WO2019106766A1 - 燃料電池スタック - Google Patents

燃料電池スタック Download PDF

Info

Publication number
WO2019106766A1
WO2019106766A1 PCT/JP2017/042883 JP2017042883W WO2019106766A1 WO 2019106766 A1 WO2019106766 A1 WO 2019106766A1 JP 2017042883 W JP2017042883 W JP 2017042883W WO 2019106766 A1 WO2019106766 A1 WO 2019106766A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell stack
stacking direction
bonding
protrusions
Prior art date
Application number
PCT/JP2017/042883
Other languages
English (en)
French (fr)
Inventor
敬士 市原
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2017/042883 priority Critical patent/WO2019106766A1/ja
Publication of WO2019106766A1 publication Critical patent/WO2019106766A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell stack.
  • the fuel cell is a cell that generates electric power by an electrochemical reaction of an anode gas (fuel gas) and a cathode gas (oxidant gas) supplied to a power generation cell.
  • the fuel cell is generally configured as a fuel cell stack in which a plurality of structural members including a power generation cell and a separator that defines a gas flow passage between the power generation cell are stacked.
  • Patent Document 1 discloses a fuel cell stack in which a bonding member and a sealing member are disposed to secure functions of both bonding strength (mechanical strength) of constituent members and gas sealing performance. ing.
  • An object of the present invention is to provide a fuel cell stack capable of improving the bonding strength between components and the gas sealability.
  • the fuel cell stack of the present invention for achieving the above object is a fuel cell stack formed by laminating a plurality of constituent members including a power generation cell and a separator, and joining the laminated constituent members by a joining member. is there.
  • the fuel cell stack is disposed on both sides sandwiching the joining member in a direction intersecting the stacking direction, and acts on the joining member, a plurality of projecting portions protruding in a stacking direction from a part of the constituent members.
  • a peeling adjustment unit that adjusts the peeling force.
  • the bonding member is disposed across the plurality of protrusions.
  • FIG. 2 is an exploded perspective view showing a part of a fuel cell stack in an enlarged manner. It is a top view of the fuel cell stack shown in FIG. It is an exploded perspective view of a cell unit. It is a disassembled perspective view of a metal support cell assembly.
  • FIG. 6 is a cross-sectional view of the metal support cell assembly taken along line 6-6 of FIG. 4; It is a disassembled perspective view which expands and shows the part enclosed with the broken line of FIG. It is a top view which expands and shows the part enclosed with the broken line of FIG.
  • FIG. 9 is a cross-sectional view taken along line 9-9 of FIG. 8; FIG.
  • FIG. 10 is a cross-sectional view taken along line 10-10 of FIG. 8;
  • FIG. 11 is a cross-sectional view taken along line 11-11 of FIG. 8;
  • It is sectional drawing for demonstrating the structure of the protrusion part of the fuel cell stack of 2nd Embodiment, and is a figure corresponding to FIG. 11 of 1st Embodiment.
  • It is sectional drawing for demonstrating the structure of the protrusion part of the fuel cell stack of 3rd Embodiment, and is a figure corresponding to FIG. 11 of 1st Embodiment.
  • the fuel cell stack 10 according to the first embodiment will be described with reference to FIGS.
  • the fuel cell stack 10 of the present embodiment is used, for example, in a solid oxide fuel cell (SOFC) using an oxide ion conductor such as stabilized zirconia as an electrolyte.
  • SOFC solid oxide fuel cell
  • oxide ion conductor such as stabilized zirconia
  • the fuel cell stack 10 has a substantially rectangular shape in a plan view as viewed from above and below.
  • the short side direction of the rectangular shape corresponds to the X axis direction
  • the longitudinal direction corresponds to the Y axis direction.
  • FIG. 1 is an exploded perspective view showing a fuel cell stack 10 according to the first embodiment.
  • the fuel cell stack 10 has a plurality of cell units 100 stacked in the vertical direction Z, and an end plate 20 for holding and supporting the plurality of cell units 100.
  • Input / output of power between the cell unit 100 and the external device is performed by a current collection structure using a current collector plate (not shown) made of a conductive material.
  • stacking direction refers to the direction in which the cell units 100 are stacked. In the present embodiment, the stacking direction coincides with the vertical direction Z.
  • FIG. 2 is an exploded perspective view showing a part of the fuel cell stack 10 in an enlarged manner. As shown in FIG. 2, between the cell units 100 adjacent in the stacking direction Z, a bonding member 200 for bonding the cell units 100 is disposed.
  • FIG. 3 is a plan view of the fuel cell stack 10 shown in FIG.
  • the cell unit 100 has a first manifold portion 141 for circulating an anode gas (fuel gas) and a second manifold portion 142 for circulating a cathode gas (oxidant gas).
  • the bonding member 200 extends so as to surround the outer periphery of the cell unit 100 and the outer periphery of the first manifold portion 141.
  • the bonding member 200 has a bonding function of bonding the cell units 100 to one another, and also has a sealing function of sealing so that the anode gas and the cathode gas supplied to the cell unit 100 do not leak to the outside.
  • the direction in which the bonding member 200 extends along the outer periphery of the cell unit 100 and the outer periphery of the first manifold portion 141 is referred to as the “extension direction” of the bonding member 200.
  • the bonding member 200 As a forming material of the bonding member 200, for example, it is preferable to use a material having heat resistance such as glass, a brazing material, a ceramic adhesive and the like.
  • heat resistance means that the bonding and sealing functions can be maintained even in a high temperature environment of about 700 to 1000 ° C. which is the operating temperature of the solid oxide fuel cell.
  • FIG. 4 is an exploded perspective view of the cell unit 100.
  • the cell unit 100 includes a metal support cell assembly 110 including a power generation cell 111 which is a power generation element, and a separator 120 which defines a gas flow passage between the power generation cell 111 and And a layer 130 are sequentially stacked.
  • FIG. 5 is an exploded perspective view of the metal support cell assembly 110
  • FIG. 6 is a cross-sectional view of the metal support cell assembly 110.
  • the metal support cell assembly 110 has a plurality of (two in the present embodiment) power generating cells 111 arranged along the longitudinal direction Y, and a stacking direction Z of each power generating cell 111.
  • a cell frame 113 for holding the outer periphery of the power generation cell 111 and the metal support portion 112.
  • a stacked body in which the power generation cell 111 and the metal support portion 112 are stacked is referred to as a metal support cell (MSC) 110M.
  • the area where the metal support cell 110M is disposed corresponds to an active area that contributes to power generation.
  • the configuration of each part of the cell unit 100 will be described in detail later.
  • FIG. 7 is an exploded perspective view showing a portion A1 surrounded by a broken line in FIG. 2 in an enlarged manner.
  • the upper cell unit 100 of the bonding member 200 shows only the cell frame 113 of the metal support cell assembly 110. Also, the cell unit 100 on the lower side of the bonding member 200 shows only the separator 120.
  • the cell frame 113 (corresponding to a component) has a plurality of projecting portions 113A that project downward (in the stacking direction Z) from a part of the reference surface S1 of the cell frame 113.
  • the separator 120 (corresponding to a component) has a plurality of projecting portions 120A that project upward (in the stacking direction Z) from a part of the reference surface S2 of the separator 120.
  • the projecting portions 113A and 120A of the cell frame 113 and the separator 120 are formed of recesses or protrusions formed by forming a flat plate having reference surfaces S1 and S2 in an uneven shape.
  • reference planes S1 and S2 are defined as planes facing the bonding member 200 in the flat plate before being formed into the concavo-convex shape.
  • FIG. 8 is a plan view showing a portion A2 surrounded by a broken line in FIG. 3 in an enlarged manner.
  • the cell unit 100 shown in FIG. 8 shows only the separator 120 for convenience of explanation.
  • the configuration of the protruding portion 113A of the cell frame 113 is the same as that of the protruding portion 120A of the separator 120, the illustration thereof is omitted.
  • the pair of projecting portions 120A among the plurality of projecting portions 120A of the separator 120 are joined members 200 from a direction (short direction X) intersecting with the stacking direction Z.
  • a plurality of the pair of projecting portions 120A are intermittently arranged along the extending direction (longitudinal direction Y) of the bonding member 200.
  • the protrusions 120A of the separator 120 are intermittently arranged in two rows along the extension direction (longitudinal direction Y) of the bonding member 200 in plan view from the stacking direction Z.
  • the pair of projecting portions 113A of the cell frame 113 sandwich the bonding member 200 from both sides in the direction intersecting the stacking direction Z (both ends 201 and 202). Furthermore, a plurality of the pair of projecting portions 113A are disposed along the extending direction of the bonding member 200.
  • the protrusions 113A of the cell frame 113 are intermittently arranged in two rows along the extension direction of the bonding member 200 in plan view from the stacking direction Z.
  • the extending direction of the bonding member 200 may be the width direction X depending on the arrangement of the bonding member 200 on the cell unit 100 (see FIG. 3), or a direction intersecting the longitudinal direction Y and the width direction X It can be
  • the separator 120 is disposed between the rows and the rows of the protrusions 120A arranged in two rows, and is a first flat portion 120B substantially parallel to the XY plane (FIGS. 7 and 8). 8 and a second flat portion 120C disposed between the adjacent protruding portions 120A along the extension direction of the joining member 200 (indicated by the alternate long and short dash line in FIGS. 7 and 8). And a third flat surface portion 120D (portion surrounded by a two-dot chain line in FIGS. 7 and 8) disposed on the opposite side to the first flat surface portion 120B with respect to the protruding portion 120A.
  • the first flat surface portion 120B, the second flat surface portion 120C, and the third flat surface portion 120D are disposed on the reference plane S2.
  • the cell frame 113 is disposed between the rows and the rows of the protruding portions 113A arranged in two rows, and the first flat surface portion 113B substantially parallel to the XY plane (FIG. 7 And a second flat portion 113C (a portion surrounded by an alternate long and short dash line in FIG. 7) disposed between the adjacent protruding portions 113A along the extension direction of the bonding member 200; And a third flat surface portion 113D (a portion surrounded by a two-dot chain line in FIG. 7) disposed on the opposite side to the first flat surface portion 113B with respect to the protruding portion 113A.
  • the first flat surface portion 113B, the second flat surface portion 113C, and the third flat surface portion 113D are disposed on the reference plane S1.
  • the joining member 200 is disposed across the pair of projecting portions 113A and 120A and the first flat portions 113B and 120B disposed on the side of the end portions 201 and 202 thereof.
  • protrusion part 113A, 120A has "rectangular shape" in planar view from the lamination direction Z. As shown in FIG.
  • FIG. 9 is a cross-sectional view taken along line 9-9 of FIG.
  • FIG. 10 is a cross-sectional view taken along line 10-10 in FIG.
  • the protruding portions 113A and 120A hold the both ends 201 and 202 of the bonding member 200 in the stacking direction Z in a sectional view from the extending direction (longitudinal direction Y) of the bonding member 200. Be placed.
  • the protrusion 113 ⁇ / b> A of the cell frame 113 is a protrusion protruding toward the bonding member 200 (downward) with respect to the reference plane S ⁇ b> 1 of the cell frame 113.
  • the protrusion 120 ⁇ / b> A of the separator 120 is a protrusion protruding toward the bonding member 200 (upward direction) with respect to the reference surface S ⁇ b> 2 of the separator 120. That is, the cell frame 113 and the protrusions 113A and 120A of the separator 120 adjacent to each other in the stacking direction Z across the bonding member 200 protrude in the direction opposite to each other.
  • the state of FIG. 9 in which the cell frame 113 and the projecting portions 113A and 120A of the separator 120 adjacent to each other in the stacking direction Z sandwiching the bonding member 200 protrude in the direction opposite to each other is referred to as “convex”.
