WO2014157958A1 - 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극 - Google Patents

태양전지 전극 형성용 조성물 및 이로부터 제조된 전극 Download PDF

Info

Publication number
WO2014157958A1
WO2014157958A1 PCT/KR2014/002608 KR2014002608W WO2014157958A1 WO 2014157958 A1 WO2014157958 A1 WO 2014157958A1 KR 2014002608 W KR2014002608 W KR 2014002608W WO 2014157958 A1 WO2014157958 A1 WO 2014157958A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
solar cell
glass frit
cell electrode
forming
Prior art date
Application number
PCT/KR2014/002608
Other languages
English (en)
French (fr)
Inventor
정석현
김군호
김석현
서용재
김동석
김주희
김민재
양상현
이재일
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130033029A external-priority patent/KR101566071B1/ko
Priority claimed from KR1020140031876A external-priority patent/KR101835921B1/ko
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Priority to CN201480018000.2A priority Critical patent/CN105051830B/zh
Priority to JP2016505399A priority patent/JP6343661B2/ja
Priority to US14/763,260 priority patent/US9899545B2/en
Publication of WO2014157958A1 publication Critical patent/WO2014157958A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a composition for forming a solar cell electrode and an electrode prepared therefrom.
  • Solar cells generate electrical energy using the photoelectric effect of pn junctions, which convert photons of sunlight into electricity.
  • front and rear electrodes are formed on the upper and lower surfaces of the semiconductor wafer or substrate on which the pn junction is formed.
  • the photovoltaic effect of the pn junction is induced by solar light incident on the semiconductor wafer, and electrons generated therefrom provide current flowing through the electrode to the outside.
  • the electrode of such a solar cell may be formed on the surface of a wafer by coating, patterning, and firing an electrode paste composition.
  • An object of the present invention is to provide a composition for forming a solar cell electrode having excellent ohmic contact between the electrode and the wafer surface.
  • Another object of the present invention is to provide a composition for forming a solar cell electrode which can minimize series resistance (Rs).
  • Still another object of the present invention is to provide a solar cell electrode having an excellent conversion efficiency and a Fill Factor value.
  • Another object of the present invention is to provide an electrode prepared from the composition.
  • One aspect of the invention is a silver powder; Fumed silica; Glass frit; And it is a composition comprising an organic vehicle, the article silica relates to a composition for forming a solar cell electrode, characterized in that contained in 0.01 to 0.1 weight 3 ⁇ 4 to the total weight of the composition.
  • the composition comprises 60 to 95% by weight of the silver powder; 0.01 to 0.1 weight of the silica silica; 0.5 to 20 weight% of the glass frit; And it may include 1 to 30% by weight of the organic vehicle.
  • the specific surface area (BET) of the shaped silica may be 20 to 300 m 2 / g.
  • the glass frit is Pb-Si-0 based, Pb-Si-Al-0 based, Pb-Si-Al-P-0 based, Pb-Si-Al-Zn-
  • the glass frit may be a Bi-Te-0 glass frit having a molar ratio of Bi and Te of 1: 0.1 to 1:50.
  • the glass frit is lead (Pb), tellurium (Te), bismuth (Bi), germanium (Ge), gallium (Ga), boron (B) cerium (Ce), iron (Fe), silicon (Si), zinc (Zn), tantalum (Ta), gadolinium (Gd), antimony (Sb), lanthanum (La), neodymium (Nd), selenium (Se), yttrium (Y), phosphorus (P), chromium (Cr) , Lithium (Li), tungsten magnesium (Mg), cesium (Cs), strontium (Sr), molybdenum (Mo), titanium (Ti), tin (Sn), indium (In), vanadium (V), barium (Ba ), Consisting of oxides of nickel (Ni), copper (Cu), sodium (Na), potassium (K), arsenic (As), cobalt (Co), zirconium (Zr), manganese (Mn) and
  • the glass frit may have an average particle diameter (D50) of about 0.1 m to about 20.
  • the composition may further comprise a dispersant, a thixotropic agent, a "scavenger, a viscosity stabilizer, a defoaming agent, an additive selected from a pigment, a UV stabilizer, an antioxidant and a coupling agent comprising at least one group.
  • Another aspect of the invention relates to a solar cell electrode prepared from the composition for forming a solar cell electrode.
  • the composition for forming a solar cell electrode of the present invention improves contact between the electrode and the wafer by introducing a specific shaped silica, and the solar cell electrode made of the composition has a series resistance of (Rs) to minimize the fill factor and conversion efficiency. This is excellent.
  • FIG. 1 is a conceptual diagram schematically illustrating a process in which silver crystal grains are generated through a firing process of silver powder and glass frit on a wafer.
  • FIG. 2 is a schematic view schematically showing the structure of a solar cell according to an embodiment of the present invention.
  • Composition for forming a solar cell electrode of the present invention is a silver powder; Und silica; Glass frit; And a composition for forming a solar cell electrode comprising an organic vehicle, wherein Introduced to improve contact between the electrode and the wafer, the solar cell electrode made of the composition is excellent in fill factor and conversion efficiency because the series resistance (Rs) is minimized.
  • Rs series resistance
  • the composition for solar cell electrode formation of this invention uses silver (Ag) powder as electroconductive powder.
  • the silver powder may be a powder having a particle size of nano size or micro size, for example, silver powder of several tens to hundreds of nanometers, silver powder of several tens to tens of micrometers, two or more different sizes.
  • the silver powder having can be used in combination.
  • the silver powder may have a spherical shape, a plate shape, or an amorphous shape.
  • the silver powder may have an average particle diameter (D50) of preferably 0.1 ⁇ to 10, more preferably 0.5 m to 5.
  • D50 average particle diameter
  • the average particle diameter was measured using a 1064LD model manufactured by CILAS after dispersing the conductive powder in isopropyl alcohol (IPA) at 25 ° C. for 3 minutes with ultrasonic waves. Within this range, the contact resistance and the wire resistance can be lowered.
  • IPA isopropyl alcohol
  • Silver powder may be included at 60 to 95 weight 3 ⁇ 4 of the total weight of the composition. Within this range, it is possible to prevent the conversion efficiency from lowering due to an increase in the resistance. Preferably it may be included in 70 to 90% by weight.
  • the glass frit 112 in the firing step for forming a solar cell electrode, includes a p layer (or n layer) 101 and an n layer (or p layer) 102 as an emitter.
  • An electrode can be formed by etching the anti-reflection film, melting the silver (Ag) particles 111, and the molten silver particles penetrate the wafer surface to form a silver crystalline 113. It is important to secure an ohmic contact to be formed and an area where silver crystal grains come into contact with the wafer.
  • the flow of the glass frit to minimize the diffusion of the glass frit acting as an impurity by etching the glass frit by adjusting the anti-reflection film etching degree of the glass frit during the firing process Fumed Silica was introduced to form.
  • Commodated silica is a synthetic silica prepared by the dry method, and is a high purity material of 99.9% or more, and may be prepared by vapor phase pyrolysis of a silane chloride compound.
  • the specific surface area of the article silica is 20 to 500mVg, preferably 50 to 200m 2 / g using a silica that can properly ensure the flow of etching control or impurity diffusion prevention during the firing process, Due to this, it is possible to reduce series resistance due to impurity diffusion, and improve fill factor and conversion efficiency.
  • the article silica may be included in less than 0.1% by weight based on the total weight of the composition, preferably from 0.01 to 0.1% by weight. When the amount exceeds 0.1% by weight, the viscosity may increase greatly and the printability may decrease.
  • Increasing the area of the solar cell in order to increase the efficiency of the solar cell can increase the contact resistance of the solar cell to minimize the damage to the pn junction (pn junction) and to minimize the series resistance.
  • a glass frit that can sufficiently secure thermal stability even at a wide firing temperature because the firing temperature increases with increasing wafers of various sheet resistances.
  • the glass frit may be one or more of a flexible glass frit or a lead-free glass frit typically used in a composition for forming a solar cell electrode.
  • the glass frit is lead (Pb), tellurium (Te), bismuth (Bi), germanium (Ge), gallium (Ga), boron (B) cerium (Ce), iron (Fe), silicon (Si), zinc (Zn), tantalum (Ta), gadolinium (Gd), antimony (Sb), lanthanum (La), neodymium (Nd), selenium (Se), yttrium (Y), phosphorus (P), chromium (Cr ), Lithium (Li), tungsten magnesium (Mg), cesium (Cs), strontium (Sr), molybdenum (Mo), titanium (Ti), tin (Sn indium (In), vanadium (V), barium (Ba) Selected from the group consisting of oxides of nickel (Ni), copper (Cu), sodium (Na), potassium 00, arsenic (As), cobalt (Co), zirconium (Zr), manganese (Mn)
  • the glass frit is Pb-Si-0, Pb-Si-Al-0, Pb-Si-Al-P-0,
  • Bi-B-Si-0 wands Bi-B-Si-Al-0 whey, Bi-Zn-B-Si-0 whey, Bi-Zn-B-Si-Al-0 whey), Pb-Te- 0 series , -Te-Bi-0, Pb-Te-Si-0, Pb-Te-Li-0, Bi-Te-0, Bi- Te-Si-0 or Bi-Te-Li-0 It may be a glass frit.
  • the Pb-Si-0 glass frit is formed from a metal oxide including lead (Pb) oxide and silicon (Si) oxide, and will be defined as a glass frit including lead and silicon elements, and the glass listed above. We will define the frits in the same way.
  • the glass frit is a Bi-Te-0 based glass frit formed from a metal oxide containing bismuth oxide and tellurium oxide
  • the Bi-Te-0 based glass frit is bismuth (Bi) and tellurium.
  • Te element bismuth (Bi) and tellurium.
  • the molar ratio of Bi and Te present in the glass frit may be 1: 0.1 to 1:50, preferably 1: 0.5 to 1:30, more preferably 1: 1 To 1:20. Low series resistance and contact resistance can be ensured in the above range.
  • the molar ratio means an element molar ratio of each metal component.
  • the glass frit may have an average particle diameter (D50) of 0.1 to 20, and may be included in an amount of 0.5 to 20 wt% based on the total weight of the composition.
  • D50 average particle diameter
  • the shape of the glass frit may be spherical or irregular.
  • the glass frit may include two kinds of glass frits having different transition points.
  • a first glass frit having a transition point of 200 to 320 ° C. and a second glass frit having a transition point of 300 to 550 ° C. may be mixed and used in a weight ratio of 1: 0.2 to 1.
  • the glass frit is used to purchase a commercial product or to obtain a desired composition, for example, silicon dioxide (Si02), aluminum oxide (A1203), boron oxide (B203), Bismuth oxide (Bi203), sodium oxide (Na20), zinc oxide (ZnO), etc. may be selectively melted and manufactured.
  • silicon dioxide Si02
  • aluminum oxide A1203
  • boron oxide B203
  • Bismuth oxide Bi203
  • sodium oxide Na20
  • ZnO zinc oxide
  • the organic vehicle imparts suitable viscosity and rheological properties to the paste composition through mechanical mixing with the inorganic component of the composition for forming a solar cell electrode.
  • the organic vehicle may be an organic vehicle that is typically used in a composition for forming a solar cell electrode, and may include a binder resin and a solvent.
  • an acrylate-based or cellulose-based resin may be used, and ethyl cellulose is generally used.
  • ethyl hydroxyethyl cellulose, nitro cellulose, ethyl cellulose and a mixture of phenol resins, alkyd resins, phenolic resins, acrylic ester resins, xylene resins, polybutene resins, polyesters Resins, urea resins, melamine resins, vinyl acetate resins, wood rosins or polymethacrylates of alcohols, and the like may be used.
  • nucleic acid for example, nucleic acid, toluene, ethyl cellosolve, cyclonuxanone, butyl centrosolve, butyl carbyl (diethylene glycol monobutyl ether), monoisobutyrate, dibutyl carbide (diethylene Glycol dibutyl ether), butyl carbyl acetate (diethylene glycol monobutyl ether acetate), propylene glycol monomethyl ether, nuxylene glycol, terpinol, methyl ethyl ketone, benzyl alcohol, gamma butyrolactone or ethyl lac Tate etc.
  • the solvent for example, nucleic acid, toluene, ethyl cellosolve, cyclonuxanone, butyl centrosolve, butyl carbyl (diethylene glycol monobutyl ether), monoisobutyrate, dibutyl carbide (diethylene G
  • the blending amount of the organic vehicle may be 1 to 30 weight 3 ⁇ 4 »based on the total weight of the composition. It is possible to secure sufficient adhesive strength and excellent printability in the above range.
  • the composition for forming a solar cell electrode of the present invention may further include a conventional additive as necessary in order to improve the flow characteristics, process characteristics and stability in addition to the above components.
  • the additives may be used alone or in combination of two or more of a dispersant, thixotropic agent, plasticizer, viscosity stabilizer, antifoaming agent, pigment, ultraviolet stabilizer, antioxidant, coupling agent and the like. They are added at 0.1 to 5% by weight relative to the total weight of the composition, but can be changed as necessary.
  • Solar cell electrode and solar cell comprising same
  • Another aspect of the present invention relates to an electrode formed from the composition for forming a solar cell electrode and a solar cell including the same.
  • 2 illustrates a structure of a solar cell according to an embodiment of the present invention.
  • the back electrode 210 may be printed and baked by printing the composition for forming a solar cell electrode.
  • the front electrode 230 may be formed.
  • the composition for forming a solar cell electrode may be printed on the back side of the wafer, and then dried at a temperature of 200 ° C. to 400 ° C. for about 10 to 60 seconds to perform a preliminary preparation step for the back electrode.
  • the composition for forming a solar cell electrode on the front surface of the wafer may be printed and dried to perform a preliminary preparation step for the front electrode.
  • the front electrode and the rear electrode may be formed by performing a firing process of firing for about 30 seconds to 50 seconds at 40C C to 950 ° C, preferably 85CTC to 950 ° C.
  • Ethyl salose (Dow chemical company, STD4) 1.0 wt% as an organic binder was dissolved in 6.69 wt% of Texanol ester-alcohol (Eastman, Inc.) at 60 ° C. Silver powder (Dowa Hightech CO.
  • the solar cell electrode forming composition was printed by screen printing in a predetermined pattern on the entire surface of a wafer having a sheet resistance of 85 ⁇ / sq., And dried using an infrared drying furnace. After printing the aluminum paste on the back of the wafer and dried in the same manner.
  • the Ceil formed by the above process was calcined for 30 seconds to 50 seconds between 400 to 900 ° C using a belt type kiln, and thus manufactured
  • the completed cell is shown in Table 1 by measuring the fill factor (FF,%) and the conversion efficiency (%) of the solar cell using a solar cell efficiency measuring equipment (Pasan, CT-801).
  • a composition for forming a solar cell electrode was fabricated in the same manner as in Example 1, except that each component was used as the composition of Table 1, and after forming the electrode by printing the composition, Fill Factor (FF,) and conversion. The efficiency (%) was measured and shown in Table 1 together.
  • a composition for forming a solar cell electrode in the same manner as in Example 1, except for using a Pb-Te—Bi-based glass frit having a molar ratio of Pb to Te of 1: 2 and using the components shown in Table 1 below. was prepared, and the composition was printed to form an electrode, followed by measuring the Fill Factor (FF,) and the conversion efficiency (%).
  • FF Fill Factor
  • a Pb-Te-Bi glass frit having a molar ratio of Pb to Te of 1: 1.5 was used and each component was used in the composition shown in Table 1 below.
  • the Fill Factor (FF,%) and the conversion efficiency were measured and shown in Table 1 below. Comparative Example 1-8
  • a composition for forming a solar cell electrode was manufactured in the same manner as in Example 1, except that each component was used as a composition of Table 1, and after filling the composition to form an electrode, the Fill Factor (FF,%) and Conversion efficiency (%) was measured and shown in Table 1 below. "[Table 1]
  • Example 1-5 using the ultra fine article silica having a specific specific surface area has a Fill Factor value compared to Comparative Example 1-6 using an inorganic material other than the article silica and Comparative Example 7 without using the inorganic material. It can be seen that the remarkably increased due to this conversion efficiency was also excellent. This could minimize the formation of optimum ohmic contacts and the infiltration or diffusion of glass frit impurities into the wafer during firing due to the molded silica used in the examples. Because.
  • Comparative Example 8 shows that the viscosity of the composition is greatly increased as an example of using excessive amount of silica, and the printability is lowered and the fill factor and conversion efficiency are lowered.
  • Bi-Te-0 glass frit having a composition of Table 2 2.5 wt%, BET specific surface area of 200 ⁇ 25m 2 / g silica (Evonik Aerosil® 200) 0.01 weight 3 ⁇ 4>, dispersant (BYK-chemie, BYK102) 0.4 weight%, thixotropic agent (Elementis, Thixatrol® ST) 0.4 weight%
  • a composition for forming an electrode was prepared.
  • the solar cell electrode forming composition was printed by screen printing in a predetermined pattern on the entire surface of a wafer having a sheet resistance of 85 ⁇ / sq., And dried using an infrared drying furnace. After printing the aluminum paste on the back of the wafer and dried in the same manner.
  • the cell formed by the above process was calcined for 30 seconds to 50 seconds between 400 and 900 ° C using a belt-type kiln, and the cell thus manufactured was prepared using the solar cell efficiency measuring equipment (Pasan, CT-801).
  • the open voltage (Voc, V), Fill Factor (FF,%) and conversion efficiency (%) of the battery were measured and shown in Table 3 below. Examples 7-8
  • a solar cell electrode forming composition was manufactured in the same manner as in Example 6, except that Bi ⁇ Te-0 glass frit having a molar ratio of Bi and Te of 1:60 was used, and the electrode was formed by printing the composition. After measuring the physical properties are shown in Table 3 below.
  • Examples 6 to 8 prepared by using a composition for forming a solar cell electrode using a glass frit containing fused silica, bismuth (Bi) and tellurium (Te) elements as shown in the results of Table 3 above. It can be seen that the electrode of Comparative Example 9, which does not use fused silica, has better Fill Factor and conversion efficiency than the electrode of Comparative Example 10 in which the molar ratio of bismuth to tellurium exceeds 1:50. Simple modifications and variations of the present invention can be easily made by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Conductive Materials (AREA)
  • Photovoltaic Devices (AREA)
  • Glass Compositions (AREA)

Abstract

본 발명은 은 분말; 퓸드 실리카; 유리프릿; 및 유기 비히클을 포함하는 조성물에 관한 것으로, 상기 태양전지 전극 형성용 조성물은 특정의 퓸드 실리카를 도입하여 전극과 웨이퍼와 접촉성을 개선하였으며, 상기 조성물로 제조된 태양전지 전극은 시리즈 저항이 (Rs )이 최소화되어 Fill Factor 및 변환 효율이 우수하다.

Description

【명세서】
【발명의 명칭】
태양전지 전극 형성용 조성물 및 이로부터 제조된 전극 【기술분야】
본 발명은 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극에 관한 것이다. 【배경기술】
태양전지는 태양광의 포톤 (photon)을 전기로 변환시키는 pn 접합의 광전 효과를 이용하여 전기 에너지를 발생시킨다. 태양전지는 pn 접합이 구성되는 반도체 웨이퍼 또는 기판 상 .하면에 각각 전면 전극과 후면 전극이 형성되어 있다. 태양전지는 반도체 웨이퍼에 입사되는 태양광에 의해 pn 접합의 광전 효과가 유도되고, 이로부터 발생된 전자들이 전극을 통해 외부로 흐르는 전류를 제공한다. 이러한 태양전지의 전극은 전극용 페이스트 조성물의 도포, 패터닝 및 소성에 의해, 웨이퍼 표면에 형성될 수 있다.
최근 태양전지의 효율을 증가시키기 위해 에미터 (emitter)의 두께가 지속적으로 얇아짐에 따라, 태양전지의 성능을 저하시킬 수 있는 션팅 (shunting) 현상을 유발시킬 수 있다. 또한, 태양전지의 효율을 증가시키기 위해 태양전지의 면적을 점차 증가시키고 있는데, 이는 태양전지의 접촉저항을 높여 태양전지의 효율을 감소시킬 수 있다. 따라서, 웨이퍼와 접촉성을 향상하여 시리즈 저항 (Rs)을 최소화시켜 변환 우수한 태양전지 전극을 제조할 수 있는 조성물의 개발이 시급히 요구되고
【발명의 상세한 설명】
【기술적 과제】
본 발명의 목적은 전극과 웨이퍼 표면의 음 접촉 (ohmic contact)이 우수한 태양전지 전극 형성용 조성물을 제공하기 위함이다.
본 발명의 다른 목적은 시리즈 저항 (Rs)을 최소화할 수 있는 태양전지 전극 형성용 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 변환효율 및 Fill Factor 값이 우수한 태양전지 전극을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 조성물로부터 제조된 전극을 제공하는 것이다. 본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
【기술적 해결방법】
본 발명의 하나의 관점은 은 분말; 퓸드 실리카; 유리프릿; 및 유기 비히클을 포함하는 조성물이고, 상기 품드 실리카는 조성물 전체 중량에 대하여 0.01 내지 0.1 중량 ¾로 포함되는 것을 특징으로 하는 태양전지 전극 형성용 조성물에 관한 것이다. 상기 조성물은 상기 은 분말 60 내지 95 중량 %; 상기 품드실리카 0.01 내지 0.1 중량 상기 유리프릿 0.5 내지 20 중량 %; 및 상기 유기 비히클 1 내지 30 중량 %를 포함할 수 있다. '
상기 품드 실리카의 비표면적 (BET)은 20 내지 300m2/g일 수 있다.
상기 유리프릿은 Pb-Si-0 계, Pb-Si-Al-0 계, Pb-Si-Al-P-0 계, Pb-Si-Al-Zn-
0계, Pb-Bi-0계, Zn-Si-0계, Zn-B-Si-0계, Zn-B-Si-Al-0계, Bi-Si-0겨) , Bi-B-Si- 0겨ᄂ Bi-B-Si-Al-0계, Bi -Zn-B-Si-0계, Bi-Zn-B-Si-Al-0계, Pbᅳ Te— 0계, Pb-Te-Bi- 0 계, Pb-Te-Si-0 계, Pb-Te-Li-0 계, Bi-Te-0 계, Bi-Te-Si-0 계 또는 Bi-Te-Li-0 계 유리프릿일 수 있다.
상기 유리프릿은 Bi 와 Te 의 몰비가 1 : 0.1 내지 1 : 50 인 Bi-Te-0 계 유리프릿일 수 있다.
상기 유리프릿은 납 (Pb), 텔루륨 (Te), 비스무스 (Bi), 게르마늄 (Ge), 갈륨 (Ga), 붕소 (B) 세륨 (Ce), 철 (Fe), 규소 (Si), 아연 (Zn), 탄탈륨 (Ta), 가돌리늄 (Gd), 안티모니 (Sb), 란타넘 (La), 네오디뮴 (Nd), 셀레늄 (Se), 이트륨 (Y), 인 (P), 크롬 (Cr), 리튬 (Li), 텅스텐 마그네슘 (Mg), 세슘 (Cs), 스트론튬 (Sr), 몰리브덴 (Mo), 티타늄 (Ti), 주석 (Sn), 인듐 (In), 바나듐 (V), 바륨 (Ba), 니켈 (Ni), 구리 (Cu), 나트륨 (Na), 칼륨 (K), 비소 (As), 코발트 (Co), 지르코늄 (Zr), 망간 (Mn) 및 알루미늄 (A1)의 산화물로 이루어진 군에서 선택된 1 종 이상의 금속 산화물로부터 형성된 것일 수 있다.
상기 유리프릿은 평균입경 (D50)이 0.1 m 내지 20 일 수 있다. 상기 조성물은 분산제, 요변제, 가'소제, 점도 안정화제, 소포제, 안료, 자외선 안정제, 산화방지제 및 커플링제로 이루어진 군으로부터 선택되는 첨가제를 1 종 이상 더 포함할 수 있다.
본 발명의 다른 관점은 상기 태양전지 전극 형성용 조성물로 제조된 태양전지 전극에 관한 것이다.
【유리한 효과】
본 발명의 태양전지 전극 형성용 조성물은 특정의 품드 실리카를 도입하여 전극과 웨이퍼와 접촉성을 개선하였으며, 상기 조성물로 제조된 태양전지 전극은 시리즈 저항이 (Rs)이 최소화되어 Fill Factor 및 변환 효율이 우수하다.
【도면의 간단한 설명】
도 1 은 웨이퍼 상에서 은 분말과 유리프릿이 소성 과정을 거쳐 은 결정입자가 생성되는 과정을 개략적으로 나타낸 개념도이다.
도 2 는 본 발명의 일 구체예에 따른 태양전지의 구조를 간략히 도시한 개략도이다.
【발명의 실시를 위한 최선의 형태】 태양전지 전극 형성용조성물
본 발명의 태양전지 전극 형성용 조성물은 은 분말; 품드 실리카; 유리프릿; 및 유기 비히클을 포함하는 태양전지 전극 형성용 조성물로서, 특정의 품드 실리카를 도입하여 전극과 웨이퍼와 접촉성을 개선하였으며, 상기 조성물로 제조된 태양전지 전극은 시리즈 저항이 (Rs)이 최소화되어 Fill Factor 및 변환 효율이 우수하다. 이하, 본 발명을 상세히 설명하면, 다음과 같다. (A) 은분말
본 발명의 태양전지 전극 형성용 조성물은 도전성 분말로서 은 (Ag) 분말을 사용한다. 상기 은 분말은 나노 사이즈 또는 마이크로 사이즈의 입경을 갖는 분말일 수 있는데, 예를 들어 수십 내지 수백 나노미터 크기의 은 분말, 수 내지 수십 마이크로미터의 은 분말일 수 있으며, 2 이상의 서로 다른 사이즈.를 갖는 은 분말을 흔합하여 사용할 수 있다.
은 분말은 입자 형상이 구형, 판상, 무정형 형상을 가질 수 있다
은 분말은 평균입경 (D50)은 바람직하게는 0.1 μιη 내지 10 이며, 더욱 바람직하게는 0.5 m 내지 5 이 될 수 있다. 상기 평균입경은 이소프로필알코을 (IPA)에 도전성 분말을 초음파로 25°C에서 3 분 동안 분산시킨 후 CILAS 社에서 제작한 1064LD 모델을 사용하여 측정된 것이다. 상기 범위 내에서, 접촉저항과 선 저항이 낮아지는 효과를 가질 수 있다.
은 분말은 조성물 전체 중량 대비 60 내지 95 중량 ¾로 포함될 수 있다. 상기 범위에서, 저항의 증가로 변환 효율이 낮아지는 것을 막을 수 있다. 바람직하게는 70 내지 90 중량 %로 포함될 수 있다.
(B) 품드실리카 도 1 을 참고하면, 태양전지 전극 형성을 위한 소성 단계에서 유리프릿 (112)은 p층 (또는 n층) (101) 및 에미터로서의 n층 (또는 p층) (102)을 포함하는 웨이퍼의 반사 방지막을 에칭하고, 은 (Ag) 입자 (111)를 용융시키며, 상기 용융된 은 입자가 웨이퍼 표면을 침투하여 은 결정 (crystalline)(113)을 형성함으로서 전극이 형성될 수 있는데, 은 결정이 형성되는 깊이 (ohmic contact)와 은 결정입자가 웨이퍼와 접촉되는 면적을 확보하는 것이 중요하다.
본 발명에서는 소성 과정에서 유리프릿의 반사방지막 에칭 정도를 조절하여 최적의 음 접촉 (ohmic conatact)을 형성하고, 유리프릿의 에칭에 의하여 불순물로 작용하는 유리프릿의 웨이퍼 내로 확산되는 것을 최소화하기 위한 흐름을 형성하기 위하여 품드 실리카 (Fumed Silica)를 도입하였다.
품드 실리카는 건식법에 의하여 제조된 합성 실리카로서 99.9% 이상의 고순도 물질이며 염화실란화합물을 기상 열분해하여 제조될 수 있다.
본 발명에서 상기 품드 실리카의 비표면적은 20 내지 500mVg, 바람직하게는 50 내지 200m2/g 인 품드 실리카를 사용하는 것이 소성과정 중에 에칭 조절 또는 불순물 확산 방지의 흐름을 적절하게 확보할 수 있으며, 이로 인하여 불순물 확산에 의한 시리즈 저항을 감소시킬 수 있고, Fill Factor 및 변환효율을 향상시킬 수 있다.
상기 품드 실리카는 조성물 전체 중량에 대하여 0.1 중량 % 이하로 포함될 수 있으며, 바람직하게는 0.01 내지 0.1 중량 %로 포함될 수 있다. 0.1 중량 %를 초과하는 경우에는 점도가 크게 증가하여 인쇄성이 저하될 수 있다.
(C) 유리프릿 유리프릿 (glass fr )은 전극 페이스트의 소성 공정 중 반사 방지막을 에칭 (etching)하고, 은 입자를 용융시켜 저항이 낮아질 수 있도록 에미터 영역에 은 결정 입자를 생성시키고, 전도성 분말과 웨이퍼 사이의 접착력을 향상시키고 소결시에 연화하여 소성 온도를 보다 낮추는 효과를 유도한다.
태양전지의 효율을 증가시키기 위하여 태양전지의 면적을 증가시키면 태양전지의 접촉저항이 높아질 수 있으므로 pn 접합 (pn junction)에 대한 피해를 최소화함과 동시에 직렬저항을 최소화시켜야 한다. 또한, 다양한 면저항의 웨이퍼의 증가에 따라 소성 온도가 변동폭이 커지므로 넓은 소성 온도에서도 열안정성을 층분히 확보될 수 있는 유리프릿을 사용하는 것이 바람직하다.
상기 유리프릿은 통상적으로 태양전지 전극 형성용 조성물에 사용되는 유연 유리프릿 또는 무연 유리프릿 중 어느 하나 이상이 사용될 수 있다.
상기 유리프릿은 납 (Pb), 텔루륨 (Te), 비스무스 (Bi), 게르마늄 (Ge), 갈륨 (Ga), 붕소 (B) 세륨 (Ce), 철 (Fe), 규소 (Si), 아연 (Zn), 탄탈륨 (Ta), 가돌리늄 (Gd), 안티모니 (Sb), 란타넘 (La), 네오디뮴 (Nd), 샐레늄 (Se), 이트륨 (Y), 인 (P), 크롬 (Cr), 리튬 (Li), 텅스텐 마그네슘 (Mg), 세슘 (Cs), 스트론튬 (Sr), 몰리브덴 (Mo), 티타늄 (Ti), 주석 (Sn 인듐 (In), 바나듐 (V), 바륨 (Ba), 니켈 (Ni), 구리 (Cu), 나트륨 (Na), 칼륨 00, 비소 (As), 코발트 (Co), 지르코늄 (Zr), 망간 (Mn) 및 알루미늄 (A1)의 산화물로 이루어진 군에서 선택된 1 종 이상의 금속 산화물로부터 형성될 수 있다.
일 구체예로서, 상기 유리프릿은 Pb-Si-0계, Pb-Si-Al-0계, Pb-Si-Al-P-0계,
Pb-Si-Al— Zn-0계, Pb-Bi-0계, Zn-Si-0계, Zn— B-Si-0계, Zn-B-Si-Al-0계, Bi-Si-0계
Bi-B-Si-0 겨), Bi-B-Si-Al-0 계, Bi-Zn-B-Si-0 계, Bi-Zn-B-Si-Al-0 겨), Pb-Te-0 계, -Te-Bi-0계, Pb-Te-Si-0계, Pb—Te-Li-0계, Bi-Te-0계, Bi— Te-Si-0계 또는 Bi-Te- Li-0 계 유리프릿일 수 있다. 본 발명에서 Pb-Si-0 계 유리프릿은 납 (Pb) 산화물 및 규소 (Si) 산화물을 포함하는 금속산화물로부터 형성된 것으로 납 원소와 규소 원소를 포함하는 유리프릿으로 정의하기로 하며, 상기 나열된 유리프릿 모두 동일한 방법으로 정의하기로 한다.
다른 구체예로서, 상기 유리프릿이 산화비스무스 및 산화텔루륨을 포함하는 금속 산화물로부터 형성된 Bi-Te-0 계 유리프릿인 경우, 상기 Bi-Te-0 계 유리프릿은 비스무스 (Bi) 및 텔루륨 (Te) 원소를 포함할 수 있고, 유리프릿 내에 존재하는 Bi 와 Te 의 몰비는 1 : 0.1 내지 1 : 50 일 수 있고, 바람직하게는 1 : 0.5 내지 1 : 30, 보다 바람직하게는 1 : 1 내지 1 : 20 일 수 있다. 상기 범위에서 낮은 직렬저항 및 접촉저항을 확보할 수 있다. 본 발명에서 몰비는 각 금속 성분의 원소 몰비를 의미한다.
상기 유리프릿은 평균입경 (D50)이 0.1 내지 20 인 것이 사용될 수 있으며, 조성물 전체 중량을 기준으로 0.5 내지 20 중량 % 포함될 수 있다. 상기 유리프릿의 형상은 구형이거나 부정형상이어도 무방하다.
또 다른 구체예로서, 상기 유리프릿은 전이점이 상이한 2 종의 유리프릿을 포함할 수 있다. 예를 들면, 전이점이 200 내지 320 °C인 제 1 유리프릿과 전이점이 300 내지 550°C인 제 2 유리프릿을 1: 0.2 내지 1 의 중량비로 흔합하여 사용할 수 있다.
또한, 상기 유리프릿은 상용의 제품을 구매하여 사용하거나 원하는 조성을 얻기 위해, 예를 들어, 이산화규소 (Si02), 알루미늄산화물 (A1203), 붕소산화물 (B203), 비스무스산화물 (Bi203), 나트륨산화물 (Na20), 산화아연 (ZnO) 등을 선택적으로 용융하여 제조할 수도 있다.
(D) 유기 비히클
유기 비히클은 태양전지 전극 형성용 조성물의 무기성분과 기계적 흔합을 통하여 페이스트 조성물에 인쇄에 적합한 점도 및 유변학적 특성을 부여한다.
상기 유기 비히클은 통상적으로 태양전지 전극 형성용 조성물에 사용되는 유기 비히클이 사용될 수 있는데, 통상 바인더 수지와 용매 등을 포함할 수 있다.
상기 바인더 수지로는 아크릴레이트계 또는 셀를로오스계 수지 등을 사용할 수 있으며 에틸 셀를로오스가 일반적으로 사용되는 수지이다. 그러나, 에틸 하이드록시에틸 셀를로오스, 니트로 셀를로오스, 에틸 셀를로오스와 페놀 수지의 흔합물, 알키드 수지, 페놀계 수지, 아크릴산 에스테르계 수지, 크실렌계 수지, 폴리부텐계 수지, 폴리에스테르계 수지, 요소계 수지, 멜라민계 수지, 초산비닐계 수지, 목재 로진 (rosin) 또는 알콜의 폴리메타크릴레이트 등을 사용할 수도 있다. 상기 용매로는 예를 들어, 핵산, 를루엔, 에틸셀로솔브, 시클로핵사논, 부틸센로솔브, 부틸 카비를 (디에틸렌 글리콜 모노부틸 에테르), 모노이소부티레이트, 디부틸 카비를 (디에틸렌 글리콜 디부틸 에테르), 부틸 카비를 아세테이트 (디에틸렌 글리콜 모노부틸 에테르 아세테이트), 프로필렌 글리콜 모노메틸 에테르, 핵실렌 글리콜, 터핀올 (Terpineol), 메틸에틸케톤, 벤질알콜, 감마부티로락톤 또는 에틸락테이트 등을 단독 또는 2종 이상 흔합하여 사용할 수 있다.
상기 유기 비히클의 배합량은 조성물 전체 중량에 대하여 1 내지 30 중량 ¾»일 수 있다. 상기 범위에서 충분한 접착강도와 우수한 인쇄성을 확보할 수 있다. (E) 첨가제
본 발명의 태양전지 전극 형성용 조성물은 상기한 구성 요소 외에 유동 특성, 공정 특성 및 안정성을 향상시키기 위하여 필요에 따라 통상의 첨가제를 더 포함할 수 있다. 상기 첨가제는 분산제, 요변제, 가소제, 점도 안정화제, 소포제, 안료, 자외선 안정제, 산화방지제, 커플링제 등을 단독 또는 2 종 이상 흔합하여 사용할 수 있다. 이들은 조성물 전제 중량에 대하여 0.1 내지 5 중량 %로 첨가되지만 필요에 따라 변경할 수 있다. 태양전지 전극 및 이를포함하는 태양전지
본 발명의 다른 관점은 상기 태양전지 전극 형성용 조성물부터 형성된 전극 및 이를 포함하는 태양전지에 관한 것이다. 도 2 은 본 발명의 한 구체예에 따른 태양전지의 구조를 나타낸 것이다.
도 2를 참조하면, p층 (101) 및 에미터로서의 n층 (102)을 포함하는 웨이퍼 (100) 또는 기판 상에, 상기 태양전지 전극 형성용 조성물을 인쇄하고 소성하여 후면 전극 (210) 및 전면 전극 (230)을 형성할 수 있다. 예컨대, 태양전지 전극 형성용 조성물을 웨이퍼의 후면에 인쇄 도포한 후, 200°C 내지 400°C 온도로 10 내지 60 초 정도 건조하여 후면 전극을 위한 사전 준비 단계를 수행할 수 있다. 또한, 웨이퍼의 전면에 태양전지 전극 형성용 조성물을 인쇄한 후 건조하여 전면 전극을 위한 사전 준비단계를 수행할 수 있다. 이후에, 40C C 내지 950°C, 바람직하게는 85CTC 내지 950°C에서 30 초 내지 50 초 정도 소성하는 소성 과정을 수행하여 전면 전극 및 후면 전극을 형성할 수 있다. 【발명의 실시를 위한 형태】
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로 본 발명을 제한하는 것으로 해석되어서 안 된다.
실시예 1-5및 비교예 1-8
실시예 1
유기 바인더로서 에틸샐를로오스 (Dow chemical company, STD4) 1.0 중량^ 용매인 텍사놀 (Eastman 社, Texanol ester-alcohol) 6.69 중량 %에 60°C에서 층분히 용해한 후 평균입경이 2.0 im인 구형의 은 분말 (Dowa Hightech CO. LTD, AG— 4-8) 89 중량 %, 평균 입경이 1.0 이고 전이점이 350°C인 Pb-Si-Al-0 계 저융점 유연 유리 분말 2.5 중량 %, BET 비표면적이 200土 25m2/g 인 품드 실리카 (Evonik 社, Aerosil® 200) 0.01 중량 %, 분산제 (BYK-chemie, BYK102) 0.4 증량 %, 요변제 (Elementis 社, Thixatrol® ST) 0.4 중량 %투입하여 골고루 믹싱 후 3 롤 흔련기로 흔합 분산시켜 태양전지 전극 형성용 조성물을 제조하였다.
상기 태양전지 전극 형성용 조성물을 85 Ω/sq.의 면저항을 가지는 웨이퍼 (Wafer) 전면에 일정한 패턴으로 스크린 프린팅 하여 인쇄하고, 적외선 건조로를 사용하여 건조시켰다. 이후 웨이퍼의 후면에 알루미늄 페이스트를 인쇄한 후 동일한 방법으로 건조하였다. 상기 과정으로 형성된 Ceil 을 벨트형 소성로를 사용하여 400 내지 900 °C사이로 30 초에서 50 초간 소성을 행하였으며, 이렇게 제조 완료된 Cell 은 태양전지효율 측정장비 (Pasan 社, CT-801)를 사용하여 태양전지의 Fill Factor (FF, %) 및 변환효율 (%)을 측정하여 하기 표 1에 나타내었다.
실시예 2 - 3
하기 표 1 의 조성으로 각 성분을 사용한 것을 제외하고는 상기 실시예 1 과 동일한 방법으로 태양전지 전극 형성용 조성물을 쩨조하였으며, 상기 조성물을 인쇄하여 전극을 형성한 후 Fill Factor (FF, ) 및 변환효율 (%)을 측정하여 하기 표 1에 함께 나타내었다.
실시예 4
Pb 대 Te 의 몰비가 1 : 2 인 Pb-Te— Bi 계 유리프릿을 사용하고, 하기 표 1 의 조성으로 각 성분을 사용한 것을 제외하고는 상기 실시예 1 과 동일한 방법으로 태양전지 전극 형성용 조성물을 제조하였으며, 상기 조성물을 인쇄하여 전극을 형성한 후 Fill Factor (FF, ) 및 변환효율 (%)을 측정하여 하기 표 1에 함께 나타내었다. 실시예 5
Pb 대 Te 의 몰비가 1 : 1.5 인 Pb-Te-Bi 계 유리프릿을 사용하고, 하기 표 1 의 조성으로 각 성분을 사용한 것을 제외하고는 상기 실시예 1 과 동일한 방법으로 태양전지 전극 형성용 조성물을 제조하였으며, 상기 조성물을 인쇄하여 전극을 형성한 후 Fill Factor (FF, %) 및 변환효율 을 측정하여 하기 표 1에 함께 나타내었다. 비교예 1 - 8
하기 표 1 의 조성으로 각 성분을 사용한 것을 제외하고는 상기 실시예 1 과 동일한 방법으로 태양전지 전극 형성용 조성물을 제조하였으며, 상기 조성물을 인쇄하여 전극을 형성한 후 Fill Factor (FF, %) 및 변환효율 (%)을 측정하여 하기 표 1에 함께 나타내었다. '【표 1】
Figure imgf000015_0001
상기 표 1 에서 보듯이, 특정 비표면적을 갖는 극미세 품드 실리카를 사용한 실시예 1-5는 품드 실리카 이외의 무기물을 사용한 비교예 1-6및 무기물을 사용하지 않은 비교예 7 에 비하여 Fill Factor 값이 현저히 증가된 것을 알 수 있으며 이로 인하여 변환효율 역시 우수하게 나타난 것을 알 수 있다. 이는 실시예에서 사용한 품드 실리카로 인하여 소성과정에서 최적의 음 접촉 (ohmic contact)이 형성되고 유리프릿상 불순물이 웨이퍼 내로 침투하거나 확산되는 것을 최소화시킬 수 있었기 때문이다. 또한, 비교예 8 은 품드 실리카를 과량 사용한 예로서 조성물의 점도가 크게 증가하여 인쇄성이 저하되고 Fill Factor 및 변환효율이 저하된 것을 알 수 있다. 실시예 6-8 및 비교예 9-10
실시예 6
유기 바인더로서 에틸셀를로오스 (Dow chemical company, STD4) 1 중량 %를 용매인 텍사놀 (Eastman 社, Texanol ester-alcohol) 6.69 중량 에 60°C에서 충분히 용해한 후 평균입경이 2.5 인 구형의 은 분말 (Dowa Hightech CO. LTD, AG-5-11F) 89 중량 %, 하기 표 2 의 조성을 갖는 Bi-Te-0 계 유리프릿 2.5 중량 %, BET 비표면적이 200±25m2/g 인 품드 실리카 (Evonik 社, Aerosil® 200) 0.01 중량 ¾>, 분산제 (BYK- chemie, BYK102) 0.4 중량 %, 요변제 (Elementis 社, Thixatrol® ST) 0.4 중량 % 투입하여 골고루 믹싱 후 3 를 흔련기로 흔합 분산시켜 태양전지 전극 형성용 조성물을 제조하였다.
상기 태양전지 전극 형성용 조성물을 85 Ω/sq.의 면저항을 가지는 웨이퍼 (Wafer) 전면에 일정한 패턴으로 스크린 프린팅 하여 인쇄하고, 적외선 건조로를 사용하여 건조시켰다. 이후 웨이퍼의 후면에 알루미늄 페이스트를 인쇄한 후 동일한 방법으로 건조하였다. 상기 과정으로 형성된 Cell 을 벨트형 소성로를 사용하여 400 내지 900 °C사이로 30 초에서 50 초간 소성을 행하였으며, 이렇게 제조 완료된 Cell 은 태양전지효율 측정장비 (Pasan 社, CT-801)를 사용하여 태양전지의 개방전압 (Voc, V), Fill Factor (FF, %) 및 변환효율 (%)을 측정하여 하기 표 3 에 나타내었다. 실시예 7 - 8
하기 표 3 의 조성인 것을 제외하고는 실시예 6 과 동일한 방법으로 태양전지 전극 형성용 조성물을 제조하였으며, 상기 조성물을 인쇄하여 전극을 형성한 후 물성 측정 후 하기 표 2에 함께 나타내었다. 비교예 9
하기 표 3 의 조성인 것을 제외하고는 실시예 6 과 동일한 방법으로 태양전지 전극 형성용 조성물을 제조하였으며, 상기 조성물을 인쇄하여 전극을 형성한 후 물성 측정 후 하기 표 3에 함께 나타내었다. 비교예 10
Bi 와 Te 의 몰비가 1 : 60 인 Biᅳ Te-0 계 유리프릿을 사용한 것을 제외하고는 실시예 6 과 동일한 방법으로 태양전지 전극 형성용 조성물을 제조하였으며, 상기 조성물을 인쇄하여 전극을 형성한 후 물성 측정 후 하기 표 3에 함께 나타내었다.
【표 2】
Figure imgf000017_0001
【표 3】
Figure imgf000018_0001
(단위 :중량 %) 상기 표 3 의 결과값에서 보듯이 품드 실리카와 비스무스 (Bi) 및 텔루륨 (Te) 원소를 포함하는 유리프릿을 사용한 태양전지 전극 형성용 조성물로 제조된 실시예 6 내지 8 의 전극은 품드 실리카를 사용하지 않은 비교예 9 의 전극, 비스무스 대 텔루륨의 몰비가 1 : 50 을 초과하는 비교예 10 의 전극에 비하여 Fill Factor 및 변환효율이 우수한 것을 확인할 수 있다. 본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims

【청구의 범위】
【청구항 1】
은 분말 ; 품드 실리카 ; 유리프릿 ; 및 유기 비히클을 포함하는 조성물이고, 상기 품드 실리카는 조성물 전체 중량에 대하여 0.01 내지 0.1 중량 %로 포함되는 것을 특징으로 하는 태양전지 전극 형성용 조성물 .
【청구항 2]
제 1 항에 있어서, 상기 은 분말 60 내지 95 증량 상기 품드실리카 0.01 내지 0.1 중량 상기 유리프릿 0.5 내지 20 중량 및 상기 유기 비히클 1 내지 30 중량 %를 포함하는 태양전지 전극 형성용 조성물 .
【청구항 3】
제 1 항에 있어서, 상기 품드 실리카의 비표면적 (BET)은 20 내지 300m2/g 인 것을 특징으로 하는 태양전지 전극 형성용 조성물 .
【청구항 4]
제 1 항에 있어서 , 상기 유리프릿은 Pb-Si-0 계, Pb-Si-AI-0 계 , Pb-Si-M-P-0 계 Pb-Si-M-Zn-0 계, Pbᅳ Bi-0 계, Zn-Si-0 계, Zn-Bᅳ SH3 계, Zn-B—Si-Alᅳ 0 계, Bi— Si-0 계 Bi-B-Si-0 계 , Bi-B-Si-Al-0 계 , Bi-Zn-B-Si-0 계, Bi-Zn-B-Si-Al-0 계, Pb-Te-0 계, Pb-Te-Bi-0 계, Pb—Te-Si-0 계, Pb—Te-Li-0 계, Bi-Te-0 계, Bi-Te-Si-0 계 또는 Bi-Te- Li-0 계 유리프릿인 것을 특징으로 하는 태양전지 전극 형성용 조성물 .
【청구항 5】
제 1 항에 있어서, 상기 유리프릿은 Bi 와 Te 의 몰비가 1 : 0.1 내지 1 : 50 인
Bi-Te-0 계 유리프릿인 태양전지 전극 형성용 조성물 .
【청구항 6】 제 1 항에 있어서, 상기 유리프릿은 납 (Pb), 텔루륨 (Te), 비스무스 (Bi), 게르마늄 (Ge), 갈륨 (Ga), 붕소 (B) 세륨 (Ce), 철 (Fe), 규소 (Si), 아연 (Zn), 탄탈륨 (Ta) 가돌리늄 (Gd), 안티모니 (Sb), 란타넘 (La), 네오디뮴 (Nd), 셀레늄 (Se), 이트륨 (Y)ᅳ 인 (P), 크름 (Cr), 리튬 (Li), 텅스텐 (O, 마그네슴 (Mg), 세슘 (Cs), 스트론튬 (Sr), 몰리브덴 (Mo), 티타늄 (Ti), 주석 (Sn), 인듐 (In), 바나듐 (V), 바륨 (Ba), 니켈 (Ni), 구리 (Cu), 나트륨 (Na), 칼륨 00, 비소 (As), 코발트 (Co), 지르코늄 (Zr), 망간 (Mn) 및 알루미늄 (A1)의 산화물로 이루어진 군에서 선택된 1 종 이상의 금속 산화물로부터 형성된 것인 태양전지 전극 형성용 조성물.
【청구항 7]
제 1항에 있어서, 상기 유리프릿은 평균입경 (D50)이 0.1 im 내지 20 인 것을 특징으로 하는 태양전지 전극 형성용 조성물.
【청구항 8】
제 1 항에 있어서, 상기 조성물은 분산제, 요변제, 가소제, 점도 안정화제, 소포제, 안료, 자외선 안정제, 산화방지제 및 커플링제로 이루어진 군으로부터 선택되는 첨가제를 1 종 이상 더 포함하는 것을 특징으로 하는 태양전지 전극 형성용 조성물.
【청구항 9】
제 1 항 내지 제 8 항 중 어느 한 항의 태양전지 전극 형성용 조성물로 제조된 태양전지 전극.
PCT/KR2014/002608 2013-03-27 2014-03-27 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극 WO2014157958A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480018000.2A CN105051830B (zh) 2013-03-27 2014-03-27 形成太阳电池电极用的组成物及以所述组成物制备的电极
JP2016505399A JP6343661B2 (ja) 2013-03-27 2014-03-27 太陽電池電極形成用組成物およびそれにより製造された電極
US14/763,260 US9899545B2 (en) 2013-03-27 2014-03-27 Composition for forming solar cell electrode and electrode produced from same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020130033029A KR101566071B1 (ko) 2013-03-27 2013-03-27 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
KR10-2013-0033029 2013-03-27
KR1020140031876A KR101835921B1 (ko) 2014-03-18 2014-03-18 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
KR10-2014-0031876 2014-03-18

Publications (1)

Publication Number Publication Date
WO2014157958A1 true WO2014157958A1 (ko) 2014-10-02

Family

ID=51624821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002608 WO2014157958A1 (ko) 2013-03-27 2014-03-27 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극

Country Status (5)

Country Link
US (1) US9899545B2 (ko)
JP (1) JP6343661B2 (ko)
CN (1) CN105051830B (ko)
TW (1) TWI562171B (ko)
WO (1) WO2014157958A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160141068A1 (en) * 2014-11-13 2016-05-19 Samsung Sdi Co., Ltd. Paste for forming solar cell electrode and electrode prepared using the same
US20160163894A1 (en) * 2014-12-08 2016-06-09 Giga Solar Materials Corp. Conductive paste containing lead-free glass frit
US20160163893A1 (en) * 2014-12-08 2016-06-09 Giga Solar Materials Corp. Conductive paste containing lead-free glass frit
CN105679399A (zh) * 2014-12-08 2016-06-15 硕禾电子材料股份有限公司 含无铅玻璃料的导电浆
CN105679402A (zh) * 2014-12-08 2016-06-15 硕禾电子材料股份有限公司 含无铅玻璃料的导电浆
US20160190361A1 (en) * 2014-12-31 2016-06-30 Heraeus Precious Metals North America Conshohocken Llc Glass compositions for electroconductive paste compositions
JP2016127276A (ja) * 2014-12-30 2016-07-11 三星エスディアイ株式会社Samsung SDI Co., Ltd. 太陽電池電極形成用組成物およびこれを用いて製造された電極
CN110663119A (zh) * 2017-05-31 2020-01-07 东洋铝株式会社 太阳能电池用膏状组合物

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104876448A (zh) * 2015-04-23 2015-09-02 江苏欧耐尔新型材料有限公司 低铅太阳能银浆玻璃粉及其制备方法
US20170144920A1 (en) * 2015-11-20 2017-05-25 Giga Solar Materials Corp. Crystalline oxides, preparation thereof and conductive pastes containing the same
KR20170128029A (ko) * 2016-05-13 2017-11-22 삼성에스디아이 주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
CN109074895B (zh) * 2016-08-16 2022-05-27 浙江凯盈新材料有限公司 用于硅太阳能电池中正面金属化的厚膜浆料
SG11201809794SA (en) 2016-12-20 2018-12-28 Zhejiang Kaiying New Materials Co Ltd Interdigitated back contact metal-insulator-semiconductor solar cell with printed oxide tunnel junctions
MY189222A (en) 2016-12-20 2022-01-31 Zhejiang Kaiying New Mat Co Ltd Siloxane-containing solar cell metallization pastes
WO2018186295A1 (ja) * 2017-04-07 2018-10-11 ハリマ化成株式会社 無機粒子分散体
WO2019054242A1 (ja) * 2017-09-12 2019-03-21 Dowaエレクトロニクス株式会社 銀被覆ガラス粉末およびその製造方法
JP2019052080A (ja) * 2017-09-12 2019-04-04 Dowaエレクトロニクス株式会社 銀被覆ガラス粉末およびその製造方法
KR102007858B1 (ko) * 2017-11-06 2019-08-06 엘에스니꼬동제련 주식회사 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
GB201806411D0 (en) 2018-04-19 2018-06-06 Johnson Matthey Plc Kit, particle mixture, paste and methods
JP7082408B2 (ja) * 2018-07-26 2022-06-08 ナミックス株式会社 導電性ペースト
KR20200015318A (ko) * 2018-08-03 2020-02-12 삼성에스디아이 주식회사 알루미늄 산화물층을 포함하는 태양 전지의 전극 형성용 조성물, 이로부터 제조된 전극 및 이로부터 제조된 전극을 포함하는 태양 전지
US10749045B1 (en) 2019-05-23 2020-08-18 Zhejiang Kaiying New Materials Co., Ltd. Solar cell side surface interconnects
US10622502B1 (en) 2019-05-23 2020-04-14 Zhejiang Kaiying New Materials Co., Ltd. Solar cell edge interconnects
JPWO2021145269A1 (ko) 2020-01-16 2021-07-22
KR20210121343A (ko) * 2020-03-26 2021-10-08 창저우 퓨전 뉴 머티리얼 씨오. 엘티디. 태양전지 전극 형성용 조성물 및 이로부터 형성된 태양전지 전극
CN113409986B (zh) * 2021-07-14 2022-11-15 晶澜光电科技(江苏)有限公司 一种太阳能电池p+电极用银铝浆及太阳能电池
CN114283963B (zh) * 2021-12-20 2023-05-26 江苏索特电子材料有限公司 导电浆料组合物及其制备方法和应用、晶硅太阳能电池
CN117038146B (zh) * 2023-08-28 2024-01-16 江苏日御光伏新材料科技有限公司 一种用于太阳能硅片电池的正银主栅浆料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100000685A (ko) * 2008-06-25 2010-01-06 에스에스씨피 주식회사 전도성 페이스트 조성물 및 이를 이용한 전극 제조방법
KR20110025614A (ko) * 2009-09-04 2011-03-10 동우 화인켐 주식회사 태양전지의 후면 전극용 알루미늄 페이스트
KR20110077731A (ko) * 2009-12-30 2011-07-07 엘지전자 주식회사 태양전지
KR101178180B1 (ko) * 2010-05-07 2012-08-30 한국다이요잉크 주식회사 결정형 태양전지 후면 전극 제조용 조성물
WO2012138930A2 (en) * 2011-04-05 2012-10-11 E. I. Du Pont De Nemours And Company Thick film paste containing bismuth-tellurium-oxide and its use in the manufacture of semiconductor devices

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766690B2 (ja) * 1986-10-13 1995-07-19 株式会社村田製作所 導電ペ−スト
JPH0977949A (ja) * 1994-11-07 1997-03-25 Heraeus Inc 水性銀組成物
US8309844B2 (en) * 2007-08-29 2012-11-13 Ferro Corporation Thick film pastes for fire through applications in solar cells
EP2383794A4 (en) * 2009-01-23 2013-06-05 Toyo Aluminium Kk PASTE COMPOSITION AND SOLAR CELL ELEMENT THEREWITH
KR101611456B1 (ko) * 2009-09-02 2016-04-11 엘지이노텍 주식회사 인계 분산제를 포함하는 전극 형성용 페이스트 조성물
CN102157219B (zh) * 2011-01-12 2012-06-27 西安银泰新能源材料科技有限公司 晶体硅太阳能电池正面电极银浆及其制备方法
US8790550B2 (en) * 2011-06-06 2014-07-29 E I Du Pont De Nemours And Company Low temperature fireable thick film silver paste
JP2013235942A (ja) 2012-05-08 2013-11-21 Hitachi Chemical Co Ltd 不純物拡散層形成組成物、不純物拡散層の製造方法、太陽電池素子の製造方法、及び太陽電池
CN103337277A (zh) * 2013-07-11 2013-10-02 中国工程物理研究院化工材料研究所 一种太阳能电池正面电极用导电银浆及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100000685A (ko) * 2008-06-25 2010-01-06 에스에스씨피 주식회사 전도성 페이스트 조성물 및 이를 이용한 전극 제조방법
KR20110025614A (ko) * 2009-09-04 2011-03-10 동우 화인켐 주식회사 태양전지의 후면 전극용 알루미늄 페이스트
KR20110077731A (ko) * 2009-12-30 2011-07-07 엘지전자 주식회사 태양전지
KR101178180B1 (ko) * 2010-05-07 2012-08-30 한국다이요잉크 주식회사 결정형 태양전지 후면 전극 제조용 조성물
WO2012138930A2 (en) * 2011-04-05 2012-10-11 E. I. Du Pont De Nemours And Company Thick film paste containing bismuth-tellurium-oxide and its use in the manufacture of semiconductor devices

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160141068A1 (en) * 2014-11-13 2016-05-19 Samsung Sdi Co., Ltd. Paste for forming solar cell electrode and electrode prepared using the same
CN105609161A (zh) * 2014-11-13 2016-05-25 三星Sdi株式会社 太阳能电池电极用的糊料及使用其制备的太阳能电池电极
US10720260B2 (en) * 2014-11-13 2020-07-21 Samsung Sdi Co., Ltd. Paste for forming solar cell electrode and electrode prepared using the same
CN105679402A (zh) * 2014-12-08 2016-06-15 硕禾电子材料股份有限公司 含无铅玻璃料的导电浆
CN105679399A (zh) * 2014-12-08 2016-06-15 硕禾电子材料股份有限公司 含无铅玻璃料的导电浆
EP3032544A1 (en) * 2014-12-08 2016-06-15 Giga Solar Materials Corp. A conductive paste containing lead-free glass frit
US20160163893A1 (en) * 2014-12-08 2016-06-09 Giga Solar Materials Corp. Conductive paste containing lead-free glass frit
CN105679403A (zh) * 2014-12-08 2016-06-15 硕禾电子材料股份有限公司 含无铅玻璃料的导电浆
CN105679402B (zh) * 2014-12-08 2018-01-12 硕禾电子材料股份有限公司 含无铅玻璃料的导电浆
US20160163894A1 (en) * 2014-12-08 2016-06-09 Giga Solar Materials Corp. Conductive paste containing lead-free glass frit
JP2016127276A (ja) * 2014-12-30 2016-07-11 三星エスディアイ株式会社Samsung SDI Co., Ltd. 太陽電池電極形成用組成物およびこれを用いて製造された電極
US20160190361A1 (en) * 2014-12-31 2016-06-30 Heraeus Precious Metals North America Conshohocken Llc Glass compositions for electroconductive paste compositions
CN110663119A (zh) * 2017-05-31 2020-01-07 东洋铝株式会社 太阳能电池用膏状组合物
CN110663119B (zh) * 2017-05-31 2023-08-29 东洋铝株式会社 太阳能电池用膏状组合物

Also Published As

Publication number Publication date
JP6343661B2 (ja) 2018-06-13
CN105051830B (zh) 2017-03-08
CN105051830A (zh) 2015-11-11
US20150364622A1 (en) 2015-12-17
TW201445581A (zh) 2014-12-01
US9899545B2 (en) 2018-02-20
JP2016538708A (ja) 2016-12-08
TWI562171B (en) 2016-12-11

Similar Documents

Publication Publication Date Title
WO2014157958A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
US9997648B2 (en) Composition for solar cell electrode and electrode prepared using the same
US10164128B2 (en) Composition for solar cell electrodes and electrode fabricated using the same
US9741876B2 (en) Composition for solar cell electrodes and electrode fabricated using the same
US9834470B1 (en) Thick-film paste for front-side metallization in silicon solar cells
KR101716525B1 (ko) 태양전지 전극용 페이스트 조성물 및 이로부터 제조된 전극
JP6605800B2 (ja) 太陽電池電極形成用組成物およびこれにより製造された電極
US20140186994A1 (en) Composition for solar cell electrodes and electrode fabricated using the same
KR101768276B1 (ko) 태양전지
US9818889B2 (en) Composition for solar cell electrodes and electrode fabricated using the same
TWI684289B (zh) 太陽能電池
KR101659118B1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
TW201925124A (zh) 用於形成太陽能電池電極的組成物和使用其製備的電極
TWI721279B (zh) 太陽能電池
KR101566071B1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
TWI648239B (zh) P型太陽能電池電極的組成物、由使用此組成物製備的電極以及使用此組成物製備的p型太陽能電池
KR101835921B1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
TWI741393B (zh) 用於形成基於dsw的太陽能電池電極的組合物以及使用所述組合物製備的基於dsw的太陽能電池電極
TWI681410B (zh) 用於太陽電池電極的組成物及使用其製備的太陽電池電極
KR20190066157A (ko) 태양전지
JP2017112097A (ja) 電極形成用組成物ならびにこれを用いて製造された電極および太陽電池
KR20150019404A (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018000.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774522

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14763260

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016505399

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774522

Country of ref document: EP

Kind code of ref document: A1