WO2014171215A1 - 樹脂組成物およびその用途 - Google Patents

樹脂組成物およびその用途 Download PDF

Info

Publication number
WO2014171215A1
WO2014171215A1 PCT/JP2014/055620 JP2014055620W WO2014171215A1 WO 2014171215 A1 WO2014171215 A1 WO 2014171215A1 JP 2014055620 W JP2014055620 W JP 2014055620W WO 2014171215 A1 WO2014171215 A1 WO 2014171215A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
measurement sample
resin sheet
preparation
except
Prior art date
Application number
PCT/JP2014/055620
Other languages
English (en)
French (fr)
Inventor
巨樹 岩間
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to JP2015512351A priority Critical patent/JPWO2014171215A1/ja
Publication of WO2014171215A1 publication Critical patent/WO2014171215A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10614Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
    • B32B17/10633Infrared radiation absorbing or reflecting agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds

Definitions

  • the present invention relates to a resin composition and its use, and more particularly to a resin composition comprising a near infrared absorber, an epoxy compound, and a resin, and its use.
  • laminated glass is used in various applications such as vehicles such as automobiles, buildings, and solar cells.
  • an interlayer film for laminated glass a polyvinyl butyral resin film, an ionomer resin film, and the like are known.
  • the sun rays include ultraviolet rays, infrared rays and the like in addition to visible rays.
  • infrared rays infrared rays having a wavelength close to visible light are called near infrared rays.
  • Near-infrared rays are also called heat rays and are one of the causes of temperature rise inside vehicles and buildings.
  • Patent Document 1 a copper salt composition containing a phosphonic acid copper salt, a polysiloxane component, a plasticizer, and a dispersant is known (see, for example, Patent Document 1).
  • Patent Document 1 provides an infrared absorption film in which the resin composition containing the copper salt composition and the resin is excellent in visible light transmission and stability even when exposed to high temperatures. It is disclosed that it is possible.
  • This invention is made in view of the said prior art, and aims at providing the resin composition containing the near-infrared absorber by which yellowing was suppressed.
  • the resin composition of the present invention is a resin composition comprising a near infrared absorber, an epoxy compound, and a resin, and the near infrared absorber is a phosphonic acid copper salt represented by the following general formula (1). It is characterized by being microparticles consisting of.
  • R 1 is a monovalent group represented by —CH 2 CH 2 —R 11
  • R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 carbon atom. Represents -20 fluorinated alkyl groups.
  • the molecular weight of the epoxy compound is preferably 100 to 4000.
  • the resin is at least one selected from polyvinyl acetal resin, ethylene-vinyl acetate copolymer, (meth) acrylic acid resin, polyester resin, polyurethane resin, vinyl chloride resin, polyolefin resin, polycarbonate resin, and norbornene resin.
  • a resin is preferable, and a polyvinyl butyral resin or an ethylene-vinyl acetate copolymer is more preferable.
  • the interlayer film for laminated glass of the present invention is formed from the resin composition.
  • the laminated glass of the present invention has the interlayer film for laminated glass.
  • the yellowing of the resin composition of the present invention is suppressed.
  • the resin composition of the present invention is a resin composition comprising a near-infrared absorber, an epoxy compound, and a resin, and the near-infrared absorber is a phosphonic acid copper salt represented by the general formula (1) described later. It is the fine particle which becomes.
  • the resin composition of the present invention is also referred to as a copper salt fine particle dispersed resin.
  • the near-infrared absorber used in the present invention is fine particles composed of a phosphonic acid copper salt represented by the following general formula (1).
  • the fine particles comprising the phosphonic acid copper salt represented by the following general formula (1) may be formed only from the phosphonic acid copper salt represented by the following general formula (1), and represented by the following general formula (1).
  • the phosphonic acid copper salt may be formed from other components.
  • R 1 is a monovalent group represented by —CH 2 CH 2 —R 11
  • R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 carbon atom. Represents -20 fluorinated alkyl groups.
  • R 11 is preferably a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • R 11 hydrogen atom, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group Tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group and the like are preferable.
  • a phosphonic acid copper salt represented by General formula (1) it may be used individually by 1 type, or 2 or more types may be used.
  • the “phosphonic acid copper salt represented by the general formula (1)” is also simply referred to as “phosphonic acid copper salt”.
  • phosphonic acid copper salt there is no limitation in particular as a manufacturing method of the microparticles
  • a step of mixing a phosphonic acid compound represented by the following general formula (2) and a copper salt in a solvent to obtain a reaction mixture (hereinafter also referred to as a reaction step). )
  • a method having a step of obtaining fine particles composed of a copper phosphonate by removing the solvent in the reaction mixture (hereinafter also referred to as a solvent removal step).
  • R 1 is a monovalent group represented by —CH 2 CH 2 —R 11
  • R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 carbon atom. Represents -20 fluorinated alkyl groups.
  • the phosphonic acid compound represented by the general formula (2) those in which R 11 is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms are preferred.
  • Examples of the phosphonic acid compound represented by the general formula (2) include ethylphosphonic acid, propylphosphonic acid, butylphosphonic acid, pentylphosphonic acid, hexylphosphonic acid, heptylphosphonic acid, octylphosphonic acid, nonylphosphonic acid, and decylphosphonic acid.
  • Examples thereof include alkylphosphonic acids such as acid, undecylphosphonic acid, dodecylphosphonic acid, tridecylphosphonic acid, tetradecylphosphonic acid, pentadecylphosphonic acid, hexadecylphosphonic acid, heptadecylphosphonic acid, and octadecylphosphonic acid.
  • a phosphonic acid compound represented by General formula (2) it may be used individually by 1 type, or 2 or more types may be used.
  • the copper salt a copper salt capable of supplying divalent copper ions is usually used.
  • the copper salt may be a copper salt other than the phosphonic acid copper salt represented by the general formula (1).
  • Examples of the copper salt include copper of organic acids such as anhydrous copper acetate, anhydrous copper formate, anhydrous copper stearate, anhydrous copper benzoate, anhydrous ethyl acetoacetate copper, anhydrous pyrophosphate, anhydrous naphthenic acid copper, and anhydrous copper citrate.
  • Salt, hydrate or hydrate of copper salt of organic acid copper salt of inorganic acid such as copper oxide, copper chloride, copper sulfate, copper nitrate, basic copper carbonate, hydrate of copper salt of inorganic acid Or a hydrate; copper hydroxide is mentioned.
  • copper salt you may use individually by 1 type, or may use 2 or more types.
  • anhydrous copper acetate and copper acetate monohydrate are preferably used in terms of solubility and removal of by-products.
  • a dispersant may be used in the reaction step.
  • the dispersant include at least one phosphate ester compound selected from a phosphate ester compound represented by the general formula (3a) and a phosphate ester compound represented by the general formula (3b), the phosphoric acid
  • the phosphoric acid in an ester compound, ie, the compound which neutralized the hydroxyl group with the base is mentioned.
  • inorganic bases such as lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, magnesium hydroxide, calcium hydroxide, are mentioned.
  • R 21 , R 22 and R 23 are monovalent groups represented by — (CH 2 CH 2 O) n R 55 , and n is from 2 to 65.
  • R 55 is an integer
  • R 55 represents an alkyl group having 6 to 25 carbon atoms or an alkylphenyl group having 6 to 25 carbon atoms.
  • R 21 , R 22 and R 23 may be the same or different.
  • N is an integer of 2 to 65, preferably an integer of 4 to 65, more preferably 4 to 45, and particularly preferably an integer of 4 to 35.
  • n is less than 2
  • transparency may be insufficient when a laminated glass or the like is produced.
  • n exceeds 65 the amount of the phosphoric acid ester compound necessary for obtaining laminated glass having sufficient transparency tends to increase, resulting in high costs.
  • R 55 is an alkyl group having 6 to 25 carbon atoms or an alkylphenyl group having 6 to 25 carbon atoms, preferably an alkyl group having 6 to 25 carbon atoms, and preferably an alkyl group having 8 to 20 carbon atoms. Is more preferable, and 12 to 20 alkyl groups are particularly preferable.
  • R 55 is a group having less than 6 carbon atoms, transparency may be insufficient when a laminated glass or the like is produced. Further, when R 55 is a group having more than 25 carbon atoms, the amount of the phosphate ester compound necessary for obtaining a laminated glass having sufficient transparency tends to increase, resulting in high costs. .
  • the phosphoric acid ester compound represented by the general formula (3a) and the phosphoric acid ester compound represented by the general formula (3b) Although at least one is preferably used, it is more preferable to use both the phosphate ester compound represented by the general formula (3a) and the phosphate ester compound represented by the general formula (3b). It is preferable to use the phosphate ester compound represented by the general formula (3a) and the phosphate ester compound represented by the general formula (3b) because they tend to be excellent in transparency and heat resistance of laminated glass and the like.
  • the phosphate ester compound represented by the general formula (3a) and the phosphate ester compound represented by the general formula (3b) are used, the phosphate ester compound represented by the general formula (3a) And the ratio of the phosphoric acid ester compound represented by the general formula (3b) is not particularly limited, but is usually 10:90 to 90:10 in molar ratio ((3a) :( 3b)).
  • a phosphate ester compound represented by the said general formula (3a) it may be used individually by 1 type, or 2 or more types may be used, and the phosphate ester compound represented by the said General formula (3b) May be used alone or in combination of two or more.
  • phosphate ester compound selected from the phosphate ester compound represented by the general formula (3a) and the phosphate ester compound represented by the general formula (3b) commercially available phosphoric acid Ester compounds such as DLP-10, DDP-6, DDP-8, DDP-10, TDP-6, TDP-8, TDP-10 (manufactured by Nikko Chemicals Co., Ltd.), Plysurf A212C, Plysurf A215C Plysurf AL12H, plysurf AL, plysurf A208F, plysurf A208N, plysurf A208B, plysurf A219B, plysurf A210D (above, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and the like can also be used.
  • DLP-10, DDP-6, DDP-8, DDP-10, TDP-6, TDP-8, TDP-10 manufactured by Nikko Chemicals Co., Ltd.
  • the phosphoric acid in these phosphate ester compounds ie, the compound which neutralized the hydroxyl group with the appropriate base can also be used.
  • the base used for neutralization include inorganic bases such as lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, magnesium hydroxide, and calcium hydroxide.
  • the dispersant is at least one phosphate ester compound selected from a phosphate ester compound represented by the general formula (3a) and a phosphate ester compound represented by the general formula (3b), and / or
  • phosphoric acid in the phosphoric ester compound that is, a compound obtained by neutralizing a hydroxyl group with a base
  • 5 to 100 parts by mass is preferably used per 100 parts by mass of the copper salt, and 10 to 50 parts by mass is preferably used. More preferred.
  • the solvent examples include alcohols such as methanol, ethanol, isopropyl alcohol and n-butyl alcohol, tetrahydrofuran (THF), dimethylformamide (DMF), water and the like.
  • the solvent preferably includes at least one solvent selected from methanol, ethanol, isopropyl alcohol, n-butanol, N, N-dimethylformamide (DMF), and tetrahydrofuran (THF). Further, from the viewpoint of reactivity, it preferably contains at least one solvent selected from methanol, ethanol, THF, and DMF, and more preferably contains at least one solvent selected from methanol and ethanol. As said solvent, only these solvents may be included and the other solvent may be included.
  • the solvent examples include at least one solvent selected from methanol, ethanol, isopropyl alcohol, n-butanol, DMF, and THF (preferably at least one solvent selected from methanol, ethanol, THF, and DMF). More preferably at least one solvent selected from methanol and ethanol), and other solvents are usually contained in an amount of 0 to 50 parts by weight, preferably 0 to 30 parts by weight. Also good.
  • specific examples thereof include denatured ethanol containing ethanol and a small amount of other solvents.
  • Denatured ethanol usually contains 3 to 50 parts by mass, preferably 3 to 30 parts by mass of other solvents with respect to 100 parts by mass of ethanol.
  • the modified ethanol examples include methanol-modified ethanol, isopropyl alcohol-modified ethanol, and toluene-modified ethanol.
  • the reaction step is usually 0 to 80 ° C., preferably 10 to 60 ° C., more preferably room temperature to 60 ° C., particularly preferably 20 to 40 ° C., usually 0.5 to 60 hours, preferably Is carried out for 0.5 to 30 hours, more preferably 0.5 to 20 hours, particularly preferably 1 to 15 hours.
  • the phosphonic acid compound represented by the general formula (2) reacts with the copper salt, and fine phosphonic acid copper salt that does not dissolve in the solvent is generated by the reaction.
  • At least one phosphate ester compound selected from the phosphate ester compound represented by the general formula (3a) and the phosphate ester compound represented by the general formula (3b) acts as a good dispersant during the reaction. Therefore, the phosphonic acid copper salt can maintain high dispersibility and suppress aggregation.
  • the reaction step not only the reaction between the phosphonic acid compound represented by the general formula (2) and the copper salt, but also, for example, the phosphate ester compound represented by the general formula (3a) and the general formula (3b) At least one type of phosphate ester compound selected from the phosphate ester compounds represented by) may react with a part of the copper salt. Further, a part of the raw material may remain without reacting.
  • the fine particles composed of the copper phosphonate are usually obtained by removing at least a part of the solvent from the reaction mixture.
  • the solvent removal step at least a part of the solvent is removed from the reaction mixture.
  • the liquid components in the reaction mixture may be removed together.
  • Distillation is preferably performed under reduced pressure from the viewpoint of preventing thermal deterioration of the reaction mixture.
  • the conditions for vacuum distillation are usually 0.01 to 15 kPa.
  • the outflow temperature of the fraction varies depending on the type of solvent and the pressure, but is usually 30 to 150 ° C.
  • the reaction mixture is allowed to stand to precipitate fine particles composed of copper phosphonate, and the supernatant (solvent) is removed, or the reaction mixture is centrifuged.
  • fine-particles which consist of phosphonic acid copper salt and removing a supernatant liquid (solvent) is mentioned.
  • the phosphonic acid copper salt fine particles are dispersed in the dispersion medium, and then the dispersion medium is removed.
  • a process may be provided.
  • fine particles composed of the copper phosphonate fine particles composed of a copper phosphonate having an average particle diameter of 1 to 1000 nm are usually used.
  • the average particle size is more preferably 5 to 300 nm in order to ensure dispersibility in the monomer and transparency of the resin composition.
  • the resin composition of the present invention contains an epoxy compound.
  • the epoxy compound is a compound having one or more epoxy groups in the molecule.
  • the epoxy compound is preferably a compound having 1 to 25 epoxy groups in one molecule, more preferably 1 to 10 compounds, and even more preferably 1 to 4 compounds.
  • the epoxy compound preferably has a molecular weight of 100 to 4000, more preferably 120 to 1600, and still more preferably 130 to 600. If the molecular weight is too small, the epoxy compound may volatilize when the resin is dried or molded. If the molecular weight is too large, the amount of the epoxy compound added may increase, resulting in a change in the resin characteristics or an increase in cost.
  • epoxy compound it is preferable that at least 1 epoxy group exists in a molecule terminal.
  • examples of the epoxy compound used in the present invention include epoxy compounds represented by the following formulas (I) to (XVII).
  • the resin composition of the present invention contains an epoxy compound, yellowing during heating can be suppressed.
  • the epoxy compounds represented by the above formulas (I) to (XVII), preferably the above formulas (I) to (IV), (VI) to (XI), (XIII) to (XV), (XVII) Use of the epoxy compound is preferable because yellowing when the resin composition is held at a high temperature for a long time is sufficiently suppressed. It is more preferable to use an epoxy compound represented by the formula (I), (III), (IV), (VI) to (X), (XIII) to (XV), or (XVII).
  • a resin is used.
  • the resin used in the present invention is not particularly limited as long as it can disperse the above-described near-infrared absorber.
  • the following resins can be used.
  • the resin used in the present invention is selected from polyvinyl acetal resin, ethylene-vinyl acetate copolymer, (meth) acrylic acid resin, polyester resin, polyurethane resin, vinyl chloride resin, polyolefin resin, polycarbonate resin, and norbornene resin. It is preferable that at least one type of resin can disperse the near-infrared absorber well and is excellent in visible light transmittance.
  • the resin used in the present invention is more preferably at least one resin selected from polyvinyl acetal resin and ethylene-vinyl acetate copolymer, polyvinyl butyral resin (PVB), and ethylene-vinyl acetate copolymer Particularly preferred is at least one resin selected from a coalescence, and most preferred is a polyvinyl butyral resin or an ethylene-vinyl acetate copolymer.
  • the polyvinyl acetal resin is used, the dispersibility of the above-mentioned near-infrared absorber is excellent.
  • the resin of the present invention is excellent in adhesion to glass or the like.
  • the composition is flexible and deformation of the near-infrared absorber due to a change in temperature hardly occurs.
  • polyvinyl acetal resin it is preferable to use polyvinyl butyral resin (PVB) from the viewpoints of glass adhesion, dispersibility, transparency, heat resistance, light resistance, and the like.
  • the polyvinyl acetal resin may be a blend of two or more kinds depending on the required physical properties, or may be a polyvinyl acetal resin obtained by acetalizing a combination of aldehydes during acetalization.
  • the molecular weight, molecular weight distribution, and degree of acetalization of the polyvinyl acetal resin are not particularly limited, but the degree of acetalization is generally 40 to 85%, with a preferred lower limit being 60% and an upper limit being 75%.
  • the polyvinyl acetal resin can be obtained by acetalizing a polyvinyl alcohol resin with an aldehyde.
  • the polyvinyl alcohol resin is generally obtained by saponifying polyvinyl acetate, and a polyvinyl alcohol resin having a saponification degree of 80 to 99.8 mol% is generally used.
  • the preferable lower limit of the viscosity average polymerization degree of the polyvinyl alcohol resin is 200, and the upper limit is 3000. If it is less than 200, the penetration resistance of the resulting laminated glass may be lowered. When it exceeds 3000, the moldability of the resin composition may be deteriorated, and the rigidity of the resin composition is excessively increased, resulting in poor processability.
  • a more preferred lower limit is 500 and an upper limit is 2200.
  • the viscosity average degree of polymerization and the degree of saponification of the polyvinyl alcohol resin can be measured based on, for example, JISK 6726 “Polyvinyl alcohol test method”.
  • the aldehyde is not particularly limited, and examples thereof include aldehydes having 1 to 10 carbon atoms, and more specifically, for example, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutylartaldehyde. N-hexylaldehyde, n-octylaldehyde, n-nonylaldehyde, n-decylaldehyde, formaldehyde, acetaldehyde, benzaldehyde and the like. Of these, n-butyraldehyde, n-hexylaldehyde, n-valeraldehyde and the like are preferable. More preferred is butyraldehyde having 4 carbon atoms.
  • the resin composition of this invention is a resin composition which consists of a near-infrared absorber, an epoxy compound, and resin as mentioned above.
  • the resin composition of the present invention is not particularly limited as long as it is a composition comprising a near-infrared absorber, an epoxy compound, and a resin as described above.
  • Examples of the method for producing the resin composition of the present invention include resins such as toluene, ethanol / toluene mixed solvent, methanol, methanol / toluene mixed solvent, methylene chloride, chloroform and the like, resins, epoxy compounds or solutions thereof, and near infrared absorbers.
  • a method of adding a dispersion, dissolving the resin by stirring, ultrasonic irradiation, etc., obtaining a dispersion, and removing the solvent from the dispersion can be mentioned.
  • the near-infrared absorbent dispersion can be prepared by dispersing the near-infrared absorbent in toluene, methanol, methylene chloride, chloroform, triethylene glycol bis (2-ethylhexanoate) or the like. Moreover, when adding the solution of an epoxy compound, toluene, methanol, ethanol, a methylene chloride, chloroform, these mixed solvents, etc. can be used as a solvent.
  • the resin composition of the present invention preferably contains 0.05 to 50 parts by mass, more preferably 0.1 to 25 parts by mass of a near infrared absorber per 100 parts by mass of the resin. If the amount is less than 0.05 parts by mass, sufficient near infrared absorption characteristics may not be obtained. If the amount is more than 50 parts by mass, the transparency and adhesiveness of the resin may be significantly reduced.
  • the resin composition of the present invention preferably contains 0.005 to 5.0 parts by mass, more preferably 0.01 to 3.0 parts by mass of the epoxy compound per 100 parts by mass of the resin. More preferably, the content is 0.03 to 1.0 part by mass. If the amount is less than 0.005 parts by mass, yellowing may not be sufficiently suppressed. If the amount is more than 5.0 parts by mass, yellowing occurs due to decomposition of the epoxy compound itself, or transparent due to precipitation of the epoxy compound. May decrease.
  • the resin composition of the present invention is excellent in near-infrared absorbing ability and can be suitably used as an intermediate film for structural materials such as laminated glass because yellowing such as coloring during heating is suppressed.
  • various additives may be contained in the resin composition of the present invention. Examples of the additive include a plasticizer, a dispersant, an antioxidant, an ultraviolet absorber, and a light stabilizer. These additives may be added when the resin composition of the present invention is produced, or may be added when the above-described near infrared absorber, epoxy compound, and resin are produced.
  • the resin composition of the present invention is usually used for applications where it is desired to absorb near infrared rays.
  • the resin film formed from the resin composition of the present invention has excellent near-infrared absorption ability and is suitable as an intermediate film for structural materials such as an interlayer film for laminated glass because yellowing such as coloring during heating is suppressed. It is possible to use.
  • the laminated glass of the present invention has the interlayer film for laminated glass.
  • glass which comprises the laminated glass of this invention A conventionally well-known thing can be used.
  • a part of the suspension layer (1) is centrifuged (3000 rpm / 15 minutes) to form a precipitate (2), a suspension layer (2) (lower layer), and a colorless transparent layer (2) (upper layer).
  • the colorless and transparent layer (2) was removed with a pipette.
  • the sum total of the colorless transparent layer (1) and the colorless transparent layer (2) was 165 g.
  • the copper salt precipitation (1), precipitation (2), suspension layer (1) that was not centrifuged, and suspension layer (2) were combined and put into an evaporator (water bath 60 ° C.), and the solvent was distilled off. did. Toluene (100 g) was added thereto, and the mixture was made constant, and distilled off with an evaporator until the acetic acid odor disappeared. A blue-green solid with a yield of 6.59 g (yield 90%) was obtained. To this was added 140 g of toluene, and ultrasonic irradiation was performed for 12 hours to obtain an n-butylphosphonic acid copper salt toluene dispersion (1).
  • Example 1 Preparation of copper salt fine particle dispersed resin
  • 3GO triethylene glycol bis (2-ethylhexanoate)
  • plasticizer 250 ml
  • PVB polyvinyl butyral
  • the dispersion was spread on a Teflon (registered trademark) vat and air-dried at 20 ° C for 12 hours. Furthermore, vacuum drying was performed at 40 ° C. for 5 hours and at 70 ° C. for 3.5 hours to completely remove the solvent, thereby obtaining a PVB resin (1) (resin composition (1)) in which copper salt fine particles were dispersed.
  • Teflon registered trademark
  • vacuum drying was performed at 40 ° C. for 5 hours and at 70 ° C. for 3.5 hours to completely remove the solvent, thereby obtaining a PVB resin (1) (resin composition (1)) in which copper salt fine particles were dispersed.
  • the resin sheet (1) was further preheated at 200 ° C. and 3 MPa for 1 minute using a 0.8 mm-thick mold and a compression molding machine manufactured by Shindo Metal Industry Co., Ltd., and then at 10 MPa for 5 minutes.
  • the resin sheet (2) was obtained by pressing.
  • the laminated glass (1) was heated in an autoclave under a nitrogen atmosphere at a pressure of 1.5 MPa and 130 ° C. for 0.5 hours to obtain a measurement sample (1) in which slide glasses were disposed on both surfaces of the resin sheet. .
  • the spectra of the measurement samples (1) and (2) were measured by the following methods, respectively.
  • the spectrum of the measurement sample was measured using a spectrophotometer (U-4000, manufactured by Hitachi, Ltd.) in the wavelength range of 250 to 2500 nm.
  • Tristimulus values (X, Y, Z) were calculated using a C light source.
  • the measurement sample (1) had a YI (yellowness index) of 4.8, and the measurement sample (2) had a YI of 9.4.
  • the long-term heat resistance test was conducted by the following method.
  • the measurement sample (2) was put in an oven at 100 ° C. and stored for 1000 hours, and then the spectrum was measured to obtain YI.
  • a measurement sample (c1) was obtained in the same manner as in ⁇ Production of measurement sample (1)> in Example 1 except that the resin sheet (1) was replaced with a resin sheet (c1).
  • YI of the measurement sample (c1) was 3.7, and YI of the measurement sample (c2) was 9.3.
  • ⁇ YI of the measurement sample (c1) and the measurement sample (c2) was 5.6.
  • ⁇ Evaluation of long-term heat resistance> YI was determined in the same manner as in the section ⁇ Evaluation of long-term heat resistance> in Example 1 except that the measurement sample (2) was replaced with the measurement sample (c2).
  • Example 2 (Preparation of copper salt fine particle dispersed resin) A solution obtained by dissolving 5.0 mg of triglycidyl isocyanurate in 3 ml of chloroform was replaced with a solution obtained by dissolving 1.5 mg of 1,7-octadiene diepoxide (epoxy compound represented by the formula (II)) in 1 ml of toluene.
  • a PVB resin (2) (resin composition (2)) in which copper salt fine particles were dispersed.
  • a measurement sample (3) was obtained in the same manner as in ⁇ Production of measurement sample (1)> in Example 1 except that the resin sheet (1) was replaced with a resin sheet (3).
  • a measurement sample (4) was obtained in the same manner as in ⁇ Production of measurement sample (2)> in Example 1 except that the resin sheet (2) was replaced with a resin sheet (4).
  • YI of the measurement sample (3) was 6.0, and YI of the measurement sample (4) was 9.3.
  • ⁇ YI of the measurement sample (3) and the measurement sample (4) was 3.3.
  • YI was determined in the same manner as in the section ⁇ Evaluation of long-term heat resistance> in Example 1 except that measurement sample (2) was replaced with measurement sample (4).
  • Example 3 Preparation of copper salt fine particle dispersed resin
  • PVB polyvinyl butyral
  • the dispersion was spread on a Teflon (registered trademark) vat and air-dried at 20 ° C for 12 hours. Further, vacuum drying was performed at 40 ° C. for 5 hours and at 70 ° C. for 3.5 hours to completely remove the solvent, thereby obtaining a PVB resin (3) (resin composition (3)) in which copper salt fine particles were dispersed.
  • Teflon registered trademark
  • vacuum drying was performed at 40 ° C. for 5 hours and at 70 ° C. for 3.5 hours to completely remove the solvent, thereby obtaining a PVB resin (3) (resin composition (3)) in which copper salt fine particles were dispersed.
  • a measurement sample (5) was obtained in the same manner as in ⁇ Production of measurement sample (1)> in Example 1 except that the resin sheet (1) was replaced with a resin sheet (5).
  • YI of the measurement sample (5) was 5.6, and YI of the measurement sample (6) was 7.2.
  • ⁇ YI of the measurement sample (5) and the measurement sample (6) was 1.6.
  • YI was determined in the same manner as in the section ⁇ Evaluation of long-term heat resistance> in Example 1 except that the measurement sample (2) was replaced with the measurement sample (6).
  • Example 4 Preparation of copper salt fine particle dispersed resin
  • a PVB resin (4) (resin composition (4)) in which copper salt fine particles were dispersed was obtained in the same manner as in Example 3 except that the solution was changed to a solution dissolved in.
  • a measurement sample (7) was obtained in the same manner as in ⁇ Production of measurement sample (1)> in Example 1 except that the resin sheet (1) was replaced with a resin sheet (7).
  • a measurement sample (8) was obtained in the same manner as in ⁇ Production of measurement sample (2)> in Example 1 except that the resin sheet (2) was replaced with a resin sheet (8).
  • YI of the measurement sample (7) was 6.4, and YI of the measurement sample (8) was 7.9. ⁇ YI of the measurement sample (7) and the measurement sample (8) was 1.5. ⁇ Evaluation of long-term heat resistance> YI was determined in the same manner as in the section ⁇ Evaluation of long-term heat resistance> in Example 1 except that the measurement sample (2) was replaced with the measurement sample (8).
  • Example 5 Preparation of copper salt fine particle dispersed resin
  • a solution of 6.8 mg of 2,2-bis (4-glycidyloxyphenyl) propane dissolved in 1 ml of toluene was dissolved in 5.0 mg of trans-stilbene oxide (an epoxy compound represented by the formula (V)) in 3 ml of toluene.
  • the PVB resin (5) (resin composition (5)) in which the copper salt fine particles were dispersed was obtained in the same manner as in Example 3 except that the solution was replaced with the above solution.
  • a measurement sample (9) was obtained in the same manner as in ⁇ Production of measurement sample (1)> in Example 1 except that the resin sheet (1) was replaced with a resin sheet (9).
  • YI of the measurement sample (9) was 6.8, and YI of the measurement sample (10) was 11.0.
  • ⁇ YI of the measurement sample (9) and the measurement sample (10) was 4.2.
  • ⁇ Evaluation of long-term heat resistance> YI was determined in the same manner as in the section ⁇ Evaluation of long-term heat resistance> in Example 1 except that the measurement sample (2) was replaced with the measurement sample (10).
  • Example 6 Preparation of copper salt fine particle dispersed resin
  • a solution prepared by dissolving 6.8 mg of 2,2-bis (4-glycidyloxyphenyl) propane in 1 ml of toluene was treated with glycidyl (2S)-(+)-p-toluenesulfonate (an epoxy compound represented by the formula (VI)).
  • Compound) PVB resin (6) (resin composition (6)) in which copper salt fine particles were dispersed was obtained in the same manner as in Example 3 except that 5.0 mg was replaced with a solution of 3 ml of toluene.
  • a measurement sample (11) was obtained in the same manner as in ⁇ Production of measurement sample (1)> in Example 1 except that the resin sheet (1) was replaced with a resin sheet (11).
  • ⁇ Preparation of measurement sample (12)> A measurement sample (12) was obtained in the same manner as in ⁇ Production of measurement sample (2)> in Example 1 except that the resin sheet (2) was replaced with a resin sheet (12).
  • the YI of the measurement sample (11) was 6.6, and the YI of the measurement sample (12) was 12.0. ⁇ YI of the measurement sample (11) and the measurement sample (12) was 5.4.
  • YI was determined in the same manner as in the section ⁇ Evaluation of long-term heat resistance> in Example 1 except that the measurement sample (2) was replaced with the measurement sample (12).
  • Example 7 (Preparation of copper salt fine particle dispersed resin) A solution prepared by dissolving 6.8 mg of 2,2-bis (4-glycidyloxyphenyl) propane in 1 ml of toluene was represented by Epolite 40E (ethylene glycol diglycidyl ether) (manufactured by Kyoeisha Chemical Co., Ltd.) (formula (VII)).
  • Epolite 40E ethylene glycol diglycidyl ether
  • the epoxy compound is obtained in the same manner as in Example 3 except that 5.0 mg of toluene is dissolved in 3 ml of toluene to obtain a PVB resin (7) (resin composition (7)) in which copper salt fine particles are dispersed. It was.
  • a measurement sample (13) was obtained in the same manner as in ⁇ Production of measurement sample (1)> in Example 1 except that the resin sheet (1) was replaced with a resin sheet (13).
  • ⁇ Preparation of measurement sample (14)> A measurement sample (14) was obtained in the same manner as in ⁇ Production of measurement sample (2)> in Example 1 except that the resin sheet (2) was replaced with a resin sheet (14).
  • the YI of the measurement sample (13) was 6.3, and the YI of the measurement sample (14) was 11.8. ⁇ YI of the measurement sample (13) and the measurement sample (14) was 5.5.
  • YI was determined in the same manner as in the section ⁇ Evaluation of long-term heat resistance> in Example 1 except that the measurement sample (2) was replaced with the measurement sample (14).
  • Example 8 (Preparation of copper salt fine particle dispersed resin) A solution prepared by dissolving 6.8 mg of 2,2-bis (4-glycidyloxyphenyl) propane in 1 ml of toluene was dissolved in Epolite 100MF (trimethylolpropane triglycidyl ether) (manufactured by Kyoeisha Chemical Co., Ltd.) (formula (VIII)) (Epoxy compound represented) PVB resin (8) (resin composition (8)) in which copper salt fine particles were dispersed was carried out in the same manner as in Example 3 except that 5.0 mg was replaced with a solution of 3 ml of toluene. Obtained.
  • a measurement sample (15) was obtained in the same manner as in ⁇ Production of measurement sample (1)> in Example 1 except that the resin sheet (1) was replaced with a resin sheet (15).
  • a measurement sample (16) was obtained in the same manner as in ⁇ Production of measurement sample (2)> in Example 1 except that the resin sheet (2) was replaced with a resin sheet (16).
  • the YI of the measurement sample (15) was 6.6, and the YI of the measurement sample (16) was 12.8.
  • ⁇ YI of the measurement sample (15) and the measurement sample (16) was 6.2.
  • YI was determined in the same manner as in the section ⁇ Evaluation of long-term heat resistance> in Example 1 except that the measurement sample (2) was replaced with the measurement sample (16).
  • Example 9 Preparation of copper salt fine particle dispersed resin
  • Epolite 4000 hydrogenated bisphenol A diglycidyl ether
  • formula (IX) PVB resin (9) resin composition (9) in which copper salt fine particles are dispersed, except that 5.0 mg of the epoxy compound is replaced with a solution obtained by dissolving 5.0 mg of toluene in 3 ml of toluene.
  • ⁇ Preparation of measurement sample (17)> A measurement sample (17) was obtained in the same manner as in ⁇ Production of measurement sample (1)> in Example 1 except that the resin sheet (1) was replaced with a resin sheet (17).
  • the YI of the measurement sample (17) was 6.2, and the YI of the measurement sample (18) was 11.5. ⁇ YI of the measurement sample (17) and the measurement sample (18) was 5.3.
  • YI was determined in the same manner as in the section ⁇ Evaluation of long-term heat resistance> in Example 1 except that the measurement sample (2) was replaced with the measurement sample (18).
  • Example 10 (Preparation of copper salt fine particle dispersed resin) A solution prepared by dissolving 6.8 mg of 2,2-bis (4-glycidyloxyphenyl) propane in 1 ml of toluene was added to 5.0 mg of 1,4-butanediol diglycidyl ether (an epoxy compound represented by the formula (X)). A PVB resin (10) (resin composition (10)) in which copper salt fine particles were dispersed was obtained in the same manner as in Example 3 except that the solution was replaced with a solution in which 3 ml of methanol was dissolved.
  • ⁇ Preparation of measurement sample (20)> A measurement sample (20) was obtained in the same manner as in ⁇ Production of measurement sample (2)> in Example 1 except that the resin sheet (2) was replaced with a resin sheet (20).
  • the YI of the measurement sample (19) was 6.8, and the YI of the measurement sample (20) was 11.0.
  • ⁇ YI of the measurement sample (19) and the measurement sample (20) was 4.2.
  • YI was determined in the same manner as in the section ⁇ Evaluation of long-term heat resistance> in Example 1 except that the measurement sample (2) was replaced with the measurement sample (20).
  • Example 11 Preparation of copper salt fine particle dispersed resin
  • a solution of 6.8 mg of 2,2-bis (4-glycidyloxyphenyl) propane dissolved in 1 ml of toluene was dissolved in 5.0 mg of benzyl glycidyl ether (an epoxy compound represented by the formula (XI)) in 3 ml of toluene. Except having replaced with the solution, it carried out like Example 3 and obtained PVB resin (11) (resin composition (11)) in which copper salt particulates were dispersed.
  • a measurement sample (21) was obtained in the same manner as in ⁇ Production of measurement sample (1)> in Example 1 except that the resin sheet (1) was replaced with a resin sheet (21).
  • ⁇ Preparation of measurement sample (22)> A measurement sample (22) was obtained in the same manner as in ⁇ Production of measurement sample (2)> in Example 1 except that the resin sheet (2) was replaced with a resin sheet (22).
  • the YI of the measurement sample (21) was 6.8, and the YI of the measurement sample (22) was 11.2.
  • ⁇ YI of the measurement sample (21) and the measurement sample (22) was 4.4.
  • YI was determined in the same manner as in the section ⁇ Evaluation of long-term heat resistance> in Example 1 except that the measurement sample (2) was replaced with the measurement sample (22).
  • Example 12 Preparation of copper salt fine particle dispersed resin
  • a measurement sample (23) was obtained in the same manner as in ⁇ Production of measurement sample (1)> in Example 1 except that the resin sheet (1) was replaced with a resin sheet (23).
  • ⁇ Preparation of measurement sample (24)> A measurement sample (24) was obtained in the same manner as in ⁇ Production of measurement sample (2)> in Example 1 except that the resin sheet (2) was replaced with a resin sheet (24).
  • the YI of the measurement sample (23) was 6.8, and the YI of the measurement sample (24) was 11.8.
  • ⁇ YI of the measurement sample (23) and the measurement sample (24) was 5.0.
  • Example 13 (Preparation of copper salt fine particle dispersed resin) A solution prepared by dissolving 6.8 mg of 2,2-bis (4-glycidyloxyphenyl) propane in 1 ml of toluene is represented by Epolite 80MF (glycerin diglycidyl ether) (manufactured by Kyoeisha Chemical Co., Ltd.) (formula (XIII)).
  • Epolite 80MF glycol diglycidyl ether
  • PVB resin (13) resin in which copper salt fine particles were dispersed was obtained in the same manner as in Example 3 except that 5.0 mg of the solution was dissolved in 3 ml of methanol. .
  • a measurement sample (25) was obtained in the same manner as in ⁇ Production of measurement sample (1)> in Example 1 except that the resin sheet (1) was replaced with a resin sheet (25).
  • a measurement sample (26) was obtained in the same manner as in ⁇ Production of measurement sample (2)> in Example 1 except that the resin sheet (2) was replaced with a resin sheet (26).
  • the YI of the measurement sample (25) was 6.3, and the YI of the measurement sample (26) was 11.8.
  • ⁇ YI of the measurement sample (25) and the measurement sample (26) was 5.5.
  • YI was determined in the same manner as in the section ⁇ Evaluation of long-term heat resistance> in Example 1 except that the measurement sample (2) was replaced with the measurement sample (26).
  • Example 14 (Preparation of copper salt fine particle dispersed resin) A solution prepared by dissolving 6.8 mg of 2,2-bis (4-glycidyloxyphenyl) propane in 1 ml of toluene was added to Epolite 400E (polyethylene glycol # 400 diglycidyl ether) (manufactured by Kyoeisha Chemical Co., Ltd.) (formula (XIV) PVB resin (14) in which copper salt fine particles are dispersed (resin composition (14)) except that the epoxy compound represented by formula (1) is replaced with a solution obtained by dissolving 10.0 mg in 3 ml of methanol. Got.
  • Epolite 400E polyethylene glycol # 400 diglycidyl ether
  • XIV formula (XIV) PVB resin (14) in which copper salt fine particles are dispersed (resin composition (14)) except that the epoxy compound represented by formula (1) is replaced with a solution obtained by dissolving 10.0 mg in 3 ml of methanol.
  • a measurement sample (27) was obtained in the same manner as in ⁇ Production of measurement sample (1)> in Example 1 except that the resin sheet (1) was replaced with a resin sheet (27).
  • ⁇ Preparation of measurement sample (28)> A measurement sample (28) was obtained in the same manner as in ⁇ Production of measurement sample (2)> in Example 1 except that the resin sheet (2) was replaced with a resin sheet (28).
  • the YI of the measurement sample (27) was 6.4, and the YI of the measurement sample (28) was 12.2.
  • ⁇ YI of the measurement sample (27) and the measurement sample (28) was 5.8.
  • YI was determined in the same manner as in the section ⁇ Evaluation of long-term heat resistance> in Example 1 except that the measurement sample (2) was replaced with the measurement sample (28).
  • Example 15 (Preparation of copper salt fine particle dispersed resin) A solution prepared by dissolving 6.8 mg of 2,2-bis (4-glycidyloxyphenyl) propane in 1 ml of toluene was added to Epolite 1600 (1,6-hexanediol diglycidyl ether) (manufactured by Kyoeisha Chemical Co., Ltd.) (formula ( PVV resin (15) (resin composition (15) in which copper salt fine particles are dispersed, except that the epoxy compound represented by XV) is replaced with a solution obtained by dissolving 5.0 mg of methanol in 3 ml of methanol. )).
  • a measurement sample (29) was obtained in the same manner as in ⁇ Production of measurement sample (1)> in Example 1 except that the resin sheet (1) was replaced with a resin sheet (29).
  • ⁇ Preparation of measurement sample (30)> A measurement sample (30) was obtained in the same manner as in ⁇ Production of measurement sample (2)> in Example 1 except that the resin sheet (2) was replaced with a resin sheet (30).
  • the YI of the measurement sample (29) was 6.5, and the YI of the measurement sample (30) was 12.2. ⁇ YI of the measurement sample (29) and the measurement sample (30) was 5.7.
  • YI was determined in the same manner as in the section ⁇ Evaluation of long-term heat resistance> in Example 1 except that the measurement sample (2) was replaced with the measurement sample (30).
  • Example 16 Preparation of copper salt fine particle dispersed resin
  • a solution prepared by dissolving 6.8 mg of 2,2-bis (4-glycidyloxyphenyl) propane in 1 ml of toluene was used as an EPOlite M-1230 (manufactured by Kyoeisha Chemical Co., Ltd.) (epoxy compound represented by the formula (XVI))
  • Epolite M-1230 is a mixture of an alkyl glycidyl ether having an alkyl group having 12 carbon atoms and an alkyl glycidyl ether having an alkyl group having 13 carbon atoms. The number of 13 is 56 mol%.
  • a measurement sample (31) was obtained in the same manner as in ⁇ Production of measurement sample (1)> in Example 1 except that the resin sheet (1) was replaced with a resin sheet (31).
  • a measurement sample (32) was obtained in the same manner as in ⁇ Production of measurement sample (2)> in Example 1 except that the resin sheet (2) was replaced with a resin sheet (32).
  • the YI of the measurement sample (31) was 7.5, and the YI of the measurement sample (32) was 13.2.
  • ⁇ YI of the measurement sample (31) and the measurement sample (32) was 5.7.
  • YI was determined in the same manner as in the section ⁇ Evaluation of long-term heat resistance> in Example 1 except that the measurement sample (2) was replaced with the measurement sample (32).
  • Example 17 (Preparation of copper salt fine particle dispersed resin) An epoxy compound represented by the formula (XVII) obtained by dissolving 6.8 mg of 2,2-bis (4-glycidyloxyphenyl) propane in 1 ml of toluene was used as an epolite 3002 (N) (manufactured by Kyoeisha Chemical Co., Ltd.) ) A PVB resin (17) (resin composition (17)) in which copper salt fine particles were dispersed was obtained in the same manner as in Example 3 except that 10.0 mg was replaced with a solution of 3 ml of toluene.
  • XVII 2,2-bis (4-glycidyloxyphenyl) propane in 1 ml of toluene
  • a measurement sample (33) was obtained in the same manner as in ⁇ Production of measurement sample (1)> in Example 1 except that the resin sheet (1) was replaced with a resin sheet (33).
  • ⁇ Preparation of measurement sample (34)> A measurement sample (34) was obtained in the same manner as in ⁇ Production of measurement sample (2)> in Example 1 except that the resin sheet (2) was replaced with a resin sheet (34).
  • the YI of the measurement sample (33) was 7.3, and the YI of the measurement sample (34) was 13.0.
  • ⁇ YI of the measurement sample (33) and the measurement sample (34) was 5.7.
  • Example 18 (Preparation of copper salt fine particle dispersed resin) A solution of 6.8 mg of 2,2-bis (4-glycidyloxyphenyl) propane dissolved in 1 ml of toluene and a solution of 7.0 mg of 2,2-bis (4-glycidyloxyphenyl) propane dissolved in 3 ml of toluene
  • the PVB resin (18) (resin composition (18)) in which the copper salt fine particles were dispersed was obtained in the same manner as in Example 3 except that the above was replaced.
  • a measurement sample (35) was obtained in the same manner as in ⁇ Production of measurement sample (1)> in Example 1 except that the resin sheet (1) was replaced with a resin sheet (35).
  • a measurement sample (36) was obtained in the same manner as in ⁇ Production of measurement sample (2)> in Example 1 except that the resin sheet (2) was replaced with a resin sheet (36).
  • the YI of the measurement sample (35) was 8.1, and the YI of the measurement sample (36) was 12.5.
  • ⁇ YI of the measurement sample (35) and the measurement sample (36) was 4.4.
  • Example 19 (Preparation of copper salt fine particle dispersed resin) A solution of 6.8 mg of 2,2-bis (4-glycidyloxyphenyl) propane dissolved in 1 ml of toluene and a solution of 14.0 mg of 2,2-bis (4-glycidyloxyphenyl) propane dissolved in 3 ml of toluene A PVB resin (19) (resin composition (19)) in which copper salt fine particles were dispersed was obtained in the same manner as in Example 3, except that the above was replaced.
  • a measurement sample (37) was obtained in the same manner as in ⁇ Production of measurement sample (1)> in Example 1 except that the resin sheet (1) was replaced with a resin sheet (37).
  • ⁇ Preparation of measurement sample (38)> A measurement sample (38) was obtained in the same manner as in ⁇ Production of measurement sample (2)> in Example 1 except that the resin sheet (2) was replaced with a resin sheet (38).
  • the YI of the measurement sample (37) was 8.0, and the YI of the measurement sample (38) was 13.2. ⁇ YI of the measurement sample (37) and the measurement sample (38) was 5.2.
  • YI was determined in the same manner as in the section ⁇ Evaluation of long-term heat resistance> in Example 1 except that the measurement sample (2) was replaced with the measurement sample (38).
  • Example 20 (Preparation of copper salt fine particle dispersed resin) A solution of 6.8 mg of 2,2-bis (4-glycidyloxyphenyl) propane dissolved in 1 ml of toluene and a solution of 23.36 mg of 2,2-bis (4-glycidyloxyphenyl) propane dissolved in 3 ml of toluene
  • the PVB resin (20) (resin composition (20)) in which the copper salt fine particles were dispersed was obtained in the same manner as in Example 3 except that the above was replaced.
  • a measurement sample (39) was obtained in the same manner as in ⁇ Production of measurement sample (1)> in Example 1 except that the resin sheet (1) was replaced with a resin sheet (39).
  • a measurement sample (40) was obtained in the same manner as in ⁇ Production of measurement sample (2)> in Example 1 except that the resin sheet (2) was replaced with a resin sheet (40).
  • the YI of the measurement sample (39) was 7.7, and the YI of the measurement sample (40) was 12.8. ⁇ YI of the measurement sample (39) and the measurement sample (40) was 5.1.
  • YI was determined in the same manner as in the section ⁇ Evaluation of long-term heat resistance> in Example 1, except that the measurement sample (2) was replaced with the measurement sample (40).
  • Example 21 Preparation of copper salt fine particle dispersed resin Except that the solution in which 6.8 mg of 2,2-bis (4-glycidyloxyphenyl) propane was dissolved in 1 ml of toluene was replaced with a solution in which 10.0 mg of Epolite 100MF was dissolved in 3 ml of toluene, the same as in Example 3.
  • the PVB resin (21) (resin composition (21)) in which the copper salt fine particles were dispersed was obtained.
  • a measurement sample (41) was obtained in the same manner as in ⁇ Production of measurement sample (1)> in Example 1 except that the resin sheet (1) was replaced with a resin sheet (41).
  • a measurement sample (42) was obtained in the same manner as in ⁇ Production of measurement sample (2)> in Example 1 except that the resin sheet (2) was replaced with a resin sheet (42).
  • the YI of the measurement sample (41) was 10.9, and the YI of the measurement sample (42) was 15.7. ⁇ YI of the measurement sample (41) and the measurement sample (42) was 4.8.
  • YI was determined in the same manner as in the section ⁇ Evaluation of long-term heat resistance> in Example 1 except that the measurement sample (2) was replaced with the measurement sample (42).
  • Example 22 (Preparation of copper salt fine particle dispersed resin) Except that the solution in which 6.8 mg of 2,2-bis (4-glycidyloxyphenyl) propane was dissolved in 1 ml of toluene was replaced with a solution in which 20.0 mg of Epolite 100MF was dissolved in 3 ml of toluene, the same as in Example 3.
  • the PVB resin (22) (resin composition (22)) in which copper salt fine particles were dispersed was obtained.
  • a measurement sample (43) was obtained in the same manner as in ⁇ Production of measurement sample (1)> in Example 1, except that the resin sheet (1) was replaced with a resin sheet (43).
  • ⁇ Preparation of measurement sample (44)> A measurement sample (44) was obtained in the same manner as in ⁇ Production of measurement sample (2)> in Example 1 except that the resin sheet (2) was replaced with a resin sheet (44).
  • the YI of the measurement sample (43) was 10.4, and the YI of the measurement sample (44) was 14.3.
  • ⁇ YI of the measurement sample (43) and the measurement sample (44) was 3.9.
  • YI was determined in the same manner as in the section ⁇ Evaluation of long-term heat resistance> in Example 1 except that the measurement sample (2) was replaced with the measurement sample (44).
  • Example 23 Preparation of copper salt fine particle dispersed resin Except that the solution in which 6.8 mg of 2,2-bis (4-glycidyloxyphenyl) propane was dissolved in 1 ml of toluene was replaced with a solution in which 30.0 mg of Epolite 100MF was dissolved in 3 ml of toluene, the same as in Example 3.
  • the PVB resin (23) (resin composition (23)) in which copper salt fine particles were dispersed was obtained.
  • a measurement sample (45) was obtained in the same manner as in ⁇ Production of measurement sample (1)> in Example 1 except that the resin sheet (1) was replaced with a resin sheet (45).
  • a measurement sample (46) was obtained in the same manner as in ⁇ Production of measurement sample (2)> in Example 1 except that the resin sheet (2) was replaced with a resin sheet (46).
  • the YI of the measurement sample (45) was 10.4, and the YI of the measurement sample (46) was 14.7. ⁇ YI of the measurement sample (45) and the measurement sample (46) was 4.3.
  • YI was determined in the same manner as in the section ⁇ Evaluation of long-term heat resistance> in Example 1 except that the measurement sample (2) was replaced with the measurement sample (46).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

 本発明は、黄変が抑制された、近赤外線吸収剤を含有する樹脂組成物を提供することを目的とし、本発明の樹脂組成物は、近赤外線吸収剤と、エポキシ化合物と、樹脂とからなる樹脂組成物であり、前記近赤外線吸収剤が、下記一般式(1)[R1は、-CH2CH2-R11で表される1価の基であり、R11は水素原子、炭素数1~20のアルキル基、または炭素数1~20のフッ素化アルキル基を示す。]で表わされるホスホン酸銅塩からなる微粒子である。

Description

樹脂組成物およびその用途
 本発明は、樹脂組成物およびその用途に関し、詳しくは近赤外線吸収剤と、エポキシ化合物と、樹脂とからなる樹脂組成物およびその用途に関する。
 従来から、自動車等の車両、建築物、太陽電池等の各種用途で、合わせガラスが用いられている。合わせガラス用中間膜としては、ポリビニルブチラール樹脂膜、アイオノマー樹脂膜等が知られている。
 ところで、太陽光線には、可視光線の他に紫外線、赤外線等が含まれている。赤外線の中でも波長が可視光に近い赤外線は、近赤外線と呼ばれる。近赤外線は熱線とも呼ばれ車両や建築物内部の温度上昇の原因の一つである。
 該温度上昇を抑制するために、車両や建築物に用いられる合わせガラスに、可視光線の透過性を保持したまま、熱線吸収性を付与することが考えられる。例えば、ホスホン酸銅塩と、ポリシロキサン成分と、可塑剤と、分散剤とを含有する銅塩組成物が知られている(例えば、特許文献1参照)。一般に金属塩を、樹脂と混合して得られた樹脂組成物は高温にさらされた場合には、可視光線の透過性が低下する場合や、黄変する場合があった。しかしながら、特許文献1には、前記銅塩組成物と樹脂とを含有する樹脂組成物は、高温にさらされた場合であっても可視光の透過性および安定性に優れる赤外線吸収膜を提供することが可能である旨が開示されている。
 特許文献1に記載された樹脂組成物は、高温にさらされた場合における黄変が、ホスホン酸銅塩および樹脂のみからなる樹脂組成物と比べると抑制されているが、シラン化合物を脱水縮合する工程が必要となるため、工程数が増えるという問題があった。
2009-242650号公報
 本発明は、上記従来技術を鑑みてされたものであり、黄変が抑制された、近赤外線吸収剤を含有する樹脂組成物を提供することを目的とする。
 本発明者らは上記課題を達成するため鋭意研究を重ねた結果、特定の近赤外線吸収剤と、エポキシ化合物と、樹脂とからなる樹脂組成物は、上記課題を解決することができることを見出し、本発明を完成させた。
 すなわち、本発明の樹脂組成物は、近赤外線吸収剤と、エポキシ化合物と、樹脂とからなる樹脂組成物であり、前記近赤外線吸収剤が、下記一般式(1)で表わされるホスホン酸銅塩からなる微粒子であることを特徴とする。
Figure JPOXMLDOC01-appb-C000002
[一般式(1)中、R1は、-CH2CH2-R11で表される1価の基であり、R11は水素原子、炭素数1~20のアルキル基、または炭素数1~20のフッ素化アルキル基を示す。]
 前記エポキシ化合物の分子量が100~4000であることが好ましい。
 前記樹脂が、ポリビニルアセタール樹脂、エチレン‐酢酸ビニル共重合体、(メタ)アクリル酸樹脂、ポリエステル樹脂、ポリウレタン樹脂、塩化ビニル樹脂、ポリオレフィン樹脂、ポリカーボネート樹脂、およびノルボルネン樹脂から選択される少なくとも1種の樹脂であることが好ましく、ポリビニルブチラール樹脂、またはエチレン‐酢酸ビニル共重合体であることがより好ましい。
 前記樹脂100質量部あたり、近赤外線吸収剤を0.05~50質量部含有することが好ましい。
 前記樹脂100質量部あたり、エポキシ化合物を0.005~5.0質量部含有することが好ましい。
 本発明の合わせガラス用中間膜は、前記樹脂組成物から形成される。
 本発明の合わせガラスは、前記合わせガラス用中間膜を有する。
 本発明の樹脂組成物は、黄変が抑制されている。
 次に本発明について具体的に説明する。
 本発明の樹脂組成物は、近赤外線吸収剤と、エポキシ化合物と、樹脂とからなる樹脂組成物であり、前記近赤外線吸収剤が、後述の一般式(1)で表わされるホスホン酸銅塩からなる微粒子であることを特徴とする。
 なお、本発明の樹脂組成物を、銅塩微粒子分散樹脂とも記す。
 [近赤外線吸収剤]
 本発明に用いられる近赤外線吸収剤は、下記一般式(1)で表わされるホスホン酸銅塩からなる微粒子である。
 前記下記一般式(1)で表わされるホスホン酸銅塩からなる微粒子としては、下記一般式(1)で表わされるホスホン酸銅塩のみから形成されていてもよく、下記一般式(1)で表わされるホスホン酸銅塩と、他の成分とから形成されていてもよい。
Figure JPOXMLDOC01-appb-C000003
[一般式(1)中、R1は、-CH2CH2-R11で表される1価の基であり、R11は水素原子、炭素数1~20のアルキル基、または炭素数1~20のフッ素化アルキル基を示す。]
 前記R11としては、水素原子または炭素数1~20のアルキル基であることが好ましい。具体的にはR11としては、水素原子、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基等が好ましい。なお、一般式(1)で表わされるホスホン酸銅塩としては、一種単独で用いても、二種以上を用いてもよい。
 なお、本明細書において、「一般式(1)で表わされるホスホン酸銅塩」を、単に「ホスホン酸銅塩」とも記す。
 本発明に用いる、ホスホン酸銅塩からなる微粒子の製造方法としては、特に限定はないが、例えば以下の方法で製造することができる。
 ホスホン酸銅塩からなる微粒子の製造方法としては、溶媒中で、下記一般式(2)で表わされるホスホン酸化合物と、銅塩とを混合し、反応混合物を得る工程(以下、反応工程とも記す)、該反応混合物中の溶媒を除去することによりホスホン酸銅塩からなる微粒子を得る工程(以下、溶媒除去工程とも記す)を有する方法が挙げられる。
Figure JPOXMLDOC01-appb-C000004
[一般式(2)中、R1は、-CH2CH2-R11で表される1価の基であり、R11は水素原子、炭素数1~20のアルキル基、または炭素数1~20のフッ素化アルキル基を示す。]
 前記一般式(2)で表わされるホスホン酸化合物としては、R11が水素原子または炭素数1~20のアルキル基であるものが好ましい。一般式(2)で表されるホスホン酸化合物としては例えば、エチルホスホン酸、プロピルホスホン酸、ブチルホスホン酸、ペンチルホスホン酸、ヘキシルホスホン酸、ヘプチルホスホン酸、オクチルホスホン酸、ノニルホスホン酸、デシルホスホン酸、ウンデシルホスホン酸、ドデシルホスホン酸、トリデシルホスホン酸、テトラデシルホスホン酸、ペンタデシルホスホン酸、ヘキサデシルホスホン酸、ヘプタデシルホスホン酸、オクタデシルホスホン酸等のアルキルホスホン酸が挙げられる。なお、一般式(2)で表されるホスホン酸化合物としては、一種単独で用いても、二種以上を用いてもよい。
 前記銅塩としては、2価の銅イオンを供給することが可能な銅塩が通常用いられる。前記銅塩としては、前記一般式(1)で表わされるホスホン酸銅塩以外の銅塩であればよい。前記銅塩としては例えば、無水酢酸銅、無水蟻酸銅、無水ステアリン酸銅、無水安息香酸銅、無水エチルアセト酢酸銅、無水ピロリン酸銅、無水ナフテン酸銅、無水クエン酸銅等の有機酸の銅塩、該有機酸の銅塩の水和物もしくは水化物;酸化銅、塩化銅、硫酸銅、硝酸銅、塩基性炭酸銅等の無機酸の銅塩、該無機酸の銅塩の水和物もしくは水化物;水酸化銅が挙げられる。なお、銅塩としては、一種単独で用いても、二種以上を用いてもよい。
 銅塩としては、無水酢酸銅、酢酸銅一水和物が、溶解性や副生成物の除去の点から好ましく用いられる。
 ホスホン酸銅塩からなる微粒子を製造する際には、前記反応工程において分散剤をもちいてもよい。前記分散剤としては、例えば一般式(3a)で表されるリン酸エステル化合物および一般式(3b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物、該リン酸エステル化合物中のリン酸、すなわち水酸基を塩基で中和した化合物が挙げられる。なお、中和に用いる塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化マグネシウム、水酸化カルシウム等の無機塩基が挙げられる。
Figure JPOXMLDOC01-appb-C000005
[一般式(3a)および(3b)中、R21、R22およびR23は、-(CH2CH2O)n55で表される1価の基であり、nは2~65の整数であり、R55は、炭素数6~25のアルキル基または炭素数6~25のアルキルフェニル基を示す。ただし、R21、R22およびR23は、それぞれ同一でも異なっていてもよい。]
 前記nは2~65の整数であり、好ましくは4~65の整数であり、より好ましくは4~45であり、特に好ましくは4~35の整数である。nが2未満である場合には、合わせガラス等を製造した際に透明性が不充分となる場合がある。また、nが65を超えると、充分な透明性を有する合わせガラス等を得るために必要な、リン酸エステル化合物の量が増え、コスト高の原因となる傾向がある。
 また、R55は、炭素数6~25のアルキル基または炭素数6~25のアルキルフェニル基であり、炭素数6~25のアルキル基であることが好ましく、8~20のアルキル基であることがより好ましく、12~20のアルキル基であることが特に好ましい。R55が、炭素数6未満の基であると、合わせガラス等を製造した際に透明性が不充分となる場合がある。また、R55が、炭素数25を超える基であると、充分な透明性を有する合わせガラス等を得るために必要な、リン酸エステル化合物の量が増え、コスト高の原因となる傾向がある。
 前記ホスホン酸銅塩からなる微粒子を得る際に分散剤を用いる場合には、前記一般式(3a)で表されるリン酸エステル化合物、前記一般式(3b)で表されるリン酸エステル化合物の少なくとも一方が用いられることが好ましいが、前記一般式(3a)で表されるリン酸エステル化合物、前記一般式(3b)で表されるリン酸エステル化合物の両方を用いることがより好ましい。前記一般式(3a)で表されるリン酸エステル化合物および前記一般式(3b)で表されるリン酸エステル化合物を用いると、合わせガラス等の透明性、耐熱性に優れる傾向があり好ましい。前記一般式(3a)で表されるリン酸エステル化合物、前記一般式(3b)で表されるリン酸エステル化合物の両方を用いる場合には、一般式(3a)で表されるリン酸エステル化合物と、一般式(3b)で表されるリン酸エステル化合物との割合は、特に限定されないが、通常はモル比((3a):(3b))で10:90~90:10である。
 また、前記一般式(3a)で表されるリン酸エステル化合物としては、一種単独で用いても、二種以上を用いてもよく、前記一般式(3b)で表されるリン酸エステル化合物としては、一種単独で用いても、二種以上を用いてもよい。
 前記一般式(3a)で表されるリン酸エステル化合物および前記一般式(3b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物としては、市販されているリン酸エステル化合物、例えばDLP-10、DDP-6、DDP-8、DDP-10、TDP-6、TDP-8、TDP-10(以上、日光ケミカルズ(株)製)や、プライサーフA212C、プライサーフA215C、プライサーフAL12H、プライサーフAL、プライサーフA208F、プライサーフA208N、プライサーフA208B、プライサーフA219B、プライサーフA210D(以上、第一工業製薬(株)製)等を用いることもできる。また、これらのリン酸エステル化合物中のリン酸、すなわち水酸基を適当な塩基で中和した化合物を用いることもできる。中和に使用する塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化マグネシウム、水酸化カルシウム等の無機塩基が挙げられる。
 なお、ホスホン酸銅塩からなる微粒子を製造する際には、前記銅塩1モルあたり、一般式(2)で表されるホスホン酸化合物を0.5~1.5モル用いることが好ましく、0.8~1.2モル用いることがより好ましい。また、分散剤が、一般式(3a)で表されるリン酸エステル化合物および一般式(3b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物、および/または該リン酸エステル化合物中のリン酸、すなわち水酸基を塩基で中和した化合物である場合には、前記銅塩100質量部あたり、5~100質量部用いることが好ましく、10~50質量部用いることがより好ましい。
 前記溶媒としては、メタノール、エタノール、イソプロピルアルコール、n-ブチルアルコール等のアルコール、テトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)、水等が挙げられる。前記溶媒としては、メタノール、エタノール、イソプロピルアルコール、n-ブタノール、N,N-ジメチルホルムアミド(DMF)、およびテトラヒドロフラン(THF)から選択される少なくとも1種の溶媒を含むことが好ましい。また、反応性の観点からメタノール、エタノール、THF、およびDMFから選択される少なくとも1種の溶媒を含むことが好ましく、メタノール、およびエタノールから選択される少なくとも1種の溶媒を含むことがより好ましい。前記溶媒としては、これらの溶媒のみでもよく、それ以外の溶媒を含んでいてもよい。前記溶媒としては、メタノール、エタノール、イソプロピルアルコール、n-ブタノール、DMF、およびTHFから選択される少なくとも1種の溶媒(好ましくは、メタノール、エタノール、THF、およびDMFから選択される少なくとも1種の溶媒、より好ましくはメタノール、およびエタノールから選択される少なくとも1種の溶媒)100質量部に対して、それ以外の溶媒が、通常は0~50質量部、好ましくは0~30質量部含まれていてもよい。溶媒として、二種以上の溶媒を用いる場合に、その具体例としては、エタノールと、少量のその他の溶媒とを含む、変性エタノールが挙げられる。変性エタノールは、エタノール100質量部に対してその他の溶媒を、通常は3~50質量部、好ましくは3~30質量部含んでいる。変性エタノールとしては、メタノール変性エタノール、イソプロピルアルコール変性エタノール、トルエン変性エタノールが挙げられる。
 また、反応工程は、通常は0~80℃、好ましくは10~60℃、より好ましくは室温~60℃、特に好ましくは20~40℃の温度条件で、通常は0.5~60時間、好ましくは0.5~30時間、より好ましくは0.5~20時間、特に好ましくは1~15時間行われる。
 前記反応工程では、前記一般式(2)で表されるホスホン酸化合物と、前記銅塩とが反応し、該反応によって、前記溶媒に溶解しない微粒子状のホスホン酸銅塩が生成する。前記一般式(3a)で表されるリン酸エステル化合物および一般式(3b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物は、反応時に良好な分散剤として作用することができるため、前記ホスホン酸銅塩は分散性が高く保たれ、凝集を抑制することができる。
 なお、前記反応工程では、前記一般式(2)で表されるホスホン酸化合物と銅塩との反応のみではなく、例えば前記一般式(3a)で表されるリン酸エステル化合物および一般式(3b)で表されるリン酸エステル化合物から選択される少なくとも1種のリン酸エステル化合物と、銅塩の一部とが反応してもよい。また、原料の一部が反応せずに残存していてもよい。
 なお、前記ホスホン酸銅塩からなる微粒子の製造方法では、通常、前記反応混合物から、少なくとも前記溶媒の一部を除去することにより、ホスホン酸銅塩からなる微粒子を得る。
 溶媒除去工程では、反応混合物中から、少なくとも前記溶媒の一部を除去する。溶媒除去工程では、溶媒以外にも、反応混合物中の液体成分を合わせて除去してもよい。
 溶媒除去工程としては、反応混合物を蒸留することにより溶媒を留分として除去する方法が挙げられる。
 蒸留は、反応混合物の熱劣化を防止する観点から減圧下で行われることが好ましい。
 減圧蒸留を行う場合には、溶媒の種類によっても異なるが、減圧蒸留の条件としては通常は圧力0.01~15kPaで行われる。なお留分の流出温度は、溶媒の種類、圧力によって異なるが通常は30~150℃である。
 また、溶媒を除去する別の方法としては、反応混合物を静置することにより、ホスホン酸銅塩からなる微粒子を沈殿させ、上澄み液(溶媒)を除去する方法や、反応混合物を遠心分離処理することにより、ホスホン酸銅塩からなる微粒子を沈殿させ、上澄み液(溶媒)を除去する方法が挙げられる。
 なお、溶媒を除去する方法としては、これらの方法を組み合わせて行ってもよい。
 また、溶媒除去工程を行った後に、ホスホン酸銅塩からなる微粒子中に含まれる不純物の除去を目的として、ホスホン酸銅塩からなる微粒子を、分散媒に分散した後に、該分散媒を除去する工程を設けてもよい。
 前記ホスホン酸銅塩からなる微粒子としては通常、平均粒径が1~1000nmのホスホン酸銅塩からなる微粒子が用いられる。平均粒径としては、モノマーへの分散性や樹脂組成物の透明性を確保するため、5~300nmであることがより好ましい。
 [エポキシ化合物]
 本発明の樹脂組成物は、エポキシ化合物を含有する。なお、エポキシ化合物とは、分子内にエポキシ基を一つ以上有する化合物である。
 本発明に用いられるエポキシ化合物としては特に限定はなく、一種を用いても、二種以上を用いてもよい。
 前記エポキシ化合物としては、一分子内に、エポキシ基を1~25個有する化合物が好ましく、1~10個有する化合物がより好ましく、1~4個有する化合物であることがさらにより好ましい。
 また、前記エポキシ化合物としては、分子量が100~4000であることが好ましく、120~1600であることがより好ましく、130~600であることがさらにより好ましい。分子量が小さすぎると、樹脂の乾燥時や成形時にエポキシ化合物が揮発する恐れがある。分子量が大きすぎると、エポキシ化合物の添加量が増えて樹脂の特性が変化したり、コストアップにつながる恐れがある。
 前記エポキシ化合物としては、少なくとも一つのエポキシ基が、分子末端に存在することが好ましい。
 本発明に用いられるエポキシ化合物としては、例えば以下の式(I)~(XVII)で表されるエポキシ化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 本発明の樹脂組成物は、エポキシ化合物を含有するため、加熱時等の黄変を抑制することができる。特に前記式(I)~(XVII)で表されるエポキシ化合物、好ましくは前記式(I)~(IV)、(VI)~(XI)、(XIII)~(XV)、(XVII)で表されるエポキシ化合物を用いると、樹脂組成物を高温で長時間保持した場合の黄変が充分に抑制されるため好ましい。式(I)、(III)、(IV)、(VI)~(X)、(XIII)~(XV)、(XVII)で表されるエポキシ化合物を用いることがより好ましく、式(III)、(IV)、(VI)~(VIII)、(X)、(XIII)、(XIV)で表されるエポキシ化合物を用いることがさらに好ましく、式(III)、(IV)、(VIII)、(XIII)で表されるエポキシ化合物を用いることが特に好ましい。
 [樹脂]
 本発明には、樹脂が用いられる。本発明に用いられる樹脂としては、前述の近赤外線吸収剤を分散することが可能であればよく特に限定はないが、例えば以下の樹脂を用いることができる。
 本発明に用いる樹脂としては、ポリビニルアセタール樹脂、エチレン‐酢酸ビニル共重合体、(メタ)アクリル酸樹脂、ポリエステル樹脂、ポリウレタン樹脂、塩化ビニル樹脂、ポリオレフィン樹脂、ポリカーボネート樹脂、およびノルボルネン樹脂から選択される少なくとも1種の樹脂が、近赤外線吸収剤を良好に分散することが可能であり、かつ可視光の透過性に優れることが好ましい。
 本発明に用いる樹脂としては、ポリビニルアセタール樹脂、およびエチレン‐酢酸ビニル共重合体から選択される少なくとも1種の樹脂であることがより好ましく、ポリビニルブチラール樹脂(PVB)、およびエチレン‐酢酸ビニル共重合体から選択される少なくとも1種の樹脂であることが特に好ましく、ポリビニルブチラール樹脂、またはエチレン‐酢酸ビニル共重合体が最も好ましい。ポリビニルアセタール樹脂を用いると、前述の近赤外線吸収剤の分散性に優れ、本発明の樹脂組成物を用いて、光学材料を製造する際に、ガラス等への密着性に優れ、本発明の樹脂組成物が柔軟であり、かつ温度変化に伴う近赤外線吸収剤の変形が起こり難いため好ましい。また、ポリビニルアセタール樹脂としては、ポリビニルブチラール樹脂(PVB)を用いることが、ガラス密着性、分散性、透明性、耐熱性、耐光性などの観点から好ましい。
 ポリビニルアセタール樹脂は、必要な物性に応じて、二種以上を組み合わせたブレンド物であってもよく、アセタール化時にアルデヒドを組み合わせてアセタール化することにより得られるポリビニルアセタール樹脂であってもよい。上記ポリビニルアセタール樹脂の分子量、分子量分布およびアセタール化度は特に限定されないが、アセタール化度は、一般に40~85%であり、好ましい下限は60%、上限は75%である。
 ポリビニルアセタール樹脂は、ポリビニルアルコール樹脂をアルデヒドによりアセタール化することにより得ることができる。上記ポリビニルアルコール樹脂は、一般にポリ酢酸ビニルを鹸化することにより得られるものであり、鹸化度80~99.8モル%のポリビニルアルコール樹脂が一般的に用いられる。上記ポリビニルアルコール樹脂の粘度平均重合度は好ましい下限は200、上限は3000である。200未満であると、得られる合わせガラスの耐貫通性が低下する場合がある。3000を超えると、樹脂組成物の成形性が悪くなる場合があり、しかも樹脂組成物の剛性が大きくなり過ぎ、加工性が悪くなる。より好ましい下限は500、上限は2200である。なお、ポリビニルアルコール樹脂の粘度平均重合度、および鹸化度は、例えば、JISK 6726「ポリビニルアルコール試験方法」に基づいて測定することができる。
 アルデヒドとしては特に限定されず、例えば、炭素数が1~10のアルデヒド等が挙げられ、より具体的には、例えば、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド、2-エチルブチルアルテヒド、n-へキシルアルデヒド、n-オクチルアルデヒド、n-ノニルアルデヒド、n-デシルアルデヒド、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド等が挙げられる。なかでも、n-ブチルアルデヒド、n-へキシルアルデヒド、n-バレルアルデヒド等が好ましい。より好ましくは、炭素数が4のブチルアルデヒドである。
 また、エチレン‐酢酸ビニル共重合体を用いると、前述の近赤外線吸収剤の分散性に優れ、ガラス密着性、分散性、透明性、耐熱性、耐光性などの観点から好ましい。
 〔樹脂組成物〕
 本発明の樹脂組成物は、前述のように近赤外線吸収剤と、エポキシ化合物と、樹脂とからなる樹脂組成物である。
 本発明の樹脂組成物は、前述のように近赤外線吸収剤と、エポキシ化合物と、樹脂とからなる組成物であればよく、その製造方法としては特に限定されない。本発明の樹脂組成物の製造方法としては、例えば、トルエン、エタノール/トルエン混合溶媒、メタノール、メタノール/トルエン混合溶媒、塩化メチレン、クロロホルム等の溶剤に樹脂、エポキシ化合物あるいはその溶液、近赤外線吸収剤分散液を添加し、撹拌、超音波照射等によって樹脂を溶解させ、分散液を得て、該分散液から溶剤を除去する方法が挙げられる。なお、前記近赤外線吸収剤分散液は、近赤外線吸収剤を、トルエン、メタノール、塩化メチレン、クロロホルム、トリエチレングリコールビス(2-エチルヘキサノエート)等に分散することにより調製することができる。また、エポキシ化合物の溶液を添加する場合には、溶媒としてトルエン、メタノール、エタノール、塩化メチレン、クロロホルム、これらの混合溶媒等を用いることができる。
 本発明の樹脂組成物は、前記樹脂100質量部あたり、近赤外線吸収剤を0.05~50質量部含有することが好ましく、0.1~25質量部含有することがより好ましい。0.05質量部より少ないと充分な近赤外線吸収特性が得られない可能性があり、50質量部より多すぎると樹脂の透明性や接着性が大幅に低下するおそれがある。
 本発明の樹脂組成物は、前記樹脂100質量部あたり、エポキシ化合物を0.005~5.0質量部含有することが好ましく、0.01~3.0質量部含有することがより好ましく、0.03~1.0質量部含有することがさらにより好ましい。0.005質量部より少ないと充分に黄変を抑制することができない可能性があり、5.0質量部より多すぎると、エポキシ化合物自身の分解により黄変したり、エポキシ化合物の析出により透明性が低下するおそれがある。
 本発明の樹脂組成物は、近赤外線吸収能に優れ、加熱時の着色等の黄変が抑制されているため合わせガラス等の構造材料用の中間膜として好適に使用することが可能である。
 また、本発明の樹脂組成物には、各種添加剤が含有されていてもよい。添加剤としては、例えば可塑剤、分散剤、酸化防止剤、紫外線吸収剤、光安定剤等が挙げられる。これらの添加剤は、本発明の樹脂組成物を製造する際に、添加されてもよく、前述の近赤外線吸収剤、エポキシ化合物、樹脂それぞれを製造する際に添加されてもよい。
 〔樹脂組成物の用途〕
 本発明の樹脂組成物は、近赤外線を吸収することが望まれる用途に通常は用いられる。
 本発明の樹脂組成物から形成される樹脂膜は、近赤外線吸収能に優れ、加熱時の着色等の黄変が抑制されているため合わせガラス用中間膜等の構造材料用中間膜として好適に用いることが可能である。
 また、本発明の合わせガラスは、前記合わせガラス用中間膜を有している。本発明の合わせガラスを構成するガラスとしては特に限定はなく、従来公知のものを用いることができる。
 次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
 〔製造例1〕
(銅塩分散液の調製)
 500mlナスフラスコに、酢酸銅一水和物5.84g(29.25mmol)、エタノール170gを加え、30℃で1時間攪拌し、溶液(A液)を得た。
 別の容器に、プライサーフA219B(第一工業製薬製)1.46g、n-ブチルホスホン酸4.04gをエタノール110gに溶解し、溶液(B液)を得た。
 得られたB液を、A液に対して20分かけて滴下した。この反応液を30℃で7時間撹拌した後、24時間静置することにより、反応混合物を得た。得られた反応混合物は、銅塩の一部が沈殿(1)しており、懸濁層(1)(下層)と、無色透明層(1)(上層)との二層に分離していた。反応混合物から、前記無色透明層(1)をピペットで除去した。次いで、反応混合物を、銅塩の沈澱(1)と、懸濁層(1)(懸濁液)とに分けた。
 懸濁層(1)の一部を、遠心分離処理(3000rpm/15分間)し、沈殿(2)と、懸濁層(2)(下層)と、無色透明層(2)(上層)とに分け、前記無色透明層(2)をピペットで除去した。なお、無色透明層(1)および無色透明層(2)の合計は165gであった。
 前記銅塩の沈澱(1)、沈殿(2)、遠心分離を行わなかった懸濁層(1)、および懸濁層(2)を合わせて、エバポレーター(水浴60℃)にかけて、溶媒を留去した。
 これにトルエン100gを加え、恒量になり、酢酸臭がしなくなるまでエバポレーターで留去した。収量6.59g(収率90%)の青緑色固体が得られた。これにトルエン140gを加え、超音波照射を12時間行い、n-ブチルホスホン酸銅塩トルエン分散液(1)を得た。
 〔製造例2〕
(銅塩分散液の調製)
 500mlナスフラスコに、酢酸銅一水和物7.00g(35.06mmol)、メタノール140gを加え、20℃で1時間攪拌し、溶液(A液)を得た。
 別の容器に、プライサーフA219B(第一工業製薬製)1.75g、n-ブチルホスホン酸4.82gをメタノール100gに溶解し、溶液(B液)を得た。
 B液を、A液に対して3時間かけて滴下した。この反応液を20℃で10時間撹拌した。
 その後、エバポレーター(水浴60℃)で反応液から溶媒を留去した。溶媒が留去された固形分にトルエン100gを加え、恒量になり、酢酸臭がしなくなるまでエバポレーターで留去した。収量8.75g(収率100%)の青緑色固体が得られた。これにトルエン211gを加え、超音波照射を6時間行い、n-ブチルホスホン酸銅塩トルエン分散液(2)を得た。
 〔実施例1〕
(銅塩微粒子分散樹脂の調製)
 300ml三角フラスコに、トリエチレングリコールビス(2-エチルヘキサノエート)(3GO、可塑剤)1.90g、トルエン250ml、ポリビニルブチラール(PVB)5.00gを加えた。
 これに、トリグリシジルイソシアヌレート(式(I)で表されるエポキシ化合物)5.0mgをクロロホルム3mlに溶かした溶液を加えた。
 これに上記n-ブチルホスホン酸銅塩トルエン分散液(1)3.16g(銅塩を0.583mmol含む)を添加し、20℃で10時間撹拌後、1.5時間超音波照射し、PVBを均一に溶解させた。
 この分散液をテフロン(登録商標)製バットに広げ、12時間20℃で風乾した。さらに40℃で5時間、70℃で3.5時間真空乾燥を行って溶媒を完全に除去し、銅塩微粒子が分散したPVB樹脂(1)(樹脂組成物(1))を得た。
 (評価)
 <樹脂シート(1)の作製>
 前記銅塩微粒子が分散したPVB樹脂(1)を、厚さ0.8mmの型枠および(株)神藤金属工業所製の圧縮成形機を用い、120℃、3MPaで予熱1分間を行った後、15MPaで3分間プレスし、樹脂シート(1)を得た。
 <樹脂シート(2)の作製>
 前記樹脂シート(1)を、さらに厚さ0.8mmの型枠および(株)神藤金属工業所製の圧縮成形機を用い、200℃、3MPaで予熱1分間を行った後、10MPaで5分間プレスし、樹脂シート(2)を得た。
 <測定サンプル(1)の作製>
 前記樹脂シート(1)の両面を、スライドガラス(厚み1.2~1.5mm)で挟み、70℃のプレート上で合わせガラス(1)とした。
 該合わせガラス(1)をオートクレーブ内で、窒素雰囲気下、圧力1.5MPa、130℃で0.5時間加熱し、樹脂シートの両面にスライドガラスが配設された測定サンプル(1)を得た。
 <測定サンプル(2)の作製>
 樹脂シート(1)を樹脂シート(2)に代えた以外は、前記測定サンプル(1)の作製と同様に行い、樹脂シートの両面にスライドガラスが配設された測定サンプル(2)を得た。
 <耐熱性の評価>
 前記測定サンプル(1)および(2)の分光をそれぞれ以下の方法で測定した。
 該測定サンプルの分光は、250~2500nmの波長範囲で、分光光度計(U-4000形、(株)日立製作所製)を使用して測定した。C光源を使用し、三刺激値(X,Y,Z)の値を計算した。
 測定サンプル(1)のYI(黄色度指数)は、4.8であり、測定サンプル(2)のYIは、9.4であった。なおYIの値の計算は、下式により行った。
 YI=(128X-106Z)/Y
 測定サンプル(1)のYIと測定サンプル(2)のYIとの差(測定サンプル(2)のYI-測定サンプル(1)のYI)をΔYIとすると、ΔYIは4.6であった。
 <長期耐熱性の評価>
 長期耐熱性試験は以下の方法で行った。100℃のオーブンに測定サンプル(2)を入れ、1000時間保管した後、分光を測定してYIを求めた。
 1000時間後のYIは12.2であり、長期耐熱性試験前のYIとの差をΔYIとすると、ΔYIは、2.8(12.2-9.4)であった。
 〔比較例1〕
(銅塩微粒子分散樹脂の調製)
 トリグリシジルイソシアヌレート5.0mgをクロロホルム3mlに溶かした溶液を用いなかったこと以外は、実施例1と同様に行い、銅塩微粒子が分散したPVB樹脂(c1)(樹脂組成物(c1))を得た。
 (評価)
 <樹脂シート(c1)の作製>
 銅塩微粒子が分散したPVB樹脂(1)を、銅塩微粒子が分散したPVB樹脂(c1)に代えた以外は、実施例1の<樹脂シート(1)の作製>項と同様に行い、樹脂シート(c1)を得た。
 <樹脂シート(c2)の作製>
 樹脂シート(1)を樹脂シート(c1)に代えた以外は、実施例1の<樹脂シート(2)の作製>項と同様に行い、樹脂シート(c2)を得た。
 <測定サンプル(c1)の作製>
 樹脂シート(1)を樹脂シート(c1)に代えた以外は、実施例1の<測定サンプル(1)の作製>の項と同様に行い、測定サンプル(c1)を得た。
 <測定サンプル(c2)の作製>
 樹脂シート(2)を樹脂シート(c2)に代えた以外は、実施例1の<測定サンプル(2)の作製>の項と同様に行い、測定サンプル(c2)を得た。
 <耐熱性の評価>
 前記測定サンプル(c1)、測定サンプル(c2)の分光を実施例1の<耐熱性の評価>の項に示した方法と同様の方法で測定した。
 測定サンプル(c1)のYIは、3.7であり、測定サンプル(c2)のYIは、9.3であった。測定サンプル(c1)と測定サンプル(c2)のΔYIは5.6であった。
 <長期耐熱性の評価>
 測定サンプル(2)を測定サンプル(c2)に代えた以外は、実施例1の<長期耐熱性の評価>の項と同様に行い、YIを求めた。
 1000時間後のYIは16.7であり、長期耐熱性試験前のYIとの差をΔYIとすると、ΔYIは、7.4(16.7-9.3)であった。
 〔実施例2〕
(銅塩微粒子分散樹脂の調製)
 トリグリシジルイソシアヌレート5.0mgをクロロホルム3mlに溶かした溶液を、1,7-オクタジエンジエポキシド(式(II)で表されるエポキシ化合物)1.5mgをトルエン1mlに溶かした溶液に代えた以外は、実施例1と同様に行い、銅塩微粒子が分散したPVB樹脂(2)(樹脂組成物(2))を得た。
 (評価)
 <樹脂シート(3)の作製>
 銅塩微粒子が分散したPVB樹脂(1)を、銅塩微粒子が分散したPVB樹脂(2)に代えた以外は、実施例1の<樹脂シート(1)の作製>項と同様に行い、樹脂シート(3)を得た。
 <樹脂シート(4)の作製>
 樹脂シート(1)を樹脂シート(3)に代えた以外は、実施例1の<樹脂シート(2)の作製>項と同様に行い、樹脂シート(4)を得た。
 <測定サンプル(3)の作製>
 樹脂シート(1)を樹脂シート(3)に代えた以外は、実施例1の<測定サンプル(1)の作製>の項と同様に行い、測定サンプル(3)を得た。
 <測定サンプル(4)の作製>
 樹脂シート(2)を樹脂シート(4)に代えた以外は、実施例1の<測定サンプル(2)の作製>の項と同様に行い、測定サンプル(4)を得た。
 <耐熱性の評価>
 前記測定サンプル(3)、測定サンプル(4)の分光を実施例1の<耐熱性の評価>の項に示した方法と同様の方法で測定した。
 測定サンプル(3)のYIは、6.0であり、測定サンプル(4)のYIは、9.3であった。測定サンプル(3)と測定サンプル(4)のΔYIは3.3であった。
 <長期耐熱性の評価>
 測定サンプル(2)を測定サンプル(4)に代えた以外は、実施例1の<長期耐熱性の評価>の項と同様に行い、YIを求めた。
 1000時間後のYIは14.3であり、長期耐熱性試験前のYIとの差をΔYIとすると、ΔYIは、5.0(14.3-9.3)であった。
 〔実施例3〕
(銅塩微粒子分散樹脂の調製)
 300ml三角フラスコに、トリエチレングリコールビス(2-エチルヘキサノエート)1.90g、トルエン250ml、ポリビニルブチラール(PVB)5.00gを加えた。
 これに、2,2-ビス(4-グリシジロキシフェニル)プロパン(式(III)で表されるエポキシ化合物)6.8mgをトルエン1mlに溶かした溶液を加えた。
 これに上記n-ブチルホスホン酸銅塩トルエン分散液(2)3.65g(銅塩を0.583mmol含む)を添加し、20℃で10時間撹拌後、1.5時間超音波照射し、PVBを均一に溶解させた。
 この分散液をテフロン(登録商標)製バットに広げ、12時間20℃で風乾した。さらに40℃で5時間、70℃で3.5時間真空乾燥を行って溶媒を完全に除去し、銅塩微粒子が分散したPVB樹脂(3)(樹脂組成物(3))を得た。
 (評価)
 <樹脂シート(5)の作製>
 銅塩微粒子が分散したPVB樹脂(1)を、銅塩微粒子が分散したPVB樹脂(3)に代えた以外は、実施例1の<樹脂シート(1)の作製>項と同様に行い、樹脂シート(5)を得た。
 <樹脂シート(6)の作製>
 樹脂シート(1)を樹脂シート(5)に代えた以外は、実施例1の<樹脂シート(2)の作製>項と同様に行い、樹脂シート(6)を得た。
 <測定サンプル(5)の作製>
 樹脂シート(1)を樹脂シート(5)に代えた以外は、実施例1の<測定サンプル(1)の作製>の項と同様に行い、測定サンプル(5)を得た。
 <測定サンプル(6)の作製>
 樹脂シート(2)を樹脂シート(6)に代えた以外は、実施例1の<測定サンプル(2)の作製>の項と同様に行い、測定サンプル(6)を得た。
 <耐熱性の評価>
 前記測定サンプル(5)、測定サンプル(6)の分光を実施例1の<耐熱性の評価>の項に示した方法と同様の方法で測定した。
 測定サンプル(5)のYIは、5.6であり、測定サンプル(6)のYIは、7.2であった。測定サンプル(5)と測定サンプル(6)のΔYIは1.6であった。
 <長期耐熱性の評価>
 測定サンプル(2)を測定サンプル(6)に代えた以外は、実施例1の<長期耐熱性の評価>の項と同様に行い、YIを求めた。
 1000時間後のYIは10.3であり、長期耐熱性試験前のYIとの差をΔYIとすると、ΔYIは、3.1(10.3-7.2)であった。
 〔実施例4〕
(銅塩微粒子分散樹脂の調製)
 2,2-ビス(4-グリシジロキシフェニル)プロパン6.8mgをトルエン1mlに溶かした溶液を、1,2-エポキシテトラデカン(式(IV)で表されるエポキシ化合物)11.3mgをトルエン1mlに溶かした溶液に代えた以外は、実施例3と同様に行い、銅塩微粒子が分散したPVB樹脂(4)(樹脂組成物(4))を得た。
 (評価)
 <樹脂シート(7)の作製>
 銅塩微粒子が分散したPVB樹脂(1)を、銅塩微粒子が分散したPVB樹脂(4)に代えた以外は、実施例1の<樹脂シート(1)の作製>項と同様に行い、樹脂シート(7)を得た。
 <樹脂シート(8)の作製>
 樹脂シート(1)を樹脂シート(7)に代えた以外は、実施例1の<樹脂シート(2)の作製>項と同様に行い、樹脂シート(8)を得た。
 <測定サンプル(7)の作製>
 樹脂シート(1)を樹脂シート(7)に代えた以外は、実施例1の<測定サンプル(1)の作製>の項と同様に行い、測定サンプル(7)を得た。
 <測定サンプル(8)の作製>
 樹脂シート(2)を樹脂シート(8)に代えた以外は、実施例1の<測定サンプル(2)の作製>の項と同様に行い、測定サンプル(8)を得た。
 <耐熱性の評価>
 前記測定サンプル(7)、測定サンプル(8)の分光を実施例1の<耐熱性の評価>の項に示した方法と同様の方法で測定した。
 測定サンプル(7)のYIは、6.4であり、測定サンプル(8)のYIは、7.9であった。測定サンプル(7)と測定サンプル(8)のΔYIは1.5であった。
 <長期耐熱性の評価>
 測定サンプル(2)を測定サンプル(8)に代えた以外は、実施例1の<長期耐熱性の評価>の項と同様に行い、YIを求めた。
 1000時間後のYIは11.3であり、長期耐熱性試験前のYIとの差をΔYIとすると、ΔYIは、3.4(11.3-7.9)であった。
 〔実施例5〕
(銅塩微粒子分散樹脂の調製)
 2,2-ビス(4-グリシジロキシフェニル)プロパン6.8mgをトルエン1mlに溶かした溶液を、トランス-スチルベンオキシド(式(V)で表されるエポキシ化合物)5.0mgをトルエン3mlに溶かした溶液に代えた以外は、実施例3と同様に行い、銅塩微粒子が分散したPVB樹脂(5)(樹脂組成物(5))を得た。
 (評価)
 <樹脂シート(9)の作製>
 銅塩微粒子が分散したPVB樹脂(1)を、銅塩微粒子が分散したPVB樹脂(5)に代えた以外は、実施例1の<樹脂シート(1)の作製>項と同様に行い、樹脂シート(9)を得た。
 <樹脂シート(10)の作製>
 樹脂シート(1)を樹脂シート(9)に代えた以外は、実施例1の<樹脂シート(2)の作製>項と同様に行い、樹脂シート(10)を得た。
 <測定サンプル(9)の作製>
 樹脂シート(1)を樹脂シート(9)に代えた以外は、実施例1の<測定サンプル(1)の作製>の項と同様に行い、測定サンプル(9)を得た。
 <測定サンプル(10)の作製>
 樹脂シート(2)を樹脂シート(10)に代えた以外は、実施例1の<測定サンプル(2)の作製>の項と同様に行い、測定サンプル(10)を得た。
 <耐熱性の評価>
 前記測定サンプル(9)、測定サンプル(10)の分光を実施例1の<耐熱性の評価>の項に示した方法と同様の方法で測定した。
 測定サンプル(9)のYIは、6.8であり、測定サンプル(10)のYIは、11.0であった。測定サンプル(9)と測定サンプル(10)のΔYIは4.2であった。
 <長期耐熱性の評価>
 測定サンプル(2)を測定サンプル(10)に代えた以外は、実施例1の<長期耐熱性の評価>の項と同様に行い、YIを求めた。
 1000時間後のYIは17.2であり、長期耐熱性試験前のYIとの差をΔYIとすると、ΔYIは、6.2(17.2-11.0)であった。
 〔実施例6〕
(銅塩微粒子分散樹脂の調製)
 2,2-ビス(4-グリシジロキシフェニル)プロパン6.8mgをトルエン1mlに溶かした溶液を、(2S)-(+)-p-トルエンスルホン酸グリシジル(式(VI)で表されるエポキシ化合物)5.0mgをトルエン3mlに溶かした溶液に代えた以外は、実施例3と同様に行い、銅塩微粒子が分散したPVB樹脂(6)(樹脂組成物(6))を得た。
 (評価)
 <樹脂シート(11)の作製>
 銅塩微粒子が分散したPVB樹脂(1)を、銅塩微粒子が分散したPVB樹脂(6)に代えた以外は、実施例1の<樹脂シート(1)の作製>項と同様に行い、樹脂シート(11)を得た。
 <樹脂シート(12)の作製>
 樹脂シート(1)を樹脂シート(11)に代えた以外は、実施例1の<樹脂シート(2)の作製>項と同様に行い、樹脂シート(12)を得た。
 <測定サンプル(11)の作製>
 樹脂シート(1)を樹脂シート(11)に代えた以外は、実施例1の<測定サンプル(1)の作製>の項と同様に行い、測定サンプル(11)を得た。
 <測定サンプル(12)の作製>
 樹脂シート(2)を樹脂シート(12)に代えた以外は、実施例1の<測定サンプル(2)の作製>の項と同様に行い、測定サンプル(12)を得た。
 <耐熱性の評価>
 前記測定サンプル(11)、測定サンプル(12)の分光を実施例1の<耐熱性の評価>の項に示した方法と同様の方法で測定した。
 測定サンプル(11)のYIは、6.6であり、測定サンプル(12)のYIは、12.0であった。測定サンプル(11)と測定サンプル(12)のΔYIは5.4であった。
 <長期耐熱性の評価>
 測定サンプル(2)を測定サンプル(12)に代えた以外は、実施例1の<長期耐熱性の評価>の項と同様に行い、YIを求めた。
 1000時間後のYIは16.3であり、長期耐熱性試験前のYIとの差をΔYIとすると、ΔYIは、4.3(16.3-12.0)であった。
 〔実施例7〕
(銅塩微粒子分散樹脂の調製)
 2,2-ビス(4-グリシジロキシフェニル)プロパン6.8mgをトルエン1mlに溶かした溶液を、エポライト40E(エチレングリコールジグリシジルエーテル)(共栄社化学(株)製)(式(VII)で表されるエポキシ化合物)5.0mgをトルエン3mlに溶かした溶液に代えた以外は、実施例3と同様に行い、銅塩微粒子が分散したPVB樹脂(7)(樹脂組成物(7))を得た。
 (評価)
 <樹脂シート(13)の作製>
 銅塩微粒子が分散したPVB樹脂(1)を、銅塩微粒子が分散したPVB樹脂(7)に代えた以外は、実施例1の<樹脂シート(1)の作製>項と同様に行い、樹脂シート(13)を得た。
 <樹脂シート(14)の作製>
 樹脂シート(1)を樹脂シート(13)に代えた以外は、実施例1の<樹脂シート(2)の作製>項と同様に行い、樹脂シート(14)を得た。
 <測定サンプル(13)の作製>
 樹脂シート(1)を樹脂シート(13)に代えた以外は、実施例1の<測定サンプル(1)の作製>の項と同様に行い、測定サンプル(13)を得た。
 <測定サンプル(14)の作製>
 樹脂シート(2)を樹脂シート(14)に代えた以外は、実施例1の<測定サンプル(2)の作製>の項と同様に行い、測定サンプル(14)を得た。
 <耐熱性の評価>
 前記測定サンプル(13)、測定サンプル(14)の分光を実施例1の<耐熱性の評価>の項に示した方法と同様の方法で測定した。
 測定サンプル(13)のYIは、6.3であり、測定サンプル(14)のYIは、11.8であった。測定サンプル(13)と測定サンプル(14)のΔYIは5.5であった。
 <長期耐熱性の評価>
 測定サンプル(2)を測定サンプル(14)に代えた以外は、実施例1の<長期耐熱性の評価>の項と同様に行い、YIを求めた。
 1000時間後のYIは16.0であり、長期耐熱性試験前のYIとの差をΔYIとすると、ΔYIは、4.2(16.0-11.8)であった。
 〔実施例8〕
(銅塩微粒子分散樹脂の調製)
 2,2-ビス(4-グリシジロキシフェニル)プロパン6.8mgをトルエン1mlに溶かした溶液を、エポライト100MF(トリメチロールプロパントリグリシジルエーテル)(共栄社化学(株)製)(式(VIII)で表されるエポキシ化合物)5.0mgをトルエン3mlに溶かした溶液に代えた以外は、実施例3と同様に行い、銅塩微粒子が分散したPVB樹脂(8)(樹脂組成物(8))を得た。
 (評価)
 <樹脂シート(15)の作製>
 銅塩微粒子が分散したPVB樹脂(1)を、銅塩微粒子が分散したPVB樹脂(8)に代えた以外は、実施例1の<樹脂シート(1)の作製>項と同様に行い、樹脂シート(15)を得た。
 <樹脂シート(16)の作製>
 樹脂シート(1)を樹脂シート(15)に代えた以外は、実施例1の<樹脂シート(2)の作製>項と同様に行い、樹脂シート(16)を得た。
 <測定サンプル(15)の作製>
 樹脂シート(1)を樹脂シート(15)に代えた以外は、実施例1の<測定サンプル(1)の作製>の項と同様に行い、測定サンプル(15)を得た。
 <測定サンプル(16)の作製>
 樹脂シート(2)を樹脂シート(16)に代えた以外は、実施例1の<測定サンプル(2)の作製>の項と同様に行い、測定サンプル(16)を得た。
 <耐熱性の評価>
 前記測定サンプル(15)、測定サンプル(16)の分光を実施例1の<耐熱性の評価>の項に示した方法と同様の方法で測定した。
 測定サンプル(15)のYIは、6.6であり、測定サンプル(16)のYIは、12.8であった。測定サンプル(15)と測定サンプル(16)のΔYIは6.2であった。
 <長期耐熱性の評価>
 測定サンプル(2)を測定サンプル(16)に代えた以外は、実施例1の<長期耐熱性の評価>の項と同様に行い、YIを求めた。
 1000時間後のYIは16.7であり、長期耐熱性試験前のYIとの差をΔYIとすると、ΔYIは、3.9(16.7-12.8)であった。
 〔実施例9〕
(銅塩微粒子分散樹脂の調製)
 2,2-ビス(4-グリシジロキシフェニル)プロパン6.8mgをトルエン1mlに溶かした溶液を、エポライト4000(水添ビスフェノールA ジグリシジルエーテル)(共栄社化学(株)製)(式(IX)で表されるエポキシ化合物)5.0mgをトルエン3mlに溶かした溶液に代えた以外は、実施例3と同様に行い、銅塩微粒子が分散したPVB樹脂(9)(樹脂組成物(9))を得た。
 (評価)
 <樹脂シート(17)の作製>
 銅塩微粒子が分散したPVB樹脂(1)を、銅塩微粒子が分散したPVB樹脂(9)に代えた以外は、実施例1の<樹脂シート(1)の作製>項と同様に行い、樹脂シート(17)を得た。
 <樹脂シート(18)の作製>
 樹脂シート(1)を樹脂シート(17)に代えた以外は、実施例1の<樹脂シート(2)の作製>項と同様に行い、樹脂シート(18)を得た。
 <測定サンプル(17)の作製>
 樹脂シート(1)を樹脂シート(17)に代えた以外は、実施例1の<測定サンプル(1)の作製>の項と同様に行い、測定サンプル(17)を得た。
 <測定サンプル(18)の作製>
 樹脂シート(2)を樹脂シート(18)に代えた以外は、実施例1の<測定サンプル(2)の作製>の項と同様に行い、測定サンプル(18)を得た。
 <耐熱性の評価>
 前記測定サンプル(17)、測定サンプル(18)の分光を実施例1の<耐熱性の評価>の項に示した方法と同様の方法で測定した。
 測定サンプル(17)のYIは、6.2であり、測定サンプル(18)のYIは、11.5であった。測定サンプル(17)と測定サンプル(18)のΔYIは5.3であった。
 <長期耐熱性の評価>
 測定サンプル(2)を測定サンプル(18)に代えた以外は、実施例1の<長期耐熱性の評価>の項と同様に行い、YIを求めた。
 1000時間後のYIは16.2であり、長期耐熱性試験前のYIとの差をΔYIとすると、ΔYIは、4.7(16.2-11.5)であった。
 〔実施例10〕
(銅塩微粒子分散樹脂の調製)
 2,2-ビス(4-グリシジロキシフェニル)プロパン6.8mgをトルエン1mlに溶かした溶液を、1,4-ブタンジオール ジグリシジルエーテル(式(X)で表されるエポキシ化合物)5.0mgをメタノール3mlに溶かした溶液に代えた以外は、実施例3と同様に行い、銅塩微粒子が分散したPVB樹脂(10)(樹脂組成物(10))を得た。
 (評価)
 <樹脂シート(19)の作製>
 銅塩微粒子が分散したPVB樹脂(1)を、銅塩微粒子が分散したPVB樹脂(10)に代えた以外は、実施例1の<樹脂シート(1)の作製>項と同様に行い、樹脂シート(19)を得た。
 <樹脂シート(20)の作製>
 樹脂シート(1)を樹脂シート(19)に代えた以外は、実施例1の<樹脂シート(2)の作製>項と同様に行い、樹脂シート(20)を得た。
 <測定サンプル(19)の作製>
 樹脂シート(1)を樹脂シート(19)に代えた以外は、実施例1の<測定サンプル(1)の作製>の項と同様に行い、測定サンプル(19)を得た。
 <測定サンプル(20)の作製>
 樹脂シート(2)を樹脂シート(20)に代えた以外は、実施例1の<測定サンプル(2)の作製>の項と同様に行い、測定サンプル(20)を得た。
 <耐熱性の評価>
 前記測定サンプル(19)、測定サンプル(20)の分光を実施例1の<耐熱性の評価>の項に示した方法と同様の方法で測定した。
 測定サンプル(19)のYIは、6.8であり、測定サンプル(20)のYIは、11.0であった。測定サンプル(19)と測定サンプル(20)のΔYIは4.2であった。
 <長期耐熱性の評価>
 測定サンプル(2)を測定サンプル(20)に代えた以外は、実施例1の<長期耐熱性の評価>の項と同様に行い、YIを求めた。
 1000時間後のYIは15.3であり、長期耐熱性試験前のYIとの差をΔYIとすると、ΔYIは、4.3(15.3-11.0)であった。
 〔実施例11〕
(銅塩微粒子分散樹脂の調製)
 2,2-ビス(4-グリシジロキシフェニル)プロパン6.8mgをトルエン1mlに溶かした溶液を、ベンジル グリシジルエーテル(式(XI)で表されるエポキシ化合物)5.0mgをトルエン3mlに溶かした溶液に代えた以外は、実施例3と同様に行い、銅塩微粒子が分散したPVB樹脂(11)(樹脂組成物(11))を得た。
 (評価)
 <樹脂シート(21)の作製>
 銅塩微粒子が分散したPVB樹脂(1)を、銅塩微粒子が分散したPVB樹脂(11)に代えた以外は、実施例1の<樹脂シート(1)の作製>項と同様に行い、樹脂シート(21)を得た。
 <樹脂シート(22)の作製>
 樹脂シート(1)を樹脂シート(21)に代えた以外は、実施例1の<樹脂シート(2)の作製>項と同様に行い、樹脂シート(22)を得た。
 <測定サンプル(21)の作製>
 樹脂シート(1)を樹脂シート(21)に代えた以外は、実施例1の<測定サンプル(1)の作製>の項と同様に行い、測定サンプル(21)を得た。
 <測定サンプル(22)の作製>
 樹脂シート(2)を樹脂シート(22)に代えた以外は、実施例1の<測定サンプル(2)の作製>の項と同様に行い、測定サンプル(22)を得た。
 <耐熱性の評価>
 前記測定サンプル(21)、測定サンプル(22)の分光を実施例1の<耐熱性の評価>の項に示した方法と同様の方法で測定した。
 測定サンプル(21)のYIは、6.8であり、測定サンプル(22)のYIは、11.2であった。測定サンプル(21)と測定サンプル(22)のΔYIは4.4であった。
 <長期耐熱性の評価>
 測定サンプル(2)を測定サンプル(22)に代えた以外は、実施例1の<長期耐熱性の評価>の項と同様に行い、YIを求めた。
 1000時間後のYIは16.5であり、長期耐熱性試験前のYIとの差をΔYIとすると、ΔYIは、5.3(16.5-11.2)であった。
 〔実施例12〕
(銅塩微粒子分散樹脂の調製)
 2,2-ビス(4-グリシジロキシフェニル)プロパン6.8mgをトルエン1mlに溶かした溶液を、4-tert-ブチル安息香酸グリシジル(式(XII)で表されるエポキシ化合物)5.0mgをトルエン3mlに溶かした溶液に代えた以外は、実施例3と同様に行い、銅塩微粒子が分散したPVB樹脂(12)(樹脂組成物(12))を得た。
 (評価)
 <樹脂シート(23)の作製>
 銅塩微粒子が分散したPVB樹脂(1)を、銅塩微粒子が分散したPVB樹脂(12)に代えた以外は、実施例1の<樹脂シート(1)の作製>項と同様に行い、樹脂シート(23)を得た。
 <樹脂シート(24)の作製>
 樹脂シート(1)を樹脂シート(23)に代えた以外は、実施例1の<樹脂シート(2)の作製>項と同様に行い、樹脂シート(24)を得た。
 <測定サンプル(23)の作製>
 樹脂シート(1)を樹脂シート(23)に代えた以外は、実施例1の<測定サンプル(1)の作製>の項と同様に行い、測定サンプル(23)を得た。
 <測定サンプル(24)の作製>
 樹脂シート(2)を樹脂シート(24)に代えた以外は、実施例1の<測定サンプル(2)の作製>の項と同様に行い、測定サンプル(24)を得た。
 <耐熱性の評価>
 前記測定サンプル(23)、測定サンプル(24)の分光を実施例1の<耐熱性の評価>の項に示した方法と同様の方法で測定した。
 測定サンプル(23)のYIは、6.8であり、測定サンプル(24)のYIは、11.8であった。測定サンプル(23)と測定サンプル(24)のΔYIは5.0であった。
 <長期耐熱性の評価>
 測定サンプル(2)を測定サンプル(24)に代えた以外は、実施例1の<長期耐熱性の評価>の項と同様に行い、YIを求めた。
 1000時間後のYIは17.4であり、長期耐熱性試験前のYIとの差をΔYIとすると、ΔYIは、5.6(17.4-11.8)であった。
 〔実施例13〕
(銅塩微粒子分散樹脂の調製)
 2,2-ビス(4-グリシジロキシフェニル)プロパン6.8mgをトルエン1mlに溶かした溶液を、エポライト80MF (グリセリンジグリシジルエーテル)(共栄社化学(株)製)(式(XIII)で表されるエポキシ化合物)5.0mgをメタノール3mlに溶かした溶液に代えた以外は、実施例3と同様に行い、銅塩微粒子が分散したPVB樹脂(13)(樹脂組成物(13))を得た。
 (評価)
 <樹脂シート(25)の作製>
 銅塩微粒子が分散したPVB樹脂(1)を、銅塩微粒子が分散したPVB樹脂(13)に代えた以外は、実施例1の<樹脂シート(1)の作製>項と同様に行い、樹脂シート(25)を得た。
 <樹脂シート(26)の作製>
 樹脂シート(1)を樹脂シート(25)に代えた以外は、実施例1の<樹脂シート(2)の作製>項と同様に行い、樹脂シート(26)を得た。
 <測定サンプル(25)の作製>
 樹脂シート(1)を樹脂シート(25)に代えた以外は、実施例1の<測定サンプル(1)の作製>の項と同様に行い、測定サンプル(25)を得た。
 <測定サンプル(26)の作製>
 樹脂シート(2)を樹脂シート(26)に代えた以外は、実施例1の<測定サンプル(2)の作製>の項と同様に行い、測定サンプル(26)を得た。
 <耐熱性の評価>
 前記測定サンプル(25)、測定サンプル(26)の分光を実施例1の<耐熱性の評価>の項に示した方法と同様の方法で測定した。
 測定サンプル(25)のYIは、6.3であり、測定サンプル(26)のYIは、11.8であった。測定サンプル(25)と測定サンプル(26)のΔYIは5.5であった。
 <長期耐熱性の評価>
 測定サンプル(2)を測定サンプル(26)に代えた以外は、実施例1の<長期耐熱性の評価>の項と同様に行い、YIを求めた。
 1000時間後のYIは15.7であり、長期耐熱性試験前のYIとの差をΔYIとすると、ΔYIは、3.9(15.7-11.8)であった。
 〔実施例14〕
(銅塩微粒子分散樹脂の調製)
 2,2-ビス(4-グリシジロキシフェニル)プロパン6.8mgをトルエン1mlに溶かした溶液を、エポライト400E(ポリエチレングリコール#400ジグリシジルエーテル)(共栄社化学(株)製)(式(XIV)で表されるエポキシ化合物)10.0mgをメタノール3mlに溶かした溶液に代えた以外は、実施例3と同様に行い、銅塩微粒子が分散したPVB樹脂(14)(樹脂組成物(14))を得た。
 (評価)
 <樹脂シート(27)の作製>
 銅塩微粒子が分散したPVB樹脂(1)を、銅塩微粒子が分散したPVB樹脂(14)に代えた以外は、実施例1の<樹脂シート(1)の作製>項と同様に行い、樹脂シート(27)を得た。
 <樹脂シート(28)の作製>
 樹脂シート(1)を樹脂シート(27)に代えた以外は、実施例1の<樹脂シート(2)の作製>項と同様に行い、樹脂シート(28)を得た。
 <測定サンプル(27)の作製>
 樹脂シート(1)を樹脂シート(27)に代えた以外は、実施例1の<測定サンプル(1)の作製>の項と同様に行い、測定サンプル(27)を得た。
 <測定サンプル(28)の作製>
 樹脂シート(2)を樹脂シート(28)に代えた以外は、実施例1の<測定サンプル(2)の作製>の項と同様に行い、測定サンプル(28)を得た。
 <耐熱性の評価>
 前記測定サンプル(27)、測定サンプル(28)の分光を実施例1の<耐熱性の評価>の項に示した方法と同様の方法で測定した。
 測定サンプル(27)のYIは、6.4であり、測定サンプル(28)のYIは、12.2であった。測定サンプル(27)と測定サンプル(28)のΔYIは5.8であった。
 <長期耐熱性の評価>
 測定サンプル(2)を測定サンプル(28)に代えた以外は、実施例1の<長期耐熱性の評価>の項と同様に行い、YIを求めた。
 1000時間後のYIは16.7であり、長期耐熱性試験前のYIとの差をΔYIとすると、ΔYIは、4.5(16.7-12.2)であった。
 〔実施例15〕
(銅塩微粒子分散樹脂の調製)
 2,2-ビス(4-グリシジロキシフェニル)プロパン6.8mgをトルエン1mlに溶かした溶液を、エポライト1600(1,6-ヘキサンジオールジグリシジルエーテル) (共栄社化学(株)製)(式(XV)で表されるエポキシ化合物)5.0mgをメタノール3mlに溶かした溶液に代えた以外は、実施例3と同様に行い、銅塩微粒子が分散したPVB樹脂(15)(樹脂組成物(15))を得た。
 (評価)
 <樹脂シート(29)の作製>
 銅塩微粒子が分散したPVB樹脂(1)を、銅塩微粒子が分散したPVB樹脂(15)に代えた以外は、実施例1の<樹脂シート(1)の作製>項と同様に行い、樹脂シート(29)を得た。
 <樹脂シート(30)の作製>
 樹脂シート(1)を樹脂シート(29)に代えた以外は、実施例1の<樹脂シート(2)の作製>項と同様に行い、樹脂シート(30)を得た。
 <測定サンプル(29)の作製>
 樹脂シート(1)を樹脂シート(29)に代えた以外は、実施例1の<測定サンプル(1)の作製>の項と同様に行い、測定サンプル(29)を得た。
 <測定サンプル(30)の作製>
 樹脂シート(2)を樹脂シート(30)に代えた以外は、実施例1の<測定サンプル(2)の作製>の項と同様に行い、測定サンプル(30)を得た。
 <耐熱性の評価>
 前記測定サンプル(29)、測定サンプル(30)の分光を実施例1の<耐熱性の評価>の項に示した方法と同様の方法で測定した。
 測定サンプル(29)のYIは、6.5であり、測定サンプル(30)のYIは、12.2であった。測定サンプル(29)と測定サンプル(30)のΔYIは5.7であった。
 <長期耐熱性の評価>
 測定サンプル(2)を測定サンプル(30)に代えた以外は、実施例1の<長期耐熱性の評価>の項と同様に行い、YIを求めた。
 1000時間後のYIは16.9であり、長期耐熱性試験前のYIとの差をΔYIとすると、ΔYIは、4.7(16.9-12.2)であった。
 〔実施例16〕
(銅塩微粒子分散樹脂の調製)
 2,2-ビス(4-グリシジロキシフェニル)プロパン6.8mgをトルエン1mlに溶かした溶液を、エポライトM-1230(共栄社化学(株)製)(式(XVI)で表されるエポキシ化合物)5.0mgをトルエン3mlに溶かした溶液に代えた以外は、実施例3と同様に行い、銅塩微粒子が分散したPVB樹脂(16)(樹脂組成物(16))を得た。
 なお、エポライトM-1230は、アルキル基の炭素数が12のアルキルグリシジルエーテルと、アルキル基の炭素数が13のアルキルグリシジルエーテルとの混合物であり、炭素数が12のものを44モル%、炭素数が13のものを56モル%含む。
 (評価)
 <樹脂シート(31)の作製>
 銅塩微粒子が分散したPVB樹脂(1)を、銅塩微粒子が分散したPVB樹脂(16)に代えた以外は、実施例1の<樹脂シート(1)の作製>項と同様に行い、樹脂シート(31)を得た。
 <樹脂シート(32)の作製>
 樹脂シート(1)を樹脂シート(31)に代えた以外は、実施例1の<樹脂シート(2)の作製>項と同様に行い、樹脂シート(32)を得た。
 <測定サンプル(31)の作製>
 樹脂シート(1)を樹脂シート(31)に代えた以外は、実施例1の<測定サンプル(1)の作製>の項と同様に行い、測定サンプル(31)を得た。
 <測定サンプル(32)の作製>
 樹脂シート(2)を樹脂シート(32)に代えた以外は、実施例1の<測定サンプル(2)の作製>の項と同様に行い、測定サンプル(32)を得た。
 <耐熱性の評価>
 前記測定サンプル(31)、測定サンプル(32)の分光を実施例1の<耐熱性の評価>の項に示した方法と同様の方法で測定した。
 測定サンプル(31)のYIは、7.5であり、測定サンプル(32)のYIは、13.2であった。測定サンプル(31)と測定サンプル(32)のΔYIは5.7であった。
 <長期耐熱性の評価>
 測定サンプル(2)を測定サンプル(32)に代えた以外は、実施例1の<長期耐熱性の評価>の項と同様に行い、YIを求めた。
 1000時間後のYIは18.6であり、長期耐熱性試験前のYIとの差をΔYIとすると、ΔYIは、5.4(18.6-13.2)であった。
 〔実施例17〕
(銅塩微粒子分散樹脂の調製)
 2,2-ビス(4-グリシジロキシフェニル)プロパン6.8mgをトルエン1mlに溶かした溶液を、エポライト3002(N)(共栄社化学(株)製)(式(XVII)で表されるエポキシ化合物)10.0mgをトルエン3mlに溶かした溶液に代えた以外は、実施例3と同様に行い、銅塩微粒子が分散したPVB樹脂(17)(樹脂組成物(17))を得た。
 (評価)
 <樹脂シート(33)の作製>
 銅塩微粒子が分散したPVB樹脂(1)を、銅塩微粒子が分散したPVB樹脂(17)に代えた以外は、実施例1の<樹脂シート(1)の作製>項と同様に行い、樹脂シート(33)を得た。
 <樹脂シート(34)の作製>
 樹脂シート(1)を樹脂シート(33)に代えた以外は、実施例1の<樹脂シート(2)の作製>項と同様に行い、樹脂シート(34)を得た。
 <測定サンプル(33)の作製>
 樹脂シート(1)を樹脂シート(33)に代えた以外は、実施例1の<測定サンプル(1)の作製>の項と同様に行い、測定サンプル(33)を得た。
 <測定サンプル(34)の作製>
 樹脂シート(2)を樹脂シート(34)に代えた以外は、実施例1の<測定サンプル(2)の作製>の項と同様に行い、測定サンプル(34)を得た。
 <耐熱性の評価>
 前記測定サンプル(33)、測定サンプル(34)の分光を実施例1の<耐熱性の評価>の項に示した方法と同様の方法で測定した。
 測定サンプル(33)のYIは、7.3であり、測定サンプル(34)のYIは、13.0であった。測定サンプル(33)と測定サンプル(34)のΔYIは5.7であった。
 <長期耐熱性の評価>
 測定サンプル(2)を測定サンプル(34)に代えた以外は、実施例1の<長期耐熱性の評価>の項と同様に行い、YIを求めた。
 1000時間後のYIは17.7であり、長期耐熱性試験前のYIとの差をΔYIとすると、ΔYIは、4.7(17.7-13.0)であった。
 〔実施例18〕
(銅塩微粒子分散樹脂の調製)
 2,2-ビス(4-グリシジロキシフェニル)プロパン6.8mgをトルエン1mlに溶かした溶液を、2,2-ビス(4-グリシジロキシフェニル)プロパン7.0mgをトルエン3mlに溶かした溶液に代えた以外は、実施例3と同様に行い、銅塩微粒子が分散したPVB樹脂(18)(樹脂組成物(18))を得た。
 (評価)
 <樹脂シート(35)の作製>
 銅塩微粒子が分散したPVB樹脂(1)を、銅塩微粒子が分散したPVB樹脂(18)に代えた以外は、実施例1の<樹脂シート(1)の作製>項と同様に行い、樹脂シート(35)を得た。
 <樹脂シート(36)の作製>
 樹脂シート(1)を樹脂シート(35)に代えた以外は、実施例1の<樹脂シート(2)の作製>項と同様に行い、樹脂シート(36)を得た。
 <測定サンプル(35)の作製>
 樹脂シート(1)を樹脂シート(35)に代えた以外は、実施例1の<測定サンプル(1)の作製>の項と同様に行い、測定サンプル(35)を得た。
 <測定サンプル(36)の作製>
 樹脂シート(2)を樹脂シート(36)に代えた以外は、実施例1の<測定サンプル(2)の作製>の項と同様に行い、測定サンプル(36)を得た。
 <耐熱性の評価>
 前記測定サンプル(35)、測定サンプル(36)の分光を実施例1の<耐熱性の評価>の項に示した方法と同様の方法で測定した。
 測定サンプル(35)のYIは、8.1であり、測定サンプル(36)のYIは、12.5であった。測定サンプル(35)と測定サンプル(36)のΔYIは4.4であった。
 <長期耐熱性の評価>
 測定サンプル(2)を測定サンプル(36)に代えた以外は、実施例1の<長期耐熱性の評価>の項と同様に行い、YIを求めた。
 1000時間後のYIは16.5であり、長期耐熱性試験前のYIとの差をΔYIとすると、ΔYIは、4.0(16.5-12.5)であった。
 〔実施例19〕
(銅塩微粒子分散樹脂の調製)
 2,2-ビス(4-グリシジロキシフェニル)プロパン6.8mgをトルエン1mlに溶かした溶液を、2,2-ビス(4-グリシジロキシフェニル)プロパン14.0mgをトルエン3mlに溶かした溶液に代えた以外は、実施例3と同様に行い、銅塩微粒子が分散したPVB樹脂(19)(樹脂組成物(19))を得た。
 (評価)
 <樹脂シート(37)の作製>
 銅塩微粒子が分散したPVB樹脂(1)を、銅塩微粒子が分散したPVB樹脂(19)に代えた以外は、実施例1の<樹脂シート(1)の作製>項と同様に行い、樹脂シート(37)を得た。
 <樹脂シート(38)の作製>
 樹脂シート(1)を樹脂シート(37)に代えた以外は、実施例1の<樹脂シート(2)の作製>項と同様に行い、樹脂シート(38)を得た。
 <測定サンプル(37)の作製>
 樹脂シート(1)を樹脂シート(37)に代えた以外は、実施例1の<測定サンプル(1)の作製>の項と同様に行い、測定サンプル(37)を得た。
 <測定サンプル(38)の作製>
 樹脂シート(2)を樹脂シート(38)に代えた以外は、実施例1の<測定サンプル(2)の作製>の項と同様に行い、測定サンプル(38)を得た。
 <耐熱性の評価>
 前記測定サンプル(37)、測定サンプル(38)の分光を実施例1の<耐熱性の評価>の項に示した方法と同様の方法で測定した。
 測定サンプル(37)のYIは、8.0であり、測定サンプル(38)のYIは、13.2であった。測定サンプル(37)と測定サンプル(38)のΔYIは5.2であった。
 <長期耐熱性の評価>
 測定サンプル(2)を測定サンプル(38)に代えた以外は、実施例1の<長期耐熱性の評価>の項と同様に行い、YIを求めた。
 1000時間後のYIは17.5であり、長期耐熱性試験前のYIとの差をΔYIとすると、ΔYIは、4.3(17.5-13.2)であった。
 〔実施例20〕
(銅塩微粒子分散樹脂の調製)
 2,2-ビス(4-グリシジロキシフェニル)プロパン6.8mgをトルエン1mlに溶かした溶液を、2,2-ビス(4-グリシジロキシフェニル)プロパン23.36mgをトルエン3mlに溶かした溶液に代えた以外は、実施例3と同様に行い、銅塩微粒子が分散したPVB樹脂(20)(樹脂組成物(20))を得た。
 (評価)
 <樹脂シート(39)の作製>
 銅塩微粒子が分散したPVB樹脂(1)を、銅塩微粒子が分散したPVB樹脂(20)に代えた以外は、実施例1の<樹脂シート(1)の作製>項と同様に行い、樹脂シート(39)を得た。
 <樹脂シート(40)の作製>
 樹脂シート(1)を樹脂シート(39)に代えた以外は、実施例1の<樹脂シート(2)の作製>項と同様に行い、樹脂シート(40)を得た。
 <測定サンプル(39)の作製>
 樹脂シート(1)を樹脂シート(39)に代えた以外は、実施例1の<測定サンプル(1)の作製>の項と同様に行い、測定サンプル(39)を得た。
 <測定サンプル(40)の作製>
 樹脂シート(2)を樹脂シート(40)に代えた以外は、実施例1の<測定サンプル(2)の作製>の項と同様に行い、測定サンプル(40)を得た。
 <耐熱性の評価>
 前記測定サンプル(39)、測定サンプル(40)の分光を実施例1の<耐熱性の評価>の項に示した方法と同様の方法で測定した。
 測定サンプル(39)のYIは、7.7であり、測定サンプル(40)のYIは、12.8であった。測定サンプル(39)と測定サンプル(40)のΔYIは5.1であった。
 <長期耐熱性の評価>
 測定サンプル(2)を測定サンプル(40)に代えた以外は、実施例1の<長期耐熱性の評価>の項と同様に行い、YIを求めた。
 1000時間後のYIは17.5であり、長期耐熱性試験前のYIとの差をΔYIとすると、ΔYIは、4.7(17.5-12.8)であった。
 〔実施例21〕
(銅塩微粒子分散樹脂の調製)
 2,2-ビス(4-グリシジロキシフェニル)プロパン6.8mgをトルエン1mlに溶かした溶液を、エポライト100MF 10.0mgをトルエン3mlに溶かした溶液に代えた以外は、実施例3と同様に行い、銅塩微粒子が分散したPVB樹脂(21)(樹脂組成物(21))を得た。
 (評価)
 <樹脂シート(41)の作製>
 銅塩微粒子が分散したPVB樹脂(1)を、銅塩微粒子が分散したPVB樹脂(21)に代えた以外は、実施例1の<樹脂シート(1)の作製>項と同様に行い、樹脂シート(41)を得た。
 <樹脂シート(42)の作製>
 樹脂シート(1)を樹脂シート(41)に代えた以外は、実施例1の<樹脂シート(2)の作製>項と同様に行い、樹脂シート(42)を得た。
 <測定サンプル(41)の作製>
 樹脂シート(1)を樹脂シート(41)に代えた以外は、実施例1の<測定サンプル(1)の作製>の項と同様に行い、測定サンプル(41)を得た。
 <測定サンプル(42)の作製>
 樹脂シート(2)を樹脂シート(42)に代えた以外は、実施例1の<測定サンプル(2)の作製>の項と同様に行い、測定サンプル(42)を得た。
 <耐熱性の評価>
 前記測定サンプル(41)、測定サンプル(42)の分光を実施例1の<耐熱性の評価>の項に示した方法と同様の方法で測定した。
 測定サンプル(41)のYIは、10.9であり、測定サンプル(42)のYIは、15.7であった。測定サンプル(41)と測定サンプル(42)のΔYIは4.8であった。
 <長期耐熱性の評価>
 測定サンプル(2)を測定サンプル(42)に代えた以外は、実施例1の<長期耐熱性の評価>の項と同様に行い、YIを求めた。
 1000時間後のYIは19.6であり、長期耐熱性試験前のYIとの差をΔYIとすると、ΔYIは、3.9(19.6-15.7)であった。
 〔実施例22〕
(銅塩微粒子分散樹脂の調製)
 2,2-ビス(4-グリシジロキシフェニル)プロパン6.8mgをトルエン1mlに溶かした溶液を、エポライト100MF 20.0mgをトルエン3mlに溶かした溶液に代えた以外は、実施例3と同様に行い、銅塩微粒子が分散したPVB樹脂(22)(樹脂組成物(22))を得た。
 (評価)
 <樹脂シート(43)の作製>
 銅塩微粒子が分散したPVB樹脂(1)を、銅塩微粒子が分散したPVB樹脂(22)に代えた以外は、実施例1の<樹脂シート(1)の作製>項と同様に行い、樹脂シート(43)を得た。
 <樹脂シート(44)の作製>
 樹脂シート(1)を樹脂シート(43)に代えた以外は、実施例1の<樹脂シート(2)の作製>項と同様に行い、樹脂シート(44)を得た。
 <測定サンプル(43)の作製>
 樹脂シート(1)を樹脂シート(43)に代えた以外は、実施例1の<測定サンプル(1)の作製>の項と同様に行い、測定サンプル(43)を得た。
 <測定サンプル(44)の作製>
 樹脂シート(2)を樹脂シート(44)に代えた以外は、実施例1の<測定サンプル(2)の作製>の項と同様に行い、測定サンプル(44)を得た。
 <耐熱性の評価>
 前記測定サンプル(43)、測定サンプル(44)の分光を実施例1の<耐熱性の評価>の項に示した方法と同様の方法で測定した。
 測定サンプル(43)のYIは、10.4であり、測定サンプル(44)のYIは、14.3であった。測定サンプル(43)と測定サンプル(44)のΔYIは3.9であった。
 <長期耐熱性の評価>
 測定サンプル(2)を測定サンプル(44)に代えた以外は、実施例1の<長期耐熱性の評価>の項と同様に行い、YIを求めた。
 1000時間後のYIは18.2であり、長期耐熱性試験前のYIとの差をΔYIとすると、ΔYIは、3.9(18.2-14.3)であった。
 〔実施例23〕
(銅塩微粒子分散樹脂の調製)
 2,2-ビス(4-グリシジロキシフェニル)プロパン6.8mgをトルエン1mlに溶かした溶液を、エポライト100MF 30.0mgをトルエン3mlに溶かした溶液に代えた以外は、実施例3と同様に行い、銅塩微粒子が分散したPVB樹脂(23)(樹脂組成物(23))を得た。
 (評価)
 <樹脂シート(45)の作製>
 銅塩微粒子が分散したPVB樹脂(1)を、銅塩微粒子が分散したPVB樹脂(23)に代えた以外は、実施例1の<樹脂シート(1)の作製>項と同様に行い、樹脂シート(45)を得た。
 <樹脂シート(46)の作製>
 樹脂シート(1)を樹脂シート(45)に代えた以外は、実施例1の<樹脂シート(2)の作製>項と同様に行い、樹脂シート(46)を得た。
 <測定サンプル(45)の作製>
 樹脂シート(1)を樹脂シート(45)に代えた以外は、実施例1の<測定サンプル(1)の作製>の項と同様に行い、測定サンプル(45)を得た。
 <測定サンプル(46)の作製>
 樹脂シート(2)を樹脂シート(46)に代えた以外は、実施例1の<測定サンプル(2)の作製>の項と同様に行い、測定サンプル(46)を得た。
 <耐熱性の評価>
 前記測定サンプル(45)、測定サンプル(46)の分光を実施例1の<耐熱性の評価>の項に示した方法と同様の方法で測定した。
 測定サンプル(45)のYIは、10.4であり、測定サンプル(46)のYIは、14.7であった。測定サンプル(45)と測定サンプル(46)のΔYIは4.3であった。
 <長期耐熱性の評価>
 測定サンプル(2)を測定サンプル(46)に代えた以外は、実施例1の<長期耐熱性の評価>の項と同様に行い、YIを求めた。
 1000時間後のYIは18.1であり、長期耐熱性試験前のYIとの差をΔYIとすると、ΔYIは、3.4(18.1-14.7)であった。

Claims (8)

  1.  近赤外線吸収剤と、エポキシ化合物と、樹脂とからなる樹脂組成物であり、
     前記近赤外線吸収剤が、下記一般式(1)で表わされるホスホン酸銅塩からなる微粒子であることを特徴とする樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)中、R1は、-CH2CH2-R11で表される1価の基であり、R11は水素原子、炭素数1~20のアルキル基、または炭素数1~20のフッ素化アルキル基を示す。]
  2.  前記エポキシ化合物の分子量が100~4000である、請求項1に記載の樹脂組成物。
  3.  前記樹脂が、ポリビニルアセタール樹脂、エチレン‐酢酸ビニル共重合体、(メタ)アクリル酸樹脂、ポリエステル樹脂、ポリウレタン樹脂、塩化ビニル樹脂、ポリオレフィン樹脂、ポリカーボネート樹脂、およびノルボルネン樹脂から選択される少なくとも1種の樹脂である請求項1または2に記載の樹脂組成物。
  4.  前記樹脂が、ポリビニルブチラール樹脂、またはエチレン‐酢酸ビニル共重合体である請求項1または2に記載の樹脂組成物。
  5.  前記樹脂100質量部あたり、近赤外線吸収剤を0.05~50質量部含有する請求項1~4のいずれか一項に記載の樹脂組成物。
  6.  前記樹脂100質量部あたり、エポキシ化合物を0.005~5.0質量部含有する請求項1~5のいずれか一項に記載の樹脂組成物。
  7.  前記請求項1~6のいずれか一項に記載の樹脂組成物から形成される合わせガラス用中間膜。
  8.  前記請求項7に記載の合わせガラス用中間膜を有する合わせガラス。
PCT/JP2014/055620 2013-04-16 2014-03-05 樹脂組成物およびその用途 WO2014171215A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015512351A JPWO2014171215A1 (ja) 2013-04-16 2014-03-05 樹脂組成物およびその用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-085730 2013-04-16
JP2013085730 2013-04-16

Publications (1)

Publication Number Publication Date
WO2014171215A1 true WO2014171215A1 (ja) 2014-10-23

Family

ID=51731174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055620 WO2014171215A1 (ja) 2013-04-16 2014-03-05 樹脂組成物およびその用途

Country Status (2)

Country Link
JP (1) JPWO2014171215A1 (ja)
WO (1) WO2014171215A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109476531A (zh) * 2016-07-29 2019-03-15 Agc株式会社 近红外线截止滤光片玻璃

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247303A (ja) * 1992-03-06 1993-09-24 Sekisui Chem Co Ltd 塩化ビニル系樹脂組成物及び成形体
JPH11147736A (ja) * 1997-11-11 1999-06-02 Bridgestone Corp 合わせガラスの中間膜形成用樹脂組成物、合わせガラス用中間膜及び合わせガラス
WO2009123016A1 (ja) * 2008-03-31 2009-10-08 株式会社クレハ ホスホン酸銅化合物、並びにこれを含む赤外吸収材料及び積層体
WO2009123020A1 (ja) * 2008-03-31 2009-10-08 株式会社クレハ 銅塩組成物、並びに、これを用いた樹脂組成物、赤外吸収膜及び光学部材
JP2011099038A (ja) * 2009-11-05 2011-05-19 Kureha Corp 近赤外線吸収剤及びその製造方法、並びに光学材料
WO2012077674A1 (ja) * 2010-12-07 2012-06-14 株式会社クレハ 樹脂組成物およびその用途
WO2012105150A1 (ja) * 2011-02-02 2012-08-09 株式会社クレハ 樹脂組成物およびその用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247303A (ja) * 1992-03-06 1993-09-24 Sekisui Chem Co Ltd 塩化ビニル系樹脂組成物及び成形体
JPH11147736A (ja) * 1997-11-11 1999-06-02 Bridgestone Corp 合わせガラスの中間膜形成用樹脂組成物、合わせガラス用中間膜及び合わせガラス
WO2009123016A1 (ja) * 2008-03-31 2009-10-08 株式会社クレハ ホスホン酸銅化合物、並びにこれを含む赤外吸収材料及び積層体
WO2009123020A1 (ja) * 2008-03-31 2009-10-08 株式会社クレハ 銅塩組成物、並びに、これを用いた樹脂組成物、赤外吸収膜及び光学部材
JP2011099038A (ja) * 2009-11-05 2011-05-19 Kureha Corp 近赤外線吸収剤及びその製造方法、並びに光学材料
WO2012077674A1 (ja) * 2010-12-07 2012-06-14 株式会社クレハ 樹脂組成物およびその用途
WO2012105150A1 (ja) * 2011-02-02 2012-08-09 株式会社クレハ 樹脂組成物およびその用途

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109476531A (zh) * 2016-07-29 2019-03-15 Agc株式会社 近红外线截止滤光片玻璃

Also Published As

Publication number Publication date
JPWO2014171215A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
CN1989081B (zh) 隔热夹层玻璃用中间膜的改性方法
JP4804572B2 (ja) 赤外線遮断性フィルム及び赤外線遮断性積層フィルム
EP1261663B1 (de) Ir-absorbierende zusammensetzungen
EP1287061B1 (de) Ir-absorbierende zusammensetzungen
JP5050137B2 (ja) 合わせガラス用中間膜、その製造方法およびそれを用いた合わせガラス
JP5072858B2 (ja) 安定化された赤外線吸収剤を含む中間層
CN101910084A (zh) 夹层玻璃用中间膜以及夹层玻璃
JP5738031B2 (ja) 銅塩微粒子分散樹脂の製造方法、および銅塩微粒子分散樹脂
JP5766218B2 (ja) 樹脂組成物およびその用途
WO2014171215A1 (ja) 樹脂組成物およびその用途
WO2014119618A1 (ja) 近赤外線吸収剤の製造方法、近赤外線吸収剤およびその用途
JP2015134893A (ja) 近赤外線吸収剤分散液の製造方法、近赤外線吸収剤分散液およびその用途
WO2014027639A1 (ja) 樹脂組成物およびその用途
WO2015080184A1 (ja) 樹脂組成物およびその用途
WO2014175231A1 (ja) 樹脂組成物およびその用途
JP2014218597A (ja) 樹脂組成物およびその用途
JP2024509531A (ja) ソーラー添加剤と共に使用するためのポリ(ビニルブチラール)組成物
JP2010150099A (ja) 合わせガラス用中間膜およびそれを用いた合わせガラス
JP2010100519A (ja) 金属酸化物粒子分散液、合わせガラス用中間膜及び合わせガラス
JP2011144084A (ja) 合わせガラス用中間膜
JP2012001397A (ja) 合わせガラス用中間膜
WO2014038035A1 (ja) 近赤外線吸収剤分散液の製造方法および近赤外線吸収剤分散液の用途
JP4960898B2 (ja) 合わせガラス用中間膜、及び、合わせガラス
JP2016060903A (ja) 近赤外線吸収剤微粒子分散液の製造方法、近赤外線吸収剤微粒子分散液およびその用途
JP2016060871A (ja) 樹脂組成物およびその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14784979

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015512351

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14784979

Country of ref document: EP

Kind code of ref document: A1