WO2016076192A1 - 混合物、液晶組成物、及び液晶表示素子 - Google Patents

混合物、液晶組成物、及び液晶表示素子 Download PDF

Info

Publication number
WO2016076192A1
WO2016076192A1 PCT/JP2015/081153 JP2015081153W WO2016076192A1 WO 2016076192 A1 WO2016076192 A1 WO 2016076192A1 JP 2015081153 W JP2015081153 W JP 2015081153W WO 2016076192 A1 WO2016076192 A1 WO 2016076192A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
compound
liquid crystal
formula
Prior art date
Application number
PCT/JP2015/081153
Other languages
English (en)
French (fr)
Inventor
松本 隆
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2016534269A priority Critical patent/JPWO2016076192A1/ja
Publication of WO2016076192A1 publication Critical patent/WO2016076192A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/02Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/225Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing halogen

Definitions

  • the present invention relates to a mixture containing a compound having at least one —CF 2 O— in its structure, a liquid crystal composition containing the mixture, and a liquid crystal display device containing the liquid crystal composition.
  • Liquid crystal display elements are widely used from consumer applications to industrial applications such as liquid crystal televisions, mobile phones, computers, watches, calculators, advertisement display boards, printers, various measuring instruments, automotive panels, electronic notebooks, and the like. Since these products have a relatively long product life of several years to several tens of years, high stability is required for the liquid crystal materials used for these in order to operate normally. As a typical stability index of a liquid crystal material, there is a voltage holding ratio. In order for the liquid crystal display element to operate normally, the voltage holding ratio of the liquid crystal material used for the liquid crystal display element must be sufficiently high, and deterioration over time must be suppressed.
  • liquid crystal materials such as high-speed response and high contrast. These physical properties cannot be achieved by a single compound, and a plurality of liquid crystal compounds are mixed, and the dielectric anisotropy ( ⁇ ), refractive index anisotropy ( ⁇ n), etc. are set to suitable values as the liquid crystal composition. By responding to the request. In order to obtain a liquid crystal material having high stability, each liquid crystal compound constituting the liquid crystal material needs to have high stability.
  • a compound having —CF 2 O— as a linking group As a constituent component of a liquid crystal composition, a compound having —CF 2 O— as a linking group is known. Since the compound has a relatively large dielectric anisotropy ⁇ , it is one of useful compounds. It is actually used in liquid crystal materials (see Patent Document 1). However, such a compound has a problem that a compound having —COO— in the linking group is contained as an impurity in the process of synthesis and purification, which adversely affects the stability of the liquid crystal material. Therefore, as a compound used as a component of the liquid crystal composition, an impurity having —COO— in the linking group is more completely (for example, an impurity having —COO— in the linking group even using the best analytical means currently available).
  • the problem to be solved by the present invention is to provide a mixture that can be produced at a lower cost and in a shorter time without impairing quality.
  • the present inventors in view of the situation described above, a result of intensive studies, a compound having -CF 2 O-in the structure, the proportion of the compound having the structure -CF 2 O-is replaced by -COO- of the compound within a specific range, the present invention has found that a mixture having high stability, high quality, and capable of improving production yield and suppressing production cost by omitting unnecessary purification operations can be obtained. It came to complete.
  • the present invention includes at least one -CF 2 O-have in the structure, and the compound A having no -COO- in the structure, at least one -CF 2 O-are in a compound A -
  • a mixture containing compound B having a structure in which COO- is substituted wherein the quotient Q when the mass of compound A is divided by the mass of compound B is 49 ⁇ Q ⁇ 49999.
  • the mixture of the present invention can be produced at a lower cost and in a shorter time, and compared with a high-purity compound in which the compound having a structure in which the compound —CF 2 O— is replaced with —COO— is more completely removed. However, it is very useful because it has inferior performance.
  • mixture in the present invention, at least one -CF 2 O-have, and the compound A having no -COO- in the structure, at least one -CF 2 O of compound A in the structure
  • Compound B having a structure in which — is replaced with —COO— is included.
  • Compound B is a compound in which a part of —CF 2 O— is oxidized to —COO— in the process of synthesis and purification of Compound A, and is produced as a compound having —COO— as a linking group. It exists as an impurity mixed in.
  • the compound A containing the compound B as an impurity is referred to as a “mixture” in order to clearly distinguish it from the compound A itself not containing the compound B.
  • the compound A having at least one —CF 2 O— in the structure and not having —COO— in the structure, and at least one in the compound A
  • a mixture containing Compound B having a structure in which one —CF 2 O— is replaced by —COO— the upper limit value and the lower limit value of the quotient Q when the mass of Compound A is divided by the mass of Compound B are defined.
  • the Q value is desirably larger from the viewpoint of the stability and quality of the mixture. Therefore, by defining that the value of Q is equal to or greater than a predetermined lower limit value, stability and quality required when the mixture is used for a liquid crystal display element can be kept high. On the other hand, in order to increase Q, it is necessary to repeat recrystallization and the like, which is not desirable from the viewpoint of production yield and production cost. On the contrary, from the viewpoint of production yield and production cost, it is desirable that Q is smaller. However, if Q is reduced, the characteristics of the mixture are affected.
  • the present invention by specifying that the value of Q is equal to or lower than the predetermined upper limit value together with the lower limit value, it is possible to omit the refining operation more than necessary, thereby improving the production yield. Production costs can be reduced. That is, in the present invention, by defining the value of Q within an appropriate upper limit value and lower limit value, a highly stable and high-quality mixture can be obtained, and unnecessary purification operations can be omitted. It is possible to improve both production yield and production cost.
  • the lower limit value of Q may be 49, but from the viewpoint of the stability of the mixture, the lower limit value is preferably 49 or more, more preferably 99 or more, more preferably 149 or more, and more preferably 199 or more. 249 or more is more preferable, 299 or more is more preferable, 349 or more is more preferable, 399 or more is more preferable, 449 or more is more preferable, 499 or more is more preferable, 999 is more preferable, 1499 is more preferable, 1999 is more Preferably, 2499 is more preferable, 2999 is more preferable, 3199 is more preferable, and 3299 is more preferable.
  • the upper limit value of Q may be 49999.
  • the upper limit value is more preferably 39999, more preferably 29999, more preferably 19999. Is more preferred, 14999 is more preferred, 9999 is more preferred, 8999 is more preferred, 7999 is more preferred, 6999 is more preferred, 5999 is more preferred, 4999 is more preferred, 3999 is more preferred, 2999 is more preferred, 1999 Is more preferable, and 1499 is more preferable. Furthermore, from the viewpoint of the balance between high stability and quality, production yield and production cost, 99 ⁇ Q ⁇ 39999 is preferable, 499 ⁇ Q ⁇ 29999 is more preferable, 2999 ⁇ Q ⁇ 24999 is further preferable, and 3299 ⁇ Q. ⁇ 19999 is particularly preferred.
  • the value of Q can be measured and calculated using a known analysis means.
  • the abundance of compound A and compound B can be measured by liquid chromatography or the like to calculate Q.
  • Q is calculated from the value of the quotient obtained by dividing the peak area of compound A by the peak area of compound B in liquid chromatography detected under the condition of detection light UV274 nm.
  • Compound A may have one —CF 2 O— in the structure and may have two or more —CF 2 O—. In the mixture, only one type of compound A may be contained, or two or more types may be contained.
  • Compound A of the present invention is preferably a compound represented by the following general formula (I).
  • R 1 represents an alkyl group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, an alkoxy group having 1 to 15 carbon atoms, or an alkenyloxy group having 2 to 15 carbon atoms.
  • Represents a group a represents 0, 1 or 2
  • b represents 0, 1 or 2
  • a 1 , A 2 , A 3 , and A 4 are each independently (a) a trans-1,4-cyclohexylene group (one —CH 2 — present in this group or two not adjacent to each other)
  • the above —CH 2 — may be replaced by —O— or —S—).
  • a 1,4-phenylene group (one —CH ⁇ present in the group or two or more non-adjacent —CH ⁇ may be replaced by —N ⁇ ) and (c) Naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or decahydronaphthalene-2,6-diyl group (naphthalene-2,6-diyl group or 1,2 , 3,4-tetrahydronaphthalene-2,6-diyl group, one —CH ⁇ or two or more non-adjacent —CH ⁇ may be replaced by —N ⁇ .
  • R 1 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or an alkenyloxy having 2 to 8 carbon atoms.
  • a group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms or an alkenyloxy group having 2 to 5 carbon atoms is preferable.
  • An alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms is more preferable, an alkyl group having 2 to 5 carbon atoms or an alkenyl group having 2 to 3 carbon atoms is more preferable, and an alkenyl group having 3 carbon atoms. (Propenyl group) is particularly preferred.
  • R 1 is preferably an alkyl group, and when importance is placed on a decrease in viscosity, R 1 is preferably an alkenyl group.
  • the ring structure to which it is bonded is a phenyl group (aromatic)
  • An alkenyl group having 4 to 5 atoms is preferable
  • the ring structure to which the alkenyl group is bonded is a saturated ring structure such as cyclohexane, pyran and dioxane
  • a straight-chain alkoxy group having 1 to 4 carbon atoms and a straight-chain alkenyl group having 2 to 5 carbon atoms are preferred.
  • the total of carbon atoms and oxygen atoms, if present is preferably 5 or less, and is preferably linear.
  • the alkenyl group is preferably selected from groups represented by any of the formulas (R1) to (R5). (The black dots in each formula represent carbon atoms in the ring structure.)
  • a 1 , A 2 , A 3 and A 4 are preferably aromatic when it is required to increase ⁇ N independently, and are preferably aliphatic for improving the response speed.
  • Z 1 and Z 2 are each independently -CH 2 O -, - CF 2 O -, - CH 2 CH 2 -, - CF 2 CF 2 - or preferably a single bond, -CF 2 O-, —CH 2 CH 2 — or a single bond is more preferable, and a single bond is particularly preferable.
  • a + B is preferably 0, 1 or 2.
  • the compound represented by the general formula (I) is preferably a p-type liquid crystal compound having a dielectric anisotropy ⁇ > 0 and a large absolute value of ⁇ .
  • Examples of the compound group corresponding to the first embodiment include, in the general formula (I), R 1 represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and A 1 , A 2 , A 3 and A 4 are each independently represented by the following formulas (the left and right of these formulas are the same as the left and right of the general formula (I)):
  • Z 1 and Z 2 each independently represents a single bond, —CH 2 CH 2 —, or —CF 2 O—, and X 1 represents a trifluoromethoxy group, a fluorine atom or a chlorine atom.
  • R 1 in the general formula (I) preferably represents a linear alkyl group having 1 to 5 carbon atoms or a linear alkenyl group having 2 to 5 carbon atoms.
  • the compound of the first aspect of the compound represented by the general formula (I) is preferably a compound selected from the group of compounds represented by the general formulas (Ia) to (Id), for example.
  • R Ia1 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group or an alkoxy group having 1 to 4 carbon atoms carbon atoms 2 to 5
  • X Ia5 from X Ia1 are each independently hydrogen represents an atom or a fluorine atom, Y 1a1 represents a fluorine atom or OCF 3.
  • R Ib1 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
  • X Ib1 and X Ib2 are each independently hydrogen.
  • R Ic1 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
  • X Ic1 to X Ic6 each independently represents hydrogen.
  • R Id1 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
  • X Id1 to X Id8 are each independently hydrogen. represents an atom or a fluorine atom
  • Y Id1 represents a fluorine atom or OCF 3.
  • Specific examples of the first embodiment of the compound represented by the general formula (I) include, for example, the following general formulas (I-1.1) to (I-1.4) or (I-1. Examples thereof include, but are not limited to, compounds represented by formula (I-1.16).
  • R 1 has the same meaning as R 1 in the general formula (I).
  • the compound represented by the general formula (I) may be an n-type liquid crystal compound having a dielectric anisotropy ⁇ ⁇ 0 and a large absolute value of ⁇ .
  • Examples of the compound group corresponding to the second embodiment include, in the general formula (I), R 1 represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and A 1 , A 2 , A 3 and A 4 are each independently represented by the following formulas (the left and right of these formulas are the same as the left and right of the general formula (I)):
  • Z 1 and Z 2 each independently represents a single bond, —CH 2 CH 2 —, or —CF 2 O—
  • X 1 represents an alkyl group having 1 to 5 carbon atoms, a carbon atom Examples thereof include compounds representing an alkenyl group having 2 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or an alkenyloxy group having 2 to 5 carbon atoms.
  • R 1 in the general formula (I) preferably represents a linear alkyl group having 1 to 5 carbon atoms or a linear alkenyl group having 2 to 5 carbon atoms.
  • X 1 in the general formula (I) is a linear alkyl group having 1 to 5 carbon atoms, a linear alkenyl group having 2 to 5 carbon atoms, or a linear alkoxy group having 1 to 5 carbon atoms. Or, it preferably represents a straight-chain alkenyloxy group having 2 to 5 carbon atoms.
  • Specific examples of the second embodiment of the compound represented by the general formula (I) include, for example, compounds represented by the following general formula (I-2.1) to formula (I-2.18). However, the present invention is not limited to these.
  • R 1 represents the same meaning as R 1 in the general formula (I)
  • R 2 is an alkenyl group having 2 to 15 carbon atoms Represents an alkoxy group having 1 to 15 carbon atoms or an alkenyloxy group having 2 to 15 carbon atoms.
  • R 2 preferably represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms.
  • Examples of the compound group corresponding to the third aspect include, in the general formula (I), R 1 represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and A 1 , A 2 , A 3 and A 4 are each independently (the left and right of these formulas are the same as the left and right of the general formula (I)).
  • Z 1 and Z 2 each independently represents a single bond, —CH 2 CH 2 —, or —CF 2 O—, and X 1 is an alkyl group having 1 to 5 carbon atoms or a carbon atom Examples thereof include compounds representing alkenyl groups of 2 to 5.
  • R 1 in the general formula (I) preferably represents a linear alkyl group having 1 to 5 carbon atoms or a linear alkenyl group having 2 to 5 carbon atoms.
  • X 1 in the general formula (I) preferably represents a linear alkyl group having 1 to 5 carbon atoms or a linear alkenyl group having 2 to 5 carbon atoms.
  • R 1 represents the same meaning as R 1 in the general formula (I)
  • R 2 is an alkenyl group having 2 to 15 carbon atoms Represents an alkoxy group having 1 to 15 carbon atoms or an alkenyloxy group having 2 to 15 carbon atoms.
  • R 2 preferably represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms.
  • Compound B has a structure in which at least one —CF 2 O— in Compound A is replaced by —COO—, and may have one —COO— or two or more —COO—. It may also have both —CF 2 O— and —COO—. In the mixture, only one type of compound B may be contained, or two or more types may be contained.
  • Compound B is produced by oxidation of —CF 2 O— in Compound A to “—COO—” by contact with oxygen, moisture or the like during synthesis or purification treatment, and is present in the mixture.
  • the compound may not be produced from the compound A, but may exist originally as a compound having “—COO—”. Regardless of whether the compound B is produced from the compound A or not, if the quotient Q when the mass of the compound A is divided by the mass of the compound B satisfies the condition of 49 ⁇ Q ⁇ 49999, the present invention The effect of.
  • the degree of purification of the mixture is adjusted, and finally the value of Q is in the range of 49 ⁇ Q ⁇ 49999.
  • the degree of purification of the mixture can be adjusted by performing purification as necessary in the synthesis step of Compound A. The more purified the compound, the higher the Q value. Purification can be appropriately performed in each step of the synthesis, and examples of the purification method include chromatography, recrystallization, distillation, sublimation, reprecipitation, adsorption, liquid separation treatment, and the like.
  • liquid crystal composition When using a purification agent, silica gel, alumina, activated carbon, activated clay, celite, zeolite, mesoporous silica, carbon nanotube, carbon nanohorn, Bincho charcoal, charcoal, graphene, ion exchange resin, acidic clay, silicon dioxide, diatomaceous earth, Examples include perlite, cellulose, organic polymer, and porous gel.
  • the mixture of the present invention can be blended with other compounds and used to adjust the liquid crystal composition. That is, the liquid crystal composition of the present invention contains at least one mixture containing Compound A and Compound B in which Q is within a predetermined range.
  • the Q is within a predetermined range in at least one of the mixtures, and the Q is predetermined in the two or more kinds of mixtures. It is more preferable if it is within the range of Q, and it is more preferable if Q is within the predetermined range in all the mixtures.
  • Examples of other compounds used as the liquid crystal material include compounds represented by the following general formula (II).
  • R 3 represents a linear alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or an alkyl group having 2 to 10 carbon atoms. Represents an alkenyloxy group.
  • R 3 represents a straight-chain alkyl group having 1 to 6 carbon atoms, a straight-chain alkenyl group having 2 to 6 carbon atoms, a straight-chain alkoxy group having 1 to 6 carbon atoms, or a straight-chain alkenyloxy having 2 to 6 carbon atoms It is preferable to represent a group.
  • m represents 1, 2 or 3
  • a 5 and A 6 each independently represents (a) a trans-1,4-cyclohexylene group (one — CH2- or two or more non-adjacent —CH2- may be replaced by —O— or —S—).
  • (B) a 1,4-phenylene group (one —CH ⁇ present in the group or two or more non-adjacent —CH ⁇ may be replaced by —N ⁇ ), and (c) Naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or decahydronaphthalene-2,6-diyl group (naphthalene-2,6-diyl group or 1,2 , 3,4-tetrahydronaphthalene-2,6-diyl group, one —CH ⁇ or two or more non-adjacent —CH ⁇ may be replaced by —N ⁇ .
  • a group selected from the group consisting of: one or two or more hydrogen atoms contained in the group (a), group (b) or group (c) are each a fluorine atom, a trifluoromethyl group, It may be substituted with a fluoromethoxy group, a chlorine atom, or a cyano group.
  • m is 2 or 3 and a plurality of A 5 are present, the plurality of A 5 may be the same or different.
  • Y 1 is a hydrogen atom, a fluorine atom, a chlorine atom, a trifluoromethyl group, a trifluoromethoxy group, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, An alkoxy group having 1 to 10 carbon atoms or an alkenyloxy group having 2 to 10 carbon atoms is represented.
  • the liquid crystal composition of the present invention preferably contains a so-called nonpolar liquid crystal compound having a dielectric anisotropy of about 0 as the compound represented by the general formula (II). ) To general formula (II-i)
  • R 21 to R 38 each independently represents an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms.
  • X 21 to X 24 each represents a hydrogen atom or a fluorine atom, preferably a fluorine atom.
  • the liquid crystal composition preferably contains 1 to 10 compounds selected from the compound group represented by any one of the general formulas (II-a) to (II-i). It is particularly preferable to contain eight kinds.
  • the content of the compound selected from the compound group represented by any one of the general formulas (II-a) to (II-i) is 5 to 80% by mass with respect to 100% by mass of the entire liquid crystal composition. It is preferably 10 to 70% by weight, particularly preferably 20 to 60% by weight.
  • the compound represented by the general formula (II) is represented by the general formula (IV-a) to It is preferable to contain a compound selected from the group of compounds represented by formula (IV-f).
  • the p-type liquid crystal composition preferably contains 1 to 10 compounds represented by the general formulas (IV-a) to (IV-f), preferably 1 to 8 types. Particularly preferred.
  • the content of the compound represented by any one of the general formulas (IV-a) to (IV-f) is preferably 5 to 50% by mass based on 100% by mass of the entire liquid crystal composition. To 40% by mass.
  • the ⁇ (dielectric anisotropy) at 25 ° C. of the p-type liquid crystal composition is preferably +3.5 or more, more preferably +3.5 to +15.0.
  • the ⁇ n (refractive index anisotropy) at 25 ° C. of the p-type liquid crystal composition is preferably 0.08 to 0.14, and more preferably 0.09 to 0.13. More specifically, ⁇ N is preferably 0.10 to 0.13 when dealing with a thin cell gap, and ⁇ N is preferably 0.08 to 0.10 when dealing with a thick cell gap. .
  • the viscosity of the p-type liquid crystal composition at 20 ° C. is preferably 10 to 45 mPa ⁇ s, more preferably 10 to 25 mPa ⁇ s, and particularly preferably 10 to 20 mPa ⁇ s.
  • T NI (nematic phase-isotropic liquid phase transition temperature) of the p-type liquid crystal composition is preferably 60 ° C. to 120 ° C., more preferably 70 ° C. to 100 ° C., and particularly preferably 70 ° C. to 85 ° C. preferable.
  • the compound represented by the general formula (II) is represented by the general formula (Va) to It is preferable to contain a compound selected from the group of compounds represented by formula (Vg).
  • R 51 and R 52 each independently represents an alkyl group having 1 to 8 carbon atoms, and includes a methyl group, an ethyl group, an N-propyl group, N-butyl group or N-pentyl group is preferred. More preferably, R 51 represents an ethyl group or an N-propyl group, and R 52 represents a methyl group or an ethyl group.
  • the N-type liquid crystal composition preferably contains 1 to 10 compounds selected from the compound groups represented by the general formulas (Va) to (Vg). It is particularly preferable to contain a seed.
  • the content of the compound represented by any one of the general formulas (Va) to (Vg) is preferably 5 to 80% by mass based on 100% by mass of the entire liquid crystal composition. More preferably, it is 70% by weight, particularly preferably 20 to 60% by weight.
  • the ⁇ (dielectric anisotropy) at 25 ° C. of the n-type liquid crystal composition is preferably ⁇ 2.0 to ⁇ 6.0, more preferably ⁇ 2.0 to ⁇ 5.5.
  • ⁇ n (refractive index anisotropy) at 25 ° C. of the n-type liquid crystal composition is preferably 0.08 to 0.14, more preferably 0.09 to 0.13, and 0.09 to 0. .12 is particularly preferred. More specifically, ⁇ n is preferably 0.10 to 0.13 when dealing with a thin cell gap, and ⁇ n is preferably 0.08 to 0.10 when dealing with a thick cell gap. .
  • the viscosity of the n-type liquid crystal composition at 20 ° C. is preferably 10 to 30 mPa ⁇ s, more preferably 10 to 25 mPa ⁇ s, and particularly preferably 10 to 22 mPa ⁇ s.
  • T NI (nematic phase-isotropic liquid phase transition temperature) of the n-type liquid crystal composition is preferably 60 ° C. to 120 ° C., more preferably 70 ° C. to 100 ° C., and 70 ° C. to 85 ° C. Particularly preferred.
  • the p-type liquid crystal composition and the n-type liquid crystal composition are each an embodiment of the liquid crystal composition of the present invention, but the liquid crystal composition of the present invention is not limited thereto.
  • the liquid crystal composition of the present invention may contain a normal nematic liquid crystal, a smectic liquid crystal, a cholesteric liquid crystal, a polymerizable monomer and the like in addition to the above-described compounds.
  • the compound used in the present invention preferably has no peracid (—CO—OO—) structure in the molecule.
  • a compound having a carbonyl group when importance is attached to the reliability and long-term stability of the liquid crystal composition, it is preferable not to use a compound having a carbonyl group.
  • a compound in which a chlorine atom is substituted when importance is attached to stability by UV irradiation, it is desirable not to use a compound in which a chlorine atom is substituted.
  • the compound used in the liquid crystal composition of the present invention preferably has no carbonyl group (—COO—) in the molecule.
  • the liquid crystal composition of the present invention is polymerized in order to produce liquid crystal display elements such as a polymer stabilization (PS) mode, a polymer sustaining alignment (PSA) mode, and a lateral electric field type PSVA (polymer stabilized vertical alignment) mode.
  • the polymerizable compound that can be used include a photopolymerizable monomer that undergoes polymerization by energy rays such as light.
  • the structure has, for example, a liquid crystal skeleton in which a plurality of six-membered rings such as biphenyl derivatives and terphenyl derivatives are connected. Examples thereof include a polymerizable compound.
  • the polymerization proceeds even when no polymerization initiator is present, but may contain a polymerization initiator in order to promote the polymerization.
  • the polymerization initiator include benzoin ethers, benzophenones, acetophenones, benzyl ketals, acylphosphine oxides, and the like.
  • the liquid crystal composition containing the polymerizable compound of the present invention is provided with liquid crystal alignment ability by polymerizing the polymerizable compound contained therein by ultraviolet irradiation, and transmits light through the birefringence of the liquid crystal composition. It is used in a liquid crystal display element that controls As liquid crystal display elements, AM-LCD (active matrix liquid crystal display element), TN (twisted nematic liquid crystal display element), STN-LCD (super twisted nematic liquid crystal display element), OCB-LCD, IPS-LCD (in-plane switching liquid crystal) This is useful for display devices) and FFS (fringe field switching mode liquid crystal display devices), but is particularly useful for AM-LCDs having an active matrix address device, and can be used for transmissive or reflective liquid crystal display devices. .
  • AM-LCD active matrix liquid crystal display element
  • TN twisted nematic liquid crystal display element
  • STN-LCD super twisted nematic liquid crystal display element
  • OCB-LCD OCB
  • the two substrates of the liquid crystal cell used in the liquid crystal display element can be made of a transparent material having flexibility such as glass or plastic, and one of them can be an opaque material such as silicon.
  • a transparent substrate having a transparent electrode layer can be obtained, for example, by sputtering indium tin oxide (ITO) on a transparent substrate such as a glass plate.
  • the color filter can be prepared by, for example, a pigment dispersion method, a printing method, an electrodeposition method, or a dyeing method.
  • a method for producing a color filter by a pigment dispersion method will be described as an example.
  • a curable coloring composition for a color filter is applied on the transparent substrate, subjected to patterning treatment, and cured by heating or light irradiation. By performing this process for each of the three colors red, green, and blue, a pixel portion for a color filter can be created.
  • a pixel electrode provided with an active element such as a TFT, a thin film diode, or a metal insulator metal specific resistance element may be provided on the substrate.
  • the substrate is opposed so that the transparent electrode layer is on the inside.
  • it is preferable to adjust so that the thickness of the obtained light control layer is 1 to 100 mm. 1.5 to 10 ⁇ M is more preferable, and when a polarizing plate is used, it is preferable to adjust the product of the refractive index anisotropy ⁇ N of the liquid crystal and the cell thickness D so that the contrast is maximized.
  • the polarizing axis of each polarizing plate can be adjusted so that the viewing angle and contrast are good.
  • a retardation film for widening the viewing angle can also be used.
  • the spacer examples include columnar spacers made of glass particles, plastic particles, alumina particles, a photoresist material, and the like. Thereafter, a sealant such as an epoxy thermosetting composition is screen-printed on the substrates with a liquid crystal inlet provided, the substrates are bonded together, and heated to thermally cure the sealant.
  • a sealant such as an epoxy thermosetting composition is screen-printed on the substrates with a liquid crystal inlet provided, the substrates are bonded together, and heated to thermally cure the sealant.
  • a normal vacuum injection method or a drop injection (ODF: ONE DROP FILL) method or the like can be used.
  • ODF ONE DROP FILL
  • the vacuum injection method although a drop mark is not generated, there is a problem that a mark of injection remains, but in the present invention, it can be suitably used for a display element manufactured using the ODF method.
  • a sealant such as epoxy photothermal curing is drawn on a backplane or frontplane substrate using a dispenser in a closed-loop bank shape, and then removed.
  • a liquid crystal display element can be manufactured by bonding a front plane and a back plane after dropping a predetermined amount of the liquid crystal composition in the air.
  • the liquid crystal composition of the present invention can be preferably used because the liquid crystal composition can be stably dropped in the ODF process.
  • an appropriate polymerization rate is desirable in order to obtain good alignment performance of liquid crystals. Therefore, active energy rays such as ultraviolet rays or electron beams are irradiated singly or in combination or sequentially.
  • the method of polymerizing by is preferred.
  • ultraviolet rays When ultraviolet rays are used, a polarized light source or a non-polarized light source may be used.
  • the polymerization is performed in a state where the polymerizable compound-containing liquid crystal composition is sandwiched between two substrates, at least the substrate on the irradiation surface side must be given appropriate transparency to the active energy rays. I must.
  • the orientation state of the unpolymerized part is changed by changing conditions such as an electric field, a magnetic field, or temperature, and further irradiation with active energy rays is performed. Then, it is possible to use a means for polymerization.
  • a means for polymerization In particular, when ultraviolet exposure is performed, it is preferable to perform ultraviolet exposure while applying an alternating electric field to the polymerizable compound-containing liquid crystal composition.
  • the alternating electric field to be applied is preferably an alternating current having a frequency of 10 Hz to 10 kHz, more preferably a frequency of 60 Hz to 10 kHz, and the voltage is selected depending on a desired pretilt angle of the liquid crystal display element.
  • the pretilt angle of the liquid crystal display element can be controlled by the applied voltage.
  • the pretilt angle is preferably controlled from 80 degrees to 89.9 degrees from the viewpoint of alignment stability and contrast.
  • the temperature during irradiation is preferably within a temperature range in which the liquid crystal state of the liquid crystal composition of the present invention is maintained. Polymerization is preferably performed at a temperature close to room temperature, that is, typically at a temperature of 15 to 35 ° C.
  • a lamp for generating ultraviolet rays a metal halide lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, or the like can be used.
  • a wavelength of the ultraviolet-rays to irradiate it is preferable to irradiate the ultraviolet-ray of the wavelength range which is not the absorption wavelength range of a liquid crystal composition, and it is preferable to cut and use an ultraviolet-ray as needed.
  • Intensity of ultraviolet irradiation is preferably from 0.1mW / cm 2 ⁇ 100W / cm 2, 2mW / cm 2 ⁇ 50W / cm 2 is more preferable.
  • the amount of energy of ultraviolet rays to be irradiated can be adjusted as appropriate, but is preferably 10 mJ / cm 2 to 500 J / cm 2, and more preferably 100 mJ / cm 2 to 200 J / cm 2 .
  • the intensity may be changed.
  • the time for irradiating with ultraviolet rays is appropriately selected depending on the intensity of the irradiated ultraviolet rays, but is preferably from 10 seconds to 3600 seconds, and more preferably from 10 seconds to 600 seconds.
  • the liquid crystal display device using the liquid crystal composition of the present invention is useful for achieving both high-speed response and suppression of display failure, and is particularly useful for a liquid crystal display device for active matrix driving, including VA mode, PSVA mode, It can be applied to a liquid crystal display element for PSA mode, IPS mode, FFS mode or ECB mode.
  • % indicating the composition ratio of each component in the liquid crystal compositions of the following examples and comparative examples means “mass%”.
  • the precipitated crystals were collected by filtration and dried at 133 Pa and 40 ° C. for 5 hours.
  • the purity of the obtained compound 82g represented by the formula (1-1) was measured and found to be 99.93%, and 0.01% of the compound represented by the formula (1-2) was detected. Thus, it was found that a mixture having a Q value of about 9993 was obtained.
  • the obtained mixture has a voltage holding ratio of 94.0% (1-4)
  • the voltage holding ratio of the liquid crystal composition added 20% to the composition represented by the formula was 93.6%. Further, when the low-temperature storage stability of this composition was tested, no precipitation of crystals was observed at any temperature. Furthermore, when a liquid crystal display device using the obtained composition was produced, it showed good characteristics without causing display defects.
  • the voltage holding ratio of the liquid crystal composition obtained by adding 20% of the obtained mixture to the composition represented by the formula (1-4) having a voltage holding ratio of 94.0% was 92.4%. Further, when the low temperature storage stability of this composition was tested, precipitation of crystals was observed after one day at ⁇ 20 ° C. Furthermore, when the liquid crystal display element using the obtained composition was produced, the display defect produced and the result inferior to stability was shown.
  • the precipitated crystals were collected by filtration and dried at 133 Pa and 40 ° C. for 5 hours.
  • the purity of 60 g of the compound represented by the formula (1-1) obtained was measured and found to be 99.9585%, and 0.0015% of the compound represented by the formula (1-2) was detected. Thus, it was found that a mixture having a Q value of about 66666 was obtained.
  • the voltage holding ratio of the liquid crystal composition obtained by adding 20% of the obtained mixture to the composition represented by the formula (1-4) having a voltage holding ratio of 94.0% was 93.8%. Further, when the low-temperature storage stability of this composition was tested, no precipitation of crystals was observed at any temperature. Furthermore, when a liquid crystal display device using the obtained composition was produced, it showed good characteristics without causing display defects.
  • Example 2 Analysis of the compound represented by formula (1-1) revealed a purity of 94.90%, and 5.0% of the compound represented by formula (1-2) was contained as an impurity. It was found to be a mixture containing B. Further, the mixture contained a compound having a different number of carbon atoms in the alkyl chain in formula (1-1) as other impurities.
  • the precipitated crystals were collected by filtration and dried at 133 Pa and 40 ° C. for 5 hours.
  • the purity of 75 g of the compound represented by the formula (1-1) obtained was measured and found to be 99.9478%, and 0.0022% of the compound represented by the formula (1-2) was detected. From this, it was found that a mixture having a Q value of about 45430 was obtained.
  • the voltage holding ratio of the liquid crystal composition obtained by adding 20% of the obtained mixture to the composition represented by the formula (1-4) having a voltage holding ratio of 94.0% was 93.7%. Further, when the low-temperature storage stability of this composition was tested, no precipitation of crystals was observed at any temperature. Furthermore, when a liquid crystal display device using the obtained composition was produced, it showed good characteristics without causing display defects.
  • the precipitated crystals were collected by filtration and dried at 133 Pa and 40 ° C. for 5 hours.
  • the purity of 87 g of the compound represented by the formula (1-1) obtained was measured and found to be 98.9%, and 1.02% of the compound represented by the formula (1-2) was detected. From this, it was found that a mixture having a Q value of about 97 was obtained.
  • the voltage holding ratio of the liquid crystal composition obtained by adding 20% of the obtained mixture to the composition represented by the formula (1-4) having a voltage holding ratio of 94.0% was 93.2%. Further, when the low temperature storage stability of this composition was tested, no precipitation was observed at ⁇ 20 ° C., and crystal deposition was observed after 5 days at ⁇ 30 ° C. Furthermore, when a liquid crystal display device using the obtained composition was produced, it showed good characteristics without causing display defects.
  • the precipitated crystals were collected by filtration and dried at 133 Pa and 40 ° C. for 5 hours.
  • the purity of 84 g of the compound represented by the formula (1-1) obtained was measured and found to be 99.89%, and 0.04% of the compound represented by the formula (1-2) was detected. From this, it was found that a mixture having a Q value of about 2497 was obtained.
  • the voltage holding ratio of the liquid crystal composition obtained by adding 20% of the obtained mixture to the composition represented by the formula (1-4) having a voltage holding ratio of 94.0% was 93.4%. Further, when the low temperature storage stability of this composition was tested, no precipitation was observed at ⁇ 20 ° C., and crystal precipitation was observed after 7 days at ⁇ 30 ° C. Furthermore, when a liquid crystal display device using the obtained composition was produced, it showed good characteristics without causing display defects.
  • Example 5 In Example 1, instead of the compound represented by the formula (1-1), the following formula (1-7)
  • the precipitated crystals were collected by filtration and dried at 133 Pa and 40 ° C. for 5 hours.
  • purity of 86 g of the compound represented by the formula (1-1) was measured, it was 99.92%, and 0.009% of the compound represented by the formula (1-2) was detected. From this, it was found that a mixture having a Q value of about 11102 was obtained.
  • the voltage holding ratio of the liquid crystal composition obtained by adding 20% of the obtained mixture to the composition represented by the formula (1-4) having a voltage holding ratio of 94.0% was 93.7%. Further, when the low-temperature storage stability of this composition was tested, no precipitation of crystals was observed at any temperature. Furthermore, when a liquid crystal display device using the obtained composition was produced, it showed good characteristics without causing display defects.
  • the precipitated crystals were collected by filtration and dried at 133 Pa and 40 ° C. for 5 hours.
  • the purity of 83 g of the compound represented by the formula (1-1) thus obtained was measured and found to be 99.90%, and 0.03% of the compound represented by the formula (1-2) was detected. From this, it was found that a mixture having a Q value of about 3330 was obtained.
  • the voltage holding ratio of the liquid crystal composition obtained by adding 20% of the obtained mixture to the composition represented by the formula (1-4) having a voltage holding ratio of 94.0% was 93.5%. Further, when the low-temperature storage stability of this composition was tested, no precipitation of crystals was observed at any temperature. Furthermore, when a liquid crystal display device using the obtained composition was produced, it showed good characteristics without causing display defects.
  • the precipitated crystals were collected by filtration and dried at 133 Pa and 40 ° C. for 5 hours.
  • the purity of 83 g of the compound represented by the formula (1-1) obtained was measured and found to be 99.925%, and 0.005% of the compound represented by the formula (1-2) was detected. From this, it was found that a mixture having a Q value of about 19985 was obtained.
  • the voltage holding ratio of the liquid crystal composition obtained by adding 20% of the obtained mixture to the composition represented by the formula (1-4) having a voltage holding ratio of 94.0% was 93.6%. Further, when the low-temperature storage stability of this composition was tested, no precipitation of crystals was observed at any temperature. Furthermore, when a liquid crystal display device using the obtained composition was produced, it showed good characteristics without causing display defects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

 構造中に少なくとも1つの-CFO-を有し、且つ構造中に-COO-を有さない化合物Aと、化合物A中の少なくとも1つの-CFO-が-COO-に置き換わった構造の化合物Bを含む混合物における、UV274nmで検出した液体クロマトグラフィーでの、化合物Aのピーク面積を化合物Bのピーク面積で除した際の商Qが49≦Q≦49999である混合物である。このような混合物は、液晶組成物や表示素子に用いることができる。本発明の混合物は、より低コストかつより短時間で製造可能であり、しかも、化合物の-CFO-が-COO-に置き換わった構造の化合物をより完全に除去した高純度な化合物と比べても、遜色ない性能を有するので、非常に有用である。

Description

混合物、液晶組成物、及び液晶表示素子
 本発明は、構造中に少なくとも1つの-CFO-を有する化合物を含む混合物、該混合物を含む液晶組成物、及び該液晶組成物を含む液晶表示素子に関する。
 液晶表示素子(LCD)は、液晶テレビ、携帯電話、コンピューター、時計、電卓、広告表示板、プリンター、各種測定機器、自動車用パネル、電子手帳など、民生用途から産業用途まで広く使用されている。これらは製品寿命が数年から十数年と比較的長いため、この間正常に動作するために、これらに使用する液晶材料には高い安定性が求められる。液晶材料の代表的な安定性の指標として電圧保持率がある。液晶表示素子が正常に動作するためには、それに使用する液晶材料の電圧保持率が十分高くなければならず、また経時劣化も抑えなければならない。
 一方、液晶材料に対する要求は高速応答化や高コントラスト化など多岐に渡る。これら物性は単独の化合物では達成することができず、複数の液晶化合物を混合し、液晶組成物として誘電率異方性(Δε)、屈折率異方性(Δn)等を好適な値に設定することにより、要求に対応している。高い安定性を有する液晶材料を得るためには、それを構成する各液晶化合物も高い安定性を有している必要がある。
 液晶組成物の構成成分として連結基に-CFO-を有する化合物が知られており、当該化合物は、比較的大きな誘電率異方性Δεを有することから、有用な化合物群の一つとして実際に液晶材料中で使用されている(特許文献1参照)。しかしながら、このような化合物は、その合成・精製の過程で、連結基に-COO-を有する化合物を不純物として含有してしまい、それが液晶材料の安定性に悪影響を与えるという問題がある。そのため、液晶組成物の成分として使用する化合物としては、連結基に-COO-を有する不純物をより完全に(例えば現在用い得る最良の分析手段を用いても連結基に-COO-を有する不純物の存在が実質的に検出し得ない程度まで)、あるいは数ppm程度以下まで除去することが望ましい。したがって、通常は連結基に-COO-を有する不純物の含有量が数ppm程度以下になるまで、再結晶等の精製操作を繰り返し行うことになるが、精製操作では連結基に-CFO-を有する化合物も併せて除かれることになるため、歩留まりが悪化し、ひいてはコスト高となっていた。
国際公開第96/11897号
 本発明が解決しようとする課題は、品質を損なうことなく、より低コストで、かつより短時間で製造することが可能な混合物を提供することにある。
 本発明者は、上述した状況に鑑み、鋭意検討した結果、構造中に-CFO-を有する化合物と、該化合物の-CFO-が-COO-に置き換わった構造の化合物の割合が特定の範囲内であれば、安定性が高く、高品質で、且つ、必要以上の精製操作を省くことによる生産歩留まり向上と生産コストの抑制が可能である混合物を得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は、構造中に少なくとも1つの-CFO-を有し、且つ構造中に-COO-を有さない化合物Aと、化合物A中の少なくとも1つの-CFO-が-COO-に置き換わった構造の化合物Bを含む混合物における、化合物Aの質量を化合物Bの質量で除した際の商Qが49≦Q≦49999である混合物を提供する。
 本発明の混合物は、より低コストかつより短時間で製造可能であり、しかも、化合物の-CFO-が-COO-に置き換わった構造の化合物をより完全に除去した高純度な化合物と比べても、遜色ない性能を有するので、非常に有用である。
 本発明において「混合物」とは、構造中に少なくとも1つの-CFO-を有し、且つ構造中に-COO-を有さない化合物Aと、化合物A中の少なくとも1つの-CFO-が-COO-に置き換わった構造の化合物Bを含むものである。化合物Bは、化合物Aの合成・精製の過程で一部の-CFO-が-COO-に酸化してしまい、連結基に-COO-を有する化合物として生成されてしまうもので、化合物Aに混在する不純物として存在するものである。本発明は、このように不純物として化合物Bを含有する化合物Aを、化合物Bを含まない化合物A自体と明確に区別するために、「混合物」と称する。
 液晶材料において、不純物の存在は、液晶材料の安定性に悪影響を与えるという問題があることから、一般に、不純物をより完全に除去するために、混合物は精製工程が多数行われているが、精製工程を経ることで収率が悪くなるという問題や、精製操作の手間や生産コストが増大するという問題がある。本発明では、このように相反する問題を解決すべく、構造中に少なくとも1つの-CFO-を有し、且つ構造中に-COO-を有さない化合物Aと、化合物A中の少なくとも1つの-CFO-が-COO-に置き換わった構造の化合物Bを含む混合物において、化合物Aの質量を化合物Bの質量で除した際の商Qの値の上限値と下限値を規定した。
 前記Qの値は、混合物の安定性や品質の観点からは、より大きいことが望ましい。したがって、前記Qの値が所定の下限値以上であることを規定することにより、混合物を液晶表示素子に使用する際に必要とされる安定性や品質を高く保つことができる。一方、Qを大きくするためには再結晶等を重ねる必要があり、生産歩留まり及び生産コストの点からは望ましくない。逆に生産歩留まり及び生産コストの観点からは、Qはより小さい方が望ましいが、Qを小さくすると混合物の特性に影響が生じてしまう。したがって、本発明では、前記Qの値について、下限値の規定と共に、所定の上限値以下であることを規定することにより、必要以上の精製操作を省くことができ、これにより、生産歩留まり向上と生産コストの抑制が可能になる。すなわち、本発明では、Qの値を適切な上限値と下限値の範囲内に規定することにより、安定性が高く、高品質な混合物を得られ、且つ、必要以上の精製操作を省くことによる生産歩留まり向上と生産コストの抑制という両立が可能である。
 Qの値の下限値は、49であればよいが、混合物の安定性の観点からは、その下限値は 49以上が好ましく、99以上がより好ましく、149以上がより好ましく、199以上がより好ましく、249以上がより好ましく、299以上がより好ましく、349以上がより好ましく、399以上がより好ましく、449以上がより好ましく、499以上がより好ましく、999がより好ましく、1499がより好ましく、1999がより好ましく、2499がより好ましく、2999がより好ましく、3199がより好ましく、3299がより好ましい。また、Qの値の上限値は、49999であればよいが、生産歩留まり向上と生産コストの抑制の観点からは、その上限値は39999がより好ましく、29999がより好ましく、19999がより好ましく、19999がより好ましく、14999がより好ましく、9999がより好ましく、8999がより好ましく、7999がより好ましく、6999がより好ましく、5999がより好ましく、4999がより好ましく、3999がより好ましく、2999がより好ましく、1999がより好ましく、1499がより好ましい。
 さらに、高い安定性及び品質と、生産歩留まり及び生産コストとのバランスという観点から、99≦Q≦39999が好ましく、499≦Q≦29999がより好ましく、2999≦Q≦24999が更に好ましく、3299≦Q≦19999が特に好ましい。
 前記Qの値は、公知の分析手段を用いて測定・算出することができ、例えば液体クロマトグラフィーなどにより化合物Aと化合物Bの存在率を測定し、Qを算出することが可能である。具体的には、検出光UV274nmの条件で検出した液体クロマトグラフィーでの、化合物Aのピーク面積を化合物Bのピーク面積で除した際の商の値により、Qを算出する。
 (化合物A)
 化合物Aは、構造中に-CFO-を1つ有してもよく、-CFO-を2つ以上有していてもよい。混合物中には、化合物Aが1種のみ含まれても良く、2種以上含まれても良い。
 本発明の化合物Aは、下記一般式(I)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
(一般式(I)中、Rは炭素原子数1~15のアルキル基、炭素原子数2~15のアルケニル基、炭素原子数1~15のアルコキシ基又は炭素原子数2~15のアルケニルオキシ基を表し、
 aは0、1又は2を表し、bは0、1、又は2を表すが、0≦a+b≦3であり、
 A、A、A、及びAはそれぞれ独立的に
(a) トランス-1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-又は-S-に置き換えられてもよい。)、
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)及び
(c) ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられても良い。)
からなる群より選ばれる基を表すが、上記の基(a)、基(b)又は基(c)に含まれる水素原子はそれぞれ独立してフッ素原子、トリフルオロメチル基、トリフルオロメトキシ基、塩素原子、又はシアノ基で置換されていても良く、aが2を表しAが複数存在する場合、複数存在するAは同一であっても異なっていても良く、bが2を表しAが複数存在する場合、複数存在するAは同一であっても異なっていても良く、
 Z及びZはそれぞれ独立的に単結合、-CHCH-、-CH=CH-、-C≡C-、-CHO-、-OCH-、-CFO-又は-OCF-を表すが、Aが2を表しZが複数存在する場合、複数存在するZは同一であっても異なっていても良く、Bが2を表しZが複数存在する場合、複数存在するZは同一であっても異なっていても良く、
 Xはフルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基、フッ素原子、塩素原子、炭素原子数1~15のアルキル基、炭素原子数2~15のアルケニル基、炭素原子数1~15のアルコキシ基又は炭素原子数2~15のアルケニルオキシ基を表す。)
 一般式(I)中、Rは、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数2~8のアルケニル基又は炭素原子数2~8のアルケニルオキシ基が好ましく、炭素原子数1~5のアルキル基、炭素原子数1~5のアルコキシ基、炭素原子数2~5のアルケニル基又は炭素原子数2~5のアルケニルオキシ基が好ましく、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が更に好ましく、炭素原子数2~5のアルキル基又は炭素原子数2~3のアルケニル基が更に好ましく、炭素原子数3のアルケニル基(プロペニル基)が特に好ましい。
 信頼性を重視する場合にはRはアルキル基であることが好ましく、粘性の低下を重視する場合にはアルケニル基であることが好ましい。
 また、それが結合する環構造がフェニル基(芳香族)である場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び炭素原子数4~5のアルケニル基が好ましく、それが結合する環構造がシクロヘキサン、ピラン及びジオキサンなどの飽和した環構造の場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。ネマチック相を安定化させるためには炭素原子及び存在する場合酸素原子の合計が5以下であることが好ましく、直鎖状であることが好ましい。
 アルケニル基としては、式(R1)から式(R5)のいずれかで表される基から選ばれることが好ましい。(各式中の黒点は環構造中の炭素原子を表す。)
Figure JPOXMLDOC01-appb-C000006
 A、A、A及びAはそれぞれ独立してΔNを大きくすることが求められる場合には芳香族であることが好ましく、応答速度を改善するためには脂肪族であることが好ましく、トランス-1,4-シクロへキシレン基、1,4-フェニレン基、2-フルオロ-1,4-フェニレン基、3-フルオロ-1,4-フェニレン基、3,5-ジフルオロ-1,4-フェニレン基、2,3-ジフルオロ-1,4-フェニレン基、1,4-シクロヘキセニレン基、1,4-ビシクロ[2.2.2]オクチレン基、ピペリジン-1,4-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基を表すことが好ましく、下記の構造を表すことがより好ましく、
Figure JPOXMLDOC01-appb-C000007
下記の構造を表すことがより好ましい。
Figure JPOXMLDOC01-appb-C000008
 Z及びZはそれぞれ独立して-CHO-、-CFO-、-CHCH-、-CFCF-又は単結合を表すことが好ましく、-CFO-、-CHCH-又は単結合が更に好ましく、単結合が特に好ましい。
 A+Bは0、1又は2が好ましい。
 <一般式(I)で表される化合物の第1態様>
 前記一般式(I)で表される化合物は、誘電率異方性Δε>0で、Δεの絶対値が大きいp型液晶化合物であることが好ましい。
 この第1態様に該当する化合物群としては、例えば、前記一般式(I)において、Rが炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基を表し、A、A、A及びAがそれぞれ独立的に下記式(これらの式の左右は、一般式(I)の左右と同じである。)
Figure JPOXMLDOC01-appb-C000009
のいずれかを表し、Z及びZがそれぞれ独立的に単結合、-CHCH-、又は-CFO-を表し、Xがトリフルオロメトキシ基、フッ素原子又は塩素原子を表す化合物が挙げられる。
 第1態様において、前記一般式(I)のRが炭素原子数1~5の直鎖アルキル基又は炭素原子数2~5の直鎖アルケニル基を表すことが好ましい。
 前記一般式(I)で表される化合物の第1態様の化合物は、例えば一般式(Ia)~(Id)で表される化合物群から選ばれる化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
(式中、RIa1は炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基又は炭素原子数1~4のアルコキシ基を表し、XIa1からXIa5はそれぞれ独立して水素原子又はフッ素原子を表し、Y1a1はフッ素原子又はOCFを表す。)
Figure JPOXMLDOC01-appb-C000011
(式中、RIb1は炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基又は炭素原子数1~4のアルコキシ基を表し、XIb1及びXIb2はそれぞれ独立して水素原子又はフッ素原子を表し、YIb1はフッ素原子、塩素原子又はOCFを表す。)
Figure JPOXMLDOC01-appb-C000012
(式中、RIc1は炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基又は炭素原子数1~4のアルコキシ基を表し、XIc1からXIc6はそれぞれ独立して水素原子又はフッ素原子を表し、YIc1はフッ素原子、塩素原子又はOCFを表す。)
Figure JPOXMLDOC01-appb-C000013
(式中、RId1は炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基又は炭素原子数1~4のアルコキシ基を表し、XId1からXId8はそれぞれ独立して水素原子又はフッ素原子を表し、YId1はフッ素原子又はOCFを表す。)
 前記一般式(I)で表される化合物の第1態様の具体例としては、例えば、下記の一般式(I-1.1)から式(I-1.4)又は式(I-1.11)から式(I-1.16)で表される化合物が挙げられるが、特にこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
一般式(I-1.1)から式(I-1.10)中、Rは一般式(I)中のRと同じ意味を表す。
<一般式(I)で表される化合物の第2態様>
 前記一般式(I)で表される化合物は、誘電率異方性Δε<0で、Δεの絶対値が大きいn型液晶化合物であってもよい。
 この第2態様に該当する化合物群としては、例えば、前記一般式(I)において、Rが炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基を表し、A、A、A及びAがそれぞれ独立的に下記式(これらの式の左右は、一般式(I)の左右と同じである。)
Figure JPOXMLDOC01-appb-C000016
のいずれかを表し、Z及びZがそれぞれ独立的に単結合、-CHCH-、又は-CFO-を表し、Xが炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基、炭素原子数1~5のアルコキシ基又は炭素原子数2~5のアルケニルオキシ基を表す化合物が挙げられる。
 第2態様において、前記一般式(I)のRが炭素原子数1~5の直鎖アルキル基又は炭素原子数2~5の直鎖アルケニル基を表すことが好ましい。
 第2態様において、前記一般式(I)のXが炭素原子数1~5の直鎖アルキル基、炭素原子数2~5の直鎖アルケニル基、炭素原子数1~5の直鎖アルコキシ基又は炭素原子数2~5の直鎖アルケニルオキシ基を表すことが好ましい。
 前記一般式(I)で表される化合物の第2態様の具体例としては、例えば、下記の一般式(I-2.1)から式(I-2.18)で表される化合物が挙げられるが、特にこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 一般式(I-2.1)から式(I-2.18)中、Rは一般式(I)中のRと同じ意味を表し、Rが炭素原子数2~15のアルケニル基、炭素原子数1~15のアルコキシ基又は炭素原子数2~15のアルケニルオキシ基を表す。Rは、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基を表すことが好ましい。
<一般式(I)で表される化合物の第3態様>
 前記一般式(I)で表される化合物は、誘電率異方性Δεの絶対値が比較的小さいノン・ポーラーの液晶化合物であってもよい。
 この第3態様に該当する化合物群としては、例えば、前記一般式(I)において、Rが炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基を表し、A、A、A及びAがそれぞれ独立的に(これらの式の左右は、一般式(I)の左右と同じである。)
Figure JPOXMLDOC01-appb-C000020
のいずれかを表し、Z及びZがそれぞれ独立的に単結合、-CHCH-、又は-CFO-を表し、Xが炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基を表す化合物が挙げられる。
 第3態様において、前記一般式(I)のRが炭素原子数1~5の直鎖アルキル基又は炭素原子数2~5の直鎖アルケニル基を表すことが好ましい。
 第3態様において、前記一般式(I)のXが炭素原子数1~5の直鎖アルキル基又は炭素原子数2~5の直鎖アルケニル基を表すことが好ましい。
 前記一般式(I)で表される化合物の第3態様の具体例としては、例えば、下記の一般式(I-3.1)から式(I-3.8)で表される化合物が挙げられるが、特にこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000021
 一般式(I-3.1)から式(I-3.8)中、Rは一般式(I)中のRと同じ意味を表し、Rが炭素原子数2~15のアルケニル基、炭素原子数1~15のアルコキシ基又は炭素原子数2~15のアルケニルオキシ基を表す。Rは、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基を表すことが好ましい。
(化合物B)
 化合物Bは、化合物A中の少なくとも1つの-CFO-が-COO-に置き換わった構造であり、-COO-を1つ有していてもよく、-COO-を2つ以上有していてもよく、また、-CFO-と-COO-の両方を有していてもよい。混合物中には、化合物Bが1種のみ含まれても良く、2種以上含まれても良い。
 化合物Bは、化合物A中の-CFO-が、合成や精製処理中に酸素や水分等と接触することによって「-COO-」に酸化されることにより生成されて、混合物中に存在するものであってもよいし、また、化合物Aから生成されるものではなく、「-COO-」を有する化合物としてもとから存在しているものであってもよい。化合物Bは、化合物Aから生成されたものであるか否かにかかわらず、化合物Aの質量を化合物Bの質量で除した際の商Qが49≦Q≦49999の条件を満たせば、本願発明の効果を得られる。
 Qの値が上記範囲内である混合物を得るためには、混合物の精製度合を調節し、最終的に、Qの値が49≦Q≦49999の範囲内とする。混合物の精製度合は、化合物Aの合成工程において必要に応じて精製を行うことにより調節することができる。より精製した化合物ほど、Qの値が大きくなる。精製は、合成の各工程において適宜行うことができ、精製方法としてはクロマトグラフィー、再結晶、蒸留、昇華、再沈殿、吸着、分液処理等が挙げられる。精製剤を用いる場合、精製剤としてシリカゲル、アルミナ、活性炭、活性白土、セライト、ゼオライト、メソポーラスシリカ、カーボンナノチューブ、カーボンナノホーン、備長炭、木炭、グラフェン、イオン交換樹脂、酸性白土、二酸化ケイ素、珪藻土、パーライト、セルロース、有機ポリマー、多孔質ゲル等が挙げられる。
(液晶組成物)
 本発明の混合物は、他の化合物と配合して液晶組成物の調整に用いることができる。すなわち、本発明の液晶組成物は、前記Qが所定の範囲内である化合物A及び化合物Bを含む混合物を、少なくとも1種含む。
 該液晶組成物が、化合物A及び化合物Bを含む混合物を2種以上含む場合、そのうち少なくとも1種の混合物において前記Qが所定の範囲内であればよく、2種以上の混合物において前記Qが所定の範囲内であればより好ましく、すべての混合物において前記Qが所定の範囲内であれば更に好ましい。
 液晶材料として用いる他の化合物としては、例えば下記一般式(II)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000022
 前記一般式(II)中、Rは炭素原子数1~10の直鎖アルキル基、炭素原子数2~10のアルケニル基、炭素原子数1~10のアルコキシ基又は炭素原子数2~10のアルケニルオキシ基を表す。Rは炭素原子数1~6の直鎖アルキル基、炭素原子数2~6の直鎖アルケニル基、炭素原子数1~6の直鎖アルコキシ基又は炭素原子数2~6の直鎖アルケニルオキシ基を表すことが好ましい。
 前記一般式(II)中、mは1、2又は3を表し、A及びAはそれぞれ独立に
(a) トランス-1,4-シクロヘキシレン基(この基中に存在する1個の-CH2-又は隣接していない2個以上の-CH2-は-O-又は-S-に置き換えられてもよい。)、
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい)、及び
(c) ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられても良い。)
からなる群より選ばれる基を表すが、上記の基(a)、基(b)又は基(c)に含まれる1つ又は2つ以上の水素原子はそれぞれフッ素原子、トリフルオロメチル基、トリフルオロメトキシ基、塩素原子、又はシアノ基で置換されていても良く、mが2又は3を表しAが複数存在する場合、複数存在するAは同一であっても異なっていても良い。
 前記一般式(II)中、Zは単結合、-CHCH-、-CH=CH-、-C≡C-、-CHO-、-OCH-、-CFO-又は-OCF-を表すが、mが2又は3を表しZが複数存在する場合、複数存在するZは同一であっても異なっていても良い。
 前記一般式(II)中、Yは水素原子、フッ素原子、塩素原子、トリフルオロメチル基、トリフルオロメトキシ基、炭素原子数1~10のアルキル基、炭素原子数2~10のアルケニル基、炭素原子数1~10のアルコキシ基又は炭素原子数2~10のアルケニルオキシ基を表す。
 本発明の液晶組成物は、一般式(II)で表される化合物として誘電率異方性が0程度である、いわゆる非極性液晶化合物を含有することが好ましく、中でも、一般式(II-a)から一般式(II-i)
Figure JPOXMLDOC01-appb-C000023
のいずれかで表される化合物群から選択される1種又は2種以上の化合物を含有することが好ましい。前記一般式(II-a)から一般式(II-i)中、R21~R38はそれぞれ独立して炭素原子数1から10のアルキル基又は炭素原子数2から10のアルケニル基を表す。X21~X24は水素原子又はフッ素原子を表すが、フッ素原子であることが好ましい。
 液晶組成物は、前記一般式(II-a)から一般式(II-i)のいずれかで表される化合物群から選択される化合物を1種~10種含有することが好ましく、1種~8種含有することが特に好ましい。液晶組成物全体を100質量%として、一般式(II-a)から一般式(II-i)のいずれかで表される化合物群から選択される化合物の含有量は、5から80質量%であることが好ましく、10から70質量%であることが好ましく、20から60質量%であることが特に好ましい。
 本発明の液晶組成物は、誘電率異方性の値が正のいわゆるp型液晶組成物である場合には、一般式(II)で表される化合物として、一般式(IV-a)~一般式(IV-f)で表される化合物群から選ばれる化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000024
(式中、R41は炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数2~10のアルケニル基又は炭素原子数2~10のアルケニルオキシ基を表し、X41~X48は互いに独立して水素原子又はフッ素原子を表し、Y41はフッ素原子、トリフルオロメトキシ基又はトリフルオロメチル基を表す。)
 前記p型液晶組成物は、前記一般式(IV-a)~一般式(IV-f)で表される化合物を1種~10種含有することが好ましく、1種~8種含有することが特に好ましい。液晶組成物全体を100質量%として、前記一般式(IV-a)から一般式(IV-f)のいずれかで表される化合物の含有量は5から50質量%であることが好ましく、10から40質量%であることが好ましい。
 前記p型液晶組成物の25℃におけるΔε(誘電率異方性)は、+3.5以上であることが好ましく、+3.5から+15.0がより好ましい。
 前記p型液晶組成物の25℃におけるΔn(屈折率異方性)は、0.08から0.14であることが好ましく、0.09から0.13がより好ましい。更に詳述すると、薄いセルギャップに対応する場合はΔNが0.10から0.13であることが好ましく、厚いセルギャップに対応する場合はΔNが0.08から0.10であることが好ましい。
 前記p型液晶組成物の20℃における粘度は、10から45mPa・sであることが好ましく、10から25mPa・sであることがより好ましく、10から20mPa・sであることが特に好ましい。
 前記p型液晶組成物のTNI(ネマチック相-等方性液体相転移温度)は、60℃から120℃であることが好ましく、70℃から100℃がより好ましく、70℃から85℃が特に好ましい。
 本発明の液晶組成物は、誘電率異方性の値が負のいわゆるn型液晶組成物である場合には、一般式(II)で表される化合物として、一般式(V-a)~一般式(V-g)で表される化合物群から選ばれる化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000025
 前記一般式(V-a)から(V-g)中、R51及びR52はそれぞれ独立して、炭素原子数1~8のアルキル基を表し、メチル基、エチル基、N-プロピル基、N-ブチル基又はN-ペンチル基が好ましい。R51はエチル基又はN-プロピル基を表し、R52はメチル基又はエチル基を表すことがより好ましい。
 前記N型液晶組成物は、前記一般式(V-a)から一般式(V-g)で表される化合物群から選ばれる化合物を1種~10種含有することが好ましく、1種~8種含有することが特に好ましい。液晶組成物全体を100質量%として、一般式(V-a)から一般式(V-g)のいずれかで表される化合物の含有量は5から80質量%であることが好ましく、10から70質量%であることが更に好ましく、20から60質量%であることが特に好ましい。
 前記n型の液晶組成物の25℃におけるΔε(誘電率異方性)は、-2.0から-6.0であることが好ましく、-2.0から-5.5がより好ましい。
 前記n型の液晶組成物の25℃におけるΔn(屈折率異方性)は、0.08から0.14であることが好ましく、0.09から0.13がより好ましく、0.09から0.12が特に好ましい。更に詳述すると、薄いセルギャップに対応する場合はΔnが0.10から0.13であることが好ましく、厚いセルギャップに対応する場合はΔnが0.08から0.10であることが好ましい。
 前記n型の液晶組成物の20℃における粘度は、10から30mPa・sであることが好ましく、10から25mPa・sであることがより好ましく、10から22mPa・sであることが特に好ましい。
 前記n型の液晶組成物のTNI(ネマチック相-等方性液体相転移温度)は、60℃から120℃であることが好ましく、70℃から100℃がより好ましく、70℃から85℃が特に好ましい。
 前記p型液晶組成物及び前記n型液晶組成物は、それぞれ本発明の液晶組成物の一実施態様であるが、本発明の液晶組成物は、これらに限定されるものではない。
 本発明の液晶組成物は、上述の化合物以外に、通常のネマチック液晶、スメクチック液晶、コレステリック液晶、重合性モノマーなどを含有してもよい。
 本発明に使用する化合物は、分子内に過酸(-CO-OO-)構造を持たないことが好ましい。また、液晶組成物の信頼性及び長期安定性を重視する場合にはカルボニル基を有する化合物を使用しないことが好ましい。また、UV照射による安定性を重視する場合、塩素原子が置換している化合物を使用しないことが望ましい。また、本発明の液晶組成物に使用する化合物は、分子内にカルボニル基(-COO-)を有さないことが好ましい。
 本発明の液晶組成物には、ポリマー安定化(PS)モード、ポリマー維持配向(PSA)モード、横電界型PSVA(高分子安定化垂直配向)モードなどの液晶表示素子を作製するために、重合性化合物を含有することができる。使用できる重合性化合物として、光などのエネルギー線により重合が進行する光重合性モノマーなどが挙げられ、構造として、例えば、ビフェニル誘導体、ターフェニル誘導体などの六員環が複数連結した液晶骨格を有する重合性化合物などが挙げられる。
 本発明の液晶組成物にモノマーを添加する場合において、重合開始剤が存在しない場合でも重合は進行するが、重合を促進するために重合開始剤を含有していてもよい。重合開始剤としては、ベンゾインエーテル類、ベンゾフェノン類、アセトフェノン類、ベンジルケタール類、アシルフォスフィンオキサイド類等が挙げられる。
 本発明の重合性化合物を含有した液晶組成物は、これに含まれる重合性化合物が紫外線照射により重合することで液晶配向能が付与され、液晶組成物の複屈折を利用して光の透過光量を制御する液晶表示素子に使用される。液晶表示素子として、AM-LCD(アクティブマトリックス液晶表示素子)、TN(ツイステッド・ネマチック液晶表示素子)、STN-LCD(超ねじれネマチック液晶表示素子)、OCB-LCD、IPS-LCD(インプレーンスイッチング液晶表示素子)及びFFS(フリンジフィールドスイッチングモードの液晶表示素子)に有用であるが、アクティブマトリクスアドレス装置を有するAM-LCDに特に有用であり、透過型あるいは反射型の液晶表示素子に用いることができる。
 液晶表示素子に使用される液晶セルの2枚の基板はガラス又はプラスチックの如き柔軟性をもつ透明な材料を用いることができ、一方はシリコン等の不透明な材料でも良い。透明電極層を有する透明基板は、例えば、ガラス板等の透明基板上にインジウムスズオキシド(ITO)をスパッタリングすることにより得ることができる。
 カラーフィルターは、例えば、顔料分散法、印刷法、電着法又は、染色法等によって作成することができる。顔料分散法によるカラーフィルターの作成方法を一例に説明すると、カラーフィルター用の硬化性着色組成物を、該透明基板上に塗布し、パターニング処理を施し、そして加熱又は光照射により硬化させる。この工程を、赤、緑、青の3色についてそれぞれ行うことで、カラーフィルター用の画素部を作成することができる。その他、該基板上に、TFT、薄膜ダイオード、金属絶縁体金属比抵抗素子等の能動素子を設けた画素電極を設置してもよい。
 前記基板を、透明電極層が内側となるように対向させる。その際、スペーサーを介して、基板の間隔を調整してもよい。このときは、得られる調光層の厚さが1~100ΜMとなるように調整するのが好ましい。1.5から10ΜMが更に好ましく、偏光板を使用する場合は、コントラストが最大になるように液晶の屈折率異方性ΔNとセル厚Dとの積を調整することが好ましい。又、二枚の偏光板がある場合は、各偏光板の偏光軸を調整して視野角やコントラストが良好になるように調整することもできる。更に、視野角を広げるための位相差フィルムも使用することもできる。スペーサーとしては、例えば、ガラス粒子、プラスチック粒子、アルミナ粒子、フォトレジスト材料などからなる柱状スペーサー等が挙げられる。その後、エポキシ系熱硬化性組成物等のシール剤を、液晶注入口を設けた形で該基板にスクリーン印刷し、該基板同士を貼り合わせ、加熱しシール剤を熱硬化させる。
 2枚の基板間に重合性化合物含有液晶組成物を狭持させる方法は、通常の真空注入法又は滴下注入(ODF:ONE DROP FILL)法などを用いることができる。真空注入法においては滴下痕が発生しないものの、注入の跡が残る課題を有しているものであるが、本発明においては、ODF法を用いて製造する表示素子により好適に使用することができる。ODF法の液晶表示素子製造工程においては、バックプレーンまたはフロントプレーンのどちらか一方の基板にエポキシ系光熱併用硬化性などのシール剤を、ディスペンサーを用いて閉ループ土手状に描画し、その中に脱気下で所定量の液晶組成物を滴下後、フロントプレーンとバックプレーンを接合することによって液晶表示素子を製造することができる。本発明の液晶組成物は、ODF工程における液晶組成物の滴下が安定的に行えるため、好適に使用することができる。
 重合性化合物を重合させる方法としては、液晶の良好な配向性能を得るためには、適度な重合速度が望ましいので、紫外線又は電子線等の活性エネルギー線を単一又は併用又は順番に照射することによって重合させる方法が好ましい。紫外線を使用する場合、偏光光源を用いても良いし、非偏光光源を用いても良い。また、重合性化合物含有液晶組成物を2枚の基板間に挟持させて状態で重合を行う場合には、少なくとも照射面側の基板は活性エネルギー線に対して適当な透明性が与えられていなければならない。また、光照射時にマスクを用いて特定の部分のみを重合させた後、電場や磁場又は温度等の条件を変化させることにより、未重合部分の配向状態を変化させて、更に活性エネルギー線を照射して重合させるという手段を用いても良い。特に紫外線露光する際には、重合性化合物含有液晶組成物に交流電界を印加しながら紫外線露光することが好ましい。印加する交流電界は、周波数10Hzから10kHzの交流が好ましく、周波数60Hzから10kHzがより好ましく、電圧は液晶表示素子の所望のプレチルト角に依存して選ばれる。つまり、印加する電圧により液晶表示素子のプレチルト角を制御することができる。横電界型MVAモードの液晶表示素子においては、配向安定性及びコントラストの観点からプレチルト角を80度から89.9度に制御することが好ましい。
 照射時の温度は、本発明の液晶組成物の液晶状態が保持される温度範囲内であることが好ましい。室温に近い温度、即ち、典型的には15~35℃での温度で重合させることが好ましい。紫外線を発生させるランプとしては、メタルハライドランプ、高圧水銀ランプ、超高圧水銀ランプ等を用いることができる。また、照射する紫外線の波長としては、液晶組成物の吸収波長域でない波長領域の紫外線を照射することが好ましく、必要に応じて、紫外線をカットして使用することが好ましい。照射する紫外線の強度は、0.1mW/cm~100W/cmが好ましく、2mW/cm~50W/cmがより好ましい。照射する紫外線のエネルギー量は、適宜調整することができるが、10mJ/cmから500J/cmが好ましく、100mJ/cmから200J/cmがより好ましい。紫外線を照射する際に、強度を変化させても良い。紫外線を照射する時間は照射する紫外線強度により適宜選択されるが、10秒から3600秒が好ましく、10秒から600秒がより好ましい。
 本発明の液晶組成物を用いた液晶表示素子は高速応答と表示不良の抑制を両立させた有用なものであり、特に、アクティブマトリックス駆動用液晶表示素子に有用であり、VAモード、PSVAモード、PSAモード、IPSモード、FFSモード又はECBモード用液晶表示素子に適用できる。
 以下に実施例を挙げて本発明を更に詳述するが、本発明はこれらの実施例に限定されるものではない。
 また、以下の実施例及び比較例の液晶組成物における各構成成分の組成比を示す「%」は『質量%』を意味する。
 実施例および比較例中、化合物A及び化合物Bの分析、及びQを算出するに当っては、GLサイエンス社製カラムInertsil ODS-3を用いた液体クロマトグラフィー(HPLC;移動相:アセトニトリル、流量:0.5mL/min、サンプル濃度:0.06重量%、検出器:UV210nm)を用い、各異性体のピーク面積の比のデータを使用した。
液晶組成物の電圧保持率は、サンプルを150℃で1時間加熱した後、周波数60Hz,印加電圧1Vの条件下で60℃における電圧保持率(%)を測定して得た。
 液晶組成物の低温保存性は、サンプルをガラス瓶に入れて密閉し、-20℃及び-30℃でそれぞれ一週間保存し、1日ごとに析出の有無を目視で確認した。
<実施例1>
 下記式(1-1)
Figure JPOXMLDOC01-appb-C000026
で表される化合物を分析したところ純度94.90%であり、不純物として式(1-2)
Figure JPOXMLDOC01-appb-C000027
で表される化合物が5.0%含まれており、化合物A及び化合物Bを含む混合物であることがわかった。また、混合物中には、他の不純物として式(1-1)においてアルキル鎖の炭素数が異なる化合物等が含まれていた。
 この式(1-1)及び式(1-2)で表される化合物を含む混合物100gを、アセトン300mlを用いて3回再結晶した後減圧乾燥し、ヘキサン300mlに溶解した。カラムクロマトグラフィー(精製剤としてシリカゲル30gを充填)を準備し、先に調製した溶液をカラムクロマト管に注ぎ、溶液表面が精製剤層の上面(充填剤層)と一致するまで流した。更に展開溶媒としてヘキサン200mlを加え、精製剤(充填剤)に吸着している化合物を溶出させた。得られた溶液を-10℃で3時間撹拌し、結晶を晶析させた。析出した結晶をろ取し、133Pa、40℃で5時間乾燥した。得られた式(1-1)で表される化合物82gの純度を測定したところ、99.93%であり、式(1-2)で表される化合物は0.01%検出された。これより、Qの値が、約9993である混合物を得たことがわかった。
 また、得られた混合物を電圧保持率が94.0%である式(1-4)
Figure JPOXMLDOC01-appb-C000028
で表される組成物に20%添加した液晶組成物の電圧保持率は93.6%であった。また、この組成物の低温保存性を試験したところ、いずれの温度でも結晶の析出は見られなかった。さらに、得られた組成物を使用した液晶表示素子を作製したところ、表示不良を起こさず良好な特性を示した。
 以上の結果から、本精製法により高収率で実用に十分な高い電圧保持率を有する式(1-1)で表される化合物を含有する混合物が得られることがわかった。
<比較例1>
 式(1-1)で表される化合物を分析したところ純度94.90%であり、不純物として式(1-2)で表される化合物が5.0%含まれており、化合物A及び化合物Bを含む混合物であることがわかった。また、混合物中には、他の不純物として式(1-1)においてアルキル鎖の炭素数が異なる化合物等が含まれていた。
 この式(1-1)及び式(1-2)で表される化合物を含む混合物100gをヘキサン300mlに溶解した。カラムクロマトグラフィー(精製剤としてシリカゲル30gを充填)を準備し、先に調製した溶液をカラムクロマト管に注ぎ、溶液表面が精製剤層の上面(充填剤層)と一致するまで流した。更に展開溶媒としてヘキサン200mlを加え、精製剤(充填剤)に吸着している化合物を溶出させた。得られた溶液を-10℃で3時間撹拌し、結晶を晶析させた。析出した結晶をろ取し、133Pa、40℃で5時間乾燥した。得られた式(1-1)で表される化合物90gの純度を測定したところ、97.2%であり、式(1-2)で表される化合物は2.9%検出された。これより、Qの値が、約34である混合物を得たことがわかった。
 また、得られた混合物を電圧保持率が94.0%である式(1-4)で表される組成物に20%添加した液晶組成物の電圧保持率は92.4%であった。また、この組成物の低温保存性を試験したところ、-20℃で一日後には結晶の析出が見られた。さらに、得られた組成物を使用した液晶表示素子を作製したところ、表示不良が生じて安定性に劣る結果を示した。
 この結果より、本比較例の精製方法では、収率は実施例1と比べてやや高い程度であるにもかかわらず、得られる式(1-1)で表される化合物を含む混合物の電圧保持率は実施例1と比べて大幅に低下してしまい、また低温保存性にも問題がある結果となった。
<比較例2>
 式(1-1)で表される化合物を分析したところ純度94.90%であり、不純物として式(1-2)で表される化合物が5.0%含まれており、化合物A及び化合物Bを含む混合物であることがわかった。また、混合物中には、他の不純物として式(1-1)においてアルキル鎖の炭素数が異なる化合物等が含まれていた。
 この式(1-1)及び式(1-2)で表される化合物を含む混合物100gを、アセトン300mlを用いて6回再結晶した後減圧乾燥し、ヘキサン300mlに溶解した。カラムクロマトグラフィー(精製剤としてシリカゲル30gを充填)を準備し、先に調製した溶液をカラムクロマト管に注ぎ、溶液表面が精製剤層の上面(充填剤層)と一致するまで流した。更に展開溶媒としてヘキサン200mlを加え、精製剤(充填剤)に吸着している化合物を溶出させた。得られた溶液を-10℃で3時間撹拌し、結晶を晶析させた。析出した結晶をろ取し、133Pa、40℃で5時間乾燥した。得られた式(1-1)で表される化合物60gの純度を測定したところ、99.9585%であり、式(1-2)で表される化合物は0.0015%検出された。これより、Qの値が、約66639である混合物を得たことがわかった。
 また、得られた混合物を電圧保持率が94.0%である式(1-4)で表される組成物に20%添加した液晶組成物の電圧保持率は93.8%であった。また、この組成物の低温保存性を試験したところ、いずれの温度でも結晶の析出は見られなかった。さらに、得られた組成物を使用した液晶表示素子を作製したところ、表示不良を起こさず良好な特性を示した。
 この結果より、本比較例の精製方法では、得られる式(1-1)で表される化合物の電圧保持率は実施例1と同等程度であるにもかかわらず、収率が大幅に低下してしまった。
<実施例2>
 式(1-1)で表される化合物を分析したところ純度94.90%であり、不純物として式(1-2)で表される化合物が5.0%含まれており、化合物A及び化合物Bを含む混合物であることがわかった。また、混合物中には、他の不純物として式(1-1)においてアルキル鎖の炭素数が異なる化合物等が含まれていた。
 この式(1-1)及び式(1-2)で表される化合物を含む混合物100gを、アセトン300mlを用いて4回再結晶した後減圧乾燥し、ヘキサン300mlに溶解した。カラムクロマトグラフィー(精製剤としてシリカゲル30gを充填)を準備し、先に調製した溶液をカラムクロマト管に注ぎ、溶液表面が精製剤層の上面(充填剤層)と一致するまで流した。更に展開溶媒としてヘキサン200mlを加え、精製剤(充填剤)に吸着している化合物を溶出させた。得られた溶液を-10℃で3時間撹拌し、結晶を晶析させた。析出した結晶をろ取し、133Pa、40℃で5時間乾燥した。得られた式(1-1)で表される化合物75gの純度を測定したところ、99.9478%であり、式(1-2)で表される化合物は0.0022%検出された。これより、Qの値が、約45430である混合物を得たことがわかった。
 また、得られた混合物を電圧保持率が94.0%である式(1-4)で表される組成物に20%添加した液晶組成物の電圧保持率は93.7%であった。また、この組成物の低温保存性を試験したところ、いずれの温度でも結晶の析出は見られなかった。さらに、得られた組成物を使用した液晶表示素子を作製したところ、表示不良を起こさず良好な特性を示した。
 以上の結果から、本精製法により実用的な収率で実用に十分な高い電圧保持率を有する式(1-1)で表される化合物を含有する混合物が得られることがわかった。
<実施例3>
 式(1-1)で表される化合物を分析したところ純度94.90%であり、不純物として式(1-2)で表される化合物が5.0%含まれており、化合物A及び化合物Bを含む混合物であることがわかった。また、混合物中には、他の不純物として式(1-1)においてアルキル鎖の炭素数が異なる化合物等が含まれていた。
 この式(1-1)及び式(1-2)で表される化合物を含む混合物100gを、アセトン300mlを用いて1回再結晶した後減圧乾燥し、ヘキサン300mlに溶解した。カラムクロマトグラフィー(精製剤としてシリカゲル30gを充填)を準備し、先に調製した溶液をカラムクロマト管に注ぎ、溶液表面が精製剤層の上面(充填剤層)と一致するまで流した。更に展開溶媒としてヘキサン200mlを加え、精製剤(充填剤)に吸着している化合物を溶出させた。得られた溶液を-10℃で3時間撹拌し、結晶を晶析させた。析出した結晶をろ取し、133Pa、40℃で5時間乾燥した。得られた式(1-1)で表される化合物87gの純度を測定したところ、98.9%であり、式(1-2)で表される化合物は1.02%検出された。これより、Qの値が、約97である混合物を得たことがわかった。
 また、得られた混合物を電圧保持率が94.0%である式(1-4)で表される組成物に20%添加した液晶組成物の電圧保持率は93.2%であった。また、この組成物の低温保存性を試験したところ、-20℃では析出が見られず、-30℃において5日後に結晶の析出が見られた。さらに、得られた組成物を使用した液晶表示素子を作製したところ、表示不良を起こさず良好な特性を示した。
 以上の結果から、本精製法により高収率で実用に十分な高い電圧保持率及び低温保存性を有する式(1-1)で表される化合物を含有する混合物が得られることがわかった。
<実施例4>
 式(1-1)で表される化合物を分析したところ純度94.90%であり、不純物として式(1-2)で表される化合物が5.0%含まれており、化合物A及び化合物Bを含む混合物であることがわかった。また、混合物中には、他の不純物として式(1-1)においてアルキル鎖の炭素数が異なる化合物等が含まれていた。
 この式(1-1)及び式(1-2)で表される化合物を含む混合物100gを、アセトン300mlを用いて2回再結晶した後減圧乾燥し、ヘキサン300mlに溶解した。カラムクロマトグラフィー(精製剤としてシリカゲル30gを充填)を準備し、先に調製した溶液をカラムクロマト管に注ぎ、溶液表面が精製剤層の上面(充填剤層)と一致するまで流した。更に展開溶媒としてヘキサン200mlを加え、精製剤(充填剤)に吸着している化合物を溶出させた。得られた溶液を-10℃で3時間撹拌し、結晶を晶析させた。析出した結晶をろ取し、133Pa、40℃で5時間乾燥した。得られた式(1-1)で表される化合物84gの純度を測定したところ、99.89%であり、式(1-2)で表される化合物は0.04%検出された。これより、Qの値が、約2497である混合物を得たことがわかった。
 また、得られた混合物を電圧保持率が94.0%である式(1-4)で表される組成物に20%添加した液晶組成物の電圧保持率は93.4%であった。また、この組成物の低温保存性を試験したところ、-20℃では析出が見られず、-30℃において7日後に結晶の析出が見られた。さらに、得られた組成物を使用した液晶表示素子を作製したところ、表示不良を起こさず良好な特性を示した。
 以上の結果から、本精製法により高収率で実用に十分な高い電圧保持率及び低温保存性を有する式(1-1)で表される化合物を含有する混合物が得られることがわかった。
<実施例5>
 実施例1において、前記式(1-1)で表される化合物の代わりに下記式(1-7)
Figure JPOXMLDOC01-appb-C000029
で表される化合物を分析したところ純度95.0%であり、不純物として式(1-8)
Figure JPOXMLDOC01-appb-C000030
で表される化合物が4.9%含まれており、化合物A及び化合物Bを含む混合物であることがわかった。
 この式(1-7)及び式(1-8)で表される化合物を含む混合物100gを、アセトン300mlを用いて3回再結晶した後減圧乾燥し、ヘキサン300mlに溶解した。カラムクロマトグラフィー(精製剤としてシリカゲル30gを充填)を準備し、先に調製した溶液をカラムクロマト管に注ぎ、溶液表面が精製剤層の上面(充填剤層)と一致するまで流した。更に展開溶媒としてヘキサン200mlを加え、精製剤(充填剤)に吸着している化合物を溶出させた。得られた溶液を-10℃で3時間撹拌し、結晶を晶析させた。析出した結晶をろ取し、133Pa、40℃で5時間乾燥した。得られた式(1-1)で表される化合物86gの純度を測定したところ、99.92%であり、式(1-2)で表される化合物は0.009%検出された。これより、Qの値が、約11102である混合物を得たことがわかった。
 また、得られた混合物を電圧保持率が94.0%である式(1-4)で表される組成物に20%添加した液晶組成物の電圧保持率は93.7%であった。また、この組成物の低温保存性を試験したところ、いずれの温度でも結晶の析出は見られなかった。さらに、得られた組成物を使用した液晶表示素子を作製したところ、表示不良を起こさず良好な特性を示した。
 以上の結果から、本精製法により高収率で実用に十分な高い電圧保持率を有する式(1-1)で表される化合物を含有する混合物が得られることがわかった。
<実施例6>
 式(1-1)で表される化合物を分析したところ純度94.90%であり、不純物として式(1-2)で表される化合物が5.0%含まれており、化合物A及び化合物Bを含む混合物であることがわかった。また、混合物中には、他の不純物として式(1-1)においてアルキル鎖の炭素数が異なる化合物等が含まれていた。
 この式(1-1)及び式(1-2)で表される化合物を含む混合物100gを、アセトン500mlを用いて2回再結晶した後減圧乾燥し、ヘキサン300mlに溶解した。カラムクロマトグラフィー(精製剤としてシリカゲル30gを充填)を準備し、先に調製した溶液をカラムクロマト管に注ぎ、溶液表面が精製剤層の上面(充填剤層)と一致するまで流した。更に展開溶媒としてヘキサン200mlを加え、精製剤(充填剤)に吸着している化合物を溶出させた。得られた溶液を-10℃で3時間撹拌し、結晶を晶析させた。析出した結晶をろ取し、133Pa、40℃で5時間乾燥した。得られた式(1-1)で表される化合物83gの純度を測定したところ、99.90%であり、式(1-2)で表される化合物は0.03%検出された。これより、Qの値が、約3330である混合物を得たことがわかった。
 また、得られた混合物を電圧保持率が94.0%である式(1-4)で表される組成物に20%添加した液晶組成物の電圧保持率は93.5%であった。また、この組成物の低温保存性を試験したところ、いずれの温度でも結晶の析出は見られなかった。さらに、得られた組成物を使用した液晶表示素子を作製したところ、表示不良を起こさず良好な特性を示した。
 以上の結果から、本精製法により高収率で実用に十分な高い電圧保持率を有する式(1-1)で表される化合物を含有する混合物が得られることがわかった。
<実施例7>
 式(1-1)で表される化合物を分析したところ純度94.90%であり、不純物として式(1-2)で表される化合物が5.0%含まれており、化合物A及び化合物Bを含む混合物であることがわかった。また、混合物中には、他の不純物として式(1-1)においてアルキル鎖の炭素数が異なる化合物等が含まれていた。
 この式(1-1)及び式(1-2)で表される化合物を含む混合物100gを、アセトン500mlを用いて3回再結晶した後減圧乾燥し、ヘキサン300mlに溶解した。カラムクロマトグラフィー(精製剤としてシリカゲル30gを充填)を準備し、先に調製した溶液をカラムクロマト管に注ぎ、溶液表面が精製剤層の上面(充填剤層)と一致するまで流した。更に展開溶媒としてヘキサン200mlを加え、精製剤(充填剤)に吸着している化合物を溶出させた。得られた溶液を-10℃で3時間撹拌し、結晶を晶析させた。析出した結晶をろ取し、133Pa、40℃で5時間乾燥した。得られた式(1-1)で表される化合物83gの純度を測定したところ、99.925%であり、式(1-2)で表される化合物は0.005%検出された。これより、Qの値が、約19985である混合物を得たことがわかった。
 また、得られた混合物を電圧保持率が94.0%である式(1-4)で表される組成物に20%添加した液晶組成物の電圧保持率は93.6%であった。また、この組成物の低温保存性を試験したところ、いずれの温度でも結晶の析出は見られなかった。さらに、得られた組成物を使用した液晶表示素子を作製したところ、表示不良を起こさず良好な特性を示した。
 以上の結果から、本精製法により高収率で実用に十分な高い電圧保持率を有する式(1-1)で表される化合物を含有する混合物が得られることがわかった。

Claims (9)

  1.  構造中に少なくとも1つの-CFO-を有し、且つ構造中に-COO-を有さない化合物Aと、化合物A中の少なくとも1つの-CFO-が-COO-に置き換わった構造の化合物Bを含む混合物における、UV210nmで検出した液体クロマトグラフィーでの、化合物Aのピーク面積を化合物Bのピーク面積で除した際の商Qが49≦Q≦49999である混合物。
  2.  化合物Bは、化合物A中の-CFO-が-COO-に酸化されることにより生成された化合物である、請求項1に記載の混合物。
  3.  化合物Aが一般式(I)
    Figure JPOXMLDOC01-appb-C000001
    (一般式(I)中、Rは炭素原子数1~15のアルキル基、炭素原子数2~15のアルケニル基、炭素原子数1~15のアルコキシ基又は炭素原子数2~15のアルケニルオキシ基を表し、
     aは0、1又は2を表し、bは0、1、又は2を表すが、0≦a+b≦3であり、
     A、A、A、及びAはそれぞれ独立的に
    (a) トランス-1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-又は-S-に置き換えられてもよい。)、
    (b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)及び
    (c) ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられても良い。)
    からなる群より選ばれる基を表すが、上記の基(a)、基(b)又は基(c)に含まれる水素原子はそれぞれ独立してフッ素原子、トリフルオロメチル基、トリフルオロメトキシ基、塩素原子、又はシアノ基で置換されていても良く、aが2を表しAが複数存在する場合、複数存在するAは同一であっても異なっていても良く、bが2を表しAが複数存在する場合、複数存在するAは同一であっても異なっていても良く、
     Z及びZはそれぞれ独立的に単結合、-CHCH-、-CH=CH-、-C≡C-、-CHO-、-OCH-、-CFO-又は-OCF-を表すが、Aが2を表しZが複数存在する場合、複数存在するZは同一であっても異なっていても良く、Bが2を表しZが複数存在する場合、複数存在するZは同一であっても異なっていても良く、
     Xはフルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基、フッ素原子、塩素原子、炭素原子数1~15のアルキル基、炭素原子数2~15のアルケニル基、炭素原子数1~15のアルコキシ基又は炭素原子数2~15のアルケニルオキシ基を表す。)
    で表される化合物である、請求項1又は請求項2に記載の混合物。
  4.  前記一般式(I)において、Rが炭素原子数1~5の直鎖アルキル基又は炭素原子数2~5の直鎖アルケニル基を表し、A、A、A及びAがそれぞれ独立的に
    Figure JPOXMLDOC01-appb-C000002
    のいずれかを表し、Z及びZがそれぞれ独立的に単結合、-CHCH-、又は-CFO-を表し、Xがトリフルオロメトキシ基又はフッ素原子を表す、請求項3に記載の混合物。
  5.  前記一般式(I)において、Rが炭素原子数1~5の直鎖アルキル基、炭素原子数1~5の直鎖アルコキシ基又は炭素原子数2~5の直鎖アルケニル基を表し、A、A、A及びAがそれぞれ独立的に
    Figure JPOXMLDOC01-appb-C000003
    のいずれかを表し、Z及びZがそれぞれ独立的に単結合、-CHCH-、-CHO-、-OCH-、-OCF-又は-CFO-を表し、Xが炭素原子数1~5の直鎖アルキル基、炭素原子数2~5の直鎖アルケニル基、炭素原子数1~5の直鎖アルコキシ基又は炭素原子数2~5の直鎖アルケニルオキシ基を表す、請求項3に記載の混合物。
  6.  前記一般式(I)において、Rが炭素原子数1~5の直鎖アルキル基又は炭素原子数2~5の直鎖アルケニル基を表し、A、A、A及びAがそれぞれ独立的に
    Figure JPOXMLDOC01-appb-C000004
    のいずれかを表し、Z及びZがそれぞれ独立的に単結合、-CHCH-、又は-CFO-を表し、Xが炭素原子数1~5の直鎖アルキル基、炭素原子数1~5の直鎖アルコキシ基又は炭素原子数2~5の直鎖アルケニル基を表す、請求項3に記載の混合物。
  7.  請求項1~6のいずれかに記載の混合物を含む液晶組成物。
  8.  請求項7に記載の液晶組成物を用いた液晶表示素子。
  9.  請求項8に記載の液晶表示素子を用いた液晶ディスプレイ。
PCT/JP2015/081153 2014-11-14 2015-11-05 混合物、液晶組成物、及び液晶表示素子 WO2016076192A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016534269A JPWO2016076192A1 (ja) 2014-11-14 2015-11-05 混合物、液晶組成物、及び液晶表示素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014231594 2014-11-14
JP2014-231594 2014-11-14

Publications (1)

Publication Number Publication Date
WO2016076192A1 true WO2016076192A1 (ja) 2016-05-19

Family

ID=55954281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081153 WO2016076192A1 (ja) 2014-11-14 2015-11-05 混合物、液晶組成物、及び液晶表示素子

Country Status (2)

Country Link
JP (1) JPWO2016076192A1 (ja)
WO (1) WO2016076192A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI711691B (zh) * 2018-10-30 2020-12-01 大陸商江蘇和成顯示科技有限公司 液晶組合物及其顯示器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105687A (ja) * 2009-11-20 2011-06-02 Dic Corp 液晶材料の製造方法
JP5500325B1 (ja) * 2013-04-05 2014-05-21 Dic株式会社 化合物の製造方法
WO2014162587A1 (ja) * 2013-04-05 2014-10-09 Dic株式会社 組成物の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105687A (ja) * 2009-11-20 2011-06-02 Dic Corp 液晶材料の製造方法
JP5500325B1 (ja) * 2013-04-05 2014-05-21 Dic株式会社 化合物の製造方法
WO2014162588A1 (ja) * 2013-04-05 2014-10-09 Dic株式会社 化合物の製造方法
WO2014162587A1 (ja) * 2013-04-05 2014-10-09 Dic株式会社 組成物の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI711691B (zh) * 2018-10-30 2020-12-01 大陸商江蘇和成顯示科技有限公司 液晶組合物及其顯示器件

Also Published As

Publication number Publication date
JPWO2016076192A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
CN108473872B (zh) 液晶组合物及液晶显示元件
US8603358B2 (en) Liquid crystal composition containing polymerizable compound and liquid crystal display element using the same
WO2018079333A1 (ja) 液晶組成物用自発配向助剤
JP5445715B2 (ja) 重合性化合物を含有する液晶組成物及びそれを使用した液晶表示素子
JP5692565B2 (ja) 重合性化合物を含有する液晶組成物及びそれを使用した液晶表示素子
EP2843027A1 (en) Liquid crystal composition comprising polymerizable compounds and liquid crystal display element using same
WO2017208953A1 (ja) 液晶組成物用自発配向助剤、該自発配向助剤に好適な化合物、液晶組成物、及び液晶表示素子
JP7298136B2 (ja) 液晶組成物及び液晶表示素子
JP6660560B2 (ja) ネマチック液晶組成物及びこれを用いた液晶表示素子
JP2014162751A (ja) 化合物、液晶組成物、及び表示装置
JP5522319B1 (ja) 組成物の製造方法
JP2014162752A (ja) 化合物、液晶組成物、及び表示装置
JP5828906B2 (ja) 液晶組成物及びそれを使用した液晶表示素子
WO2016076192A1 (ja) 混合物、液晶組成物、及び液晶表示素子
JP5500325B1 (ja) 化合物の製造方法
JP2017095630A (ja) 組成物及びそれを使用した液晶表示素子
WO2019082839A1 (ja) 重合性液晶組成物及び液晶表示素子
TWI721763B (zh) 液晶組成物及液晶顯示元件
WO2017090384A1 (ja) 液晶性化合物、液晶組成物および表示素子
WO2016056313A1 (ja) 組成物及びそれを使用した液晶表示素子
TWI568836B (zh) 組成物之製造方法
TWI573861B (zh) A liquid crystal composition, and a liquid crystal display device using the liquid crystal display device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016534269

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15859913

Country of ref document: EP

Kind code of ref document: A1