  • the bonding member 200 is disposed to be in contact with the first flat portions 113B and 120B and the second flat portions 113C and 120C. It is done.
  • FIG. 11 is a cross-sectional view taken along line 11-11 of FIG. As shown in FIG. 11, the protrusions 113A and 120A and the second flat portions 113C and 120C are periodically arranged at regular intervals alternately along the extension direction of the bonding member 200.
  • the phase of the arrangement period of the protrusion 113A and the second flat portion 113C along the extension direction of the bonding member 200 is the phase of the arrangement period of the protrusion 120A and the second plane portion 120C. It is the same. Thus, the case where the phases of the periods are the same is called "in-phase". In this case, the protruding portion 113A and the protruding portion 120A overlap in the stacking direction Z, and the second flat portion 113C and the second flat portion 120C overlap in the stacking direction Z.
  • the heights H1 (length in the direction of protrusion) of the plurality of protrusions 113A formed to project from the same reference plane S1 are “uniform” at the same height.
  • the heights H2 of the plurality of protrusions 120A formed to project from the same reference plane S2 are formed to be “uniform” at the same height.
  • a bonding surface is formed between the bonding member 200 and the cell frame 113 and the separator 120. Between the bonding member 200 and the projecting portions 113A and 120A, as shown in FIG. 9, the first bonding surface T1 parallel along the stacking direction Z, and the first bonding surface T1 inclined with respect to the stacking direction Z as shown in FIG. As shown in FIG. 9 and FIG. 11, a flat third bonding surface T3 is formed along the XY surface direction. It is preferable that the first bonding surface T1 and the second bonding surface T2 be bonded on the entire surface. The entire third bonding surface T3 may not be bonded as long as the third bonding surface T3 is partially bonded.
  • a fourth bonding surface T4 is formed between the bonding member 200 and the first flat portions 113B and 120B.
  • a fifth bonding surface T5 is formed between the bonding member 200 and the second flat portions 113C and 120C.
  • the entire fourth bonding surface T4 is bonded along the first flat portions 113B and 120B.
  • the fourth bonding surface T4 can seal the outer periphery of the cell unit 100 and the outer periphery of the first manifold portion 141 (see FIG. 3).
  • the entire fifth bonding surface T5 may not be bonded as long as the fifth bonding surface T5 is partially bonded.
  • the projecting portions 113A and 120A of the cell frame 113 and the separator 120 are bent because the second moment of area is higher than those of the first flat portions 113B and 120B, the second flat portions 113C and 120C, and the third flat portions 113D and 120D.
  • the rigidity is high. Therefore, even if the third flat surface portion 113D receives an external force in the direction of the white arrow in FIG. 9 and is deformed as shown by a broken line in FIG. 9, the deformation is suppressed by the protruding portion 113A.
  • peeling force an input of the peeling mode
  • the first bonding surface T1 and the second bonding surface T2 illustrated in FIGS. 9 and 11 function as a peeling adjustment unit 300 that adjusts the peeling force acting on the bonding member 200.
  • the force applied to the joint surface is roughly classified into four modes of compression, shear, vertical tension, and peeling.
  • the compression mode occurs when a compressive load is applied in a direction perpendicular to the joint surface.
  • Shear mode occurs when applying tensile shear load parallel to the joint surface.
  • the tensile (vertical) mode occurs when a tensile load is applied in the direction perpendicular to the joint surface.
  • the peeling mode occurs when the bonding member (in the present embodiment, the cell frame 113 or the separator 120) forming the bonding surface is peeled off from the bonding member 200.
  • the bonding strength of the bonding member 200 generally has the weakest peel strength. Therefore, it is possible to suppress destruction of the bonding surface (interface) by converting the input of the peeling mode into the shear or vertical tension mode.
  • the peeling adjustment unit 300 of the present embodiment is configured of the bonding surface including the first bonding surface T1 and the second bonding surface T2.
  • the first bonding surface T1 is a shear mode input of the peeling mode. It can be converted into a force (solid arrow in FIG. 9) and received.
  • the second bonding surface T2 is in the shear mode (FIG. 11).
  • the peeling adjustment unit 300 can suppress peeling by converting the input of the peeling mode into a mode with higher bonding strength. As a result, the peeling adjustment unit 300 can adjust the peeling force acting on the bonding member 200.
  • the power generation cell 111 is configured by sandwiching the electrolyte 111E between an anode 111A and a cathode 111C which are a pair of electrodes from both sides.
  • the electrolyte 111E is to transmit oxide ions from the cathode 111C to the anode 111A.
  • the electrolyte 111 ⁇ / b> E passes oxide ions but does not pass gas and electrons.
  • Examples of the forming material of the electrolyte 111E include solid oxide ceramics such as stabilized zirconia in which yttria, neodymium oxide, samaria, gadoria, scandia and the like are solid-solved.
  • the anode 111A is a fuel electrode, and an anode gas (for example, hydrogen) and oxide ions are reacted to generate an oxide of the anode gas and to extract electrons.
  • the anode 111A is resistant to a reducing atmosphere, is permeable to the anode gas, has high electric conductivity, and has a catalytic action of causing the anode gas to react with oxide ions.
  • the forming material of the anode 111A may be, for example, a cemented carbide obtained by mixing a metal such as nickel and an oxide ion conductor such as yttria stabilized zirconia.
  • the cathode 111C is an oxidant electrode and reacts electrons with cathode gas (for example, oxygen contained in air) to convert oxygen molecules into oxide ions.
  • the cathode 111C is resistant to an oxidizing atmosphere, permeates the cathode gas, has high electrical conductivity, and has a catalytic action of converting oxygen molecules into oxide ions.
  • oxides such as lanthanum, strontium, manganese, cobalt and the like can be mentioned.
  • the metal support portion 112 supports the power generation cell 111 from the side of the anode 111A, as shown in FIG. 5 and FIG.
  • the metal support portion 112 is a porous metal having gas permeability and electrical conductivity.
  • a corrosion-resistant alloy, corrosion-resistant steel, stainless steel or the like containing nickel or chromium can be mentioned.
  • the cell frame 113 holds the metal support cell 110M from the periphery, as shown in FIG. 5 and FIG.
  • the cell frame 113 has a plurality of (two in the present embodiment) openings 113H arranged along the longitudinal direction Y.
  • the metal support cell 110M is disposed in the opening 113H of the cell frame 113.
  • the outer periphery of the metal support cell 110M is joined to the inner edge of the opening 113H of the cell frame 113.
  • the forming material of the cell frame 113 includes, for example, a metal whose surface is subjected to an insulation treatment.
  • the cell frame 113 has an anode gas first inlet 113a through which anode gas flows, an anode gas second inlet 113b, an anode gas third inlet 113c, an anode gas first outlet 113d, and an anode.
  • a gas second outlet 113e is provided.
  • the cell frame 113 includes a cathode gas first inlet 113f, a cathode gas second inlet 113g, a cathode gas first outlet 113h, a cathode gas second outlet 113i, and a cathode gas third outlet 113j through which the cathode gas flows.
  • the separator 120 has a flow passage portion 121 in a region facing the power generation cell 111 of the metal support cell 110 ⁇ / b> M.
  • the flow passage portion 121 has a concavo-convex shape that defines a flow passage of gas between the flow passage portion 121 and the power generation cell 111.
  • the concavo-convex shape is formed in a substantially linear shape so as to extend in the short direction X.
  • the flow direction of the gas flowing along the flow passage portion 121 is the short direction X.
  • the forming material of the separator 120 is, for example, a metal. An area other than the flow path portion 121 of the separator 120 is subjected to insulation processing.
  • the separator 120 is, as shown in FIG. 4, an anode gas first inlet 120a through which anode gas flows, an anode gas second inlet 120b, an anode gas third inlet 120c, an anode gas first outlet 120d, and an anode gas. It has a second outlet 120e.
  • the separator 120 has a cathode gas first inlet 120f through which the cathode gas flows, a cathode gas second inlet 120g, a cathode gas first outlet 120h, a cathode gas second outlet 120i, and a cathode gas third outlet 120j. .
  • the current collection auxiliary layer 130 equalizes the surface pressure while forming a space for passing gas, and assists the electrical contact between the metal support cell 110M and the separator 120.
  • the current collection auxiliary layer 130 is, for example, a wire mesh-like expanded metal.
  • the first manifold portion 141 shown in FIG. 3 has the anode gas outflow inlets 113a, 113b, 113c, 113d, 113e of the cell frame 113 shown in FIGS. 4 and 5 and the anode gas outflow inlets 120a, 120b, 120c, and the separator 120. It consists of 120d and 120e.
  • the second manifold portion 142 shown in FIG. 3 is a cathode gas outlet / inlet 113f, 113g, 113h, 113i, 113j of the cell frame 113 shown in FIGS. 4 and 5 and a cathode gas outlet / inlet 120f, 120g, 120h, of the separator 120. It consists of 120i and 120j.
  • the fuel cell stack 10 is disposed on both sides with the bonding member 200 interposed therebetween from the direction intersecting the stacking direction Z, and the cell frame 113 (constituent members) and the separator 120 (configuration A plurality of protruding portions 113A and 120A protruding in the stacking direction Z from a part of the member), and a peeling adjustment unit 300 that adjusts the peeling force acting on the bonding member 200.
  • the bonding member 200 is disposed across the plurality of protrusions 113A and 120A.
  • the cell frame 113 and the protrusions 113A and 120A of the separator 120 have a cross section compared to the first flat portions 113B and 120B, the second flat portions 113C and 120C and the third flat portions 113D and 120D. Because the second moment is high, the bending rigidity is high. Therefore, even if the cell frame 113 and the separator 120 are deformed, the deformation of the projecting portions 113A and 120A is suppressed. Therefore, the protruding portions 113A and 120A have a reinforcing function of suppressing the deformation of the cell unit 100.
  • the end portions 201 and 202 of the bonding member 200 sandwiched by the projecting portions 113A and 120A are less likely to be bent and deformed, so that deformation causing an input of the peeling mode (corresponding to peeling force) is less likely to occur.
  • peeling force applied to the bonding member 200 is adjusted by the peeling adjusting unit 300, peeling of the bonding member 200 can be suppressed. Thereby, the joint strength of cell units 100 comrades and the sealability of gas can be improved.
  • the peeling adjustment unit 300 includes bonding surfaces T1 and T2 formed between the protruding portions 113A and 120A and the bonding member 200. Since the protrusions 113A and 120A and the bonding member 200 are bonded by the bonding surfaces T1 and T2, deformation causing the peeling mode is less likely to occur. Thereby, the peeling adjustment unit 300 can suppress the peeling force from acting on the bonding member 200.
  • the bonding surfaces T1 and T2 have a first bonding surface T1 parallel to the stacking direction Z and a second bonding surface T2 inclined with respect to the stacking direction Z.
  • first bonding surface T1 can receive the input of the peeling mode by converting it into the force of the shear mode .
  • the second bonding surface T2 can receive the input of the peeling mode by converting it into the shear mode and the vertical tension mode.
  • the peeling adjustment unit 300 can suppress the peeling force from acting on the bonding member 200 by converting the input of the peeling mode into a mode having a higher bonding strength.
  • the peeling adjustment part 300 can adjust peeling force, if it has at least one of 1st joint surface T1 and 2nd joint surface T2 as a joint surface.
  • the projecting portions 113A and 120A are formed of concave portions or convex portions formed by forming a flat plate having the reference surfaces S1 and S2 in a concavo-convex shape, the projecting portions 113A and 120A can be easily formed.
  • the projecting portion 113A of the cell frame 113 is a reference surface It is the convex part which protruded to the joining member 200 side with respect to S1.
  • the protrusion 120 ⁇ / b> A of the separator 120 is a protrusion protruding toward the bonding member 200 with respect to the reference surface S ⁇ b> 2.
  • the bonding member 200 can be held by the projection of the projection 113A and the projection of the projection 120A. Thereby, since protrusion part 113A, 120A can clamp both the ends 201 and 202 of the joining member 200 more firmly, it can suppress that peeling force acts on the joining member 200. As shown in FIG.
  • FIG. 12 is a cross-sectional view for explaining the configuration of the protrusions 413A and 420A of the fuel cell stack according to the second embodiment, and corresponds to FIG. 11 of the first embodiment.
  • the fuel cell stack according to the second embodiment differs from the first embodiment described above in the unevenness direction of the cell frame 413 and the protruding portions 413A and 420A of the separator 420 adjacent to each other in the stacking direction Z with the bonding member 200 interposed therebetween.
  • symbol is attached
  • the protrusion 413 ⁇ / b> A of the cell frame 413 is a protrusion protruding toward the bonding member 200 (downward) with respect to the reference plane S ⁇ b> 1 of the cell frame 413.
  • the protrusion 420 ⁇ / b> A of the separator 420 is a recess that is recessed on the side opposite to the bonding member 200 side (downward direction) with respect to the reference surface S ⁇ b> 2 of the separator 420.
  • the protruding state is referred to as "concave and convex”.
  • the cell frame 413 (corresponding to one component member) and the separator 420 (corresponding to the other component members) adjacent in the stacking direction Z sandwiching the bonding member 200.
  • the protruding portion 413A of the cell frame 413 is a protruding portion that protrudes toward the bonding member 200 with respect to the reference plane S1.
  • the protrusion 420A of the separator 420 is a recess that is recessed to the side opposite to the bonding member 200 with respect to the reference surface S2.
  • the bonding member 200 is filled between the side surface of the projecting portion 413A (convex portion) and the side surface of the projecting portion 420A (concave portion).
  • the input of the shear mode in the XY plane direction applied to the bonding member 200 disposed between the side surface of the convex portion and the side surface of the concave portion is converted into the compression mode (arrow direction in FIG. 12) having higher bonding strength. be able to.
  • peeling of the bonding member 200 can be suppressed.
  • the bonding strength between the cell units 100 and the gas sealing performance can be further improved.
  • FIG. 13 is a cross-sectional view for explaining the configuration of the protrusions 513A, 520A of the fuel cell stack according to the third embodiment, and is a view corresponding to FIG. 11 of the first embodiment.
  • the protruding portions 513A and 520A adjacent to each other in the stacking direction Z are arranged so that the phase, which is a pattern of periodical arrangement in the extending direction of the bonding member 200, is "opposite phase".
  • the phase which is a pattern of periodical arrangement in the extending direction of the bonding member 200.
  • the protruding portions 513A and the second flat portions 513C of the cell frame 513 are periodically arranged at regular intervals alternately along the extending direction (longitudinal direction Y in FIG. 13) of the bonding member 200. Is located in Similarly, the protrusions 520A and the second flat surface 520C of the separator 520 are periodically arranged at regular intervals alternately along the extension direction (longitudinal direction Y in FIG. 13) of the bonding member 200. .
  • the phase of the arrangement period of the plurality of protrusions 513A and the plurality of second flat portions 513C of the cell frame 513 is the phase of the period of the arrangement of the plurality of protrusions 520A of the separator 520 and the plurality of second flat portions 520C. It is reversed. In the present specification, the case where the phase of the cycle is inverted as described above is referred to as "antiphase". In this case, the protrusion 513A and the second flat surface 520C overlap in the stacking direction Z, and the protrusion 520A and the second flat surface 513C overlap in the stacking direction Z.
  • the plurality of protrusions 513A of the cell frame 513 according to the third embodiment are periodically arranged at regular intervals along the extension direction of the bonding member 200.
  • the plurality of protrusions 520A of the separator 520 are periodically arranged at regular intervals along the extension direction of the bonding member 200.
  • the phase of the arrangement cycle of the protrusions 513A of the cell frames 513 adjacent to each other in the stacking direction Z across the bonding member 200 is opposite to the phase of the arrangement cycle of the protrusions 520A of the separator 520.
  • the protruding portion 520A of the separator 520 is disposed so as to be aligned with the second flat portion 513C of the cell frame 513.
  • the protruding portion 513A of the cell frame 513 is disposed so as to be aligned with the second flat portion 520C of the separator 520.
  • the input of the shear mode in the XY plane direction applied to the bonding member 200 disposed between the side surface of the convex portion and the side surface of the concave portion is converted into a compression mode (arrow direction in FIG. 13) having higher bonding strength.
  • a compression mode (arrow direction in FIG. 13) having higher bonding strength.
  • FIG. 14 is a cross-sectional view for explaining the configuration of the protrusions 113A, 120A, 613A, and 620A of the fuel cell stack according to the fourth embodiment, and corresponds to FIG. 11 of the first embodiment.
  • the fourth embodiment differs from the first embodiment described above in that the heights of the protrusions 113A, 120A, 613A, and 620A are formed to be partially high.
  • symbol is attached
  • At least one protrusion 613A of the protrusions 113A and 613A of the cell frame 613 has a height H3 along the stacking direction Z greater than a height H1 along the stacking direction Z of the other protrusion 113A.
  • at least one protrusion 620A has a height H4 along the stacking direction Z greater than a height H2 along the stacking direction Z of the other protrusions 120A.
  • the heights of the cell frame 613 and the protrusions 113A, 120A, 613A, and 620A of the separator 620 are formed “partially high”.
  • At least one of the protrusion portions 613A and 620A among the protrusion portions 113A, 120A, 613A and 620A of the cell frame 613 and the separator 620 is in the stacking direction Z more than the other protrusion portions 113A and 120A.
  • the heights H3 and H4 along are large.
  • the present invention is not limited to this. At least one of the cell frame 613 and the separator 620 is one. It is only necessary to have a high projecting portion.
  • FIG. 15 is a perspective view showing a state in which the bonding member 200 is disposed between the stacked component members 713 and 720
  • FIG. 16 is a plan view of FIG.
  • the fifth embodiment differs from the third embodiment described above in that the protrusions 713A and 720A have a tapered shape in a plan view from the stacking direction Z.
  • symbol is attached
  • the phase which is a pattern of the periodic arrangement in the extending direction of the bonding member 200, is “a reverse phase”.
  • the protrusions 713A and 720A have a “tapered shape” that tapers along one of the XY plane directions in a plan view from the stacking direction Z.
  • the shear mode input in the XY plane direction in the direction of the outlined arrow in FIG. 16
  • the shear mode input is in the compression mode with higher bonding strength (FIG. 16). It can be converted to (solid arrow direction). As a result, destruction of the bonding surface (interface) of the bonding member 200 can be suppressed.
  • the tapering directions of the taper shapes of the cell frame 713 and the projecting portions 713A and 720A of the cell frame 713 and the separator 720 adjacent to each other in the stacking direction Z across the bonding member 200 are opposite to each other.
  • the projecting portion 713A of the cell frame 713 and the projecting portion 720A of the separator 720 can be arranged to be engaged with each other.
  • Different inclination directions are obtained in the inclined portions B1 and B2 formed by the biting portions. As a result, the input of the shear mode in the XY plane direction can be more reliably converted to the compression mode.
  • the tapered shapes of the cell frame 713 and the projecting portions 713A and 720A of the separators 720 adjacent to each other in the stacking direction Z with the bonding member 200 interposed therebetween are arranged alternately (in a biting manner).
  • An interval ⁇ t between the protruding portions 113A and 120A adjacent to each other in the XY plane direction (direction intersecting the stacking direction Z) is formed to narrow toward the end portions 201 and 202 of the bonding member 200. This can prevent the low viscosity bonding member 200 from flowing at high temperature.
  • the ⁇ marks in Table 1 mean that the respective embodiments exhibit the respective functions (effects), and the ⁇ ⁇ marks mean that the respective functions (effects) are further exhibited.
  • the fuel cell stacks of the first to fifth embodiments have a reinforcing function to suppress the deformation of the cell unit 100 by providing the projecting portion as shown in FIG. Thereby, the peeling force which acts on the joining member 200 can be suppressed.
  • a peeling adjustment unit 300 configured of a first bonding surface T1 parallel to the stacking direction Z and a second bonding surface T2 inclined with respect to the stacking direction Z. , The input of the peeling mode (peel force) can be converted to a shear mode with higher bonding strength.
  • the fuel cell stack is a combination of “same phase” and “concave” as in the second embodiment shown in FIG. 12 or the third and fifth embodiments shown in FIG.
  • it has a function of converting the input of the shear mode acting on the bonding member 200 into the compression mode with higher bonding strength (the direction of the arrow in FIGS. 12 and 13) by the combination of “reverse phase” and “convex”.
  • the combination of “in-phase” and “concave and convex” is more effective in mode conversion than the combination of “in-phase” and “convex and convex”.
  • the bonding member 200 enters the recess and more bonding members 200 are disposed between the side surface of the protrusion and the side surface of the recess.
  • the fifth embodiment in addition to the “inverse phase” and the “convex and convex”, it has a “tapered shape”. This makes it easy to convert the shear mode in the XY plane direction into the compression mode.
  • the fuel cell stack is a protrusion of the cell unit 100 in the XY plane direction by the combination of the “opposite phase” and the “convex and convex” as in the third and fifth embodiments shown in FIG.
  • the range of reinforcement by parts can be expanded. Thereby, the deformation of the cell unit 100 can be further suppressed.
  • the fuel cell stack has a joining surface with a larger area of force acting on the joining member 200 because the projecting part is “partially high” as in the fourth embodiment shown in FIG. You can receive Thereby, peeling of the bonding member 200 can be suppressed.
  • the fuel cell stack is not limited to the configuration of the embodiment described above, and may be configured by appropriately combining the specifications of the first to fifth embodiments described above.
  • the power generation cell of the fuel cell stack has been described as a metal-supported cell (MSC) in which the anode, the electrolyte layer, and the cathode are supported by the metal support portion.
  • MSC metal-supported cell
  • the fuel cell stack is described as a solid oxide fuel cell (SOFC), but for example, a polymer electrolyte membrane fuel cell (PEMFC), a phosphoric acid fuel It may be configured as a battery (Phosphoric Acid Fuel Cell: PAFC) or a molten carbonate fuel cell (MCFC).
  • SOFC solid oxide fuel cell
  • PEMFC polymer electrolyte membrane fuel cell
  • PAFC Phosphoric Acid Fuel Cell
  • MCFC molten carbonate fuel cell
  • 10 fuel cell stacks 100 cell units, 110 metal support cell assembly, 110M metal support cell, 111 power generation cell, 111A anode, 111C cathode, 111E electrolyte, 112 metal support section, 113 cell frame, 113A, 413A, 513A, 613A, 713A protrusions, 113B first flat portion, 113C, 513C second flat portion, 113D third flat portion, 120 separators, 120A, 420A, 520A, 620A, 720A protrusions, 120B first flat section, 120C, 520C second flat portion, 120D third flat section, 130 current collection auxiliary layer, 200 bonding members, 201, 202 end, 300 peeling adjustment unit, T1 first joint surface, T2 second joint surface, H1, H2, H3, H4 protrusion height, S1, S2 reference plane, X (for fuel cell stack) direction, Y (for fuel cell stack) longitudinal direction, Z Stacking direction of the fuel cell stack.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】構成部材同士の接合強度およびガスのシール性を向上することができる燃料電池スタックを提供する。 【解決手段】燃料電池スタックは、積層方向Zに交差する方向から接合部材200を間に挟んで両側に配置され、構成部材113、120の一部から積層方向Zに突出した複数の突出部113A、120Aと、接合部材200に作用する剥離力を調整する剥離調整部300と、を有する。接合部材は、複数の突出部に跨って配置される。

Description

燃料電池スタック
 本発明は、燃料電池スタックに関する。
 燃料電池は、発電セルに対して供給されたアノードガス(燃料ガス)およびカソードガス(酸化剤ガス)の電気化学反応によって発電する電池である。燃料電池は、一般的に、発電セルと、発電セルとの間にガスの流通路を区画形成するセパレータと、を含む複数の構成部材を積層した燃料電池スタックとして構成されている。
 例えば、下記特許文献1には、構成部材同士の接合強度(機械的強度)とガスのシール性の両方の機能を確保するために、接合部材およびシール部材をそれぞれ配置した燃料電池スタックが開示されている。
特開2014-220093号公報
 しかしながら、上記特許文献1に記載の構成では、接合部材およびシール部材をそれぞれ別々に配置するため、製造工程が増加するとともに、構成部材において接合部材およびシール部材の両方を配置するための面積が必要となる。これにより、燃料電池スタックの製造コストが増加してしまう。また、接合部材とシール部材に異なる材料を使用するため、接合強度やシール性を発揮するための製造条件(例えば、加熱温度等)が異なる。これにより、同一の製造条件で製造すると接合強度やシール性が低下してしまう可能性がある。
 本発明の目的は、構成部材同士の接合強度およびガスのシール性を向上することができる燃料電池スタックを提供することである。
 上記目的を達成するための本発明の燃料電池スタックは、発電セルと、セパレータと、を含む複数の構成部材を積層し、積層された構成部材同士を接合部材によって接合してなる燃料電池スタックである。該燃料電池スタックは、積層方向に交差する方向から前記接合部材を間に挟んで両側に配置され、前記構成部材の一部から積層方向に突出した複数の突出部と、前記接合部材に作用する剥離力を調整する剥離調整部と、を有する。前記接合部材は、複数の前記突出部に跨って配置される。
第1実施形態の燃料電池スタックを示す分解斜視図である。 燃料電池スタックの一部を拡大して示す分解斜視図である。 図2に示す燃料電池スタックの平面図である。 セルユニットの分解斜視図である。 メタルサポートセルアッセンブリーの分解斜視図である。 図4の6-6線に沿うメタルサポートセルアッセンブリーの断面図である。 図2の破線で囲まれた部分を拡大して示す分解斜視図である。 図3の破線で囲まれた部分を拡大して示す平面図である。 図8の9-9線に沿う断面図である。 図8の10-10線に沿う断面図である。 図8の11-11線に沿う断面図である。 第2実施形態の燃料電池スタックの突出部の構成を説明するための断面図であり、第1実施形態の図11に対応する図である。 第3実施形態の燃料電池スタックの突出部の構成を説明するための断面図であり、第1実施形態の図11に対応する図である。 第4実施形態の燃料電池スタックの突出部の構成を説明するための断面図であり、第1実施形態の図11に対応する図である。 第5実施形態の燃料電池スタックの突出部の構成を説明するための図であり、積層された構成部材間に接合部材が配置された状態を示す斜視図である。 図15を積層方向から見た平面図である。
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、以下の説明は特許請求の範囲に記載される技術的範囲や用語の意義を限定するものではない。また、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。
 <第1実施形態>
 図1~図11を参照して、第1実施形態の燃料電池スタック10について説明する。本実施形態の燃料電池スタック10は、電解質として例えば、安定化ジルコニアなどの酸化物イオン導電体を用いた固体酸化物形燃料電池(Solid Oxide Fuel Cell:SOFC)に用いられる。
 以下の説明の便宜のため、XYZ直交座標系を図中に示す。X軸およびY軸は水平方向、Z軸は上下方向にそれぞれ平行な軸を示す。上下方向から見た平面視において燃料電池スタック10は、略長方形状を有する。該長方形状の短手方向はX軸方向、長手方向はY軸方向にそれぞれ一致している。
 図1は、第1実施形態に係る燃料電池スタック10を示す分解斜視図である。図1に示すように、燃料電池スタック10は、上下方向Zに積層された複数のセルユニット100と、複数のセルユニット100を挟持して支持するエンドプレート20と、を有する。セルユニット100と外部機器との間の電力の入出力は、導電性材料で構成された集電板(図示せず)を用いた集電構造によって行われる。
 なお、以下の説明において、「積層方向」という文言はセルユニット100を積層する方向を指す。本実施形態では、積層方向は、上下方向Zに一致している。
 図2は、燃料電池スタック10の一部を拡大して示す分解斜視図である。図2に示すように、積層方向Zに隣り合うセルユニット100間には、セルユニット100同士を接合する接合部材200が配置されている。
 図3は、図2に示す燃料電池スタック10の平面図である。なお、接合部材200の配置を示すために、上側(図3の手前側)に配置されるセルユニット100の図示は省略する。図3に示すように、セルユニット100は、アノードガス(燃料ガス)を流通させる第1マニホールド部141と、カソードガス(酸化剤ガス)を流通させる第2マニホールド部142と、を有する。
 図3に示すように、接合部材200は、セルユニット100の外周および第1マニホールド部141の外周を囲うように延在する。接合部材200は、セルユニット100同士を接合する接合機能を有するとともに、セルユニット100に供給されるアノードガスおよびカソードガスが外部に漏れないように封止するシール機能を有する。なお、本明細書中、接合部材200がセルユニット100の外周および第1マニホールド部141の外周に沿って延在する方向を接合部材200の「延在方向」と称する。
 接合部材200の形成材料は、例えば、ガラス、ロウ材、セラミックス接着剤等の耐熱性を有する材料を用いることが好ましい。ここで、「耐熱性を有する」とは、固体酸化物形燃料電池の作動温度である約700~1000°Cの高温環境下においても、接合機能およびシール機能を維持できることを意味する。
 図4は、セルユニット100の分解斜視図である。図4に示すように、セルユニット100は、発電要素である発電セル111を含むメタルサポートセルアッセンブリー110と、発電セル111との間にガスの流通路を区画形成するセパレータ120と、集電補助層130と、を順に積層して構成されている。
 図5は、メタルサポートセルアッセンブリー110の分解斜視図であり、図6は、メタルサポートセルアッセンブリー110の断面図である。図5および図6に示すように、メタルサポートセルアッセンブリー110は、長手方向Yに沿って複数(本実施形態では、2つ)並べて配置した発電セル111と、各々の発電セル111を積層方向Zの一方側から支持する金属製のメタルサポート部112と、発電セル111およびメタルサポート部112の外周を保持するセルフレーム113と、を有する。本明細書中、発電セル111およびメタルサポート部112を積層した積層体をメタルサポートセル(MSC)110Mと称する。メタルサポートセル110Mが配置された領域は、発電に寄与するアクティブエリアに相当する。なお、セルユニット100の各部の構成については、後述において詳細に説明する。
 図7は、図2の破線で囲まれた部分A1を拡大して示す分解斜視図である。なお、説明の便宜上、接合部材200の上側のセルユニット100は、メタルサポートセルアッセンブリー110のセルフレーム113のみを示す。また、接合部材200の下側のセルユニット100は、セパレータ120のみを示す。
 図7に示すように、セルフレーム113(構成部材に相当)は、セルフレーム113の基準面S1の一部から下方向(積層方向Z)に突出した複数の突出部113Aを有する。同様に、セパレータ120(構成部材に相当)は、セパレータ120の基準面S2の一部から上方向(積層方向Z)に突出した複数の突出部120Aを有する。
 セルフレーム113およびセパレータ120の突出部113A、120Aは、基準面S1、S2を有する平板を凹凸形状に成形した凹部または凸部からなる。ここで、「基準面S1、S2」は、凹凸形状に成形される前の平板のうち接合部材200に対向する面と定義する。
 図8は、図3の破線で囲まれた部分A2を拡大して示す平面図である。なお、説明の便宜上、図8に示すセルユニット100は、セパレータ120のみを示す。また、セルフレーム113の突出部113Aの構成は、セパレータ120の突出部120Aと同様のため図示は省略する。
 図8に示すように、積層方向Zからの平面視において、セパレータ120の複数の突出部120Aのうち一対の突出部120Aは、積層方向Zに交差する方向(短手方向X)から接合部材200を間に挟んで両側(両端部201、202側)に配置される。さらに、一対の突出部120Aは、接合部材200の延在方向(長手方向Y)に沿うように断続的に複数配置される。換言すると、セパレータ120の突出部120Aは、積層方向Zからの平面視において、接合部材200の延在方向(長手方向Y)に沿って断続的に2列で配列される。
 同様に、図7を参照して、積層方向Zからの平面視において、セルフレーム113の一対の突出部113Aは、積層方向Zに交差する方向から接合部材200を間に挟んで両側(両端部201、202側)に配置される。さらに、一対の突出部113Aは、接合部材200の延在方向に沿うように複数配置される。換言すると、セルフレーム113の突出部113Aは、積層方向Zからの平面視において、接合部材200の延在方向に沿って断続的に2列で配列される。
 なお、図7および図8では、接合部材200の延在方向が長手方向Yの場合を例に挙げて図示しているがこれに限定されない。接合部材200の延在方向は、接合部材200のセルユニット100上の配置(図3を参照)によって短手方向Xとなる場合もあるし、長手方向Yおよび短手方向Xに交差する方向となる場合もある。
