WO2014162587A1 - 組成物の製造方法 - Google Patents

組成物の製造方法 Download PDF

Info

Publication number
WO2014162587A1
WO2014162587A1 PCT/JP2013/060452 JP2013060452W WO2014162587A1 WO 2014162587 A1 WO2014162587 A1 WO 2014162587A1 JP 2013060452 W JP2013060452 W JP 2013060452W WO 2014162587 A1 WO2014162587 A1 WO 2014162587A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composition
general formula
compound
carbon atoms
Prior art date
Application number
PCT/JP2013/060452
Other languages
English (en)
French (fr)
Inventor
松本 隆
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to US14/369,574 priority Critical patent/US9441159B2/en
Priority to JP2013544890A priority patent/JP5522319B1/ja
Priority to KR20147011722A priority patent/KR101495129B1/ko
Priority to CN201380005771.3A priority patent/CN104114674B/zh
Priority to PCT/JP2013/060452 priority patent/WO2014162587A1/ja
Priority to EP13873138.5A priority patent/EP2808376B1/en
Publication of WO2014162587A1 publication Critical patent/WO2014162587A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/0403Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0466Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the linking chain being a -CF2O- chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3004Cy-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3009Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/301Cy-Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3016Cy-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used

Definitions

  • the present invention relates to a method for producing a composition.
  • Liquid crystal display elements have come to be widely used from consumer applications such as LCD TVs, mobile phones and personal computers to industrial applications. The lifespan of these products is relatively long, from several years to several tens of years. During this time, the display element operates normally, and thus liquid crystal materials used for the liquid crystal display element are required to have high stability.
  • a specific stability index of a liquid crystal material is a specific resistance value. In order for the liquid crystal display element to operate normally, the specific resistance value of the liquid crystal material used for the liquid crystal display element must be sufficiently high, and deterioration over time must be suppressed.
  • This invention is made
  • the present inventors have synthesized a compound that constitutes a liquid crystal material, and then added a specific antioxidant, followed by treatment such as purification, thereby degrading the compound.
  • the present inventors have found that a simple and practical method capable of obtaining a high specific resistance value can be obtained without causing the present invention to be completed. That is, the present invention relates to the general formula (I)
  • R 1 represents a linear or branched alkyl group having 1 to 22 carbon atoms, and one or more —CH 2 — in the alkyl group is oxygen Substituted with —O—, —CH ⁇ CH—, —CO—, —OCO—, —COO—, —C ⁇ C—, —CF 2 O— or —OCF 2 — so that the atoms are not directly adjacent.
  • a represents 0, 1 or 2
  • M 1 represents (a) a trans-1,4-cyclohexylene group (one —CH 2 — present in this group or two or more non-adjacent —CH 2 — represents —O— or —S—).
  • M 2 represents an alkylene group having 1 to 15 carbon atoms (one or more of —CH 2 — in the alkylene group is O—, —CO—, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CF 2 —, —CH ⁇ CH—, —C ⁇ C—, 1,4-phenylene group ( 1 or 2 or more hydrogen atoms in the 1,4-phenylene group may be substituted with fluorine atoms) or a trans-1,4-cyclohexylene group may be substituted)) or Represents a single bond.) Containing one or more compounds selected from the group of compounds represented by: Formula (II)
  • R 2 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyl having 2 to 8 carbon atoms.
  • a 1 and A 2 are each independently (a) trans-1,4-cyclohexylene group (present in the group one -CH 2 - or nonadjacent two or more -CH 2 - is - O- or -S- may be substituted)), (B) a 1,4-phenylene group (one —CH ⁇ present in this group or two or more non-adjacent —CH ⁇ may be replaced by —N ⁇ ), and (c) ) 1,4-bicyclo (2.2.2) octylene group, naphthalene-2,6-diyl group, decahydronaphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6 Represents a group selected from the group consisting of a -diyl group or a chroman-2,6-diyl group, but one or more of the groups (a), (b) or
  • a raw material composition containing one or more compounds selected from the group of compounds represented by The raw material composition is dissolved in an organic solvent, or after contacting with a purification agent without adding an organic solvent to the raw material composition, the purification agent is removed, If the composition after the purification agent is removed does not contain an organic solvent, it is the target composition, and if the composition after the purification agent is removed contains an organic solvent, the organic solvent is retained.
  • the present invention provides a method for producing a composition, characterized in that a desired composition is obtained.
  • the compound or composition constituting the liquid crystal material can be obtained by a simple and practical method.
  • the present invention provides a raw material composition containing at least one compound that is a hindered phenol having a specific structure and at least one compound constituting a liquid crystal material, and starts from this raw material composition.
  • the series of purification steps includes at least a step of bringing a raw material composition (including a composition or a mixture obtained by adding another substance to the raw material composition) with a purification agent, and then a step of removing the purification agent. It is preferable.
  • the raw material composition may be a uniform composition or a heterogeneous mixture, but is preferably a uniform composition.
  • the raw material composition may contain an organic solvent or may not contain an organic solvent.
  • the step of contacting with the purifying agent may be a step of dissolving the raw material composition in an organic solvent and bringing the solution into contact with the purifying agent, or without adding an organic solvent to the raw material composition. It may be a step of contacting with.
  • the raw material composition is solid at room temperature, it is preferable to dissolve in an organic solvent and bring the solution into contact with a purification agent.
  • the raw material composition is a liquid crystal at room temperature, it can be dissolved in an organic solvent and the solution can be brought into contact with a purifying agent.
  • the raw material composition in a liquid crystal state can be directly brought into contact with the purifying agent.
  • the raw material composition is liquid at room temperature, it can be dissolved in an organic solvent and the solution can be brought into contact with a purifying agent.
  • the liquid raw material composition is directly brought into contact with the purifying agent. . If the composition after the purification agent is removed does not contain an organic solvent, it is the target composition, and if the composition after the purification agent is removed contains an organic solvent, the organic solvent is retained. It is preferable to leave to obtain the target composition.
  • the raw material composition preferably contains one or more compounds selected from the group consisting of a compound represented by the general formula (I) and a compound represented by the general formula (III) described later. These compounds correspond to the hindered phenols.
  • the total content of the compound represented by the general formula (I) and the compound represented by the general formula (III) is 0.001% by mass to 10% by mass with respect to the weight of the raw material composition. Is preferred.
  • the raw material composition may contain one or two or more of the compound represented by the general formula (I) or the compound represented by the general formula (III). You may contain 1 type, or 2 or more types of the compound represented by (I), and 1 type or 2 or more types of the compound represented by the said general formula (III).
  • the raw material composition preferably contains a compound represented by the following general formula (I).
  • R 1 represents a linear or branched alkyl group having 1 to 22 carbon atoms, and one or more —CH 2 — in the alkyl group is an oxygen atom. May be substituted with —O—, —CH ⁇ CH—, —CO—, —OCO—, —COO—, —C ⁇ C—, —CF 2 O— or —OCF 2 — so that is not directly adjacent .
  • a represents 0, 1 or 2.
  • M 1 represents (a) a trans-1,4-cyclohexylene group (one —CH 2 — present in this group or two or more —CH 2 — not adjacent to each other).
  • a 1,4-phenylene group (one —CH ⁇ present in this group or two or more non-adjacent —CH ⁇ may be replaced by —N ⁇ ), and (c) ) 1,4-bicyclo (2.2.2) octylene group, naphthalene-2,6-diyl group, decahydronaphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6 -Represents a group selected from the group consisting of a diyl group or a chroman-2,6-diyl group.
  • One or more hydrogen atoms contained in the above group (a), group (b) or group (c) are each substituted with a fluorine atom, a trifluoromethyl group, a trifluoromethoxy group or a chlorine atom. Also good. If M 1 a represents 2 there are a plurality, M 1 existing in plural numbers may be the same or different.
  • the plurality of Z 1 may be the same or different.
  • R 1 is preferably a linear alkyl group having 1 to 11 carbon atoms or a branched alkyl group. In particular, when a represents 0, R 1 is more preferably a linear alkyl group having 2 to 9 carbon atoms, and when a represents 1 or 2, R 1 is a linear alkyl group having 1 to 5 carbon atoms. Groups are more preferred.
  • R 1 represents a linear alkyl group or branched alkyl group having 1 to 11 carbon atoms
  • M 1 represents a trans-1,4-cyclohexylene group or a 1,4-phenylene group.
  • Z 1 represents a single bond, and a preferably represents 0 or 1.
  • the raw material composition preferably contains a compound represented by the following general formula (III).
  • M 2 represents an alkylene group having 1 to 15 carbon atoms (one or more —CH 2 — in the alkylene group is —O 2 such that the oxygen atom is not directly adjacent to the alkylene group).
  • the compound represented by the general formula (III) preferably contains at least one compound in which M 2 represents an alkylene group having 1 to 15 carbon atoms in the general formula (III).
  • Specific examples of the compound represented by the general formula (III) include, but are not limited to, compounds represented by the following formulas (III.1) to (III.5). is not.
  • the raw material composition preferably contains a compound represented by the following general formula (II).
  • R 2 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy having 2 to 8 carbon atoms. Represents a group.
  • b represents 1, 2, 3 or 4.
  • a 1 and A 2 are each independently (a) a trans-1,4-cyclohexylene group (one —CH 2 — present in this group or two not adjacent to each other). The above —CH 2 — may be replaced by —O— or —S—).
  • a 1 there are a plurality may be the same or different.
  • the plurality of Z 2 may be the same or different.
  • Y 1 is a hydrogen atom, a fluorine atom, a chlorine atom, a trifluoromethyl group, a trifluoromethoxy group, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkoxy having 1 to 6 carbon atoms. Represents a group or an alkenyloxy group having 2 to 6 carbon atoms.
  • the compound represented by the general formula (II) preferably contains at least one compound in which R 2 is an alkenyl group having 2 to 6 carbon atoms in the general formula (II).
  • Y 1 is preferably a fluorine atom, a chlorine atom, a trifluoromethyl group or a trifluoromethoxy group, and more preferably Y 1 represents a fluorine atom.
  • R 2 preferably represents a methyl group, an ethyl group, a propyl group, a butyl group, or a pentyl group, and Z 1 represents a single bond, —CH 2 CH 2 —, —CF 2 O. It is preferable to represent — or —OCF 2 —.
  • the compound of the first aspect preferably contains at least one compound in which R 2 is an alkenyl group having 2 to 6 carbon atoms. Specific examples of the first embodiment of the compound represented by the general formula (II) include, but are not limited to, the following compounds.
  • the compound represented by the general formula (II) may be an n-type liquid crystal compound having a dielectric anisotropy ⁇ ⁇ 0 and a large absolute value of ⁇ .
  • the compound represented by the general formula (II) is the compound represented by the general formula (II), wherein at least one of A 1 and A 2 is represented by the following formula (the left and right of these formulas are represented by the general formula (II) ) Same as left and right.)
  • R 2 and Y 1 are each independently a methyl group, ethyl group, propyl group, butyl group, pentyl group, vinyl group, methoxy group, ethoxy group, propoxy group. , butoxy group, a pentoxy group, 3-butenyloxy group, or a 4-pentenyl group, Z 1 is a single bond, -CH 2 CH 2 -, - CH 2 O -, - OCH 2 -, - CF 2 O- , or It preferably represents —OCF 2 —.
  • the compound of the second aspect it is preferable to contain at least one compound in which R 2 is an alkenyl group having 2 to 6 carbon atoms.
  • R 2 is an alkenyl group having 2 to 6 carbon atoms.
  • Specific examples of the second embodiment of the compound represented by the general formula (II) include, but are not limited to, the following compounds.
  • the compound represented by the general formula (II) may be a non-polar liquid crystal compound having a relatively small absolute value of dielectric anisotropy ⁇ .
  • a 1 and A 2 each independently represent a trans-1,4-cyclohexylene group or a 1,4-phenylene group.
  • R 2 and Y 1 are each independently an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or 1 to 6 carbon atoms.
  • the compound of the third aspect preferably contains at least one compound in which R 2 is an alkenyl group having 2 to 6 carbon atoms.
  • Specific examples of the third aspect of the compound represented by the general formula (II) include, but are not limited to, the following compounds.
  • the raw material composition preferably contains a compound represented by the following general formula (IV).
  • P 1 and P 2 are each independently an acryloyloxy group, a methacryloyloxy group, a vinyl group, a vinyloxy group, or any one of the following formulas (Ep-1) to (Ep-7)
  • the monovalent group represented is represented.
  • (Ep-1) to (Ep-7) are bonded at the bond end on the upper right.
  • (Ep-1) represents a glycidyloxy group
  • (Ep-3) represents an oxiranyl group.
  • n represents 0, 1 or 2.
  • a 3 and A 4 each independently represent a 1,4-phenylene group or a naphthalene-2,6-diyl group (one or two or more hydrogen atoms contained in these groups) Each may be substituted with a fluorine atom. If n A 4 represents 2 there are a plurality, A 4 there are a plurality may be the same or different.
  • Z 3 represents —COO—, —OCO—, —CH 2 CH 2 COO—, —OCOCH 2 CH 2 —, —CH 2 CH 2 OCO—, —COOCH 2 CH 2 —, — It represents (CH 2 ) 4 —, — (CH 2 ) 3 O—, —O (CH 2 ) 3 —, —CH 2 CH 2 OCH 2 —, —CH 2 OCH 2 CH 2 — or a single bond.
  • n is 2 and a plurality of Z 3 are present, the plurality of Z 3 may be the same or different.
  • P 1 and P 2 each independently represent an acryloyloxy group or a methacryloyloxy group. It is preferable that A 3 and A 4 each independently represent a 1,4-phenylene group (the hydrogen atom contained therein may be substituted with a fluorine atom).
  • Specific examples of the compound represented by the general formula (IV) include the following compounds, but are not particularly limited thereto.
  • Examples of the purification agent include silica gel, alumina, one kind of ion exchange resin, or a mixture thereof.
  • silica gel and alumina or a mixture thereof is preferable.
  • Silica gel or alumina may be chemically modified with a hydrophobic group, a hydrophilic group, a functional group, or the like.
  • the amount of the purifier used is preferably 0.1 parts by mass or more, preferably 0.5 parts by mass or more, preferably 1 part by mass or more, preferably 5 parts by mass or more, with respect to 100 parts by mass of the raw material composition.
  • More than mass part is preferable, More than 30 mass parts is preferable, Moreover, 1000 mass parts or less are preferable, 500 mass parts or less are preferable, 300 mass parts or less are preferable, 200 mass parts or less are preferable, 100 mass parts or less are preferable, 50 mass parts or less are more preferable, and 10 mass parts or less may be sufficient.
  • the method for bringing the raw material composition into contact with the purifying agent is not particularly limited, and for example, any of the following methods (A) to (C) can be used.
  • the raw material composition is dissolved in an organic solvent, passed through column chromatography filled with a purification agent, further passed through an organic solvent as necessary, and the organic solvent is distilled off from the resulting solution.
  • the amount of the purification agent used is preferably 10 to 300 parts by mass, more preferably 30 to 200 parts by mass with respect to 100 parts by mass of the raw material composition.
  • the total content of one or more compounds selected from the compound group consisting of the compound represented by the general formula (I) and the compound represented by the general formula (III) is the weight of the raw material composition. On the other hand, it is preferably 0.1% by mass to 10% by mass, and more preferably 1% by mass to 5% by mass.
  • an organic solvent may be further passed as necessary, and combined (mixed) with the resulting solution.
  • the raw material composition is dissolved in an organic solvent, a purifying agent is added and stirred for a certain time, the used purifying agent is removed by filtration, and then the organic solvent is distilled off.
  • the amount of the purification agent used is preferably 0.1 to 100 parts by mass, more preferably 0.5 to 50 parts by mass, and 0.5 parts by mass with respect to 100 parts by mass of the raw material composition. To 10 parts by mass is particularly preferable.
  • the total content of one or more compounds selected from the compound group consisting of the compound represented by the general formula (I) and the compound represented by the general formula (III) is the weight of the raw material composition. On the other hand, 0.001 mass% to 1 mass% is preferable, and 0.01 mass% to 0.5 mass% is more preferable.
  • a purifying agent is added to the raw material composition in a liquid crystal state or an isotropic liquid state and stirred for a predetermined time, and the used purifying agent is removed by filtration.
  • the amount of the purification agent used is preferably 0.1 to 100 parts by mass, more preferably 0.5 to 50 parts by mass, and 0.5 parts by mass with respect to 100 parts by mass of the raw material composition. To 10 parts by mass is particularly preferable.
  • the total content of one or more compounds selected from the compound group consisting of the compound represented by the general formula (I) and the compound represented by the general formula (III) is the weight of the raw material composition. On the other hand, 0.001 mass% to 1 mass% is preferable, and 0.01 mass% to 0.5 mass% is more preferable.
  • the purification agent can be added while the raw material composition does not contain an organic solvent. Therefore, it is not necessary to distill off the organic solvent.
  • the organic solvent is preferably a saturated or aromatic hydrocarbon having 6 to 9 carbon atoms. It is preferable not to have a carbon unsaturated bond.
  • alkane, cycloalkane, alkylcycloalkane, benzene, alkylbenzene, dialkylbenzene and the like can be mentioned.
  • specific examples of these hydrocarbon solvents include hexane and its structural isomer (acyclic saturated hydrocarbon having 6 carbon atoms), heptane and its structural isomer (acyclic saturated hydrocarbon having 7 carbon atoms).
  • a mixed solvent is preferable, and a single solvent selected from hexane and its structural isomer, heptane and its structural isomer, and toluene, or a mixed solvent containing one or more kinds is more preferable.
  • the single solvent refers to an organic solvent substantially composed of one kind of compound selected as the hydrocarbon solvent.
  • the mixed solvent may be a mixed solvent composed of two or more hydrocarbon solvents, or may be a mixed solvent composed of one or more hydrocarbon solvents and one or more other solvents.
  • Petroleum ether is a mixed solvent mainly composed of hexane and structural isomers thereof, but may further contain pentane or structural isomers thereof.
  • Xylene may be a mixture of ortho, meta, and para isomers, and may or may not contain ethylbenzene.
  • the organic solvent to be used is preferably one from which undesirable impurities such as moisture, sulfur compounds, and heavy metals are removed as much as possible, but it is preferable to select an appropriate one according to the required cost and purification level.
  • solvents other than hydrocarbon solvents include methanol, ethanol, 1-propanol, 2-propanol, acetone, 2-butanone, ethyl acetate, diethyl ether, tetrahydrofuran, methyl-t-butyl ether, acetonitrile, and propionitrile. It is also preferable to add a polar solvent in order to prevent generation of static electricity.
  • the total content of polar solvents is preferably 50% by volume or less, preferably 30% by volume or less, preferably 10% by volume or less, preferably 5% by volume or less, and preferably 0.1% by volume or more, 0.5 volume% or more is preferable and 1 volume% or more is preferable.
  • the target product is preferably a composition containing hindered phenols (one or two or more compounds selected from the group of compounds represented by the general formula (I) and the general formula (III)).
  • the target product may not contain one or more compounds selected from the compound group represented by the general formula (I) and the general formula (III).
  • the target product may contain only one compound selected from the compound group represented by the general formula (II) and the general formula (IV).
  • This invention can be utilized also as a manufacturing method of the compound chosen from the compound group represented by the said general formula (II) or the said general formula (IV).
  • the term “method for producing a composition” refers to a method for producing a compound that is one type selected from the group of compounds represented by formula (II) when the target product is a type of compound, and It includes a method for producing a compound that is one type selected from the group of compounds represented by formula (IV).
  • the composition obtained by the method for producing a composition of the present invention includes a case where a target compound is a kind of compound.
  • the target product is preferably a compound or composition containing at least one compound in which R 2 is an alkenyl group having 2 to 6 carbon atoms in the general formula (II).
  • a target object is a compound or composition containing at least 1 type of compound represented by the said general formula (IV).
  • the compound constituting the liquid crystal material (one or more compounds selected from the group of compounds represented by the general formula (II) and the general formula (IV)) can be recovered as much as possible through the purification process. High is preferred.
  • “recovery” mass m 0 of the compound contained in the raw material composition, the mass of the compound contained in the composition of interest when the m 1, 100 ⁇ (m 1 / M 0 ) as a percentage (%).
  • the recovery rate of hindered phenols (one or two or more compounds selected from the compound group represented by the general formula (I) and the general formula (III)) is not necessarily high, It does not necessarily have to be low.
  • the target composition is used as, for example, a liquid crystal material, it is preferable that the hindered phenols remain in a predetermined amount or more in the target composition because they can continue to be used as an antioxidant for the liquid crystal material.
  • the composition ratio between the compounds represented by the general formulas (I) to (IV) may change before and after contact with the purification agent. This is because the adsorptive power to the purification agent is different for each compound. Moreover, although the content rate of the compound represented by general formula (I) and the compound represented by general formula (III) may fall before and behind contact with a refiner
  • the liquid crystal composition of the present invention is polymerized in order to produce liquid crystal display elements such as a polymer stabilization (PS) mode, a polymer sustaining alignment (PSA) mode, and a lateral electric field type PSVA (polymer stabilized vertical alignment) mode.
  • the polymerizable compound that can be used include a photopolymerizable monomer that undergoes polymerization by energy rays such as light.
  • the structure has, for example, a liquid crystal skeleton in which a plurality of six-membered rings such as biphenyl derivatives and terphenyl derivatives are connected. Examples thereof include a polymerizable compound.
  • the liquid crystal composition containing the polymerizable compound of the present invention is provided with liquid crystal alignment ability by polymerizing the polymerizable compound contained therein by ultraviolet irradiation, and transmits light through the birefringence of the liquid crystal composition. It is used in a liquid crystal display element that controls As liquid crystal display elements, AM-LCD (active matrix liquid crystal display element), TN (twisted nematic liquid crystal display element), STN-LCD (super twisted nematic liquid crystal display element), OCB-LCD, IPS-LCD (in-plane switching liquid crystal) This is useful for display devices) and FFS (fringe field switching mode liquid crystal display devices), but is particularly useful for AM-LCDs having an active matrix address device, and can be used for transmissive or reflective liquid crystal display devices. .
  • AM-LCD active matrix liquid crystal display element
  • TN twisted nematic liquid crystal display element
  • STN-LCD super twisted nematic liquid crystal display element
  • OCB-LCD OCB
  • the two substrates of the liquid crystal cell used in the liquid crystal display element can be made of a transparent material having flexibility such as glass or plastic, and one of them can be an opaque material such as silicon.
  • a transparent substrate having a transparent electrode layer can be obtained, for example, by sputtering indium tin oxide (ITO) on a transparent substrate such as a glass plate.
  • the color filter can be prepared by, for example, a pigment dispersion method, a printing method, an electrodeposition method, or a dyeing method. A method for producing a color filter by a pigment dispersion method will be described as an example.
  • a curable coloring composition for a color filter is applied on the transparent substrate, subjected to patterning treatment, and cured by heating or light irradiation.
  • a pixel portion for a color filter By performing this process for each of the three colors red, green, and blue, a pixel portion for a color filter can be created.
  • a pixel electrode provided with an active element such as a TFT, a thin film diode, or a metal insulator metal specific resistance element may be provided on the substrate.
  • substrate is made to oppose so that a transparent electrode layer may become inner side. In that case, you may adjust the space
  • a normal vacuum injection method As a method for sandwiching the polymerizable compound-containing liquid crystal composition between the two substrates, a normal vacuum injection method, a drop injection (ODF) method, or the like can be used.
  • ODF drop injection
  • the vacuum injection method although a drop mark is not generated, there is a problem that a mark of injection remains, but in the present invention, it can be suitably used for a display element manufactured using the ODF method.
  • a sealant such as epoxy photothermal curing is drawn on a backplane or frontplane substrate using a dispenser in a closed-loop bank shape, and then removed.
  • a liquid crystal display element can be manufactured by bonding a front plane and a back plane after dropping a predetermined amount of the liquid crystal composition in the air.
  • the liquid crystal composition of the present invention can be preferably used because the liquid crystal composition can be stably dropped in the ODF process.
  • an appropriate polymerization rate is desirable in order to obtain good alignment performance of liquid crystals. Therefore, active energy rays such as ultraviolet rays or electron beams are irradiated singly or in combination or sequentially.
  • the method of polymerizing by is preferred.
  • ultraviolet rays When ultraviolet rays are used, a polarized light source or a non-polarized light source may be used.
  • the polymerization is performed in a state where the polymerizable compound-containing liquid crystal composition is sandwiched between two substrates, at least the substrate on the irradiation surface side must be given appropriate transparency to the active energy rays. I must.
  • the orientation state of the unpolymerized part is changed by changing conditions such as an electric field, a magnetic field, or temperature, and further irradiation with active energy rays is performed. Then, it is possible to use a means for polymerization.
  • a means for polymerization In particular, when ultraviolet exposure is performed, it is preferable to perform ultraviolet exposure while applying an alternating electric field to the polymerizable compound-containing liquid crystal composition.
  • the alternating electric field to be applied is preferably an alternating current having a frequency of 10 Hz to 10 kHz, more preferably a frequency of 60 Hz to 10 kHz, and the voltage is selected depending on a desired pretilt angle of the liquid crystal display element.
  • the pretilt angle of the liquid crystal display element can be controlled by the applied voltage.
  • the pretilt angle is preferably controlled from 80 degrees to 89.9 degrees from the viewpoint of alignment stability and contrast.
  • the temperature during irradiation is preferably within a temperature range in which the liquid crystal state of the liquid crystal composition of the present invention is maintained.
  • Polymerization is preferably performed at a temperature close to room temperature, that is, typically at a temperature of 15 to 35 ° C.
  • a lamp for generating ultraviolet rays a metal halide lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, or the like can be used.
  • the ultraviolet-rays to irradiate it is preferable to irradiate the ultraviolet-ray of the wavelength range which is not the absorption wavelength range of a liquid crystal composition, and it is preferable to cut and use an ultraviolet-ray as needed.
  • Intensity of ultraviolet irradiation is preferably from 0.1mW / cm 2 ⁇ 100W / cm 2, 2mW / cm 2 ⁇ 50W / cm 2 is more preferable.
  • the amount of energy of ultraviolet rays to be irradiated can be adjusted as appropriate, but is preferably 10 mJ / cm 2 to 500 J / cm 2, and more preferably 100 mJ / cm 2 to 200 J / cm 2 .
  • the intensity When irradiating with ultraviolet rays, the intensity may be changed.
  • the time for irradiating with ultraviolet rays is appropriately selected depending on the intensity of the irradiated ultraviolet rays, but is preferably from 10 seconds to 3600 seconds, and more preferably from 10 seconds to 600 seconds.
  • the liquid crystal display device using the liquid crystal composition of the present invention is useful for achieving both high-speed response and suppression of display failure, and is particularly useful for a liquid crystal display device for active matrix driving, including VA mode, PSVA mode, It can be applied to a liquid crystal display element for PSA mode, IPS mode, FFS mode or ECB mode.
  • % in the compositions of the following Examples and Comparative Examples means “% by mass”. The purity was calculated from the area ratio of gas chromatography (column: DB-1, carrier gas: helium).
  • a compound (C-1) was prepared by adding 1 g of the compound represented by the formula: When the purity of the composition (C-1) was measured, 0.014% of impurities other than the constituent components of the composition (C-1) were detected.
  • This composition (C-1) was dissolved in 400 mL of hexane, poured into column chromatography (packed with 50 g of silica gel as a purification agent), and allowed to flow until the solution surface coincided with the upper surface of the purification agent layer. Further, 300 mL of hexane was added as a developing solvent to elute the compound adsorbed on the purification agent. The solvent was distilled off from the resulting solution under reduced pressure.
  • the obtained composition had a specific resistance value of 1.0 ⁇ 10 13 ⁇ ⁇ m, represented by the following formula (II-2)
  • the specific resistance value of the liquid crystal composition added by 20% to the composition represented by the formula was 2.0 ⁇ 10 12 ⁇ ⁇ m. Furthermore, when a liquid crystal display device using the obtained liquid crystal composition was produced, it showed good characteristics without causing display defects. From the above results, it was found that a composition having a high specific resistance value can be obtained by this purification method without causing deterioration of the compounds constituting the composition.
  • a compound (C-2) was prepared by adding 1 g of the compound represented by the formula (I-1) to 100 g of the compound represented by formula (I). When the purity of the composition (C-2) was measured, 0.021% of impurities other than the constituent components of the composition (C-2) were detected. This composition (C-2) was treated in the same manner as in Example 1, and the purity of the resulting composition was measured. As a result, impurities other than the constituents of the composition (C-2) were 0.018. %Met.
  • the specific resistance value of the liquid crystal composition obtained by adding 20% of the obtained composition to the composition represented by the formula (II-2) was 1.4 ⁇ 10 12 ⁇ ⁇ m.
  • Example 4 As in Example 3, 400 g of hexane was added to 101 g of the composition (C-3) prepared by adding 1 g of the compound represented by the formula (I-1) to 100 g of the compound represented by the formula (II-4). In addition, 1 g of silica gel was added and stirred for 1 hour. Silica gel was removed by filtration, and the solvent was distilled off from the filtrate under reduced pressure. When the purity of the obtained composition was measured, impurities other than the constituent components of the composition (C-3) were 0.008%. The specific resistance value of the liquid crystal composition obtained by adding 20% of the obtained composition to the composition represented by the formula (II-2) was 9.0 ⁇ 10 12 ⁇ ⁇ m.
  • a composition (C-5) was prepared by adding 100 g of the compound represented by formula (I-1) thereto and adding 1 g of the compound represented by the formula (I-1). When the purity of the composition (C-5) was measured, 0.014% of impurities other than the constituent components of the composition (C-5) were detected.
  • This composition (C-5) was dissolved in 400 mL of hexane, poured onto column chromatography (packed with 50 g of silica gel as a purification agent), and allowed to flow until the solution surface coincided with the upper surface of the purification agent layer. Further, 300 mL of hexane was added as a developing solvent to elute the compound adsorbed on the purification agent. The solvent was distilled off from the resulting solution under reduced pressure.
  • a composition (C-6) was prepared by adding 100 g of the compound represented by formula (I-1) thereto and adding 1 g of the compound represented by formula (I-1). When the purity of the composition (C-6) was measured, 0.022% of impurities other than the constituent components of the composition (C-6) were detected.
  • This composition (C-6) was dissolved in 400 mL of hexane, 1 g of silica gel was added, and the mixture was stirred for 1 hour. Silica gel was removed by filtration, and the solvent was distilled off from the filtrate under reduced pressure. When the purity of the obtained composition was measured, impurities other than the components of the composition (C-6) were 0.014%.
  • the specific resistance value of the obtained composition was 1.8 ⁇ 10 12 ⁇ ⁇ m.
  • Example 7 To 100 g of the composition (C-5) prepared by adding 1 g of the compound represented by the formula (I-1) to 100 g of the composition represented by the formula (LC-1) prepared in the same manner as in Example 5, 1 g of silica gel was added and stirred for 1 hour. The silica gel was removed by filtration, and the purity of the obtained composition was measured. As a result, impurities other than the constituent components of the composition (C-5) were 0.011%.
  • the specific resistance value of the obtained composition was 1.6 ⁇ 10 12 ⁇ ⁇ m. Furthermore, when a liquid crystal display device using the obtained composition was produced, it showed good characteristics without causing display defects. From the above results, it was found that a composition having a high specific resistance value can be obtained by this purification method without causing deterioration of the compounds constituting the composition.
  • Example 8 In Example 1, instead of the compound represented by the formula (I-1), the following formula (I-2)
  • the same procedure was performed except that the compound represented by When the purity of the obtained composition was measured, impurities other than the constituent components were 0.013%.
  • the specific resistance value of the liquid crystal composition obtained by adding 20% of the obtained composition to the composition represented by the formula (II-2) was 2.2 ⁇ 10 12 ⁇ ⁇ m. Furthermore, when a liquid crystal display device using the obtained composition was produced, it showed good characteristics without causing display defects. From the above results, it was found that a composition having a high specific resistance value can be obtained by this purification method without causing deterioration of the compounds constituting the composition.
  • Example 9 In the same manner as in Example 5, 100 g of the composition represented by the formula (LC-1) was prepared, 1 g of the compound represented by the formula (I-2) was added thereto, and the composition (C-9) was prepared. Prepared. When the purity of the composition (C-9) was measured, 0.014% of impurities other than the constituent components of the composition (C-9) were detected. This composition (C-9) was dissolved in 400 mL of hexane, 1 g of silica gel was added, and the mixture was stirred for 1 hour. Silica gel was removed by filtration, and the solvent was distilled off from the filtrate under reduced pressure. When the purity of the obtained composition was measured, impurities other than the components of the composition (C-9) were 0.013%.
  • the specific resistance value of the obtained composition was 2.0 ⁇ 10 12 ⁇ ⁇ m. Furthermore, when a liquid crystal display device using the obtained composition was produced, it showed good characteristics without causing display defects. From the above results, it was found that a composition having a high specific resistance value can be obtained by this purification method without causing deterioration of the compounds constituting the composition.
  • Example 10 In the same manner as in Example 6, 100 g of the composition represented by the formula (LC-2) was prepared, and 1 g of the compound represented by the formula (I-1) was added to the composition (C-6). ) 1 g of silica gel was added to 101 g and stirred for 1 hour. The silica gel was removed by filtration, and the purity of the obtained composition was measured. As a result, the impurities other than the components of the composition (C-6) were 0.021%. The specific resistance value of the obtained composition was 1.8 ⁇ 10 12 ⁇ ⁇ m. Furthermore, when a liquid crystal display device using the obtained composition was produced, it showed good characteristics without causing display defects. From the above results, it was found that a composition having a high specific resistance value can be obtained by this purification method without causing deterioration of the compounds constituting the composition.
  • Example 11 In Example 1, instead of the compound represented by the formula (I-1), the following formula (III-1)
  • the same procedure was performed except that the compound represented by When the purity of the obtained composition was measured, impurities other than the constituent components were 0.013%.
  • the specific resistance value of the liquid crystal composition obtained by adding 20% of the obtained composition to the composition represented by the formula (II-2) was 2.6 ⁇ 10 12 ⁇ ⁇ m. Furthermore, when a liquid crystal display device using the obtained composition was produced, it showed good characteristics without causing display defects. From the above results, it was found that a composition having a high specific resistance value can be obtained by this purification method without causing deterioration of the compounds constituting the composition.
  • Example 12 In Example 1, 100 g of alumina was used instead of 50 g of silica gel, and the other operations were performed in the same manner. When the purity of the obtained composition was measured, impurities other than the constituent components were 0.014%.
  • the specific resistance of the liquid crystal composition obtained by adding 20% of the obtained composition to the composition represented by the formula (II-2) was 1.8 ⁇ 10 12 ⁇ ⁇ m. Furthermore, when a liquid crystal display device using the obtained composition was produced, it showed good characteristics without causing display defects. From the above results, it was found that a composition having a high specific resistance value can be obtained by this purification method without causing deterioration of the compounds constituting the composition.
  • the specific resistance value of the liquid crystal composition obtained by adding 20% of the obtained compound (II-3) to the composition represented by the formula (II-2) was 5.6 ⁇ 10 11 ⁇ ⁇ m. Furthermore, when a liquid crystal display device using the obtained composition was produced, it showed good characteristics without causing display defects. From this result, it was found that in the purification method of this comparative example, the purity of the compound was lowered by contact with silica gel, and the specific resistance value was insufficient. It is considered that a part of the compound represented by the formula (II-3) was deteriorated by contact with silica gel.
  • composition (LC-1) 100 g of the composition represented by the formula (LC-1) (hereinafter referred to as “composition (LC-1)”) was prepared and the purity was measured. ) was detected in an amount of 0.014%. 100 g of this composition (LC-1) was dissolved in 400 mL of hexane and poured into column chromatography (packed with 50 g of silica gel as a purification agent), and flowed until the solution surface coincided with the purification agent layer. Further, 300 mL of hexane was added as a developing solvent to elute the compound adsorbed on the purification agent. The solvent was distilled off from the resulting solution under reduced pressure.
  • the specific resistance value of the obtained composition was 5.8 ⁇ 10 11 ⁇ ⁇ m. Furthermore, when a liquid crystal display device using the obtained composition was produced, it showed good characteristics without causing display defects. From these results, it was found that in the purification method of this comparative example, the purity of the composition was lowered by contact with silica gel, and the specific resistance value of the obtained composition was insufficient. It is considered that a part of the compound constituting the composition represented by the formula (LC-2) was deteriorated by contact with silica gel.
  • composition (LC-2) represented by the formula (LC-2) (hereinafter referred to as “composition (LC-2)”) was prepared, and the purity was measured. ) 0.022% of impurities other than the constituent components were detected. 1 g of silica gel was added to 100 g of this composition (LC-2) and stirred for 1 hour. When silica gel was removed by filtration and the purity of the obtained composition was measured, the impurities other than the constituent components of the composition (LC-2) were 0.025%. The specific resistance value of the obtained composition was 4.6 ⁇ 10 11 ⁇ ⁇ m. Furthermore, when a liquid crystal display device using the obtained composition was produced, it showed good characteristics without causing display defects.
  • the present invention can be used, for example, as a method for obtaining a compound constituting a liquid crystal material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

