して前記シール部材によるシール部位を形成する押圧工程と、を有し、
    を有し、
     前記押圧工程では、前記燃料電池モジュールを押圧する荷重を制御することによって前記燃料電池モジュールの積層方向における厚さを制御することを特徴とする燃料電池の製造方法。
  2.  前記膜電極接合体は、電気化学反応によってエネルギーを生成する発電部を有し、
     前記押圧工程では、前記発電部と前記発電部よりも外方の外方部とを異なる圧力で押圧する請求項1に記載の燃料電池の製造方法。
  3.  前記燃料電池モジュールを積層方向における両端から前記燃料電池モジュールを挟持する挟持部材を組み付けて前記燃料電池モジュールを挟圧する組み付け工程と、をさらに有し、
     前記押圧工程では、前記組み付け工程において前記燃料電池モジュールを挟圧する際に付加する挟圧荷重以下の荷重によって前記燃料電池モジュール押圧して前記シール部材による前記シール部位を形成する請求項1または2に記載の燃料電池の製造方法。
  4.  前記押圧工程では、前記燃料電池が発電可能な状態において非発電時に前記燃料電池モジュールに付加される荷重以下の荷重によって前記燃料電池モジュールを押圧して前記シール部材による前記シール部位を形成する請求項1または2に記載の燃料電池の製造方法。
  5.  前記押圧工程では、前記燃料電池セルにおいて前記セパレータが前記膜電極接合体に接触する最低荷重以下の荷重によって前記燃料電池モジュールを押圧して前記シール部材による前記シール部位を形成する請求項1または2に記載の燃料電池の製造方法。
  6.  前記燃料電池モジュールを押圧した状態を保持する保持部と、
     前記燃料電池モジュールを押圧する荷重を検出する検出部と、を備え、
     前記押圧工程では、前記検出部によって検出した前記燃料電池モジュールの押圧荷重に基づいて前記押圧荷重を調整し、前記燃料電池モジュールを所定の前記押圧荷重で押圧した状態で前記保持部により前記状態を保持する請求項1から5のいずれか1項に記載の燃料電池の製造方法。
  7.  前記燃料電池モジュールを押圧した状態を保持する保持部と、
     前記押圧部材による前記燃料電池への荷重を緩衝する緩衝部材と、を備え、
     前記押圧工程では、前記燃料電池モジュールの積層方向における厚さを前記緩衝部材および前記保持部を用いて保持する請求項1から6のいずれか1項に記載の燃料電池の製造方法。
  8.  前記緩衝部材は、板ばねにより構成される請求項7に記載の燃料電池の製造方法。
  9.  前記セパレータは弾性変形可能な弾性形状を有し、
     前記押圧工程では、前記セパレータの前記弾性形状を変形させることによって前記シール部材による前記シール部位を形成する際に前記燃料電池モジュールに付加される荷重を緩和する請求項1から8のいずれか1項に記載の燃料電池の製造方法。
  10.  前記押圧部材は、前記燃料電池モジュールにおいて発電の起こる発電部を押圧する発電部押圧部と、前記発電部よりも面方向における外方を押圧する外方押圧部と、において前記積層方向に段差を設けている請求項1から9のいずれか1項に記載の燃料電池の製造方法。
  11.  前記発電部押圧部と前記外方押圧部における前記段差は、前記シール部材が熱収縮した際の熱収縮量に等しい請求項10に記載の燃料電池の製造方法。
  12.  前記押圧部材において前記発電部押圧部と前記外方押圧部との境界は曲面に成形されている請求項10または11に記載の燃料電池の製造方法。
  13.  アノードとカソードとを電解質膜の両側に接合した膜電極接合体が一対のセパレータによって挟持された燃料電池セルを複数積層した燃料電池モジュールを有する燃料電池の製造装置であって、
     少なくとも一の前記燃料電池セルと隣接する他の前記燃料電池セルとの間において対向する端面の外周部にシール部材を配置するシール部材配置部と、
     前記シール部材が配置された前記燃料電池セルを積層して前記燃料電池モジュールを形成する積層部と、
     前記燃料電池セルの積層方向において前記燃料電池モジュールを押圧する押圧部と、
     少なくとも前記押圧部の動作を制御する制御部と、を有し、
     前記制御部は、前記押圧部が前記燃料電池モジュールを押圧する荷重を制御することによって前記積層方向における前記燃料電池モジュールの厚さを制御することを特徴とする燃料電池の製造装置。
PCT/JP2014/057900 2013-04-15 2014-03-20 燃料電池の製造方法及び製造装置 WO2014171260A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14785473.1A EP2988355B1 (en) 2013-04-15 2014-03-20 Fuel-cell-stack manufacturing method and manufacturing device
CN201480021272.8A CN105210224B (zh) 2013-04-15 2014-03-20 燃料电池的制造方法和制造装置
CA2909568A CA2909568C (en) 2013-04-15 2014-03-20 Fuel cell stack manufacturing method and manufacturing device
US14/782,806 US9627706B2 (en) 2013-04-15 2014-03-20 Fuel-cell-stack manufacturing method and manufacturing device
JP2015512371A JP6056964B2 (ja) 2013-04-15 2014-03-20 燃料電池の製造方法及び製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013085251 2013-04-15
JP2013-085251 2013-04-15

Publications (1)

Publication Number Publication Date
WO2014171260A1 true WO2014171260A1 (ja) 2014-10-23

Family

ID=51731217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057900 WO2014171260A1 (ja) 2013-04-15 2014-03-20 燃料電池の製造方法及び製造装置

Country Status (6)

Country Link
US (1) US9627706B2 (ja)
EP (1) EP2988355B1 (ja)
JP (1) JP6056964B2 (ja)
CN (1) CN105210224B (ja)
CA (1) CA2909568C (ja)
WO (1) WO2014171260A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104212A1 (ja) * 2015-12-18 2017-06-22 日産自動車株式会社 燃料電池スタックのシール構造及びその製造方法
US9991546B2 (en) * 2015-09-25 2018-06-05 Hyundai Motor Company Fuel cell stack assembly device and control method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101878034B1 (ko) * 2016-05-24 2018-07-16 현대자동차주식회사 연료전지 및 그 제조방법
KR102008682B1 (ko) * 2016-12-06 2019-08-08 현대자동차 주식회사 스택에 절연판과 체결바를 체결하는 체결시스템
JP6612814B2 (ja) * 2017-06-20 2019-11-27 本田技研工業株式会社 燃料電池スタックの製造方法及び製造装置
DE202017104111U1 (de) * 2017-07-10 2018-10-15 Kuka Industries Gmbh Fertigungstechnik zur Herstellung von Batteriemodulen und zugehörige Fertigungsstation
KR102161028B1 (ko) * 2017-07-11 2020-10-05 주식회사 엘지화학 이차전지의 불량 검사 장치 및 불량 검사 방법
CN107808974B (zh) * 2017-10-23 2020-04-28 大连理工大学 一种改善螺栓封装燃料电池组件受压均匀性的装置
WO2019172456A1 (ja) * 2018-03-09 2019-09-12 Hoya株式会社 スペーサ、基板の積層体、基板の製造方法、及び磁気ディスク用基板の製造方法
EP3780209B1 (en) * 2018-03-29 2022-06-08 Nissan Motor Co., Ltd. Solid oxide fuel cell
JP7428514B2 (ja) * 2019-12-23 2024-02-06 Nok株式会社 燃料電池用接合セパレータの製造方法
JP7435407B2 (ja) * 2020-10-29 2024-02-21 トヨタ自動車株式会社 燃料電池用セパレータの搬送装置および搬送方法
USD978798S1 (en) * 2021-04-20 2023-02-21 Hyundai Motor Company Hydrogen fuel cell module for power generation
KR20230089089A (ko) * 2021-12-13 2023-06-20 현대자동차주식회사 차량용 프론트 엔드 모듈의 자동 장착 시스템
CN117199494B (zh) * 2023-11-08 2024-04-12 宁德时代新能源科技股份有限公司 电池加压装置和电池生产系统
CN117976942A (zh) * 2024-03-29 2024-05-03 宁波绿动燃料电池有限公司 一种压力监控反馈系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294492A (ja) * 2005-04-13 2006-10-26 Toyota Motor Corp 燃料電池とその製造方法
JP2007273113A (ja) * 2006-03-30 2007-10-18 Toyota Motor Corp マルチセルモジュールおよび燃料電池スタック
JP2010113890A (ja) * 2008-11-05 2010-05-20 Toyota Motor Corp 燃料電池の製造方法
JP2010272474A (ja) 2009-05-25 2010-12-02 Nissan Motor Co Ltd 燃料電池モジュール及びその製造方法
WO2014080760A1 (ja) * 2012-11-22 2014-05-30 日産自動車株式会社 燃料電池スタック

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1314215A2 (en) * 2000-07-19 2003-05-28 Ballard Power Systems Inc. Method and apparatus for measuring displacement of a fuel cell stack during assembly
JP5062389B2 (ja) * 2005-07-15 2012-10-31 Nok株式会社 燃料電池およびその製造方法
JP5007917B2 (ja) * 2006-03-30 2012-08-22 日産自動車株式会社 燃料電池スタック構造体及びその製造方法
JP5158306B2 (ja) * 2006-08-28 2013-03-06 トヨタ自動車株式会社 燃料電池モジュール
DK2109912T3 (da) * 2007-01-26 2011-01-10 Topsoe Fuel Cell As Klemstruktur til brænselcellestak samt faststofoxidbrændselcellestak
JP2009129584A (ja) * 2007-11-20 2009-06-11 Toyota Motor Corp 燃料電池スタックの製造方法
US8012648B2 (en) 2008-05-06 2011-09-06 GM Global Technology Operations LLC Side spring compression retention system
US8524028B2 (en) * 2009-08-25 2013-09-03 Hamilton Sundstrnad Space Systems International, Inc. Laminate assembly sealing method and arrangement
KR101209678B1 (ko) * 2009-11-25 2012-12-10 기아자동차주식회사 연료전지 스택의 면압 조절 장치
KR101163466B1 (ko) * 2010-10-08 2012-07-18 현대자동차주식회사 연료전지 스택 체결 방법
DE112010006034B4 (de) * 2010-11-30 2014-05-15 Toyota Jidosha Kabushiki Kaisha Verfahren zum Herstellen einer Brennstoffzelle, Brennstoffzellen-Herstellungsvorrichtung und Brennstoffzelle
US9209471B2 (en) * 2011-11-10 2015-12-08 Honda Motor Co., Ltd. Fuel cell assembly and method of manufacturing same, and bonding part manufacturing method and device
JP6294826B2 (ja) * 2013-02-07 2018-03-14 日本特殊陶業株式会社 燃料電池およびその製造方法
US10199663B2 (en) * 2013-04-22 2019-02-05 Nissan Motor Co., Ltd. Cell structure for fuel cell stack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294492A (ja) * 2005-04-13 2006-10-26 Toyota Motor Corp 燃料電池とその製造方法
JP2007273113A (ja) * 2006-03-30 2007-10-18 Toyota Motor Corp マルチセルモジュールおよび燃料電池スタック
JP2010113890A (ja) * 2008-11-05 2010-05-20 Toyota Motor Corp 燃料電池の製造方法
JP2010272474A (ja) 2009-05-25 2010-12-02 Nissan Motor Co Ltd 燃料電池モジュール及びその製造方法
WO2014080760A1 (ja) * 2012-11-22 2014-05-30 日産自動車株式会社 燃料電池スタック

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2988355A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9991546B2 (en) * 2015-09-25 2018-06-05 Hyundai Motor Company Fuel cell stack assembly device and control method
WO2017104212A1 (ja) * 2015-12-18 2017-06-22 日産自動車株式会社 燃料電池スタックのシール構造及びその製造方法
JPWO2017104212A1 (ja) * 2015-12-18 2018-09-27 日産自動車株式会社 燃料電池スタックのシール構造及びその製造方法
US10615433B2 (en) 2015-12-18 2020-04-07 Nissan Motor Co., Ltd. Fuel cell stack seal structure and production method therefor

Also Published As

Publication number Publication date
US20160308238A1 (en) 2016-10-20
JP6056964B2 (ja) 2017-01-11
CN105210224A (zh) 2015-12-30
CA2909568A1 (en) 2014-10-23
EP2988355B1 (en) 2018-09-05
EP2988355A4 (en) 2016-08-10
JPWO2014171260A1 (ja) 2017-02-23
CA2909568C (en) 2016-11-22
EP2988355A1 (en) 2016-02-24
CN105210224B (zh) 2019-06-18
US9627706B2 (en) 2017-04-18

Similar Documents

Publication Publication Date Title
JP6056964B2 (ja) 燃料電池の製造方法及び製造装置
US6210823B1 (en) Polymer electrolyte fuel cell
CA2910082C (en) Insulating structure, fuel cell and fuel cell stack
CN101160682A (zh) 燃料电池、燃料电池的制造方法和装置
JP6612814B2 (ja) 燃料電池スタックの製造方法及び製造装置
US10763530B2 (en) Manufacturing method for fuel cell
JP5839122B2 (ja) 燃料電池スタック
JP5292803B2 (ja) セパレータ、燃料電池スタックおよび燃料電池スタックの製造方法
JP5076681B2 (ja) 燃料電池の組立装置および組立方法,この組立方法によって組み立てた燃料電池
JP5061755B2 (ja) 燃料電池
JP2001319676A (ja) 燃料電池及びその製造方法
JP2014229577A (ja) 燃料電池用のセパレータ
JP5178061B2 (ja) 燃料電池
JP2019139993A (ja) 燃料電池モジュールおよびその製造方法
JP2004079246A (ja) 燃料電池スタックの組み立て方法
JP6221680B2 (ja) 燃料電池の製造方法
US20100062309A1 (en) Fuel cell and method for manufacturing the same
JP2018045882A (ja) 燃料電池スタック
JP4826159B2 (ja) 燃料電池用セパレータとそのシール成形方法
JP7421582B2 (ja) 燃料電池スタックの製造方法
JP2006164887A (ja) 燃料電池用積層体の形成装置及び燃料電池用積層体の形成方法
JP2008226467A (ja) 燃料電池締結構造
JP2006269264A (ja) 固体高分子電解質形燃料電池
JP2014154228A (ja) 燃料電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785473

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14782806

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015512371

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2909568

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014785473

Country of ref document: EP