 図7および図8に示すように、セパレータ120は、2列に配列された突出部120Aの列と列との間に配置され、XY平面に略平行な第1平面部120B(図7および図8中の破線で囲まれた部分)と、接合部材200の延在方向に沿って隣り合う突出部120A間に配置された第2平面部120C(図7および図8中の一点鎖線で囲まれた部分)と、突出部120Aに対して第1平面部120Bと反対側に配置された第3平面部120D(図7および図8中の二点鎖線で囲まれた部分)と、を有する。第1平面部120B、第2平面部120Cおよび第3平面部120Dは、基準面S2上に配置される。
 同様に、図7に示すように、セルフレーム113は、2列に配列された突出部113Aの列と列との間に配置され、XY平面に略平行な第1平面部113B(図7中の破線で囲まれた部分)と、接合部材200の延在方向に沿って隣り合う突出部113A間に配置された第2平面部113C(図7中の一点鎖線で囲まれた部分)と、突出部113Aに対して第1平面部113Bと反対側に配置された第3平面部113D(図7中の二点鎖線で囲まれた部分)と、を有する。第1平面部113B、第2平面部113Cおよび第3平面部113Dは、基準面S1上に配置される。
 図7および図8に示すように、接合部材200は、その両端部201、202側に配置された一対の突出部113A、120Aおよび第1平面部113B、120Bに跨って配置される。また、突出部113A、120Aは、積層方向Zからの平面視において、「矩形形状」を有している。
 図9は、図8の9-9線に沿う断面図である。図10は、図8の10-10線に沿う断面図である。図9に示すように、突出部113A、120Aは、接合部材200の延在方向(長手方向Y)からの断面視において、接合部材200の両端部201、202を積層方向Zから挟持するように配置される。
 図9に示すように、セルフレーム113の突出部113Aは、セルフレーム113の基準面S1に対して接合部材200側(下方向)に突出した凸部である。セパレータ120の突出部120Aは、セパレータ120の基準面S2に対して接合部材200側(上方向)に突出した凸部である。すなわち、接合部材200を挟んで積層方向Zに隣り合うセルフレーム113およびセパレータ120の突出部113A、120Aは、互いに対向する方向に突出している。本明細書では、接合部材200を挟んで積層方向Zに隣り合うセルフレーム113およびセパレータ120の突出部113A、120Aが互いに対向する方向に突出した図9の状態を「凸凸」と称する。
 図10に示すように、接合部材200の延在方向(長手方向Y)からの断面視において、接合部材200は、第1平面部113B、120Bおよび第2平面部113C、120Cに接するように配置されている。
 図11は、図8の11-11線に沿う断面図である。図11に示すように、突出部113A、120Aと第2平面部113C、120Cは、接合部材200の延在方向に沿って交互に、一定の間隔で周期的に配置されている。
 図11に示すように、接合部材200の延在方向に沿って突出部113Aおよび第2平面部113Cの配置の周期の位相は、突出部120Aおよび第2平面部120Cの配置の周期の位相と同じである。このように、周期の位相が同じ場合を「同位相」と称する。この場合、突出部113Aと突出部120Aとが積層方向Zに重なり、第2平面部113Cと第2平面部120Cとが積層方向Zに重なるように配置される。
 図11に示すように、同一基準面S1から突出して形成された複数の突出部113Aの高さH1(突出方向の長さ)は、同じ高さで「均一」に形成されている。同様に、同一基準面S2から突出して形成された複数の突出部120Aの高さH2は、同じ高さで「均一」に形成されている。
 接合部材200と、セルフレーム113およびセパレータ120との間には、接合された接合面が形成される。接合部材200と突出部113A、120Aとの間には、図9に示すように積層方向Zに沿って平行な第1接合面T1、図11に示すように積層方向Zに対して傾斜した第2接合面T2、および図9、図11に示すようにXY面方向に沿って平坦な第3接合面T3が形成される。第1接合面T1および第2接合面T2は、全面が接合されていることが好ましい。なお、第3接合面T3は、一部が接合されていれば全面が接合されていなくてもよい。
 また、図9に示すように、接合部材200と第1平面部113B、120Bとの間には、第4接合面T4が形成される。図11に示すように、接合部材200と第2平面部113C、120Cとの間には、第5接合面T5が形成される。第4接合面T4は、第1平面部113B、120Bに沿って全面が接合されている。これにより、第4接合面T4は、セルユニット100の外周および第1マニホールド部141の外周(図3を参照)をシールすることができる。なお、第5接合面T5は、一部が接合されていれば全面が接合されていなくてもよい。
 セルフレーム113およびセパレータ120の突出部113A、120Aは、第1平面部113B、120B、第2平面部113C、120Cおよび第3平面部113D、120Dに比べて断面二次モーメントが高くなるため、曲げ剛性が高くなる。したがって、仮に、第3平面部113Dが図9中の白抜き矢印方向に外力を受けて図9中の破線で示すように変形した場合でも、突出部113Aで変形が抑制される。よって、突出部113A、120Aによって挟持された接合部材200の端部201、202が曲げ変形しにくくなるため、剥離モードの入力(以下、「剥離力」とも称する。)を引き起こす変形が発生し難くなる。これにより、接合部材200が剥離することを抑制して、セルユニット100同士の接合強度とガスのシール性を向上することができる。
 図9および図11に示す第1接合面T1および第2接合面T2は、接合部材200に作用する剥離力を調整する剥離調整部300として機能する。
 ここで、剥離調整部300が剥離力を調整するメカニズムについて説明する。
 一般的に、接合面にかかる力は、圧縮、せん断、鉛直引張、剥離の4つのモードに大きく分類される。圧縮モードは、接合面に対して垂直方向に圧縮荷重をかけた場合に生じる。せん断モードは、接合面に平行な引張りせん断荷重をかけた場合に生じる。引張(鉛直)モードは、接合面に対して垂直方向に引張荷重をかけた場合に生じる。剥離モードは、接合面を形成する被接合部材(本実施形態では、セルフレーム113またはセパレータ120)と接合部材200とを引き剥がす場合に生じる。
 接合部材200の接合強度は、一般的に剥離強度が一番弱くなる。したがって、剥離モードの入力をせん断や鉛直引張のモードに変換することによって接合面(界面)が破壊されることを抑制することができる。
 上述したように本実施形態の剥離調整部300は、第1接合面T1および第2接合面T2からなる接合面から構成される。図9に示すように、第1接合面T1に対して、積層方向Zに剥離モード(図9中の白抜き矢印)の入力が入ると、第1接合面T1は剥離モードの入力をせん断モード(図9中の実線矢印)の力に変換して受けることができる。また、第2接合面T2に対して、積層方向Zに剥離モード(図11中の白抜き矢印)の入力が入ると、第2接合面T2は剥離モードの入力をせん断モード(図11中の実線矢印)および鉛直引張モード(図11中の点線矢印)に変換して受けることができる。このように、剥離調整部300は剥離モードの入力をより接合強度の高いモードに変換することによって、剥離を抑制することができる。その結果、剥離調整部300は接合部材200に作用する剥離力を調整することができる。
 以下、セルユニット100の各部の構成について詳細に説明する。
 (発電セル111)
 発電セル111は、図5および図6に示すように、電解質111Eを両側から一対の電極であるアノード111Aおよびカソード111Cで挟持して構成される。
 電解質111Eは、カソード111Cからアノード111Aに向かって酸化物イオンを透過させるものである。電解質111Eは、酸化物イオンを通過させつつ、ガスと電子を通過させない。電解質111Eの形成材料は、例えば、イットリア、酸化ネオジム、サマリア、ガドリア、スカンジア等を固溶した安定化ジルコニアなどの固体酸化物セラミックスが挙げられる。
 アノード111Aは、燃料極であって、アノードガス(例えば水素)と酸化物イオンを反応させて、アノードガスの酸化物を生成するとともに電子を取り出す。アノード111Aは、還元雰囲気に耐性を有し、アノードガスを透過させ、電気伝導度が高く、アノードガスを酸化物イオンと反応させる触媒作用を有する。アノード111Aの形成材料は、例えば、ニッケル等の金属、イットリア安定化ジルコニア等の酸化物イオン伝導体を混在させた超硬合金が挙げられる。
 カソード111Cは、酸化剤極であって、カソードガス(例えば空気に含まれる酸素)と電子を反応させて、酸素分子を酸化物イオンに変換する。カソード111Cは、酸化雰囲気に耐性を有し、カソードガスを透過させ、電気伝導度が高く、酸素分子を酸化物イオンに変換する触媒作用を有する。カソード111Cの形成材料は、例えば、ランタン、ストロンチウム、マンガン、コバルト等の酸化物が挙げられる。
 (メタルサポート部112)
 メタルサポート部112は、図5および図6に示すように、発電セル111をアノード111Aの側から支持するものである。メタルサポート部112は、ガス透過性および電気伝導性を有する多孔質の金属である。メタルサポート部112の形成材料は、例えば、ニッケルやクロムを含有する耐食合金や耐食鋼、ステンレス鋼などが挙げられる。
 (セルフレーム113)
 セルフレーム113は、図5および図6に示すように、メタルサポートセル110Mを周囲から保持するものである。セルフレーム113は、長手方向Yに沿って並べて配置された複数(本実施形態では、2つ)の開口部113Hを有する。セルフレーム113の開口部113Hには、メタルサポートセル110Mが配置される。メタルサポートセル110Mの外周は、セルフレーム113の開口部113Hの内縁に接合される。セルフレーム113の形成材料は、例えば、表面に絶縁処理が施された金属が挙げられる。
 セルフレーム113は、図5に示すように、アノードガスが流通するアノードガス第1流入口113a、アノードガス第2流入口113b、アノードガス第3流入口113c、アノードガス第1流出口113dおよびアノードガス第2流出口113eを有する。セルフレーム113は、カソードガスが流通するカソードガス第1流入口113f、カソードガス第2流入口113g、カソードガス第1流出口113h、カソードガス第2流出口113iおよびカソードガス第3流出口113jを有する。