 特定の構造を有するヒンダードフェノール類の化合物を含有し、液晶材料を構成する化合物を含有する原料組成物を用意し、前記原料組成物を有機溶媒に溶解し、又は前記原料組成物に有機溶媒を加えることなく、精製剤と接触させた後、前記精製剤を除去し、前記精製剤を除去した後の組成物が有機溶媒を含まない場合にはそれを目的の組成物とし、前記精製剤を除去した後の組成物が有機溶媒を含む場合には前記有機溶媒を留去して目的の組成物を得る。

Description

組成物の製造方法
 本発明は、組成物の製造方法に関する。
 液晶表示素子は、液晶テレビ、携帯電話やパソコンなどをはじめとする民生用途から産業用途まで広く使用されるようになった。これらの製品の寿命は数年から十数年と比較的長く、この間表示素子が正常に動作するために、液晶表示素子に使用する液晶材料には高い安定性が求められる。液晶材料の代表的な安定性の指標として比抵抗値がある。液晶表示素子が正常に動作するためには、それに使用する液晶材料の比抵抗値が十分高くなければならず、また経時劣化も抑えなければならない。
 液晶材料の安定性を向上させるために、これまで多くの研究がなされてきた。例えば、液晶材料をシリカゲルやアルミナと接触させることにより、液晶材料中の水分や有機イオン、無機イオン等を除去し、比抵抗値を高める方法は、その代表的なものである(特許文献1及び2)。
 しかし、液晶材料を構成する化合物の中には、シリカゲル等との接触により二量化あるいは分解等の反応を起こし、純度の低下やそれに伴う比抵抗値の低下を招く場合がある。特にアルケニル基や重合性基を側鎖に有する化合物などは、その傾向が強い。そのため、液晶材料を構成する化合物を劣化させることなく、高い比抵抗値が得られる簡便で実用的な方法が切望されているものの、具体的な解決手段はこれまでに報告されていない。
特開昭62-210420号公報 特開昭58-1774号公報
 本発明は、上記事情に鑑みてなされたものであり、液晶材料を構成する化合物又は組成物を得る簡便で実用的な方法を提供することを課題とする。
 本発明者は、上述した状況に鑑み、鋭意検討した結果、液晶材料を構成する化合物を合成した後、特定の酸化防止剤を添加してから精製等の処理を行うことにより、該化合物を劣化させることなく高い比抵抗値が得られる簡便で実用的な方法が可能であることを見出し、本発明を完成するに至った。
 すなわち、本発明は、一般式(I)
Figure JPOXMLDOC01-appb-C000010
(前記一般式(I)中、Rは炭素原子数1から22の直鎖アルキル基又は分岐鎖アルキル基を表し、該アルキル基中の1つ又は2つ以上の-CH-は、酸素原子が直接隣接しないように、-O-、-CH=CH-、-CO-、-OCO-、-COO-、-C≡C-、-CFO-又は-OCF-で置換されてよく、
 aは0、1又は2を表し、
 M
(a) トランス-1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-又は-S-に置き換えられてもよい。)、
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)、及び
(c) 1,4-ビシクロ(2.2.2)オクチレン基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、又はクロマン-2,6-ジイル基
からなる群より選ばれる基を表すが、上記の基(a)、基(b)又は基(c)に含まれる1つ又は2つ以上の水素原子はそれぞれフッ素原子、トリフルオロメチル基、トリフルオロメトキシ基又は塩素原子で置換されていても良く、aが2を表しMが複数存在する場合、複数存在するMは同一であっても異なっていても良く、
 Zは単結合、-CHCH-、-CH=CH-、-C≡C-、-CHO-、-OCH-、-CFO-、-OCF-、-COO-又は-OCO-を表すが、aが2を表しZが複数存在する場合、複数存在するZは同一であっても異なっていても良い。)
 及び一般式(III)
Figure JPOXMLDOC01-appb-C000011
(前記一般式(III)中、Mは炭素原子数1から15のアルキレン基(該アルキレン基中の1つ又は2つ以上の-CH-は、酸素原子が直接隣接しないように、-O-、-CO-、-COO-、-OCO-、-CFO-、-OCF-、-CF-、-CH=CH-、-C≡C-、1,4-フェニレン基(該1,4-フェニレン基中の1つ又は2つ以上の水素原子がフッ素原子により置換されていても良い。)又はトランス-1,4-シクロヘキシレン基に置換されていても良い。)又は単結合を表す。)
で表される化合物群より選ばれる一種又は二種以上の化合物を含有し、
 一般式(II)
Figure JPOXMLDOC01-appb-C000012
(前記一般式(II)中、Rは炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、
 bは1、2、3又は4を表し、
 A及びAはそれぞれ独立に
(a) トランス-1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-又は-S-に置き換えられてもよい。)、
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)、及び
(c) 1,4-ビシクロ(2.2.2)オクチレン基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、又はクロマン-2,6-ジイル基
からなる群より選ばれる基を表すが、上記の基(a)、基(b)又は基(c)に含まれる1つ又は2つ以上の水素原子はそれぞれフッ素原子、トリフルオロメチル基、トリフルオロメトキシ基又は塩素原子で置換されていても良く、bが2、3又は4を表しAが複数存在する場合、複数存在するAは同一であっても異なっていても良く、
 Zは単結合、-CHCH-、-CH=CH-、-C≡C-、-CHO-、-OCH-、-CFO-、-OCF-、-COO-又は-OCO-を表すが、bが2、3又は4を表しZが複数存在する場合、複数存在するZは同一であっても異なっていても良く、
 Yは水素原子、フッ素原子、塩素原子、トリフルオロメチル基、トリフルオロメトキシ基、炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルコキシ基又は炭素原子数2~6のアルケニルオキシ基を表す。)で表される化合物群より選ばれる一種又は二種以上の化合物を含有する原料組成物を用意し、
 前記原料組成物を有機溶媒に溶解し、又は前記原料組成物に有機溶媒を加えることなく、精製剤と接触させた後、前記精製剤を除去し、
 前記精製剤を除去した後の組成物が有機溶媒を含まない場合にはそれを目的の組成物とし、前記精製剤を除去した後の組成物が有機溶媒を含む場合には前記有機溶媒を留去して目的の組成物を得ることを特徴とする組成物の製造方法を提供する。
 本発明によれば、液晶材料を構成する化合物又は組成物を、簡便で実用的な方法により得ることができる。
 本発明は、特定の構造を有するヒンダードフェノール類である少なくとも1種の化合物と、液晶材料を構成する少なくとも1種の化合物とを含有する原料組成物を用意し、この原料組成物から出発する一連の精製工程を経て、前記液晶材料を構成する少なくとも1種の化合物が精製された化合物又は組成物の製造方法を提供する。
 前記一連の精製工程は、少なくとも、原料組成物(これにさらに他の物質を加えた組成物または混合物を含む。)を精製剤と接触させる工程と、その後、前記精製剤を除去する工程を有することが好ましい。
 前記原料組成物は、均一な組成物であってもよく、不均一な混合物であってもよいが、均一な組成物であることが好ましい。
 前記原料組成物は、有機溶媒を含有するものであってもよく、有機溶媒を含有しないものであってもよい。
 前記精製剤と接触させる工程は、前記原料組成物を有機溶媒に溶解してその溶液を精製剤と接触させる工程であってもよいし、前記原料組成物に有機溶媒を加えることなく、精製剤と接触させる工程であってもよい。
 前記原料組成物が室温で固体である場合には有機溶媒に溶解してその溶液を精製剤と接触させることが好ましい。前記原料組成物が室温で液晶である場合には有機溶媒に溶解してその溶液を精製剤と接触させることも可能であるが、液晶状態の前記原料組成物をそのまま精製剤と接触させることが好ましい。前記原料組成物が室温で液体である場合には有機溶媒に溶解してその溶液を精製剤と接触させることも可能であるが、液体の前記原料組成物をそのまま精製剤と接触させることが好ましい。
 前記精製剤を除去した後の組成物が有機溶媒を含まない場合にはそれを目的の組成物とし、前記精製剤を除去した後の組成物が有機溶媒を含む場合には前記有機溶媒を留去して目的の組成物を得ることが好ましい。
 前記原料組成物は、後述する一般式(I)で表される化合物及び一般式(III)で表される化合物からなる化合物群より選ばれる一種又は二種以上の化合物を含有することが好ましい。これらの化合物は、前記ヒンダードフェノール類に該当する。
 前記一般式(I)で表される化合物及び一般式(III)で表される化合物の含有量の合計が、前記原料組成物の重量に対して0.001質量%から10質量%であることが好ましい。
 前記原料組成物は、前記一般式(I)で表される化合物又は前記一般式(III)で表される化合物のいずれか一方を、1種又は2種以上含有してもよく、前記一般式(I)で表される化合物の1種又は2種以上と前記一般式(III)で表される化合物の1種又は2種以上とを含有してもよい。
<一般式(I)で表される化合物>
 前記原料組成物は、下記一般式(I)で表される化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000013
 前記一般式(I)中、Rは炭素原子数1から22の直鎖アルキル基又は分岐鎖アルキル基を表し、該アルキル基中の1つ又は2つ以上の-CH-は、酸素原子が直接隣接しないように、-O-、-CH=CH-、-CO-、-OCO-、-COO-、-C≡C-、-CFO-又は-OCF-で置換されてよい。
 前記一般式(I)中、aは0、1又は2を表す。
 前記一般式(I)中、M
(a) トランス-1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-又は-S-に置き換えられてもよい。)、
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)、及び
(c) 1,4-ビシクロ(2.2.2)オクチレン基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、又はクロマン-2,6-ジイル基
からなる群より選ばれる基を表す。上記の基(a)、基(b)又は基(c)に含まれる1つ又は2つ以上の水素原子はそれぞれフッ素原子、トリフルオロメチル基、トリフルオロメトキシ基又は塩素原子で置換されていても良い。aが2を表しMが複数存在する場合、複数存在するMは同一であっても異なっていても良い。
 前記一般式(I)中、Zは単結合、-CHCH-、-CH=CH-、-C≡C-、-CHO-、-OCH-、-CFO-、-OCF-、-COO-又は-OCO-を表す。aが2を表しZが複数存在する場合、複数存在するZは同一であっても異なっていても良い。
 Rは、炭素原子数1から11の直鎖アルキル基又は分岐鎖アルキル基が好ましい。中でもaが0を表す場合は、Rは炭素原子数2から9の直鎖アルキル基がより好ましく、aが1又は2を表す場合は、Rは炭素原子数1から5の直鎖アルキル基がより好ましい。
 Mはトランス-1,4-シクロヘキシレン基又は1,4-フェニレン基(これらの基に含まれる1つ又は2つ以上の水素原子はそれぞれフッ素原子、又は塩素原子で置換されていても良い。)を表すことが好ましい。中でも、下記式(これらの式の左右は、一般式(I)の左右と同じである。)で表される
Figure JPOXMLDOC01-appb-C000014
トランス-1,4-シクロヘキシレン基、1,4-フェニレン基、2-フルオロ-1,4-フェニレン基、又は3-フルオロ-1,4-フェニレン基が好ましく、トランス-1,4-シクロヘキシレン基又は1,4-フェニレン基がより好ましい。
 前記一般式(I)において、Rが炭素原子数1から11の直鎖アルキル基又は分岐鎖アルキル基を表し、Mがトランス-1,4-シクロヘキシレン基又は1,4-フェニレン基を表し、Zが単結合を表し、aが0又は1を表すことが好ましい。
 前記一般式(I)で表される化合物の具体例としては、例えば、a=0のときには下記の式(I.1.1)から(I.1.8)で表される化合物が、a=1のときには下記の式(I.2.1)から(I.2.2)で表される化合物が挙げられるが、特にこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
<一般式(III)で表される化合物>
 前記原料組成物は、下記一般式(III)で表される化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000018
 前記一般式(III)中、Mは炭素原子数1から15のアルキレン基(該アルキレン基中の1つ又は2つ以上の-CH-は、酸素原子が直接隣接しないように、-O-、-CO-、-COO-、-OCO-、-CFO-、-OCF-、-CF-、-CH=CH-、-C≡C-、1,4-フェニレン基(該1,4-フェニレン基中の1つ又は2つ以上の水素原子がフッ素原子により置換されていても良い。)又はトランス-1,4-シクロヘキシレン基に置換されていても良い。)又は単結合を表す。
 前記一般式(III)で表される化合物は、前記一般式(III)において、Mが炭素原子数1から15のアルキレン基を表す化合物を少なくとも1種含有することが好ましい。
 前記一般式(III)で表される化合物の具体例としては、例えば、下記の式(III.1)から(III.5)で表される化合物が挙げられるが、特にこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000019
<一般式(II)で表される化合物>
 前記原料組成物は、下記一般式(II)で表される化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000020
 前記一般式(II)中、Rは炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表す。
 前記一般式(II)中、bは1、2、3又は4を表す。
 前記一般式(II)中、A及びAはそれぞれ独立に
(a) トランス-1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-又は-S-に置き換えられてもよい。)、
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)、及び
(c) 1,4-ビシクロ(2.2.2)オクチレン基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、又はクロマン-2,6-ジイル基
からなる群より選ばれる基を表すが、上記の基(a)、基(b)又は基(c)に含まれる1つ又は2つ以上の水素原子はそれぞれフッ素原子、トリフルオロメチル基、トリフルオロメトキシ基又は塩素原子で置換されていても良い。bが2、3又は4を表しAが複数存在する場合、複数存在するAは同一であっても異なっていても良い。
 前記一般式(II)中、Zは単結合、-CHCH-、-CH=CH-、-C≡C-、-CHO-、-OCH-、-CFO-、-OCF-、-COO-又は-OCO-を表す。bが2、3又は4を表しZが複数存在する場合、複数存在するZは同一であっても異なっていても良い。
 Yは水素原子、フッ素原子、塩素原子、トリフルオロメチル基、トリフルオロメトキシ基、炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルコキシ基又は炭素原子数2~6のアルケニルオキシ基を表す。
 前記一般式(II)で表される化合物が、前記一般式(II)において、Rが炭素原子数2~6のアルケニル基である化合物を少なくとも1種含有することが好ましい。
<一般式(II)で表される化合物の第1態様>
 前記一般式(II)で表される化合物は、誘電率異方性Δε>0で、Δεの絶対値が大きいp型液晶化合物であってもよい。
 第1態様において、前記一般式(II)で表される化合物が、前記一般式(II)において、A及びAのうち少なくとも1つが下記式(これらの式の左右は、一般式(II)の左右と同じである。)
Figure JPOXMLDOC01-appb-C000021
から選択されるいずれかを表す化合物を少なくとも1種含有することが好ましい。
 第1態様の場合、前記一般式(II)において、Yはフッ素原子、塩素原子、トリフルオロメチル基又はトリフルオロメトキシ基であることが好ましく、Yがフッ素原子を表すことがより好ましい。また、前記一般式(II)において、Rがメチル基、エチル基、プロピル基、ブチル基又はペンチル基を表すことが好ましく、Zが単結合、-CHCH-、-CFO-又は-OCF-を表すことが好ましい。
 第1態様の化合物において、Rが炭素原子数2~6のアルケニル基である化合物を少なくとも1種含有することが好ましい。
 前記一般式(II)で表される化合物の第1態様の具体例としては、例えば、下記の化合物が挙げられるが、特にこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
<一般式(II)で表される化合物の第2態様>
 前記一般式(II)で表される化合物は、誘電率異方性Δε<0で、Δεの絶対値が大きいn型液晶化合物であってもよい。
 第2態様において、前記一般式(II)で表される化合物が、前記一般式(II)において、A及びAのうち少なくとも1つが下記式(これらの式の左右は、一般式(II)の左右と同じである。)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
から選択されるいずれかを表す化合物を少なくとも1種含有することが好ましく、A及びAのうち少なくとも1つが
Figure JPOXMLDOC01-appb-C000027
を表す化合物を少なくとも1種含有することがより好ましい。
 第2態様の場合、前記一般式(II)において、R及びYがそれぞれ独立的にメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ビニル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基、3-ブテニルオキシ基又は4-ペンテニルオキシ基を表し、Zが単結合、-CHCH-、-CHO-、-OCH-、-CFO-又は-OCF-を表すことが好ましい。
 第2態様の化合物において、Rが炭素原子数2~6のアルケニル基である化合物を少なくとも1種含有することが好ましい。
 前記一般式(II)で表される化合物の第2態様の具体例としては、例えば、下記の化合物が挙げられるが、特にこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
<一般式(II)で表される化合物の第3態様>
 前記一般式(II)で表される化合物は、誘電率異方性Δεの絶対値が比較的小さいノン・ポーラーの液晶化合物であってもよい。
 第3態様において、A及びAがそれぞれ独立的にトランス-1,4-シクロヘキシレン基又は1,4-フェニレン基を表すことが好ましい。
 第3態様の場合、前記一般式(II)において、R及びYがそれぞれ独立的に炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルコキシ基又は炭素原子数2~6のアルケニルオキシ基を表し、Zが単結合又は-CHCH-を表す化合物を少なくとも1種含有することが好ましい。
 第3態様の化合物において、Rが炭素原子数2~6のアルケニル基である化合物を少なくとも1種含有することが好ましい。
 前記一般式(II)で表される化合物の第3態様の具体例としては、例えば、下記の化合物が挙げられるが、特にこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
<一般式(IV)で表される化合物>
 前記原料組成物は、下記一般式(IV)で表される化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000033
 前記一般式(IV)中、P及びPは、それぞれ独立に、アクリロイルオキシ基、メタクリロイルオキシ基、ビニル基、ビニロキシ基又は下記式(Ep-1)から(Ep-7)のいずれかで表される1価基を表す。
Figure JPOXMLDOC01-appb-C000034
 なお、前記式(Ep-1)から(Ep-7)で表される基は、右上の結合の端で結合する。例えば(Ep-1)はグリシジルオキシ基、(Ep-3)はオキシラニル基を表す。
 前記一般式(IV)中、nは0、1又は2を表す。
 前記一般式(IV)中、A及びAは、それぞれ独立に、1,4-フェニレン基又はナフタレン-2,6-ジイル基(これらの基に含まれる1つ又は2つ以上の水素原子はそれぞれフッ素原子で置換されていても良い。)を表す。nが2を表しAが複数存在する場合、複数存在するAは同一であっても異なっていても良い。
 前記一般式(IV)中、Zは-COO-、-OCO-、-CHCHCOO-、-OCOCHCH-、-CHCHOCO-、-COOCHCH-、-(CH-、-(CHO-、-O(CH-、-CHCHOCH-、-CHOCHCH-又は単結合を表す。nが2を表しZが複数存在する場合、複数存在するZは同一であっても異なっていても良い。
 前記一般式(IV)において、P及びPが、それぞれ独立に、アクリロイルオキシ基又はメタクリロイルオキシ基を表すことが好ましい。
 A及びAが、それぞれ独立に、1,4-フェニレン基(これらに含まれる水素原子はそれぞれフッ素原子で置換されていても良い。)を表すことが好ましい。
 前記一般式(IV)で表される化合物の具体例としては、例えば、下記の化合物が挙げられるが、特にこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
<精製方法>
 精製剤としてシリカゲル、アルミナ又はイオン交換樹脂の1種又はそれらの混合物が挙げられる。シリカゲル又はアルミナの1種又はそれらの混合物であることが好ましい。シリカゲルやアルミナは、疎水性基や親水性基、官能基等で化学修飾したものでもよい。
 精製剤の使用量は、原料組成物100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上が好ましく、1質量部以上が好ましく、5質量部以上が好ましく、10質量部以上が好ましく、30質量部以上が好ましく、また、1000質量部以下が好ましく、500質量部以下が好ましく、300質量部以下が好ましく、200質量部以下が好ましく、100質量部以下が好ましく、50質量部以下がより好ましく、10質量部以下でもよい。
 原料組成物を精製剤と接触させる方法は特に問わないが、例えば以下の(A)~(C)のいずれかの方法で行うことができる。
(A)原料組成物を有機溶媒に溶解し、精製剤を充填したカラムクロマトグラフィーを通過させ、必要に応じて有機溶媒をさらに通過させ、得られた溶液から有機溶媒を留去する。
 この方法では、精製剤の使用量は、原料組成物100質量部に対して10質量部から300質量部が好ましく、30質量部から200質量部がより好ましい。また、一般式(I)で表される化合物及び一般式(III)で表される化合物からなる化合物群より選ばれる一種又は二種以上の化合物の含有量の合計は、原料組成物の重量に対して0.1質量%から10質量%が好ましく、1質量%から5質量%がより好ましい。溶液をカラムクロマトグラフィーに通過させた後には、必要に応じて有機溶媒をさらに通過させ、得られた溶液と合わせ(混ぜ)てもよい。
(B)原料組成物を有機溶媒に溶解し、精製剤を加えて一定時間撹拌し、使用した精製剤をろ過により除去し、その後、有機溶媒を留去する。
 この方法では、精製剤の使用量は、原料組成物100質量部に対して0.1質量部から100質量部が好ましく、0.5質量部から50質量部がより好ましく、0.5質量部から10質量部が特に好ましい。また、一般式(I)で表される化合物及び一般式(III)で表される化合物からなる化合物群より選ばれる一種又は二種以上の化合物の含有量の合計は、原料組成物の重量に対して0.001質量%から1質量%が好ましく、0.01質量%から0.5質量%がより好ましい。
(C)液晶状態又は等方性液体状態の原料組成物に精製剤を加えて一定時間撹拌し、使用した精製剤をろ過により除去する。
 この方法では、精製剤の使用量は、原料組成物100質量部に対して0.1質量部から100質量部が好ましく、0.5質量部から50質量部がより好ましく、0.5質量部から10質量部が特に好ましい。また、一般式(I)で表される化合物及び一般式(III)で表される化合物からなる化合物群より選ばれる一種又は二種以上の化合物の含有量の合計は、原料組成物の重量に対して0.001質量%から1質量%が好ましく、0.01質量%から0.5質量%がより好ましい。この場合、原料組成物が有機溶媒を含まないまま精製剤を加えることができる。そのため、有機溶媒を留去する必要がない。
 (A)や(B)のように、原料組成物を有機溶媒に溶解する場合、その有機溶媒が、炭素原子数6~9の飽和又は芳香族の炭化水素が好ましく、ベンゼン環以外に炭素-炭素不飽和結合を有しないことが好ましい。例えば、アルカン、シクロアルカン、アルキルシクロアルカン、ベンゼン、アルキルベンゼン、ジアルキルベンゼン等が挙げられる。これらの炭化水素系溶媒の具体例としては、ヘキサン及びその構造異性体(炭素原子数6の非環式飽和炭化水素)、ヘプタン及びその構造異性体(炭素原子数7の非環式飽和炭化水素)、オクタン及びその構造異性体(炭素原子数8の非環式飽和炭化水素)、石油エーテル、ベンゼン、トルエン、キシレン、及びクメンから選択される単一溶媒又はそれらの1種若しくは2種以上を含む混合溶媒であることが好ましく、ヘキサン及びその構造異性体、ヘプタン及びその構造異性体、及びトルエンから選択される単一溶媒又は1種若しくは2種以上を含む混合溶媒がより好ましい。ここで単一溶媒とは、実質的に前記炭化水素系溶媒として選択される1種の化合物からなる有機溶媒を指す。混合溶媒は、2種以上の炭化水素系溶媒からなる混合溶媒でもよく、1種以上の炭化水素系溶媒と1種以上の他の溶媒からなる混合溶媒でもよい。ただし、不可避の不純物(例えば炭素原子数が1~2程度異なる同族体等)が少量混入するものも、前記有機溶媒として使用可能である。石油エーテルは、ヘキサン及びその構造異性体を主成分とする混合溶媒であるが、さらにペンタン又はその構造異性体を含んでもよい。キシレンは、オルト、メタ、パラの各異性体の混合物であってもよく、さらにエチルベンゼンを含むか含まないかは任意である。使用する有機溶媒は、水分や硫黄化合物、重金属等の望ましくない不純物を極力除去したものが好ましいが、要求されるコストと精製レベルに応じて適切なものを選択することが好ましい。炭化水素系溶媒以外の溶媒として、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、アセトン、2-ブタノン、酢酸エチル、ジエチルエーテル、テトラヒドロフラン、メチル-t-ブチルエーテル、アセトニトリル又はプロピオニトリル等の極性溶媒を添加することも静電気の発生を防ぐために好ましい。この場合の極性溶媒の含有量の合計としては50体積%以下が好ましく、30体積%以下が好ましく、10体積%以下が好ましく、5体積%以下が好ましく、また0.1体積%以上が好ましく、0.5体積%以上が好ましく、1体積%以上が好ましい。
 前記精製工程により得られた目的の化合物又は組成物(以下、「目的物」という。)は、精製剤との接触の前後において、原料組成物と比べると、不要な不純物の一部又は全部が除去されることにより、組成が変化する。目的物は、少なくとも、液晶材料を構成する化合物(前記一般式(II)及び前記一般式(IV)で表される化合物群より選ばれる一種又は二種以上の化合物)を含む必要がある。目的物は、前記一般式(II)で表される化合物群より選ばれる一種又は二種以上の化合物を含む組成物であることが好ましい。目的物は、前記一般式(II)で表される化合物群より選ばれる一種又は二種以上の化合物を含み、さらに、前記一般式(IV)で表される化合物群より選ばれる一種又は二種以上の化合物を含む組成物であることが好ましい。
 さらに、目的物がヒンダードフェノール類(前記一般式(I)及び前記一般式(III)で表される化合物群より選ばれる一種又は二種以上の化合物)を含む組成物であることが好ましい。ただし、目的物は、前記一般式(I)及び前記一般式(III)で表される化合物群より選ばれる一種又は二種以上の化合物を含まないこともあり得る。また、目的物は、前記一般式(II)及び前記一般式(IV)で表される化合物群より選ばれる化合物を一種のみ含むこともあり得る。本発明は、前記一般式(II)又は前記一般式(IV)で表される化合物群より選ばれる化合物の製造方法としても利用することができる。
 本発明において、「組成物の製造方法」というときは、目的物が一種の化合物である場合、すなわち、一般式(II)で表される化合物群より選ばれる一種である化合物の製造方法、及び一般式(IV)で表される化合物群より選ばれる一種である化合物の製造方法を包含するものとする。本発明の組成物の製造方法により得られる組成物は、一種の化合物を目的物とする場合を包含する。
 液晶材料を構成する化合物の中でも、アルケニル基や重合性基を側鎖に有する化合物などは、背景技術で述べたように、シリカゲル等との接触により二量化あるいは分解等の反応を起こし、純度の低下やそれに伴う比抵抗値の低下を招く傾向が強い。このことから、目的物が、前記一般式(II)において、Rが炭素原子数2~6のアルケニル基である化合物を少なくとも1種含有する、化合物又は組成物であることが好ましい。また、目的物が、前記一般式(IV)で表される化合物を少なくとも1種含有する、化合物又は組成物であることが好ましい。
 液晶材料を構成する化合物(前記一般式(II)及び前記一般式(IV)で表される化合物群より選ばれる一種又は二種以上の化合物)は、精製工程の前後を経て、回収率ができるだけ高いことが好ましい。ここで、「回収率」とは、原料組成物に含まれていた当該化合物の質量をm、目的の組成物に含まれる当該化合物の質量をmとするときに、100×(m/m)で求められる百分率(%)である。
 また、ヒンダードフェノール類(前記一般式(I)及び前記一般式(III)で表される化合物群より選ばれる一種又は二種以上の化合物)の回収率は、必ずしも高くある必要はないが、必ずしも低くある必要もない。目的の組成物を例えば液晶材料として用いるときに、前記ヒンダードフェノール類が目的の組成物に所定の量以上が残っていると、液晶材料の酸化防止剤として引き続き利用でき、好ましい。
 一般式(I)から(IV)で表される化合物の間の組成比は、精製剤との接触の前後において、変化する場合がある。これは、化合物ごとに精製剤への吸着力が異なるためである。また、一般式(I)で表される化合物及び一般式(III)で表される化合物の含有率が精製剤との接触前後で低下したり、消失したりする場合があるが、それをそのまま液晶材料として使用してもよく、また必要に応じて一般式(I)で表される化合物又は一般式(III)で表される化合物を追加しても良い。
 前記精製工程により得られた組成物が溶媒を含む場合には、溶媒を留去する前に必要に応じて一般式(I)で表される化合物又は一般式(III)で表される化合物を追加することが好ましい。
 目的の組成物を液晶材料として用いるときに、目的の組成物として得られたままを使用してもよい。また、得られた目的の組成物を2種以上配合して、必要な液晶材料の組成を調整してもよい。
 本発明に使用する化合物は、分子内に過酸等の過酸化物(-OO-、-CO-OO-)構造を持たないこと、すなわち、酸素原子が直接隣接しないことが好ましい。また、液晶組成物の信頼性及び長期安定性を重視する場合にはカルボニル基を有する化合物を使用しないことが好ましい。また、UV照射による安定性を重視する場合、塩素原子が置換している化合物を使用しないことが望ましい。
 本発明の液晶組成物には、ポリマー安定化(PS)モード、ポリマー維持配向(PSA)モード、横電界型PSVA(高分子安定化垂直配向)モードなどの液晶表示素子を作製するために、重合性化合物を含有することができる。使用できる重合性化合物として、光などのエネルギー線により重合が進行する光重合性モノマーなどが挙げられ、構造として、例えば、ビフェニル誘導体、ターフェニル誘導体などの六員環が複数連結した液晶骨格を有する重合性化合物などが挙げられる。
 本発明の液晶組成物にモノマーを添加する場合において、重合開始剤が存在しない場合でも重合は進行するが、重合を促進するために重合開始剤を含有していてもよい。重合開始剤としては、ベンゾインエーテル類、ベンゾフェノン類、アセトフェノン類、ベンジルケタール類、アシルフォスフィンオキサイド類等が挙げられる。
 本発明の重合性化合物を含有した液晶組成物は、これに含まれる重合性化合物が紫外線照射により重合することで液晶配向能が付与され、液晶組成物の複屈折を利用して光の透過光量を制御する液晶表示素子に使用される。液晶表示素子として、AM-LCD(アクティブマトリックス液晶表示素子)、TN(ツイステッド・ネマチック液晶表示素子)、STN-LCD(超ねじれネマチック液晶表示素子)、OCB-LCD、IPS-LCD(インプレーンスイッチング液晶表示素子)及びFFS(フリンジフィールドスイッチングモードの液晶表示素子)に有用であるが、アクティブマトリクスアドレス装置を有するAM-LCDに特に有用であり、透過型あるいは反射型の液晶表示素子に用いることができる。
 液晶表示素子に使用される液晶セルの2枚の基板はガラス又はプラスチックの如き柔軟性をもつ透明な材料を用いることができ、一方はシリコン等の不透明な材料でも良い。透明電極層を有する透明基板は、例えば、ガラス板等の透明基板上にインジウムスズオキシド(ITO)をスパッタリングすることにより得ることができる。
 カラーフィルターは、例えば、顔料分散法、印刷法、電着法又は、染色法等によって作成することができる。顔料分散法によるカラーフィルターの作成方法を一例に説明すると、カラーフィルター用の硬化性着色組成物を、該透明基板上に塗布し、パターニング処理を施し、そして加熱又は光照射により硬化させる。この工程を、赤、緑、青の3色についてそれぞれ行うことで、カラーフィルター用の画素部を作成することができる。その他、該基板上に、TFT、薄膜ダイオード、金属絶縁体金属比抵抗素子等の能動素子を設けた画素電極を設置してもよい。
 前記基板を、透明電極層が内側となるように対向させる。その際、スペーサーを介して、基板の間隔を調整してもよい。このときは、得られる調光層の厚さが1~100μmとなるように調整するのが好ましい。1.5から10μmが更に好ましく、偏光板を使用する場合は、コントラストが最大になるように液晶の屈折率異方性Δnとセル厚dとの積を調整することが好ましい。又、二枚の偏光板がある場合は、各偏光板の偏光軸を調整して視野角やコントラストが良好になるように調整することもできる。更に、視野角を広げるための位相差フィルムも使用することもできる。スペーサーとしては、例えば、ガラス粒子、プラスチック粒子、アルミナ粒子、フォトレジスト材料などからなる柱状スペーサー等が挙げられる。その後、エポキシ系熱硬化性組成物等のシール剤を、液晶注入口を設けた形で該基板にスクリーン印刷し、該基板同士を貼り合わせ、加熱しシール剤を熱硬化させる。
 2枚の基板間に重合性化合物含有液晶組成物を狭持させる方法は、通常の真空注入法又は滴下注入(ODF:One Drop Fill)法などを用いることができる。真空注入法においては滴下痕が発生しないものの、注入の跡が残る課題を有しているものであるが、本発明においては、ODF法を用いて製造する表示素子により好適に使用することができる。ODF法の液晶表示素子製造工程においては、バックプレーンまたはフロントプレーンのどちらか一方の基板にエポキシ系光熱併用硬化性などのシール剤を、ディスペンサーを用いて閉ループ土手状に描画し、その中に脱気下で所定量の液晶組成物を滴下後、フロントプレーンとバックプレーンを接合することによって液晶表示素子を製造することができる。本発明の液晶組成物は、ODF工程における液晶組成物の滴下が安定的に行えるため、好適に使用することができる。
 重合性化合物を重合させる方法としては、液晶の良好な配向性能を得るためには、適度な重合速度が望ましいので、紫外線又は電子線等の活性エネルギー線を単一又は併用又は順番に照射することによって重合させる方法が好ましい。紫外線を使用する場合、偏光光源を用いても良いし、非偏光光源を用いても良い。また、重合性化合物含有液晶組成物を2枚の基板間に挟持させて状態で重合を行う場合には、少なくとも照射面側の基板は活性エネルギー線に対して適当な透明性が与えられていなければならない。また、光照射時にマスクを用いて特定の部分のみを重合させた後、電場や磁場又は温度等の条件を変化させることにより、未重合部分の配向状態を変化させて、更に活性エネルギー線を照射して重合させるという手段を用いても良い。特に紫外線露光する際には、重合性化合物含有液晶組成物に交流電界を印加しながら紫外線露光することが好ましい。印加する交流電界は、周波数10Hzから10kHzの交流が好ましく、周波数60Hzから10kHzがより好ましく、電圧は液晶表示素子の所望のプレチルト角に依存して選ばれる。つまり、印加する電圧により液晶表示素子のプレチルト角を制御することができる。横電界型MVAモードの液晶表示素子においては、配向安定性及びコントラストの観点からプレチルト角を80度から89.9度に制御することが好ましい。
 照射時の温度は、本発明の液晶組成物の液晶状態が保持される温度範囲内であることが好ましい。室温に近い温度、即ち、典型的には15~35℃での温度で重合させることが好ましい。紫外線を発生させるランプとしては、メタルハライドランプ、高圧水銀ランプ、超高圧水銀ランプ等を用いることができる。また、照射する紫外線の波長としては、液晶組成物の吸収波長域でない波長領域の紫外線を照射することが好ましく、必要に応じて、紫外線をカットして使用することが好ましい。照射する紫外線の強度は、0.1mW/cm~100W/cmが好ましく、2mW/cm~50W/cmがより好ましい。照射する紫外線のエネルギー量は、適宜調整することができるが、10mJ/cmから500J/cmが好ましく、100mJ/cmから200J/cmがより好ましい。紫外線を照射する際に、強度を変化させても良い。紫外線を照射する時間は照射する紫外線強度により適宜選択されるが、10秒から3600秒が好ましく、10秒から600秒がより好ましい。
 本発明の液晶組成物を用いた液晶表示素子は高速応答と表示不良の抑制を両立させた有用なものであり、特に、アクティブマトリックス駆動用液晶表示素子に有用であり、VAモード、PSVAモード、PSAモード、IPSモード、FFSモード又はECBモード用液晶表示素子に適用できる。
 以下、実施例を挙げて本発明を更に詳述するが、本発明はこれらの実施例に限定されるものではない。また、以下の実施例及び比較例の組成物における「%」は『質量%』を意味する。純度はガスクロマトグラフィー(カラム:DB-1、キャリアーガス:ヘリウム)の面積比により算出した。
(実施例1)
 下記式(II-1)
Figure JPOXMLDOC01-appb-C000037
で表される化合物100gに下記式(I-1)
Figure JPOXMLDOC01-appb-C000038
で表される化合物1gを加え、組成物(C-1)を調製した。組成物(C-1)の純度を測定したところ、組成物(C-1)の構成成分以外の不純物が0.014%検出された。この組成物(C-1)をヘキサン400mLに溶解してカラムクロマトグラフィー(精製剤としてシリカゲル50gを充填)に注ぎ、溶液表面が精製剤層の上面と一致するまで流した。更に展開溶媒としてヘキサン300mLを加え、精製剤に吸着している化合物を溶出させた。得られた溶液から溶媒を減圧下に留去した。得られた組成物の純度を測定したところ、組成物(C-1)の構成成分以外の不純物は0.013%であった。また得られた組成物を、比抵抗値が1.0×1013Ω・mである下記式(II-2)
Figure JPOXMLDOC01-appb-C000039
で表される組成物に20%添加した液晶組成物の比抵抗値は2.0×1012Ω・mであった。さらに、得られた液晶組成物を使用した液晶表示素子を作製したところ、表示不良を起こさず良好な特性を示した。
 以上の結果から、本精製法により組成物を構成する化合物の劣化を起こすことなく、高い比抵抗値を有する組成物が得られることがわかった。
(実施例2)
 下記式(II-3)
Figure JPOXMLDOC01-appb-C000040
で表される化合物100gに前記式(I-1)で表される化合物1gを加え、組成物(C-2)を調製した。組成物(C-2)の純度を測定したところ、組成物(C-2)の構成成分以外の不純物が0.021%検出された。この組成物(C-2)に対して実施例1と同様の処理を行い、得られた組成物の純度を測定したところ、組成物(C-2)の構成成分以外の不純物は0.018%であった。また得られた組成物を、前記式(II-2)で表される組成物に20%添加した液晶組成物の比抵抗値は1.4×1012Ω・mであった。さらに、得られた組成物を使用した液晶表示素子を作製したところ、表示不良を起こさず良好な特性を示した。
 以上の結果から、本精製法により組成物を構成する化合物の劣化を起こすことなく、高い比抵抗値を有する組成物が得られることがわかった。
(実施例3)
 下記式(II-4)
Figure JPOXMLDOC01-appb-C000041
で表される化合物100gに前記式(I-1)で表される化合物1gを加え、組成物(C-3)を調製した。組成物(C-3)の純度を測定したところ、組成物(C-3)の構成成分以外の不純物が0.009%検出された。この組成物(C-3)に対して実施例1と同様の処理を行い、得られた組成物の純度を測定したところ、組成物(C-3)の構成成分以外の不純物は0.009%であった。また得られた組成物を、前記式(II-2)で表される組成物に20%添加した液晶組成物の比抵抗値は9.2×1012Ω・mであった。さらに、得られた組成物を使用した液晶表示素子を作製したところ、表示不良を起こさず良好な特性を示した。
 以上の結果から、本精製法により組成物を構成する化合物の劣化を起こすことなく、高い比抵抗値を有する組成物が得られることがわかった。
(実施例4)
 実施例3と同様に前記式(II-4)で表される化合物100gに前記式(I-1)で表される化合物1gを加えて調製した組成物(C-3)101gにヘキサン400mLを加えて溶解し、シリカゲル1gを加えて1時間撹拌した。ろ過によりシリカゲルを除去し、ろ液から溶媒を減圧下に留去した。得られた組成物の純度を測定したところ、組成物(C-3)の構成成分以外の不純物は0.008%であった。また得られた組成物を、前記式(II-2)で表される組成物に20%添加した液晶組成物の比抵抗値は9.0×1012Ω・mであった。さらに、得られた組成物を使用した液晶表示素子を作製したところ、表示不良を起こさず良好な特性を示した。
 以上の結果から、本精製法により組成物を構成する化合物の劣化を起こすことなく、高い比抵抗値を有する組成物が得られることがわかった。
(実施例5)
 下記式(LC-1)
Figure JPOXMLDOC01-appb-C000042
で表される組成物100gを調製し、そこへ前記式(I-1)で表される化合物1gを加え、組成物(C-5)を調製した。組成物(C-5)の純度を測定したところ、組成物(C-5)の構成成分以外の不純物が0.014%検出された。この組成物(C-5)をヘキサン400mLに溶解してカラムクロマトグラフィー(精製剤としてシリカゲル50gを充填)に注ぎ、溶液表面が精製剤層の上面と一致するまで流した。更に展開溶媒としてヘキサン300mLを加え、精製剤に吸着している化合物を溶出させた。得られた溶液から溶媒を減圧下に留去した。得られた組成物の純度を測定したところ、組成物(C-5)の構成成分以外の不純物は0.013%であった。また得られた組成物の比抵抗値は2.0×1012Ω・mであった。さらに、得られた組成物を使用した液晶表示素子を作製したところ、表示不良を起こさず良好な特性を示した。
 以上の結果から、本精製法により組成物を構成する化合物の劣化を起こすことなく、高い比抵抗値を有する組成物が得られることがわかった。
(実施例6)
 下記式(LC-2)
Figure JPOXMLDOC01-appb-C000043
で表される組成物100gを調製し、そこへ前記式(I-1)で表される化合物1gを加え、組成物(C-6)を調製した。組成物(C-6)の純度を測定したところ、組成物(C-6)の構成成分以外の不純物が0.022%検出された。この組成物(C-6)をヘキサン400mLに溶解してシリカゲル1gを加えて1時間撹拌した。ろ過によりシリカゲルを除去し、ろ液から溶媒を減圧下に留去した。得られた組成物の純度を測定したところ、組成物(C-6)の構成成分以外の不純物は0.014%であった。また得られた組成物の比抵抗値は1.8×1012Ω・mであった。さらに、得られた組成物を使用した液晶表示素子を作製したところ、表示不良を起こさず良好な特性を示した。
 以上の結果から、本精製法により組成物を構成する化合物の劣化を起こすことなく、高い比抵抗値を有する組成物が得られることがわかった。
(実施例7)
 実施例5と同様に調製した前記式(LC-1)で表される組成物100gに前記式(I-1)で表される化合物1gを加えて調整した組成物(C-5)101gにシリカゲル1gを加えて1時間撹拌した。ろ過によりシリカゲルを除去し、得られた組成物の純度を測定したところ、組成物(C-5)の構成成分以外の不純物は0.011%であった。また得られた組成物の比抵抗値は1.6×1012Ω・mであった。さらに、得られた組成物を使用した液晶表示素子を作製したところ、表示不良を起こさず良好な特性を示した。
 以上の結果から、本精製法により組成物を構成する化合物の劣化を起こすことなく、高い比抵抗値を有する組成物が得られることがわかった。
(実施例8)
 実施例1において、前記式(I-1)で表される化合物の代わりに下記式(I-2)
Figure JPOXMLDOC01-appb-C000044
で表される化合物を用い、他は同様に操作を行った。得られた組成物の純度を測定したところ、その構成成分以外の不純物は0.013%であった。また得られた組成物を前記式(II-2)で表される組成物に20%添加した液晶組成物の比抵抗値は2.2×1012Ω・mであった。さらに、得られた組成物を使用した液晶表示素子を作製したところ、表示不良を起こさず良好な特性を示した。
 以上の結果から、本精製法により組成物を構成する化合物の劣化を起こすことなく、高い比抵抗値を有する組成物が得られることがわかった。
(実施例9)
 実施例5と同様に前記式(LC-1)で表される組成物100gを調製し、そこへ前記式(I-2)で表される化合物1gを加え、組成物(C-9)を調製した。組成物(C-9)の純度を測定したところ、組成物(C-9)の構成成分以外の不純物が0.014%検出された。この組成物(C-9)をヘキサン400mLに溶解し、シリカゲル1gを加えて1時間撹拌した。ろ過によりシリカゲルを除去し、ろ液から溶媒を減圧下に留去した。得られた組成物の純度を測定したところ、組成物(C-9)の構成成分以外の不純物は0.013%であった。また得られた組成物の比抵抗値は2.0×1012Ω・mであった。さらに、得られた組成物を使用した液晶表示素子を作製したところ、表示不良を起こさず良好な特性を示した。
 以上の結果から、本精製法により組成物を構成する化合物の劣化を起こすことなく、高い比抵抗値を有する組成物が得られることがわかった。
(実施例10)
 実施例6と同様に前記式(LC-2)で表される組成物100gを調製し、そこへ前記式(I-1)で表される化合物1gを加えて調製した組成物(C-6)101gにシリカゲル1gを加えて1時間撹拌した。ろ過によりシリカゲルを除去し、得られた組成物の純度を測定したところ、組成物(C-6)の構成成分以外の不純物は0.021%であった。また得られた組成物の比抵抗値は1.8×1012Ω・mであった。さらに、得られた組成物を使用した液晶表示素子を作製したところ、表示不良を起こさず良好な特性を示した。
 以上の結果から、本精製法により組成物を構成する化合物の劣化を起こすことなく、高い比抵抗値を有する組成物が得られることがわかった。
(実施例11)
 実施例1において、前記式(I-1)で表される化合物の代わりに下記式(III-1)
Figure JPOXMLDOC01-appb-C000045
で表される化合物を用い、他は同様に操作を行った。得られた組成物の純度を測定したところ、その構成成分以外の不純物は0.013%であった。また得られた組成物を前記式(II-2)で表される組成物に20%添加した液晶組成物の比抵抗値は2.6×1012Ω・mであった。さらに、得られた組成物を使用した液晶表示素子を作製したところ、表示不良を起こさず良好な特性を示した。
 以上の結果から、本精製法により組成物を構成する化合物の劣化を起こすことなく、高い比抵抗値を有する組成物が得られることがわかった。
(実施例12)
 実施例1において、シリカゲル50gの代わりにアルミナ100gを用い、他は同様に操作を行った。得られた組成物の純度を測定したところ、その構成成分以外の不純物は0.014%であった。また得られた組成物を前記式(II-2)で表される組成物に20%添加した液晶組成物の比抵抗値は1.8×1012Ω・mであった。さらに、得られた組成物を使用した液晶表示素子を作製したところ、表示不良を起こさず良好な特性を示した。
 以上の結果から、本精製法により組成物を構成する化合物の劣化を起こすことなく、高い比抵抗値を有する組成物が得られることがわかった。
(比較例1)
 前記式(II-3)で表される化合物(以下「化合物(II-3)」という。)の純度を測定したところ、不純物が0.014%検出された。この化合物(II-3)100gをヘキサン400mLに溶解してカラムクロマトグラフィー(精製剤としてシリカゲル50gを充填)に注ぎ、溶液表面が精製剤層の上面と一致するまで流した。更に展開溶媒としてヘキサン300mLを加え、精製剤に吸着している化合物を溶出させた。得られた溶液から溶媒を減圧下に留去した。得られた化合物(II-3)の純度を測定したところ、不純物が0.017%検出された。また得られた化合物(II-3)を前記式(II-2)で表される組成物に20%添加した液晶組成物の比抵抗値は5.6×1011Ω・mであった。さらに、得られた組成物を使用した液晶表示素子を作製したところ、表示不良を起こさず良好な特性を示した。
 この結果より、本比較例の精製方法では化合物の純度がシリカゲルとの接触により低下し、また比抵抗値も不十分であることがわかった。シリカゲルとの接触により、前記式(II-3)で表される化合物の一部が劣化したものと考えられる。
(比較例2)
 実施例5と同様に前記式(LC-1)で表される組成物(以下「組成物(LC-1)」という。)100gを調製し、純度を測定したところ、組成物(LC-1)の構成成分以外の不純物が0.014%検出された。この組成物(LC-1)100gをヘキサン400mLに溶解してカラムクロマトグラフィー(精製剤としてシリカゲル50gを充填)に注ぎ、溶液表面が精製剤層と一致するまで流した。更に展開溶媒としてヘキサン300mLを加え、精製剤に吸着している化合物を溶出させた。得られた溶液から溶媒を減圧下に留去した。得られた組成物の純度を測定したところ、組成物(LC-1)の構成成分以外の不純物は0.016%であった。また得られた組成物の比抵抗値は4.2×1011Ω・mであった。
 この結果より、本比較例の精製方法では組成物の純度がシリカゲルとの接触により低下し、また得られた組成物の比抵抗値も不十分であることがわかった。シリカゲルとの接触により、式(LC-1)で表される組成物を構成する化合物の一部が劣化したものと考えられる。
(比較例3)
 実施例6と同様に前記式(LC-2)で表される組成物(以下「組成物(LC-2)」という。)100gを調製し、純度を測定したところ、組成物(LC-2)の構成成分以外の不純物が0.022%検出された。この組成物(LC-2)100gをヘキサン400mLに溶解してシリカゲル1gを加えて1時間撹拌した。ろ過によりシリカゲルを除去し、ろ液から溶媒を減圧下に留去した。得られた組成物の純度を測定したところ、組成物(LC-2)の構成成分以外の不純物は0.024%であった。また得られた組成物の比抵抗値は5.8×1011Ω・mであった。さらに、得られた組成物を使用した液晶表示素子を作製したところ、表示不良を起こさず良好な特性を示した。
 この結果より、本比較例の精製方法では組成物の純度がシリカゲルとの接触により低下し、また得られた組成物の比抵抗値も不十分であることがわかった。シリカゲルとの接触により、式(LC-2)で表される組成物を構成する化合物の一部が劣化したものと考えられる。
(比較例4)
 実施例6と同様に前記式(LC-2)で表される組成物(以下「組成物(LC-2)」という。)100gを調製し、純度を測定したところ、組成物(LC-2)の構成成分以外の不純物が0.022%検出された。この組成物(LC-2)100gにシリカゲル1gを加えて1時間撹拌した。ろ過によりシリカゲルを除去し、得られた組成物の純度を測定したところ、組成物(LC-2)の構成成分以外の不純物は0.025%であった。また得られた組成物の比抵抗値は4.6×1011Ω・mであった。さらに、得られた組成物を使用した液晶表示素子を作製したところ、表示不良を起こさず良好な特性を示した。
 この結果より、本比較例の精製方法では組成物の純度がシリカゲルとの接触により低下し、また得られた組成物の比抵抗値も不十分であることがわかった。シリカゲルとの接触により、式(LC-2)で表される組成物を構成する化合物の一部が劣化したものと考えられる。
 本発明は、例えば液晶材料を構成する化合物を得る方法として利用することができる。

Claims (19)

  1.  一般式(I)
    Figure JPOXMLDOC01-appb-C000001

    (前記一般式(I)中、Rは炭素原子数1から22の直鎖アルキル基又は分岐鎖アルキル基を表し、該アルキル基中の1つ又は2つ以上の-CH-は、酸素原子が直接隣接しないように、-O-、-CH=CH-、-CO-、-OCO-、-COO-、-C≡C-、-CFO-又は-OCF-で置換されてよく、
     aは0、1又は2を表し、
     M
    (a) トランス-1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-又は-S-に置き換えられてもよい。)、
    (b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)、及び
    (c) 1,4-ビシクロ(2.2.2)オクチレン基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、又はクロマン-2,6-ジイル基
    からなる群より選ばれる基を表すが、上記の基(a)、基(b)又は基(c)に含まれる1つ又は2つ以上の水素原子はそれぞれフッ素原子、トリフルオロメチル基、トリフルオロメトキシ基又は塩素原子で置換されていても良く、aが2を表しMが複数存在する場合、複数存在するMは同一であっても異なっていても良く、
     Zは単結合、-CHCH-、-CH=CH-、-C≡C-、-CHO-、-OCH-、-CFO-、-OCF-、-COO-又は-OCO-を表すが、aが2を表しZが複数存在する場合、複数存在するZは同一であっても異なっていても良い。)
     及び一般式(III)
    Figure JPOXMLDOC01-appb-C000002

    (前記一般式(III)中、Mは炭素原子数1から15のアルキレン基(該アルキレン基中の1つ又は2つ以上の-CH-は、酸素原子が直接隣接しないように、-O-、-CO-、-COO-、-OCO-、-CFO-、-OCF-、-CF-、-CH=CH-、-C≡C-、1,4-フェニレン基(該1,4-フェニレン基中の1つ又は2つ以上の水素原子がフッ素原子により置換されていても良い。)又はトランス-1,4-シクロヘキシレン基に置換されていても良い。)又は単結合を表す。)
    で表される化合物群より選ばれる一種又は二種以上の化合物を含有し、
     一般式(II)
    Figure JPOXMLDOC01-appb-C000003

    (前記一般式(II)中、Rは炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、
     bは1、2、3又は4を表し、
     A及びAはそれぞれ独立に
    (a) トランス-1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-又は-S-に置き換えられてもよい。)、
    (b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)、及び
    (c) 1,4-ビシクロ(2.2.2)オクチレン基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、又はクロマン-2,6-ジイル基
    からなる群より選ばれる基を表すが、上記の基(a)、基(b)又は基(c)に含まれる1つ又は2つ以上の水素原子はそれぞれフッ素原子、トリフルオロメチル基、トリフルオロメトキシ基又は塩素原子で置換されていても良く、bが2、3又は4を表しAが複数存在する場合、複数存在するAは同一であっても異なっていても良く、
     Zは単結合、-CHCH-、-CH=CH-、-C≡C-、-CHO-、-OCH-、-CFO-、-OCF-、-COO-又は-OCO-を表すが、bが2、3又は4を表しZが複数存在する場合、複数存在するZは同一であっても異なっていても良く、
     Yは水素原子、フッ素原子、塩素原子、トリフルオロメチル基、トリフルオロメトキシ基、炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルコキシ基又は炭素原子数2~6のアルケニルオキシ基を表す。)で表される化合物群より選ばれる一種又は二種以上の化合物を含有する原料組成物を用意し、
     前記原料組成物を有機溶媒に溶解し、又は前記原料組成物に有機溶媒を加えることなく、精製剤と接触させた後、前記精製剤を除去し、
     前記精製剤を除去した後の組成物が有機溶媒を含まない場合にはそれを目的の組成物とし、前記精製剤を除去した後の組成物が有機溶媒を含む場合には前記有機溶媒を留去して目的の組成物を得ることを特徴とする組成物の製造方法。
  2.  前記原料組成物及び前記目的の組成物が、前記一般式(I)において、Rが炭素原子数1から11の直鎖アルキル基又は分岐鎖アルキル基を表し、Mがトランス-1,4-シクロヘキシレン基又は1,4-フェニレン基を表し、Zが単結合を表し、aが0又は1を表す化合物を少なくとも1種含有する請求項1に記載の組成物の製造方法。
  3.  前記原料組成物及び前記目的の組成物が、前記一般式(III)において、Mが炭素原子数1から15のアルキレン基を表す化合物を少なくとも1種含有する請求項1に記載の組成物の製造方法。
  4.  前記一般式(I)で表される化合物及び一般式(III)で表される化合物の含有量の合計が、前記原料組成物の重量に対して0.001質量%から10質量%である請求項1に記載の組成物の製造方法。
  5.  前記原料組成物及び前記目的の組成物が、前記一般式(II)において、A及びAのうち少なくとも1つが
    Figure JPOXMLDOC01-appb-C000004

    から選択されるいずれかを表す化合物を少なくとも1種含有する請求項1に記載の組成物の製造方法。
  6.  前記原料組成物及び前記目的の組成物が、前記一般式(II)において、Yがフッ素原子を表す化合物を少なくとも1種含有する請求項5に記載の組成物の製造方法。
  7.  前記原料組成物及び前記目的の組成物が、前記一般式(II)において、Rがメチル基、エチル基、プロピル基、ブチル基又はペンチル基を表し、Zが単結合、-CHCH-、-CFO-又は-OCF-を表す化合物を少なくとも1種含有する請求項5に記載の組成物の製造方法。
  8.  前記原料組成物及び前記目的の組成物が、前記一般式(II)において、A及びAのうち少なくとも1つが
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006

    から選択されるいずれかを表す化合物を少なくとも1種含有する請求項1に記載の組成物の製造方法。
  9.  前記原料組成物及び前記目的の組成物が、前記一般式(II)において、R及びYがそれぞれ独立的にメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ビニル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基、3-ブテニルオキシ基又は4-ペンテニルオキシ基を表し、Zが単結合、-CHCH-、-CHO-、-OCH-、-CFO-又は-OCF-を表す化合物を少なくとも1種含有する請求項8に記載の組成物の製造方法。
  10.  前記原料組成物及び前記目的の組成物が、前記一般式(II)において、A及びAのうち少なくとも1つが
    Figure JPOXMLDOC01-appb-C000007

    を表す化合物を少なくとも1種含有する請求項8に記載の組成物の製造方法。
  11.  前記原料組成物及び前記目的の組成物が、前記一般式(II)において、R及びYがそれぞれ独立的に炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルコキシ基又は炭素原子数2~6のアルケニルオキシ基を表し、A及びAがそれぞれ独立的にトランス-1,4-シクロヘキシレン基又は1,4-フェニレン基を表し、Zが単結合又は-CHCH-を表す化合物を少なくとも1種含有する請求項1に記載の組成物の製造方法。
  12.  請求項1に記載の組成物の製造方法により得られる組成物。
  13.  前記原料組成物及び前記目的の組成物が、さらに、一般式(IV)
    Figure JPOXMLDOC01-appb-C000008

    (前記一般式(IV)中、P及びPは、それぞれ独立に、アクリロイルオキシ基、メタクリロイルオキシ基、ビニル基、ビニロキシ基又は下記式(Ep-1)から(Ep-7)のいずれかで表される基を表し、
    Figure JPOXMLDOC01-appb-C000009

     nは0、1又は2を表し、
     A及びAは、それぞれ独立に、1,4-フェニレン基又はナフタレン-2,6-ジイル基(これらの基に含まれる1つ又は2つ以上の水素原子はそれぞれフッ素原子で置換されていても良い。)を表すが、nが2を表しAが複数存在する場合、複数存在するAは同一であっても異なっていても良く、
     Zは-COO-、-OCO-、-CHCHCOO-、-OCOCHCH-、-CHCHOCO-、-COOCHCH-、-(CH-、-(CHO-、-O(CH-、-CHCHOCH-、-CHOCHCH-又は単結合を表すが、nが2を表しZが複数存在する場合、複数存在するZは同一であっても異なっていても良い。)で表される化合物群より選ばれる一種又は二種以上の化合物を含有する請求項1に記載の組成物の製造方法。
  14.  前記原料組成物及び前記目的の組成物が、前記一般式(IV)において、P及びPが、それぞれ独立に、アクリロイルオキシ基又はメタクリロイルオキシ基を表し、A及びAが、それぞれ独立に、1,4-フェニレン基(これらに含まれる水素原子はそれぞれフッ素原子で置換されていても良い。)を表す化合物を少なくとも1種含有する請求項13に記載の組成物の製造方法。
  15.  前記原料組成物及び前記目的の組成物が、前記一般式(II)において、Rが炭素原子数2~6のアルケニル基である化合物を少なくとも1種含有する請求項1に記載の組成物の製造方法。
  16.  前記精製剤としてシリカゲル、アルミナ又はイオン交換樹脂の1種又はそれらの混合物を使用する請求項1に記載の組成物の製造方法。
  17.  前記精製剤としてシリカゲル又はアルミナの1種又はそれらの混合物を使用する請求項1に記載の組成物の製造方法。
  18.  前記精製剤の使用量が、前記原料組成物の100質量部に対して0.1質量部から1000質量部である請求項1に記載の組成物の製造方法。
  19.  前記有機溶媒が、ヘキサン及びその構造異性体、ヘプタン及びその構造異性体、オクタン及びその構造異性体、石油エーテル、ベンゼン、トルエン、キシレン、及びクメンから選択される単一溶媒又はそれらの1種若しくは2種以上を含む混合溶媒である請求項1に記載の組成物の製造方法。
PCT/JP2013/060452 2013-04-05 2013-04-05 組成物の製造方法 WO2014162587A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/369,574 US9441159B2 (en) 2013-04-05 2013-04-05 Method for producing composition
JP2013544890A JP5522319B1 (ja) 2013-04-05 2013-04-05 組成物の製造方法
KR20147011722A KR101495129B1 (ko) 2013-04-05 2013-04-05 조성물의 제조 방법
CN201380005771.3A CN104114674B (zh) 2013-04-05 2013-04-05 组合物的制造方法
PCT/JP2013/060452 WO2014162587A1 (ja) 2013-04-05 2013-04-05 組成物の製造方法
EP13873138.5A EP2808376B1 (en) 2013-04-05 2013-04-05 Method for producing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/060452 WO2014162587A1 (ja) 2013-04-05 2013-04-05 組成物の製造方法

Publications (1)

Publication Number Publication Date
WO2014162587A1 true WO2014162587A1 (ja) 2014-10-09

Family

ID=51175638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060452 WO2014162587A1 (ja) 2013-04-05 2013-04-05 組成物の製造方法

Country Status (6)

Country Link
US (1) US9441159B2 (ja)
EP (1) EP2808376B1 (ja)
JP (1) JP5522319B1 (ja)
KR (1) KR101495129B1 (ja)
CN (1) CN104114674B (ja)
WO (1) WO2014162587A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160130501A1 (en) * 2014-11-10 2016-05-12 Jnc Petrochemical Corporation Antioxidant having difluoromethoxy group, liquid crystal composition, and liquid crystal display device
WO2016076192A1 (ja) * 2014-11-14 2016-05-19 Dic株式会社 混合物、液晶組成物、及び液晶表示素子
WO2019221253A1 (ja) * 2018-05-14 2019-11-21 Jnc株式会社 液晶組成物および液晶表示素子

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056314A1 (ja) * 2014-10-09 2016-04-14 Dic株式会社 組成物及びそれを使用した液晶表示素子
CN115651668A (zh) * 2022-10-31 2023-01-31 重庆汉朗精工科技有限公司 向列相液晶组合物及其应用
CN115960613A (zh) * 2022-10-31 2023-04-14 重庆汉朗精工科技有限公司 一种介电正性液晶组合物及其应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581774A (ja) 1981-06-25 1983-01-07 Casio Comput Co Ltd 液晶表示装置
JPS62210420A (ja) 1986-03-12 1987-09-16 Fujitsu Ltd 液晶の注入法
JPS62210419A (ja) * 1986-03-12 1987-09-16 Fujitsu Ltd 液晶表示素子の製法
JPS6487685A (en) * 1987-09-29 1989-03-31 Seimi Chem Kk Production of liquid crystal composition of high resistivity
JPH05214342A (ja) * 1991-11-01 1993-08-24 Merck Patent Gmbh ネマチック液晶組成物
JPH07225369A (ja) * 1994-02-16 1995-08-22 Hitachi Cable Ltd ポリマ分散型液晶を用いた表示素子
JPH108057A (ja) * 1996-06-27 1998-01-13 Mitsubishi Chem Corp 液晶組成物及び液晶素子
JP2006169472A (ja) * 2004-12-20 2006-06-29 Chisso Corp 液晶組成物および液晶表示素子
JP2006193707A (ja) * 2004-06-28 2006-07-27 Chisso Corp 液晶組成物および液晶表示素子
JP2007023095A (ja) * 2005-07-13 2007-02-01 Chisso Corp 液晶組成物および液晶表示素子
JP2007246534A (ja) * 1995-10-20 2007-09-27 Merck Patent Gmbh 2,6−ジ−tert−ブチルフェノール化合物
JP2008248061A (ja) * 2007-03-30 2008-10-16 Dic Corp 高分子安定化液晶組成物および高分子安定化液晶表示素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103476838B (zh) * 2011-04-18 2015-02-11 Dic株式会社 在末端环结构上具有侧向取代基的聚合性化合物
TWI589677B (zh) * 2011-11-15 2017-07-01 迪愛生股份有限公司 鐵電性液晶組成物及鐵電性液晶顯示元件
US20140313468A1 (en) * 2011-11-18 2014-10-23 Dic Corporation Liquid crystal display element
EP2727978B1 (en) 2012-04-26 2016-12-07 DIC Corporation Nematic liquid crystal composition and liquid crystal display element using same
JP5170603B1 (ja) * 2012-04-26 2013-03-27 Dic株式会社 ネマチック液晶組成物及びこれを用いた液晶表示素子
EP2891645B1 (en) * 2013-04-05 2017-10-04 DIC Corporation Production method for compound

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581774A (ja) 1981-06-25 1983-01-07 Casio Comput Co Ltd 液晶表示装置
JPS62210420A (ja) 1986-03-12 1987-09-16 Fujitsu Ltd 液晶の注入法
JPS62210419A (ja) * 1986-03-12 1987-09-16 Fujitsu Ltd 液晶表示素子の製法
JPS6487685A (en) * 1987-09-29 1989-03-31 Seimi Chem Kk Production of liquid crystal composition of high resistivity
JPH05214342A (ja) * 1991-11-01 1993-08-24 Merck Patent Gmbh ネマチック液晶組成物
JPH07225369A (ja) * 1994-02-16 1995-08-22 Hitachi Cable Ltd ポリマ分散型液晶を用いた表示素子
JP2007246534A (ja) * 1995-10-20 2007-09-27 Merck Patent Gmbh 2,6−ジ−tert−ブチルフェノール化合物
JPH108057A (ja) * 1996-06-27 1998-01-13 Mitsubishi Chem Corp 液晶組成物及び液晶素子
JP2006193707A (ja) * 2004-06-28 2006-07-27 Chisso Corp 液晶組成物および液晶表示素子
JP2006169472A (ja) * 2004-12-20 2006-06-29 Chisso Corp 液晶組成物および液晶表示素子
JP2007023095A (ja) * 2005-07-13 2007-02-01 Chisso Corp 液晶組成物および液晶表示素子
JP2008248061A (ja) * 2007-03-30 2008-10-16 Dic Corp 高分子安定化液晶組成物および高分子安定化液晶表示素子

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160130501A1 (en) * 2014-11-10 2016-05-12 Jnc Petrochemical Corporation Antioxidant having difluoromethoxy group, liquid crystal composition, and liquid crystal display device
JP2016094412A (ja) * 2014-11-10 2016-05-26 Jnc株式会社 ジフルオロメトキシ基を有する酸化防止剤、液晶組成物および液晶表示素子
US10584284B2 (en) 2014-11-10 2020-03-10 Jnc Corporation Antioxidant having difluoromethoxy group, liquid crystal composition, and liquid crystal display device
WO2016076192A1 (ja) * 2014-11-14 2016-05-19 Dic株式会社 混合物、液晶組成物、及び液晶表示素子
WO2019221253A1 (ja) * 2018-05-14 2019-11-21 Jnc株式会社 液晶組成物および液晶表示素子
JP2019199491A (ja) * 2018-05-14 2019-11-21 Jnc株式会社 液晶組成物および液晶表示素子
JPWO2019221253A1 (ja) * 2018-05-14 2021-08-12 Jnc株式会社 液晶組成物および液晶表示素子

Also Published As

Publication number Publication date
EP2808376B1 (en) 2017-09-20
JP5522319B1 (ja) 2014-06-18
CN104114674B (zh) 2015-10-07
KR20140130417A (ko) 2014-11-10
EP2808376A1 (en) 2014-12-03
US9441159B2 (en) 2016-09-13
EP2808376A4 (en) 2015-11-11
KR101495129B1 (ko) 2015-02-24
JPWO2014162587A1 (ja) 2017-02-16
US20160102252A1 (en) 2016-04-14
CN104114674A (zh) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5720849B2 (ja) 重合性化合物を含有する液晶組成物及びそれを使用した液晶表示素子
KR101978993B1 (ko) 중합성 화합물을 함유하는 액정 조성물 및 그것을 사용한 액정 표시 소자
JP5692565B2 (ja) 重合性化合物を含有する液晶組成物及びそれを使用した液晶表示素子
JP5743129B2 (ja) 重合性化合物を含有する液晶組成物及びそれを使用した液晶表示素子
JP5522319B1 (ja) 組成物の製造方法
WO2014155485A1 (ja) 液晶組成物、液晶表示素子及び液晶ディスプレイ
JP2014162751A (ja) 化合物、液晶組成物、及び表示装置
WO2014147814A1 (ja) 液晶組成物及びそれを使用した液晶表示素子
WO2014122766A1 (ja) 液晶組成物及びそれを使用した液晶表示素子
WO2014091560A1 (ja) ネマチック液晶組成物及びこれを用いた液晶表示素子
JP5500325B1 (ja) 化合物の製造方法
WO2014147820A1 (ja) 液晶組成物及びそれを使用した液晶表示素子
WO2014147822A1 (ja) 液晶組成物及びそれを使用した液晶表示素子
WO2016076192A1 (ja) 混合物、液晶組成物、及び液晶表示素子
TWI568836B (zh) 組成物之製造方法
JPWO2017090384A1 (ja) 液晶性化合物、液晶組成物および表示素子
WO2014155479A1 (ja) 液晶組成物及びそれを使用した液晶表示素子
JP5500321B1 (ja) 液晶組成物及びそれを使用した液晶表示素子
WO2014132382A1 (ja) 液晶組成物及びそれを使用した液晶表示素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013544890

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14369574

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013873138

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013873138

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE