WO2017104212A1 - 燃料電池スタックのシール構造及びその製造方法 - Google Patents

燃料電池スタックのシール構造及びその製造方法 Download PDF

Info

Publication number
WO2017104212A1
WO2017104212A1 PCT/JP2016/078243 JP2016078243W WO2017104212A1 WO 2017104212 A1 WO2017104212 A1 WO 2017104212A1 JP 2016078243 W JP2016078243 W JP 2016078243W WO 2017104212 A1 WO2017104212 A1 WO 2017104212A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer peripheral
seal member
fuel cell
inner peripheral
peripheral seal
Prior art date
Application number
PCT/JP2016/078243
Other languages
English (en)
French (fr)
Inventor
謙克 関根
沼尾 康弘
敬士 市原
屋 隆了
浩 宮岡
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US15/780,912 priority Critical patent/US10615433B2/en
Priority to CA3008381A priority patent/CA3008381C/en
Priority to EP16875198.0A priority patent/EP3392941B1/en
Priority to CN201680073339.1A priority patent/CN108370044B/zh
Priority to JP2017556367A priority patent/JP6536693B2/ja
Publication of WO2017104212A1 publication Critical patent/WO2017104212A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a seal structure of a fuel cell stack and a manufacturing method thereof.
  • An object of the present invention is to provide a seal structure for a fuel cell stack and a method for manufacturing the same, which can realize an appropriate seal with a seal member even when the interval between single fuel cell cells is small.
  • the inventors of the present invention made extensive studies to achieve the above object. As a result, a first closed space is formed between the inner peripheral seal member and the outer peripheral seal member disposed at a predetermined position, and a cutout portion is formed in the outer peripheral seal member for communicating the first closed space with the outside. Thus, the inventors have found that the above object can be achieved, and have completed the present invention.
  • the fuel cell stack sealing structure of the present invention includes a fuel cell stack formed by laminating a plurality of fuel cell single cells having a membrane electrode assembly and a pair of separators sandwiching the membrane electrode assembly. And an outer peripheral seal member. At least one separator of the pair of separators has an inner peripheral rib that protrudes to at least the facing surface side of the pair of separators at the peripheral portion of the separator. At least one separator of the pair of separators has an outer peripheral rib that protrudes at least on the opposed surface side of the pair of separators on the outer peripheral side of the inner peripheral rib.
  • the inner peripheral sealing member closes between the inner peripheral ribs of the pair of separators constituting the fuel cell single cell.
  • the outer peripheral seal member is disposed on the outer peripheral side of the inner peripheral seal member and closes between the outer peripheral ribs of the pair of separators.
  • the inner peripheral seal member and the outer peripheral seal member form a first closed space between the inner peripheral seal member and the outer peripheral seal member.
  • the outer peripheral seal member has a notch for communicating the first closed space with the outside.
  • the fuel cell stack sealing structure manufacturing method of the present invention is a method of manufacturing the fuel cell stack sealing structure of the present invention, and includes the following steps (1) to (3).
  • step (1) when the membrane electrode assembly is sandwiched between the pair of separators, at least one inner circumference of the pair of separators is formed so as to form an inner circumference sealing member that closes between the inner circumferential ribs of the pair of separators.
  • a laminated structure is produced by applying an inner peripheral seal member material forming an inner peripheral seal member to the rib.
  • step (2) executed after step (1), a notch portion forming member for forming a notch portion on the side surface of the laminated structure is disposed.
  • the outer peripheral seal member material forming the outer peripheral seal member is filled so as to form the outer peripheral seal member, the first closed space, and the notch.
  • the first closed space is formed between the inner peripheral seal member and the outer peripheral seal member disposed at a predetermined position, and the notch portion that allows the outer peripheral seal member to communicate the first closed space and the outside. Therefore, damage to the inner peripheral seal member when the outer peripheral seal member is disposed can be suppressed. As a result, it is possible to provide a fuel cell stack sealing structure and a method for manufacturing the fuel cell stack that can realize appropriate sealing by the sealing member even when the interval between the fuel cell single cells is small.
  • FIG. 1 is a perspective view illustrating a fuel cell stack according to the first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view illustrating the fuel cell stack according to the first embodiment of the present invention.
  • FIG. 3 is a perspective view showing the fuel cell module according to the first embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view taken along line IV-IV of the fuel cell module shown in FIG.
  • FIG. 7 is a schematic cross-sectional view showing some examples of the seal structure of the fuel cell stack.
  • FIG. 1 is a perspective view illustrating a fuel cell stack according to the first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view illustrating the fuel cell stack according to the first embodiment of the present invention.
  • FIG. 3 is a perspective view showing the fuel
  • FIG. 8 is a schematic cross-sectional view showing a modification of the shape of the outer peripheral rib.
  • FIG. 9 is a schematic cross-sectional view taken along line IV-IV of the fuel cell module shown in FIG.
  • FIG. 10A is a perspective view showing a fuel cell module according to the second embodiment of the present invention, and FIG. 10B is surrounded by a B line of the fuel cell module shown in FIG.
  • FIG. 11 is a perspective view showing a fuel cell module according to the third embodiment of the present invention.
  • FIG. 12A is a perspective view showing a fuel cell module according to the fourth embodiment of the present invention, and FIG. 12B is surrounded by a B line of the fuel cell module shown in FIG. FIG. FIG.
  • FIG. 13A is a schematic cross-sectional view showing the laminated structure before inserting the jig
  • FIG. 13B is a schematic cross-sectional view showing the laminated structure after inserting the jig.
  • 14A is a cross-sectional view showing a state before an example of the notch forming member is inserted into the laminated structure
  • FIG. 14B is an example of inserting the example of the notch forming member into the laminated structure. It is sectional drawing which shows a back state.
  • FIG. 15A is a perspective view showing a main part in a state before insertion of another example of the notch forming member into the laminated structure
  • FIG. 15B shows another example of the notch forming member.
  • FIG. 16A is a perspective view showing a main part in a state before inserting another example of the notch forming member into the laminated structure
  • FIG. 16B shows still another example of the notch forming member. It is a perspective view which shows the principal part of the state after inserting an example into a laminated structure.
  • PEFC polymer electrolyte fuel cell
  • FIG. 1 is a perspective view illustrating a fuel cell stack according to a first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view illustrating the fuel cell stack according to the first embodiment of the present invention.
  • FIG. 3 is a perspective view showing the fuel cell module according to the first embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view taken along line IV-IV of the fuel cell module shown in FIG.
  • FIG. 5 is a schematic cross-sectional view taken along line VV of the fuel cell module shown in FIG.
  • FIG. 6 is a schematic cross-sectional view taken along line VI-VI of the fuel cell module shown in FIG.
  • the fuel cell stack FS of the present embodiment includes a plurality of fuel cell modules M in which a plurality of fuel cell single cells C are stacked and integrated, and a fuel cell module M interposed therebetween. And a seal plate P to be mounted.
  • the fuel cell single cell C and the seal plate P in the illustrated example both have a rectangular plate shape having substantially the same vertical and horizontal dimensions.
  • two fuel cell modules M and one seal plate P are shown, but actually, more fuel cell modules M and seal plates P are stacked.
  • the fuel cell stack FS has end plates 56A and 56B disposed at both ends in the stacking direction of the fuel cell module M, respectively, and both surfaces on the long side of the single fuel cell C (in FIGS. 1 and 2).
  • Fastening plates 57A and 57B are provided on the upper and lower surfaces, and reinforcing plates 58A and 58B are provided on both surfaces on the short side.
  • the fastening plates 57A and 57B and the reinforcing plates 58A and 58B are connected to both end plates 56A and 56B by bolts (not shown).
  • the fuel cell stack FS has a case-integrated structure as shown in FIG. 1, and each fuel cell module M and the seal plate P are constrained and pressurized in the stacking direction so that each fuel cell single cell C is predetermined.
  • Each fuel cell module M has a notch (not shown), which will be described in detail later, on one surface (the lower surface in FIGS. 1 and 2) on the long side of the fuel cell module M. Yes.
  • one fastening plate 57B on the lower side in FIGS. 1 and 2 has a slit 57s in which the notch is exposed.
  • the fuel cell module M of the present embodiment has a structure in which a plurality of fuel cell single cells C are stacked. Further, the fuel cell module M has a seal plate P on the upper surface and an outer peripheral seal member 4 (4B) having a notch portion n, which will be described in detail later, on the side surface.
  • FIG. 3 a fuel cell module M in which 20 fuel cell single cells C are stacked is shown.
  • FIG. 4 and FIG. 5 for convenience, a fuel cell module M in which five fuel cell single cells C are stacked is shown.
  • the quantity of the fuel cell single cells C to be stacked is not particularly limited. For example, when a plurality of fuel cell single cells C are stacked and connected in series, the number of fuel cell single cells C to be stacked can be appropriately set according to the required performance.
  • the separator 2 constituting the seal plate P and the single fuel cell C has three manifold holes H1 to H3 and H4 to H6 at both ends on the short side.
  • the manifold holes H3 and H4 function as anode gas supply and discharge, respectively
  • the manifold holes H6 and H1 function as cathode gas supply and discharge, respectively
  • the manifold holes H2 and H5 are water. It functions as the supply and discharge of the cooling medium.
  • the fuel cell module M also has a similar seal plate P on the lower surface (see FIGS. 4 and 5). Moreover, these seal plates P are joined to the separator 2 by the fourth seal member 6 (see FIGS. 4 and 5). Furthermore, although not particularly limited, for example, a metal plate such as stainless steel can be used as the seal plate.
  • the outer peripheral seal member 4 (4B), which will be described in detail later, has a frame-shaped notch forming member 5A at the notch n.
  • the cutout forming member 5A is not particularly limited as long as electrical insulation can be ensured between the separators 2.
  • a notch forming member 5A for example, a resin-made member can be applied.
  • the notch forming member 5A may be made of a material similar to or the same material as the outer peripheral seal member material or the outer peripheral seal member material, or a material different from the outer peripheral seal member material or the outer peripheral seal member material. May be.
  • the fuel cell single cell C includes the membrane electrode assembly 1 and a pair of separators (2, 2) that sandwich the membrane electrode assembly 1. Then, a plurality of fuel cell single cells C are stacked to form a fuel cell stack. Further, each separator 2 forms an anode gas flow path Pag, a cathode gas flow path Pac, and a cooling medium flow path Pc. As the separator 2, for example, a metal such as stainless steel can be used.
  • the seal structure of the fuel cell stack includes an inner peripheral seal member (3, 3) and an outer peripheral seal member 4 (4A, 4B).
  • At least one separator 2 of the pair of separators (2, 2) has an inner peripheral rib 22 that protrudes toward at least the facing surface 2b of the pair of separators (2, 2) at the peripheral portion of the separator 2. . Furthermore, at least one separator 2 of the pair of separators (2, 2) has an outer peripheral rib 21 protruding on the outer peripheral side of the inner peripheral rib 22 toward at least the facing surface 2b side of the pair of separators (2, 2). Yes.
  • the separator having the inner peripheral rib and the separator having the outer peripheral rib may be the same or different.
  • both of the pair of separators (2, 2) are inner peripheral ribs (22, 22) protruding toward the facing surface 2 b of the pair of separators (2, 2) at the peripheral portion of the separator 2,
  • the inner peripheral sealing member 3 closes the space between the inner peripheral ribs (22, 22) of the pair of separators (2, 2) constituting the fuel cell single cell C.
  • the outer peripheral seal member 4 is disposed on the outer peripheral side of the inner peripheral seal member 3 and closes between the outer peripheral ribs (21, 21) of the pair of separators (2, 2).
  • the inner peripheral sealing member 3 is disposed between the protruding surface 22 a of the inner peripheral rib 22 and the frame 13. This facilitates the alignment of the inner peripheral seal member 3 and improves the sealing performance.
  • the outer peripheral end 13a of the frame 13 and the outer peripheral seal member 4 (4A) are disposed apart from each other. Preferably it is.
  • the seal structure of the fuel cell stack forms the first closed space CS between the inner peripheral seal member (3, 3) and the outer peripheral seal member 4 (4A, 4B).
  • the outer periphery sealing member 4 (4A, 4B) has the notch part n which makes the 1st closed space CS and the exterior E communicate.
  • the first closed space CS is along the circumferential direction of the separator 2 (in FIGS. 4 and 5, the direction is perpendicular to the paper surface and in FIG. 6 is the direction indicated by the arrow W). Communicate.
  • the outer peripheral seal member has one notch, but may have a plurality of notches according to required performance.
  • the membrane electrode assembly 1 includes an electrolyte membrane 11, electrodes (12, 12) that function as an anode and a cathode, and further includes a frame 13.
  • a membrane electrode assembly 1 is disposed, for example, in a state where the electrode 12 is joined to one surface of an electrolyte membrane 11 made of a polymer having a resin frame 13 attached to the entire periphery. It can be formed by disposing the electrode 12 in a state of being bonded to the other surface of the film 11.
  • the membrane electrode assembly one having no frame attached to the electrolyte membrane or one having a frame attached to a part of the periphery of the electrolyte membrane can be used.
  • an electrode composed of a catalyst layer disposed on the electrolyte membrane side and a gas diffusion layer disposed on the opposite side of the electrolyte membrane can be applied.
  • the catalyst layer for example, a layer containing carbon particles on which a catalyst component such as platinum is supported can be applied.
  • a gas diffusion layer what consists of porous bodies, such as carbon paper, can be applied, for example.
  • the outer peripheral ribs (21, 21) have a portion where the distance between the pair of separators (2, 2) is smaller than the distance D between the outer peripheral ends (2a, 2a) of the pair of separators (2, 2).
  • the interval d in such a small interval satisfies the relationship that d is smaller than D.
  • the outer peripheral ribs (21, 21) have projecting surfaces (21a, 21a) in which the distance between the pair of separators (2, 2) is constant. Further, the outer peripheral ribs (21, 21) have a narrow path N in which the distance between the pair of separators (2, 2) is smaller than the distance D between the outer peripheral ends (2a, 2a) of the pair of separators (2, 2). Such bottleneck spacing in N d N is, d N satisfy the relationship of D less.
  • the inner peripheral end 4a of the outer peripheral seal member 4 (4A) is disposed in the bottleneck N.
  • one or both of the outer peripheral seal member 4 (4A, 4B) and the inner peripheral seal member 3 have an adhesive function from the viewpoint of improving the sealing performance.
  • either one or both of the outer peripheral seal member 4 (4A, 4B) and the inner peripheral seal member 3 are preferably made of a filler from the viewpoint of improving the sealing performance.
  • examples of the filler include those made of a resin material from the viewpoint of improving the sealing property.
  • the outer peripheral ribs (21, 21) formed on both the pair of separators (2, 2) have a shape of the outer peripheral seal member 4 (4A), which will be described later, in a T-shape. It has become.
  • the outer peripheral rib and the inner peripheral rib described above can be formed by, for example, providing a recess by pressing on the surface opposite to the facing surface of the separator, and preferably providing a recess having a flat bottom surface.
  • the outer peripheral seal member 4 has an inner outer peripheral seal member 4A and an outer outer peripheral seal member 4B.
  • the inner peripheral seal member 4 ⁇ / b> A is integrally disposed at a position outside the narrow path N and the narrow path N. Further, the outer peripheral seal member 4B is disposed at a position outside the inner peripheral seal member 4A. Note that, on the side surface of the fuel cell module M, the outer peripheral seal member 4B is integrated.
  • thermosetting resin can be cited as a preferred example from the viewpoint of improving the sealing performance
  • outer peripheral seal member 4B a thermoplastic resin can be used from the viewpoint of improving the sealing performance.
  • the present invention is not limited to this.
  • the outer peripheral seal member may be an integrated member made of the same material for the inner peripheral seal member and the outer peripheral seal member.
  • thermosetting resin can be mentioned as a suitable example as an inner peripheral sealing member or a 4th sealing member, it is not limited to this, A thermoplastic resin can also be applied.
  • a first closed section is formed between an inner peripheral seal member and an outer peripheral seal member disposed at a predetermined position, and a notch portion that allows the first closed section and the outside to communicate with the outer peripheral seal member. Therefore, damage to the inner peripheral seal member when the outer peripheral seal member is disposed can be suppressed. As a result, it is possible to provide a fuel cell stack sealing structure capable of realizing appropriate sealing by the sealing member even when the interval between the fuel cell single cells is small.
  • the inner peripheral seal member (3, 3) is disposed inside the outer peripheral seal member 4 (4A, 4B), the seal of the power generation site is ensured. Further, the outer periphery provided on the outer peripheral ribs (21, 21) in a state where the first closed space CS is provided between the inner peripheral seal members (3, 3) disposed on the inner peripheral ribs (22, 22). Since the seal member 4 (4A, 4B) is disposed, the inner peripheral seal member (3, 3) is hardly damaged, and the seal of the power generation site is maintained.
  • the first closed space CS provided between the inner peripheral sealing member (3, 3) and the outer peripheral sealing member 4 (4A, 4B) is communicated with the external E. Therefore, as will be described in detail later, for example, when the outer peripheral seal member material is filled by injection molding, the filling of the outer peripheral seal member material is controlled not only by the injection pressure of the outer peripheral seal member material but also by air escape from the notch n. It becomes possible.
  • the inner peripheral seal member is not easily damaged, and the power generation site seal is maintained.
  • the outer peripheral rib forms a portion where the distance between the pair of separators is smaller than the distance between the outer peripheral ends of the pair of separators.
  • the outer peripheral ribs (21, 21) will be described in detail later.
  • the outer peripheral seal member material is filled by injection molding, the outer peripheral seal member material is more difficult to flow into the interior. Therefore, the outer peripheral seal member 4 (4A, 4B) can be reliably disposed at a predetermined position, and the predetermined first closed space CS can be reliably formed. As a result, the inner peripheral seal member is hardly damaged, and the seal of the power generation site is maintained.
  • the outer peripheral rib has a projecting surface in which the distance between the pair of separators is constant, and forms a narrow path in which the distance between the pair of separators is smaller than the distance between the outer peripheral ends of the pair of separators.
  • the outer peripheral ribs (21, 21) described above are provided, for example, the outer peripheral ribs (21, 21) that receive the injection pressure of the outer peripheral seal member material when the outer peripheral seal member material is filled by injection molding are described later in detail.
  • the outer peripheral sealing member 4 can be disposed at a desired position by the outer side surfaces (21b, 21b) of 21). Further, the bottleneck N formed by the outer peripheral ribs (21, 21) makes it difficult for the outer peripheral seal member material to flow into the interior, and the outer peripheral seal member 4 can be disposed at a desired position. As a result, the inner peripheral seal member is hardly damaged, and the seal of the power generation site is maintained.
  • the outer peripheral ribs (21, 21) described above are provided, for example, the outer peripheral ribs (21, 21) that receive the injection pressure of the outer peripheral seal member material when the outer peripheral seal member material is filled by injection molding are described later in detail.
  • the outer peripheral sealing member 4 can be disposed at a desired position by the outer side surfaces (21b, 21b) of 21). Further, the bottleneck N formed by the outer peripheral ribs (21, 21) makes it difficult for the outer peripheral seal member material to flow into the interior, and the outer peripheral seal member 4 can be disposed at a desired position. As a result, the inner peripheral seal member is hardly damaged, and the seal of the power generation site is maintained.
  • the outer peripheral seal member 4 (4A, 4B) and the inner peripheral seal member 3 can maintain the gap between the pair of separators in a bonded state. As a result, the inner peripheral seal member is hardly damaged, and the seal of the power generation site is maintained.
  • Either one or both of the outer peripheral seal member and the inner peripheral seal member are made of a filler.
  • the outer peripheral seal member 4 (4A, 4B) or the inner peripheral seal member 3 made of a filler can be filled and sealed in portions other than the first closed space or the like in the pair of separators. As a result, the seal of the power generation site is maintained.
  • the filler is made of a resin material.
  • the outer peripheral seal member 4 (4A, 4B) or the inner peripheral seal member 3 made of a resin material can be filled and sealed in portions other than the first closed space or the like in the pair of separators. As a result, the seal of the power generation site is maintained. In addition, appropriate electrical insulation between the pair of separators can be realized.
  • the outer peripheral seal member has an inner peripheral seal member and an outer peripheral seal member.
  • the inner peripheral seal member is integrally disposed at a position outside the bottleneck and the bottleneck.
  • the outer peripheral seal member is disposed at a position outside the inner peripheral seal member.
  • the main functions of the inner peripheral seal member 4A are the following (i) to (iii).
  • a predetermined first closed space CS is formed to realize an appropriate seal.
  • the inner end 4a is positioned in the narrow path N, and appropriate electrical insulation between the pair of separators (2, 2) is realized.
  • (Iii) When filling the outer peripheral seal member material forming the outer peripheral seal member 4B by injection molding, it is difficult for the outer peripheral seal member material to flow into the inside.
  • the main functions of the outer peripheral seal member 4B are the following (iv) and (v). (Iv) Arranged between the pair of separators (2, 2) to realize an appropriate seal. (V) The fuel cell module M is integrated on the outer side of the outer peripheral end 2a of the separator 2 to protect the side surface of the fuel cell module M from an external impact or the like.
  • the outer peripheral seal member has a notch forming member at the notch.
  • the notch forming member 5A when the notch forming member 5A is removed after the notch n is formed, an unnecessary load is applied to the side surface of the fuel cell module M, and the inner peripheral seal member 3 may be damaged. Thus, even after the notch n is formed, the inner peripheral seal member 3 is hardly damaged by the configuration having the notch forming member 5A, and the seal of the power generation site is maintained. Further, as the notch portion forming member 5A, when a material similar to the outer peripheral seal member material or the outer peripheral seal member material or a material made of the same material is applied, the filled outer peripheral seal member material or the outer outer peripheral seal member material is filled. Since the part in contact with the metal is partially melted by heat and welded, the airtightness and durability are high.
  • the inner peripheral seal member contains a thermosetting resin.
  • the outer peripheral seal member includes a thermoplastic resin.
  • the inner peripheral seal member that forms the first closed space CS when the outer peripheral seal member material is filled by injection molding after forming the laminated structure using the inner peripheral seal member material. 4A is not easily damaged by heat. As a result, the inner peripheral seal member is hardly damaged, and the seal of the power generation site is maintained.
  • the membrane electrode assembly has a frame held by inner peripheral ribs.
  • the inner peripheral seal member 3 is disposed between the projecting surface 22a of the inner peripheral rib 22 and the frame 13, the alignment of the inner peripheral seal member is facilitated and the sealing performance is improved. I can.
  • FIG. 7 is a schematic cross-sectional view showing some examples of the seal structure of the fuel cell stack.
  • symbol same as them is attached
  • subjected and description is abbreviate
  • the shape of the outer peripheral seal member 4 (4A) is T-shaped by the outer peripheral ribs (21, 21) formed on both the pair of separators (2, 2).
  • the outer peripheral rib 21 can be disperse
  • the outer peripheral rib 21 has the narrow path N formed by the protruding surface 21a, the inflow of material into the first closed space CS can be suppressed or prevented.
  • the outer peripheral rib 21 has a narrow path N formed by the protruding surface 21a, and the inner peripheral end 4a of the outer peripheral seal member 4 (4A) is disposed in the narrow path N. Therefore, a pair of separators ( The electrical insulation between 2 and 2) becomes more appropriate.
  • FIG. 7B it further has the following configuration (14), and although not shown in detail, it also has the configurations (15) and (16) as in FIG. It is also preferable to do. Thereby, even when the interval between the single fuel cells is small, not only an appropriate seal by the seal member of the power generation site but also an appropriate seal by the seal member of the cooling medium flow path can be realized.
  • a second inner peripheral sealing member that closes between the peripheral portions of the fuel cell single cells, and an outer peripheral side of the second inner peripheral seal member, and between the peripheral portions of the fuel cell single cells. And a second outer peripheral seal member that closes.
  • a second closed space is formed between the second inner peripheral seal member and the second outer peripheral seal member.
  • the second outer peripheral seal member has a cutout portion that allows the second closed space to communicate with the outside.
  • a first closed section CS is formed between the inner peripheral seal member 3 and the outer peripheral seal member 4, a cutout portion is formed in the outer peripheral seal member 4 so as to communicate the first closed section CS and the outside (not shown),
  • the notch part which forms the 2nd closed section CS2 between the 2nd inner circumference seal member 7 and the 2nd outer circumference seal member 8, and makes the 2nd outer circumference seal member 8 connect the 2nd closed section CS2 and the exterior which is not illustrated. Formed. Therefore, when the outer peripheral seal member 4 and the second outer peripheral seal member 8 are disposed, damage to the inner peripheral seal member 3 and the second inner peripheral seal member 7 can be suppressed.
  • the inner peripheral seal member 3 may be applied.
  • the outer peripheral seal member 4 may be applied as the second outer peripheral seal member 8.
  • the second inner peripheral seal member 7 and the second outer peripheral seal member 8 may be separately prepared.
  • a seal plate disposed between the fuel cell modules, a third inner peripheral seal member, 3 outer peripheral seal members.
  • the third inner peripheral seal member closes between the end separators of the fuel cell modules and the peripheral portions of the seal plate, and the third outer peripheral seal member is disposed on the outer peripheral side of the third inner peripheral seal member. In addition, the gap between the edge separators of the fuel cell modules and the peripheral portions of the seal plate is closed.
  • a third closed space is formed between the third inner peripheral seal member and the third outer peripheral seal member.
  • the third outer peripheral seal member has a cutout portion that allows the third closed space to communicate with the outside.
  • the fuel cell module has an end separator 2 'at the end thereof, and the seal plate P in the illustrated example is formed of the separator (2, 2). Then, a first closed section CS is formed between the inner peripheral seal member 3 and the outer peripheral seal member 4, and a notch portion is formed in the outer peripheral seal member 4 so as to communicate the first closed section CS and the outside (not shown).
  • a third closed section CS3 is formed between the third inner peripheral seal member 9 and the third outer peripheral seal member 10 (10A), and the third outer peripheral seal member communicates with the third closed section CS3 and the outside (not shown). A notch was formed. Therefore, when disposing the outer peripheral seal member 4 and the third outer peripheral seal member 10 (10A), damage to the inner peripheral seal member 3 and the third inner peripheral seal member 9 can be suppressed.
  • the inner peripheral seal member 3 may be applied.
  • the outer peripheral seal member 4 may be applied as the third outer peripheral seal member 10.
  • the third inner peripheral seal member 9 and the third outer peripheral seal member 10 may be separately prepared. Note that the configurations shown in FIGS. 7B and 7C may be combined.
  • the inner peripheral end 10a is arrange
  • FIG. 8 is a schematic cross-sectional view showing a modification of the shape of the outer peripheral rib.
  • FIG. 8A shows the outer peripheral ribs (21, 21) formed on both of the pair of separators (2, 2), and the shape of the outer peripheral seal member 4 (4A), which will be described in detail later, will be described in detail.
  • FIG. 8B shows an outer peripheral rib (21, 21) formed on one of the pair of separators (2, 2).
  • the outer peripheral seal member 4 (4A) which will be described in detail later, will be described later.
  • the outer periphery rib whose shape becomes F type is shown.
  • FIG. 8C shows an outer peripheral rib 21 formed on both of the pair of separators (2, 2).
  • the shape of the outer peripheral seal member 4 (4A), which will be described in detail later, is Y.
  • mold is shown.
  • FIG. 8D shows an outer peripheral rib 21 formed on one of the pair of separators (2, 2), and the shape of the outer peripheral seal member 4 (4A), which will be described in detail later, is L.
  • FIG. 8E shows outer peripheral ribs (21, 21) formed on both of the pair of separators (2, 2).
  • the outer peripheral seal member 4 (4A), which will be described in detail later, will be described later.
  • FIG. 8 (F) shows outer peripheral ribs (21, 21) formed on both of the pair of separators (2, 2), and an outer peripheral seal member 4 (4A) described later in detail formed thereby.
  • the outer peripheral rib whose shape becomes an inverse type is shown.
  • the outer peripheral rib 21 shown in FIG. 8 can be dispersed on the outer side surface 21b while receiving the injection pressure when the outer peripheral seal member material is filled by injection molding. Therefore, the inflow of material into the first closed space CS can be suppressed or prevented. Moreover, since the outer peripheral rib 21 shown in FIG. 8 has the bottleneck N formed by the protrusion surface 21a, the inflow of the material to the first closed space CS can be suppressed or prevented. Further, the outer peripheral rib 21 shown in FIG. 8 has a narrow path N formed by the protruding surface 21a, and the inner peripheral end 4a of the outer peripheral seal member 4 (4A) is located in the narrow path N. The electrical insulation between the separators (2, 2) becomes more appropriate.
  • the present inventors have examined a seal structure of a fuel cell stack that can realize an appropriate seal with a seal member even when the interval between the fuel cell single cells is small. It was found that it can be obtained.
  • the outer peripheral seal member is formed so as to form a closed space communicating with the inner peripheral seal member along the circumferential direction of the separator. It has been found that a new problem to be solved arises only by arranging.
  • a first closed space is formed between the inner peripheral seal member and the outer peripheral seal member disposed at a predetermined position, and the outer peripheral seal member has a notch portion that communicates the first closed space with the outside. It has been found that the above-described object can be achieved by having the configuration, and the present invention has been completed.
  • FIG. 10A is a perspective view showing a fuel cell module according to the second embodiment of the present invention, and FIG. 10B is surrounded by a B line of the fuel cell module shown in FIG. FIG.
  • the fuel cell module M2 of the present embodiment has a configuration in which the notch forming member 5A is covered with the outer peripheral seal member 4 (4B). Is different.
  • the notch portion forming member is integrated with the outer peripheral seal member, so that the airtightness and durability are higher.
  • FIG. 11 is a perspective view showing a fuel cell module according to a third embodiment of the present invention.
  • the outer peripheral seal member 4 (4B) has a pair of plate-shaped notch forming members 5B in the notch n, and the separator is a flat surface.
  • the configuration has a protruding measurement terminal 23 extending in the direction, and the measurement terminal 23 is exposed at the notch n, which is different from the fuel cell module of the first embodiment described above.
  • the measurement terminal is exposed in the cutout portion, so that, for example, a voltage test of a single fuel cell can be performed.
  • FIG. 12A is a perspective view showing a fuel cell module according to the fourth embodiment of the present invention, and FIG. 12B is surrounded by a B line of the fuel cell module shown in FIG. FIG.
  • the fuel cell module M4 of this embodiment has a configuration in which the notch portion forming member 5B is covered with the outer peripheral seal member 4 (4B). Is different.
  • the notch portion forming member is integrated with the outer peripheral seal member, so that airtightness and durability are higher.
  • the manufacturing method of the seal structure of the fuel cell stack or module of each embodiment described above will be described in detail with some examples.
  • a desired fuel cell stack or module seal structure can be produced with high productivity.
  • the seal structure of the fuel cell stack or module of the present invention is not limited to that obtained by such a manufacturing method.
  • An example of the manufacturing method of the fuel cell stack or module seal structure of the embodiment described above includes the following steps (1) to (3).
  • an inner peripheral seal member is formed on at least one of the pair of separators so as to form an inner peripheral seal member that closes between the inner peripheral ribs of the pair of separators.
  • a laminated structure is manufactured by applying an inner peripheral seal member material forming the seal member.
  • the inner peripheral sealing member material preferably has an adhesive function, is preferably filled, and is preferably a resin material. Specifically, it is preferable to apply a thermosetting adhesive. Moreover, in this process, when apply
  • step (2) performed after step (1), a notch portion forming member for forming a notch portion on the side surface of the laminated structure is disposed.
  • the notch part forming member used in the step (2) is not particularly limited as long as it can prevent or suppress the inflow of the material between the notch part and the measurement terminal.
  • the notch forming member for example, a resin frame shape or a pair of plate shapes can be applied. Further, the notch forming member can be appropriately arranged according to the position and quantity of the notch provided on the side surface of the fuel cell module.
  • the outer peripheral seal member is disposed on the outer peripheral side of the inner peripheral seal member, and forms an outer peripheral seal member that closes between the outer peripheral ribs of the pair of separators, the first closed space, and the notch.
  • the outer peripheral seal member material to be formed is filled by injection molding.
  • the outer peripheral sealing member material preferably has an adhesive function, is preferably filled, and is preferably a resin material. Specifically, it is preferable to apply a molten thermoplastic resin.
  • the thermoplastic resin has a melt viscosity of 80 Pa ⁇ s to 100 Pa ⁇ s at a temperature of 200 ° C. and a shear rate of 1000 / s in accordance with JIS K7199, for example. It is preferable to use a low viscosity thermoplastic resin such as polypropylene. Furthermore, it is preferable to fill such a low-viscosity thermoplastic resin at such a low pressure that the pressure applied to the inner peripheral sealing member is 60 MPa or more and 70 MPa or less, for example.
  • the filling of the outer peripheral seal member material can be controlled by the injection pressure of the outer peripheral seal member material.
  • the present invention is not limited to this.
  • the filling of the outer peripheral seal member material can be controlled not only by the injection pressure of the outer peripheral seal member material but also by air escape from the notch.
  • the seal structure of the fuel cell stack has a predetermined configuration, it is preferable to perform the following operations in the steps (1) to (3). With such a manufacturing method, a desired fuel cell stack seal structure can be produced with high productivity.
  • an uncoated portion that forms a notched portion that is aligned so as to form the first closed space and a part of the notched portion is provided, and a bottleneck of at least one of the pair of separators
  • the inner peripheral seal member material that forms the inner peripheral seal member, which is a part of the outer peripheral seal member, is further applied to a position outside the bottleneck.
  • coating an inner peripheral sealing member material or an inner peripheral sealing member material it can apply
  • the notch forming member is disposed on the uncoated portion on the side surface of the laminated structure.
  • the notch part formation member used in this process (2) will not be specifically limited if it can prevent thru
  • the notch forming member for example, a resin frame shape or a pair of plate shapes can be applied. Further, the notch forming member can be appropriately arranged according to the position and quantity of the notch provided on the side surface of the fuel cell module.
  • the outer peripheral seal member that is a part of the outer peripheral seal member is formed so as to form the outer peripheral seal member disposed at a position outside the inner peripheral seal member and the other part of the notch.
  • the outer peripheral seal member material is filled.
  • the degree of freedom of the melt viscosity and injection pressure of the thermoplastic resin is higher than in the above-described step (3).
  • the filling of the outer peripheral seal member material can be controlled by the injection pressure of the outer peripheral seal member material.
  • the injection pressure can be 60 MPa or more and 140 MPa or less.
  • the above-mentioned predetermined configurations are the following (i) to (vi).
  • the outer peripheral rib has a protruding surface in which the distance between the pair of separators is constant, and forms a narrow path in which the distance between the pair of separators is smaller than the distance between the outer peripheral ends of the pair of separators.
  • the inner peripheral end of the outer peripheral seal member is disposed in the bottleneck.
  • the outer peripheral seal member has an inner peripheral seal member and an outer peripheral seal member.
  • the inner peripheral seal member is integrally disposed at a position outside the bottleneck and the bottleneck.
  • the outer peripheral seal member is disposed at a position outside the inner peripheral seal member.
  • the outer peripheral seal member has a notch forming member at the notch.
  • FIG. 13A is a schematic cross-sectional view showing the laminated structure before the jig is inserted
  • FIG. 13B is a schematic cross-sectional view showing the laminated structure after the jig is inserted.
  • FIG. 14A is a cross-sectional view showing a state before an example of the notch forming member is inserted into the laminated structure
  • FIG. 14B is an example of inserting the example of the notch forming member into the laminated structure. It is sectional drawing which shows a back state.
  • the notch forming member 5A is arranged in an unapplied portion of the second inner resin material that becomes the notch n on the side surface of the multilayer structure LP. Thereby, a desired notch part can be formed.
  • FIG. 15A is a perspective view showing a main part in a state before insertion of another example of the notch forming member into the laminated structure, and FIG. 15B shows the other of the notch forming member. It is a perspective view which shows the principal part of the state after inserting an example into a laminated structure.
  • FIG. 16A is a perspective view showing a main part in a state before inserting still another example of the notch forming member into the laminated structure, and FIG. 16B shows the notch forming member. It is a perspective view which shows the principal part of the state after inserting another example into a laminated structure.
  • FIGS. 15 and 16 a stacked structure in which three fuel cell single cells are stacked is shown.
  • the notch forming member 5A is inserted at a position where the notch forming member 5A contacts the inner peripheral seal member 4A. To do.
  • the notch portion forming member 5B is inserted into a position where it comes into contact with the inner peripheral seal member 4A. Thereby, the inflow of the resin between the notch and the measurement terminal can be prevented or suppressed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

燃料電池スタックのシール構造は、膜電極接合体と膜電極接合体を挟持する一対のセパレータとを有する燃料電池単セルを複数積層して成る燃料電池スタックにおいて、セパレータの周縁部分において一対のセパレータの少なくとも対向面側に突出した内周リブ間を閉塞する内周シール部材と、内周リブの外周側において一対のセパレータの少なくとも対向面側に突出した外周リブ間を閉塞する外周シール部材と、を備える。内周シール部材と外周シール部材は、内周シール部材と外周シール部材との間で第1閉空間を形成している。外周シール部材は、第1閉空間と外部とを連通させる切欠部を有している。

Description

燃料電池スタックのシール構造及びその製造方法
 本発明は、燃料電池スタックのシール構造及びその製造方法に関する。
 従来、燃料電池単セルが複数積層された燃料電池として、複数の燃料電池単セル間の周辺部が、周方向に亘って射出成形された樹脂により一体的に接合されたものが提案されている(特許文献1参照。)。
 また、燃料電池単セルが複数積層された燃料電池として、複数の燃料電池単セル間の周辺部に、所定の絶縁構造体を備えたものが提案されている(特許文献2参照。)。
日本国特開2006-092924号公報 国際公開第2014/174944号
 しかしながら、上記特許文献1に記載された燃料電池にあっては、成形樹脂を射出成形により充填する際に、成形樹脂が第1シール部材と一体的に接合されるため、第1シール部材が損傷するおそれがあった。
 また、上記特許文献2に記載された燃料電池にあっては、上述の所定の絶縁構造体を確実に配置するには所定以上の間隔が必要となり、燃料電池単セルの間隔を小さくすることが極めて困難であった。
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明は、燃料電池単セルの間隔が小さい場合であっても、シール部材による適切なシールを実現し得る燃料電池スタックのシール構造及びその製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成するため鋭意検討を重ねた。その結果、所定の位置に配設された内周シール部材と外周シール部材との間で第1閉空間を形成し、外周シール部材に第1閉空間と外部とを連通させる切欠部を形成することにより、上記目的が達成できることを見出し、本発明を完成するに至った。
 すなわち、本発明の燃料電池スタックのシール構造は、膜電極接合体と膜電極接合体を挟持する一対のセパレータとを有する燃料電池単セルを複数積層して成る燃料電池スタックにおいて、内周シール部材と、外周シール部材と、を備える。一対のセパレータの少なくとも一方のセパレータが、セパレータの周縁部分において一対のセパレータの少なくとも対向面側に突出した内周リブを有している。一対のセパレータの少なくとも一方のセパレータが、内周リブの外周側において一対のセパレータの少なくとも対向面側に突出した外周リブを有している。内周シール部材は、燃料電池単セルを構成する一対のセパレータの内周リブ間を閉塞する。外周シール部材は、内周シール部材の外周側に配置され、かつ、一対のセパレータの外周リブ間を閉塞する。内周シール部材と外周シール部材とは、内周シール部材と外周シール部材との間で第1閉空間を形成している。外周シール部材は、第1閉空間と外部とを連通させる切欠部を有している。
 また、本発明の燃料電池スタックのシール構造の製造方法は、上記本発明の燃料電池スタックのシール構造を製造する方法であって、下記の工程(1)~(3)を含む。
 工程(1)においては、膜電極接合体を一対のセパレータで挟持する際に、一対のセパレータの内周リブ間を閉塞する内周シール部材を形成するように一対のセパレータの少なくとも一方の内周リブに内周シール部材を形成する内周シール部材材料を塗布して、積層構造体を作製する。
 工程(1)の後に実行される工程(2)においては、積層構造体の側面に切欠部を形成するための切欠部形成部材を配置する。
 工程(2)の後に実行される工程(3)においては、積層構造体を金型に配設し、内周シール部材の外周側に配置され、かつ、一対のセパレータの外周リブ間を閉塞する外周シール部材と第1閉空間と切欠部とを形成するように外周シール部材を形成する外周シール部材材料を充填する。
 本発明によれば、所定の位置に配設された内周シール部材と外周シール部材との間で第1閉空間を形成し、外周シール部材に第1閉空間と外部とを連通させる切欠部を形成したため、外周シール部材を配置する際の内周シール部材の損傷を抑制することができる。その結果、燃料電池単セルの間隔が小さい場合であっても、シール部材による適切なシールを実現し得る燃料電池スタックのシール構造及びその製造方法を提供することができる。
図1は、本発明の第1の実施形態に係る燃料電池スタックを説明する斜視図である。 図2は、本発明の第1の実施形態に係る燃料電池スタックを説明する分解状態の斜視図である。 図3は、本発明の第1の実施形態に係る燃料電池モジュールを示す斜視図である。 図4は、図3に示した燃料電池モジュールのIV-IV線に沿った模式的な断面図である。 図5は、図3に示した燃料電池モジュールのV-V線に沿った模式的な断面図である。 図6は、図3に示した燃料電池モジュールのVI-VI線に沿った模式的な断面図である。 図7は、燃料電池スタックのシール構造の若干例を示す模式的な断面図である。 図8は、外周リブの形状の変形例を示す模式的な断面図である。 図9は、図3に示した燃料電池モジュールのIV-IV線に沿った模式的な断面図である。 図10(A)は、本発明の第2の実施形態に係る燃料電池モジュールを示す斜視図であり、図10(B)は、図10(A)に示した燃料電池モジュールのB線で包囲した部分の拡大図である。 図11は、本発明の第3の実施形態に係る燃料電池モジュールを示す斜視図である。 図12(A)は、本発明の第4の実施形態に係る燃料電池モジュールを示す斜視図であり、図12(B)は、図12(A)に示した燃料電池モジュールのB線で包囲した部分の拡大図である。 図13(A)は、治具挿入前の積層構造体を示す模式的な断面図であり、図13(B)は、治具挿入後の積層構造体を示す模式的な断面図である。 図14(A)は、切欠部形成部材の一例を積層構造体に挿入する前の状態を示す断面図であり、図14(B)は、切欠部形成部材の一例を積層構造体に挿入した後の状態を示す断面図である。 図15(A)は、切欠部形成部材の他の一例を積層構造体に挿入する前の状態の要部を示す斜視図であり、図15(B)は、切欠部形成部材の他の一例を積層構造体に挿入した後の状態の要部を示す斜視図である。 図16(A)は、切欠部形成部材のさらに他の一例を積層構造体に挿入する前の状態の要部を示す斜視図であり、図16(B)は、切欠部形成部材のさらに他の一例を積層構造体に挿入した後の状態の要部を示す斜視図である。
 以下、本発明の燃料電池スタックのシール構造及びその製造方法について詳細に説明する。なお、特に限定されるものではないが、燃料電池としては、固体高分子形燃料電池(PEFC)を例に挙げて説明する。
(第1の実施形態)
 まず、本発明の第1の実施形態に係る燃料電池スタック及び燃料電池モジュールについて図面を参照しながら詳細に説明する。なお、以下の実施形態で引用する図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 図1は、本発明の第1の実施形態に係る燃料電池スタックを説明する斜視図である。また、図2は、本発明の第1の実施形態に係る燃料電池スタックを説明する分解状態の斜視図である。そして、図3は、本発明の第1の実施形態に係る燃料電池モジュールを示す斜視図である。また、図4は、図3に示した燃料電池モジュールのIV-IV線に沿った模式的な断面図である。さらに、図5は、図3に示した燃料電池モジュールのV-V線に沿った模式的な断面図である。さらに、図6は、図3に示した燃料電池モジュールのVI-VI線に沿った模式的な断面図である。
 図1及び図2に示すように、本実施形態の燃料電池スタックFSは、燃料電池単セルCを複数積層して一体化した複数の燃料電池モジュールMと、燃料電池モジュールM同士の間に介装されるシールプレートPとを備えている。図示例の燃料電池単セルC及びシールプレートPは、いずれもほぼ同じ縦横寸法を有する矩形板状の形状を有している。なお、図2には、2つの燃料電池モジュールMと、1つのシールプレートPを示しているが、実際には、それ以上の数の燃料電池モジュールM及びシールプレートPを積層する。
 また、燃料電池スタックFSは、燃料電池モジュールMの積層方向の両端部に、エンドプレート56A,56Bをそれぞれ配置し、燃料電池単セルCの長辺側となる両面(図1及び図2中で上下面)に、締結板57A,57Bが設けてあるとともに、短辺側となる両面に、補強板58A,58Bが設けてある。各締結板57A,57B及び補強板58A,58Bは、図示しないボルトにより、両エンドプレート56A,56Bに連結する。
 このようにして、燃料電池スタックFSは、図1に示すようなケース一体型構造となり、各燃料電池モジュールM及びシールプレートPを積層方向に拘束・加圧して個々の燃料電池単セルCに所定の接触面圧を加え、ガスシール性や導電性等を良好に維持する。また、各燃料電池モジュールMは、燃料電池モジュールMの長辺側となる一方の面(図1及び図2中で下面)に、詳しくは後述する切欠部(図示せず。)を有している。これに対して、図1及び図2中で下側となる一方の締結板57Bは、切欠部が露出するスリット57sを有している。
 そして、図3に示すように、本実施形態の燃料電池モジュールMは、燃料電池単セルCが複数積層された構造を有する。また、燃料電池モジュールMは、上面に、シールプレートPを有し、側面に、詳しくは後述する切欠部nを有する外周シール部材4(4B)を有する。
 なお、図3においては、燃料電池モジュールMとして、20個の燃料電池単セルCが積層されたものを示している。一方、図4及び図5においては、便宜上、燃料電池モジュールMとして、5個の燃料電池単セルCが積層されたものを示している。ここで、積層される燃料電池単セルCの数量は、特に限定されるものではない。例えば、燃料電池単セルCを複数積層して直列接続する場合には、要求される性能に応じて積層する燃料電池単セルCの数量を適宜設定することができる。
 シールプレートPや燃料電池単セルCを構成するセパレータ2は、短辺側の両端部に、各々3個ずつのマニホールド穴H1~H3,H4~H6を有している。例えば、マニホールド穴H3,H4は、それぞれアノードガスの供給用、排出用として機能し、マニホールド穴H6,H1は、それぞれカソードガスの供給用、排出用として機能し、マニホールド穴H2,H5は、水などの冷却媒体の供給用、排出用として機能する。
 なお、燃料電池モジュールMは、下面にも、同様のシールプレートPを有する(図4及び図5参照。)。また、これらのシールプレートPは、第4シール部材6によりセパレータ2に接合されている(図4及び図5参照。)。さらに、特に限定されるものではないが、シールプレートとしては、例えば、ステンレスなどの金属製のものを適用することができる。
 詳しくは後述する外周シール部材4(4B)は、切欠部nに枠状形状の切欠部形成部材5Aを有する。なお、切欠部形成部材5Aは、セパレータ2の間において電気絶縁を確保し得るものであれば、特に限定されるものではない。このような切欠部形成部材5Aとしては、例えば、樹脂製のものを適用することができる。また、切欠部形成部材5Aは、詳しくは後述する外周シール部材材料や外側外周シール部材材料の射出成形による充填の際に、形状を維持し得るものを適用することが好ましい。切欠部形成部材5Aは、外周シール部材材料や外側外周シール部材材料と同系の材料又は同一材料のものを適用してもよく、外周シール部材材料や外側外周シール部材材料と異種材料のものを適用してもよい。
 また、図4~図6に示すように、燃料電池単セルCは、膜電極接合体1と、膜電極接合体1を挟持する一対のセパレータ(2,2)とを有する。そして、複数の燃料電池単セルCが積層されて燃料電池スタックが形成される。さらに、各セパレータ2は、アノードガス流路Pag、カソードガス流路Pac、冷却媒体流路Pcを形成する。なお、セパレータ2としては、例えば、ステンレスなどの金属製のものを適用することができる。
 そして、このような燃料電池スタックにおいて、燃料電池スタックのシール構造は、内周シール部材(3,3)と、外周シール部材4(4A,4B)とを備える。
 また、一対のセパレータ(2,2)の少なくとも一方のセパレータ2が、セパレータ2の周縁部分において一対のセパレータ(2,2)の少なくとも対向面2b側に突出した内周リブ22を有している。さらに、一対のセパレータ(2,2)の少なくとも一方のセパレータ2が、内周リブ22の外周側において一対のセパレータ(2,2)の少なくとも対向面2b側に突出した外周リブ21を有している。内周リブを有するセパレータと外周リブを有するセパレータとは同一であっても異なってもよい。図示例においては、一対のセパレータ(2、2)の双方が、セパレータ2の周縁部分において、一対のセパレータ(2,2)の対向面2b側に突出した内周リブ(22,22)と、内周リブ(22,22)の外周側において一対のセパレータ(2,2)の対向面2b側に突出した外周リブ(21,21)とを有する。
 また、内周シール部材3は、燃料電池単セルCを構成する一対のセパレータ(2,2)の内周リブ(22,22)間を閉塞する。さらに、外周シール部材4は、内周シール部材3の外周側に配置され、かつ、一対のセパレータ(2,2)の外周リブ(21,21)間を閉塞する。なお、図示例においては、内周シール部材3は、内周リブ22の突出面22aとフレーム13との間に配設されている。これにより、内周シール部材3の位置合わせが容易となるとともに、シール性が向上する。また、内周シール部材3への外力の入力を低減して、シール性を確保するという観点からは、フレーム13の外周端13aと外周シール部材4(4A)とが離間して配設されていることが好ましい。
 このようにして、燃料電池スタックのシール構造は、内周シール部材(3,3)と外周シール部材4(4A,4B)との間で第1閉空間CSを形成している。なお、外周シール部材4(4A,4B)は、第1閉空間CSと外部Eとを連通させる切欠部nを有している。また、第1閉空間CSは、セパレータ2の周方向(図4及び図5においては、紙面に対して垂直な方向であり、図6においては、矢印Wで示す方向である。)に沿って連通している。なお、図示例においては、外周シール部材は、1つの切欠部を有しているが、要求される性能に応じて、複数の切欠部を有していてもよい。
 膜電極接合体1は、電解質膜11と、アノード、カソードとして機能する電極(12,12)とを有し、さらにフレーム13を有する。なお、このような膜電極接合体1は、例えば、樹脂製のフレーム13が周囲全体に取り付けられた高分子からなる電解質膜11の一方の面に電極12を接合した状態で配設し、電解質膜11の他方の面に電極12を接合した状態で配設することによって形成することができる。また、図示しないが、膜電極接合体としては、電解質膜にフレームを取り付けないものや電解質膜の周囲の一部にフレームを取り付けたものを用いることもできる。
 なお、図示しないが、電極としては、例えば、電解質膜の側に配設される触媒層と、電解質膜と反対の側に配設されるガス拡散層とからなるものを適用することができる。ここで、触媒層としては、例えば、白金などの触媒成分が担持されたカーボン粒子を含むものを適用することができる。また、ガス拡散層としては、例えば、カーボンペーパなどの多孔質体からなるものを適用することができる。
 そして、外周リブ(21,21)は、一対のセパレータ(2,2)の外周端(2a,2a)の間隔Dより一対のセパレータ(2,2)の間隔が小さい部位を有する。このような間隔が小さい部位における間隔dは、dがDより小さいという関係を満たす。
 また、外周リブ(21,21)は、一対のセパレータ(2,2)の間隔が一定である突出面(21a,21a)を有する。さらに、外周リブ(21,21)は、一対のセパレータ(2,2)の外周端(2a,2a)の間隔Dより一対のセパレータ(2,2)の間隔が小さい隘路Nを有する。このような隘路Nにおける間隔dは、dがDより小さいという関係を満たす。
 さらに、外周シール部材4(4A)の内周端4aは、隘路Nに配設されている。
 また、特に限定されるものではないが、外周シール部材4(4A、4B)及び内周シール部材3のいずれか一方又は双方は、シール性の向上の観点から、接着機能を有することが好ましい。
 さらに、特に限定されるものではないが、外周シール部材4(4A、4B)及び内周シール部材3のいずれか一方又は双方は、シール性の向上の観点から、充填剤からなることが好ましい。
 また、特に限定されるものではないが、充填剤としては、シール性の向上の観点から、樹脂材料からなるものを好適例として挙げることができる。
 なお、図4及び図5においては、一対のセパレータ(2,2)の双方に形成された外周リブ(21,21)により、詳しくは後述する外周シール部材4(4A)の形状がT型となっている。
 ここで、上述した外周リブや内周リブは、例えば、セパレータの対向面と反対側の面にプレス加工により窪み、好適には底面が平坦な窪みを設けることによって形成することができる。
 また、外周シール部材4は、内側外周シール部材4Aと、外側外周シール部材4Bとを有する。そして、内側外周シール部材4Aは、隘路N及び隘路Nより外側の位置に一体的に配設されている。また、外側外周シール部材4Bは、内側外周シール部材4Aより外側の位置に配設されている。なお、燃料電池モジュールMの側面においては、外側外周シール部材4Bは一体化されている。
 さらに、内側外周シール部材4Aとしては、シール性の向上の観点から、熱硬化性樹脂を好適例として挙げることができ、外側外周シール部材4Bとしては、シール性の向上の観点から、熱可塑性樹脂を好適例として挙げることができる。しかしながら、これに限定されるものではない。例えば、図示しないが、外周シール部材は、内側外周シール部材と、外側外周シール部材とが同一材料からなり、一体化されたものであってもよい。なお、内周シール部材や第4シール部材としては、熱硬化性樹脂を好適例として挙げることができるが、これに限定されるものではなく、熱可塑性樹脂を適用することもできる。
 本実施形態においては、所定の位置に配設された内周シール部材と外周シール部材との間で第1閉区間を形成し、外周シール部材に第1閉区間と外部とを連通させる切欠部を形成したため、外周シール部材を配置する際の内周シール部材の損傷を抑制することができる。その結果、燃料電池単セルの間隔が小さい場合であっても、シール部材による適切なシールを実現し得る燃料電池スタックのシール構造を提供することができる。
 つまり、外周シール部材4(4A,4B)より内側に、内周シール部材(3,3)が配設されているため、発電部位のシールは確保される。また、内周リブ(22,22)に配設された内周シール部材(3,3)との間に第1閉空間CSを設けた状態で外周リブ(21,21)に設けられた外周シール部材4(4A,4B)が配設されているため、内周シール部材(3,3)が損傷を受け難く、発電部位のシールは維持される。
 さらに、内周シール部材(3,3)と外周シール部材4(4A,4B)との間に設けられる第1閉空間CSを外部Eと連通させている。そのため、詳しくは後述するが、例えば、外周シール部材材料を射出成形により充填する際に、外周シール部材材料の充填を外周シール部材材料の射出圧力とともに、切欠部nからの空気抜けによっても制御することが可能となる。
 その結果、内周シール部材が損傷を受け難く、発電部位のシールは維持される。
 また、上述したように、下記の(1)の構成をさらに有するものとしたため、燃料電池単セルの間隔が小さい場合であっても、発電部位のシール部材によるより適切なシールを実現し得る。
(1)外周リブが、一対のセパレータの外周端の間隔より一対のセパレータの間隔が小さい部位を形成している。
 つまり、外周リブ(21,21)により、詳しくは後述するが、例えば、外周シール部材材料を射出成形により充填する際に、外周シール部材材料がさらに内部に流入し難くなる。そのため、外周シール部材4(4A,4B)を所定の位置に確実に配設することができ、所定の第1閉空間CSを確実に形成することができる。その結果、内周シール部材が損傷を受け難く、発電部位のシールは維持される。
 また、上述したように、下記の(2)の構成をさらに有するものとしたため、燃料電池単セルの間隔が小さい場合であっても、発電部位のシール部材によるより適切なシールを実現し得る。
(2)外周リブが、一対のセパレータの間隔が一定である突出面を有しており、かつ、一対のセパレータの外周端の間隔より一対のセパレータの間隔が小さい隘路を形成している。
 つまり、上述した外周リブ(21,21)を設けたため、詳しくは後述するが、例えば、外周シール部材材料を射出成形により充填する際に、外周シール部材材料の射出圧力を受ける外周リブ(21,21)の外側側面(21b,21b)によって、外周シール部材4を所望の位置に配設することができる。また、外周リブ(21,21)によって形成された隘路Nによって、外周シール部材材料がさらに内部に流入し難くなり、外周シール部材4を所望の位置に配設することができる。その結果、内周シール部材が損傷を受け難く、発電部位のシールは維持される。
 さらに、上述したように、下記の(3)の構成をさらに有するものとしたため、燃料電池単セルの間隔が小さい場合であっても、発電部位のシール部材によるより適切なシールと、一対のセパレータの間における適切な電気絶縁とを実現し得る。
(3)外周シール部材の内周端が、隘路に配設されている。
 つまり、上述した外周リブ(21,21)を設けたため、詳しくは後述するが、例えば、外周シール部材材料を射出成形により充填する際に、外周シール部材材料の射出圧力を受ける外周リブ(21,21)の外側側面(21b,21b)によって、外周シール部材4を所望の位置に配設することができる。また、外周リブ(21,21)によって形成された隘路Nによって、外周シール部材材料がさらに内部に流入し難くなり、外周シール部材4を所望の位置に配設することができる。その結果、内周シール部材が損傷を受け難く、発電部位のシールは維持される。
 さらに、外周シール部材4の内周端4aを隘路Nに配設させることにより、外周リブ(21,21)の間隔を維持することができるため、一対のセパレータ(2,2)の間における適切な電気絶縁を実現し得る。
 また、上述したように、下記の(4)の構成をさらに有するものとしたため、燃料電池単セルの間隔が小さい場合であっても、発電部位のシール部材によるより適切なシールを実現し得る。
(4)外周シール部材及び内周シール部材のいずれか一方又は双方が、接着機能を有する。
 つまり、外周シール部材4(4A、4B)や内周シール部材3が、一対のセパレータにおける間隔を接着した状態で維持することができる。その結果、内周シール部材が損傷を受け難く、発電部位のシールは維持される。
 また、上述したように、下記の(5)の構成をさらに有するものとしたため、燃料電池単セルの間隔が小さい場合であっても、発電部位のシール部材によるより適切なシールを実現し得る。
(5)外周シール部材及び内周シール部材のいずれか一方又は双方が、充填剤からなる。
 つまり、一対のセパレータにおける第1閉空間等以外の部分に、充填剤からなる外周シール部材4(4A,4B)や内周シール部材3を充填してシールすることができる。その結果、発電部位のシールは維持される。
 また、上述したように、下記の(6)の構成をさらに有するものとしたため、燃料電池単セルの間隔が小さい場合であっても、発電部位のシール部材によるより適切なシールを実現し得る。
(6)充填剤が、樹脂材料からなる。
 つまり、一対のセパレータにおける第1閉空間等以外の部分に、樹脂材料からなる外周シール部材4(4A,4B)や内周シール部材3を充填してシールすることができる。その結果、発電部位のシールは維持される。また、一対のセパレータの間における適切な電気絶縁を実現し得る。
 また、上述したように、下記の(7)~(9)の構成をさらに有するものとしたため、燃料電池における単セルのセパレータ間隔が小さい場合であっても、発電部位のシール部材によるより適切なシールと、一対のセパレータの間における適切な電気絶縁とを実現し得る。
(7)外周シール部材が、内側外周シール部材と、外側外周シール部材とを有する。
(8)内側外周シール部材が、隘路及び隘路より外側の位置に一体的に配設されている。
(9)外側外周シール部材が、内側外周シール部材より外側の位置に配設されている。
 つまり、内側外周シール部材4A及び外側外周シール部材4Bのそれぞれに機能を分けることにより、燃料電池単セルCの間隔が小さい場合であっても、発電部位のシール部材によるより適切なシールと、一対のセパレータ(2,2)の間における適切な電気絶縁とを実現し得る。
 そして、内側外周シール部材4Aの主な機能は、下記の(i)~(iii)である。
(i)所定の第1閉空間CSを形成して、適切なシールを実現する。
(ii)隘路Nに内端部4aを位置させ、一対のセパレータ(2,2)の間における適切な電気絶縁を実現する。
(iii)外側外周シール部材4Bを形成する外側外周シール部材材料を射出成形により充填する際に、外側外周シール部材材料を内部に流入し難くする。
 また、外側外周シール部材4Bの主な機能は、下記の(iv)及び(v)である。
(iv)一対のセパレータ(2,2)の間に配設されて、適切なシールを実現する。
(v)セパレータ2の外周端2aより外側で一体化して、燃料電池モジュールMの側面を外部からの衝撃などから保護する。
 さらに、上述したように、下記の(10)の構成をさらに有するものとしたため、燃料電池単セルの間隔が小さい場合であっても、発電部位のシール部材によるより適切なシールを実現し得る。
(10)外周シール部材が、切欠部に切欠部形成部材を有する。
 つまり、例えば、切欠部nの形成後に切欠部形成部材5Aを除去する場合、燃料電池モジュールMの側面に不要な負荷がかかり、内周シール部材3が損傷を受けるおそれがある。そこで、切欠部n形成後においても、切欠部形成部材5Aを有する構成とすることにより、内周シール部材3が損傷を受け難く、発電部位のシールは維持される。また、切欠部形成部材5Aとして、外周シール部材材料や外側外周シール部材材料と同系の材料や同一材料からなるものを適用した場合、充填された溶融状態の外周シール部材材料や外側外周シール部材材料と接触した部位が熱により部分的に溶けて溶着するので、気密性や耐久性が高いものとなる。
 また、上述したように、下記の(11)及び(12)の構成をさらに有するものとしたため、燃料電池単セルの間隔が小さい場合であっても、発電部位のシール部材によるより適切なシールを実現し得る。
(11)内側外周シール部材が、熱硬化性樹脂を含む。
(12)外側外周シール部材が、熱可塑性樹脂を含む。
 つまり、詳しくは後述するが、内側外周シール部材材料を用いて積層構造体を形成した後、外側外周シール部材材料を射出成形により充填する際に、第1閉空間CSを形成する内側外周シール部材4Aが熱による損傷を受け難い。その結果、内周シール部材が損傷を受け難く、発電部位のシールは維持される。
 さらに、上述したように、下記の(13)の構成をさらに有するものとしたため、燃料電池単セルの間隔が小さい場合であっても、発電部位のシール部材によるより適切なシールを実現し得る。
(13)膜電極接合体が、内周リブにより保持されているフレームを有する。
 つまり、内周シール部材3が、内周リブ22の突出面22aとフレーム13との間に配設されていることにより、内周シール部材の位置合わせが容易となるとともに、シール性を向上することできる。
 ここで、燃料電池スタックのシール構造の若干例について図面を用いて説明する。図7は、燃料電池スタックのシール構造の若干例を示す模式的な断面図である。なお、上述において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
 図7(A)に示すように、一対のセパレータ(2,2)の双方に形成された外周リブ(21,21)により、外周シール部材4(4A)の形状がT型となっている。そして、外周リブ21は、その外側側面21bにおいて、外側外周シール部材を形成する外側外周シール部材材料を射出成形により充填する際の射出圧力を受けつつ、分散させることができる。そのため、第1閉空間CSへの材料の流入を抑制ないし防止することができる。
 また、外周リブ21は、その突出面21aにより形成された隘路Nを有しているため、第1閉空間CSへの材料の流入を抑制ないし防止することができる。
 さらに、外周リブ21は、その突出面21aにより形成された隘路Nを有しており、その隘路Nに外周シール部材4(4A)の内周端4aが配設されるため、一対のセパレータ(2,2)の間における電気絶縁がより適切なものとなる。
 また、図7(B)に示すように、下記の(14)の構成をさらに有し、詳しくは図示しないが、図5と同様に、(15)及び(16)の構成をさらに有するものとすることも好ましい。これにより、燃料電池単セルの間隔が小さい場合であっても、発電部位のシール部材による適切なシールだけでなく、冷却媒体流路のシール部材による適切なシールを実現し得る。
(14)燃料電池単セルの周縁部分同士の間を閉塞する第2内周シール部材と、第2内周シール部材の外周側に配置され、かつ、燃料電池単セルの周縁部分同士の間を閉塞する第2外周シール部材とを備える。
(15)第2内周シール部材と第2外周シール部材との間で第2閉空間を形成している。
(16)第2外周シール部材が、第2閉空間と外部とを連通させる切欠部を有している。
 つまり、内周シール部材3と外周シール部材4との間で第1閉区間CSを形成し、外周シール部材4に第1閉区間CSと図示しない外部とを連通させる切欠部を形成し、さらに、第2内周シール部材7と第2外周シール部材8との間で第2閉区間CS2を形成し、第2外周シール部材8に第2閉区間CS2と図示しない外部とを連通させる切欠部形成した。そのため、外周シール部材4や第2外周シール部材8を配置する際に、それぞれ内周シール部材3や第2内周シール部材7の損傷を抑制することができる。
 その結果、燃料電池単セルの間隔が小さい場合であっても、シール部材によるより適切なシールを実現し得る燃料電池スタックのシール構造を提供することができる。
 なお、第2内周シール部材7としては、内周シール部材3を適用してもよい。また、第2外周シール部材8としては、外周シール部材4を適用してもよい。しかしながら、第2内周シール部材7や第2外周シール部材8を別途用意してもよい。
 さらに、図7(C)に示すように、下記の(17)及び(18)の構成をさらに有し、詳しくは図示しないが、図5と同様に(19)及び(20)の構成をさらに有するものとすることにより、燃料電池単セルの間隔が小さい場合であっても、発電部位のシール部材による適切なシールだけでなく、シールプレートにおける冷却媒体流路のシール部材による適切なシールを実現し得る。
(17)燃料電池単セルを複数積層して成る燃料電池モジュールを複数積層して成る燃料電池スタック構造において、燃料電池モジュールの間に配置されるシールプレートと、第3内周シール部材と、第3外周シール部材とを備える。
(18)第3内周シール部材は、各燃料電池モジュールの端部セパレータ及びシールプレートの周縁部分同士の間を閉塞し、第3外周シール部材は、第3内周シール部材の外周側に配置され、かつ、各燃料電池モジュールの端部セパレータ及びシールプレートの周縁部分同士の間を閉塞する。
(19)第3内周シール部材と第3外周シール部材との間で第3閉空間を形成している。
(20)第3外周シール部材が、第3閉空間と外部とを連通させる切欠部を有している。
 つまり、燃料電池モジュールにおいては、その端部に端部セパレータ2’を有しており、図示例のシールプレートPは、セパレータ(2、2)から形成されている。そして、内周シール部材3と外周シール部材4との間で第1閉区間CSを形成し、外周シール部材4に第1閉区間CSと図示しない外部とを連通させる切欠部を形成し、さらに、第3内周シール部材9と第3外周シール部材10(10A)との間で第3閉区間CS3を形成し、第3外周シール部材に第3閉区間CS3と図示しない外部とを連通させる切欠部を形成した。そのため、外周シール部材4や第3外周シール部材10(10A)を配置する際に、それぞれ内周シール部材3や第3内周シール部材9の損傷を抑制することができる。
 その結果、燃料電池単セルの間隔が小さい場合であっても、シール部材によるより適切なシールを実現し得る燃料電池スタックのシール構造を提供することができる。
 なお、第3内周シール部材9としては、内周シール部材3を適用してもよい。また、第3外周シール部材10としては、外周シール部材4を適用してもよい。しかしながら、第3内周シール部材9や第3外周シール部材10を別途用意してもよい。なお、図7(B)及び(C)に示した構成を組み合わせてもよい。また、第3外周シール部材10(10A)においても、外周シール部材と同様の理由から、内周端10aは、隘路Nに配設されていることが好ましい。
 また、外周リブの形状の若干の変形例について図面を参照しながら詳細に説明する。図8は、外周リブの形状の変形例を示す模式的な断面図である。図8(A)は、一対のセパレータ(2,2)の双方に形成された外周リブ(21,21)であって、これにより形成される詳しくは後述する外周シール部材4(4A)の形状がH型となる外周リブを示している。そして、図8(B)は、一対のセパレータ(2,2)の一方に形成された外周リブ(21,21)であって、これにより形成される詳しくは後述する外周シール部材4(4A)の形状がF型となる外周リブを示している。また、図8(C)は、一対のセパレータ(2,2)の双方に形成された外周リブ21であって、これにより形成される詳しくは後述する外周シール部材4(4A)の形状がY型となる外周リブを示している。さらに、図8(D)は、一対のセパレータ(2,2)の一方に形成された外周リブ21であって、これにより形成される詳しくは後述する外周シール部材4(4A)の形状がL型となる外周リブを示している。また、図8(E)は、一対のセパレータ(2,2)の双方に形成された外周リブ(21,21)であって、これにより形成される詳しくは後述する外周シール部材4(4A)の形状がU型となる外周リブを示している。さらに、図8(F)は、一対のセパレータ(2,2)の双方に形成された外周リブ(21,21)であって、これにより形成される詳しくは後述する外周シール部材4(4A)の形状がインバース型となる外周リブを示している。
 図8に示した外周リブ21は、その外側側面21bにおいて、外周シール部材材料を射出成形により充填する際の射出圧力を受けつつ、分散させることができる。そのため、第1閉空間CSへの材料の流入を抑制ないし防止することができる。また、図8に示した外周リブ21は、その突出面21aにより形成された隘路Nを有しているため、第1閉空間CSへの材料の流入を抑制ないし防止することができる。さらに、図8に示した外周リブ21は、その突出面21aにより形成された隘路Nを有しており、その隘路Nに外周シール部材4(4A)の内周端4aが位置するため、一対のセパレータ(2,2)の間における電気絶縁がより適切なものとなる。
 一方で、本発明者らが、燃料電池単セルの間隔が小さい場合であっても、シール部材による適切なシールを実現し得る燃料電池スタックのシール構造について検討していたところ、全く異なる効果が得られることを見出した。
 具体的には、例えば、内周シール部材が損傷を受け難くするために、内周シール部材との間に、セパレータの周方向に沿って連通する閉空間を形成するように、外周シール部材を配設しただけでは、新たな解決すべき課題が生じることを見出した。
 つまり、閉空間と外部とを連通する切欠部を有しないシール構造を有する燃料電池で発電した場合、発電部位で生じる水蒸気がフレームや内周シール部材を透過し、閉空間内で液化して、セパレータにおける短絡やフレームの加水分解といった性能低下が生じるおそれがあるという技術知見を得た。
 特に限定されるものではないが、他の本発明の燃料電池は、このような技術知見に基づいてなされたものであるとも言える。そして、所定の位置に配設された内周シール部材と外周シール部材との間で第1閉空間を形成しており、外周シール部材が、第1閉空間と外部とを連通させる切欠部を有している構成とすることにより、上記目的が達成できることを見出し、他の本発明を完成するに至った。
 つまり、図9に示すように、上述した実施形態と同様の構成とすることにより、図中矢印Xで示すフレームや内周シール部材を透過した水分や、それが閉空間内で液化した水滴を破線で示す切欠部n(図5を併せて参照。)を介して外部に排出することができ、セパレータにおける短絡やフレームの加水分解といった性能低下を抑制ないし防止することができる。
 また、本発明や他の本発明は、副次的な効果として、閉空間と外部を連通する切欠部を利用して、燃料電池の単セルの気密検査や水密検査等を行うことも可能である。
(第2の実施形態)
 次に、本発明の第2の実施形態に係る燃料電池モジュールについて図面を参照しながら詳細に説明する。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
 図10(A)は、本発明の第2の実施形態に係る燃料電池モジュールを示す斜視図であり、図10(B)は、図10(A)に示した燃料電池モジュールのB線で包囲した部分の拡大図である。図10に示すように、本実施形態の燃料電池モジュールM2は、切欠部形成部材5Aが、外周シール部材4(4B)により覆われている構成が、上述した第1の実施形態の燃料電池モジュールと相違する。
 本実施形態においては、上述した第1の実施形態において得られる効果に加えて、切欠部形成部材が外周シール部材と一体化するため、気密性や耐久性がより高いものとなる。
(第3の実施形態)
 次に、本発明の第3の実施形態に係る燃料電池モジュールについて図面を参照しながら詳細に説明する。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
 図11は、本発明の第3の実施形態に係る燃料電池モジュールを示す斜視図である。図11に示すように、本実施形態の燃料電池モジュールM3は、外周シール部材4(4B)が、切欠部nに一対の板状形状の切欠部形成部材5Bを有し、セパレータが、その平面方向に延出した突起状の測定用端子23を有し、測定用端子23が、切欠部nにおいて露出している構成が、上述した第1の実施形態の燃料電池モジュールと相違する。
 本実施形態においては、上述した第1の実施形態において得られる効果に加えて、測定用端子を切欠部において露出させたため、例えば、燃料電池単セルの電圧検査を行うことができる。
(第4の実施形態)
 次に、本発明の第4の実施形態に係る燃料電池モジュールについて図面を参照しながら詳細に説明する。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
 図12(A)は、本発明の第4の実施形態に係る燃料電池モジュールを示す斜視図であり、図12(B)は、図12(A)に示した燃料電池モジュールのB線で包囲した部分の拡大図である。図12に示すように、本実施形態の燃料電池モジュールM4は、切欠部形成部材5Bが、外周シール部材4(4B)により覆われている構成が、上述した第3の実施形態の燃料電池モジュールと相違する。
 本実施形態においては、上述した第3の実施形態において得られる効果に加えて、切欠部形成部材が外周シール部材と一体化するため、気密性や耐久性がより高いものとなる。
 ここで、上述した各実施形態の燃料電池スタック又はモジュールのシール構造の製造方法について若干の例を挙げて詳細に説明する。このような製造方法により、所望の燃料電池スタック又はモジュールのシール構造を高い生産性で作製することができる。なお、本発明の燃料電池スタック又はモジュールのシール構造は、このような製造方法により得られたものに限定されるものでないことは言うまでもない。
 上述した実施形態の燃料電池スタック又はモジュールのシール構造の製造方法の一例は、下記の工程(1)~(3)を含む。
 工程(1)においては、膜電極接合体を一対のセパレータで挟持する際に、一対のセパレータの内周リブ間を閉塞する内周シール部材を形成するように一対のセパレータの少なくとも一方に内周シール部材を形成する内周シール部材材料を塗布して、積層構造体を作製する。
 なお、工程(1)においては、例えば、内周シール部材材料として、接着機能を有していることが好ましく、充填されるものであることが好ましく、樹脂材料であることが好ましい。具体的には、熱硬化性接着剤を適用することが好ましい。また、この工程においては、例えば、内周シール部材材料を塗布する際に、ディスペンサやローラを用いて塗布することができる。
 工程(1)の後に実施される工程(2)においては、積層構造体の側面に切欠部を形成するための切欠部形成部材を配置する。
 なお、工程(2)において用いる切欠部形成部材は、切欠部や測定用端子間への材料の流入を防止ないし抑制し得るものであれば、特に限定されるものではない。切欠部形成部材としては、例えば、樹脂製の枠状形状や一対の板状形状のものを適用することができる。また、切欠部形成部材は、燃料電池モジュールの側面に設ける切欠部の位置や数量に応じて適宜配置することができる。
 工程(2)の後に実施される工程(3)においては、まず、積層構造体を金型に配設する。そして、内周シール部材の外周側に配置され、かつ、一対のセパレータの外周リブ間を閉塞する外周シール部材と上述の第1閉空間と上述の切欠部とを形成するように外周シール部材を形成する外周シール部材材料を射出形成により充填する。
 なお、工程(3)においては、例えば、外周シール部材材料として、接着機能を有していることが好ましく、充填されるものであることが好ましく、樹脂材料であることが好ましい。具体的には、溶融状態の熱可塑性樹脂を適用することが好ましい。
 また、特に限定されるものではないが、熱可塑性樹脂は、JIS K7199に準拠して、例えば、温度が200℃、せん断速度が1000/sにおける溶融粘度が80Pa・s以上100Pa・s以下であるポリプロピレンなどの低粘度の熱可塑性樹脂を用いることが好ましい。さらに、このような低粘度の熱可塑性樹脂を、例えば、内周シール部材にかかる圧力が、60MPa以上70MPa以下であるような低い圧力で充填することが好ましい。
 また、この工程においては、例えば、外周シール部材材料を射出成形により充填する際に、外周シール部材材料の充填を外周シール部材材料の射出圧力によって制御することができる。しかしながら、これに限定されるものではない。例えば、外周シール部材材料を射出成形により充填する際に、外周シール部材材料の充填を、外周シール部材材料の射出圧力とともに、切欠部からの空気抜けによっても制御することができる。
 また、燃料電池スタックのシール構造が所定の構成を有する場合には、工程(1)~(3)において、以下の操作を行うことが好ましい。このような製造方法により、所望の燃料電池スタックのシール構造を高い生産性で作製することができる。
 工程(1)において、第1閉空間と切欠部の一部とを形成するように位置合わせされた切欠部を形成する未塗布部を設けて、一対のセパレータの少なくとも一方の一対のセパレータの隘路から隘路より外側となる位置に外周シール部材の一部である内側外周シール部材を形成する内側外周シール部材材料をさらに塗布する。なお、この工程(1)においては、例えば、内周シール部材材料や内側外周シール部材材料として、熱硬化性接着剤を適用することが好ましい。また、この工程(1)においては、例えば、内周シール部材材料や内側外周シール部材材料を塗布する際に、ディスペンサやローラを用いて塗布することができる。
 工程(2)において、切欠部形成部材を積層構造体の側面の未塗布部に配置する。なお、この工程(2)において用いる切欠部形成部材は、切欠部や測定用端子間への材料の流入を防止ないし抑制し得るものであれば、特に限定されるものではない。切欠部形成部材としては、例えば、樹脂製の枠状形状や一対の板状形状のものを適用することができる。また、切欠部形成部材は、燃料電池モジュールの側面に設ける切欠部の位置や数量に応じて適宜配置することができる。
 工程(3)において、内側外周シール部材より外側の位置に配設される外側外周シール部材と切欠部の他部とを形成するように外周シール部材の一部である外側外周シール部材を形成する外側外周シール部材材料を充填する。なお、この工程(3)においては、例えば、外側外周シール部材材料として、上述したような溶融状態の熱可塑性樹脂を適用することが好ましい。但し、内側外周シール部材が先に配設されているため、上述した工程(3)と比較して、熱可塑性樹脂の溶融粘度や射出圧力の自由度は高い。この工程(3)においては、例えば、外側外周シール部材材料を射出成形により充填する際に、外側外周シール部材材料の充填を外側外周シール部材材料の射出圧力によって制御することができる。例えば、射出圧力は60MPa以上140MPa以下とすることができる。
 ここで、上述の所定の構成とは、下記の(i)~(vi)である。
(i)外周リブが、一対のセパレータの間隔が一定である突出面を有しており、かつ、一対のセパレータの外周端の間隔より一対のセパレータの間隔が小さい隘路を形成している。
(ii)外周シール部材の内周端が、隘路に配設されている。
(iii)外周シール部材が、内側外周シール部材と、外側外周シール部材と、を有する。
(iv)内側外周シール部材が、隘路及び隘路より外側の位置に一体的に配設されている。
(v)外側外周シール部材が、内側外周シール部材より外側の位置に配設されている。
(vi)外周シール部材が、切欠部に切欠部形成部材を有する。
 上記工程(2)の詳細について図面を参照しながら詳細に説明する。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
 図13(A)は、治具挿入前の積層構造体を示す模式的な断面図であり、図13(B)は、治具挿入後の積層構造体を示す模式的な断面図である。工程(2)において、切欠部形成部材を配置する前に、図13(A)に示す積層構造体LPのようにセパレータ(2,2)が変形している場合には、治具30を矢印Yで示すように挿入することにより、図13(B)に示すようにセパレータ(2,2)の間隔を所定の寸法にすることができる。これにより、積層構造体の側面に切欠部形成部材を容易に配置することができる。
 図14(A)は、切欠部形成部材の一例を積層構造体に挿入する前の状態を示す断面図であり、図14(B)は、切欠部形成部材の一例を積層構造体に挿入した後の状態を示す断面図である。工程(2)において、切欠部形成部材5Aを積層構造体LPの側面の切欠部nとなる第2内側樹脂材料の未塗布部に配置する。これにより、所望の切欠部を形成することができる。
 また、図15(A)は、切欠部形成部材の他の一例を積層構造体に挿入する前の状態の要部を示す斜視図であり、図15(B)は、切欠部形成部材の他の一例を積層構造体に挿入した後の状態の要部を示す斜視図である。さらに、図16(A)は、切欠部形成部材のさらに他の一例を積層構造体に挿入する前の状態の要部を示す斜視図であり、図16(B)は、切欠部形成部材のさらに他の一例を積層構造体に挿入した後の状態の要部を示す斜視図である。なお、図15及び図16においては、積層構造体として、3個の燃料電池単セルが積層されたものを示している。
 工程(2)において、積層構造体の側面に切欠部形成部材を配置する場合には、図15(B)に示すように、切欠部形成部材5Aが内側外周シール部材4Aと接触する位置に挿入する。また、同様に、図16(B)に示すように、切欠部形成部材5Bが内側外周シール部材4Aと接触する位置に挿入する。これにより、切欠部や測定用端子間への樹脂の流入を防止ないし抑制することができる。
 以上、本発明を若干の実施形態によって説明したが、本発明はこれらに限定されるものではなく、本発明の要旨の範囲内で種々の変形が可能である。
 1 膜電極接合体
 2 セパレータ
 2’ 端部セパレータ
 2a 外周端
 2b 対向面
 3 内周シール部材
 3a 外周端
 4 外周シール部材
 4A 内側外周シール部材
 4B 外側外周シール部材
 4a 内周端
 5A,5B 切欠部形成部材
 6 第4シール部材
 7 第2内周シール部材
 8 第2外周シール部材
 9 第3内周シール部材
10 第3外周シール部材
10A 第3内側外周シール部材
10a 内周端
11 電解質膜
12 電極
13 フレーム
13a 外周端
21 外周リブ
21a 突出面
21b 外側側面
22 内周リブ
22a 突出面
23 測定用端子
30 治具
56A,56B エンドプレート
57A,57B 締結板
57s スリット
58A,58B 補強板
 FS 燃料電池スタック
 C 燃料電池単セル
 M,M2~M4 燃料電池モジュール
 P シールプレート
 LP 積層構造体
 H1~H6 マニホールド穴
 Pag アノードガス流路
 Pcg カソードガス流路
 Pa 冷却媒体流路
 D,d,d 間隔
 E 外部
 N 隘路
 n 切欠部
 CS 第1閉空間
 CS2 第2閉空間
 CS3 第3閉空間

Claims (19)

  1.  膜電極接合体と前記膜電極接合体を挟持する一対のセパレータとを有する燃料電池単セルを複数積層して成る燃料電池スタックにおいて、
     一対のセパレータの少なくとも一方のセパレータが、前記セパレータの周縁部分において前記一対のセパレータの少なくとも対向面側に突出した内周リブを有しており、
     前記一対のセパレータの少なくとも一方のセパレータが、前記内周リブの外周側において前記一対のセパレータの少なくとも対向面側に突出した外周リブを有しており、
     前記燃料電池単セルを構成する前記一対のセパレータの内周リブ間を閉塞する内周シール部材と、
     前記内周シール部材の外周側に配置され、かつ、前記一対のセパレータの外周リブ間を閉塞する外周シール部材と、を備え、
     前記内周シール部材と前記外周シール部材との間で第1閉空間を形成しているとともに、
     前記外周シール部材が、前記第1閉空間と外部とを連通させる切欠部を有している
    ことを特徴とする燃料電池スタックのシール構造。
  2.  前記外周リブが、前記一対のセパレータの外周端の間隔より前記一対のセパレータの間隔が小さい部位を形成していることを特徴とする請求項1に記載の燃料電池スタックのシール構造。
  3.  前記外周リブが、前記一対のセパレータの間隔が一定である突出面を有しており、かつ、前記一対のセパレータの外周端の間隔より前記一対のセパレータの間隔が小さい隘路を形成していることを特徴とする請求項1又は2に記載の燃料電池スタックのシール構造。
  4.  前記外周シール部材の内周端が、前記隘路に配設されていることを特徴とする請求項3に記載の燃料電池スタックのシール構造。
  5.  前記外周シール部材及び/又は前記内周シール部材が、接着機能を有することを特徴とする請求項1~4のいずれか1つの項に記載の燃料電池スタックのシール構造。
  6.  前記外周シール部材及び/又は前記内周シール部材が、充填剤からなることを特徴とする請求項1~5のいずれか1つの項に記載の燃料電池スタックのシール構造。
  7.  前記充填剤が、樹脂材料からなることを特徴とする請求項6に記載の燃料電池スタックのシール構造。
  8.  前記外周シール部材が、内側外周シール部材と、外側外周シール部材と、を有しており、
     前記内側外周シール部材が、前記隘路及び前記隘路より外側の位置に一体的に配設されており、
     前記外側外周シール部材が、前記内側外周シール部材より外側の位置に配設されている
    ことを特徴とする請求項4に記載の燃料電池スタックのシール構造。
  9.  前記外周シール部材が、前記切欠部に切欠部形成部材を有することを特徴とする請求項1~8のいずれか1つの項に記載の燃料電池スタックのシール構造。
  10.  前記内側外周シール部材が、熱硬化性樹脂を含み、
     前記外側外周シール部材が、熱可塑性樹脂を含む
    ことを特徴とする請求項8に記載の燃料電池スタックのシール構造。
  11.  前記膜電極接合体が、フレームを有し、
     前記フレームが、前記内周リブにより保持されている
    ことを特徴とする請求項1に記載の燃料電池スタックのシール構造。
  12.  前記燃料電池単セルの周縁部分同士の間を閉塞する第2内周シール部材と、
     前記第2内周シール部材の外周側に配置され、かつ、前記燃料電池単セルの周縁部分同士の間を閉塞する第2外周シール部材と、を備え、
     前記第2内周シール部材と前記第2外周シール部材との間で第2閉空間を形成しているとともに、
     前記第2外周シール部材が、前記第2閉空間と前記外部とを連通させる切欠部を有している
    ことを特徴とする請求項1に記載の燃料電池スタックのシール構造。
  13.  前記燃料電池スタックが、前記燃料電池単セルを複数積層して成る燃料電池モジュールを複数積層して成ることを特徴とする請求項1に記載の燃料電池スタックのシール構造。
  14.  前記燃料電池モジュールの間に配置されるシールプレートと、
     前記各燃料電池モジュールの端部セパレータ及びシールプレートの周縁部分同士の間を閉塞する第3内周シール部材と、
     前記第3内周シール部材の外周側に配置され、かつ、前記各燃料電池モジュールの前記端部セパレータ及び前記シールプレートの周縁部分同士の間を閉塞する第3外周シール部材と、を備え、
     前記第3内周シール部材と前記第3外周シール部材との間で第3閉空間を形成しているとともに、
     前記第3外周シール部材が、前記第3閉空間と前記外部とを連通させる切欠部を有している
    ことを特徴とする請求項13に記載の燃料電池スタックのシール構造。
  15.  前記切欠部形成部材が、前記外周シール部材で覆われていることを特徴とする請求項9に記載の燃料電池スタックのシール構造。
  16.  前記一対のセパレータの少なくとも一方のセパレータが、前記セパレータの平面方向に延出した突起状の測定用端子を有しており、
     前記測定用端子が、前記切欠部において露出している
    ことを特徴とする請求項1に記載の燃料電池スタックのシール構造。
  17.  膜電極接合体と前記膜電極接合体を挟持する一対のセパレータとを有する燃料電池単セルを複数積層して成る燃料電池スタックにおいて、
     一対のセパレータの少なくとも一方のセパレータが、前記セパレータの周縁部分において前記一対のセパレータの少なくとも対向面側に突出した内周リブを有しており、
     前記一対のセパレータの少なくとも一方のセパレータが、前記内周リブの外周側において前記一対のセパレータの少なくとも対向面側に突出した外周リブを有しており、
     前記燃料電池単セルを構成する前記一対のセパレータの内周リブ間を閉塞する内周シール部材と、
     前記内周シール部材の外周側に配置され、かつ、前記一対のセパレータの外周リブ間を閉塞する外周シール部材と、を備え、
     前記内周シール部材と前記外周シール部材との間で第1閉空間を形成しているとともに、
     前記外周シール部材が、前記第1閉空間と外部とを連通させる切欠部を有している
    燃料電池スタックのシール構造の製造方法であって、
     前記膜電極接合体を前記一対のセパレータで挟持する際に、前記一対のセパレータの内周リブ間を閉塞する前記内周シール部材を形成するように前記一対のセパレータの少なくとも一方の内周リブに前記内周シール部材を形成する内周シール部材材料を塗布して、積層構造体を作製する工程(1)と、
     前記工程(1)の後に実行される、前記積層構造体の側面に前記切欠部を形成するための切欠部形成部材を配置する工程(2)と、
     前記工程(2)の後に実行される、前記積層構造体を金型に配設し、前記内周シール部材の外周側に配置され、かつ、前記一対のセパレータの外周リブ間を閉塞する外周シール部材と前記第1閉空間と前記切欠部とを形成するように前記外周シール部材を形成する外周シール部材材料を充填する工程(3)と、を含む
    ことを特徴とする燃料電池スタックのシール構造の製造方法。
  18.  前記外周リブが、前記一対のセパレータの間隔が一定である突出面を有しており、かつ、前記一対のセパレータの外周端の間隔より前記一対のセパレータの間隔が小さい隘路を形成しており、
     前記外周シール部材の内周端が、前記隘路に配設されており、
     前記外周シール部材が、内側外周シール部材と、外側外周シール部材と、を有しており、
     前記内側外周シール部材が、前記隘路及び前記隘路より外側の位置に一体的に配設されており、
     前記外側外周シール部材が、前記内側外周シール部材より外側の位置に配設されており、
     前記外周シール部材が、前記切欠部に切欠部形成部材を有する
    燃料電池スタックのシール構造の製造方法であって、
     前記工程(1)において、前記第1閉空間と前記切欠部の一部とを形成するように位置合わせされた前記切欠部を形成する未塗布部を設けて、前記一対のセパレータの少なくとも一方の前記一対のセパレータの隘路から隘路より外側となる位置に前記外周シール部材の一部である前記内側外周シール部材を形成する内側外周シール部材材料をさらに塗布し、
     前記工程(2)において、前記切欠部形成部材を前記積層構造体の側面の前記未塗布部に配置し、
     前記工程(3)において、前記内側外周シール部材より外側の位置に配設される前記外側外周シール部材と前記切欠部の他部とを形成するように前記外周シール部材の一部である前記外側外周シール部材を形成する外側外周シール部材材料を充填する
    ことを特徴とする請求項17に記載の燃料電池スタックのシール構造の製造方法。
  19.  前記内側外周シール部材材料が、熱硬化性接着剤であり、
     前記外側外周シール部材材料が、溶融状態の熱可塑性樹脂である
    ことを特徴とする請求項18に記載の燃料電池スタックのシール構造の製造方法。
PCT/JP2016/078243 2015-12-18 2016-09-26 燃料電池スタックのシール構造及びその製造方法 WO2017104212A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/780,912 US10615433B2 (en) 2015-12-18 2016-09-26 Fuel cell stack seal structure and production method therefor
CA3008381A CA3008381C (en) 2015-12-18 2016-09-26 Fuel cell stack seal structure and production method therefor
EP16875198.0A EP3392941B1 (en) 2015-12-18 2016-09-26 Fuel cell stack seal structure and production method therefor
CN201680073339.1A CN108370044B (zh) 2015-12-18 2016-09-26 燃料电池堆的密封构造及其制造方法
JP2017556367A JP6536693B2 (ja) 2015-12-18 2016-09-26 燃料電池スタックのシール構造及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-247073 2015-12-18
JP2015247073 2015-12-18

Publications (1)

Publication Number Publication Date
WO2017104212A1 true WO2017104212A1 (ja) 2017-06-22

Family

ID=59055960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078243 WO2017104212A1 (ja) 2015-12-18 2016-09-26 燃料電池スタックのシール構造及びその製造方法

Country Status (6)

Country Link
US (1) US10615433B2 (ja)
EP (1) EP3392941B1 (ja)
JP (1) JP6536693B2 (ja)
CN (1) CN108370044B (ja)
CA (1) CA3008381C (ja)
WO (1) WO2017104212A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019106766A1 (ja) * 2017-11-29 2019-06-06 日産自動車株式会社 燃料電池スタック
CN110391438A (zh) * 2018-04-19 2019-10-29 丰田自动车株式会社 燃料电池组和制造燃料电池组的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017077634A1 (ja) * 2015-11-06 2017-05-11 日産自動車株式会社 燃料電池の単セル構造、及び該燃料電池単セルを積層した燃料電池のスタック構造
CN109786782B (zh) * 2018-12-25 2021-03-09 北京汽车集团有限公司 燃料电池双极板、燃料电池堆和车辆
KR102590339B1 (ko) * 2020-10-19 2023-10-17 지앙수 컨템포러리 엠퍼렉스 테크놀로지 리미티드 전지 박스 본체, 전지, 전기 장치, 전지 제조 방법 및 장치
DE102021124791A1 (de) 2021-09-24 2023-03-30 Aerostack GmbH Brennstoffzellenstruktur mit Verstärkung zum Aufnehmen von lateralen Kräften

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008547183A (ja) * 2005-06-28 2008-12-25 プジョー シトロエン オートモビル シール性を改善したバイポーラプレート、およびこれを用いた燃料電池セル
WO2014171260A1 (ja) * 2013-04-15 2014-10-23 日産自動車株式会社 燃料電池の製造方法及び製造装置
JP2014229577A (ja) * 2013-05-27 2014-12-08 日産自動車株式会社 燃料電池用のセパレータ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3830766B2 (ja) * 2001-03-09 2006-10-11 本田技研工業株式会社 燃料電池および燃料電池スタック
US20040043274A1 (en) * 2001-06-01 2004-03-04 Scartozzi John P. Fuel cell power system
US7270906B2 (en) * 2002-06-24 2007-09-18 Delphi Technologies, Inc. Solid-oxide fuel cell module for a fuel cell stack
JP4928067B2 (ja) * 2004-03-25 2012-05-09 本田技研工業株式会社 燃料電池及び燃料電池用金属セパレータ
JP4771271B2 (ja) 2004-09-24 2011-09-14 トヨタ自動車株式会社 単電池、単電池の製造方法、燃料電池、燃料電池の製造方法
KR101270856B1 (ko) * 2005-04-01 2013-06-05 파나소닉 주식회사 Mea, mea의 제조방법 및 고분자 전해질형 연료 전지
JP4416038B2 (ja) * 2008-02-21 2010-02-17 トヨタ自動車株式会社 燃料電池
JP5728283B2 (ja) * 2011-04-22 2015-06-03 本田技研工業株式会社 燃料電池
EP2823525B1 (en) * 2012-03-09 2015-11-18 Nissan Motor Co., Ltd. Seal plate and fuel cell stack using the same
CA2892472C (en) * 2012-12-03 2015-12-08 Nissan Motor Co., Ltd. Fuel cell stack
EP2991143B1 (en) * 2013-04-22 2018-06-06 Nissan Motor Co., Ltd. Cell structure for fuel cell stack
CN105144456B (zh) 2013-04-25 2018-06-08 日产自动车株式会社 绝缘结构体、燃料电池以及燃料电池堆
US20160190610A1 (en) * 2013-08-08 2016-06-30 Nissan Motor Co., Ltd. Membrane electrode assembly with frame, fuel cell single cell, and fuel cell stack
JP6053649B2 (ja) * 2013-09-19 2016-12-27 本田技研工業株式会社 燃料電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008547183A (ja) * 2005-06-28 2008-12-25 プジョー シトロエン オートモビル シール性を改善したバイポーラプレート、およびこれを用いた燃料電池セル
WO2014171260A1 (ja) * 2013-04-15 2014-10-23 日産自動車株式会社 燃料電池の製造方法及び製造装置
JP2014229577A (ja) * 2013-05-27 2014-12-08 日産自動車株式会社 燃料電池用のセパレータ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019106766A1 (ja) * 2017-11-29 2019-06-06 日産自動車株式会社 燃料電池スタック
CN110391438A (zh) * 2018-04-19 2019-10-29 丰田自动车株式会社 燃料电池组和制造燃料电池组的方法
JP2019192360A (ja) * 2018-04-19 2019-10-31 トヨタ自動車株式会社 燃料電池、及び燃料電池の製造方法
JP7020266B2 (ja) 2018-04-19 2022-02-16 トヨタ自動車株式会社 燃料電池、及び燃料電池の製造方法

Also Published As

Publication number Publication date
JPWO2017104212A1 (ja) 2018-09-27
EP3392941B1 (en) 2019-11-27
CN108370044A (zh) 2018-08-03
CA3008381C (en) 2019-08-13
CA3008381A1 (en) 2017-06-22
EP3392941A4 (en) 2018-10-31
JP6536693B2 (ja) 2019-07-03
EP3392941A1 (en) 2018-10-24
CN108370044B (zh) 2019-06-28
US20180358634A1 (en) 2018-12-13
US10615433B2 (en) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2017104212A1 (ja) 燃料電池スタックのシール構造及びその製造方法
JP6368807B2 (ja) 燃料電池スタックの製造方法及び燃料電池用金属セパレータの製造方法
JP5615875B2 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体
JP5683433B2 (ja) 燃料電池スタック
EP3188293B1 (en) Fuel cell module, fuel cell stack, and method for producing fuel cell module
JPWO2012137609A1 (ja) 燃料電池用電解質膜・電極構造体及びその製造方法
JP5999529B2 (ja) 燃料電池単セル
CA2976351C (en) Seal for solid polymer electrolyte fuel cell
JP2017079170A (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体及びその製造方法
WO2014080760A1 (ja) 燃料電池スタック
JP5900034B2 (ja) 燃料電池セル、および、燃料電池セルの製造方法
JP6241594B2 (ja) フレーム付き膜電極接合体、燃料電池単セル及び燃料電池スタック
JP6126049B2 (ja) 燃料電池の製造方法
WO2016181523A1 (ja) 燃料電池スタック
JP2016170961A (ja) 燃料電池単セルの製造方法
JP5924444B1 (ja) りん酸形燃料電池及びりん酸形燃料電池の製造方法
JP2008305706A (ja) セパレータ及びその製造方法並びに燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556367

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3008381

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016875198

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016875198

Country of ref document: EP

Effective date: 20180718