WO2014167705A1 - ブローバイガス還流装置と過給機とを備えた内燃機関の冷却装置 - Google Patents

ブローバイガス還流装置と過給機とを備えた内燃機関の冷却装置 Download PDF

Info

Publication number
WO2014167705A1
WO2014167705A1 PCT/JP2013/061032 JP2013061032W WO2014167705A1 WO 2014167705 A1 WO2014167705 A1 WO 2014167705A1 JP 2013061032 W JP2013061032 W JP 2013061032W WO 2014167705 A1 WO2014167705 A1 WO 2014167705A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
compressor
medium
passage
temperature
Prior art date
Application number
PCT/JP2013/061032
Other languages
English (en)
French (fr)
Inventor
隼平 塩田
末吉 杉山
啓二 四重田
成人 山根
怜 杉山
松本 功
正和 田畑
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP13881488.4A priority Critical patent/EP2985438A4/en
Priority to CN201380075572.XA priority patent/CN105102786A/zh
Priority to JP2015511045A priority patent/JP5983868B2/ja
Priority to PCT/JP2013/061032 priority patent/WO2014167705A1/ja
Priority to US14/782,427 priority patent/US20160025048A1/en
Publication of WO2014167705A1 publication Critical patent/WO2014167705A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • F02B29/0443Layout of the coolant or refrigerant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10222Exhaust gas recirculation [EGR]; Positive crankcase ventilation [PCV]; Additional air admission, lubricant or fuel vapour admission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/02Crankcase ventilating or breathing by means of additional source of positive or negative pressure
    • F01M13/021Crankcase ventilating or breathing by means of additional source of positive or negative pressure of negative pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/04Arrangements of liquid pipes or hoses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/005Exhaust driven pumps being combined with an exhaust driven auxiliary apparatus, e.g. a ventilator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/005Cooling of pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/16Other safety measures for, or other control of, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/06Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding lubricant vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10157Supercharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M2013/0038Layout of crankcase breathing systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/02Crankcase ventilating or breathing by means of additional source of positive or negative pressure
    • F01M13/021Crankcase ventilating or breathing by means of additional source of positive or negative pressure of negative pressure
    • F01M2013/027Crankcase ventilating or breathing by means of additional source of positive or negative pressure of negative pressure with a turbo charger or compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/16Other safety measures for, or other control of, pumps
    • F02B2039/162Control of pump parameters to improve safety thereof
    • F02B2039/164Control of pump parameters to improve safety thereof the temperature of the pump, of the pump drive or the pumped fluid being limited
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a cooling device for an internal combustion engine including a blow-by gas recirculation device and a supercharger.
  • the oil scatters due to the crankshaft rotating at a high speed and the in-cylinder gas ejected between the piston ring and the inner peripheral wall surface of the cylinder bore.
  • oil mist that is, liquid fine particles of lubricating oil
  • the engine includes a supercharger
  • the oil mist is returned to the intake passage together with the blowby gas by the blowby gas recirculation device, the oil mist flows into the compressor of the supercharger.
  • the temperature of the intake air flowing out from the compressor rises and becomes high due to the compression action of the compressor.
  • the temperature of the intake air flowing out from the compressor is suppressed by cooling the compressor with cooling water, thereby suppressing the oil mist from being exposed to a high temperature.
  • the required compressor cooling degree that is, the degree of compressor cooling required to suppress the generation of deposits or to suppress the amount of deposits generated to an allowable level or less
  • the required engine cooling degree that is, the engine operation is reduced. It is larger than the cooling degree of the engine body required to make it good. Therefore, when engine cooling water is used as cooling water for cooling the compressor, the cooling degree of the compressor is smaller than the required compressor cooling degree when the temperature of the cooling water is maintained at a temperature that achieves the required engine cooling degree.
  • the cooling degree of the engine body becomes larger than the required engine cooling degree.
  • the required engine cooling degree and the required compressor cooling degree are achieved simultaneously.
  • an object of the present invention is to provide a cooling device capable of simultaneously achieving a required engine cooling degree and a required compressor cooling degree in an internal combustion engine including a blow-by gas recirculation device and a supercharger.
  • the present invention relates to a cooling apparatus for an internal combustion engine that includes a blow-by gas recirculation device and a supercharger, and in which the blow-by gas recirculation device recirculates the blow-by gas to an intake passage upstream of a compressor of the supercharger.
  • the cooling device of the present invention separately includes a first cooling means for cooling the main body of the internal combustion engine and a second cooling means for cooling the intake air.
  • the second cooling means cools the compressor of the supercharger. According to this, since the cooling capacity of the first cooling means and the cooling capacity of the second cooling means can be set separately, the required engine cooling degree and the required compressor cooling degree can be achieved simultaneously.
  • the required intake air cooling degree (that is, the required air intake air cooling degree to make the engine operation good) is almost equal to the required compressor cooling degree. Therefore, in the above invention, it is preferable that the second cooling means has one medium cooling means for cooling the cooling medium, and the intake air and the compressor are cooled by the cooling medium cooled by the medium cooling means. According to this, the required intake air cooling degree and the required compressor cooling degree can be simultaneously achieved by simple control of the operation of the second cooling means.
  • the required compressor cooling degree is smaller than the required intake air cooling degree. Therefore, in the above invention, it is preferable that the flow rate of the cooling medium for cooling the compressor is smaller than the flow rate of the cooling medium for cooling the intake air. Therefore, in the above invention, when the second cooling means has a cooling medium passage through which the cooling medium for cooling the intake air and the compressor flows, the second cooling means causes the compressor to bypass the compressor to a part of the cooling medium. It is preferable to have a bypass passage. According to this, the required compressor cooling level and the required intake air cooling level can be accurately achieved at the same time.
  • the operation of the second cooling means is stopped when the temperature of the main body of the internal combustion engine is lower than a predetermined temperature. According to this, since the cooling of the intake air is stopped when the temperature of the main body of the internal combustion engine is low, the high temperature intake air is introduced into the combustion chamber. Therefore, warming up of the main body of the internal combustion engine is promoted when the temperature of the main body of the internal combustion engine is low.
  • the second cooling means cools the cooling medium, the cooling means bypass passage that bypasses the medium cooling means to at least a part of the cooling medium, and the cooling means bypass passage.
  • Bypass control means for controlling whether or not the medium cooling means is bypassed to at least a part of the cooling medium via the bypass control means when the temperature of the main body of the internal combustion engine is lower than a predetermined temperature
  • the temperature of the cooling medium when the temperature of the main body of the internal combustion engine is low, at least a part of the cooling medium bypasses the medium cooling means, so that the temperature of the cooling medium is maintained high. Further, the temperature of the cooling medium may be increased by the heat transferred from the turbocharger turbine to the compressor. In any case, since the temperature of the cooling medium is kept high, high temperature intake air is introduced into the combustion chamber. Therefore, warming up of the main body of the internal combustion engine is promoted when the temperature of the main body of the internal combustion engine is low.
  • the second cooling means cools the cooling medium, the cooling means bypass passage for bypassing the medium cooling means to at least a part of the cooling medium, and the cooling means bypass passage.
  • Bypass control means for controlling whether or not the medium cooling means is bypassed in at least a part of the cooling medium, and the bypass control means bypasses the cooling means bypass when the intake air temperature is lower than a predetermined temperature. It is preferable to bypass the medium cooling means to at least a part of the cooling medium through a passage.
  • the cooling medium bypasses the medium cooling means when the intake air temperature is low, so that the temperature of the cooling medium is maintained high.
  • the temperature of the cooling medium may be increased by the heat transferred from the turbocharger turbine to the compressor. In any case, the temperature of the cooling medium is kept high. Therefore, the generation of condensed water in the intake passage is suppressed.
  • the internal combustion engine includes EGR means for introducing exhaust gas into the intake passage, and the EGR means is configured to introduce exhaust gas into the intake passage upstream of the compressor. It is preferable that the operation of the second cooling means is stopped when the temperature is lower than a predetermined temperature. According to this, since the cooling of the intake air is stopped when the intake air temperature is low, the intake air temperature is kept high. Therefore, even if exhaust gas is introduced into the intake passage, the generation of condensed water is suppressed.
  • the internal combustion engine of the embodiment described below is a piston reciprocating compression self-ignition internal combustion engine (so-called diesel engine), and the internal combustion engine has a plurality of cylinders (for example, four cylinders) in series. I have.
  • diesel engine piston reciprocating compression self-ignition internal combustion engine
  • the present invention is also applicable to other types of internal combustion engines.
  • deposit means a deposit generated due to oil mist during intake.
  • the blow-by gas recirculation device of the first embodiment is applied to an internal combustion engine (hereinafter referred to as “engine”) 10.
  • the engine 10 includes an engine body 20, an intake passage 30, and an exhaust passage 40.
  • the engine body 20 includes a crankcase 21, an oil pan 22, a cylinder block 23, and a cylinder head 24.
  • the crankcase 21 rotatably supports the crankshaft 21A.
  • the oil pan 22 is fixed to the crankcase 21 below the crankcase 21.
  • the oil pan 22 forms a space (hereinafter also referred to as “crankcase chamber”) for accommodating the crankshaft 21 ⁇ / b> A and the lubricating oil OL together with the crankcase 21.
  • the cylinder block 23 is fixed to the crankcase 21 above the crankcase 21.
  • the cylinder block 23 is made of aluminum.
  • the cylinder block 23 includes a plurality (four in the present embodiment) of hollow cylindrical cylinder bores 23A.
  • a cast iron cylinder liner 23B is fitted into the inner periphery of the cylinder bore 23A.
  • a piston 23C is accommodated in the cylinder bore 23A (in this embodiment, in particular, the cylinder liner 23B).
  • Piston 23C is substantially cylindrical. Piston 23C is provided with a plurality of piston rings on its side surface.
  • the lowermost ring (that is, the crankcase 21 side) of the plurality of piston rings is a so-called oil ring OR.
  • the oil ring OR slides on the inner peripheral wall surface of the cylinder bore 23A (in this embodiment, in particular, the inner peripheral wall surface of the cylinder liner 23B) and lubricates on the inner peripheral wall surface (in other words, an oil film). Is scraped off to the crankcase 21 side.
  • the piston 23C is connected to the crankshaft 21A by a connecting rod 23D.
  • the upper wall surface (ie, the top wall surface) of the piston 23C forms a combustion chamber CC together with the inner peripheral wall surface of the cylinder liner 23B and the lower wall surface of the cylinder head 24.
  • the cylinder head 24 is fixed to the cylinder block 23 above the cylinder block 23.
  • the cylinder head 24 is formed with an intake port and an exhaust port communicating with the combustion chamber CC.
  • the intake port is opened and closed by an intake valve.
  • the intake valve is driven by a cam (not shown) of an intake cam shaft housed in the cylinder head 24.
  • the exhaust port is opened and closed by an exhaust valve.
  • the exhaust valve is driven by a cam (not shown) of an exhaust cam shaft housed in the cylinder head 24.
  • the cylinder head 24 is covered with a cylinder head cover 24A.
  • a fuel injection valve (not shown) is provided in the cylinder head 24.
  • the intake passage 30 is generally composed of an intake pipe 31, an intercooler 32, a compressor 61 of a supercharger 60, and an intake port.
  • the intake pipe 31 is connected to the intake port.
  • the compressor 61 is interposed in the intake pipe 31.
  • the intercooler 32 is interposed in the intake pipe 31 downstream of the compressor 61.
  • the exhaust passage 40 is generally composed of an exhaust port, an exhaust pipe 41, and a turbine 62 of the supercharger 60.
  • the exhaust pipe 41 is connected to the exhaust port.
  • the turbine 62 is interposed in the exhaust pipe 41.
  • the turbine 62 is connected to the compressor 61 by a shaft.
  • the turbine 62 is rotated by the energy of the exhaust gas flowing into it.
  • the rotation of the turbine 62 is transmitted to the compressor 61 via the shaft.
  • the compressor 61 rotates.
  • the intake air is compressed by the rotation of the compressor 61. That is, the supercharger 60 performs supercharging.
  • the blow-by gas recirculation device 50 includes a first gas passage 51, a second gas passage 52, and a third gas passage 53.
  • the first gas passage 51 is formed in the cylinder block 23.
  • the first gas passage 51 connects the crankcase chamber to the second gas passage 52 in the cylinder head 24.
  • the second gas passage 52 is connected to one end of the third gas passage 53 through a predetermined path in the cylinder head 24.
  • the third gas passage 53 is configured by a gas pipe 53 ⁇ / b> A provided outside the engine body 20.
  • the other end of the third gas passage 53 is connected to the intake pipe 31 upstream of the compressor 61.
  • blow-by gas leaked from the combustion chamber CC into the crankcase chamber is recirculated to the intake passage 30 upstream of the compressor 61 through the first gas passage 51, the second gas passage 52, and the third gas passage 53.
  • a known PCV valve may be disposed in the third gas passage 53 in order to control the amount of blow-by gas recirculated to the intake passage 30.
  • the cooling device includes a first cooling device 70 and a second cooling device 80.
  • the first cooling device 70 includes a first radiator 71, a first cooling water passage 72, and a first pump 73.
  • the second cooling device 80 includes a second radiator 81, a second cooling water passage 82, and a second pump 83.
  • the first cooling water passage 72 is configured to circulate through the engine body 20, the first pump 83, and the first radiator 81 in order.
  • the engine body 20, the first pump 73, and the first radiator 71 are interposed in the first cooling passage 72.
  • the cooling water circulates in order through the first cooling water passage 72 through the first radiator 71, the engine body 20, and the first pump 73.
  • the engine body 20 is cooled by the cooling water, and the cooling water is cooled by the first radiator 71.
  • the second cooling water passage 82 is composed of two cooling water passages 82A and 82B. That is, the second cooling water passage 82 exiting the second radiator 81 branches into two cooling water passages 82A and 82B downstream of the second pump 83.
  • One cooling water passage 82 ⁇ / b> A passes through the intercooler 32, and the other cooling water passage 82 ⁇ / b> B passes through the compressor 61. Then, the one cooling water passage 82 A that has passed through the intercooler 32 and the other cooling water passage 82 B that has passed through the compressor 61 merge, and return to the second radiator 81.
  • one cooling water passage 82A is configured to circulate through the second pump 83, the intercooler 32, and the second radiator 81 in order.
  • the other cooling water passage 82B is configured to circulate through the second pump 83, the compressor 61, and the second radiator 81 in order.
  • the second radiator 81 and the second pump 83 are commonly provided in both cooling water passages 82A and 82B, and the intercooler 32 is provided in one cooling water passage 82A.
  • the compressor 61 is interposed in the other cooling water passage 82B.
  • the required engine cooling degree that is, the cooling degree of the engine body required to make the combustion in the engine body 20 good
  • the cooling capacity of the first cooling device is set to the capacity to achieve the required engine cooling degree.
  • the crankshaft 21A has a crank journal rotatably supported by the crankcase 21, a crankpin, a crank arm, and a balance weight. These crank pins, crank arms and balance weight rotate at high speed during engine operation (that is, when the engine 10 is operating). Furthermore, the connecting rod 23D also moves at a high speed during engine operation. Accordingly, the lubricating oil scraped off by the oil ring OR toward the crankcase chamber collides with members (crank pins, crank arms, balance weights, connecting rods 23D, etc.) that are rotating or moving at high speed and are scattered. To do. Further, the lubricating oil OL in the oil pan 22 is scattered along with these movements.
  • the lubricating oil is scattered by the gas in the combustion chamber being ejected from between the piston ring and the inner peripheral wall surface of the cylinder liner 23B.
  • a large amount of oil mist lubricating oil splash
  • the required compressor cooling degree (that is, the temperature of the intake air flowing out from the compressor 61 is maintained at a temperature at which the generation of deposits is suppressed or a temperature at which the generated amount of deposits is maintained below an allowable amount.
  • the required compressor cooling level is set.
  • the required intake air cooling degree (that is, the intake air cooling degree required to improve the combustion in the engine body 20) is set.
  • the cooling capacity of the second cooling device 80 is set to an ability to achieve the required compressor cooling degree and the required intake air cooling degree.
  • the required compressor cooling degree and the required intake air cooling degree are larger than the required engine cooling degree.
  • the temperature at which the generation of deposits is suppressed is equal to or lower than the lower limit of the temperature at which deposits are generated (that is, the temperature at which deposits start to be generated).
  • the temperature at which the amount of deposit generated is maintained below the allowable amount is a temperature below the lower limit value of the temperature at which oil mist of a predetermined ratio or more of the oil mist in intake air changes to deposit.
  • the predetermined ratio is, for example, a ratio for maintaining the deposit accumulation amount (that is, the amount of deposit accumulated in the compressor) below an allowable amount.
  • the allowable amount is, for example, an upper limit value of the deposit accumulation amount that maintains the supercharging efficiency of the supercharger 60 at or above a desired efficiency.
  • the cooling capacity of the first cooling device 70 and the cooling capacity of the second cooling device 80 are separately set. It can be set.
  • the cooling capacity of the first cooling device 70 is set to the ability to achieve the required engine cooling degree
  • the cooling capacity of the second cooling device 80 is set to the ability to achieve the required compressor cooling degree. Therefore, the required engine cooling level and the required compressor cooling level are achieved at the same time.
  • the internal combustion engine provided with the cooling device of the second embodiment is shown in FIG.
  • the cooling device of the second embodiment is shown in FIG.
  • the first cooling device 70 of the second embodiment is the same as the first cooling device 70 of the first embodiment.
  • the second cooling device 80 of the second embodiment is different from the second cooling device 80 of the first embodiment in that a compressor bypass passage 82C is provided.
  • the compressor bypass passage 82 directly connects the second cooling water passage 82 (82 B) upstream of the compressor 61 and the second cooling water passage 82 (82 B) downstream of the compressor 61. Therefore, in the second cooling device 80 of the second embodiment, part of the cooling water flowing through the second cooling water passage 82 (82B) bypasses the compressor 61 via the compressor bypass passage 82C.
  • the cooling capacity of the second cooling device 80 of the second embodiment is set to an ability to achieve the required intake air cooling degree without excess or deficiency.
  • the flow passage cross-sectional area of the compressor bypass passage 82C is set to an area where the cooling water having a flow rate that achieves the required compressor cooling degree without excess or deficiency is supplied to the compressor 61.
  • the required compressor cooling degree may be smaller than the required intake air cooling degree. Even in this case, according to the second embodiment, the required compressor cooling degree and the required intake air cooling degree can be achieved at the same time without excess or deficiency.
  • FIG. 1 An internal combustion engine provided with the cooling device of the third embodiment is shown in FIG.
  • the cooling device of the second embodiment is shown in FIG.
  • the second cooling device 80 of the third embodiment is the same as that of the first embodiment in that the flow passage cross-sectional area of the cooling water passage 82B passing through the compressor 61 is smaller than the flow passage cross-sectional area of the cooling water passage 82A passing through the intercooler 32. 2 is different from the cooling device 80.
  • the cooling capacity of the second cooling device 80 of the third embodiment is set to an ability to achieve the required intake air cooling degree without excess or deficiency.
  • the flow passage cross-sectional area of the cooling water passage 82 ⁇ / b> B passing through the compressor 61 is set to an area where cooling water having a flow rate that achieves the required compressor cooling degree without excess or deficiency is supplied to the compressor 61.
  • the required compressor cooling degree may be smaller than the required intake air cooling degree. Even in this case, according to the third embodiment, the required compressor cooling degree and the required intake air cooling degree can be achieved without excess or deficiency at the same time.
  • FIG. 4 An internal combustion engine provided with the cooling device of the fourth embodiment is shown in FIG.
  • the cooling device of the fourth embodiment is shown in FIG.
  • the first cooling device 70 of the fourth embodiment is the same as the cooling device 70 of the second embodiment.
  • the second cooling device 80 of the fourth embodiment differs from the second cooling device 80 of the second embodiment in that it has a compressor bypass control valve 84.
  • the compressor bypass control valve 84 is interposed in the compressor bypass passage 82C.
  • the compressor bypass control valve 84 can control the flow rate of the cooling water flowing in the compressor bypass passage 82C.
  • the opening degree of the compressor bypass control valve 84 is controlled so that cooling water having a flow rate that achieves the required compressor cooling degree without excess or deficiency flows in the compressor bypass passage 82C. More specifically, when the cooling degree of the compressor 61 is smaller than the required compressor cooling degree, the opening degree of the compressor bypass control valve 84 is made small. According to this, since the flow rate of the cooling water flowing in the compressor bypass passage 82C is reduced, the flow rate of the cooling water supplied to the compressor 61 is increased. As a result, the degree of cooling of the compressor 61 increases. Conversely, when the cooling degree of the compressor 61 is larger than the required compressor cooling degree, the opening degree of the compressor bypass control valve 84 is increased. As a result, the degree of cooling of the compressor 61 is reduced.
  • the required compressor cooling degree may be smaller than the required intake air cooling degree.
  • the required compressor cooling degree may change, the flow rate of the cooling water supplied to the compressor 61 may change, or the cooling capacity of the second cooling device 80 may change. Even in these cases, according to the fourth embodiment, the required compressor cooling degree and the required intake air cooling degree can be accurately achieved without excess or deficiency at the same time.
  • step 400 the cooling degree DCc of the compressor 61 is acquired.
  • step 401 it is judged if the cooling degree DCc acquired at step 400 is smaller than the required compressor cooling degree DCcr (DCc ⁇ DCcr). If it is determined that DCc ⁇ DCcr, the flow proceeds to step 402. On the other hand, if it is determined that DCc ⁇ DCcr is not satisfied, the flow proceeds to step 403.
  • step 402 the opening degree Dcb of the compressor bypass control valve 84 is decreased, and then the flow ends.
  • Step 403 it is determined whether or not the cooling degree DCc acquired in Step 400 is larger than the required compressor cooling degree DCcr (DCc> DCcr). If it is determined that DCc> DCcr, the flow proceeds to step 404. On the other hand, if it is determined that DCc> DCcr is not satisfied, the flow ends.
  • step 404 the opening degree Dcb of the compressor bypass control valve 84 is increased, and then the flow ends.
  • a fifth embodiment will be described.
  • An internal combustion engine provided with the cooling device of the fifth embodiment is shown in FIG.
  • the cooling device of the fifth embodiment is shown in FIG.
  • the cooling device of the fifth embodiment is different from the cooling device of the first embodiment in that the operation of the second pump 83 is controlled according to the engine temperature (that is, the temperature of the engine body 20).
  • the second pump 83 when the engine temperature is equal to or higher than the allowable temperature, the second pump 83 is operated. On the other hand, when the engine temperature is lower than the allowable temperature, the operation of the second pump 83 is stopped.
  • the allowable temperature is the temperature of the engine body 20 required to make the combustion in the engine body 20 good.
  • step 500 the engine temperature Te is acquired.
  • step 501 it is determined whether or not the engine temperature Te acquired in step 500 is lower than the allowable temperature Teth (Te ⁇ Teth).
  • Te ⁇ Teth the allowable temperature Teth
  • step 502. the flow proceeds to step 503.
  • step 502 the operation of the second pump 83 is stopped, and then the flow ends.
  • step 503 the second pump 83 is operated, and then the flow ends.
  • FIG. 10 An internal combustion engine provided with the cooling device of the sixth embodiment is shown in FIG.
  • the cooling device of the sixth embodiment is shown in FIG.
  • the first cooling device 70 of the sixth embodiment is the same as the first cooling device 70 of the fifth embodiment.
  • the second cooling device 80 of the sixth embodiment is different from the second cooling device 80 of the fifth embodiment in that it has a radiator bypass passage 82D and a radiator bypass valve 84.
  • the radiator bypass passage 82D is a second cooling water between the second cooling water passage 82 between the junction P of the two cooling water passages 82A and 82B and the second radiator 81, and between the second radiator 81 and the second pump 83.
  • the passage 82 is directly connected.
  • the radiator bypass valve 84 is interposed at a point where the radiator bypass passage 82D joins the second cooling water passage 82.
  • the radiator bypass valve 84 can control the flow rate of the cooling water flowing in the radiator bypass passage 82D.
  • the operation of the radiator bypass control valve 84 is controlled so that the cooling water does not flow in the radiator bypass passage 82D.
  • the operation of the radiator bypass control valve 84 is controlled so that the cooling water flows in the radiator bypass passage 82D.
  • the allowable temperature is the temperature of the engine body 20 required to make the combustion in the engine body 20 good. Further, even if the engine temperature is equal to or higher than the allowable temperature or lower than the allowable temperature, the second pump 83 is operated.
  • the operation of the radiator bypass control valve 84 is controlled so that the cooling water flows in the radiator bypass passage 82D.
  • the operation of the radiator bypass control valve 84 may be controlled so that a part of the cooling water flows in the radiator bypass passage 82D.
  • the operation of the radiator bypass control valve 84 is controlled so that the cooling water flows in the radiator bypass passage 82D, the cooling water having a flow rate corresponding to the difference in the engine temperature with respect to the allowable temperature flows in the radiator bypass passage 82D.
  • the operation of the radiator bypass control valve 84 may be controlled. In this case, specifically, the operation of the radiator bypass control valve 84 is controlled such that a larger amount of cooling water flows in the radiator bypass passage 82D as the difference between the engine temperature and the allowable temperature is larger.
  • step 600 the engine temperature Te is acquired.
  • step 601 it is judged if the engine temperature Te acquired at step 600 is lower than the allowable temperature Teth (Te ⁇ Teth). If it is determined that Te ⁇ Teth, the flow proceeds to step 602. On the other hand, if it is determined that Te ⁇ Teth is not satisfied, the flow proceeds to step 603.
  • step 602 the radiator bypass control valve 84 is opened so that the cooling water flows in the radiator bypass passage 82D, and then the flow ends.
  • step 603 the radiator bypass control valve 84 is fully closed so that the cooling water does not flow in the radiator bypass passage 82, and then the flow ends.
  • FIG. 7 An internal combustion engine provided with the cooling device of the seventh embodiment is shown in FIG.
  • the cooling device of the seventh embodiment is shown in FIG.
  • the internal combustion engine of the seventh embodiment differs from the internal combustion engine of the first embodiment in that it includes an exhaust gas recirculation device (hereinafter referred to as “EGR device”) 90.
  • the EGR device 90 includes an exhaust gas recirculation passage (hereinafter referred to as “EGR passage”) 91 and an exhaust gas recirculation control valve (hereinafter referred to as “EGR valve”) 92.
  • the EGR passage 91 directly connects the exhaust passage 40 downstream of the turbine 62 and the intake passage 30 upstream of the compressor 61.
  • the EGR valve 92 can control the flow rate of the exhaust gas flowing through the EGR passage 91.
  • engine operating conditions for introducing exhaust gas into the intake passage 30 by the EGR device 90 are predetermined. If the intake air temperature is equal to or higher than the allowable temperature when the engine operating condition satisfies the EGR execution condition, the second pump 83 is operated and the exhaust gas to the intake passage 30 by the EGR device 90 (that is, the EGR device 90). Is implemented). On the other hand, if the intake air temperature is lower than the allowable temperature when the engine operation state satisfies the EGR execution condition, the operation of the second pump 83 is stopped and EGR is executed.
  • the allowable temperature is the lower limit value of the temperature at which moisture in the exhaust gas introduced into the intake passage 30 (hereinafter referred to as “EGR gas”) does not condense even when the intake air is cooled by the second cooling device 80. Is set.
  • step 700 it is determined in step 700 whether or not the engine operating state satisfies the EGR execution condition.
  • the flow proceeds to step 701.
  • the flow proceeds to step 704.
  • step 704 the second pump 83 is activated, and then the flow ends.
  • step 701 the intake air temperature Ta is acquired.
  • step 702 it is judged if the intake air temperature Ta acquired at step 701 is lower than the allowable temperature Tath (Ta ⁇ Tath).
  • Ta ⁇ Tath the allowable temperature Tath
  • the flow proceeds to step 703.
  • Ta ⁇ Tath the flow proceeds to step 704.
  • step 703 the operation of the second pump 83 is stopped, and then the flow ends.
  • step 704 the second pump 83 is operated, and then the flow ends.
  • FIG. 8D An internal combustion engine provided with the cooling device of the eighth embodiment is shown in FIG.
  • the cooling device of the eighth embodiment is shown in FIG.
  • the cooling device of the eighth embodiment is different from the cooling device of the seventh embodiment in that it has a radiator bypass passage 82D and a radiator bypass valve 84.
  • the radiator bypass control valve 84 when the intake air temperature is equal to or higher than the allowable temperature when the engine operating state satisfies the EGR execution condition, the radiator bypass control valve 84 is configured so that the cooling water does not flow in the radiator bypass passage 82D. The operation is controlled and EGR is executed. On the other hand, when the engine operating state satisfies the EGR execution condition and the intake air temperature is lower than the allowable temperature, the operation of the radiator bypass control valve 84 is controlled so that the cooling water flows in the radiator bypass passage 82D. . Even if the intake air temperature is equal to or higher than the allowable temperature or lower than the allowable temperature, the second pump 83 is operated.
  • the radiator bypass control valve 84 when the operation of the radiator bypass control valve 84 is controlled so that the cooling water flows in the radiator bypass passage 82D, the cooling water having a flow rate corresponding to the difference in the intake air temperature with respect to the allowable temperature flows in the radiator bypass passage 82D.
  • the operation of the radiator bypass control valve 84 may be controlled. In this case, specifically, the operation of the radiator bypass control valve 84 is controlled such that a larger amount of cooling water flows in the radiator bypass passage 82D as the difference between the intake air temperature and the allowable temperature is larger.
  • step 800 it is determined in step 800 whether or not the engine operating state satisfies the EGR execution condition.
  • the flow proceeds to step 801.
  • the flow proceeds to step 804.
  • step 804 the radiator bypass control valve 84 is fully closed so that the cooling water does not flow in the radiator bypass passage 82, and then the flow ends.
  • step 801 the intake air temperature Ta is acquired.
  • step 802 it is judged if the intake air temperature Ta acquired at step 801 is lower than the allowable temperature Tath (Ta ⁇ Tath).
  • Ta ⁇ Tath the allowable temperature Tath
  • the flow proceeds to step 803.
  • the flow proceeds to step 804.
  • step 803 the radiator bypass control valve 84 is opened so that the cooling water flows in the radiator bypass passage 82D, and then the flow ends.
  • step 804 the radiator bypass control valve 84 is fully closed so that the cooling water does not flow in the radiator bypass passage 82, and then the flow ends.
  • the invention included in the above embodiment includes a blow-by gas recirculation device 50 and a supercharger 60, and the blow-by gas recirculation device recirculates the blow-by gas to the intake passage upstream of the compressor of the supercharger.
  • a first cooling means (first cooling device) 70 for cooling the main body 20 of the internal combustion engine and a second cooling means (second cooling device) 80 for cooling the intake air are provided separately, and the second The cooling means is a cooling device that cools the compressor 61.
  • the second cooling means has one medium cooling means (second radiator) 81 for cooling the cooling medium (cooling water), and the intake air and the compressor are cooled by the cooling medium cooled by the medium cooling means. . Further, in the case where the second cooling means has a cooling medium passage (second cooling water path) 82 through which a cooling medium (cooling water) for cooling the intake air and the compressor is passed, the second cooling means is a part of the cooling medium.
  • a compressor bypass passage compressor bypass passage 82C or one cooling water passage 82A for bypassing the compressor.
  • the operation of the second cooling means is stopped when the temperature of the main body of the internal combustion engine is lower than a predetermined temperature (allowable temperature).
  • a medium cooling means (second radiator) 81 for cooling the cooling medium by the second cooling means, and a cooling means bypass passage (radiator bypass passage) 82D for bypassing the medium cooling means to at least a part of the cooling medium.
  • a bypass control means (radiator bypass control valve) 84 for controlling whether or not the medium cooling means is bypassed by at least a part of the cooling medium via the cooling means bypass passage, When the temperature of the main body is lower than a predetermined temperature (allowable temperature), the bypass control means bypasses the medium cooling means to at least a part of the cooling medium via the cooling means bypass passage.
  • the second cooling means cools a cooling medium (cooling water), a medium cooling means (second radiator) 81, and a cooling means bypass passage (radiator bypass) for bypassing the medium cooling means to at least a part of the cooling medium.
  • Passage) 82D and bypass control means (radiator bypass control valve) 84 for controlling whether or not the medium cooling means is bypassed by at least a part of the cooling medium via the cooling means bypass passage, When the temperature is lower than a predetermined temperature (allowable temperature), the bypass control unit causes the medium cooling unit to bypass the cooling medium via the cooling unit bypass passage.
  • the internal combustion engine includes EGR means (EGR device) 90 for introducing exhaust gas into the intake passage, and the EGR means is configured to introduce exhaust gas into the intake passage 30 upstream of the compressor.
  • EGR means EGR device
  • the operation of the second cooling means is stopped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Supercharger (AREA)

Abstract

 本発明は要求機関冷却度合と要求コンプレッサ冷却度合とを同時に達成可能な冷却装置を提供することを目的とする。本発明はブローバイガス還流装置(50)と過給機(60)とを備え、前記ブローバイガス還流装置が過給機のコンプレッサ上流の吸気通路にブローバイガスを還流する内燃機関の冷却装置に関する。内燃機関の本体(20)を冷却する第1冷却装置(70)と吸気を冷却する第2冷却装置(80)とを別個に具備する。第2冷却装置がコンプレッサ(61)を冷却する。

Description

ブローバイガス還流装置と過給機とを備えた内燃機関の冷却装置
 本発明はブローバイガス還流装置と過給機とを備えた内燃機関の冷却装置に関する。
 内燃機関(以下「機関」という)の燃焼室からクランクケース内に漏出したブローバイガスを吸気通路に還流させることによってクランクケース内の換気を行うシステムが知られている。このシステムはブローバイガス還流装置またはPCV(ポジティブ・クランクケース・ベンチレーション)とも呼ばれている。
 ところで、クランクケース内では、クランクシャフトが高速で回転すること及びピストンリングとシリンダボア内周壁面との間からの筒内ガスが噴出すること等によってオイルが飛散する。その結果、クランクケース内にオイルミスト(すなわち、潤滑油の液体状微粒子)が形成される。ここで、機関が過給機を具備している場合において、オイルミストがブローバイガス還流装置によってブローバイガスとともに吸気通路に還流されると、オイルミストが過給機のコンプレッサに流入する。一方、コンプレッサから流出する吸気の温度はコンプレッサの圧縮作用によって上昇して高温になる。したがって、コンプレッサに流入したオイルミストが高温に晒されることになり、その結果、オイルミストに起因するデポジットが生成されてコンプレッサのインペラやディフューザ壁面に堆積する。こうしたデポジットの堆積によって過給機の過給効率が低下してしまう。
 そこで、特許文献1に記載の装置では、コンプレッサを冷却水によって冷却することによってコンプレッサから流出する吸気の温度上昇を抑制し、それによって、オイルミストが高温に晒されることを抑制するようにしている。
特開2010-209846号公報
 ここで、特許文献1に記載の装置において、コンプレッサを冷却する冷却水として機関冷却水(すなわち、機関を冷却する冷却水)を利用する場合について考察する。一般的に、要求コンプレッサ冷却度合(すなわち、デポジットの発生を抑制するため或いはデポジットの発生量を許容量以下に抑えるために要求されるコンプレッサの冷却度合)は要求機関冷却度合(すなわち、機関運転を良好ならしめるために要求される機関本体の冷却度合)よりも大きい。したがって、コンプレッサを冷却する冷却水として機関冷却水を利用した場合において、冷却水の温度が要求機関冷却度合を達成する温度に維持されているときには、コンプレッサの冷却度合が要求コンプレッサ冷却度合よりも小さくなってしまうし、一方、冷却水の温度が要求コンプレッサ冷却度合を達成する温度に維持されているときには、機関本体の冷却度合が要求機関冷却度合よりも大きくなってしまう。しかしながら、要求機関冷却度合と要求コンプレッサ冷却度合とは同時に達成されることが好ましい。
 そこで、本発明の目的は、ブローバイガス還流装置と過給機とを備えた内燃機関において、要求機関冷却度合と要求コンプレッサ冷却度合とを同時に達成可能な冷却装置を提供することにある。
 本発明は、ブローバイガス還流装置と過給機とを備え、前記ブローバイガス還流装置が前記過給機のコンプレッサ上流の吸気通路にブローバイガスを還流する内燃機関の冷却装置に関する。ここで、本発明の冷却装置は、前記内燃機関の本体を冷却する第1冷却手段と吸気を冷却する第2冷却手段とを別個に具備する。そして、前記第2冷却手段が前記過給機のコンプレッサを冷却する。これによれば、第1冷却手段の冷却能力と第2冷却手段の冷却能力とを別個に設定可能であるので、要求機関冷却度合と要求コンプレッサ冷却度合とを同時に達成可能である。
 また、要求吸気冷却度合(すなわち、機関運転を良好ならしめるために要求される吸気の冷却度合)と要求コンプレッサ冷却度合とは概ね等しい。そこで、上記発明において、前記第2冷却手段が冷却媒体を冷却する1つの媒体冷却手段を有し、該媒体冷却手段によって冷却される冷却媒体によって吸気および前記コンプレッサを冷却すると好ましい。これによれば、第2冷却手段の動作の簡便な制御によって要求吸気冷却度合と要求コンプレッサ冷却度合とを同時に達成可能である。
 また、厳密には、要求コンプレッサ冷却度合は要求吸気冷却度合よりも小さい。したがって、上記発明において、前記コンプレッサを冷却する冷却媒体の流量が吸気を冷却する冷却媒体の流量よりも少ないと好ましい。そこで、上記発明において、前記第2冷却手段が吸気および前記コンプレッサを冷却する冷却媒体を流す冷却媒体通路を有する場合において、前記第2冷却手段が前記冷却媒体の一部に前記コンプレッサをバイパスさせるコンプレッサバイパス通路を有すると好ましい。これによれば、要求コンプレッサ冷却度合と要求吸気冷却度合とを同時に正確に達成可能である。
 また、内燃機関の本体の温度が低いときには内燃機関の本体の暖機の促進の観点では高い温度の吸気を燃焼室に導入することが好ましい。したがって、上記発明において、前記内燃機関の本体の温度が所定温度よりも低いときに前記第2冷却手段の動作が停止されると好ましい。これによれば、内燃機関の本体の温度が低いときに吸気の冷却が停止されるので、高い温度の吸気が燃焼室に導入される。したがって、内燃機関の本体の温度が低いときに内燃機関の本体の暖機が促進される。
 あるいは、上記発明において、前記第2冷却手段が前記冷却媒体を冷却する媒体冷却手段と、前記冷却媒体の少なくとも一部に前記媒体冷却手段をバイパスさせる冷却手段バイパス通路と、該冷却手段バイパス通路を介して前記冷却媒体の少なくとも一部に前記媒体冷却手段をバイパスさせるか否かを制御するバイパス制御手段とを有し、前記内燃機関の本体の温度が所定温度よりも低いときに前記バイパス制御手段が前記冷却手段バイパス通路を介して前記冷却媒体の少なくとも一部に前記媒体冷却手段をバイパスさせると好ましい。
 これによれば、内燃機関の本体の温度が低いときに冷却媒体の少なくとも一部が媒体冷却手段をバイパスするので、冷却媒体の温度が高く維持される。さらに、過給機のタービンからコンプレッサに伝わった熱によって冷却媒体の温度が上昇せしめられる可能性もある。いずれにせよ、冷却媒体の温度が高く維持されるので、高い温度の吸気が燃焼室に導入される。したがって、内燃機関の本体の温度が低いときに内燃機関の本体の暖機が促進される。
 また、吸気温度が低いと吸気中の水分が凝縮して凝縮水が発生する可能性がある。こうした凝縮水の発生は内燃機関にとって好ましくない。したがって、上記発明において、前記第2冷却手段が前記冷却媒体を冷却する媒体冷却手段と、前記冷却媒体の少なくとも一部に前記媒体冷却手段をバイパスさせる冷却手段バイパス通路と、該冷却手段バイパス通路を介して前記冷却媒体の少なくとも一部に前記媒体冷却手段をバイパスさせるか否かを制御するバイパス制御手段とを有し、吸気温度が所定温度よりも低いときに前記バイパス制御手段が前記冷却手段バイパス通路を介して前記冷却媒体の少なくとも一部に前記媒体冷却手段をバイパスさせると好ましい。
 これによれば、吸気温度が低いときに冷却媒体の少なくとも一部が媒体冷却手段をバイパスするので、冷却媒体の温度が高く維持される。さらに、過給機のタービンからコンプレッサに伝わった熱によって冷却媒体の温度が上昇せしめられる可能性もある。いずれにせよ、冷却媒体の温度が高く維持される。したがって、吸気通路における凝縮水の発生が抑制される。
 また、吸気の温度が低いときに吸気通路に排気ガスが導入されると排気ガス中の水分が凝縮して凝縮水が発生する可能性が高くなる。したがって、上記発明において、前記内燃機関が排気ガスを吸気通路に導入するEGR手段を具備し、該EGR手段が前記コンプレッサよりも上流の吸気通路に排気ガスを導入するように構成されており、吸気温度が所定温度よりも低いときに前記第2冷却手段の動作が停止されると好ましい。これによれば、吸気温度が低いときに吸気の冷却が停止されるので、吸気温度が高く維持される。したがって、吸気通路に排気ガスが導入されたとしても凝縮水の発生が抑制される。
第1実施形態の冷却装置を備えた内燃機関を示す図である。 第1実施形態の冷却装置の構成を示す図である。 第2実施形態の冷却装置の構成を示す図である。 第4実施形態の冷却装置の構成を示す図である。 第4実施形態のコンプレッサバイパス制御弁の制御フローを示す図である。 第5実施形態の第2ポンプの制御フローを示す図である。 第6実施形態の冷却装置の構成を示す図である。 第6実施形態のラジエータバイパス制御弁の制御フローを示す図である。 第7実施形態の冷却装置を備えた内燃機関を示す図である。 第7実施形態の第2ポンプの制御フローを示す図である。 第8実施形態のラジエータバイパス制御弁の制御フローを示す図である。
 以下、図面を参照して本発明の内燃機関のブローバイガス還流装置の実施形態について説明する。なお、以下で説明する実施形態の内燃機関はピストン往復動型の圧縮自着火式の内燃機関(いわゆる、ディーゼルエンジン)であり、当該内燃機関は複数の気筒(たとえば、4つの気筒)を直列に備えている。しかしながら、本発明は他の形式の内燃機関にも適用可能である。なお、以下の説明において「デポジット」とは吸気中のオイルミストに起因して発生するデポジットを意味する。
<第1実施形態>
 第1実施形態について説明する。図1に示したように、第1実施形態のブローバイガス還流装置は内燃機関(以下「機関」という)10に適用される。機関10は機関本体20と、吸気通路30と、排気通路40とを具備する。機関本体20はクランクケース21と、オイルパン22と、シリンダブロック23と、シリンダヘッド24とを有する。クランクケース21はクランクシャフト21Aを回転可能に支持している。オイルパン22はクランクケース21の下方においてクランクケース21に固定されている。そして、オイルパン22はクランクケース21とともにクランクシャフト21Aおよび潤滑油OLを収容する空間(以下「クランクケース室」ともいう)を形成している。
 シリンダブロック23はクランクケース21の上方においてクランクケース21に固定されている。シリンダブロック23はアルミニウム製である。また、シリンダブロック23は中空円筒状のシリンダボア23Aを複数個(本実施形態では、4つ)備えている。シリンダボア23Aの内周には鋳鉄製のシリンダライナ23Bが嵌入されている。シリンダボア23A(本実施形態では、特に、シリンダライナ23B)にはピストン23Cが収容されている。
 ピストン23Cは略円筒形である。また、ピストン23Cはその側面に複数のピストンリングを備えている。複数のピストンリングのうちの最も下方(すなわち、クランクケース21側)のリングはいわゆるオイルリングORである。オイルリングORはシリンダボア23Aの内周壁面(本実施形態では、特に、シリンダライナ23Bの内周壁面)上を摺動しながら同内周壁面上の潤滑油(別の言い方をすれば、油膜)をクランクケース21側に掻き落とすようになっている。ピストン23Cはコネクティングロッド23Dによってクランクシャフト21Aに連結されている。ピストン23Cの上壁面(すなわち、頂壁面)はシリンダライナ23Bの内周壁面およびシリンダヘッド24の下壁面とともに燃焼室CCを形成している。
 シリンダヘッド24はシリンダブロック23の上方においてシリンダブロック23に固定されている。シリンダヘッド24には燃焼室CCに連通する吸気ポートおよび排気ポートが形成されている。吸気ポートは吸気弁によって開閉される。吸気弁はシリンダヘッド24に収容されたインテークカムシャフトのカム(図示せず)によって駆動される。排気ポートは排気弁によって開閉される。排気弁はシリンダヘッド24に収容されたエグゾーストカムシャフトのカム(図示せず)によって駆動される。シリンダヘッド24はシリンダヘッドカバー24Aによって覆われている。シリンダヘッド24内には燃料噴射弁(図示せず)が備えられている。
 吸気通路30は概して吸気管31とインタークーラ32と過給機60のコンプレッサ61と吸気ポートとから構成されている。吸気管31は吸気ポートに接続されている。コンプレッサ61は吸気管31に介装されている。インタークーラ32はコンプレッサ61よりも下流の吸気管31に介装されている。
 排気通路40は概して排気ポートと排気管41と過給機60のタービン62とから構成されている。排気管41は排気ポートに接続されている。タービン62は排気管41に介装されている。タービン62はシャフトによってコンプレッサ61に連結されている。
 タービン62はそこに流入する排気ガスのエネルギによって回転せしめられる。タービン62の回転はシャフトを介してコンプレッサ61に伝達される。これによって、コンプレッサ61が回転する。このコンプレッサ61の回転によって吸気が圧縮せしめられる。すなわち、過給機60が過給を行う。
 第1実施形態のブローバイガス還流装置50は第1ガス通路51と第2ガス通路52と第3ガス通路53とを有する。第1ガス通路51はシリンダブロック23内に形成されている。第1ガス通路51はクランクケース室をシリンダヘッド24内の第2ガス通路52に接続する。第2ガス通路52はシリンダヘッド24内の所定の経路を通って第3ガス通路53の一端に接続されている。第3ガス通路53は機関本体20の外部に設けられたガス管53Aによって構成されている。第3ガス通路53の他端はコンプレッサ61よりも上流の吸気管31に接続されている。
 燃焼室CCからクランクケース室に漏出したブローバイガスは第1ガス通路51、第2ガス通路52および第3ガス通路53を通ってコンプレッサ61よりも上流の吸気通路30に還流せしめられる。なお、吸気通路30へのブローバイガスの還流量を制御するために周知のPCVバルブが第3ガス通路53に配置されていてもよい。
<第1実施形態の冷却装置>
 次に、図2を参照して第1実施形態の冷却装置について説明する。冷却装置は第1冷却装置70と第2冷却装置80とを有する。第1冷却装置70は第1ラジエータ71と第1冷却水通路72と第1ポンプ73とを有する。一方、第2冷却装置80は第2ラジエータ81と第2冷却水通路82と第2ポンプ83とを有する。
 第1冷却水通路72は順に機関本体20、第1ポンプ83、第1ラジエータ81を循環するように構成されている。別の言い方をすれば、機関本体20、第1ポンプ73、および、第1ラジエータ71は第1冷却通路72に介装されている。第1ポンプ73が作動せしめられると、冷却水が第1冷却水通路72を介して第1ラジエータ71、機関本体20、第1ポンプ73と順に循環する。このとき、機関本体20が冷却水によって冷却されるとともに、冷却水が第1ラジエータ71において冷却される。
 第2冷却水通路82は2つの冷却水通路82A、82Bから構成されている。すなわち、第2ラジエータ81を出た第2冷却水通路82は第2ポンプ83の下流において2つの冷却水通路82A、82Bに分岐する。そして、一方の冷却水通路82Aはインタークーラ32を通り、他方の冷却水通路82Bはコンプレッサ61を通る。そして、インタークーラ32を通った一方の冷却水通路82Aとコンプレッサ61を通った他方の冷却水通路82Bとが合流し、第2ラジエータ81に戻る。別の言い方をすれば、一方の冷却水通路82Aは順に第2ポンプ83、インタークーラ32、第2ラジエータ81を循環するように構成されている。他方の冷却水通路82Bは順に第2ポンプ83、コンプレッサ61、第2ラジエータ81を循環するように構成されている。さらに別の言い方をすれば、第2ラジエータ81および第2ポンプ83は両冷却水通路82A、82Bに共通して介装されており、インタークーラ32は一方の冷却水通路82Aに介装されており、コンプレッサ61は他方の冷却水通路82Bに介装されている。第2ポンプ83が作動せしめられると、冷却水が第2冷却水通路82を介してインタークーラ32およびコンプレッサ61、第2ラジエータ81、第2ポンプ83と順に循環する。このとき、インタークーラ32(ひいては、吸気)およびコンプレッサ61が冷却水によって冷却されるとともに、冷却水が第2ラジエータ81において冷却される。
<第1冷却装置の冷却能力>
 機関本体20における燃焼を良好ならしめるために適切な機関本体20の温度が存在する。そこで、第1実施形態では、要求機関冷却度合(すなわち、機関本体20における燃焼を良好ならしめるために要求される機関本体の冷却度合)が設定されている。そして、第1冷却装置の冷却能力は前記要求機関冷却度合を達成する能力に設定される。
<第2冷却装置の冷却能力>
 クランクシャフト21Aはクランクケース21に回転可能に支持されたクランクジャーナルと、クランクピンと、クランクアームと、バランスウエイトとを有する。これらクランクピン、クランクアームおよびバランスウエイトは機関運転中(すなわち、機関10が運転されているとき)、高速で回転する。さらに、コネクティングロッド23Dも機関運転中、高速で運動する。したがって、オイルリングORによってクランクケース室に向かって掻き落とされて落下する潤滑油は高速で回転または運動している部材(クランクピン、クランクアーム、バランスウエイトおよびコネクティングロッド23Dなど)に衝突して飛散する。さらに、オイルパン22内の潤滑油OLもこれらの運動に伴って飛散する。加えて、ピストンリングとシリンダライナ23Bの内周壁面との間から燃焼室内のガスが噴出することによっても潤滑油が飛散する。よって、クランクケース室内に多量のオイルミスト(潤滑油の飛沫)が発生する。
 そして、ブローバイガス還流装置によってブローバイガスが吸気通路30に導入されるときにオイルミストも吸気通路30に導入される。このオイルミストはコンプレッサ61に流入する。コンプレッサ61では吸気が圧縮されるので吸気温度が上昇する。ここで、吸気温度が高温になると、オイルミストが高温に晒されてデポジットとなり、コンプレッサ61内(より具体的には、インペラやディフューザ壁面)に堆積する。そして、このデポジットの堆積によって過給機60の過給効率が低下してしまう。
 そこで、第1実施形態では、要求コンプレッサ冷却度合(すなわち、コンプレッサ61から流出する吸気の温度を、デポジットの発生を抑制する温度またはデポジットの発生量を許容量以下に維持する温度に維持するために要求されるコンプレッサの冷却度合)が設定されている。一方、機関本体20における燃焼を良好ならしめるために適切な吸気温度が存在する。そこで、第1実施形態では、要求吸気冷却度合(すなわち、機関本体20における燃焼を良好ならしめるために要求される吸気の冷却度合)が設定されている。そして、第2冷却装置80の冷却能力はこれら要求コンプレッサ冷却度合および要求吸気冷却度合を達成する能力に設定される。
 なお、要求コンプレッサ冷却度合および要求吸気冷却度合は要求機関冷却度合よりも大きい。また、デポジットの発生を抑制する温度はデポジットが発生する温度の下限値(すなわち、デポジットが発生し始める温度)以下の温度である。また、デポジットの発生量を許容量以下に維持する温度は吸気中のオイルミストのうちの所定割合以上のオイルミストがデポジットに変化する温度の下限値以下の温度である。ここで、前記所定割合は、たとえば、デポジット堆積量(すなわち、コンプレッサ内に堆積しているデポジットの量)を許容量以下に維持する割合である。ここで、前記許容量は、たとえば、過給機60の過給効率を所望の効率以上に維持するデポジット堆積量の上限値である。
<第1実施形態の効果>
 第1実施形態によれば、第1冷却装置70と第2冷却装置80とが別個に設けられているので、第1冷却装置70の冷却能力と第2冷却装置80の冷却能力とを別個に設定可能である。そして、第1冷却装置70の冷却能力は要求機関冷却度合を達成する能力に設定されており、第2冷却装置80の冷却能力は要求コンプレッサ冷却度合を達成する能力に設定されている。したがって、要求機関冷却度合と要求コンプレッサ冷却度合とが同時に達成される。
<第2実施形態>
 第2実施形態について説明する。第2実施形態の冷却装置を備えた内燃機関は図1に示されている。第2実施形態の冷却装置は図3に示されている。第2実施形態の第1冷却装置70は第1実施形態の第1冷却装置70と同じである。第2実施形態の第2冷却装置80はコンプレッサバイパス通路82Cが設けられている点で第1実施形態の第2冷却装置80とは異なっている。コンプレッサバイパス通路82はコンプレッサ61よりも上流の第2冷却水通路82(82B)とコンプレッサ61よりも下流の第2冷却水通路82(82B)とを直接連結する。したがって、第2実施形態の第2冷却装置80では、第2冷却水通路82(82B)を流れる冷却水の一部がコンプレッサバイパス通路82Cを介してコンプレッサ61をバイパスする。
 なお、第2実施形態の第2冷却装置80の冷却能力は要求吸気冷却度合を過不足なく達成する能力に設定される。そして、コンプレッサバイパス通路82Cの流路断面積は要求コンプレッサ冷却度合を過不足なく達成する流量の冷却水がコンプレッサ61に供給される面積に設定されている。
<第2実施形態の効果>
 第2実施形態の効果について説明する。要求コンプレッサ冷却度合が要求吸気冷却度合よりも小さい場合がある。この場合であっても、第2実施形態によれば、要求コンプレッサ冷却度合と要求吸気冷却度合とが同時に過不足なく達成される。
<第3実施形態>
 第3実施形態について説明する。第3実施形態の冷却装置を備えた内燃機関は図1に示されている。第2実施形態の冷却装置は図2に示されている。第3実施形態の第2冷却装置80はコンプレッサ61を通る冷却水通路82Bの流路断面積がインタークーラ32を通る冷却水通路82Aの流路断面積よりも小さい点で第1実施形態の第2冷却装置80とは異なっている。
 なお、第3実施形態の第2冷却装置80の冷却能力は要求吸気冷却度合を過不足なく達成する能力に設定される。そして、コンプレッサ61を通る冷却水通路82Bの流路断面積は要求コンプレッサ冷却度合を過不足なく達成する流量の冷却水がコンプレッサ61に供給される面積に設定されている。
<第3実施形態の効果>
 第3実施形態の効果について説明する。要求コンプレッサ冷却度合が要求吸気冷却度合よりも小さい場合がある。この場合であっても、第3実施形態によれば、要求コンプレッサ冷却度合と要求吸気冷却度合とが同時に過不足なく達成される。
<第4実施形態>
 第4実施形態について説明する。第4実施形態の冷却装置を備えた内燃機関は図1に示されている。第4実施形態の冷却装置は図4に示されている。第4実施形態の第1冷却装置70は第2実施形態の冷却装置70と同じである。第4実施形態の第2冷却装置80はそれがコンプレッサバイパス制御弁84を有する点で第2実施形態の第2冷却装置80とは異なっている。コンプレッサバイパス制御弁84はコンプレッサバイパス通路82Cに介装されている。コンプレッサバイパス制御弁84はコンプレッサバイパス通路82C内を流れる冷却水の流量を制御可能である。
<第4実施形態の制御>
 第4実施形態では、要求コンプレッサ冷却度合を過不足なく達成する流量の冷却水がコンプレッサバイパス通路82C内を流れるようにコンプレッサバイパス制御弁84の開度が制御される。より具体的には、コンプレッサ61の冷却度合が要求コンプレッサ冷却度合よりも小さいときには、コンプレッサバイパス制御弁84の開度が小さくされる。これによれば、コンプレッサバイパス通路82C内を流れる冷却水の流量が小さくなるので、コンプレッサ61に供給される冷却水の流量が大きくなる。その結果、コンプレッサ61の冷却度合が大きくなる。逆に、コンプレッサ61の冷却度合が要求コンプレッサ冷却度合よりも大きいときには、コンプレッサバイパス制御弁84の開度が大きくされる。その結果、コンプレッサ61の冷却度合が小さくなる。
<第4実施形態の効果>
 第4実施形態の効果について説明する。要求コンプレッサ冷却度合が要求吸気冷却度合よりも小さい場合がある。また、要求コンプレッサ冷却度合が変化したり、コンプレッサ61に供給される冷却水の流量が変化したり、第2冷却装置80の冷却能力が変化したりする場合がある。これらの場合であっても、第4実施形態によれば、要求コンプレッサ冷却度合と要求吸気冷却度合とが同時に過不足なく正確に達成される。
<第4実施形態の制御フロー>
 第4実施形態のコンプレッサバイパス制御弁84の制御フローについて説明する。この制御フローは図5に示されている。図5のフローが開始されると、ステップ400において、コンプレッサ61の冷却度合DCcが取得される。次いで、ステップ401において、ステップ400で取得された冷却度合DCcが要求コンプレッサ冷却度合DCcrよりも小さい(DCc<DCcr)か否かが判別される。DCc<DCcrであると判別された場合、フローはステップ402に進む。一方、DCc<DCcrではないと判別された場合、フローはステップ403に進む。
 ステップ402では、コンプレッサバイパス制御弁84の開度Dcbが減少せしめられ、その後、フローが終了する。
 ステップ403では、ステップ400で取得された冷却度合DCcが要求コンプレッサ冷却度合DCcrよりも大きい(DCc>DCcr)か否かが判別される。DCc>DCcrであると判別された場合、フローはステップ404に進む。一方、DCc>DCcrではないと判別された場合、フローは終了する。
 ステップ404では、コンプレッサバイパス制御弁84の開度Dcbが増大せしめられ、その後、フローが終了する。
<第5実施形態>
 第5実施形態について説明する。第5実施形態の冷却装置を備えた内燃機関は図1に示されている。第5実施形態の冷却装置は図2に示されている。第5実施形態の冷却装置は機関温度(すなわち、機関本体20の温度)に応じて第2ポンプ83の作動が制御される点で第1実施形態の冷却装置とは異なっている。
<第5実施形態の制御>
 第5実施形態では、機関温度が許容温度以上である場合、第2ポンプ83が作動せしめられる。一方、機関温度が前記許容温度よりも低い場合、第2ポンプ83の作動が停止される。なお、前記許容温度は機関本体20における燃焼を良好ならしめるために要求される機関本体20の温度である。
<第5実施形態の効果>
 第5実施形態の効果について説明する。第5実施形態によれば、機関温度が前記許容温度よりも低い場合、第2ポンプ83の作動が停止されるので、高い温度の吸気が機関本体20の燃焼室に導入される。その結果、機関温度が上昇する。つまり、機関本体20の暖機が促進される。
<第5実施形態の制御フロー>
 第5実施形態の第2ポンプ83の制御フローについて説明する。この制御フローは図6に示されている。図6のフローが開始されると、ステップ500において、機関温度Teが取得される。次いで、ステップ501において、ステップ500で取得された機関温度Teが許容温度Tethよりも低い(Te<Teth)か否かが判別される。ここで、Te<Tethであると判別された場合、フローはステップ502に進む。一方、Te<Tethではないと判別された場合、フローはステップ503に進む。
 ステップ502では、第2ポンプ83の作動が停止され、その後、フローは終了する。一方、ステップ503では、第2ポンプ83が作動され、その後、フローは終了する。
<第6実施形態>
 第6実施形態について説明する。第6実施形態の冷却装置を備えた内燃機関は図1に示されている。第6実施形態の冷却装置は図7に示されている。第6実施形態の第1冷却装置70は第5実施形態の第1冷却装置70と同じである。第6実施形態の第2冷却装置80はそれがラジエータバイパス通路82Dとラジエータバイパス弁84とを有する点で第5実施形態の第2冷却装置80とは異なっている。ラジエータバイパス通路82Dは2つの冷却水通路82A、82Bの合流地点Pと第2ラジエータ81との間の第2冷却水通路82と第2ラジエータ81と第2ポンプ83との間の第2冷却水通路82とを直接連結する。ラジエータバイパス弁84はラジエータバイパス通路82Dが第2冷却水通路82と合流する地点に介装されている。ラジエータバイパス弁84はラジエータバイパス通路82D内を流れる冷却水の流量を制御可能である。
<第6実施形態の制御>
 第6実施形態では、機関温度が許容温度以上である場合、ラジエータバイパス通路82D内を冷却水が流れないようにラジエータバイパス制御弁84の動作が制御される。一方、機関温度が許容温度よりも低い場合、ラジエータバイパス通路82D内を冷却水が流れるようにラジエータバイパス制御弁84の動作が制御される。なお、前記許容温度は機関本体20における燃焼を良好ならしめるために要求される機関本体20の温度である。また、機関温度が前記許容温度以上であっても前記許容温度よりも低くても、第2ポンプ83は作動せしめられている。また、ラジエータバイパス通路82D内を冷却水が流れるようにラジエータバイパス制御弁84の動作が制御される場合、全ての冷却水がラジエータバイパス通路82D内を流れるようにラジエータバイパス制御弁84の動作が制御されてもよいし、冷却水の一部がラジエータバイパス通路82D内を流れるようにラジエータバイパス制御弁84の動作が制御されてもよい。また、ラジエータバイパス通路82D内を冷却水が流れるようにラジエータバイパス制御弁84の動作が制御される場合、許容温度に対する機関温度の差に応じた流量の冷却水がラジエータバイパス通路82D内を流れるようにラジエータバイパス制御弁84の動作が制御されてもよい。この場合、具体的には、許容温度に対する機関温度の差が大きいほど、多い量の冷却水がラジエータバイパス通路82D内を流れるようにラジエータバイパス制御弁84の動作が制御される。
<第6実施形態の効果>
 第6実施形態の効果について説明する。第6実施形態によれば、機関温度が前記許容温度よりも低い場合、冷却水の少なくとも一部が第2ラジエータ81をバイパスするので、高い温度の吸気が機関本体20の燃焼室に導入される。その結果、機関温度が上昇する。つまり、機関本体20の暖機が促進される。
<第6実施形態の制御フロー>
 第6実施形態のラジエータバイパス制御弁84の制御フローについて説明する。この制御フローは図8に示されている。図8のフローが開始されると、ステップ600において、機関温度Teが取得される。次いで、ステップ601において、ステップ600で取得された機関温度Teが許容温度Tethよりも低い(Te<Teth)か否かが判別される。ここで、Te<Tethであると判別された場合、フローはステップ602に進む。一方、Te<Tethではないと判別された場合、フローはステップ603に進む。
 ステップ602では、ラジエータバイパス通路82D内を冷却水が流れるようにラジエータバイパス制御弁84が開弁せしめられ、その後、フローは終了する。一方、ステップ603では、ラジエータバイパス通路82内を冷却水が流れないようにラジエータバイパス制御弁84が全閉とされ、その後、フローは終了する。
<第7実施形態>
 第7実施形態について説明する。第7実施形態の冷却装置を備えた内燃機関は図9に示されている。第7実施形態の冷却装置は図2に示されている。第7実施形態の内燃機関はそれが排気再循環装置(以下「EGR装置」という)90を具備する点で第1実施形態の内燃機関とは異なっている。EGR装置90は排気再循環通路(以下「EGR通路」という)91と、排気再循環制御弁(以下「EGR弁」という)92とを有する。EGR通路91はタービン62よりも下流の排気通路40とコンプレッサ61よりも上流の吸気通路30とを直接連結する。EGR弁92はEGR通路91内を流れる排気ガスの流量を制御可能である。
<第7実施形態の制御>
 第7実施形態では、EGR装置90によって排気ガスを吸気通路30に導入すべき機関運転条件(以下「EGR実行条件」という)が予め定められている。そして、機関運転状態がEGR実行条件を満たしているときに吸気温度が許容温度以上である場合、第2ポンプ83が作動せしめられるとともに、EGR(すなわち、EGR装置90による吸気通路30への排気ガスの導入)が実行される。一方、機関運転状態がEGR実行条件を満たしているときに吸気温度が前記許容温度よりも低い場合、第2ポンプ83の作動が停止されるとともに、EGRが実行される。なお、上記許容温度は、第2冷却装置80による吸気の冷却が行われたとしても吸気通路30に導入された排気ガス(以下「EGRガス」という)中の水分が凝縮しない温度の下限値に設定されている。
<第7実施形態の効果>
 第7実施形態の効果について説明する。吸気温度が前記許容温度よりも低いときに排気ガスが吸気通路30に導入されると、EGRガス中の水分が凝縮して凝縮水が発生する。この凝縮水の発生は機関運転にとって好ましくない。第7実施形態によれば、機関運転状態がEGR実行条件を満たしているときに吸気温度が前記許容温度よりも低い場合、第2ポンプ83の作動が停止される。その結果、吸気温度が上昇する。したがって、EGRが実行されたとしてもEGRガス中の水分に起因する凝縮水の発生が抑制される。
<第7実施形態の制御フロー>
 第7実施形態の第2ポンプ83の制御フローについて説明する。この制御フローは図10に示されている。図10のフローが開始されると、ステップ700において、機関運転状態がEGR実行条件を満たしているか否かが判別される。ここで、機関運転状態がEGR実行条件を満たしていると判別された場合、フローはステップ701に進む。一方、機関運転状態がEGR実行条件を満たしていないと判別された場合、フローはステップ704に進む。
 ステップ704では、第2ポンプ83が作動せしめられ、その後、フローは終了する。
 ステップ701では、吸気温度Taが取得される。次いで、ステップ702において、ステップ701で取得された吸気温度Taが許容温度Tathよりも低い(Ta<Tath)か否かが判別される。ここで、Ta<Tathであると判別された場合、フローはステップ703に進む。一方、Ta<Tathではないと判別された場合、フローはステップ704に進む。
 ステップ703では、第2ポンプ83の作動が停止され、その後、フローは終了する。一方、ステップ704では、第2ポンプ83が作動され、その後、フローは終了する。
<第8実施形態>
 第8実施形態について説明する。第8実施形態の冷却装置を備えた内燃機関は図9に示されている。第8実施形態の冷却装置は図7に示されている。第8実施形態の冷却装置はそれがラジエータバイパス通路82Dとラジエータバイパス弁84とを有する点で第7実施形態の冷却装置とは異なっている。
<第8実施形態の制御>
 第8実施形態では、機関運転状態が前記EGR実行条件を満たしているときに吸気温度が前記許容温度以上である場合、ラジエータバイパス通路82D内を冷却水が流れないようにラジエータバイパス制御弁84の動作が制御されるとともに、EGRが実行される。一方、機関運転状態が前記EGR実行条件を満たしているときに吸気温度が前記許容温度よりも低い場合、ラジエータバイパス通路82D内を冷却水が流れるようにラジエータバイパス制御弁84の動作が制御される。なお、吸気温度が前記許容温度以上であっても前記許容温度よりも低くても、第2ポンプ83は作動せしめられている。また、ラジエータバイパス通路82D内を冷却水が流れるようにラジエータバイパス制御弁84の動作が制御される場合、許容温度に対する吸気温度の差に応じた流量の冷却水がラジエータバイパス通路82D内を流れるようにラジエータバイパス制御弁84の動作が制御されてもよい。この場合、具体的には、許容温度に対する吸気温度の差が大きいほど、多い量の冷却水がラジエータバイパス通路82D内を流れるようにラジエータバイパス制御弁84の動作が制御される。
<第8実施形態の効果>
 第8実施形態の効果について説明する。吸気温度が前記許容温度よりも低いときに排気ガスが吸気通路30に導入されると、EGRガス中の水分が凝縮して凝縮水が発生する。この凝縮水の発生は機関運転にとって好ましくない。第8実施形態によれば、機関運転状態がEGR実行条件を満たしているときに吸気温度が前記許容温度よりも低い場合、冷却水の少なくとも一部が第2ラジエータ81をバイパスする。その結果、吸気温度が上昇する。したがって、EGRが実行されたとしてもEGRガス中の水分に起因する凝縮水の発生が抑制される。
<第8実施形態の制御フロー>
 第7実施形態の第2ポンプ83の制御フローについて説明する。この制御フローは図11に示されている。図11のフローが開始されると、ステップ800において、機関運転状態がEGR実行条件を満たしているか否かが判別される。ここで、機関運転状態がEGR実行条件を満たしていると判別された場合、フローはステップ801に進む。一方、機関運転状態がEGR実行条件を満たしていないと判別された場合、フローはステップ804に進む。
 ステップ804では、ラジエータバイパス通路82内を冷却水が流れないようにラジエータバイパス制御弁84が全閉とされ、その後、フローは終了する。
 ステップ801では、吸気温度Taが取得される。次いで、ステップ802において、ステップ801で取得された吸気温度Taが許容温度Tathよりも低い(Ta<Tath)か否かが判別される。ここで、Ta<Tathであると判別された場合、フローはステップ803に進む。一方、Ta<Tathではないと判別された場合、フローはステップ804に進む。
 ステップ803では、ラジエータバイパス通路82D内を冷却水が流れるようにラジエータバイパス制御弁84が開弁せしめられ、その後、フローは終了する。一方、ステップ804では、ラジエータバイパス通路82内を冷却水が流れないようにラジエータバイパス制御弁84が全閉とされ、その後、フローは終了する。
 以上説明した実施形態を総括すれば以下の通りである。すなわち、上記実施形態に含まれる発明は、ブローバイガス還流装置50と過給機60とを備え、前記ブローバイガス還流装置が前記過給機のコンプレッサ上流の吸気通路にブローバイガスを還流する内燃機関の冷却装置において、前記内燃機関の本体20を冷却する第1冷却手段(第1冷却装置)70と吸気を冷却する第2冷却手段(第2冷却装置)80とを別個に具備し、前記第2冷却手段が前記コンプレッサ61を冷却する冷却装置である。
 そして、前記第2冷却手段が冷却媒体(冷却水)を冷却する1つの媒体冷却手段(第2ラジエータ)81を有し、該媒体冷却手段によって冷却される冷却媒体によって吸気および前記コンプレッサを冷却する。さらに、前記第2冷却手段が吸気および前記コンプレッサを冷却する冷却媒体(冷却水)を流す冷却媒体通路(第2冷却水路)82を有する場合において、前記第2冷却手段が前記冷却媒体の一部に前記コンプレッサをバイパスさせるコンプレッサバイパス通路(コンプレッサバイパス通路82C、または、一方の冷却水路82A)を有する。
 また、前記内燃機関の本体の温度が所定温度(許容温度)よりも低いときに前記第2冷却手段の動作が停止される。あるいは、前記第2冷却手段が前記冷却媒体を冷却する媒体冷却手段(第2ラジエータ)81と、前記冷却媒体の少なくとも一部に前記媒体冷却手段をバイパスさせる冷却手段バイパス通路(ラジエータバイパス通路)82Dと、該冷却手段バイパス通路を介して前記冷却媒体の少なくとも一部に前記媒体冷却手段をバイパスさせるか否かを制御するバイパス制御手段(ラジエータバイパス制御弁)84とを有し、前記内燃機関の本体の温度が所定温度(許容温度)よりも低いときに前記バイパス制御手段が前記冷却手段バイパス通路を介して前記冷却媒体の少なくとも一部に前記媒体冷却手段をバイパスさせる。
 また、前記第2冷却手段が冷却媒体(冷却水)を冷却する媒体冷却手段(第2ラジエータ)81と、前記冷却媒体の少なくとも一部に前記媒体冷却手段をバイパスさせる冷却手段バイパス通路(ラジエータバイパス通路)82Dと、該冷却手段バイパス通路を介して前記冷却媒体の少なくとも一部に前記媒体冷却手段をバイパスさせるか否かを制御するバイパス制御手段(ラジエータバイパス制御弁)84とを有し、吸気温度が所定温度(許容温度)よりも低いときに前記バイパス制御手段が前記冷却手段バイパス通路を介して前記冷却媒体の少なくとも一部に前記媒体冷却手段をバイパスさせる。
 また、前記内燃機関が排気ガスを吸気通路に導入するEGR手段(EGR装置)90を具備し、該EGR手段が前記コンプレッサ上流の吸気通路30に排気ガスを導入するように構成されており、吸気温度が所定温度(許容温度)よりも低いときに前記第2冷却手段の動作が停止される。

Claims (7)

  1.  ブローバイガス還流装置と過給機とを備え、前記ブローバイガス還流装置が前記過給機のコンプレッサ上流の吸気通路にブローバイガスを還流する内燃機関の冷却装置において、前記内燃機関の本体を冷却する第1冷却手段と吸気を冷却する第2冷却手段とを別個に具備し、前記第2冷却手段が前記コンプレッサを冷却する冷却装置。
  2.  前記第2冷却手段が冷却媒体を冷却する1つの媒体冷却手段を有し、該媒体冷却手段によって冷却される冷却媒体によって吸気および前記コンプレッサを冷却する請求項1に記載の冷却装置。
  3.  前記第2冷却手段が吸気および前記コンプレッサを冷却する冷却媒体を流す冷却媒体通路を有する請求項1に記載の冷却装置において、前記第2冷却手段が前記冷却媒体の一部に前記コンプレッサをバイパスさせるコンプレッサバイパス通路を有する冷却装置。
  4.  前記内燃機関の本体の温度が所定温度よりも低いときに前記第2冷却手段の動作が停止される請求項1に記載の冷却装置。
  5.  前記第2冷却手段が冷却媒体を冷却する媒体冷却手段と、前記冷却媒体の少なくとも一部に前記媒体冷却手段をバイパスさせる冷却手段バイパス通路と、該冷却手段バイパス通路を介して前記冷却媒体の少なくとも一部に前記媒体冷却手段をバイパスさせるか否かを制御するバイパス制御手段とを有し、前記内燃機関の本体の温度が所定温度よりも低いときに前記バイパス制御手段が前記冷却手段バイパス通路を介して前記冷却媒体の少なくとも一部に前記媒体冷却手段をバイパスさせる請求項1に記載の冷却装置。
  6.  前記第2冷却手段が冷却媒体を冷却する媒体冷却手段と、前記冷却媒体の少なくとも一部に前記媒体冷却手段をバイパスさせる冷却手段バイパス通路と、該冷却手段バイパス通路を介して前記冷却媒体の少なくとも一部に前記媒体冷却手段をバイパスさせるか否かを制御するバイパス制御手段とを有し、吸気温度が所定温度よりも低いときに前記バイパス制御手段が前記冷却手段バイパス通路を介して前記冷却媒体の少なくとも一部に前記媒体冷却手段をバイパスさせる請求項1に記載の冷却装置。
  7.  前記内燃機関が排気ガスを吸気通路に導入するEGR手段を具備し、該EGR手段が前記コンプレッサ上流の吸気通路に排気ガスを導入するように構成されており、吸気温度が所定温度よりも低いときに前記第2冷却手段の動作が停止される請求項1または6に記載の冷却装置。
PCT/JP2013/061032 2013-04-12 2013-04-12 ブローバイガス還流装置と過給機とを備えた内燃機関の冷却装置 WO2014167705A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13881488.4A EP2985438A4 (en) 2013-04-12 2013-04-12 COOLING DEVICE FOR A COMBUSTION ENGINE WITH A VENTILATION DEVICE THROUGH A GAS CIRCULATION DEVICE AND SUPER LOADER
CN201380075572.XA CN105102786A (zh) 2013-04-12 2013-04-12 具备窜缸混合气回流装置与增压器的内燃机的冷却装置
JP2015511045A JP5983868B2 (ja) 2013-04-12 2013-04-12 ブローバイガス還流装置と過給機とを備えた内燃機関の冷却装置
PCT/JP2013/061032 WO2014167705A1 (ja) 2013-04-12 2013-04-12 ブローバイガス還流装置と過給機とを備えた内燃機関の冷却装置
US14/782,427 US20160025048A1 (en) 2013-04-12 2013-04-12 Cooling device for internal combustion engine provided with blowby gas recirculation device and turbocharger (as amended)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/061032 WO2014167705A1 (ja) 2013-04-12 2013-04-12 ブローバイガス還流装置と過給機とを備えた内燃機関の冷却装置

Publications (1)

Publication Number Publication Date
WO2014167705A1 true WO2014167705A1 (ja) 2014-10-16

Family

ID=51689138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061032 WO2014167705A1 (ja) 2013-04-12 2013-04-12 ブローバイガス還流装置と過給機とを備えた内燃機関の冷却装置

Country Status (5)

Country Link
US (1) US20160025048A1 (ja)
EP (1) EP2985438A4 (ja)
JP (1) JP5983868B2 (ja)
CN (1) CN105102786A (ja)
WO (1) WO2014167705A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017137828A (ja) * 2016-02-04 2017-08-10 いすゞ自動車株式会社 吸気温度制御システム
JP2018013092A (ja) * 2016-07-21 2018-01-25 株式会社豊田自動織機 エンジン

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105143636B (zh) * 2013-02-21 2018-01-09 丰田自动车株式会社 具备窜缸混合气环流装置的内燃机的增压器的冷却装置
JP6327292B2 (ja) 2016-06-09 2018-05-23 トヨタ自動車株式会社 内燃機関の制御装置
CN112282891B (zh) * 2019-07-25 2022-02-22 长城汽车股份有限公司 曲轴箱通风控制方法以及曲轴箱通风系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50143915A (ja) * 1974-04-26 1975-11-19
JPH01102432U (ja) * 1987-12-26 1989-07-11
JP2003035153A (ja) * 2001-07-23 2003-02-07 Fuji Heavy Ind Ltd ターボチャージャのコンプレッサハウジング構造
JP2007046570A (ja) * 2005-08-11 2007-02-22 Ishikawajima Harima Heavy Ind Co Ltd 電動機付過給機
JP2010209846A (ja) 2009-03-11 2010-09-24 Ihi Corp ターボチャージャ

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1612053A (en) * 1922-02-07 1926-12-28 Rateau Soc Air-supply cooling for combustion engines
DE2655017C2 (de) * 1976-12-04 1986-09-18 Klöckner-Humboldt-Deutz AG, 5000 Köln Brennkraftmaschine mit Hochaufladung
DE2825945A1 (de) * 1978-06-14 1979-12-20 Rudolf Dr Wieser Kuehlsystem fuer fahrzeugmotor
US4697551A (en) * 1985-06-18 1987-10-06 Paccar Inc Quick-response control system for low-flow engine coolant systems
CH675147A5 (ja) * 1987-08-03 1990-08-31 Bbc Brown Boveri & Cie
DE19845375A1 (de) * 1998-10-02 2000-04-06 Asea Brown Boveri Verfahren und Vorrichtung zur indirekten Kühlung der Strömung in zwischen Rotoren und Statoren von Turbomaschinen ausgebildeten Radialspalten
US6668553B1 (en) * 2002-09-13 2003-12-30 Honeywell International Inc. Ejector-based cooling system for turbochargers
DE10325980A1 (de) * 2003-06-07 2004-12-23 Daimlerchrysler Ag Abgasturbolader
JP4288200B2 (ja) * 2004-04-09 2009-07-01 三菱重工業株式会社 高、低温冷却系を備えた内燃機関
JP4484242B2 (ja) * 2004-06-17 2010-06-16 日野自動車株式会社 エンジンのegrシステム
US7469689B1 (en) * 2004-09-09 2008-12-30 Jones Daniel W Fluid cooled supercharger
JP4770329B2 (ja) * 2005-08-22 2011-09-14 トヨタ自動車株式会社 ハイブリッド車の冷却装置
US7320316B2 (en) * 2005-10-31 2008-01-22 Caterpillar Inc. Closed crankcase ventilation system
DE102006044680A1 (de) * 2006-09-21 2008-04-10 GM Global Technology Operations, Inc., Detroit Verbrennungsmotor mit Turboladernachlaufkühlung
SE531705C2 (sv) * 2007-11-16 2009-07-14 Scania Cv Ab Arrangemang hos en överladdad förbränningsmotor
JP4905421B2 (ja) * 2008-08-06 2012-03-28 トヨタ自動車株式会社 内燃機関およびその制御装置
US8544453B2 (en) * 2009-09-25 2013-10-01 James E. Bell Supercharger cooling
JP2011179460A (ja) * 2010-03-03 2011-09-15 Denso Corp エンジン冷却システムの制御装置
US20120067332A1 (en) * 2010-09-17 2012-03-22 Gm Global Technology Operations, Inc. Integrated exhaust gas recirculation and charge cooling system
JP5769106B2 (ja) * 2011-03-16 2015-08-26 アイシン精機株式会社 エンジン冷却回路
JP2013113118A (ja) * 2011-11-25 2013-06-10 Toyota Motor Corp エンジン冷却装置
JP5825184B2 (ja) * 2012-04-11 2015-12-02 トヨタ自動車株式会社 エンジン冷却装置
US9103275B2 (en) * 2013-04-09 2015-08-11 Ford Global Technologies, Llc Supercharged internal combustion engine and method for operating an internal combustion engine of said type

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50143915A (ja) * 1974-04-26 1975-11-19
JPH01102432U (ja) * 1987-12-26 1989-07-11
JP2003035153A (ja) * 2001-07-23 2003-02-07 Fuji Heavy Ind Ltd ターボチャージャのコンプレッサハウジング構造
JP2007046570A (ja) * 2005-08-11 2007-02-22 Ishikawajima Harima Heavy Ind Co Ltd 電動機付過給機
JP2010209846A (ja) 2009-03-11 2010-09-24 Ihi Corp ターボチャージャ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2985438A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017137828A (ja) * 2016-02-04 2017-08-10 いすゞ自動車株式会社 吸気温度制御システム
JP2018013092A (ja) * 2016-07-21 2018-01-25 株式会社豊田自動織機 エンジン

Also Published As

Publication number Publication date
EP2985438A1 (en) 2016-02-17
JP5983868B2 (ja) 2016-09-06
JPWO2014167705A1 (ja) 2017-02-16
CN105102786A (zh) 2015-11-25
US20160025048A1 (en) 2016-01-28
EP2985438A4 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
US20150361839A1 (en) Oil cooling system for supercharged engine
JP5527486B2 (ja) 内燃機関の換気制御装置
JP5983868B2 (ja) ブローバイガス還流装置と過給機とを備えた内燃機関の冷却装置
JP5974886B2 (ja) 過給機
US20120174576A1 (en) Supercharged internal combustion engine and method for operating an internal combustion engine of said type
JP5964285B2 (ja) 内燃機関
JP6011423B2 (ja) 過給機
Shibata et al. New 1.0 L I3 turbocharged gasoline direct injection engine
JP2010169066A (ja) 車両の制御装置
JP2017198153A (ja) ターボ過給機付きエンジンを搭載した車両
JP2013194635A (ja) 内燃機関の制御装置
JP2010138812A (ja) 内燃機関の制御装置
JP6015843B2 (ja) ブローバイガス環流装置を備えた内燃機関の過給機の冷却装置
JP7192256B2 (ja) 過給機付エンジンのブローバイガス装置
JP2016098723A (ja) エンジンの冷却用オイル通路構造
JP7206640B2 (ja) 過給機付エンジン
JP2012154195A (ja) リターン通路の構造
JP7045303B2 (ja) 過給機付きエンジン
Eichler et al. The new W12-TSI engine of the Volkswagen group
WO2014061086A1 (ja) ブローバイガス還流装置を備える内燃機関
KR101345710B1 (ko) 차량내 엔진오일 소모 저감을 위한 오일 공급, 재저장 및 블로바이가스 재순환장치
KR100867812B1 (ko) V형 디젤엔진 병렬 2단 터보차져 블로바이가스 재순환장치
JP2021134772A (ja) 内燃機関のオイル噴射装置
CN108798858A (zh) 内燃机的冷却装置
JP5594271B2 (ja) 可変圧縮比内燃機関

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380075572.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881488

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015511045

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013881488

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14782427

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE