WO2014167772A1 - インダイレクトスポット溶接方法 - Google Patents

インダイレクトスポット溶接方法 Download PDF

Info

Publication number
WO2014167772A1
WO2014167772A1 PCT/JP2014/001257 JP2014001257W WO2014167772A1 WO 2014167772 A1 WO2014167772 A1 WO 2014167772A1 JP 2014001257 W JP2014001257 W JP 2014001257W WO 2014167772 A1 WO2014167772 A1 WO 2014167772A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
energization
current value
welding
pressure
Prior art date
Application number
PCT/JP2014/001257
Other languages
English (en)
French (fr)
Inventor
松下 宗生
池田 倫正
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP14783158.0A priority Critical patent/EP2985108B1/en
Priority to KR1020157026911A priority patent/KR101735234B1/ko
Priority to JP2014527420A priority patent/JP6032285B2/ja
Priority to MX2015014123A priority patent/MX2015014123A/es
Priority to CN201480020462.8A priority patent/CN105121087B/zh
Priority to US14/783,094 priority patent/US10207353B2/en
Publication of WO2014167772A1 publication Critical patent/WO2014167772A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • B23K11/31Electrode holders and actuating devices therefor
    • B23K11/314Spot welding guns, e.g. mounted on robots
    • B23K11/315Spot welding guns, e.g. mounted on robots with one electrode moving on a linear path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0205Non-consumable electrodes; C-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels

Definitions

  • the present invention presses a welding electrode against a metal plate on one surface side against a member obtained by superimposing two metal plates, and the metal plate on the other surface side is spaced from the welding electrode.
  • the present invention relates to an indirect spot welding method in which a power supply terminal is attached, and welding is performed by energizing between the welding electrode and the power supply terminal.
  • the present invention relates to an indirect spot welding method capable of obtaining a suitable nugget even when energization between metal plates other than the welded portion of the overlapped member, that is, a so-called shunt current is large.
  • resistance spot welding mainly direct spot welding
  • indirect spot welding has been used.
  • FIG. 1A shows the direct spot welding method.
  • a current is applied while pressing a pair of electrodes 3 and 4 from above and below between the two stacked metal plates 1 and 2, and the resistance heating of the metal plates is used.
  • This is a method for obtaining the welded portion 5.
  • Each of the electrodes 3 and 4 includes pressurization control devices 6 and 7 and a current control device 8, which are configured to control the applied pressure and the current value to be energized.
  • the two metal plates 21 and 22 are pressed against each other while pressing the electrode 23 against one metal plate 21 and against the other metal plate 22.
  • the weld is a meteorite shape formed through a state of being completely melted between metal plates as obtained by direct spot welding. Often required to be a nugget. Therefore, among the above-described welding methods, when there is a space and an opening that sandwiches the metal plate from above and below is obtained, the direct spot welding method is used.
  • the stacked metal plates are pressurized by the electrode only from one direction, and the opposite side is in a hollow state without support. Yes. Therefore, it is not possible to apply a high applied pressure directly under the electrodes as in the direct spot welding method in which the electrodes are sandwiched from both sides. In addition, since the electrode sinks into the metal plate during energization, the contact state between the electrode and the metal plate and between the metal plate and the metal plate changes.
  • Patent Document 1 as a welding electrode that can be applied to indirect spot welding and can obtain a weld portion having a predetermined strength, “a substantially conical tip shape is provided, and the tip angle of the cone is 120 degrees or more”. Describes a resistance welding electrode having a conical surface of 165 degrees and a flat portion having a diameter of 1.5 to 3 mm at the center of the tip of the cone.
  • Patent Document 1 regarding the welded portion welded according to the technique disclosed in the same document, “when the metal structure of the overlapped portion of the metal plates 11 and 12 is observed, the metal in the overlapped portion of the metal plates 11 and 12 is Compared to conventional ordinary nuggets, there are many events that are formed by melting and recrystallizing finely and partly, which is the case of joining in the so-called diffusion bonding state, May be joined by different events ”(paragraph [0038] of the document 1). That is, the welded part obtained by using the welding electrode described in Patent Document 1 is not necessarily a nugget formed in a meteorite shape after being completely melted like a nugget found in direct spot welding. There was a problem.
  • the current spot welding part management standards in transportation equipment manufacturers often require the welded part to be a meteorite-shaped nugget. For this reason, even a welded portion having a predetermined joint strength does not satisfy the management standard unless a meteorite-shaped nugget formed through a completely melted state is obtained. Accordingly, there is a need for an indirect spot welding method that can more stably obtain a meteorite-shaped nugget even when current flowing between metal plates other than the welded portion, that is, a so-called diversion is large.
  • the shape of the electrode tip of the welding electrode is related to the thickness of the metal plate serving as a reference for the nugget diameter with respect to the stacked metal plates used for welding. That is, the thickness of the metal plate serving as a reference for the nugget diameter is the thickness of the thinner metal plate of the member obtained by superimposing two metal plates.
  • the current value during energization and its time are finely controlled, or the applied pressure and time during energization are finely controlled. It is more effective to finely control the current value, the electrode pressing force, and the time. The present invention is based on the above findings.
  • the gist configuration of the present invention is as follows. (1) Pressing a welding electrode against a metal plate on one surface side of the member against a member obtained by superimposing two metal plates, and welding the metal plate on the other surface side of the member
  • the electrode tip portion of the welding electrode includes a leading edge of the welding electrode, and a radius of curvature r 1 (within a radius R (mm) centered on the leading edge when viewed from the leading edge side.
  • the current value to be energized is constant from the start to the end of energization,
  • the welding electrode pressure is divided into two time zones t 1 and t 2 from the start of energization. After the first time zone t 1 is pressurized with the pressure F 1 , the next time zone t 2 is The indirect spot welding method according to (1), wherein pressurization is performed with a pressurizing force F 2 lower than F 1 .
  • the welding electrode pressure and the current value to be energized are divided into two time zones t 1 and t 2 from the start of energization, and the first time zone t 1 is pressurized with the pressure F 1 and the current After energizing at the value C 1 , in the next time zone t 2 , pressurizing at a pressure F 2 lower than F 1 and energizing at a current value C 2 higher than C 1.
  • Direct spot welding method
  • the welding electrode pressure is divided into two time zones t F1 and t F2 from the start of energization.
  • the first time zone t F1 after pressurizing with the pressure F 1 , the next time zone t In F2 , pressurization is performed with a pressure F 2 lower than F 1 .
  • the current value to be energized is divided into two time zones t C1 and t C2 from the start of energization independently of the time zones t F1 and t F2, and in the first time zone t C1 , the current value C 1
  • the indirect spot welding method according to (1) wherein after energization, energization is performed at a current value C 2 higher than C 1 in the next time zone t C2 .
  • the present invention since a welding electrode having an electrode tip having an appropriate shape is used, even when energization between metal plates other than the welded portion, so-called shunt current is large, the molten state between the metal plates is maintained. The meteorite-type nugget formed through the process can be obtained more stably.
  • a member obtained by superimposing two metal plates is pressed against a metal plate on one surface side of the member while pressing a welding electrode, and the other surface side of the member is A power supply terminal is attached to the metal plate at a position separated from the welding electrode, and welding is performed by energizing between the welding electrode and the power supply terminal.
  • a member on which metal plates are overlapped is placed on a concave metal jig, a ground electrode is attached to the lower part of the jig, and the overlapped metal plates are integrated.
  • FIG. 2 shows the shape of the electrode tip of the welding electrode in one embodiment of the method of the present invention.
  • the electrode tip 30 of the welding electrode includes the leading edge of the welding electrode and has a radius of curvature r 1 (mm) located within a circle having a radius R (mm) centered on the leading edge when viewed from the leading edge.
  • a two-stage dome shape composed of a first curved surface 31 and a second curved surface 32 having a radius of curvature r 2 (mm) located around the first curved surface, which are expressed by equations (1) to Satisfy (3).
  • the electrode tip 30 has a two-stage dome shape, and the first curved surface 31 has a larger radius of curvature than the second curved surface 32, thereby causing a phenomenon that the electrode sinks into the metal plate during energization.
  • a high current density can be maintained between the stacked metal plates directly under the electrodes.
  • the first curved surface 31 a curved surface having a larger radius of curvature than the second curved surface 32, a sufficient contact area between the electrode and the metal plate can be secured at the start of energization, and the current density becomes excessive. Problems such as molten metal scattering from the metal plate on the side in contact with the electrode can be solved.
  • the second curved surface 32 is a curved surface having a smaller radius of curvature than the first curved surface 31. Therefore, an increase in the contact area between the electrode and the metal plate is suppressed when the electrode sinks into the metal plate during energization and the second curved surface 32 starts to contact the metal plate in addition to the first curved surface 31. be able to.
  • one of the characteristic configurations of the present invention is a nugget among members formed by superimposing metal plates for welding with a radius R (mm) that defines the boundary between the first curved surface 31 and the second curved surface 32. It is limited by an integral multiple of the square root of the plate thickness t (mm) of the metal plate serving as a reference for the diameter.
  • the thickness t of the metal plate serving as a reference for the nugget diameter is a thickness of a thinner metal plate in spot welding of a member in which two metal plates are overlapped. When two sheets have the same thickness, the thickness is the same.
  • the required value of the nugget diameter is defined by an integral multiple of the square root of the thickness of the thinner plate.
  • the radius R is an appropriate size, the increase of the nugget diameter to the range exceeding the radius R can be suppressed in the process of increasing the contact area between the electrode and the metal plate during welding. A good nugget diameter can be obtained.
  • the radius R is set to a smaller plate. It should be limited to an integral multiple of the square root of the plate thickness.
  • the radius R is less than 2 ⁇ t (mm)
  • the contact area between the electrode and the metal plate is suppressed in an extremely small range at the start of energization. Therefore, the current density becomes excessive, and the metal on the side where the electrode contacts Problems such as molten metal splashing from the plate occur.
  • the radius R exceeds 6 ⁇ t (mm)
  • the electrode sinks into the metal plate during energization as described above, and the second curved surface 32 in addition to the first curved surface 31 also starts to contact the metal plate. At this time, the effect of suppressing an increase in the contact area between the electrode and the metal plate cannot be sufficiently obtained. Therefore, the radius R (mm) is limited to the range of the following formula (1).
  • t is the plate thickness (mm) of the thin metal plate described above.
  • the radius R is more preferably in the range of 3 ⁇ t ⁇ R ⁇ 5 ⁇ t (mm).
  • the radius of curvature r 1 (mm) of the first curved surface 31 With respect to the radius of curvature r 1 (mm) of the first curved surface 31, by setting r 1 to 30 mm or more, a sufficient contact area between the electrode and the metal plate can be secured at the start of energization, and the current density is excessive. Thus, it is possible to eliminate problems such as molten metal scattering from the metal plate on the side in contact with the electrode. Therefore, the radius of curvature r 1 (mm) is limited to the range of the following formula (2). 30 ⁇ r 1 (2) Moreover, in order to more reliably obtain the above-described effects, it is more preferable that r 1 is 40 mm or more.
  • the first curved surface can also be made a flat surface by assuming that the radius of curvature is infinite.
  • the radius of curvature r 2 (mm) of the second curved surface 32 when r 2 is less than 6 mm, the electrode sinks excessively into the metal plate during energization, unnecessarily deforms the weld between the metal plates, and cracks. This is not preferable.
  • the radius of curvature r 2 (mm) is limited to the range of the following formula (3). 6 ⁇ r 2 ⁇ 12 (3) In order to more reliably obtain the above-described effects, it is more preferable that the curvature radius r 2 (mm) is in the range of 8 ⁇ r 2 ⁇ 10.
  • the electrode radius at the lower end of the electrode tip 30 of the welding electrode can be set to 8 mm, for example, as shown in FIG. 2, and can be appropriately determined to be about 4.0 to 12.5 mm.
  • the first curved surface 31 and the second curved surface 32 constituting the distal end portion 30 of the welding electrode satisfy the above-described equations (1) to (3).
  • the current density between the metal plates can be made appropriate. Therefore, even if energization between the metal plates other than the welded portion, that is, a so-called diversion is large, a meteorite-shaped nugget formed through a molten state between the metal plates can be obtained more stably.
  • the metal plate used by this invention is not specifically limited, For example, a metal plate made from steel can be used. Further, the plate thickness t of the thinner metal plate targeted by the present invention is about 0.5 to 1.8 mm, and the total plate thickness of the members laminated with the metal plates is about 1 to 4 mm.
  • the time zone from the start of energization to the end of energization, the control of the applied pressure F, and the current value C are not particularly limited, and can be appropriately selected.
  • the energization time can be about 0.06 to 0.60 s
  • the applied pressure F is about 100 to 1500 N
  • the current value C is about 4 to 12 kA.
  • control of the time zone from the start of energization to the end of energization, the applied pressure F, and the current value C is not limited.
  • the energizing time is divided to control the welding electrode pressure and current value. Is more preferable.
  • FIGS. 3A and 3B show the basic relationship between the energization time and the applied pressure and the energization time and the current value, respectively, in another preferred embodiment according to the present invention. By performing such control, a more remarkable effect can be obtained.
  • a preferable relationship between the energization time and the applied pressure and a relationship between the energization time and the current value in the embodiment will be described below.
  • the time zone from the start of energization is divided into two simultaneously or independently, and the welding electrode pressure F or energization is conducted in each time zone. It is preferable to control one of the current values C or both the applied pressure F and the current value C.
  • the divided time zones are t 1 and t 2, and both the pressing force F and the current value C are controlled independently.
  • T F1 and t F2 are time zones for dividing the applied pressure F
  • t C1 and t C2 are time zones for dividing the current value C
  • the applied pressure in each time zone is F 1 , F 2 and the current value.
  • C 1 and C 2 are denoted by C 1 and C 2 .
  • This time zone t 1 is a time zone in which energization is started while pressing the metal electrode on which the welding electrodes are overlapped, and the formation of the melted portion is started from the heat generated by the contact resistance between the metal plates.
  • the pressing force F 1 is too low, the contact area between the electrode and the metal plate becomes extremely small, the current density increases excessively, the metal plate surface melts and scatters, and the surface shape is significantly impaired. Will occur. Therefore, it is preferable to select the pressurizing force F 1 as appropriate so that such a problem does not occur.
  • the current value C 1 needs to be a current value high enough to start melting due to heat generation between the metal plates, but if it is too high, the metal plate surface melts and scatters as described above. Not only does the shape become poor and the appearance is remarkably impaired, but there is also a problem that the joint strength is reduced. Therefore, it is preferable to select appropriately so that such a problem does not occur.
  • This time zone t 2 is a stage in which the melted portion that has been formed in the time zone t 1 is further grown.
  • the metal plate around the electrode softens due to heat generated by energization, and when indirect spot welding is performed in a hollow state where the opposite side of the electrode is not supported, the tip of the electrode sinks into the metal plate when the metal plate softens.
  • the contact area between the electrode and the metal plate, or between the metal plate and the metal plate increases, and the current density decreases. Therefore, heat generation sufficient for growing nuggets cannot be obtained. Therefore, in this time zone t 2 , it is preferable that the applied pressure F 2 is set lower than the applied pressure F 1 to suppress the electrode tip from sinking into the metal plate.
  • the current value C 2 is preferably set to a current value higher than the current value C 1 , and the current density is preferably prevented from decreasing due to the increase in the contact area due to the sinking of the electrode.
  • the current value is too high, the molten metal scatters from the surface of the metal plate on the opposite side of the electrode and melts away, resulting in a problem that not only the appearance is significantly impaired but also the joint strength is lowered. Therefore, it is preferable to appropriately select the current value C 2 so that such a problem does not occur.
  • the preferred embodiment in which the energization is divided into two time zones and both the applied pressure F and the current value C are controlled at the same time has been described.
  • only the applied pressure is controlled.
  • the above-described time zones t 1 and t 2 it is possible to obtain a further effect by making the pressure F 2 lower than F 1 and the current value C 2 higher than C 1. it can.
  • the applied pressure F is divided into time zones t F1 and t F2 from the start of energization, and the applied pressure F 2 is made lower than F 1 , while the current value C is separated from the time zones t F1 and t F2.
  • the current value C 2 is made higher than C 1 by dividing into time zones t C1 and t C2 from the start of energization.
  • the energization times in the time zones t 1 and t 2 are t 1 : It is preferable to set 0.02 to 0.30 s and t 2 : about 0.10 to 0.60 s.
  • the applied pressure in each of the time zones t 1 and t 2 is respectively F 1 : 300 to 2000 N, F 2 : about 100 to 1500 N, and the current values are C 1 : 2.0 to 10.0 kA, C 2 : 2 respectively. It is preferably about 5 to 12.0 kA.
  • the current values C 1 and C 2 are constant, and when the applied pressure F 2 is lower than F 1 , the constant current value is preferably about 2.5 to 10 kA.
  • the pressing force F is set to t F1 : 0.02 to 0.30 s, t F2 : 0.10 to 0.60 s.
  • F 1 is about 300 to 2000 N and F 2 is about 100 to 1500 N
  • the current value C is t C1 : 0.02 to 0.30 s
  • t Preferably, C2 is about 0.10 to 0.60 s, C 1 is about 2.0 to 10.0 kA, and C 2 is about 2.5 to 12.0 kA in each of the time zones t C1 and t C2 .
  • the indirect spot welding method was implemented with the configuration shown in FIG.
  • Tensile strength to be chemical components shown in Table 1 SPC270 steel plates of 270 MPa or more were combined as an upper steel plate and a lower steel plate to produce a member composed of two superposed steel plates.
  • the plate thickness of the upper steel plate is 1.0 mm
  • the plate thickness of the lower steel plate is 1.2 mm.
  • This member is placed on a concave metal jig as shown in FIG. 4, the support interval is set to 30 mm, a ground electrode is attached to the lower part of the jig, and pressure is applied from above with a welding electrode. Went.
  • both ends of the upper and lower steel plates stacked as described above are restrained on a jig by clamping, and the upper steel plate and the lower steel plate are brought into close contact with each other, thereby making it easy to cause a shunt between the steel plates when energized.
  • the conditions under which nuggets were hardly formed immediately below the electrodes were set.
  • a DC inverter type power supply was used for welding.
  • the electrode used for welding is made of chromium copper alloy, and the electrode tip of the welding electrode includes the leading edge of the welding electrode and has a radius R (mm) centered on the leading edge when viewed from the leading edge.
  • R, r 1 and r 2 composed of a first curved surface having a radius of curvature r 1 (mm) extending within a circle and a second curved surface having a radius of curvature r 2 (mm) extending around the first curved surface. It is a stepped dome shape.
  • R, r 1 and r 2 are shown in Table 2, respectively.
  • Table 2 also shows the electrode radius at the lower end of the electrode tip of the welding electrode.
  • Table 2 shows the conditions of the time zone from the start of energization to the end of energization and the applied pressure and current value in each time zone during welding. Under the conditions described in Table 2, no. Indirect spot welding was tried from 1 to 16.
  • the electrode pressure is divided into two time zones t F1 and t F2 from the start of energization, while the energizing current value is started independently of the time zones t F1 and t F2.
  • the pressure F and the current value C were independently controlled by dividing into two time zones t C1 and t C2 .
  • Table 3 shows the results of investigating the nugget diameter, nugget thickness, nugget thickness / diameter, and appearance defects of each joint when welding with the electrode shape and the energization pattern shown in Table 2.
  • the nugget diameter is the length of the melted portion formed between the upper steel plate and the lower steel plate on the overlap line in the cross section cut around the welded portion.
  • the nugget thickness was the maximum thickness of the melted portion formed between the upper steel plate and the lower steel plate in the cross section cut at the center of the weld.
  • the nugget thickness / diameter is obtained by dividing the above-described nugget thickness by the nugget diameter. If the nugget diameter is 4 mm or more and the nugget thickness / diameter is 0.22 or more, it can be determined as a suitable nugget.
  • the plate thickness of the upper steel plate is 1.0 mm
  • the plate thickness of the lower steel plate is 0.7 mm
  • the electrode shape of the welding electrode the time zone from the start of energization to the end of energization, and the applied pressure and current value in each time zone Indirect spot welding was performed under the same conditions as in Example 1 except that the conditions of No. 1 were as shown in Table 4. Tried from 1 to 6.
  • Table 5 shows the results of investigating the nugget diameter, nugget thickness, nugget thickness / diameter and appearance defects of each joint when welding with the electrode shape and energization pattern shown in Table 4.
  • the nugget diameter and the nugget thickness in Table 5 are as described in the first embodiment. If the nugget diameter is 3.4 mm or more and the nugget thickness / diameter is 0.20 or more, it can be determined as a suitable nugget.
  • No. 1 was obtained by performing indirect spot welding using a welding electrode satisfying the requirements of the present invention for a thickness of 0.7 mm of the thinner steel plate.
  • any of Nos. 2 to 5 it is possible to obtain a molten nugget having a sufficient nugget diameter and a sufficient thickness with respect to this diameter even under a condition in which the nugget is difficult to be formed directly under an intentionally set electrode. In addition, no appearance defects were observed.
  • no. In 6 the nugget diameter was insufficient and the nugget thickness / diameter was less than 0.20. No. In 1, the formation of nuggets was not observed, and further burn-out occurred.
  • the present invention since a welding electrode having an electrode tip having an appropriate shape is used, even when energization between metal plates other than the welded portion, so-called shunt current is large, the molten state between the metal plates is maintained. The meteorite-type nugget formed through the process can be obtained more stably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Resistance Welding (AREA)

Abstract

 碁石形のナゲットをより安定して得ることができるインダイレクトスポット溶接方法を提供することを目的とする。 インダイレクトスポット溶接において、溶接電極の電極先端部30は、前記溶接電極の最先端を含み、該最先端側から見て該最先端を中心とした半径R(mm)の円の範囲内に位置する曲率半径r1(mm)の第1の曲面31と、曲率半径r2(mm)の第2の曲面32とから構成される2段のドーム形状であって、下記(1)~(3)式を満足することを特徴とする。 記 2√t≦R≦6√t ・・・(1) 30≦r1 ・・・(2) 6≦r2≦12 ・・・(3) ただし、tは薄い方の金属板の板厚(mm)である。

Description

インダイレクトスポット溶接方法
 本発明は、2枚の金属板を重ね合わせた部材に対し、一方の面側の金属板に溶接電極を加圧しながら押し当て、他方の面側の金属板には溶接電極から離隔した位置に給電端子を取り付け、これら溶接電極と給電端子との間で通電して溶接を行うインダイレクトスポット溶接方法に関するものである。本発明は特に、重ね合わせた部材の溶接部以外での金属板間の通電、いわゆる分流が大きな場合においても、好適なナゲットが得られるインダイレクトスポット溶接方法に関する。
 自動車ボディーや自動車部品の溶接に際しては、従来から抵抗スポット溶接、主にダイレクトスポット溶接が使用されてきたが、最近では、インダイレクトスポット溶接等が使用されるようになってきた。
 上記したダイレクトスポット溶接およびインダイレクトスポット溶接の特徴を、図1を用いて説明する。
 いずれのスポット溶接も、重ね合わせた少なくとも2枚の金属板を溶接により接合する点では変わりはない。
 図1(A)は、ダイレクトスポット溶接法を示したものである。この溶接は、同図に示すとおり、重ね合わせた2枚の金属板1,2を挟んでその上下から一対の電極3,4を加圧しつつ電流を流し、金属板の抵抗発熱を利用して、溶接部5を得る方法である。なお、電極3,4はいずれも、加圧制御装置6,7および電流制御装置8を備えており、これらによって加圧力と通電する電流値が制御できる仕組みになっている。
 図1(B)に示すインダイレクトスポット溶接法は、重ね合わせた2枚の金属板21,22に対し、一方の金属板21には電極23を加圧しながら押し当て、他方の金属板22には電極23から離隔した位置で給電端子24を取り付け、これらの間で通電することにより、金属板21,22に溶接部25を形成する方法である。
 ここで、輸送機器メーカーにおける現状の抵抗スポット溶接による溶接部の管理基準では、溶接部は、ダイレクトスポット溶接で得られるような、金属板間で完全に溶融した状態を経て形成される碁石形のナゲットであることを要求されることが多い。そのため、上記した溶接法のうち、スペース的に余裕があり、金属板を上下から挟む開口部が得られる場合には、ダイレクトスポット溶接法が用いられる。
 しかしながら、実際の溶接に際しては、十分なスペースがなかったり、閉断面構造で金属板を上下から挟むことができない場合も多く、かような場合には、インダイレクトスポット溶接法が用いられる。
 ここで、インダイレクトスポット溶接法を上記のような用途に使用する際には、重ね合わせた金属板は一方向からのみ電極により加圧され、その反対側は支持の無い中空の状態になっている。従って、両側から電極で挟むダイレクトスポット溶接法のように電極直下に局部的に高い加圧力を与えることができない。また、通電中に電極が金属板に沈み込んでいくため、電極-金属板間、金属板-金属板間の接触状態が変化する。
 このような理由により、従来のインダイレクトスポット溶接では、重ね合わせた金属板間で電流の通電経路が安定しないため、金属板間で溶融した状態を経て形成される碁石形のナゲットを安定して得ることは難しいとされていた。特に、重ね合わせた金属板が一方向からのみ電極により加圧され、その反対側は支持の無い中空の状態であり、かつ、金属板の両端が拘束された場合などでは、溶接部以外での金属板間の通電、所謂分流が大きくなり、碁石型のナゲットを安定して得ることは一層困難となる。
 ここで、特許文献1には、インダイレクトスポット溶接に適用可能な、所定強度の溶接部を得ることができる溶接電極として、「略円錐状の先端形状を備え、円錐の先端角度が120度~165度である円錐面と、前記円錐の先端中心部に直径が1.5~3mmの平坦部を備えた抵抗溶接用電極」が記載されている。
特開2006-198676号公報
 しかしながら、特許文献1には、同文献に開示の技術に従って溶接された溶接部に関して、「金属板11,12の重合部の金属組織を観察すると、金属板11,12の重合部の金属が、従来の通常のナゲットに比べて細かく部分的に溶融して再結晶したものが多数形成される事象が見られ、所謂、拡散接合の状態で接合している場合であり、従来の通常のナゲットとは異なる事象で接合している場合もある。」(同文献1の段落[0038])との記載がある。すなわち、特許文献1に記載の溶接電極を用いて得られる溶接部は、ダイレクトスポット溶接で見られるナゲットのように、完全に溶融した状態を経て碁石形に形成されたナゲットであるとは限らない、という問題があった。
 既述のとおり、輸送機器メーカーにおける現状のスポット溶接部の管理基準では、溶接部は碁石形のナゲットであることを要求されることが多い。そのため、所定の接合強度が得られた溶接部であっても、完全に溶融した状態を経て形成された碁石形のナゲットが得られなければ管理基準を満足しない。従って、溶接部以外での金属板間の通電、所謂分流が大きな場合であっても、より安定して碁石形のナゲットを得ることのできるインダイレクトスポット溶接方法が求められている。
 そこで、本発明では、溶接部以外での金属板間の通電、所謂分流が大きな場合であっても、金属板間で溶融した状態を経て形成された碁石形のナゲットをより安定して得ることができるインダイレクトスポット溶接方法を提供することを目的とする。
 さて、本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、以下に述べる知見を得た。
a)上述のとおり、インダイレクトスポット溶接では、ダイレクトスポット溶接のように電極直下の重ね合わせた金属板間に溶接部を形成するための十分な発熱が得難く、ナゲットが形成されにくい。特に、溶接部以外での金属板間の通電、所謂分流が大きな場合においては、ナゲット形成がさらに困難となる。
b)上記の問題を解決するには、通電中に電極が金属板に沈み込んでいく現象が生じても、電極直下の重ね合わせた金属板間で高い電流密度が維持できるよう、電極先端部を適切な形状とした溶接電極を用いる必要がある。
c)上記溶接電極の電極先端部の形状は、溶接に供する重ね合わせた金属板に関し、ナゲット径の基準となる金属板の板厚に関連する。すなわち、ナゲット径の基準となる金属板の板厚とは、2枚の金属板を重ね合わせた部材の、より薄い方の金属板の板厚である。
d)上記の形状とした溶接電極を用いることに加えて、通電中の電流値およびその時間を細かく制御する、または通電中の電極の加圧力およびその時間を細かく制御する、さらには通電中の電流値と電極の加圧力およびその時間を細かく制御することがより有効である。
 本発明は、上記の知見に立脚するものである。
 すなわち、本発明の要旨構成は次のとおりである。
(1)2枚の金属板を重ね合わせた部材に対し、前記部材の一方の面側の金属板に溶接電極を加圧しながら押し当て、前記部材の他方の面側の金属板には前記溶接電極と離隔した位置に給電端子を取り付け、前記溶接電極と前記給電端子との間で通電して溶接を行うインダイレクトスポット溶接方法において、
 前記溶接電極の電極先端部は、前記溶接電極の最先端を含み、該最先端側から見て該最先端を中心とした半径R(mm)の円の範囲内に位置する曲率半径r1(mm)の第1の曲面と、該第1の曲面の周囲に位置する曲率半径r2(mm)の第2の曲面とから構成される2段のドーム形状であって、下記(1)~(3)式を満足することを特徴とするインダイレクトスポット溶接方法。
               記
           2√t≦R≦6√t ・・・(1)
            30≦r1     ・・・(2)
             6≦r2≦12  ・・・(3)
 ただし、tは前記部材のうち、薄い方の金属板の板厚(mm)である。
(2)前記通電する電流値については通電開始から終了まで一定にし、
 前記溶接電極の加圧力に関しては、通電開始から2つの時間帯t1,t2に区分し、最初の時間帯t1では加圧力F1で加圧したのち、次の時間帯t2では、F1よりも低い加圧力F2で加圧する上記(1)に記載のインダイレクトスポット溶接方法。
(3)前記溶接電極の加圧力および前記通電する電流値に関して、通電開始から2つの時間帯t1,t2に区分し、最初の時間帯t1では加圧力F1で加圧し、かつ電流値C1で通電したのち、次の時間帯t2では、F1よりも低い加圧力F2で加圧し、かつC1よりも高い電流値C2で通電する上記(1)に記載のインダイレクトスポット溶接方法。
(4)前記溶接電極の加圧力に関して、通電開始から2つの時間帯tF1,tF2に区分し、最初の時間帯tF1では、加圧力F1で加圧したのち、次の時間帯tF2では、F1よりも低い加圧力F2で加圧し、
 前記通電する電流値に関しては、時間帯tF1,tF2とは独立して、通電開始から2つの時間帯tC1,tC2に区分し、最初の時間帯tC1では、電流値C1で通電したのち、次の時間帯tC2では、C1よりも高い電流値C2で通電する上記(1)に記載のインダイレクトスポット溶接方法。
 本発明によれば、電極先端部を適切な形状とした溶接電極を用いるので、溶接部以外での金属板間の通電、所謂分流が大きな場合であっても、金属板間で溶融した状態を経て形成される碁石型のナゲットをより安定して得ることができる。
従来技術である、ダイレクトスポット溶接法(A)およびインダイレクトスポット溶接法(B)の溶接要領の説明図である。 本発明の一実施形態における溶接電極の電極先端部の形状を示した図である。 本発明の他の実施形態における通電時間および加圧力の関係(A)ならびに通電時間および電流値の関係(B)を示した図である。 実施例1および2の溶接要領の説明図である。
 以下、本発明を図面に従い具体的に説明する。
 本発明に従うインダイレクトスポット溶接方法では、2枚の金属板を重ね合わせた部材に対し、この部材の一方の面側の金属板に溶接電極を加圧しながら押し当て、上記部材の他方の面側の金属板には上記溶接電極と離隔した位置に給電端子を取り付け、上記溶接電極と上記給電端子との間で通電して溶接を行う。図4を用いて実施例に後述するように、金属板を重ね合わせた部材を凹形状の金属製治具の上に配置し、治具下部にアース電極を取り付け、重ね合わせた金属板を一方向からのみ溶接電極により加圧し、その反対側は支持の無い中空の状態とする場合には、金属製治具およびアース電極を組み合わせたものが給電端子に相当する。
 本発明の特徴的構成の一つは溶接電極の電極先端部の形状であり、本発明方法の一実施形態における溶接電極の電極先端部の形状を図2に示す。溶接電極の電極先端部30は、溶接電極の最先端を含み、最先端側から見て最先端を中心とした半径R(mm)の円の範囲内に位置する曲率半径r1(mm)の第1の曲面31と、第1の曲面の周囲に位置する曲率半径r2(mm)の第2の曲面32とから構成される2段のドーム形状であって、後述する式(1)~(3)を満足する。
 電極先端部30を2段のドーム形状とし、第1の曲面31を第2の曲面32よりも曲率半径が大きな曲面とすることで、通電中に電極が金属板に沈み込んでいく現象が生じても、電極直下の重ね合わせた金属板間で高い電流密度を維持することができる。さらに、第1の曲面31を第2の曲面32よりも曲率半径が大きな曲面とすることで、通電開始時に電極-金属板間の接触面積を十分に確保することができ、電流密度が過大となり電極が接触する側の金属板から溶融金属が飛散するなどの不具合を解消することができる。また、第2の曲面32は第1の曲面31よりも曲率半径がより小さな曲面である。そのため、通電中に電極が金属板に沈み込み、第1の曲面31に加えて第2の曲面32も金属板と接触し始めた際の、電極-金属板間の接触面積の増大を抑制することができる。
 ここで、本発明の特徴的構成の一つは、第1の曲面31および第2の曲面32の境界を定める半径R(mm)を、溶接に供する金属板を重ね合わせた部材のうち、ナゲット径の基準となる金属板の板厚t(mm)の平方根の整数倍により限定することである。ここで、ナゲット径の基準となる金属板の板厚tとは、2枚の金属板を重ね合わせた部材のスポット溶接において、より薄い金属板の板厚である。2枚が同じ板厚の場合はその板厚となる。
 一般に、2枚の金属板を重ね合わせた部材からなる板組みでは、より薄い方の板の板厚の平方根の整数倍によりナゲット径の要求値が規定される。一方、半径Rが適正な大きさの場合は、溶接中に電極と金属板との接触面積が増大していく過程において、半径Rを超えた範囲へのナゲット径の増大を抑制することができ、良好なナゲット径を得ることができる。また、このとき、半径Rとナゲット径には相関関係があるため、任意の板組みにおいて要求されるナゲット径を得るに際して、適正な半径Rを設定するためには、半径Rをより薄い板の板厚の平方根の整数倍で限定してやればいい。
 半径Rが2√t(mm)未満の範囲では、通電開始時に、電極-金属板間の接触面積が極端に小さい範囲で抑制されるため、電流密度が過大となり、電極が接触する側の金属板から溶融金属が飛散するなどの不具合が発生する。一方、半径Rが6√t(mm)超となると、上述の、通電中に電極が金属板に沈み込み、第1の曲面31に加えて第2の曲面32も金属板と接触し始めた際に、電極-金属板間の接触面積の増大を抑制する効果が十分に得られない。よって、半径R(mm)を次式(1)の範囲に限定した。
 2√t≦R≦6√t(mm) ・・・(1)
 ここで、tは既述の薄い方の金属板の板厚(mm)である。
 また、上記作用効果をより確実に得るためには、半径Rは、3√t≦R≦5√t(mm)の範囲であることがより好ましい。
 第1の曲面31の曲率半径r1(mm)については、r1を30mm以上とすることで、通電開始時に電極-金属板間の接触面積を十分に確保することができ、電流密度が過大となり電極が接触する側の金属板から溶融金属が飛散するなどの不具合を解消することができる。よって、曲率半径r1(mm)を次式(2)の範囲に限定した。
 30≦r1 ・・・(2)
 また、上記作用効果をより確実に得るために、r1を40mm以上とすることがより好ましい。曲率半径を無限大とみなして、第1の曲面を平坦面とすることもできる。
 第2の曲面32の曲率半径r2(mm)については、r2が6mm未満になると、通電中に電極が金属板に過大に沈み込み、金属板間の溶接部を不用に変形し、割れの原因となるので好ましくない。一方、r2が12mm超となると、通電中に電極が金属板に沈み込み、第1の曲面31に加えて第2の曲面32も金属板と接触し始めた際の、接触面積の増大を抑制する効果が十分に得られない。よって、曲率半径r2(mm)を次式(3)の範囲に限定した。
 6≦r2≦12 ・・・(3)
 また、上記作用効果をより確実に得るために、曲率半径r2(mm)を、8≦r2≦10の範囲とすることがより好ましい。
 溶接電極の電極先端部30下端の電極半径については、図2に示すように、例えば8mmとすることができ、4.0~12.5mm程度で適宜定めることができる。
 以上のとおり、本発明のインダイレクトスポット溶接方法では、溶接電極の先端部30を構成する第1の曲面31および第2の曲面32が上掲の(1)~(3)式を満足するので、金属板間の電流密度を適正にすることができる。そのため、溶接部以外での金属板間の通電、所謂分流が大きな場合であっても、金属板間で溶融した状態を経て形成される碁石形のナゲットをより安定して得ることができる。
 なお、本発明で用いる金属板は特に限定されず、例えば鋼鉄製の金属板を用いることができる。また、本発明が対象とする薄い方の金属板の板厚tは0.5~1.8mm程度であり、金属板を重ね合わせた部材の総板厚は1~4mm程度である。
 ここで、本発明に従うインダイレクトスポット溶接において、通電開始から通電終了までの時間帯、加圧力Fおよび電流値Cの制御に関しては特に限定されず、適宜選択することができる。例えば、通電開始から通電終了まで、加圧力Fおよび電流値Cを一定にしても、好適なナゲットを安定して得ることができる。この場合、それぞれ、通電時間:0.06~0.60s程度、加圧力F:100~1500N程度、電流値C:4~12kA程度とすることができる。
 上述のとおり、本発明では、通電開始から通電終了までの時間帯、加圧力Fおよび電流値Cの制御が限定されるものではない。しかし、電極先端部の形状が上掲の(1)~(3)式を満足する溶接電極を用いることに加えて、通電時間を区分して、溶接電極の加圧力および電流値を制御することがより好ましい。本発明に従う他の好適な実施形態における、通電時間と加圧力および通電時間と電流値の基本的な関係を図3(A)、(B)にそれぞれ示す。かかる制御を行うことで、より顕著な効果を得ることができる。上記実施形態における好適な通電時間および加圧力の関係ならびに通電時間および電流値の関係を、以下説明する。
 上記実施形態では、溶接電極の加圧力、通電する電流値に関して、通電開始からの時間帯を同時にまたはそれぞれ独立して2つに区分し、それぞれの時間帯において溶接電極の加圧力Fまたは通電する電流値Cの一方を、あるいは加圧力Fおよび電流値Cの両方を制御することが好ましい。ここで、加圧力Fおよび/または電流値Cを同時に制御する場合には、区分した各時間帯をt1,t2とし、また加圧力Fと電流値Cの両方を独立して制御する場合には、加圧力Fを区分する時間帯をtF1,tF2、電流値Cを区分する時間帯をtC1,tC2とし、各時間帯での加圧力をF1,F2、電流値をC1,C2で示す。
 上記実施形態において、時間帯t1では、加圧力F1で加圧し、電流値C1を通電する。
 この時間帯t1は、溶接電極を重ね合わせた金属板に加圧しながら押し当てつつ、通電を開始し、金属板間の接触抵抗による発熱から溶融部の形成を始める時間帯である。重ね合わせた金属板を一方向からのみ溶接電極により加圧し、その反対側は支持の無い中空の状態でインダイレクトスポット溶接を行う際には、加圧力F1を、両側から電極で挟むダイレクトスポット溶接法のような高い加圧力とすることができない。しかし、加圧力F1が低すぎると、電極と金属板との間の接触面積が極度に小さくなり、電流密度が過度に上昇して金属板表面が溶融飛散し、表面形状が著しく損なわれる不具合が発生する。従って、加圧力F1は、かような不具合が生じないよう、適宜選択することが好ましい。
 また、電流値C1は、金属板間からの発熱により溶融が開始するのに十分な高さの電流値とする必要があるが、高すぎると前述したように金属板表面が溶融飛散し、えぐれた形状となり外観が著しく損なわれるばかりか、継手強度も低下する不具合が発生するので、かような不具合が生じないように、適宜選択することが好ましい。
 上記実施形態において、時間帯t1に続く次の時間帯t2では、加圧力F2で加圧し、電流値C2を通電する。
 この時間帯t2は、時間帯t1で形成が始まった溶融部をさらに成長させていく段階である。しかしながら、通電による発熱で電極周辺の金属板が軟化し、電極の反対側は支持の無い中空の状態でインダイレクトスポット溶接を行う際には、金属板が軟化すると電極先端部が金属板に沈み込み、電極-金属板間、金属板-金属板間の接触面積が増大し電流密度が低下する。そのため、ナゲットを成長させるに十分な発熱が得られない。従って、この時間帯t2では、加圧力F2を加圧力F1よりも低い加圧力とし、電極先端部が金属板に沈み込むのを抑えることが好ましい。
 一方、電流値C2については、電流値C1よりも高い電流値として、前述した電極の沈み込みによる接触面積の増大から電流密度が低下することを抑止することが好ましい。しかしながら、電流値があまりに高すぎると電極の反対側の金属板表面から溶融金属が飛散し、溶け落ちて、外観が著しく損なわれるばかりか、継手強度も低下する不具合が発生する。従って、かような不具合が生じないように、電流値C2を適宜選択することが好ましい。
 以上、通電開始から2つの時間帯に区分し、加圧力Fと電流値Cの両方を同時に制御する好適実施形態について説明したが、本発明に従う実施形態は、加圧力のみを制御するようにしてもよく、さらには加圧力Fと電流値Cの両方を独立して制御することがより好ましい。
 すなわち、上記の時間帯t1,t2において、電流値C1,C2は一定とし、加圧力F2をF1より低くする方法でも、同様の効果を得ることができる。しかしながら、前述したとおり、上記の時間帯t1,t2において、加圧力F2をF1より低くし、かつ電流値C2をC1より高くすることによって、より一層の効果を得ることができる。
 さらに、加圧力Fに関しては、通電開始から時間帯tF1,tF2に区分し、加圧力F2をF1より低くする一方、電流値Cに関しては、時間帯tF1,tF2とは別に独立して、通電開始から時間帯tC1,tC2に区分し、電流値C2をC1より高くすることも好ましい。このように加圧力の変化、電流の変化を独立した時間帯で最適に行うことによって、より高い効果を得ることができる。
 ここに、通電開始から2つの時間帯t1,t2に区分し、加圧力Fと電流値Cの両方を同時に制御する場合、時間帯t1,t2における通電時間はそれぞれ、t1:0.02~0.30s、t2:0.10~0.60s程度とすることが好ましい。また、各時間帯t1,t2における加圧力はそれぞれ、F1:300~2000N、F2:100~1500N程度、電流値はそれぞれC1:2.0~10.0kA、C2:2.5~12.0kA程度とすることが好ましい。
 なお、時間帯t1,t2において、電流値C1,C2は一定とし、加圧力F2をF1より低くする場合、一定電流値は2.5~10kA程度とすることが好ましい。
 さらに、加圧力Fと電流値Cの両方を独立して制御する場合には、加圧力Fに関しては、tF1:0.02~0.30s、tF2:0.10~0.60s程度とし、各時間帯tF1,tF2においてそれぞれF1:300~2000N、F2:100~1500N程度とすることが好ましく、また電流値Cに関しては、tC1:0.02~0.30s、tC2:0.10~0.60s程度とし、各時間帯tC1,tC2においてそれぞれC1:2.0~10.0kA、C2:2.5~12.0kA程度とすることが好ましい。
 インダイレクトスポット溶接法を、図4に示すような構成で実施した。
 表1に示す化学成分になる引張強さ:270MPa以上のSPC270鋼板を、上鋼板、下鋼板として組み合わせて、重ね合わせた2枚の鋼板からなる部材を作製した。上鋼板の板厚は1.0mmであり、下鋼板の板厚は1.2mmである。この部材を、図4に示すような凹形状の金属製治具の上に配置し、支持間隔を30mmとし、治具下部にアース電極を取り付け、上方から溶接電極で加圧し、上記部材の溶接を行った。また、上記のように重ねた上鋼板、下鋼板の両端をクランプにより治具上で拘束し、上鋼板、下鋼板間を密着させることにより、通電時に鋼板間で分流を起こりやすくさせ、意図的に電極直下にナゲットが形成されにくい条件を設定した。
 溶接に際しては、直流インバータ式の電源を使用した。また、溶接に使用した電極はクロム銅合金を材質としており、溶接電極の電極先端部は、溶接電極の最先端を含み、最先端側から見て最先端を中心とした半径R(mm)の円の範囲内に延在する曲率半径r1(mm)の第1の曲面と、第1の曲面の周囲に延在する曲率半径r2(mm)の第2の曲面とから構成される2段のドーム形状である。これら、R,r1,r2の寸法を表2にそれぞれ示す。また、溶接電極の電極先端部下端の電極半径についても表2にそれぞれ示す。さらに、溶接の際の、通電開始から通電終了までの時間帯と、それぞれの時間帯での加圧力および電流値との条件を表2に示す。表2に記載の条件で、No.1~16までインダイレクトスポット溶接を試行した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2中、No.2~6,14~16で用いた溶接電極の電極形状は、本発明要件を満足する。一方、No.1,7~13で用いた溶接電極の電極形状は、本発明要件を満足しない。また、表2中、No.1~11については、加圧力Fおよび電流値Cは一定としている。No.12,14については、通電する時間帯をt1,t2に区分し、電流値を一定にする一方で、加圧力Fを制御した。No.13,15については、時間帯をt1,t2に区分し、加圧力Fと電流値Cを同時に制御した。No.16については、電極の加圧力に関しては、通電開始から2つの時間帯tF1,tF2に区分する一方、通電する電流値に関しては、時間帯tF1,tF2とは独立して、通電開始から2つの時間帯tC1,tC2に区分して、加圧力Fと電流値Cを独立して制御した。
 表3に、表2に示す電極形状および通電パターンで溶接したときの各継手のナゲット径、ナゲット厚さ、ナゲット厚さ/径および外観不具合について調べた結果を示す。
 なお、表3においてナゲット径は、溶接部を中心で切断した断面において、上鋼板、下鋼板間で形成される溶融部の重ね線上での長さとした。ナゲット厚さは、溶接部を中心で切断した断面において、上鋼板、下鋼板間に形成される溶融部の最大厚さとした。また、ナゲット厚さ/径は、上述したナゲット厚さをナゲット径で除したものである。ここに、ナゲット径が4mm以上、かつナゲット厚さ/径が0.22以上であれば、好適なナゲットと判断することができる。
 また、溶接部が溶融飛散しておこる外観不具合に関しては、溶接部の下鋼板で起こる溶融金属の飛散、脱落の発生を「溶け落ち」として表3に開示した。
 さらに、以下の基準で総合評価を行った。
○:ナゲット径4mm以上、ナゲット厚さ/径が0.22以上で、かつ外観不具合がないもの
×:ナゲット径4mm未満、ナゲット厚さ/径が0.22未満または外観不具合ありのうち、1つでも条件を満たすもの
Figure JPOXMLDOC01-appb-T000003
 表3に示したとおり、薄い方の鋼板の板厚1.0mmに対して、本発明要件を満足する溶接電極を用いてインダイレクトスポット溶接を行ったNo.2~6,14~16はいずれも、意図的に設定された電極直下にナゲットが形成されにくい条件下においても、十分なナゲット径と、この径に対して十分な厚さを有する溶融ナゲットを得ることができ、また外観不具合は全く観察されなかった。
 これに対し、本発明要件を満足しない溶接電極を用いたNo.7では、ナゲット厚さ/径が0.22未満を満たさなかった。また、No.9,11では、ナゲット径が不十分であった。さらにNo.1,8,10,12,13では、いずれもナゲットの形成が観察されず、さらに溶け落ちが発生した。
 上鋼板の板厚を1.0mmとし、下鋼板の板厚を0.7mmとして、溶接電極の電極形状および通電開始から通電終了までの時間帯と、それぞれの時間帯での加圧力、電流値との条件を表4に示すとおりとした以外は、実施例1と同じ条件でインダイレクトスポット溶接を行い、No.1~6まで試行した。
Figure JPOXMLDOC01-appb-T000004
 表4中、No.2~5で用いた溶接電極の電極形状は、本発明要件を満足する。一方、No.1,6で用いた溶接電極の電極形状は、本発明要件を満足しない。また、表4中、No.1~6については、加圧力Fおよび電流値Cは一定としている。
 表5に、表4に示す電極形状および通電パターンで溶接したときの各継手のナゲット径、ナゲット厚さ、ナゲット厚さ/径および外観不具合について調べた結果を示す。なお、表5におけるナゲット径およびナゲット厚さは、実施例1にて既述のとおりである。ここに、ナゲット径が3.4mm以上、かつナゲット厚さ/径が0.20以上であれば、好適なナゲットと判断することができる。
 また、溶接部が溶融飛散しておこる外観不具合に関しては、溶接部の下鋼板で起こる溶融金属の飛散、脱落の発生を「溶け落ち」として表5に開示した。
 さらに、以下の基準で総合評価を行った。
○:ナゲット径3.4mm以上、ナゲット厚さ/径が0.20以上で、かつ外観不具合がないもの
×:ナゲット径3.4mm未満、ナゲット厚さ/径が0.20未満または外観不具合ありのうち、1つでも条件を満たすもの
Figure JPOXMLDOC01-appb-T000005
 表5に示したとおり、薄い方の鋼板の板厚0.7mmに対して、本発明要件を満足する溶接電極を用いてインダイレクトスポット溶接を行ったNo.2~5はいずれも、意図的に設定された電極直下にナゲットが形成されにくい条件下においても、十分なナゲット径と、この径に対して十分な厚さを有する溶融ナゲットを得ることができ、また外観不具合は全く観察されなかった。
 これに対し、本発明要件を満足しない溶接電極を用いたNo.6では、ナゲット径が不十分であり、かつナゲット厚さ/径が0.20未満であった。また、No.1では、ナゲットの形成が観察されず、さらに溶け落ちが発生した。
 本発明によれば、電極先端部を適切な形状とした溶接電極を用いるので、溶接部以外での金属板間の通電、所謂分流が大きな場合であっても、金属板間で溶融した状態を経て形成される碁石型のナゲットをより安定して得ることができる。
 1,2   金属板
 3,4   電極
 5     溶接部
 6,7   加圧制御装置
 8     電流制御装置
 21,22 金属板
 23    溶接電極
 24    給電端子
 25    溶接部
 30    電極先端部
 31    第1の曲面
 32    第2の曲面

Claims (4)

  1.  2枚の金属板を重ね合わせた部材に対し、前記部材の一方の面側の金属板に溶接電極を加圧しながら押し当て、前記部材の他方の面側の金属板には前記溶接電極と離隔した位置に給電端子を取り付け、前記溶接電極と前記給電端子との間で通電して溶接を行うインダイレクトスポット溶接方法において、
     前記溶接電極の電極先端部は、前記溶接電極の最先端を含み、該最先端側から見て該最先端を中心とした半径R(mm)の円の範囲内に位置する曲率半径r1(mm)の第1の曲面と、該第1の曲面の周囲に位置する曲率半径r2(mm)の第2の曲面とから構成される2段のドーム形状であって、下記(1)~(3)式を満足することを特徴とするインダイレクトスポット溶接方法。
                 記
             2√t≦R≦6√t ・・・(1)
              30≦r1     ・・・(2)
               6≦r2≦12  ・・・(3)
     ただし、tは前記部材のうち、薄い方の金属板の板厚(mm)である。
  2.  前記通電する電流値については通電開始から終了まで一定にし、
     前記溶接電極の加圧力に関しては、通電開始から2つの時間帯t1,t2に区分し、最初の時間帯t1では加圧力F1で加圧したのち、次の時間帯t2では、F1よりも低い加圧力F2で加圧する請求項1に記載のインダイレクトスポット溶接方法。
  3.  前記溶接電極の加圧力および前記通電する電流値に関して、通電開始から2つの時間帯t1,t2に区分し、最初の時間帯t1では加圧力F1で加圧し、かつ電流値C1で通電したのち、次の時間帯t2では、F1よりも低い加圧力F2で加圧し、かつC1よりも高い電流値C2で通電する請求項1に記載のインダイレクトスポット溶接方法。
  4.  前記溶接電極の加圧力に関して、通電開始から2つの時間帯tF1,tF2に区分し、最初の時間帯tF1では、加圧力F1で加圧したのち、次の時間帯tF2では、F1よりも低い加圧力F2で加圧し、
     前記通電する電流値に関しては、時間帯tF1,tF2とは独立して、通電開始から2つの時間帯tC1,tC2に区分し、最初の時間帯tC1では、電流値C1で通電したのち、次の時間帯tC2では、C1よりも高い電流値C2で通電する請求項1に記載のインダイレクトスポット溶接方法。
PCT/JP2014/001257 2013-04-09 2014-03-06 インダイレクトスポット溶接方法 WO2014167772A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14783158.0A EP2985108B1 (en) 2013-04-09 2014-03-06 Indirect spot welding method
KR1020157026911A KR101735234B1 (ko) 2013-04-09 2014-03-06 인다이렉트 스폿 용접 방법
JP2014527420A JP6032285B2 (ja) 2013-04-09 2014-03-06 インダイレクトスポット溶接方法
MX2015014123A MX2015014123A (es) 2013-04-09 2014-03-06 Metodo de soldadura por puntos indirecta.
CN201480020462.8A CN105121087B (zh) 2013-04-09 2014-03-06 单面点焊方法
US14/783,094 US10207353B2 (en) 2013-04-09 2014-03-06 Indirect spot welding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013081379 2013-04-09
JP2013-081379 2013-04-09

Publications (1)

Publication Number Publication Date
WO2014167772A1 true WO2014167772A1 (ja) 2014-10-16

Family

ID=51689196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001257 WO2014167772A1 (ja) 2013-04-09 2014-03-06 インダイレクトスポット溶接方法

Country Status (7)

Country Link
US (1) US10207353B2 (ja)
EP (1) EP2985108B1 (ja)
JP (1) JP6032285B2 (ja)
KR (1) KR101735234B1 (ja)
CN (1) CN105121087B (ja)
MX (1) MX2015014123A (ja)
WO (1) WO2014167772A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017124405A (ja) * 2016-01-12 2017-07-20 新日鐵住金株式会社 めっき鋼板の高周波抵抗溶接用の給電電極
TWI601588B (zh) * 2015-10-21 2017-10-11 Nippon Steel & Sumitomo Metal Corp Resistance point welding method
JP2020116629A (ja) * 2019-01-28 2020-08-06 ダイハツ工業株式会社 インダイレクトスポット溶接方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD797825S1 (en) * 2015-10-05 2017-09-19 Wolter Corp. Metal stamp jig
US20170361392A1 (en) * 2016-06-16 2017-12-21 GM Global Technology Operations LLC Multistep electrode weld face geometry for weld bonding aluminum to steel
KR20200086730A (ko) * 2017-12-19 2020-07-17 닛폰세이테츠 가부시키가이샤 저항 스폿 용접 조인트의 제조 방법
KR101988769B1 (ko) * 2017-12-22 2019-09-30 주식회사 포스코 스폿 용접용 전극
CN112916992A (zh) * 2019-12-06 2021-06-08 中国科学院上海光学精密机械研究所 用于焊接高强度钢的电阻点焊电极及其焊接方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122928A (ja) * 1995-10-31 1997-05-13 Suzuki Motor Corp 抵抗溶接装置
JP2006198676A (ja) 2004-12-24 2006-08-03 Daihatsu Motor Co Ltd 抵抗溶接用電極、及び、シリーズスポット溶接装置又はインダイレクトスポット溶接装置
US20090218323A1 (en) * 2005-11-09 2009-09-03 Hiroshi Abe Spot welding method, method for judging shape of nugget, spot welding machine and spot welding electrode
JP2010194609A (ja) * 2009-01-29 2010-09-09 Jfe Steel Corp インダイレクトスポット溶接方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2785779Y (zh) 2005-04-19 2006-06-07 中国国际海运集装箱(集团)股份有限公司 一种薄板点焊装置
JP2012011398A (ja) * 2010-06-29 2012-01-19 Daihatsu Motor Co Ltd 抵抗溶接方法
JP5625597B2 (ja) * 2010-08-04 2014-11-19 Jfeスチール株式会社 インダイレクトスポット溶接方法
JP5691395B2 (ja) 2010-10-27 2015-04-01 Jfeスチール株式会社 インダイレクトスポット溶接方法
JP5803116B2 (ja) 2011-01-31 2015-11-04 Jfeスチール株式会社 インダイレクトスポット溶接方法
JP5778942B2 (ja) * 2011-02-16 2015-09-16 株式会社キーレックス 片側スポット溶接装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122928A (ja) * 1995-10-31 1997-05-13 Suzuki Motor Corp 抵抗溶接装置
JP2006198676A (ja) 2004-12-24 2006-08-03 Daihatsu Motor Co Ltd 抵抗溶接用電極、及び、シリーズスポット溶接装置又はインダイレクトスポット溶接装置
US20090218323A1 (en) * 2005-11-09 2009-09-03 Hiroshi Abe Spot welding method, method for judging shape of nugget, spot welding machine and spot welding electrode
JP2010194609A (ja) * 2009-01-29 2010-09-09 Jfe Steel Corp インダイレクトスポット溶接方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2985108A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI601588B (zh) * 2015-10-21 2017-10-11 Nippon Steel & Sumitomo Metal Corp Resistance point welding method
JP2017124405A (ja) * 2016-01-12 2017-07-20 新日鐵住金株式会社 めっき鋼板の高周波抵抗溶接用の給電電極
JP2020116629A (ja) * 2019-01-28 2020-08-06 ダイハツ工業株式会社 インダイレクトスポット溶接方法
JP7245591B2 (ja) 2019-01-28 2023-03-24 ダイハツ工業株式会社 インダイレクトスポット溶接方法

Also Published As

Publication number Publication date
KR20150123904A (ko) 2015-11-04
MX2015014123A (es) 2015-12-15
JP6032285B2 (ja) 2016-11-24
CN105121087B (zh) 2017-11-10
US10207353B2 (en) 2019-02-19
US20160045976A1 (en) 2016-02-18
KR101735234B1 (ko) 2017-05-12
JPWO2014167772A1 (ja) 2017-02-16
EP2985108A4 (en) 2016-04-27
CN105121087A (zh) 2015-12-02
EP2985108A1 (en) 2016-02-17
EP2985108B1 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
JP6032285B2 (ja) インダイレクトスポット溶接方法
WO2010087508A1 (ja) インダイレクトスポット溶接方法
JP5691395B2 (ja) インダイレクトスポット溶接方法
KR102010195B1 (ko) 저항 스폿 용접 방법
JP5625597B2 (ja) インダイレクトスポット溶接方法
US20080182119A1 (en) Projection weld and method for creating the same
US20210237193A1 (en) Resistance spot welding joint for aluminum members, and resistance spot welding method for aluminum members
WO2015133099A1 (ja) 抵抗スポット溶接方法
JP5549153B2 (ja) インダイレクトスポット溶接方法
WO2015037652A1 (ja) 抵抗スポット溶接方法および溶接構造物
JP6078960B2 (ja) インダイレクトスポット溶接方法
JP5625423B2 (ja) インダイレクトスポット溶接方法
JP6516247B2 (ja) 片側スポット溶接方法
WO2015133096A1 (ja) 抵抗スポット溶接方法
JP6175041B2 (ja) スポット溶接方法
WO2015037432A1 (ja) 抵抗スポット溶接方法および溶接構造物
JP5756076B2 (ja) インダイレクトスポット溶接方法
JP6811063B2 (ja) 抵抗スポット溶接方法および抵抗スポット溶接継手の製造方法
JP6794006B2 (ja) 抵抗スポット溶接継手、抵抗スポット溶接方法および抵抗スポット溶接継手の製造方法
JP2024040644A (ja) 抵抗スポット溶接継手の製造方法、及び自動車部品の製造方法
JP2014014861A (ja) スポット溶接用電極チップ
JP2014131817A (ja) インダイレクトスポット溶接方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014527420

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14783158

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014783158

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157026911

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/014123

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14783094

Country of ref document: US

Ref document number: IDP00201506391

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE