WO2014171092A1 - 火花点火式エンジンの制御装置 - Google Patents

火花点火式エンジンの制御装置 Download PDF

Info

Publication number
WO2014171092A1
WO2014171092A1 PCT/JP2014/001942 JP2014001942W WO2014171092A1 WO 2014171092 A1 WO2014171092 A1 WO 2014171092A1 JP 2014001942 W JP2014001942 W JP 2014001942W WO 2014171092 A1 WO2014171092 A1 WO 2014171092A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
engine
cylinder
temperature
engine body
Prior art date
Application number
PCT/JP2014/001942
Other languages
English (en)
French (fr)
Inventor
京平 安田
友巳 渡辺
貴史 西尾
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to DE112014001963.1T priority Critical patent/DE112014001963B4/de
Priority to CN201480020717.0A priority patent/CN105102793B/zh
Priority to US14/783,358 priority patent/US9926860B2/en
Priority to MX2015014334A priority patent/MX346704B/es
Publication of WO2014171092A1 publication Critical patent/WO2014171092A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/084Blends of gasoline and alcohols, e.g. E85
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0607Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/061Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/085Control based on the fuel type or composition
    • F02D19/087Control based on the fuel type or composition with determination of densities, viscosities, composition, concentration or mixture ratios of fuels
    • F02D19/088Control based on the fuel type or composition with determination of densities, viscosities, composition, concentration or mixture ratios of fuels by estimation, i.e. without using direct measurements of a corresponding sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/068Introducing corrections for particular operating conditions for engine starting or warming up for warming-up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/04Varying compression ratio by alteration of volume of compression space without changing piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0411Volumetric efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the technology disclosed herein relates to a control device for a spark ignition engine, and more particularly, to a spark ignition engine configured to be supplied with a fuel including a special fuel having a lower vaporization rate than gasoline under a specific temperature or lower.
  • the present invention relates to a control device.
  • FFVs Flexible Fuel Vehicles
  • the range of the ethanol concentration of the fuel in FFV differs depending on the mixing ratio of gasoline and ethanol as fuels distributed in the market. For example, when changing from E25 (gasoline 75%, ethanol 25) to E100 (ethanol 100%), Or it may change from E0 (gasoline 100%) to E85 (gasoline 15%, ethanol 85%).
  • E100 here includes E100 (ethanol 95%, water 5%) which contains about 5% of water, in which water is not sufficiently removed during the ethanol purification process.
  • the properties of the fuel differ depending on the concentration of ethanol in the fuel. That is, gasoline, which is a multi-component fuel, has a boiling point in the range of 27 to 225 ° C., so that the temperature is relatively low as shown in FIG. But the vaporization rate is relatively high. On the other hand, since ethanol is a single component fuel and its standard boiling point is 78 ° C., when the temperature is relatively low, the vaporization rate becomes 0, which is lower than the gasoline vaporization rate. When the temperature is relatively high, the vaporization rate is 100%, which is higher than the vaporization rate of gasoline.
  • the FFV when the engine temperature state is a low temperature below a predetermined temperature, the higher the ethanol concentration in the fuel and the lower the engine temperature state, the worse the fuel vaporization performance in the cylinder. That is, if the weight ratio of the amount of fuel that contributes to combustion to the amount of fuel supplied into the cylinder is defined as the vaporization rate, the vaporization rate decreases as the ethanol concentration increases and the engine temperature state decreases. .
  • E100 containing water has a large problem.
  • Patent Document 1 in an FFV engine system, fuel having a high gasoline concentration is extracted from a main tank that stores fuel in which gasoline and ethanol are mixed at an arbitrary mixing ratio, and is separated from the main tank.
  • the engine system which moves to the sub-tank and stores in the sub-tank is described.
  • fuel with stable vaporization performance is always stored in the sub tank. Therefore, in the engine system described in Patent Document 1, when a fuel with a high ethanol concentration is used, the ignitability and / or combustion stability of the air-fuel mixture deteriorates (for example, the cold engine) In operation, etc.), the fuel stored in the main tank and the fuel with high gasoline concentration stored in the sub tank are mixed at an appropriate ratio.
  • Patent Document 2 describes an FFV engine system having a fuel injection valve that is not provided with a sub-tank as described above but is configured to inject fuel directly into a cylinder.
  • the theoretical air-fuel ratio of ethanol is smaller than the theoretical air-fuel ratio of gasoline, and when using fuel with a high ethanol concentration, compared with using fuel with a high gasoline concentration.
  • the engine has a high ethanol concentration, a large fuel injection amount, a low engine temperature state, and a low fuel vaporization performance.
  • the fuel pressure is increased and high fuel pressure fuel is injected into the cylinder during the compression stroke.
  • High fuel pressure atomizes the fuel to promote vaporization, and delays the fuel injection timing to start combustion before the injected fuel adheres to the inner wall of the cylinder, piston, or the like.
  • the low temperature startability of the engine is enhanced by devising the fuel injection mode.
  • Patent Document 2 The configuration requiring a sub-tank as described in Patent Document 1 is described in Patent Document 2 because the fuel supply system becomes two systems, which complicates the configuration of the engine system and increases the cost. There is a demand for a configuration in which the sub-tank is omitted. On the other hand, it is necessary to ensure the ignitability and / or combustion stability of the air-fuel mixture regardless of the properties of the fuel stored in the main tank.
  • the cylinder Control is performed to increase in advance the amount of fuel supplied inside.
  • the ethanol concentration of the fuel is high, so the amount of fuel required is increased compared to gasoline, and the amount of fuel is increased by that amount due to high load operation.
  • the technology disclosed here is a technology that takes the above-mentioned circumstances into consideration, and the purpose of the technology is to provide a high load when the engine temperature is cold when the temperature is lower than a predetermined temperature and when the engine load is higher than the predetermined load. It is to avoid deterioration of fuel atomization at times and to avoid deterioration of fuel consumption.
  • the above-mentioned problem can be solved, for example, by increasing the capacity of the high-pressure pump and adopting a configuration that can maintain a high fuel pressure even if a large amount of fuel continues.
  • the adoption of a large high-pressure pump introduces new problems such as increased cost, poor layout in a narrow engine room, and poor fuel consumption associated with driving a large-capacity high-pressure pump. I will.
  • the inventors set the upper limit value of the charging efficiency of the engine body lower as the vaporization rate of the fuel supplied into the cylinder is lower, in other words, as the amount of fuel supplied into the cylinder increases. I made it. Limiting the maximum charging efficiency limits the maximum amount of fuel supplied into the cylinder, and it is possible to maintain a high fuel pressure even with a relatively small capacity high-pressure pump.
  • the technology disclosed herein relates to a control device for a spark ignition engine.
  • the spark ignition type engine control device includes an engine body configured to be supplied with fuel containing special fuel having a lower vaporization rate than gasoline under a state of a specific temperature or lower, and an inside of a cylinder provided in the engine body.
  • a fuel supply mechanism configured to supply the fuel whose pressure has been increased to a predetermined pressure, and a controller configured to operate the engine body through at least control of the fuel supply mechanism.
  • the controller is configured such that when the temperature of the engine body is cold below a predetermined temperature and when the load state of the engine body is a high load above a predetermined load, the cylinder is in the intake stroke and the compression stroke.
  • the fuel is supplied to the cylinder through the fuel supply mechanism, the lower the vaporization rate of the fuel supplied into the cylinder, the lower the upper limit value of the charging efficiency of the engine body.
  • the “special fuel having a lower vaporization rate than gasoline under a temperature lower than a specific temperature” is, for example, a single component fuel, and specifically an alcohol such as ethanol or methanol.
  • an alcohol such as ethanol or methanol.
  • a biological alcohol such as bioethanol made from sugarcane or corn may be used.
  • fuel including special fuel includes both a fuel obtained by mixing special fuel and gasoline, and a fuel containing only special fuel.
  • the fuel supplied to the engine body may have a constant mixing ratio between gasoline and special fuel, or may change from time to time.
  • the “fuel containing the special fuel” specifically includes any ethanol concentration in a range from E25 in which 25% ethanol is mixed with gasoline to E100 in which ethanol is 100%. Fuel is included.
  • the above configuration does not exclude the supply of fuel that does not include special fuel to the engine body.
  • the fuel supplied to the engine main body has any ethanol concentration in the range from gasoline (that is, E0 not containing ethanol) to E85 where 85% ethanol is mixed with gasoline.
  • Fuel is included.
  • the “fuel containing special fuel” may contain water. Therefore, E100 containing about 5% of water is also included in the “fuel including special fuel”.
  • the alcohol concentration in the fuel can be detected or estimated by various methods.
  • Vaporization rate can be defined as the weight ratio of the amount of fuel contributed to combustion to the amount of fuel supplied into the cylinder. Such a vaporization rate can be calculated based on a detection value of an O 2 sensor attached to the exhaust passage of the engine. Under conditions where the temperature of the engine body is lower than or equal to a predetermined temperature, the higher the concentration of the special fuel in the fuel and the lower the temperature state of the engine body, the lower the vaporization rate.
  • the “fuel supply mechanism” may include at least a fuel tank that stores fuel including special fuel, a high-pressure pump that boosts the fuel pressure, and a fuel injection valve that injects the boosted fuel.
  • the high-pressure pump may be configured to be driven by the engine body or may be configured to be driven by a drive source different from the engine body (for example, an electric pump).
  • the fuel injection valve may be a fuel injection valve that directly injects fuel into the cylinder. In addition to such a direct injection fuel injection valve, a fuel injection valve for injecting fuel into the intake port may be provided separately.
  • “When the load state of the engine body is at a high load of a predetermined load or more” can be defined as when the engine operation state is in a high load region including a fully open load.
  • the load state of the engine body is in a high load state when the engine load region is divided into a low load region and a high load region and the engine body is in the high load region when divided into two equal parts.
  • the engine load region may be when the engine main body is operating in the high load region when the engine load region is divided into three equal parts, ie, the low load region, the medium load region and the high load region.
  • the full load is changed as the upper limit value of the charging efficiency of the engine body is set lower as the vaporization rate of the fuel supplied into the cylinder is lower.
  • “Filling efficiency” can be according to the following definition. That is, the ratio of the weight of air sucked into one cylinder when the air weight of one cylinder of the total displacement is 1 in the standard atmosphere (25 ° C., 1 atm).
  • the controller determines whether the cylinder is in the intake stroke or the compression stroke. In each, fuel is supplied into the cylinder.
  • the engine body since the engine body is in a high load state, the amount of fuel supplied into the cylinder is relatively increased, and the engine body is in a cold state, so that the fuel amount is low considering the low fuel vaporization rate.
  • supplying fuel in each of the intake stroke and the compression stroke can ensure a sufficient fuel supply period and a sufficient mixture formation period. It is advantageous to the ignitability of the ki and the combustion stability. Divided supply of intake stroke and compression stroke, especially when the special fuel is alcohol and the alcohol concentration in the fuel is high, even when the amount of fuel required increases compared to gasoline, a sufficient fuel supply period is ensured It is effective because it makes it possible to
  • the controller sets the upper limit value of the charging efficiency of the engine body lower as the vaporization rate of the fuel supplied into the cylinder is lower. That is, when the fuel vaporization rate is low, the fully open load is low, and the maximum value of the fuel amount is also reduced. As a result, even if the operating state of the engine body continues at a fully open load, the amount of fuel supplied by the fuel supply mechanism decreases, so the fuel supply mechanism maintains a predetermined fuel pressure. It becomes possible. As a result, atomization of the fuel is ensured, and deterioration of the fuel vaporization performance is avoided. In this way, torque corresponding to the amount of fuel supplied into the cylinder can be obtained, and deterioration of fuel consumption is avoided. Further, since unburned fuel is reduced, exhaust emission performance is also improved.
  • the upper limit value of the charging efficiency is set low, there is a restriction that the full opening torque when the accelerator opening is fully opened is low.
  • the maximum charging efficiency is increased by supplying the fuel in each of the intake stroke and the compression stroke. Therefore, even if the upper limit value of the charging efficiency is set low, a relatively high charging efficiency is ensured. Is done. That is, the running performance in the cold state is improved.
  • the load state here is a high load state in which the accelerator opening is fully opened, the temperature of the engine body rises quickly. As the temperature of the engine body increases, the fuel vaporization rate increases, so the upper limit value of the charging efficiency is also set higher. Therefore, even if the full opening torque is initially limited, the limitation is quickly released.
  • the upper limit value of the charging efficiency that is set low may be set to 0.5 or more, preferably 0.6 or more, and more preferably 0.7 or more. By doing so, it is possible to ensure a relatively high fully-open torque while avoiding deterioration of fuel consumption, and it is possible to achieve both a low level of both fuel efficiency and cold travel performance.
  • the controller may set the upper limit value of the charging efficiency of the engine body to be lower as the concentration of the special fuel in the fuel supplied into the cylinder is higher.
  • the concentration of the special fuel in the fuel is higher, the upper limit value of the charging efficiency of the engine body is set lower, so that deterioration of fuel efficiency is avoided as described above.
  • the controller may set the upper limit value of the charging efficiency of the engine body to be lower as the temperature state of the engine body is lower.
  • the control device for the spark ignition engine further includes a throttle valve configured to adjust the amount of fresh air to be filled in the cylinder, and the controller receives accelerator opening information and opens the throttle valve.
  • the controller adjusts the degree to the opening corresponding to the accelerator opening, and the controller is also configured so that the controller is in a cold state where the temperature of the engine body is a predetermined temperature or less and the load state of the engine body.
  • the opening of the throttle valve is changed with a predetermined control response to the change in the accelerator opening, and the vaporization rate of the fuel supplied into the cylinder is low.
  • the upper limit opening of the throttle valve may be set lower.
  • the controller can control the upper limit opening of the throttle valve under a specific condition when the temperature of the engine body is cold when the temperature is lower than a predetermined temperature and when the load state of the engine body is higher than the predetermined load. Set low. This lowers the upper limit value of the charging efficiency of the engine body. Further, the controller changes the opening degree of the throttle valve with a predetermined control response in response to a change in the accelerator opening degree.
  • the “predetermined control responsiveness” herein may be defined as a control responsiveness under a different condition from the specific condition of the cold high load. In other words, the “predetermined control response” here is not a specific control response under specific conditions of cold high load, and the “predetermined control response” can be rephrased as a normal control response. is there.
  • the throttle valve opening since the throttle valve opening is changed with a predetermined control response to changes in the accelerator opening, the throttle valve opening with a normal control response to the driver's accelerator operation. Is controlled. Therefore, in the range where the accelerator opening does not reach the upper limit and the charging efficiency does not reach the upper limit, the control between the accelerator operation and the throttle opening is substantially the same as the normal control. This eliminates the driver's uncomfortable feeling and improves the drive feel.
  • the spark ignition engine control apparatus when the engine body is in a cold state where the temperature of the engine body is lower than a predetermined temperature and the load state of the engine body is a high load exceeding the predetermined load, By supplying the fuel into the cylinder in each of the stroke and the compression stroke, the vaporization performance of the fuel can be improved and the maximum filling efficiency can be greatly increased even under a relatively large amount of fuel.
  • the lower the fuel vaporization rate supplied to the cylinder the lower the upper limit value of the charging efficiency of the engine body, so that the fuel pressure can be maintained at a high level and the deterioration of fuel consumption is avoided. be able to.
  • the upper limit of the charging efficiency is set low, the maximum charging efficiency is increased by supplying the fuel in the intake stroke and the compression stroke, so that the limited charging efficiency is also relatively high, and the running performance in the cold state is improved. improves.
  • FIG. 1 is a schematic diagram showing the configuration of a spark ignition engine and its control device.
  • FIG. 2 is a diagram for comparing the change in the distillation amount of gasoline with respect to the temperature and the change in the distillation amount of ethanol.
  • FIG. 3 is a diagram comparing the fuel injection timing in the cold state and the fuel injection timing in the warm state at the time of high load.
  • FIG. 4 is a diagram illustrating a change in fuel pressure with respect to the engine water temperature.
  • FIG. 5 is a diagram illustrating a limit amount of the maximum filling efficiency with respect to the fuel vaporization rate.
  • FIG. 6 is a time chart illustrating the change in charging efficiency when the accelerator opening is fully opened.
  • FIG. 7 is a diagram illustrating the difference in the fully open torque of the engine due to the difference in fuel injection mode.
  • the engine system includes an engine (engine body) 1, various actuators associated with the engine 1, various sensors, and an engine controller 100 that controls the actuators based on signals from the sensors.
  • the engine system includes a high compression ratio engine 1 having a geometric compression ratio of 12 or more and 20 or less (for example, 12).
  • the engine 1 is a spark ignition type four-stroke internal combustion engine. Although only one is shown in FIG. 1, the engine 1 has first to fourth four cylinders 11 arranged in series. However, an engine to which the technology disclosed herein is applicable is not limited to an in-line four-cylinder engine.
  • the engine 1 is mounted on a vehicle such as an automobile, and its output shaft is connected to drive wheels via a transmission, although not shown. The vehicle is propelled by the output of the engine 1 being transmitted to the drive wheels.
  • the engine 1 is supplied with fuel containing ethanol (including bioethanol).
  • this vehicle is an FFV that can use fuel of any concentration ranging from 25% ethanol (that is, E25 having a gasoline concentration of 75%) to 100% (that is, E100 that does not include gasoline).
  • E100 here includes ethanol containing about 5% of moisture without being sufficiently removed in the ethanol purification process.
  • the technology disclosed here is not limited to FFV based on the use of E25 to E100.
  • E0 that is, gasoline only and does not include ethanol
  • E85 that is, gasoline concentration 15%, ethanol concentration 85%
  • this vehicle has only a fuel tank (that is, a main tank) for storing the above-mentioned fuel.
  • a fuel having a high gasoline concentration is separated from the main tank. It is characterized by not having a sub-tank for storing.
  • the FFV is based on a gasoline specification vehicle to which only gasoline is supplied, and most of the configuration is shared between the two specifications.
  • the engine 1 includes a cylinder block 12 and a cylinder head 13 mounted thereon, and a cylinder 11 is formed inside the cylinder block 12.
  • a crankshaft 14 is rotatably supported on the cylinder block 12 by a journal, a bearing or the like, and this crankshaft 14 is connected to a piston 15 via a connecting rod 16.
  • Two inclined surfaces extending from the substantially central portion to the vicinity of the lower end surface of the cylinder head 13 are formed on the ceiling portion of each cylinder 11, and the inclined surfaces form a roof-like shape on which they are placed. It is a so-called pent roof type.
  • the piston 15 is slidably inserted into each cylinder 11 and partitions the combustion chamber 17 together with the cylinder 11 and the cylinder head 13.
  • the top surface of the piston 15 is formed in a trapezoidal shape that protrudes from the peripheral portion toward the center portion so as to correspond to the pent roof type shape of the ceiling surface of the cylinder 11 described above.
  • the combustion chamber volume when the compression top dead center is reached is reduced to achieve a high geometric compression ratio of 12 or more.
  • a cavity 151 that is recessed in a substantially spherical shape is formed at the approximate center position.
  • the cavity 151 is disposed so as to be opposed to the spark plug 51 disposed at the center of the cylinder 11, thereby shortening the combustion period.
  • the top surface of the piston 15 is raised, and when the piston 15 reaches the compression top dead center, the top surface of the piston 15 and the ceiling surface of the cylinder 11 are used.
  • the cavity 151 avoids the interference of the initial flame and does not hinder its growth, so that the flame propagation becomes faster and the combustion period can be shortened. This is advantageous in suppressing knocking in a fuel with a high gasoline concentration, and contributes to an improvement in torque due to the advance of the ignition timing.
  • an intake port 18 and an exhaust port 19 are formed in the cylinder head 13, and each communicates with the combustion chamber 17.
  • the intake valve 21 and the exhaust valve 22 are arranged so that the intake port 18 and the exhaust port 19 can be shut off (closed) from the combustion chamber 17, respectively.
  • the intake valve 21 is driven by the intake valve drive mechanism 30 and the exhaust valve 22 is driven by the exhaust valve drive mechanism 40, thereby reciprocating at a predetermined timing to open and close the intake port 18 and the exhaust port 19.
  • the intake valve drive mechanism 30 and the exhaust valve drive mechanism 40 have an intake camshaft 31 and an exhaust camshaft 41, respectively.
  • the camshafts 31 and 41 are connected to the crankshaft 14 via a power transmission mechanism such as a known chain / sprocket mechanism.
  • the power transmission mechanism rotates the camshafts 31 and 41 once while the crankshaft 14 rotates twice.
  • the intake valve drive mechanism 30 includes an intake valve timing variable mechanism 32 that can change the opening / closing timing of the intake valve 21, and the exhaust valve drive mechanism 40 can change the exhaust valve timing that can change the opening / closing timing of the exhaust valve 22.
  • a mechanism 42 is included.
  • the intake valve timing variable mechanism 32 is a hydraulic, mechanical, or electric variable phase mechanism (Variable Valve Timing) that can continuously change the phase of the intake camshaft 31 within a predetermined angle range.
  • the exhaust valve timing variable mechanism 42 is configured by a hydraulic, mechanical, or electric phase variable mechanism that can continuously change the phase of the exhaust camshaft 41 within a predetermined angle range. Yes.
  • the intake valve timing variable mechanism 32 can adjust the effective compression ratio by changing the closing timing of the intake valve 21.
  • the effective compression ratio is the ratio between the combustion chamber volume when the intake valve is closed and the combustion chamber volume when the piston 15 is at top dead center.
  • the ignition plug 51 is attached to the cylinder head 13 by a known structure such as a screw.
  • the electrode of the spark plug 51 faces the ceiling of the combustion chamber 17 at the approximate center of the cylinder 11.
  • the ignition system 52 receives a control signal from the engine controller 100 and energizes the spark plug 51 so that a spark is generated at a desired ignition timing.
  • the fuel injection valve 53 has a known structure such as a bracket, and is attached to one side of the cylinder head 13 (intake side in the illustrated example) in this embodiment.
  • the engine 1 is a so-called direct injection engine in which fuel is directly injected into the cylinder 11.
  • the tip of the fuel injection valve 53 faces the inside of the combustion chamber 17 in the vertical direction below the intake port 18 and in the horizontal direction at the center of the cylinder 11.
  • the arrangement of the fuel injection valve 53 is not limited to this.
  • the fuel injection valve 53 is a multi-hole (for example, six-hole) fuel injection valve (Multi-Hole-Injector: MHI).
  • each nozzle hole is not shown in the drawing, the tip of the nozzle shaft is widened so that fuel can be injected into the entire cylinder 11.
  • the advantage of MHI is that the diameter of one nozzle hole is small because of the multiple nozzle holes, the fuel can be injected at a relatively high pressure, and the fuel can be injected into the entire cylinder 11 so that the fuel can be injected. This increases the fuel efficiency and promotes fuel vaporization and atomization. Therefore, when fuel is injected during the intake stroke, it is advantageous in terms of fuel mixing performance and acceleration of vaporization / atomization using the intake air flow in the cylinder 11, while fuel is injected during the compression stroke. In this case, it is advantageous in terms of gas cooling in the cylinder 11 by promoting vaporization and atomization of the fuel.
  • the fuel injection valve 53 is not limited to MHI.
  • a high-pressure pump that boosts the fuel and supplies the fuel to the fuel injection valve 53, a pipe, a hose, and the like that send fuel from the fuel tank to the high-pressure pump, And an electric circuit for driving the fuel injection valve 53.
  • the high pressure pump is driven by the engine 1 in this example.
  • the high pressure pump may be an electric pump.
  • the high-pressure pump is a relatively small-capacity pump that is the same as a gasoline-powered vehicle.
  • the fuel injection pressure is set to be relatively high in order to inject fuel from a minute injection port.
  • the electric circuit receives a control signal from the engine controller 100 and operates the fuel injection valve 53 to inject a desired amount of fuel into the combustion chamber 17 at a predetermined timing.
  • the fuel supply system 54 sets the fuel pressure higher as the engine speed increases. This is because as the engine speed increases, the amount of fuel injected into the cylinder 11 also increases, but the fuel pressure increases, which is advantageous for fuel vaporization and atomization, and the fuel injection valve 53 There is an advantage that the pulse width related to fuel injection is made as short as possible.
  • the maximum fuel pressure is, for example, 20 MPa.
  • an alcohol-containing fuel having an arbitrary ethanol concentration from E25 to E100 is stored in the fuel tank.
  • the intake port 18 communicates with the surge tank 55a through an intake path 55b in the intake manifold 55.
  • An intake air flow from an air cleaner (not shown) passes through the throttle body 56 and is supplied to the surge tank 55a.
  • a throttle valve 57 is disposed on the throttle body 56. The throttle valve 57 throttles the intake air flow toward the surge tank 55a and adjusts the flow rate as is well known.
  • the throttle actuator 58 receives the control signal from the engine controller 100 and adjusts the opening degree of the throttle valve 57.
  • the exhaust port 19 communicates with a passage in the exhaust pipe as is well known by an exhaust passage in the exhaust manifold 60.
  • the exhaust manifold 60 is not shown, but the branch exhaust passages connected to the exhaust ports 19 of the cylinders 11 are gathered by the first gathering parts among the cylinders whose exhaust order is not adjacent to each other, and each first gathering part The downstream intermediate exhaust passages are gathered at the second gathering portion. That is, a so-called 4-2-1 layout is adopted for the exhaust manifold 60 of the engine 1.
  • the engine 1 is also provided with a starter motor 20 for performing cranking at the time of starting.
  • the engine controller 100 is a controller based on a well-known microcomputer, and includes a central processing unit (CPU) that executes a program, a memory that is configured by, for example, RAM and ROM, and stores a program and data, And an input / output (I / O) bus for inputting and outputting signals.
  • CPU central processing unit
  • memory that is configured by, for example, RAM and ROM, and stores a program and data
  • I / O input / output
  • the engine controller 100 includes an intake air flow rate and an intake air temperature from the air flow sensor 71, an intake manifold pressure from the intake pressure sensor 72, a crank angle pulse signal from the crank angle sensor 73, an engine water temperature from the water temperature sensor 78, and an exhaust passage.
  • Various inputs such as the oxygen concentration in the exhaust gas are received from the linear O 2 sensor 79 attached to the sensor.
  • the engine controller 100 calculates the engine speed based on, for example, a crank angle pulse signal.
  • the engine controller 100 also receives an accelerator opening signal from an accelerator opening sensor 75 that detects the amount of depression of the accelerator pedal.
  • a vehicle speed signal from a vehicle speed sensor 76 that detects the rotational speed of the output shaft of the transmission is input to the engine controller 100.
  • a knock sensor 77 including an acceleration sensor that converts the vibration of the cylinder block 12 into a voltage signal and outputs it is attached to the cylinder block 12, and the output signal is also input to the engine controller 100.
  • the engine controller 100 calculates the following control parameters of the engine 1 based on the input as described above. For example, a desired throttle opening signal, fuel injection pulse, ignition signal, valve phase angle signal, etc.
  • the engine controller 100 outputs these signals to the throttle actuator 58, the fuel supply system 54, the ignition system 52, the intake and exhaust valve timing variable mechanisms 32 and 42, and the like.
  • the engine controller 100 also outputs a drive signal to the starter motor 20 when the engine 1 is started.
  • the engine controller 100 estimates the ethanol concentration of the fuel injected by the fuel injection valve 53 based on the detection result of the linear O 2 sensor 79.
  • the theoretical air fuel ratio (9.0) of ethanol is smaller than the theoretical air fuel ratio (14.7) of gasoline.
  • the higher the ethanol concentration of the fuel the richer the theoretical air fuel ratio (that is, the smaller the theoretical air fuel ratio). Therefore, under the condition that the engine is operated at the stoichiometric air-fuel ratio, when there is unburned oxygen in the exhaust gas, it can be determined that the ethanol concentration of the fuel was higher than expected. .
  • the engine controller 100 First, the fuel supply determination is performed based on the detection value of the level gauge sensor of the fuel tank. If it is determined that the fuel supply has been performed, the ethanol concentration of the fuel is estimated. From the signal output from the linear O 2 sensor 79, the engine controller 100 determines that there is a lot of gasoline in the fuel when the air-fuel ratio is lean, and determines that there is a lot of ethanol in the fuel when the air-fuel ratio is rich. Thus, the ethanol concentration in the fuel is estimated. Instead of estimating the ethanol concentration of the fuel, a sensor that detects the ethanol concentration of the fuel may be provided. The estimated ethanol concentration is used not only for fuel injection control but also for adjustment control of filling efficiency described later.
  • the engine controller 100 further calculates the vaporization rate of the fuel supplied into the cylinder 11 based on the detection result of the linear O 2 sensor 79.
  • the vaporization rate is defined by the weight ratio of the amount of fuel that contributes to combustion with respect to the amount of fuel supplied into the cylinder 11 (in other words, the amount of fuel injected by the fuel injection valve 53).
  • the engine controller 100 calculates the weight of the fuel amount contributing to combustion based on the air-fuel ratio of the air-fuel mixture and the detected value of the linear O 2 sensor, and calculates the calculated fuel weight and the fuel injection of the fuel injection valve 53.
  • the vaporization rate is calculated based on the amount.
  • the calculated vaporization rate is also used for adjustment control of filling efficiency described later.
  • FIG. 2 is a diagram comparing the gasification characteristics of gasoline and ethanol.
  • FIG. 2 has shown the change of the distillation amount (%) of each of gasoline and ethanol with respect to the temperature change under 1 atmosphere. Since gasoline is a multi-component fuel, it evaporates according to the boiling point of each component. The amount of gasoline distilled will vary approximately linearly with changes in temperature. That is, some components of the gasoline are vaporized even when the temperature state of the engine 1 is relatively low, and a combustible air-fuel mixture can be formed.
  • the distillation amount becomes 0% at a specific temperature (that is, 78 ° C. which is the boiling point of ethanol) or less, whereas when the specific temperature is exceeded, the distillation amount is 100%. %become.
  • a specific temperature that is, 78 ° C. which is the boiling point of ethanol
  • the distillation amount is 100%. %become.
  • the fuel containing ethanol has a lower vaporization rate than gasoline.
  • a predetermined temperature for example, the water temperature is less than about 20 ° C.
  • the engine controller 100 can set the engine load, the alcohol concentration, and the like so as to obtain a target vaporized fuel amount.
  • the fuel amount increase correction according to the fuel vaporization rate is performed on the base fuel amount set according to the above. That is, the amount of fuel injected by the fuel injection valve 53 is increased as the fuel vaporization rate is lower. For this reason, during cold high load operation, the amount of fuel injected by the fuel injection valve 53 is increased as a result of the load state of the engine 1 being high and the amount of fuel being increased, and the fuel evaporation rate being low and the increase correction value being large. Can be quite large. Further, since the theoretical air-fuel ratio of ethanol is smaller than the theoretical air-fuel ratio of gasoline, the amount of fuel to be injected increases as the ethanol concentration of fuel increases.
  • FIG. 3 is a diagram illustrating fuel injection timing during high load operation.
  • FIG. 3 is a diagram conceptually showing the fuel injection timing, and does not show the fuel injection period.
  • a predetermined temperature as described above, for example, less than about 20 ° C.
  • fuel is injected into the cylinder 11 in each of the intake stroke and the compression stroke.
  • FIG. 4 shows a change in fuel pressure with respect to the water temperature of the engine 1.
  • the engine controller 100 sets the fuel pressure to P 1 (for example, 20 MPa) through the fuel supply system 54 when the water temperature of the engine 1 is T 1 (for example, 0 ° C.) or lower.
  • T 1 for example, 0 ° C.
  • the fuel pressure is set to P 2 (for example, 17 MPa), and the engine water temperature changes between T 1 and T 2. respect, linearly varying the fuel pressure from P 1 to P 2.
  • the characteristic of the fuel pressure is set, not limited to the characteristics shown in FIG. 4, for example while the temperature of the engine 1 is set based on the fuel pressure at a predetermined temperature or less to P 1, the fuel pressure when exceeding a predetermined temperature to P 2 You may make it do.
  • the compression stroke injection uses the temperature in the cylinder 11 that rises with adiabatic compression during the compression stroke to promote fuel vaporization. As described above, since the engine 1 has a high geometric compression ratio and a high compression end temperature, it is extremely advantageous for fuel vaporization.
  • the start of fuel injection may be set in the first half of the compression stroke or during the intake stroke.
  • the engine controller 100 injects fuel through the fuel injection valve 53 during the intake stroke in addition to the compression stroke injection. This ensures a sufficient fuel injection period.
  • the intake stroke injection is advantageous for homogenization of the air-fuel mixture using strong intake air flow, and the fuel injected into the cylinder 11 during the intake stroke can ensure a sufficient air-fuel mixture formation period. . Therefore, combining the intake stroke injection with the compression stroke injection excellent in improving the fuel vaporization performance is extremely advantageous in improving the ignitability and combustion stability of the air-fuel mixture.
  • the intake stroke injection in a region where the load of the engine 1 is relatively low, it is advantageous for fuel vaporization due to the reduced pressure boiling effect due to the intake negative pressure.
  • the load of the engine 1 is high and the intake negative pressure is increased. Therefore, the vaporization of fuel due to the reduced pressure boiling effect can hardly be expected. Therefore, performing the compression stroke injection at the time of a cold high load has an advantage of allowing the fuel to be vaporized when the intake negative pressure cannot be used.
  • the lower the fuel vaporization rate the lower the upper limit value of the charging efficiency (that is, the lower the maximum charging efficiency). This corresponds to reducing the maximum opening of the throttle valve 57.
  • FIG. 5 shows an example of the relationship between the limit of the maximum charging efficiency and the fuel vaporization rate.
  • This relational expression is set in advance based on, for example, experiments, and is stored in the engine controller 100.
  • the limit of the maximum filling efficiency can be restated as the amount of decrease in the maximum filling efficiency.
  • a large limit of the maximum filling efficiency corresponds to setting the maximum filling efficiency low, and the maximum filling efficiency is limited.
  • a small amount or zero corresponds to setting the maximum filling efficiency high or not limiting the maximum filling efficiency.
  • the limit amount of the maximum filling efficiency is set to 0.
  • the maximum Set a large limit on the filling efficiency.
  • the relational expression in FIG. 5 limits the maximum charging efficiency when the water temperature of the engine 1 exceeds a predetermined value. While the amount is set to 0, when the water temperature is equal to or lower than the predetermined value, the limit amount of the maximum filling efficiency is set to be larger as the water temperature is lower. Also, under a low temperature condition, when the ethanol concentration of the fuel is high, the fuel vaporization rate is low.
  • the limit amount of the maximum filling efficiency is set to 0 while the ethanol concentration is less than the predetermined value. In other words, when the concentration is equal to or higher than the predetermined value, the limit amount of the maximum filling efficiency is set to be larger as the ethanol concentration is higher.
  • the full opening torque when the accelerator opening is fully opened is limited, but the amount of fuel injected by the fuel injection valve 53 can be reduced. .
  • the fuel injection amount increases due to the low vaporization rate due to the low temperature.
  • the fuel injection amount is further increased as compared with when the gasoline concentration is high, and as a result, the fuel injection amount injected by the fuel injection valve 53 during one cycle is extremely large. . Therefore, when the fully open load state of the engine 1 continues, an extremely large fuel injection amount continues.
  • the capacity of the engine-driven high-pressure pump in the fuel supply system 54 is relatively small, if an extremely large fuel injection amount continues, the fuel pressure cannot be increased in time. As a result, the fuel pressure gradually decreases. The decrease in fuel pressure worsens the atomization of the fuel and causes the fuel vaporization performance to deteriorate. As a result, the combustibility is reduced, and torque sufficient for the fuel injection amount is not generated.
  • FIG. 6 shows an example of a change in accelerator opening (lower diagram in FIG. 6) and an associated change in charging efficiency (upper diagram in FIG. 6) when the accelerator opening is fully opened when the engine 1 is cold. Show. This corresponds to a situation in which the driver depresses the accelerator opening to a fully open state after the engine is cold started.
  • the line indicated by the alternate long and short dash line in the upper diagram of FIG. 6 corresponds to the maximum charging efficiency when the fuel injection is performed in each of the intake stroke and the compression stroke when cold as shown in FIG.
  • the charging efficiency becomes a predetermined value corresponding to the fully opened accelerator opening.
  • the upper limit value of the charging efficiency is set lower than the maximum charging efficiency shown by the one-dot chain line in FIG. Filling efficiency is limited (see solid line).
  • the engine controller 100 limits the opening degree of the throttle valve 57 to an opening degree lower than the maximum opening degree, thereby limiting the maximum charging efficiency.
  • the amount of fuel injected by the fuel injection valve 53 is reduced by the amount that limits the charging efficiency.
  • the temperature of the engine 1 rises rapidly by continuing such full open load.
  • the vaporization rate of the fuel supplied into the cylinder 11 gradually increases, so that the limit amount of the maximum charging efficiency gradually approaches 0 as shown in FIG. If the engine 1 shifts to a semi-warm-up state or a warm state, the limit amount of the maximum charging efficiency becomes zero.
  • the period during which the maximum charging efficiency is limited is relatively short, and the maximum torque is gradually increased by continuing the full open load. This is effective in suppressing a decrease in acceleration feel.
  • the engine control described above only limits the maximum charging efficiency, and the response of the opening change of the throttle valve 57 to the change of the accelerator opening is that at the time of cold high load. Is not different from normal times. As a result, the torque follows the driver's operation of the accelerator pedal, so that the driver feels uncomfortable and the acceleration feel is improved. In addition, when the accelerator operation is not performed until it is fully opened, the limitation on the maximum filling efficiency is not relevant. In other words, this control is equivalent to the fact that this control is not performed at low to medium loads even during cold weather. This is also advantageous in eliminating the driver's uncomfortable feeling.
  • the fuel injection amount is limited by delaying the responsiveness of the opening change of the throttle valve 57 to the change of the accelerator opening, so that the fuel pressure gradually increases. Control that avoids the situation of decline is also conceivable. However, in such control, torque does not follow the driver's operation of the accelerator pedal, so that the driver feels uncomfortable and the acceleration feel also deteriorates. This control is different from such transient control.
  • the line indicated by a two-dot chain line in the upper diagram of FIG. 6 corresponds to the maximum charging efficiency when fuel injection is performed only in the intake stroke.
  • the throttle valve 57 is throttled to secure the intake negative pressure, so that the maximum charging efficiency is only about 0.4.
  • the maximum charging efficiency at the time of cold high load is compared with the case of performing only the intake stroke injection. It can be significantly higher.
  • the upper limit of the charging efficiency is set to a low value according to the fuel vaporization rate, the maximum charging efficiency is significantly increased, so the upper limit of the charging efficiency can be set to 0.5 to 0.7 or more. It is. That is, in this control, even if the maximum charging efficiency is limited, it is possible to achieve a relatively high full-open torque, and both cold fuel efficiency and cold running performance are compatible at a high level.
  • FIG. 7 compares the full-open torque for the difference in fuel injection mode.
  • the fuel used is E95 having a high ethanol concentration, and the vaporization rate is low at low temperatures.
  • the fuel injection timing is changed and the maximum charging efficiency is limited in accordance with the engine temperature change, other control parameters such as the ignition timing are set to be the same.
  • the alternate long and two short dashes line in FIG. 7 shows the fully open load of the engine having only the fuel injection valve for injecting fuel into the intake port. This corresponds to a case where only the intake stroke injection is performed in the cold ( ⁇ 5 ° C.). As described above, when only the intake stroke injection is performed in the cold state, the full opening torque is lowered.
  • the line indicated by “X” in the figure is the full open load when the intake stroke injection and the compression stroke injection are performed in the cold state. Compared with the case where only the intake stroke injection is performed, the fully open torque is significantly increased.
  • the line indicated by “white triangles” in the figure is the fully open load when the engine temperature is increased (20 ° C., half warm-up) and when the intake stroke injection and the compression stroke injection are performed.
  • the full opening torque is higher than when cold.
  • a line indicated by a “black square” in the same figure is a full open load when the engine temperature is further increased to a warm state (90 ° C.). Since it is warm, fuel injection is performed only during the intake stroke, and there is no limit on the maximum charging efficiency.
  • the charging efficiency is increased by the cooling effect of the intake air, and as a result, the full opening torque is significantly increased.
  • the said structure is object for the engine for FFV, even if it is not FFV, the technique disclosed here is about the spark ignition type engine to which the fuel containing special fuels including alcohol is supplied. It can be widely applied.
  • the injection during the compression stroke and the injection during the intake stroke are collectively performed, but each of them may be divided into a plurality of divided injections.
  • Engine Engine body 11 cylinder 100 engine controller 53 fuel injection valve (fuel supply mechanism) 54 Fuel supply system (fuel supply mechanism) 57 Throttle valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 制御器(エンジン制御器100)は、エンジン本体(エンジン1)の温度状態が所定温度以下の冷間時でかつ、エンジン本体の負荷状態が所定負荷以上の高負荷時には、気筒11が吸気行程にあるときと圧縮行程にあるときとに、燃料供給機構(燃料噴射弁53、燃料供給システム54)を通じて燃料を気筒内に供給する。また、制御器は、気筒内に供給した燃料の気化率が低いときほど、エンジン本体の充填効率の上限値を低く設定する。

Description

火花点火式エンジンの制御装置
 ここに開示する技術は、火花点火式エンジンの制御装置に係り、特に特定温度以下の状態下でガソリンよりも気化率の低い特殊燃料を含む燃料が供給されるよう構成された火花点火式エンジンの制御装置に関する。
 近年、地球温暖化等の環境問題の視点からバイオ燃料が注目されており、ガソリンと例えばバイオエタノールとを任意の混合比で混合した燃料で走行可能なFFV(Flexible Fuel Vehicle)が実用化されている。FFVにおける燃料のエタノール濃度の範囲は、市場で流通している燃料のガソリン及びエタノールの混合比によって異なるが、例えばE25(ガソリン75%、エタノール25)からE100(エタノール100%)まで変化する場合、又は、E0(ガソリン100%)からE85(ガソリン15%、エタノール85%)まで変化する場合がある。尚、ここでいうE100には、エタノールの精製過程で十分に水分が除去されず、5%程度の水分を含有するE100(エタノール95%、水5%)も含まれる。
 このようなFFVでは、燃料のエタノールの濃度によって燃料の性状が異なる。つまり、多成分燃料であるガソリンは、その沸点が27~225℃の範囲になることから、例えば図2に、温度に対するガソリンの蒸留率の変化を示すように、温度が比較的低い状態であっても、気化率は比較的高い。これに対し、エタノールは単一成分燃料であって、その標準沸点は78℃であるから、温度が比較的低いときには気化率が0になってガソリンの気化率よりも低くなる状態がある一方で、温度が比較的高いときには気化率が100%になってガソリンの気化率よりも高くなる状態がある。そのため、FFVでは、エンジンの温度状態が所定の温度以下の低温時には、燃料におけるエタノールの濃度が高いほど、また、エンジンの温度状態が低いほど、気筒内での燃料の気化性能は悪化する。つまり、気筒内に供給した燃料量に対する、燃焼に寄与した燃料量の重量比を気化率と定義すれば、エタノールの濃度が高いほど、また、エンジンの温度状態が低いほど、気化率は低くなる。例えばE100使用時の、エンジンの冷間運転時には、気化率が低くなることに起因して、混合気の着火性及び/又は燃焼安定性が悪化してしまうという問題が生じる。特に、水分含有のE100は、この問題が大きい。
 例えば特許文献1には、FFV用のエンジンシステムにおいて、ガソリンとエタノールとを任意の混合比で混合した燃料を貯留するメインタンクから、ガソリン濃度が高い燃料を抽出し、それをメインタンクとは別のサブタンクに移動させて、そこに貯留するエンジンシステムが記載されている。これにより、特許文献1に記載されたエンジンシステムでは、サブタンク内に、気化性能が安定した燃料を常時、貯留していることになる。そこで、特許文献1に記載されたエンジンシステムでは、エタノール濃度の高い燃料を使用したときに、混合気の着火性及び/又は燃焼安定性が低下してしまう運転条件下(例えば、エンジンの冷間運転時等)では、メインタンクに貯留している燃料と、サブタンクに貯留しているガソリン濃度の高い燃料とを適宜の割合で混合する。こうしてメインタンクに貯留している燃料よりもガソリン濃度を高くした混合燃料を、エンジンの吸気ポートに噴射する。このように、特許文献1に記載されたエンジンシステムは、気化率が低くなる運転条件下では、サブタンクに貯留しているガソリン濃度の高い燃料を使用することによって燃料の気化率を高め、そのことにより、エンジンの冷間運転時等における、混合気の着火性及び/又は燃焼安定性を確保する。
 また、特許文献2には、前述のようなサブタンクを備えていない一方で、気筒内に燃料を直接噴射するように構成された燃料噴射弁を有するFFV用のエンジンシステムが記載されている。この特許文献2に記載されたエンジンシステムでは、エタノールの理論空燃比はガソリンの理論空燃比と比較して小さく、エタノール濃度の高い燃料を使用するときには、ガソリン濃度の高い燃料を使用するときと比較して燃料噴射量を増量する必要があることに鑑みて、燃料のエタノール濃度が高くて燃料噴射量が多くかつ、エンジンの温度状態が低くてその燃料の気化性能が低くなるような、エンジンの低温始動時には、燃料圧力を高めると共に、高燃圧の燃料を圧縮行程中に気筒内に噴射する。高い燃料圧力によって、燃料を微粒化して気化を促進すると共に、燃料噴射時期を遅くすることによって、噴射した燃料が気筒の内壁やピストン等に付着する前に、燃焼を開始させる。こうして、特許文献2に記載されたエンジンシステムでは、燃料の噴射形態を工夫することによってエンジンの低温始動性を高めている。
特開2010-133288号公報 特開2010-37968号公報
 特許文献1に記載されているようなサブタンクを必要とする構成は、燃料供給系が2系統になってエンジンシステムの構成を複雑にしかつ、コストを増大させることから、特許文献2に記載されているようなサブタンクを省略した構成が要求されている。一方で、メインタンクに貯留している燃料の性状如何に関わらず、混合気の着火性及び/又は燃焼安定性を確保する必要がある。
 ところで、特許文献2にも記載されているように、エタノールと、ガソリンとでは、理論空燃比の値が異なり、燃料のエタノール濃度が高くなるほど、ガソリンと比べて燃料噴射量は増える。
 また、前述したように、エンジンの温度状態が低くかつ、燃料のエタノール濃度が高いときには、燃料の気化率が低くなる。そこで、FFVに搭載されるエンジンシステムでは、低い気化率を考慮し、所望の気化燃料量が得られるように、エンジンの温度状態が低いとき、及び/又は、燃料のエタノール濃度が高いときには、気筒内に供給する燃料量を、予め増量する制御が行われる。
 例えばE95使用時の冷間高負荷運転時には、燃料のエタノール濃度が高いため、ガソリンと比較して必要な燃料量が増えること、高負荷運転であることで、その分、燃料量が増えること、及び、冷間でかつエタノール濃度が高いため気化率が低くなることに伴い、燃料量の増量補正が必要になること、が組み合わさって、燃料噴射弁が1サイクル当たりに噴射する燃料量が極めて増大してしまう。その結果、同一運転状態下のガソリン使用時と比較して、噴射燃料量が、例えば2倍以上にもなる。
 一方で、特許文献2に記載されているように圧縮行程中に気筒内に燃料を噴射する構成では、気筒内の高い圧力に対抗して燃料を噴射する必要がある上に、燃料を微粒化して燃料の気化を促進するために、燃料圧力を比較的高く設定しなければならない。燃料圧力は、例えばエンジンによって駆動される高圧ポンプによって昇圧されるが、前述の通り、燃料噴射弁が噴射する燃料量が極めて多くなる冷間高負荷運転が継続してしまうと、高圧ポンプによる燃料圧力の昇圧が間に合わなくなり、燃料圧力が次第に低下してしまうことになる。燃料圧力の低下は燃料の微粒化を悪化させて、燃料の気化率を低下させる。その結果、気筒内に供給した燃料量に見合うだけのトルクが得られなくなり、燃費が悪化する。また、未燃の燃料が増える分、排気エミッション性能も悪化する。
 ここに開示する技術は、前記の実情を考慮した技術であり、その目的とするところは、エンジンの温度状態が所定温度以下の冷間時でかつ、エンジンの負荷状態が所定負荷以上の高負荷時において燃料の微粒化が悪化してしまうことを回避し、燃費の悪化を回避することにある。
 前述した問題は、例えば高圧ポンプの容量を大きくし、燃料量の多い状態が継続したとしても高い燃料圧力を維持可能な構成を採用すれば、解消することが可能である。しかしながら、大型の高圧ポンプを採用することは、コストの増大、狭小のエンジンルーム内のレイアウト性の悪化、及び、大容量の高圧ポンプを駆動することに伴う燃費の悪化といった、新たな問題を招いてしまう。
 そこで、本願発明者らは、気筒内に供給した燃料の気化率が低いときほど、言い換えると、気筒内に供給する燃料量が増える状況ほど、エンジン本体の充填効率の上限値を低く設定することにした。最大充填効率を制限することは、気筒内に供給する燃料量の最大量を制限することになり、比較的小容量の高圧ポンプであっても、高い燃料圧力を維持することが可能になる。
 具体的にここに開示する技術は、火花点火式エンジンの制御装置に係る。この火花点火式エンジンの制御装置は、特定温度以下の状態下でガソリンよりも気化率の低い特殊燃料を含む燃料が供給されるように構成されたエンジン本体、前記エンジン本体に設けられた気筒内に、所定圧力に昇圧した前記燃料を供給するように構成された燃料供給機構、及び、少なくとも前記燃料供給機構の制御を通じて前記エンジン本体を運転するように構成された制御器、を備える。
 そして、前記制御器は、前記エンジン本体の温度状態が所定温度以下の冷間時でかつ、前記エンジン本体の負荷状態が所定負荷以上の高負荷時には、前記気筒が吸気行程にあるときと圧縮行程にあるときとに、前記燃料供給機構を通じて前記燃料を前記気筒内に供給すると共に、前記気筒内に供給した前記燃料の前記気化率が低いときほど、前記エンジン本体の充填効率の上限値を低く設定する。
 ここで、「特定温度以下の状態下でガソリンよりも気化率が低い特殊燃料」とは、例えば単一成分燃料であり、具体的にはエタノール又はメタノール等のアルコールを例示することができる。アルコールの具体例としては、サトウキビやトウモロコシを原料としたバイオエタノール等の、生物由来アルコールとしてもよい。
 また、「特殊燃料を含む燃料」は、特殊燃料とガソリンとを混合した燃料、及び、特殊燃料のみの燃料の双方を含む。ガソリンと特殊燃料との混合比に、特に制限はなく、任意の混合比を採用することができる。エンジン本体に供給される燃料は、ガソリンと特殊燃料との混合比が一定であってもよいし、随時、変化してもよい。特殊燃料をエタノールとしたときに、「特殊燃料を含む燃料」には、具体的には、ガソリンにエタノールを25%混合したE25から、エタノール100%のE100までの範囲で、任意のエタノール濃度の燃料が含まれる。また、前記の構成は、エンジン本体に対して、特殊燃料を含まない燃料が供給されることを排除するものではない。例えば特殊燃料をエタノールとしたときに、エンジン本体に供給する燃料には、ガソリン(つまり、エタノールを含まないE0)から、ガソリンにエタノールを85%混合したE85までの範囲で、任意のエタノール濃度の燃料が含まれる。さらに、「特殊燃料を含む燃料」には、水が含まれていてもよい。従って、5%程度の水分を含有するE100もまた、ここでいう「特殊燃料を含む燃料」に含まれる。尚、燃料におけるアルコール濃度は、様々な手法により、検知又は推定することが可能である。
 「気化率」は、気筒内に供給した燃料量に対する、燃焼に寄与した燃料量の重量比として定義することができる。こうした気化率は、エンジンの排気通路に取り付けたOセンサの検出値に基づいて算出することが可能である。エンジン本体の温度が所定温度以下の条件下では、燃料における特殊燃料の濃度が高いほど、また、エンジン本体の温度状態が低いほど、気化率は低くなり得る。
 「燃料供給機構」は、特殊燃料を含む燃料を貯留する燃料タンク、燃料圧力を昇圧する高圧ポンプ、及び、昇圧された燃料を噴射する燃料噴射弁を、少なくとも含んで構成してもよい。高圧ポンプは、エンジン本体によって駆動される構成であっても、エンジン本体とは別の駆動源によって駆動される構成(例えば電動ポンプ)であってもよい。また、燃料噴射弁は、気筒内に、燃料を直接、噴射する燃料噴射弁としてもよい。また、そうした直噴の燃料噴射弁に加えて、吸気ポートに燃料を噴射する燃料噴射弁を別途備えてもよい。
 「エンジン本体の負荷状態が所定負荷以上の高負荷時」にあるとは、エンジンの運転状態が、全開負荷を含む高負荷領域にあるときと定義することができる。エンジン本体の負荷状態が高負荷状態にあるとは、エンジンの負荷領域を、低負荷領域と高負荷領域とに、二等分割したときの高負荷領域内にエンジン本体の運転状態があるとき、としてもよいし、エンジンの負荷領域を、低負荷領域、中負荷領域及び高負荷領域に、三等分割したときの高負荷領域内にエンジン本体の運転状態があるとき、としてもよい。尚、後述の通り、気筒内に供給した燃料の気化率が低い状態ほどエンジン本体の充填効率の上限値が低く設定されることに伴い、全開負荷は変更されることになる。
 「充填効率」は、次の定義に従うとすることが可能である。すなわち、標準大気(25℃、1atm)で総排気量の1気筒分の空気重量を1としたときの、1気筒内に吸入した空気重量の割合である。
 前記の構成によると、エンジン本体の温度状態が所定温度以下の冷間時、言い換えると、特殊燃料の濃度の高い燃料は気化率が低下するような温度条件下でかつ、エンジン本体の負荷状態が所定負荷以上の高負荷時、言い換えると、気筒内に供給する燃料量が増えるようなエンジン本体の運転状態では、制御器は、気筒が吸気行程にあるときと、圧縮行程にあるときと、のそれぞれにおいて燃料を気筒内に供給する。
 気筒が圧縮行程にあるときに燃料を気筒内に供給する(尚、この燃料供給は、気筒内に直接燃料を噴射することによって行われる)ことによって、圧縮行程が進行するに伴い断熱圧縮によって高くなる気筒内の温度を利用して、燃料の気化を促進することが可能になる。このことは、エンジン本体が高負荷状態にあることに起因して吸気負圧を利用した燃料の気化が、あまり期待できないときに、燃料の気化を促進することができ、極めて有効である。
 また、エンジン本体が高負荷状態にあるため、気筒内に供給する燃料量が比較的増えると共に、エンジン本体が冷間状態にあることで、燃料の気化率の低さを考慮して燃料量はさらに増えることになるものの、吸気行程と圧縮行程とのそれぞれの行程で燃料供給を行うことは、燃料の供給期間を十分に確保すると共に、混合気の形成期間も十分に確保し得るから、混合気の着火性及び燃焼安定性に有利になる。吸気行程と圧縮行程との分割供給は特に、特殊燃料がアルコールであり、燃料におけるアルコール濃度が高いことで、ガソリンと比べて必要な燃料量が増えるときにも、燃料の供給期間を十分に確保することを可能にするから、有効である。
 こうして、吸気行程及び圧縮行程のそれぞれで燃料の供給を行うことにより、燃料の気化性能を改善して、気化燃料量を十分に確保することが可能になるから、冷間高負荷時に、吸気行程のみで燃料の供給を行う構成と比較して最大充填効率を大幅に高め、全開トルクを高めることが可能になる。
 そうして、制御器は、気筒内に供給した燃料の気化率が低いほど、エンジン本体の充填効率の上限値を低く設定する。つまり、燃料の気化率が低いときには、全開負荷が低くなるため、燃料量の最大値も少なくなる。このことにより、仮にエンジン本体の運転状態が全開負荷で継続するような状態になったとしても、燃料供給機構が供給する燃料量は少なくなるため、燃料供給機構は、所定の燃料圧力を維持することが可能になる。その結果、燃料の微粒化を確保して、燃料の気化性能が悪化してしまうことが回避される。こうして、気筒内に供給した燃料量に見合うだけのトルクが得られるようになり、燃費の悪化が回避される。また、未燃の燃料が減るため、排気エミッション性能も向上する。
 ここで、前記の構成では、充填効率の上限値を低く設定するため、アクセル開度を全開にしたときの全開トルクは低くなるという制約がある。しかしながら、前述の通り、吸気行程及び圧縮行程のそれぞれにおける燃料供給を行うことにより、最大充填効率が高められているため、充填効率の上限値を低く設定したとしても、比較的高い充填効率が確保される。つまり、冷間時の走行性が向上する。また、ここでの負荷状態は、アクセル開度を全開にした高負荷状態であるため、エンジン本体の温度は速やかに上昇する。エンジン本体の温度状態が高くなることに伴い燃料の気化率は高くなるため、充填効率の上限値もまた、高く設定し直すことになる。従って、全開トルクを、当初は制限していたとしても、その制限は速やかに解除される。
 尚、低く設定する充填効率の上限値は、0.5以上に設定すればよく、好ましくは0.6以上、さらに好ましくは0.7以上としてもよい。こうすることで、燃費の悪化を回避しながら、比較的高い全開トルクを確保することが可能になり、冷間燃費と冷間走行性とを高いレベルで両立することが可能になる。
 前記制御器は、前記気筒内に供給する前記燃料における、前記特殊燃料の濃度が高いほど、前記エンジン本体の充填効率の上限値を低く設定する、としてもよい。
 エンジン本体の温度状態が低い状態において、燃料における特殊燃料の濃度が高いほど、燃料の気化率が低くなる。従って、燃料における特殊燃料の濃度が高いほど、エンジン本体の充填効率の上限値を低く設定することにより、前述したように、燃費の悪化が回避される。
 前記制御器は、前記エンジン本体の温度状態が低いほど、前記エンジン本体の充填効率の上限値を低く設定する、としてもよい。
 エンジン本体の温度状態が低いほど、特殊燃料を含む燃料の気化率は低下する。従って、エンジン本体の温度状態が低いほど、エンジン本体の充填効率の上限値を低く設定する。このことにより、前述したように、燃費の悪化が回避される。
 前記火花点火式エンジンの制御装置は、前記気筒内に充填する新気量を調整するよう構成されたスロットル弁をさらに備え、前記制御器は、アクセル開度情報を受けると共に、前記スロットル弁の開度を、当該アクセル開度に応じた開度に調整し、前記制御器はまた、前記制御器は、前記エンジン本体の温度状態が所定温度以下の冷間時でかつ、前記エンジン本体の負荷状態が所定負荷以上の高負荷時には、前記アクセル開度の変化に対し、所定の制御応答性でもって前記スロットル弁の開度を変更すると共に、前記気筒内に供給した前記燃料の前記気化率が低いときほど、前記スロットル弁の上限開度を低く設定する、としてもよい。
 この構成によると、制御器は、エンジン本体の温度状態が所定温度以下の冷間時でかつ、エンジン本体の負荷状態が所定負荷以上の高負荷時の特定条件下では、スロットル弁の上限開度を低く設定する。このことによって、エンジン本体の充填効率の上限値は低くなる。また、制御器は、アクセル開度の変化に対し、所定の制御応答性でもってスロットル弁の開度を変更する。ここでいう「所定の制御応答性」は、前記の冷間高負荷の特定条件とは異なる別の条件における制御応答性と定義してもよい。つまり、ここでいう「所定の制御応答性」は、冷間高負荷の特定条件下における特有の制御応答ではなく、「所定の制御応答性」は、通常の制御応答性と言い換えることが可能である。
 前記の構成では、アクセル開度の変化に対し、所定の制御応答性でもってスロットル弁の開度を変更するため、運転者のアクセル操作に対し、通常の制御応答性でもってスロットル弁の開度が制御される。従って、アクセル開度が上限値に至らず、充填効率も上限値に至らない範囲では、アクセル操作とスロットル開度との間の制御は、通常の制御と実質的に同じである。このことは、運転者の違和感を無くし、ドライブフィールを向上させる。
 また、アクセル開度が全開になるまでアクセルペダルが踏み込まれたようなときには、充填効率の上限値が制限されることで全開トルクは低下するものの、スロットル弁の開度は、通常の制御応答性でもって変更されるから、加速フィールの悪化を抑制することが可能になる。
 ここで、エンジン本体の温度状態が所定温度以下の冷間時でかつ、燃料の気化率が低いときには、アクセル開度の変化に対する、スロットル弁の開度変更の応答性を、通常時よりも低くする制御も考えられる。こうした制御は、アクセル開度に対し必要な燃料量を少なくして、前述した燃料圧力の低下を回避することが可能である。しかしながら、アクセル開度の変化に対する、スロットル弁の開度変更の応答性を低くする制御は、運転者のアクセルの踏み込みに対してトルクが追従しないことから、加速フィールが極めて悪化してしまう。また、エンジン本体の負荷状態が低負荷乃至中負荷にある常用域においても、運転者のアクセルの踏み込みに対してトルクが追従しなくなるから、運転者の違和感を招く。
 これに対し、前述した構成では、エンジン本体の温度状態が所定温度以下の冷間時でかつ、燃料の気化率が低いときに、全開トルクのみが制限される。このため、常用域においては通常の制御と何ら変わらず、運転者の違和感を招くことがない。また、加速フィールも悪化しないという利点がある。
 以上説明したように、前記の火花点火式エンジンの制御装置によると、エンジン本体の温度状態が所定温度以下の冷間時であって、エンジン本体の負荷状態が所定負荷以上の高負荷時には、吸気行程及び圧縮行程のそれぞれで気筒内に燃料を供給することにより、燃料量が比較的多い条件下でも、燃料の気化性能を改善して、最大充填効率を大幅に高めることができる。また、気筒内に供給した燃料の気化率が低いほど、エンジン本体の充填効率の上限値を低く設定することによって、燃料圧力を高い状態で維持することが可能になり、燃費の悪化を回避することができる。さらに、充填効率の上限を低く設定しているものの、吸気行程及び圧縮行程における燃料供給によって最大充填効率を高くしているから、制限した充填効率も比較的高くなり、冷間時の走行性が向上する。
図1は、火花点火式エンジン及びその制御装置の構成を示す概略図である。 図2は、温度に対するガソリンの蒸留量の変化とエタノールの蒸留量の変化とを比較する図である。 図3は、高負荷時における、冷間状態での燃料噴射時期と温間状態での燃料噴射時期とを比較する図である。 図4は、エンジン水温に対する燃料圧力の変化を例示する図である。 図5は、燃料の気化率に対する最大充填効率の制限量を例示する図である。 図6は、アクセル開度を全開にしたときの充填効率の変化を例示するタイムチャートである。 図7は、燃料噴射形態の相違に伴う、エンジンの全開トルクの相違を例示する図である。
 以下、火花点火式エンジンの実施形態を図面に基づいて説明する。尚、以下の好ましい実施形態の説明は例示である。図1に示されるように、エンジンシステムは、エンジン(エンジン本体)1、エンジン1に付随する様々なアクチュエーター、様々なセンサ、及びセンサからの信号に基づきアクチュエーターを制御するエンジン制御器100を有する。このエンジンシステムは、幾何学的圧縮比が12以上20以下(例えば12)の高圧縮比エンジン1を備える。
 エンジン1は、火花点火式4ストローク内燃機関であって、図1には1つのみ図示するが、直列に配置された第1~第4の4つの気筒11を有する。但し、ここに開示する技術が適用可能なエンジンは、直列4気筒エンジンには限定されない。エンジン1は、自動車等の車両に搭載され、その出力軸は、図示しないが、変速機を介して駆動輪に連結されている。エンジン1の出力が駆動輪に伝達されることによって、車両が推進する。
 このエンジン1には、エタノール(バイオエタノールを含む)を含有する燃料が供給される。特にこの車両は、エタノールの濃度が25%(つまり、ガソリンの濃度が75%のE25)~100%(つまり、ガソリンを含まないE100)までの任意の濃度の燃料が使用可能なFFVである。尚、ここでいうE100には、エタノールの精製過程で十分に水分が除去されずに5%程度の水分を含有するエタノールを含む。但し、ここに開示する技術は、E25~E100の使用を前提としたFFVに限らず、例えばE0(つまり、ガソリンのみでエタノールを含まない)~E85(つまり、ガソリン濃度15%、エタノール濃度85%)の範囲でエタノール濃度が変化する燃料を使用するFFVにも適用可能である。
 図示は省略するが、この車両は、前記の燃料を貯留する燃料タンク(つまり、メインタンク)のみを有しており、従来のFFVのように、ガソリン濃度の高い燃料を、メインタンクとは別に貯留するためのサブタンクを有していない点が特徴である。このFFVは、ガソリンのみが供給されるガソリン仕様車をベースにしたものであり、その構成の大部分は、二つの仕様の間で共通化されている。
 エンジン1は、シリンダブロック12と、その上に載置されるシリンダヘッド13とを備えており、シリンダブロック12の内部に気筒11が形成されている。周知のように、シリンダブロック12には、ジャーナル、ベアリングなどによりクランクシャフト14が回転自在に支持されており、このクランクシャフト14が、コネクティングロッド16を介してピストン15に連結されている。
 各気筒11の天井部には、略中央部からシリンダヘッド13の下端面付近まで延びる2つの傾斜面が形成されており、それらの傾斜面が互いに差し掛けられた屋根のような形状をなす、いわゆるペントルーフ型となっている。
 前記ピストン15は、各気筒11内に摺動自在に嵌挿されており、気筒11及びシリンダヘッド13と共に燃焼室17を区画している。ピストン15の頂面は、前述した気筒11の天井面のペントルーフ型の形状に対応するように、その周縁部から中央部に向かって隆起する台形状に形成されており、これによって、ピストン15が圧縮上死点に到達したときの燃焼室容積を小さくして、12以上の高い幾何学的圧縮比を達成している。ピストン15の頂面にはまた、その概略中心位置に、概ね球面状に凹陥したキャビティ151が形成されている。このキャビティ151は、気筒11の中心部に配設された点火プラグ51に相対するように、配置されており、これによって、燃焼期間を短縮するようにしている。つまり、前述したように、この高圧縮比エンジン1は、ピストン15の頂面が隆起していて、ピストン15が圧縮上死点に到達したときに、ピストン15の頂面と気筒11の天井面との間隔が極めて狭くなるように構成されている。このため、キャビティ151を形成していないときには、初期火炎がピストン15の頂面と干渉して冷却損失が増大し、火炎伝播が阻害されて燃焼速度が遅延してしまう。これに対し、前記のキャビティ151は、初期火炎の干渉を回避して、その成長を妨げないため、火炎伝播が速くなって、燃焼期間が短縮し得る。このことは、ガソリン濃度の高い燃料においては、ノッキングの抑制に有利になり、点火時期の進角によるトルクの向上に寄与する。
 気筒11毎に、吸気ポート18及び排気ポート19がシリンダヘッド13に形成され、それぞれが燃焼室17に連通している。吸気弁21及び排気弁22はそれぞれ、吸気ポート18及び排気ポート19を燃焼室17から遮断(閉)することができるように配設されている。吸気弁21は吸気弁駆動機構30により、排気弁22は排気弁駆動機構40により、それぞれ駆動され、それによって所定のタイミングで往復動して、吸気ポート18及び排気ポート19を開閉する。
 吸気弁駆動機構30及び排気弁駆動機構40は、それぞれ吸気カムシャフト31及び排気カムシャフト41を有する。カムシャフト31,41は、周知のチェーン/スプロケット機構等の動力伝達機構を介してクランクシャフト14に連結される。動力伝達機構は、周知のように、クランクシャフト14が二回転する間に、カムシャフト31,41を一回転させる。
 吸気弁駆動機構30は、吸気弁21の開閉時期を変更可能な吸気バルブタイミング可変機構32を含んで構成され、排気弁駆動機構40は、排気弁22の開閉時期を変更可能な排気バルブタイミング可変機構42を含んで構成される。吸気バルブタイミング可変機構32は、この実施形態では、吸気カムシャフト31の位相を所定の角度範囲内で連続的に変更可能な、液圧式、機械式又は電動式の位相可変機構(Variable Valve Timing:VVT)により構成され、排気バルブタイミング可変機構42は、排気カムシャフト41の位相を所定の角度範囲内で連続的に変更可能な、液圧式、機械式又は電動式の位相可変機構により構成されている。吸気バルブタイミング可変機構32は、吸気弁21の閉弁時期を変更することにより、有効圧縮比を調整し得るものである。尚、有効圧縮比とは、吸気弁閉弁時の燃焼室容積と、ピストン15が上死点にあるときの燃焼室容積との比である。
 点火プラグ51は、例えば、ねじ等の周知の構造によって、シリンダヘッド13に取り付けられている。点火プラグ51の電極は、気筒11の概略中心において燃焼室17の天井部に臨んでいる。点火システム52は、エンジン制御器100からの制御信号を受けて、点火プラグ51が所望の点火タイミングで火花を発生するよう、それに通電する。
 燃料噴射弁53は、例えばブラケットを使用する等の周知の構造で、この実施形態ではシリンダヘッド13の一側(図例では吸気側)に取り付けられている。このエンジン1は、燃料を気筒11内に直接噴射する、いわゆる直噴エンジンである。燃料噴射弁53の先端は、上下方向については吸気ポート18の下方に、また、水平方向については気筒11の中央に位置して、燃焼室17内に臨んでいる。但し、燃料噴射弁53の配置はこれに限定されるものではない。燃料噴射弁53は、この例においては、多噴口(例えば6噴口)型の燃料噴射弁(Multi Hole Injector:MHI)である。各噴口の向きは、図示は省略するが、気筒11内の全体に燃料が噴射できるように、噴口軸の芯先が広がっている。MHIの利点は、多噴口であるため一噴口の径が小さく、比較的高い圧力で燃料を噴射し得る点、及び、気筒11内の全体に燃料を噴射可能に広がっているため、燃料のミキシング性が高まると共に、燃料の気化・霧化が促進される点にある。従って、吸気行程中に燃料を噴射した場合は、気筒11内の吸気流動を利用した、燃料のミキシング性、及び、気化・霧化の促進の点で有利になる一方、圧縮行程において燃料を噴射した場合は、燃料の気化・霧化の促進により、気筒11内のガス冷却の点で有利になる。尚、燃料噴射弁53は、MHIに限定されるものではない。
 燃料供給システム54は、その構成の図示は省略するが、燃料を昇圧して燃料噴射弁53に供給する高圧ポンプと、この高圧ポンプに対して燃料タンクからの燃料を送る配管やホース等と、燃料噴射弁53を駆動する電気回路と、を備えている。高圧ポンプは、この例ではエンジン1によって駆動される。尚、高圧ポンプを電動ポンプとしてもよい。高圧ポンプは、ガソリン仕様車と同じ比較的小容量のポンプである。燃料噴射弁53が多噴口型である場合は、微小な噴口から燃料を噴射するために、燃料噴射圧力は比較的高く設定される。電気回路は、エンジン制御器100からの制御信号を受けて燃料噴射弁53を作動させ、所定のタイミングで所望量の燃料を、燃焼室17内に噴射させる。ここで、燃料供給システム54は、エンジン回転数が上昇するに伴い燃圧を高く設定する。これは、エンジン回転数が上昇するに伴い、気筒11内に噴射される燃料量も増大するが、燃圧が高くなることで、燃料の気化・霧化に有利になると共に、燃料噴射弁53の燃料噴射に係るパルス幅を可及的に短くするという利点がある。最高燃圧は、例えば20MPaである。前述したように、燃料タンクには、E25~E100までの任意のエタノール濃度のアルコール含有燃料が貯留されている。
 吸気ポート18は、吸気マニホールド55内の吸気経路55bによってサージタンク55aに連通している。図示しないエアクリーナからの吸気流は、スロットルボデー56を通過してサージタンク55aに供給される。スロットルボデー56にはスロットル弁57が配置されており、このスロットル弁57は、周知のようにサージタンク55aに向かう吸気流を絞って、その流量を調整する。スロットル・アクチュエーター58が、エンジン制御器100からの制御信号を受けて、スロットル弁57の開度を調整する。
 排気ポート19は、排気マニホールド60内の排気経路によって周知のように排気管内の通路に連通している。この排気マニホールド60は、図示を省略するが、各気筒11の排気ポート19に接続された分岐排気通路が、排気順序が隣り合わない気筒同士で第1集合部により集合され、各第1集合部の下流の中間排気通路が第2集合部で集合された構造となっている。すなわち、このエンジン1の排気マニホールド60には、いわゆる4-2-1レイアウトが採用されている。
 エンジン1にはまた、その始動時にクランキングを行うためのスタータモータ20が設けられている。
 エンジン制御器100は、周知のマイクロコンピュータをベースとするコントローラであって、プログラムを実行する中央演算処理装置(CPU)と、例えばRAMやROMにより構成されてプログラム及びデータを格納するメモリと、電気信号の入出力をする入出力(I/O)バスと、を備えている。
 エンジン制御器100は、エアフローセンサ71からの吸気流量及び吸気温度、吸気圧センサ72からの吸気マニホールド圧、クランク角センサ73からのクランク角パルス信号、水温センサ78からのエンジン水温、及び、排気通路に取り付けられたリニアOセンサ79からの、排気ガス中の酸素濃度、というように、種々の入力を受ける。エンジン制御器100は、例えばクランク角パルス信号に基づいて、エンジン回転数を計算する。また、エンジン制御器100は、アクセルペダルの踏み込み量を検出するアクセル開度センサ75からのアクセル開度信号を受ける。さらに、エンジン制御器100には、変速機の出力軸の回転速度を検出する車速センサ76からの車速信号が入力される。加えて、シリンダブロック12には、当該シリンダブロック12の振動を電圧信号に変換して出力する加速度センサからなるノックセンサ77が取り付けられており、その出力信号もエンジン制御器100に入力される。
 エンジン制御器100は前記のような入力に基づいて、以下のようなエンジン1の制御パラメータを計算する。例えば、所望のスロットル開度信号、燃料噴射パルス、点火信号、バルブ位相角信号等である。そしてエンジン制御器100は、それらの信号を、スロットル・アクチュエーター58、燃料供給システム54、点火システム52、並びに、吸気及び排気バルブタイミング可変機構32、42等に出力する。エンジン制御器100はまた、エンジン1の始動時には、スタータモータ20に駆動信号を出力する。
 ここで、FFV用のエンジンシステムに特有の構成として、エンジン制御器100は、リニアOセンサ79の検知結果に基づいて、燃料噴射弁53が噴射する燃料のエタノール濃度を推定する。エタノールの理論空燃比(9.0)は、ガソリンの理論空燃比(14.7)よりも小さく、燃料のエタノール濃度が高いほど理論空燃比はリッチ側(つまり、理論空燃比の値が小さくなる)になることから、理論空燃比でエンジンを運転している条件下において、排気ガス中に燃え残りの酸素が存在しているときには、燃料のエタノール濃度が予想よりも高かったと判断することができる。具体的に、燃料噴射弁53が噴射する燃料のエタノール濃度、言い換えると燃料タンク内に貯留している燃料のエタノール濃度は、給油を行うことによって変化する可能性があるため、エンジン制御器100はまず、燃料タンクのレベルゲージセンサの検出値に基づいて給油判定を行い、給油が行われたことを判定すれば、燃料のエタノール濃度の推定を行う。エンジン制御器100は、リニアOセンサ79が出力した信号から、空燃比がリーンのときには、燃料中にガソリンが多いと判定する一方、空燃比がリッチのときには燃料中にエタノールが多いと判定することにより、燃料におけるエタノール濃度を推定する。尚、燃料のエタノール濃度を推定する代わりに、燃料のエタノール濃度を検出するセンサを設けてもよい。推定したエタノール濃度は、燃料噴射制御に利用されると共に、後述する充填効率の調整制御にも利用される。
 エンジン制御器100はさらに、リニアOセンサ79の検知結果に基づいて、気筒11内に供給した燃料の気化率を算出する。気化率は、気筒11内に供給する燃料量(言い換えると、燃料噴射弁53が噴射した燃料量)に対する、燃焼に寄与した燃料量の重量比によって定義される。エンジン制御器100は、混合気の空燃比と、リニアOセンサの検出値とに基づいて燃焼に寄与した燃料量の重量を算出すると共に、算出した燃料重量と、燃料噴射弁53の燃料噴射量とに基づいて気化率を算出する。算出した気化率は、後述する充填効率の調整制御にも利用される。
 (冷間高負荷時のエンジン制御)
 このエンジンシステムは、前述の通りFFVに搭載されたシステムであり、エンジン1には、E25~E100までの任意の混合比のアルコール含有燃料が供給される。ここで、図2は、ガソリンの気化特性とエタノールの気化特性とを比較する図である。尚、図2は、1気圧下における温度変化に対する、ガソリン及びエタノールそれぞれの蒸留量(%)の変化を示している。ガソリンは多成分燃料であることから、各成分の沸点に応じて蒸発する。ガソリンの蒸留量は、温度変化に対しおおよそ線形的に変化することなる。つまり、ガソリンは、エンジン1の温度状態が比較的低いときにも一部の成分が気化して、可燃混合気を形成することが可能である。
 これに対しエタノールは単一成分燃料であることから、特定温度(つまり、エタノールの沸点である78℃)以下では、蒸留量が0%になる一方で、特定温度を超えると、蒸留量が100%になる。このように、ガソリンとエタノールとを比較すると、特定温度以下では、エタノールの蒸留量の方がガソリンの蒸留量よりも低くなる状態がある一方で、特定温度を超えると、エタノールの蒸留量の方がガソリンの蒸留量よりも高くなる状態がある。そのため、エンジン1の温度状態が所定温度以下(例えば水温が20℃未満程度)の冷間状態では、エタノールを含有する燃料は、ガソリンと比較して気化率が低くなる。そうして、エンジン1が冷間状態にあるときには、エンジン1の温度状態が低いほど、また燃料のエタノール濃度が高いほど、燃料の気化率は低下することになる。
 このように、エンジン1の温度状態や、燃料のエタノール濃度によって燃料の気化率が変化することから、エンジン制御器100は、目標となる気化燃料量が得られるように、エンジン負荷及びアルコール濃度等に応じて設定されるベースの燃料量に対し、燃料の気化率に応じた燃料量の増量補正を行う。すなわち、燃料噴射弁53が噴射する燃料量は、燃料の気化率が低いほど、増量される。このため、冷間高負荷運転時には、エンジン1の負荷状態が高くて燃料量が多くなる上に、燃料の気化率が低くて増量補正値が大きくなる結果、燃料噴射弁53が噴射する燃料量は極めて多くなり得る。また、ガソリンの理論空燃比に対し、エタノールの理論空燃比は値が小さいため、燃料のエタノール濃度が高くなればなるほど、噴射する燃料量は増えることにもなる。
 図3は、高負荷運転時の燃料噴射時期を例示する図である。尚、図3は、燃料噴射時期を概念的に示す図であり、燃料噴射期間を示すものではない。エンジン制御器100は、エンジン1の水温が所定温度以下(前述したように、例えば20℃未満程度)であって、燃料の気化率の低下に伴い噴射する燃料量が極めて多くなる冷間時には、図3に実線で示すように、吸気行程と、圧縮行程とのそれぞれにおいて、気筒11内に燃料を噴射する。
 これに対し、エンジン1の水温が所定温度を超えることで、燃料の気化率が高まり、噴射する燃料量が相対的に少なくなる半暖機から温間時には、エンジン制御器100は、図3に破線で示すように、吸気行程中にのみ、気筒11内に燃料を噴射する。
 また、図4は、エンジン1の水温に対する、燃料圧力の変化を示している。エンジン制御器100は、エンジン1の水温がT(例えば0℃)以下のときには、燃料供給システム54を通じて燃料圧力をP(例えば20MPa)に設定する。一方、エンジン1の水温がT(例えば10℃)を超えるときには、燃料圧力をP(例えば17MPa)に設定すると共に、エンジン1の水温がTからTの間は、エンジン水温の変化に対して、燃料圧力をPからPに線形的に変化させる。尚、燃料圧力の特性は、図4に示す特性に限らず、例えばエンジン1の水温が所定温度以下では燃料圧力をPに設定する一方で、所定温度を超えるときには燃料圧力をPに設定するようにしてもよい。
 圧縮行程噴射は、圧縮行程中の断熱圧縮に伴い上昇する気筒11内の温度を利用して、燃料の気化を促進する。前述したように、このエンジン1は、幾何学的圧縮比が高いことにより、圧縮端温度が高いため、燃料の気化には、極めて有利である。圧縮行程噴射では、気筒11内の温度及び圧力状態が、エタノールが蒸発可能な状態になることを待って、気筒11内に燃料を噴射することが好ましい。こうすることで、気筒11内に噴射した直後からエタノールは気化するようになる。例えば圧縮行程の後半(つまり、圧縮行程を仮想的に前半及び後半の2つに分割したときの後半)に、気筒11内に燃料を噴射するようにしてもよい。但し、燃料の噴射終了時点と、点火時期との間には、混合気形成期間を十分に確保することが好ましい。そのため、例えば燃料噴射量が比較的多くて、燃料噴射期間が長くなるようなときには、燃料の噴射開始を圧縮行程の前半、又は、吸気行程中に設定してもよい。
 また、エンジン1の温度状態が低いときに燃料圧力を高めることによって、燃料の微粒化が促進されるから、燃料の気化性能を高める上で有利になる。また、燃料圧力を高めることは、同一噴射量で比較したときに噴射期間を短くするため、燃料噴射量が比較的多くなる冷間時に、噴射期間を短縮する上で、有利になる。
 前述したように、エンジン1の冷間時には、燃料の気化率が低くなることを考慮して、燃料噴射量が補正によって増量しており、圧縮行程噴射だけでは、十分な燃料噴射期間を確保することができない場合がある。そこで、エンジン制御器100は、燃料噴射弁53を通じて、圧縮行程噴射に加えて、吸気行程中においても燃料を噴射する。これにより、十分な燃料噴射期間を確保する。また、吸気行程噴射は、強い吸気流動を利用して混合気の均質化に有利になると共に、吸気行程中に気筒11内に噴射した燃料は、十分な混合気形成期間を確保することができる。従って、燃料の気化性能の向上に優れる圧縮行程噴射に、吸気行程噴射を組み合わせることは、混合気の着火性及び燃焼安定性の向上に、極めて有利になる。
 ここで、吸気行程噴射は、エンジン1の負荷が比較的低い領域であれば、吸気負圧による減圧沸騰効果によって燃料の気化に有利になるところ、ここではエンジン1の負荷が高くて吸気負圧が低いことから、減圧沸騰効果による燃料の気化は、ほとんど期待することができない。従って、冷間高負荷時に圧縮行程噴射を行うことは、吸気負圧が利用できないときに、燃料の気化を可能にするという利点がある。
 尚、例えば、吸気ポートに燃料を噴射する燃料噴射弁のみを備えたエンジンにおいては、吸気行程噴射しか行うことができない。このようなエンジンにおいては、燃料の気化率が低くなる冷間高負荷時には、燃料の気化を確保するために吸気負圧を利用せざるを得ない。そのため、例えばスロットル弁57を絞って吸気負圧を大きくすることが行われる。つまり、冷間高負荷時に吸気行程噴射のみを行う構成では、充填効率が大きく制限され、それに伴い、最大トルクも大きく制限されてしまうことになる。
 これに対し、冷間高負荷時に、吸気行程噴射と圧縮行程噴射との双方を行う前記の構成では、前述したように、圧縮行程噴射によって燃料の気化を確保することが可能になることから、吸気負圧を大きくしなければならないという制約はなくなる。このことは、冷間高負荷時において、吸気負圧の確保に起因する最大充填効率の制限を無くし、最大トルクを高くすることを可能にする。尚、直噴の燃料噴射弁53に加えて、吸気ポートに燃料を噴射する燃料噴射弁をさらに備えるようにしてもよい。
 吸気行程噴射及び圧縮行程噴射を行うエンジン1の冷間時に対し、エンジン1の温間時には、燃料のエタノール濃度に拘わらず、気化率が比較的高くなる。このため、圧縮行程噴射によって気化率を高める必要性に乏しい。そこで、吸気行程中のみに燃料を噴射する。このことによって、吸気流動の利用と、十分な混合気形成期間の確保とによって、混合気の均質化が図られるから、燃焼安定性が高まる。尚、燃料の気化性能が高くなる温間時には、高い燃料圧力が不要であるため、燃料圧力を相対的に低くする。このことは、エンジンの機械抵抗を低減し、燃費の向上に有利になる。
 そうして、このエンジンシステムでは、冷間高負荷時には、燃料の気化率が低いときほど、充填効率の上限値を低く設定する(つまり、最大充填効率を低く設定する)。これは、スロットル弁57の最大開度を小さくすることに相当する。
 図5は、燃料の気化率に対する最大充填効率の制限量の関係の一例を示している。この関係式は、例えば実験等に基づいて予め設定された上で、エンジン制御器100に記憶されている。最大充填効率の制限量は、最大充填効率の低下量と言い換えることが可能であり、最大充填効率の制限量が大きいことは、最大充填効率を低く設定することに対応し、最大充填効率の制限量が小さい、又は0であることは、最大充填効率を高く設定する、又は最大充填効率を制限しないことに対応する。図5に例示する関係式では、所定の気化率rを超えるときには、最大充填効率の制限量を0にする一方で、当該所定の気化率r以下のときには、気化率が低いほど、最大充填効率の制限量を大に設定する。前述したように、エンジン1の温度状態が低いときには、燃料の気化率が低くなることから、図5の関係式は、言い換えると、エンジン1の水温が所定値を超えるときには、最大充填効率の制限量を0にする一方で、水温が所定値以下のときには、水温が低いほど、最大充填効率の制限量を大に設定することになる。また、低温条件下では、燃料のエタノール濃度が高いときには、燃料の気化率が低くなることから、燃料のエタノール濃度が所定値未満のときには、最大充填効率の制限量を0にする一方で、エタノール濃度が所定値以上のときには、エタノール濃度が高いほど、最大充填効率の制限量を大に設定する、と言い換えることもできる。
 このように最大充填効率の上限値を低く設定することにより、アクセル開度を全開にしたときの全開トルクは制限されるものの、燃料噴射弁53が噴射する燃料量を少なくすることが可能になる。これは、燃料圧力の低下を抑制し、燃費の悪化を回避すると共に、排気エミッション性能の悪化を回避する。
 つまり、前述したように、冷間高負荷時には、低い温度に起因して気化率が低くなることも相まって、燃料噴射量が多くなる。特に燃料のエタノール濃度が高いときには、ガソリン濃度が高いときと比較して、燃料噴射量はさらに多くなり、結果として、1サイクル中に、燃料噴射弁53が噴射する燃料噴射量は、極めて多くなる。そのため、エンジン1の全開負荷状態が継続するようなときには、極めて多い燃料噴射量が継続することになる。一方で、前述したように、燃料供給システム54におけるエンジン駆動の高圧ポンプは、その容量が比較的小さいため、極めて多い燃料噴射量が継続してしまうと、燃料圧力の昇圧が間に合わなくなる。そうして、燃料圧力が次第に低下してしまうようになる。燃料圧力の低下は、燃料の微粒化を悪化させ、燃料の気化性能の悪化を招く。その結果、燃焼性が低下して、燃料噴射量に見合うだけのトルクが発生しなくなる。
 これに対し、最大充填効率の上限値を低く設定することは、エンジン1が全開負荷で運転されるときでも、燃料量の最大値が少なくなる。そのため、比較的小容量の高圧ポンプであっても、高い燃料圧力を維持することが可能になる。こうして、燃焼性が低下してしまう事態が回避されるため、燃費の悪化を回避することができると共に、未燃燃料も減ることで排気エミッション性能の悪化も回避される。
 ここで、図6に示すタイムチャートを参照しながら、冷間高負荷時のエンジン制御について、さらに説明をする。図6は、エンジン1の冷間時にアクセル開度を全開にしたときの、アクセル開度の変化(図6の下図)と、それに伴う充填効率の変化(図6の上図)の一例とを示している。これは、エンジンの冷間始動後、停止状態から、運転者がアクセル開度を全開にまで踏み込むような状況に相当する。図6の上図において一点鎖線で示すラインは、図3に示すように、冷間時に吸気行程と圧縮行程とのそれぞれにおいて燃料噴射を行う場合の最大充填効率に相当する。
 先ず、図6の下図に示すようにアクセル開度が全開になることに伴い、図6の上図に示すように、充填効率は、全開のアクセル開度に対応する所定値になる。ここで、図6においては、燃料の気化率が低いため図5の関係式に従い、図6に一点鎖線で示す最大充填効率よりも、充填効率の上限値が低く設定されている(つまり、最大充填効率が制限されている。実線参照)とする。エンジン制御器100は、スロットル弁57の開度を最大開度よりも低い開度に制限し、このことにより最大充填効率が制限される。このように充填効率を制限する分だけ、燃料噴射弁53が噴射する燃料量は少なくなる。そのため、高圧ポンプの容量が比較的小さくても、アクセルの全開状態が継続するような状況において、燃料圧力が次第に低下する事態を回避することが可能になる。高い燃料圧力により燃料の微粒化を良好にして、燃料の気化性能の悪化が回避されることで、全開トルクを比較的高い状態で維持することが可能になる。
 尚、このような全開負荷を継続することにより、エンジン1の温度は速やかに上昇する。これに伴い、気筒11内に供給した燃料の気化率も次第に高くなるから、図5に示すように、最大充填効率の制限量は、次第に0に近づくようになる。そうして、エンジン1が半暖機又は温間状態へと移行すれば、最大充填効率の制限量は0になる。このように、最大充填効率が制限される期間は比較的短く、全開負荷を継続することにより、最大トルクが次第に高まることになる。これは、加速フィールの低下を抑制する上に有効である。
 図6に実線で示すように、前述したエンジン制御は、最大充填効率を制限するだけであり、アクセル開度の変化に対する、スロットル弁57の開度変更の応答性は、冷間高負荷時とは異なる通常時と変わらない。このことによって、運転者のアクセルペダルの操作に対しトルクが追従するため、運転者の違和感を無くし、加速フィールも良好になる。また、全開まで踏み込まないようなアクセル操作のときには、最大充填効率の制限は関係しなくなる。つまり、冷間時においても低負荷乃至中負荷時には、本制御は行われないことと等価である。このこともまた、運転者の違和感を無くす上で有利になる。
 これに対し、図6の上図に破線で示すように、アクセル開度の変化に対する、スロットル弁57の開度変更の応答性を遅らせることによって燃料噴射量を制限し、よって、燃料圧力が次第に低下する事態を回避する制御も考えられる。しかしながら、このような制御は、運転者のアクセルペダルの操作に対して、トルクが追従しないことから、運転者の違和感を招くと共に、加速フィールも悪化してしまう。本制御は、このような過渡制御とは異なる制御である。
 図6の上図において二点鎖線で示すラインは、吸気行程のみにおいて燃料噴射を行う場合の最大充填効率に相当する。前述したように、冷間高負荷時に、吸気行程噴射のみを行う場合は、吸気負圧を確保するためにスロットル弁57を絞ることになるため、最大充填効率は0.4程度にしかならない。
 これに対し、冷間高負荷時に圧縮行程噴射を行うことは、燃料の気化性能が確保可能であるから、冷間高負荷時における最大充填効率は、吸気行程噴射のみを行う場合と比較して大幅に高くすることが可能である。燃料の気化率に応じて、充填効率の上限値を低く設定するものの、最大充填効率が大幅に高くなっているため、充填効率の上限値を0.5~0.7以上にすることが可能である。つまり、本制御では、最大充填効率を制限したとしても、比較的高い全開トルクを達成することが可能であり、冷間燃費と冷間走行性とが高いレベルで両立する。
 この点に関し、図7は、燃料噴射形態の相違について、全開トルクを比較している。図7では、使用する燃料をエタノール濃度が高いE95としており、低温時には、気化率が低くなる。また、図7では、エンジンの温度変化に伴い、燃料噴射時期の変更や、最大充填効率の制限等を行うものの、点火タイミング等のその他の制御パラメータは、同じに設定している。
 先ず、図7の二点鎖線は、吸気ポートに燃料を噴射する燃料噴射弁のみを備えたエンジンの全開負荷を示している。これは、冷間時(-5℃)に吸気行程噴射のみを行う場合に相当する。前述の通り、冷間時に吸気行程噴射のみを行う場合は、全開トルクが低くなる。
 これに対し、同図に「バツ」で示す線は、冷間時に吸気行程噴射及び圧縮行程噴射を行う場合の全開負荷である。吸気行程噴射のみを行う場合と比較して、全開トルクが大幅に高くなっている。
 また、同図に「白三角」で示す線は、エンジンの温度状態が高まった(20℃、半暖機)ときでかつ、吸気行程噴射及び圧縮行程噴射を行う場合の全開負荷である。最大充填効率の制限が緩和される結果、冷間時と比較して全開トルクが高くなっている。さらに、同図に「黒四角」で示す線は、エンジンの温度状態がさらに高まって、温間状態(90℃)になったときの全開負荷である。温間時であるため、燃料噴射は吸気行程のみに行うと共に、最大充填効率の制限も無い。ここでは、温間時に吸気行程噴射のみを行うことで、吸気の冷却効果により充填効率が高まる結果、全開トルクが大幅に高くなる。
 尚、前記の構成はFFV用のエンジンを対象としているが、ここに開示する技術は、FFVでなくても、アルコールを始めとした特殊燃料を含有する燃料が供給される火花点火式エンジンについて、広く適用することが可能である。
 また、前記の構成では、圧縮行程中の噴射や、吸気行程中の噴射を一括噴射にしているが、これらをそれぞれ、複数回の分割噴射にしてもよい。
1 エンジン(エンジン本体)
11 気筒
100 エンジン制御器
53 燃料噴射弁(燃料供給機構)
54 燃料供給システム(燃料供給機構)
57 スロットル弁

Claims (4)

  1.  特定温度以下の状態下でガソリンよりも気化率の低い特殊燃料を含む燃料が供給されるように構成されたエンジン本体、
     前記エンジン本体に設けられた気筒内に、所定圧力に昇圧した前記燃料を供給するように構成された燃料供給機構、及び、
     少なくとも前記燃料供給機構の制御を通じて前記エンジン本体を運転するように構成された制御器、を備え、
     前記制御器は、前記エンジン本体の温度状態が所定温度以下の冷間時でかつ、前記エンジン本体の負荷状態が所定負荷以上の高負荷時には、前記気筒が吸気行程にあるときと圧縮行程にあるときとに、前記燃料供給機構を通じて前記燃料を前記気筒内に供給すると共に、前記気筒内に供給した前記燃料の前記気化率が低いときほど、前記エンジン本体の充填効率の上限値を低く設定する火花点火式エンジンの制御装置。
  2.  請求項1に記載の火花点火式エンジンの制御装置において、
     前記制御器は、前記気筒内に供給する前記燃料における、前記特殊燃料の濃度が高いほど、前記エンジン本体の充填効率の上限値を低く設定する火花点火式エンジンの制御装置。
  3.  請求項1又は2に記載の火花点火式エンジンの制御装置において、
     前記制御器は、前記エンジン本体の温度状態が低いほど、前記エンジン本体の充填効率の上限値を低く設定する火花点火式エンジンの制御装置。
  4.  請求項1~3のいずれか1項に記載の火花点火式エンジンの制御装置において、
     前記気筒内に充填する新気量を調整するよう構成されたスロットル弁をさらに備え、
     前記制御器は、アクセル開度の情報を受けると共に、前記スロットル弁の開度を、当該アクセル開度に応じた開度に調整し、
     前記制御器はまた、前記制御器は、前記エンジン本体の温度状態が所定温度以下の冷間時でかつ、前記エンジン本体の負荷状態が所定負荷以上の高負荷時には、前記アクセル開度の変化に対し、所定の制御応答性でもって前記スロットル弁の開度を変更すると共に、前記気筒内に供給した前記燃料の前記気化率が低いときほど、前記スロットル弁の上限開度を低く設定する火花点火式エンジンの制御装置。
PCT/JP2014/001942 2013-04-15 2014-04-03 火花点火式エンジンの制御装置 WO2014171092A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112014001963.1T DE112014001963B4 (de) 2013-04-15 2014-04-03 Steuervorrichtung für einen Fremdzündungsmotor
CN201480020717.0A CN105102793B (zh) 2013-04-15 2014-04-03 火花点火式发动机的控制装置
US14/783,358 US9926860B2 (en) 2013-04-15 2014-04-03 Control device for spark-ignition engine
MX2015014334A MX346704B (es) 2013-04-15 2014-04-03 Dispositivo de control para motor de encendido por chispa.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013084713A JP5987763B2 (ja) 2013-04-15 2013-04-15 火花点火式エンジンの制御装置
JP2013-084713 2013-04-15

Publications (1)

Publication Number Publication Date
WO2014171092A1 true WO2014171092A1 (ja) 2014-10-23

Family

ID=51731055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001942 WO2014171092A1 (ja) 2013-04-15 2014-04-03 火花点火式エンジンの制御装置

Country Status (6)

Country Link
US (1) US9926860B2 (ja)
JP (1) JP5987763B2 (ja)
CN (1) CN105102793B (ja)
DE (1) DE112014001963B4 (ja)
MX (1) MX346704B (ja)
WO (1) WO2014171092A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106704004A (zh) * 2015-11-13 2017-05-24 日立汽车系统(中国)有限公司 内燃机以及内燃机的控制方法
CN109724661A (zh) * 2017-10-31 2019-05-07 上汽通用汽车有限公司 低温环境下车辆油耗的测算方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6292135B2 (ja) * 2015-01-14 2018-03-14 トヨタ自動車株式会社 内燃機関の制御装置
KR101926927B1 (ko) 2016-11-14 2018-12-07 현대자동차주식회사 Ffv의 엔진 시동 제어 방법
US10107219B2 (en) * 2017-03-17 2018-10-23 Ford Global Technologies, Llc Method and system for engine cold-start
US10550783B2 (en) * 2017-03-17 2020-02-04 Ford Global Technologies, Llc Method and system for engine cold-start
JP2021046846A (ja) * 2019-09-20 2021-03-25 日立Astemo株式会社 燃料噴射制御装置及び燃料噴射制御方法
JP7171531B2 (ja) * 2019-09-24 2022-11-15 本田技研工業株式会社 燃料噴射制御装置
CN114934846B (zh) * 2022-05-26 2023-07-25 一汽解放汽车有限公司 引燃油控制提前角的控制方法、装置、设备及存储介质
CN115387936A (zh) * 2022-08-08 2022-11-25 昆明理工大学 一种高原增程器低温冷启动控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03121227A (ja) * 1989-10-04 1991-05-23 Nissan Motor Co Ltd 内燃機関の燃料供給装置
JP2008069700A (ja) * 2006-09-13 2008-03-27 Toyota Motor Corp 内燃機関の燃料制御装置
JP2008223676A (ja) * 2007-03-14 2008-09-25 Toyota Motor Corp 筒内噴射式エンジンの燃料噴射制御装置
JP2009191650A (ja) * 2008-02-12 2009-08-27 Denso Corp 内燃機関の制御装置
WO2010079623A1 (ja) * 2009-01-06 2010-07-15 トヨタ自動車株式会社 火花点火式内燃機関

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224244A (ja) * 1990-12-21 1992-08-13 Honda Motor Co Ltd エンジンの空燃比制御装置
JP2860719B2 (ja) * 1991-04-02 1999-02-24 本田技研工業株式会社 空燃比制御装置
JP3552609B2 (ja) * 1999-09-30 2004-08-11 マツダ株式会社 火花点火式直噴エンジンの制御装置
JP4336444B2 (ja) * 2000-06-12 2009-09-30 日産自動車株式会社 内燃機関の可変動弁装置
DE10156140B4 (de) * 2000-11-21 2005-12-15 Mitsubishi Jidosha Kogyo K.K. Variable Ventilsteuerung
JP3870692B2 (ja) * 2000-11-24 2007-01-24 トヨタ自動車株式会社 筒内噴射式火花点火内燃機関
DE10222703B4 (de) * 2001-05-23 2015-06-18 Denso Corporation Steuergerät für eine Brennkraftmaschine
KR20040074591A (ko) * 2002-01-31 2004-08-25 마츠다 가부시키가이샤 다기통 불꽃 점화 엔진용 제어 장치
JP4416377B2 (ja) * 2002-05-16 2010-02-17 日産自動車株式会社 内燃機関の制御装置
US7992537B2 (en) 2007-10-04 2011-08-09 Ford Global Technologies, Llc Approach for improved fuel vaporization in a directly injected internal combustion engine
US7621257B1 (en) * 2008-05-01 2009-11-24 Ford Global Technologies, Llc Engine valve operation
JP2010037968A (ja) 2008-08-01 2010-02-18 Denso Corp 内燃機関の燃料噴射制御装置
JP2010133288A (ja) 2008-12-02 2010-06-17 Toyota Motor Corp 内燃機関の制御装置
JP5500102B2 (ja) * 2011-02-24 2014-05-21 マツダ株式会社 火花点火式ガソリンエンジンの制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03121227A (ja) * 1989-10-04 1991-05-23 Nissan Motor Co Ltd 内燃機関の燃料供給装置
JP2008069700A (ja) * 2006-09-13 2008-03-27 Toyota Motor Corp 内燃機関の燃料制御装置
JP2008223676A (ja) * 2007-03-14 2008-09-25 Toyota Motor Corp 筒内噴射式エンジンの燃料噴射制御装置
JP2009191650A (ja) * 2008-02-12 2009-08-27 Denso Corp 内燃機関の制御装置
WO2010079623A1 (ja) * 2009-01-06 2010-07-15 トヨタ自動車株式会社 火花点火式内燃機関

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106704004A (zh) * 2015-11-13 2017-05-24 日立汽车系统(中国)有限公司 内燃机以及内燃机的控制方法
CN106704004B (zh) * 2015-11-13 2020-06-16 日立汽车系统(中国)有限公司 内燃机以及内燃机的控制方法
CN109724661A (zh) * 2017-10-31 2019-05-07 上汽通用汽车有限公司 低温环境下车辆油耗的测算方法

Also Published As

Publication number Publication date
DE112014001963B4 (de) 2020-06-25
CN105102793A (zh) 2015-11-25
US9926860B2 (en) 2018-03-27
DE112014001963T5 (de) 2015-12-24
JP5987763B2 (ja) 2016-09-07
MX346704B (es) 2017-03-29
US20160069280A1 (en) 2016-03-10
MX2015014334A (es) 2015-12-07
JP2014206116A (ja) 2014-10-30
CN105102793B (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
JP5987763B2 (ja) 火花点火式エンジンの制御装置
JP5987764B2 (ja) 火花点火式エンジンの制御装置
US9909514B2 (en) Direct injection of diluents or secondary fuels in gaseous fuel engines
US9297329B2 (en) Method and system for engine control
US10400702B2 (en) Engine fueling during exit from a deceleration fuel shut-off condition
CN106677910B (zh) 用于双燃料喷射的方法和系统
US20150252772A1 (en) Control device for internal combustion engine
JP5924098B2 (ja) 直噴エンジンの制御装置
JP5987765B2 (ja) 火花点火式エンジンの制御装置
JP6070412B2 (ja) 火花点火式エンジンの制御装置
JP4968206B2 (ja) 内燃機関及び内燃機関の燃料噴射制御装置
JP6011433B2 (ja) 火花点火式エンジン
JP6044102B2 (ja) 直噴エンジンの始動制御装置
JP6002521B2 (ja) 筒内噴射エンジンの制御装置
JP6020351B2 (ja) 火花点火式エンジンの制御装置
JP5910571B2 (ja) 火花点火式エンジンの制御装置
JP2013224621A (ja) 直噴エンジンの始動方法及び直噴エンジンの始動制御装置
JP5999016B2 (ja) 火花点火式エンジン
JP5958408B2 (ja) 火花点火式エンジン
JP5942928B2 (ja) 火花点火式エンジンの制御装置
JP5915354B2 (ja) 直噴エンジンの始動制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480020717.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785182

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14783358

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/014334

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 112014001963

Country of ref document: DE

Ref document number: 1120140019631

Country of ref document: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015025899

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 14785182

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015025899

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151009

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref country code: BR

Free format text: ANULADA A PUBLICACAO CODIGO 1.3 NA RPI NO 2429 DE 25/07/2017 POR TER SIDO INDEVIDA.

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112015025899

Country of ref document: BR

Kind code of ref document: A2

Free format text: APRESENTAR A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE JP 2013-084713 DE 15/04/2013 OU DECLARACAO CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTA (DEPOSITANTE(S), INVENTOR(ES), NUMERO DE REGISTRO, DATA DE DEPOSITO E TITULO), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013, UMA VEZ QUE NAO FOI POSSIVEL DETERMINAR O(S) TITULAR(ES) DA CITADA PRIORIDADE, NEM SEUS INVENTORES, INFORMACAO NECESSARIA PARA O EXAME.

ENP Entry into the national phase

Ref document number: 112015025899

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151009