 (セパレータ120)
 セパレータ120は、図4に示すように、メタルサポートセル110Mの発電セル111と対向する領域に流路部121を有する。流路部121は、発電セル111との間にガスの流通路を区画形成する凹凸形状を有している。セパレータ120の流路部121には、凹凸形状が短手方向Xに延在するように略直線状に形成されている。これにより、流路部121に沿って流れるガスの流れ方向は、短手方向Xである。セパレータ120の形成材料は、例えば、金属が挙げられる。セパレータ120の流路部121以外の領域には、絶縁処理が施されている。
 セパレータ120は、図4に示すように、アノードガスが流通するアノードガス第1流入口120a、アノードガス第2流入口120b、アノードガス第3流入口120c、アノードガス第1流出口120dおよびアノードガス第2流出口120eを有する。セパレータ120は、カソードガスが流通するカソードガス第1流入口120f、カソードガス第2流入口120g、カソードガス第1流出口120h、カソードガス第2流出口120iおよびカソードガス第3流出口120jを有する。
 (集電補助層130)
 集電補助層130は、ガスを通す空間を形成しつつ面圧を均等にして、メタルサポートセル110Mとセパレータ120との電気的な接触を補助する。集電補助層130は、例えば、金網状のエキスパンドメタルである。
 (第1マニホールド部141)
 図3に示す第1マニホールド部141は、図4および図5に示すセルフレーム113のアノードガス流出入口113a、113b、113c、113d、113eおよび、セパレータ120のアノードガス流出入口120a、120b、120c、120d、120eによって構成される。
 (第2マニホールド部142)
 図3に示す第2マニホールド部142は、図4および図5に示すセルフレーム113のカソードガス流出入口113f、113g、113h、113i、113jおよび、セパレータ120のカソードガス流出入口120f、120g、120h、120i、120jによって構成される。
 以上説明した実施形態に係る燃料電池スタック10の作用効果を説明する。
 以上説明したように、本実施形態に係る燃料電池スタック10は、積層方向Zに交差する方向から接合部材200を間に挟んで両側に配置され、セルフレーム113(構成部材)およびセパレータ120(構成部材)の一部から積層方向Zに突出した複数の突出部113A、120Aと、接合部材200に作用する剥離力を調整する剥離調整部300と、を有する。接合部材200は、複数の突出部113A、120Aに跨って配置される。
 上記燃料電池スタック10によれば、セルフレーム113およびセパレータ120の突出部113A、120Aは、第1平面部113B、120B、第2平面部113C、120Cおよび第3平面部113D、120Dに比べて断面二次モーメントが高くなるため、曲げ剛性が高くなる。したがって、仮に、セルフレーム113およびセパレータ120が変形した場合でも、突出部113A、120Aにおいて変形が抑制される。よって、突出部113A、120Aは、セルユニット100の変形を抑制する補強機能を有する。これにより、突出部113A、120Aによって挟持された接合部材200の端部201、202が曲げ変形しにくくなるため、剥離モードの入力(剥離力に相当)を引き起こす変形が発生し難くなる。また、剥離調整部300によって接合部材200に作用する剥離力が調整されるため、接合部材200が剥離することを抑制することができる。これにより、セルユニット100同士の接合強度とガスのシール性を向上することができる。
 また、剥離調整部300は、突出部113A、120Aと接合部材200との間に形成された接合面T1、T2からなる。接合面T1、T2によって突出部113A、120Aと接合部材200との間が接合されているため剥離モードを引き起こす変形が発生し難くなる。これにより、剥離調整部300は、接合部材200に剥離力が作用することを抑制することができる。
 また、接合面T1、T2は、積層方向Zに沿って平行な第1接合面T1と、積層方向Zに対して傾斜した第2接合面T2と、を有する。第1接合面T1に対して、積層方向Zに剥離モードの入力(剥離力)が作用した場合に、第1接合面T1は剥離モードの入力をせん断モードの力に変換して受けることができる。また、第2接合面T2に対して、積層方向Zに剥離モードの入力が入ると、第2接合面T2は剥離モードの入力をせん断モードおよび鉛直引張モードに変換して受けることができる。このように、剥離調整部300は剥離モードの入力をより接合強度の高いモードに変換することによって、接合部材200に剥離力が作用することを抑制することができる。なお、剥離調整部300は、接合面として第1接合面T1および第2接合面T2の少なくとも一方を有していれば、剥離力を調整することができる。
 また、突出部113A、120Aは、基準面S1、S2を有する平板を凹凸形状に成形した凹部または凸部からなるため、突出部113A、120Aを容易に成形することができる。
 また、接合部材200を挟んで積層方向Zに隣り合うセルフレーム113(一の構成部材に相当)およびセパレータ120(他の構成部材に相当)のうち、セルフレーム113の突出部113Aは、基準面S1に対して接合部材200側に突出した凸部である。セパレータ120の突出部120Aは、基準面S2に対して接合部材200側に突出した凸部である。突出部113Aの凸部および突出部120Aの凸部によって接合部材200を挟持することができる。これにより、突出部113A、120Aは、より強固に接合部材200の両端部201、202を挟持することができるため、接合部材200に剥離力が作用することを抑制することができる。
 <第2実施形態>
 図12を参照して、第2実施形態に係る燃料電池スタックについて説明する。図12は、第2実施形態の燃料電池スタックの突出部413A、420Aの構成を説明するための断面図であり、第1実施形態の図11に対応する図である。
 第2実施形態に係る燃料電池スタックは、接合部材200を挟んで積層方向Zに隣り合うセルフレーム413およびセパレータ420の突出部413A、420Aの凹凸方向が前述した第1実施形態と異なる。なお、他の構成は、前述した実施形態と同様のため、同一の符号を付してその説明を省略する。
 図12に示すように、セルフレーム413の突出部413Aは、セルフレーム413の基準面S1に対して接合部材200側(下方向)に突出した凸部である。セパレータ420の突出部420Aは、セパレータ420の基準面S2に対して接合部材200側(下方向)と反対側に窪んだ凹部である。これにより、接合部材200を挟んで積層方向Zに隣り合うセルフレーム413の突出部413Aは、セパレータ420の突出部420Aに形状が合わさるように形成される。本明細書では、図12のように接合部材200を挟んで積層方向Zに隣り合うセルフレーム413およびセパレータ420の突出部413A、420Aが基準面S1、S2に対して積層方向Zの同じ方向に突出した状態を「凹凸」と称する。
 上述したように第2実施形態に係る燃料電池スタックは、接合部材200を挟んで積層方向Zに隣り合うセルフレーム413(一の構成部材に相当)およびセパレータ420(他の構成部材に相当)のうち、セルフレーム413の突出部413Aは、基準面S1に対して接合部材200側に突出した凸部である。一方で、セパレータ420の突出部420Aは、基準面S2に対して接合部材200と反対側に窪んだ凹部である。
 上記燃料電池スタックによれば、突出部413A(凸部)の側面と、突出部420A(凹部)の側面との間に接合部材200が充填される。これにより、凸部の側面と凹部の側面との間に配置された接合部材200にかかるXY面方向のせん断モードの入力をより接合強度の高い圧縮モード(図12中の矢印方向)に変換することができる。これにより、接合部材200が剥離することを抑制することができる。よって、セルユニット100同士の接合強度とガスのシール性をさらに向上することができる。
 <第3実施形態>
 図13を参照して、第3実施形態に係る燃料電池スタックについて説明する。図13は、第3実施形態の燃料電池スタックの突出部513A、520Aの構成を説明するための断面図であり、第1実施形態の図11に対応する図である。
 第3実施形態では、積層方向Zに隣り合う突出部513A、520Aは、接合部材200の延在方向の周期的な配置のパターンである位相が「逆位相」になるように配置されている点で前述した第1実施形態と異なる。なお、他の構成は、前述した実施形態と同様のため、同一の符号を付してその説明を省略する。
 図13に示すように、セルフレーム513の突出部513Aと第2平面部513Cは、接合部材200の延在方向(図13中では長手方向Y)に沿って交互に、一定の間隔で周期的に配置されている。同様に、セパレータ520の突出部520Aと第2平面部520Cは、接合部材200の延在方向(図13中では長手方向Y)に沿って交互に、一定の間隔で周期的に配置されている。
 セルフレーム513の複数の突出部513Aおよび複数の第2平面部513Cの配置の周期の位相は、セパレータ520の複数の突出部520Aおよび複数の第2平面部520Cの配置の周期の位相に対して反転している。本明細書では、上記のように周期の位相が反転している場合を「逆位相」と称する。この場合、突出部513Aと第2平面部520Cとが積層方向Zに重なり、突出部520Aと第2平面部513Cとが積層方向Zに重なるように配置される。
 上述したように第3実施形態に係るセルフレーム513の複数の突出部513Aは、接合部材200の延在方向に沿って一定の間隔で周期的に配置される。同様に、セパレータ520の複数の突出部520Aは、接合部材200の延在方向に沿って一定の間隔で周期的に配置される。接合部材200を挟んで積層方向Zに隣り合うセルフレーム513の突出部513Aの配置の周期の位相は、セパレータ520の突出部520Aの配置の周期の位相と逆位相である。
 上記燃料電池スタックによれば、セルユニット100において、セルフレーム513の第2平面部513Cにセパレータ520の突出部520Aが合わさるように配置される。また、セパレータ520の第2平面部520Cにセルフレーム513の突出部513Aが合わさるように配置される。これにより、セルユニット100のXY面方向に突出部113A、120Aによって補強される範囲が広くなるため、セルユニット100の変形を抑制することができる。また、凸部の側面と凹部の側面との間に配置された接合部材200にかかるXY面方向のせん断モードの入力をより接合強度の高い圧縮モード(図13中の矢印方向)に変換することができる。よって、セルユニット100の変形によって接合部材200が剥離したり圧潰したりすることを抑制することができる。その結果、セルユニット100同士の接合強度とガスのシール性をさらに向上することができる。
 <第4実施形態>
 図14を参照して、第4実施形態に係る燃料電池スタックについて説明する。図14は、第4実施形態の燃料電池スタックの突出部113A、120A、613A、620Aの構成を説明するための断面図であり、第1実施形態の図11に対応する図である。
 第4実施形態では、突出部113A、120A、613A、620Aの高さが一部高く形成されている点で前述した第1実施形態と異なる。なお、他の構成は、前述した実施形態と同様のため、同一の符号を付してその説明を省略する。
 セルフレーム613の突出部113A、613Aのうち、少なくとも1つの突出部613Aは、他の突出部113Aの積層方向Zに沿う高さH1よりも積層方向Zに沿う高さH3が大きい。同様に、セパレータ620の突出部120A、620Aのうち、少なくとも1つの突出部620Aは、他の突出部120Aの積層方向Zに沿う高さH2よりも積層方向Zに沿う高さH4が大きい。換言すると、セルフレーム613およびセパレータ620の突出部113A、120A、613A、620Aの高さは「一部高く」形成されている。
 上述した第4実施形態では、セルフレーム613およびセパレータ620の突出部113A、120A、613A、620Aのうち、少なくとも1つの突出部613A、620Aは、他の突出部113A、120Aよりも積層方向Zに沿う高さH3、H4が大きい。セルユニット100を積層して組み付ける際に、一部高く形成された突出部613A、620Aが対向する構成部材に突き当たって積層方向Zの位置が規制される。これにより、接合部材200を挟んで積層方向Zに隣り合うセルフレーム613およびセパレータ620の突出部113A、120Aの全面が突き当たらないため、突出部113A、120Aと接合部材200との間の接合面積を確保することができる。その結果、接合部材200に作用する力をより広い面積の接合面で受けることができるため、接合部材200が剥離することを抑制することができる。よって、セルユニット100同士の接合強度とガスのシール性をさらに向上することができる。
 なお、第4実施形態では、セルフレーム613およびセパレータ620の両方が一部高い突出部613A、620Aを有する構成について説明したが、これに限定されず、セルフレーム613およびセパレータ620の少なくとも一方が一部高い突出部を備えていればよい。
 <第5実施形態>
 図15および図16を参照して、第5実施形態に係る燃料電池スタックについて説明する。図15は、積層された構成部材713、720間に接合部材200が配置された状態を示す斜視図であり、図16は、図15を積層方向Zから見た平面図である。
 第5実施形態では、突出部713A、720Aが積層方向Zからの平面視においてテーパー形状を有する点で前述した第3実施形態と異なる。なお、他の構成は、前述した第3実施形態と同様のため、同一の符号を付してその説明を省略する。
 図15および図16に示すように、第5実施形態では、第3実施形態と同様に、接合部材200を挟んで積層方向Zに隣り合うセルフレーム713およびセパレータ720の突出部713A、720Aが互いに対向する方向に突出した「凸凸」である。また、積層方向Zに隣り合う突出部713A、720Aは、接合部材200の延在方向の周期的な配置のパターンである位相が「逆位相」である。
 図16に示すように、突出部713A、720Aは、積層方向Zからの平面視において、XY面方向のうち一の方向に沿って先細る「テーパー形状」を有している。図16の破線で囲まれた部分A3にXY面方向のせん断モードの入力(図16の白抜き矢印方向に)が入った場合に、せん断モードの入力をより接合強度の高い圧縮モード(図16中の実線矢印方向)に変換することができる。その結果、接合部材200の接合面(界面)が破壊されることを抑制することができる。
 また、接合部材200を挟んで積層方向Zに隣り合うセルフレーム713およびセパレータ720の突出部713A、720Aのテーパー形状の先細り方向は、互いに反対方向である。これにより、セルフレーム713の突出部713Aとセパレータ720の突出部720Aが互いに噛み込むように配置することができる。噛み込んだ部分で形成された傾斜部B1、B2において、異なる傾斜方向が得られる。その結果、XY面方向のせん断モードの入力をより確実に圧縮モードに変換することができる。
 また、接合部材200を挟んで積層方向Zに隣り合うセルフレーム713およびセパレータ720の突出部713A、720Aのテーパー形状は、互い違いに(噛み込むように)配置される。XY面方向(積層方向Zに交差する方向)に隣り合う突出部113A、120A間の間隔Δtは、接合部材200の端部201、202側に向かって狭くなるように形成されている。これにより、高温時に低粘度の接合部材200が流動することを防止することができる。
 以上説明した各実施形態の突出部の特徴的な構成およびその機能(効果)をまとめたものを下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1中の○印は、各実施形態が各機能(効果)を発揮することを意味し、◎印は、各機能(効果)をより一層発揮することを意味する。
 表1に示すように、第1~第5実施形態の燃料電池スタックは、図9に示すように、突出部を備えることによってセルユニット100の変形を抑制する補強機能を有する。これにより、接合部材200に作用する剥離力を抑制することができる。また、図9および図11に示すように、積層方向Zに沿って平行な第1接合面T1と、積層方向Zに対して傾斜した第2接合面T2と、から構成される剥離調整部300を有することによって、剥離モードの入力(剥離力)をより接合強度の高いせん断モードに変換することができる。
 また、表1に示すように、燃料電池スタックは、図12に示す第2実施形態のように「同位相」および「凹凸」の組み合わせ、または、図13に示す第3、第5実施形態のように「逆位相」および「凸凸」の組み合わせによって、接合部材200に作用するせん断モードの入力をより接合強度の高い圧縮モード(図12、図13中の矢印方向)に変換する機能を有する。「同位相」および「凹凸」の組み合わせは、「逆位相」および「凸凸」の組み合わせよりもモード変換の効果が高い。これは、凹部に接合部材200が入り込み、凸部の側面と凹部の側面との間により多くの接合部材200が配置されるためである。また、第5実施形態では、図15、図16に示すように、「逆位相」および「凸凸」に加えて「テーパー形状」を有する。これにより、XY面方向のせん断モードを圧縮モードに変換しやすくなる。
 また、表1に示すように、燃料電池スタックは、図13に示す第3、第5実施形態のように「逆位相」および「凸凸」の組み合わせによって、セルユニット100のXY面方向の突出部による補強範囲を拡大することができる。これにより、セルユニット100の変形をより一層抑制することができる。
 また、表1に示すように、燃料電池スタックは、図14に示す第4実施形態のように突出部が「一部高い」ことによって、接合部材200に作用する力をより広い面積の接合面で受けることができる。これにより、接合部材200が剥離することを抑制することができる。
 以上、実施形態を通じて本発明に係る燃料電池スタックを説明したが、本発明は実施形態において説明した内容のみに限定されることはなく、特許請求の範囲の記載に基づいて適宜変更することが可能である。
 燃料電池スタックは、前述した実施形態の構成に限定されず、前述した第1~第5実施形態の仕様を適宜組み合わせて構成してもよい。
 また、前述した実施形態では、燃料電池スタックの発電セルは、アノード、電解質層、およびカソードがメタルサポート部で支持されたメタルサポート型(Metal-Supported Cell:MSC)として説明したが、例えば、電解質を厚くした電解質支持型(Electrolyte-Supported Cell:ESC)、アノードを厚くしたアノード支持型(Anode-Supported Cell:ASC)、カソードを厚くしたカソード支持型(Cathode-Supported Cell:CSC)のいずれであってもよい。
 また、前述した実施形態では、燃料電池スタックは、固体酸化物形燃料電池(SOFC)として説明したが、例えば、固体高分子膜形燃料電池(Polymer Electrolyte Membrane Fuel Cell:PEMFC)、リン酸形燃料電池(Phosphoric Acid Fuel Cell:PAFC)または溶融炭酸塩形燃料電池(Molten Carbonate Fuel Cell:MCFC)として構成してもよい。
10   燃料電池スタック、
100  セルユニット、
110  メタルサポートセルアッセンブリー、
110M メタルサポートセル、
111  発電セル、
111A アノード、
111C カソード、
111E 電解質、
112  メタルサポート部、
113  セルフレーム、
113A、413A、513A、613A、713A 突出部、
113B 第1平面部、
113C、513C 第2平面部、
113D 第3平面部、
120  セパレータ、
120A、420A、520A、620A、720A 突出部、
120B 第1平面部、
120C、520C 第2平面部、
120D 第3平面部、
130  集電補助層、
200  接合部材、
201、202 端部、
300  剥離調整部、
T1   第1接合面、
T2   第2接合面、
H1、H2、H3、H4 突出部の高さ、
S1、S2 基準面、
X    (燃料電池スタックの)短手方向、
Y    (燃料電池スタックの)長手方向、
Z    (燃料電池スタックの)積層方向。

Claims (11)

  1.  電解質を両側から一対の電極で狭持してなる発電セルと、前記発電セルとの間にガスの流通路を区画形成するセパレータと、を含む複数の構成部材を積層し、積層された前記構成部材同士を接合部材によって接合してなる燃料電池スタックであって、
     積層方向に交差する方向から前記接合部材を間に挟んで両側に配置され、前記構成部材の一部から積層方向に突出した複数の突出部と、
     前記接合部材に作用する剥離力を調整する剥離調整部と、を有し、
     前記接合部材は、複数の前記突出部に跨って配置される、燃料電池スタック。
  2.  前記剥離調整部は、前記突出部と前記接合部材との間に形成された接合面からなる、請求項1に記載の燃料電池スタック。
  3.  前記接合面は、積層方向に沿って平行な第1接合面および、積層方向に対して傾斜した第2接合面のうち少なくとも一方を有する、請求項2に記載の燃料電池スタック。
  4.  前記突出部は、基準面を有する平板を凹凸形状に成形した凹部または凸部からなる、請求項1~3のいずれか1項に記載の燃料電池スタック。
  5.  前記接合部材を挟んで積層方向に隣り合う前記構成部材のうち、
     一の前記構成部材の前記突出部は、前記基準面に対して前記接合部材側に突出した凸部であり、
     他の前記構成部材の前記突出部は、前記基準面に対して前記接合部材側に突出した凸部である、請求項4に記載の燃料電池スタック。
  6.  前記接合部材を挟んで積層方向に隣り合う前記構成部材のうち、
     一の前記構成部材の前記突出部は、前記基準面に対して前記接合部材側に突出した凸部であり、
     他の前記構成部材の前記突出部は、前記基準面に対して前記接合部材と反対側に窪んだ凹部である、請求項4に記載の燃料電池スタック。
  7.  前記接合部材は、前記構成部材の外周およびガスを流通させるマニホールド部の外周の少なくとも一方に沿うように延在し、
     複数の前記突出部は、前記接合部材の延在方向に沿って一定の間隔で周期的に配置され、
     前記接合部材を挟んで積層方向に隣り合う前記構成部材の前記突出部の配置の周期の位相は、逆位相である、請求項1~6のいずれか1項に記載の燃料電池スタック。
  8.  少なくとも一つの前記構成部材の前記突出部のうち、
     少なくとも一つの前記突出部は、他の前記突出部よりも積層方向に沿う高さが大きい、請求項1~7のいずれか1項に記載の燃料電池スタック。
  9.  前記突出部は、積層方向からの平面視において、面方向の一の方向に沿って先細るテーパー形状を有する、請求項1~8のいずれか1項に記載の燃料電池スタック。
  10.  前記接合部材を挟んで積層方向に隣り合う前記構成部材の前記突出部の前記テーパー形状の先細り方向は、互いに反対方向である、請求項9に記載の燃料電池スタック。
  11.  前記接合部材を挟んで積層方向に隣り合う前記構成部材の前記突出部間の間隔は、前記接合部材の端部に向かって狭くなる、請求項9または請求項10に記載の燃料電池スタック。
PCT/JP2017/042883 2017-11-29 2017-11-29 燃料電池スタック WO2019106766A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/042883 WO2019106766A1 (ja) 2017-11-29 2017-11-29 燃料電池スタック

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/042883 WO2019106766A1 (ja) 2017-11-29 2017-11-29 燃料電池スタック

Publications (1)

Publication Number Publication Date
WO2019106766A1 true WO2019106766A1 (ja) 2019-06-06

Family

ID=66664398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042883 WO2019106766A1 (ja) 2017-11-29 2017-11-29 燃料電池スタック

Country Status (1)

Country Link
WO (1) WO2019106766A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367631A (ja) * 2001-06-08 2002-12-20 Toyota Motor Corp 燃料電池のシール構造
JP2006228580A (ja) * 2005-02-17 2006-08-31 Nissan Motor Co Ltd 燃料電池スタック
JP2007059330A (ja) * 2005-08-26 2007-03-08 Mitsubishi Electric Corp 固体高分子形燃料電池
JP2007280725A (ja) * 2006-04-05 2007-10-25 Nippon Pillar Packing Co Ltd 燃料電池用セパレータ及びその製造方法
WO2008136539A1 (ja) * 2007-05-07 2008-11-13 Toyota Jidosha Kabushiki Kaisha 燃料電池、燃料電池用メタルセパレータ及び燃料電池の製造方法
JP2014120226A (ja) * 2012-12-13 2014-06-30 Toyota Motor Corp 燃料電池セル
WO2017104212A1 (ja) * 2015-12-18 2017-06-22 日産自動車株式会社 燃料電池スタックのシール構造及びその製造方法
JP2017199655A (ja) * 2016-03-24 2017-11-02 コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ 電気化学セルの、薄いバイポーラプレート

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367631A (ja) * 2001-06-08 2002-12-20 Toyota Motor Corp 燃料電池のシール構造
JP2006228580A (ja) * 2005-02-17 2006-08-31 Nissan Motor Co Ltd 燃料電池スタック
JP2007059330A (ja) * 2005-08-26 2007-03-08 Mitsubishi Electric Corp 固体高分子形燃料電池
JP2007280725A (ja) * 2006-04-05 2007-10-25 Nippon Pillar Packing Co Ltd 燃料電池用セパレータ及びその製造方法
WO2008136539A1 (ja) * 2007-05-07 2008-11-13 Toyota Jidosha Kabushiki Kaisha 燃料電池、燃料電池用メタルセパレータ及び燃料電池の製造方法
JP2014120226A (ja) * 2012-12-13 2014-06-30 Toyota Motor Corp 燃料電池セル
WO2017104212A1 (ja) * 2015-12-18 2017-06-22 日産自動車株式会社 燃料電池スタックのシール構造及びその製造方法
JP2017199655A (ja) * 2016-03-24 2017-11-02 コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ 電気化学セルの、薄いバイポーラプレート

Similar Documents

Publication Publication Date Title
JP5383051B2 (ja) 燃料電池及び燃料電池スタック
WO2013114811A1 (ja) 燃料電池
JP2008034278A (ja) 燃料電池
US11456477B2 (en) Fuel cell stack
JP7009828B2 (ja) 燃料電池スタックおよび燃料電池スタックに用いられる絶縁部材
JP5664457B2 (ja) 燃料電池用セパレータプレート、燃料電池用セパレータ、燃料電池及び燃料電池用セパレータプレートの製造方法
JP7070017B2 (ja) セルユニットおよびメタルサポートセルの補強方法
JP6806256B2 (ja) 燃料電池スタック
JP5109570B2 (ja) 燃料電池スタック
JP6926808B2 (ja) 燃料電池スタックのセル構造および燃料電池セルのたわみ規制方法
WO2019106766A1 (ja) 燃料電池スタック
US11069915B2 (en) Spring member, fuel cell unit, and fuel cell stack
JP2019036445A (ja) 燃料電池スタック
JP7087624B2 (ja) 燃料電池スタック
US11411275B2 (en) Spring member, fuel cell unit, fuel cell stack, and method for manufacturing fuel cell stack
JP6933039B2 (ja) 燃料電池スタック
WO2019146101A1 (ja) セルユニット
JP6927309B2 (ja) 燃料電池のスタック構造および燃料電池スタックの熱歪吸収方法
JP7507738B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP7095425B2 (ja) 固体酸化物形燃料電池のセルユニット、および固体酸化物形燃料電池
KR20140072416A (ko) 고체산화물 연료전지의 금속지지체형 단전지 모듈 및 이를 구비하는 고체산화물 연료전지 스택 구조
WO2019030918A1 (ja) 燃料電池のセル構造および燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP