WO2014157155A1 - めっき密着性に優れた溶融亜鉛系めっき鋼板およびその製造方法 - Google Patents
めっき密着性に優れた溶融亜鉛系めっき鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2014157155A1 WO2014157155A1 PCT/JP2014/058208 JP2014058208W WO2014157155A1 WO 2014157155 A1 WO2014157155 A1 WO 2014157155A1 JP 2014058208 W JP2014058208 W JP 2014058208W WO 2014157155 A1 WO2014157155 A1 WO 2014157155A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel sheet
- plating
- hot
- heat treatment
- Prior art date
Links
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims abstract description 17
- 239000008397 galvanized steel Substances 0.000 title claims abstract description 17
- 239000011248 coating agent Substances 0.000 title abstract 3
- 238000000576 coating method Methods 0.000 title abstract 3
- 238000000034 method Methods 0.000 title description 12
- 230000008569 process Effects 0.000 title description 5
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 113
- 239000010959 steel Substances 0.000 claims abstract description 113
- 239000002131 composite material Substances 0.000 claims abstract description 12
- 229910006639 Si—Mn Inorganic materials 0.000 claims abstract description 7
- 229910008458 Si—Cr Inorganic materials 0.000 claims abstract description 3
- 239000011247 coating layer Substances 0.000 claims abstract 3
- 238000007747 plating Methods 0.000 claims description 107
- 238000010438 heat treatment Methods 0.000 claims description 57
- 230000009467 reduction Effects 0.000 claims description 48
- 229910052710 silicon Inorganic materials 0.000 claims description 23
- 229910052748 manganese Inorganic materials 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 229910052796 boron Inorganic materials 0.000 claims description 10
- 229910052804 chromium Inorganic materials 0.000 claims description 9
- 238000005246 galvanizing Methods 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 8
- 238000005098 hot rolling Methods 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 230000002829 reductive effect Effects 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims 2
- 229910018134 Al-Mg Inorganic materials 0.000 abstract description 23
- 229910018467 Al—Mg Inorganic materials 0.000 abstract description 23
- 229910052751 metal Inorganic materials 0.000 abstract description 23
- 239000002184 metal Substances 0.000 abstract description 23
- 238000005336 cracking Methods 0.000 abstract description 17
- 238000007598 dipping method Methods 0.000 abstract description 17
- 229910045601 alloy Inorganic materials 0.000 abstract description 3
- 239000000956 alloy Substances 0.000 abstract description 3
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 23
- 238000003466 welding Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 15
- 238000012360 testing method Methods 0.000 description 14
- 239000012298 atmosphere Substances 0.000 description 9
- 239000002436 steel type Substances 0.000 description 9
- 238000005452 bending Methods 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 238000005728 strengthening Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 239000011324 bead Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- 239000010960 cold rolled steel Substances 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229910004283 SiO 4 Inorganic materials 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229920000298 Cellophane Polymers 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910004349 Ti-Al Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910004692 Ti—Al Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0473—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0478—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0222—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
Definitions
- the present invention is a steel plate containing B as a plating base plate and further containing one or more of Si, Mn, and Cr and subjected to hot-dip Zn-Al-Mg plating,
- the present invention relates to a hot dip galvanized steel sheet having improved metal embrittlement cracking and plating adhesion and a method for producing the same.
- Hot-dip galvanized steel sheets are widely used in various applications. However, when galvanized steel sheets are welded, cracks may occur in the weld heat affected zone, which may be a problem. This phenomenon is generally called “molten metal embrittlement cracking”, and it is considered that the molten plating component acts on the grain boundaries of the steel sheet to cause brittle fracture (grain boundary fracture).
- hot-dip Zn-Al-Mg-based steel sheets are excellent in corrosion resistance and are used in various corrosion resistance applications including building materials. Recently, a hot-dip Zn—Al—Mg-based steel sheet has been increasingly applied as a substitute for a conventional general galvanized steel sheet. However, the hot-dip Zn—Al—Mg-based plated steel sheet tends to cause molten metal embrittlement cracking more easily than the conventional hot-dip galvanized steel sheet.
- Patent Document 1 it is known that it is effective to apply a plating original plate containing B as a technique for improving resistance to molten metal embrittlement cracking.
- Patent Document 2 discloses a technique for producing a molten Zn—Al—Mg based steel sheet using a steel type for a high-strength steel sheet containing a relatively large amount (around 2% by mass) of Mn as a plating base sheet.
- molten metal embrittlement cracking no special consideration is given to the resistance to molten metal embrittlement cracking, and when this is used for welding, molten metal embrittlement cracking may become a problem.
- Patent Document 3 also discloses a technique for manufacturing a hot-dip Zn—Al—Mg based steel sheet using a high strength steel sheet containing a relatively large amount (1% by mass or more) of Mn as a plating base sheet.
- the plating original plate targeted by this technique contains B in order to improve the resistance to molten metal embrittlement cracking.
- the use of a relatively high Mn-based high-strength steel type containing B for the plating original plate causes a new problem that the adhesion of the molten Zn—Al—Mg-based plating layer tends to be lowered. .
- Patent Document 4 discloses a technique for manufacturing a hot-dip Zn—Al—Mg-based plated steel sheet on a high-strength steel sheet containing a large amount of Mn (1.5% by mass or more). Although the original plating plate targeted by this technique does not contain B, this document discloses that hot-dip Zn-Al-Mg-based plating causes problems such as non-plating and poor plating adhesion. ing. In this technique, the problem of non-plating and plating adhesion is solved by controlling the reducing atmosphere in the reduction heat treatment to bring SiO 2 in the surface layer portion of the steel sheet into an internal oxidation state.
- the external oxidation of Si is suppressed while reducing Fe, and one kind selected from FeSiO 3 , Fe 2 SiO 4 , MnSiO 3 , Mn 2 SiO 4 on the steel sheet surface or surface side.
- FeSiO 3 , Fe 2 SiO 4 , MnSiO 3 , Mn 2 SiO 4 on the steel sheet surface or surface side.
- the reduction heat treatment is also a treatment for adjusting the metal structure so that the mechanical properties of the plated steel plate have a predetermined performance by subjecting the steel plate to a high temperature. If the metal structure of a steel sheet containing B simultaneously with Si, Mn and Cr is adjusted according to the combination of the reduction heat treatment temperature and the holding time with good plating adhesion disclosed in Patent Document 3, the holding time cannot be increased. There was also a problem. In production equipment that continuously performs reduction heat treatment and hot dipping, the sheet passing speed of the steel sheet may be reduced for operational reasons. Even in such a case, it is advantageous that the plating adhesion can be secured even if the holding time is increased.
- the present invention uses a steel plate to which B is added and imparted resistance to molten metal embrittlement cracking as a plating base plate, and a molten Zn—Al—Mg based alloy plating excellent in plating adhesion
- the object is to produce a steel plate.
- the above-mentioned object is intended for a plating original sheet containing B, and by defining the conditions of the coiling temperature when hot rolling the steel sheet and the conditions of the reduction heat treatment performed when introduced into the hot dip galvanizing bath This is achieved by suppressing the steel sheet surface from being covered with a Si—Mn—B-based oxide during the reduction heat treatment to ensure plating adhesion.
- C 0.01 to 0.20%, P: 0.030% or less, S: 0.010% or less, Ti: 0.010 to 0.150%, sol.Al. : 0.100% or less, N: less than 0.010%, B: 0.0003 to 0.0100%, Si: 0.01 to 1.00%, Mn: 0.10 to 2.50%, Cr: A steel plate containing at least one selected from the group of 0.05 to 1.00%, the balance being Fe and unavoidable impurities, Winding a hot-rolled steel sheet in the range of 550 to 700 ° C; Subsequent to the reduction heat treatment, by hot dip galvanizing containing Al: 1.0 to 22.0%, Mg: 0.1 to 10.0% in mass%, the balance being Zn and inevitable impurities is applied.
- the time during which the steel sheet surface temperature is maintained at 750 ° C. or higher in the reductive heat treatment furnace is defined as “holding time”, and the maximum temperature reached on the steel sheet surface in the furnace is defined as “reducing heat treatment temperature”.
- the reduction heat treatment temperature is 750 to 860 ° C.
- Concentration (mass%) of Si and Mn within 4 ⁇ m from the steel sheet surface before the reduction heat treatment A; Si: 0.15% or less, and Mn: 0.8% or less, B; Si: 0.6% or less and Mn: 1.5% or less, provided that A is not satisfied, C: Si: more than 0.6%, or Mn: more than 1.5%.
- the hot dip galvanizing further contains at least one selected from the group consisting of Ti: 0.10% or less, B: 0.05% or less, Si: 2.0% or less by mass%. It does not matter.
- the surface of the steel plate within 10 ⁇ m of the surface of the plating original plate when hot rolling is taken up, the Si single oxide, the Mn single oxide, the Cr single oxide, the Si—Mn composite oxide, At least one of a Si—Cr composite oxide, a Mn—Cr composite oxide, and a Si—Mn—Cr composite oxide is formed.
- Such internal oxides are generated when the plating original plate has a chemical composition of mass%, Si: 0.01 to 1.00%, Mn: 0.10 to 2.50%, Cr: 0.00. This is because it contains one or more selected from the group of 05 to 1.00%.
- the inventors delay the diffusion of B to the surface layer even if a Si—Mn-based oxide is generated on the steel sheet surface in a reducing atmosphere.
- the concentration of Si and Mn is lower than the content of Si and Mn in the steel sheet within 4 ⁇ m from the surface of the steel sheet where the internal oxide is formed by winding under the above conditions during hot rolling. I also found. That is, a deficient layer of Si and Mn exists on the steel plate surface.
- a material having improved both “melting metal embrittlement cracking resistance” and “plating adhesion” in a steel sheet subjected to hot-dip Zn—Al—Mg plating having high corrosion resistance is realized.
- Production of a hot-dip Zn-Al-Mg alloy-plated steel sheet that simultaneously achieves these characteristics has been difficult, but the present invention is intended for use in hot-dip Zn-based steel sheets used for bending and welding. This contributes to the spread of hot-dip Zn—Al—Mg-based steel sheets.
- the schematic diagram which shows the boss-welding test performed in order to evaluate a melt-proof embrittlement countermeasure cracking property.
- % in the chemical composition of the plating original plate and the hot dipping means “% by mass” unless otherwise specified.
- C 0.01 to 0.20%
- C is a basic element responsible for the strength of the steel sheet, and in the present invention, a steel type having a C content level of 0.01% or more is targeted. You may manage to use the thing of C content of 0.10% or more. However, since excessive C content reduces ductility and weldability, the C content is limited to 0.20% or less.
- Si 0.01 to 1.00% Si in the steel sheet causes a Si oxide film harmful to the plating property to be generated on the steel sheet surface.
- the Si content needs to be 1.00% or less.
- Si is also one of the main elements that generate internal oxides on the inner surface of the steel sheet surface, so a content of 0.01% or more is required. More preferably, it is 0.20% or more.
- Mn in the steel sheet has the effect of strengthening the steel material by solid solution strengthening, and has the action of stabilizing the austenite and promoting the generation of transformation phases such as martensite.
- the Mn content needs to be 0.10% or more.
- the addition of a large amount of Mn causes a decrease in workability and plating properties, so the Mn content should be limited to 2.50% or less.
- Mn is one of the main elements that generate an internal oxide on the inner side of the steel sheet surface, and for that purpose, a content of 0.10% or more is required. More preferably, it is 0.20% or more.
- Cr 0.05 to 1.00% Cr in the steel sheet also has an effect of strengthening the steel material by solid solution strengthening, and is effective in suppressing molten metal embrittlement cracking. It is also one of the elements. For this reason, a content of 0.05% or more is required. More preferably, it is 0.20% or more. However, if added in a large amount, it causes a decrease in workability, so it should be limited to 1.00% or less. More preferably, it is 0.50% or less.
- P 0.030% or less P has an effect of strengthening a steel material by solid solution strengthening, but if contained in a large amount, it causes a decrease in workability. Therefore, in the present invention, the target is 0.030% or less. And It is more preferable that it is 0.020% or less.
- S 0.010% or less Since S forms a sulfide that causes a decrease in workability, it is desirable to reduce it as much as possible. As a result of various studies, the S content is allowed to be 0.010%, but is more preferably 0.005% or less particularly in applications where workability is important.
- Ti 0.010 to 0.150%
- Ti is a strong nitride-forming element and is an important element for fixing N in the plating original plate as TiN.
- N the amount of free B is secured, and the effect of improving the resistance to molten metal embrittlement cracking by free B is exhibited.
- the content is 0.020% or more.
- Ti content is restrict
- sol.Al 0.100% or less Al is added as a deoxidizing agent.
- sol.Al acid-soluble Al
- the content is limited to 0.100% or less. More preferably, it is 0.060% or less. In deoxidation, it is more effective to add Al in a range where the sol.Al content is 0.005% or more, and addition in a range where it is 0.010% or more is more effective. .
- N Less than 0.010% N reacts with B to form a boride, which causes a reduction in the amount of free B effective in improving the resistance to molten metal embrittlement cracking. As a result of various studies, the N content is limited to a range of less than 0.010%.
- B 0.0003-0.0100%
- B is an element effective for suppressing molten metal embrittlement. The effect is considered to be brought about by the fact that B is segregated as free B to the grain boundary and the interatomic bonding force increases. For that purpose, it is necessary to secure a B content of at least 0.0003% or more. More preferably, the B content is 0.0005% or more. However, excessive addition of B causes formation of borides and deterioration of workability, so the upper limit of B content is limited to 0.0100%.
- Nb 0.10% or less
- Nb is an element effective in securing free B having an effect of improving resistance to molten metal embrittlement cracking because Nb has an action of fixing N.
- the steel plate of this invention can contain Nb as needed. When Nb is contained, it is more effective to set the content to 0.001% or more. However, since a large amount of addition causes a decrease in workability, Nb is 0.10% or less, preferably 0.05% or less.
- Mo 0.50% or less
- Mo is also an element having an effect of improving the resistance to molten metal embrittlement cracking, and the steel sheet of the present invention can contain Mo if necessary. When Mo is contained, it is more effective to set the content to 0.01% or more. However, since a large amount of addition causes a decrease in workability, Mo should be added to 0.50% or less, preferably 0.20% or less.
- the slab to be subjected to hot rolling and the finishing temperature are not particularly limited, and may be as usual.
- the coiling temperature is in the range of 550 to 700 ° C. By winding at this temperature, within a range of 10 ⁇ m or less from the surface layer of the steel plate covered with oxide scale, a single oxide or complex oxide of Si, Mn, and Cr is generated as an internal oxide, and Si and Mn A depletion layer is formed.
- a hot-rolled steel plate or a cold-rolled steel plate having the above chemical composition can be used as the plating base plate.
- cold rolling is performed in accordance with a conventional method, and finished to a predetermined thickness.
- the surface oxide scale needs to be sufficiently removed.
- the plate thickness may be selected in the range of 0.6 to 4.5 mm, for example, depending on the application.
- the steel plate sample was subjected to reduction heat treatment under various conditions, and the surface was observed. According to this, in the steel type without addition of B, which provides good plating adhesion, the surface is dotted with Si-Mn-based oxides, and even if the reductive heat treatment conditions are changed, this surface state changes greatly. Was not seen.
- the same Si—Mn-based oxide as described above becomes a surface state scattered on the surface of the plating base plate, but as the heating proceeds, It was found that the B diffused from the silicon was added to the Si—Mn oxide, and the scattered oxide became an Si—Mn—B oxide. As the diffusion of B from the steel further progresses, the Si—Mn—B-based oxide on the surface of the steel sheet increases the B concentration and lowers the melting point. As a result, it is considered that the Si—Mn—B-based oxide partially melts during the reduction heat treatment, and the resulting melt covers the flat portion of the steel sheet surface.
- the time during which the steel sheet surface temperature is maintained at 750 ° C. or higher in a reducing atmosphere furnace is defined as “holding time”, and the maximum temperature reached on the steel sheet surface in the furnace is defined as “reducing heat treatment temperature”
- holding time the time during which the steel sheet surface temperature is maintained at 750 ° C. or higher in a reducing atmosphere furnace
- reducing heat treatment temperature the maximum temperature reached on the steel sheet surface in the furnace
- the concentration of Si and Mn within 4 ⁇ m of the steel sheet surface is determined by a preliminary experiment according to the combination of the steel type to be passed through the production line and the coiling temperature, and the combination of the Si concentration and the Mn concentration is the following A
- the holding time of the reduction heat treatment is controlled depending on which of the following conditions is met.
- the reduction heat treatment temperature is 750 to 860 ° C.
- the holding time is within 250 seconds
- the condition B is satisfied
- the holding time is within 200 seconds
- the condition C is satisfied
- the reduction heat treatment may be performed under the condition that the holding time is within 150 seconds.
- the recrystallization annealing is also performed by the reduction heat treatment
- a condition in which the recrystallization temperature is reached or higher up to the inside of the steel sheet may be employed in each of the above condition ranges.
- the reduction treatment temperature maximum surface temperature
- an atmosphere conventionally used as a pretreatment for hot dipping can be applied.
- a 5 to 50 volume% H 2 —N 2 atmosphere can be exemplified.
- Al in the plating bath is effective in improving the corrosion resistance of the plated steel sheet, and suppresses the generation of Mg oxide-based dross in the plating bath.
- the effect is recognized when the Al content of the hot dipping bath is 4.0% or more.
- Al is also effective in improving the plating adhesion.
- the Al content of the hot dipping bath needs to be 1.0% or more.
- the Al content exceeds 22.0%, a brittle Fe—Al alloy layer grows excessively at the interface between the plating layer and the steel substrate, which causes a decrease in plating adhesion.
- the Al content is preferably 15.0% or less, and may be controlled to 10.0% or less.
- Mg in the plating bath exhibits the effect of significantly increasing the corrosion resistance of the plated steel sheet by generating a uniform corrosion product on the surface of the plating layer. It is also effective in improving plating adhesion. These effects are manifested when the Mg content of the hot dipping bath is in the range of 0.10% or more, and in order to obtain a particularly remarkable effect, it is more preferable to secure a Mg content of 1.0% or more. On the other hand, when the Mg content exceeds 10.0%, Mg oxide-based dross tends to occur. In order to obtain a higher quality plating layer, the Mg content is preferably 5.0% or less, and may be controlled to 4.0% or less.
- Si When Si is contained in the hot dip plating bath, excessive growth of the Fe—Al alloy layer formed at the interface between the steel substrate and the plating layer is suppressed, and the workability of the hot dip Zn—Al—Mg plated steel sheet is improved. Is advantageous. Moreover, Si is effective in preventing the black change of the plating layer and maintaining the glossiness of the surface. Therefore, Si can be contained as necessary. When Si is contained, it is more effective to set the Si content of the hot dipping bath to 0.005% or more. However, since excessive Si content increases the amount of dross in the hot dipping bath, the Si content in the plating bath is limited to 2.0% or less.
- Fe is mixed in the hot dipping bath because of the immersion and passage of the steel sheet.
- the Fe content in the Zn—Al—Mg plating bath is generally allowed to be about 2.0%.
- the plating bath for example, one or more of Ca, Sr, Na, rare earth elements, Ni, Co, Sn, Cu, Cr and Mn may be mixed, but the total content thereof is 1 It is desirable to manage to 0.0% or less.
- the amount of plating adhesion is desirably adjusted in the range of 20 to 300 g / m 2 per one side of the steel sheet.
- the steel having the chemical composition shown in Table 1 is melted, the slab is heated to 1250 ° C., extracted, and hot rolled at a finish rolling temperature of 880 ° C. and a winding temperature of 520 to 700 ° C., A hot-rolled steel strip having a thickness of 2.4 mm was obtained.
- the hot-rolled steel strip was pickled and cold-rolled to prepare a cold-rolled steel plate having a thickness of 1.4 mm.
- a part of the cold-rolled steel sheet is sampled and embedded in the resin, a cross section parallel to the thickness direction is observed with a scanning transmission electron microscope (STEM), and energy dispersive X-ray spectroscopy (EDX) is used.
- STEM scanning transmission electron microscope
- the Si concentration and Mn concentration in the vicinity of the steel sheet surface layer (within a depth of 4 ⁇ m from the rolled surface) were quantified.
- the internal oxide was confirmed by performing etching with a nital solution on the embedded cross section and using an optical microscope or a scanning electron microscope (SEM). Displayed in Tables 2 and 3 as “O” for the formation of oxide in the region within 10 ⁇ m depth from the vicinity of the steel plate surface of the cross section (within 10 ⁇ m depth from the rolling surface), and “X” for those not confirmed. did.
- each cold-rolled steel sheet is subjected to reduction heat treatment at various holding times and reduction heat treatment temperatures, and then immersed in a hot dip galvanizing bath without being exposed to the atmosphere, pulled up from the bath, and the amount of plating deposited per side Of about 90 g / m 2 was obtained.
- the experimental conditions are described in Tables 2 and 3 and are as follows.
- the welding conditions were a welding current: 217 A, a welding voltage of 25 V, a welding speed of 0.2 m / min, a shielding gas: CO 2 , and a shielding gas flow rate: 20 L / min.
- YGW12 was used for the welding wire. After the welding start point made one round around the boss and after the welding start point was passed, welding was continued further to make a portion 4 where the weld beads 3 overlapped.
- the test piece 1 and the boss 2 were cut as indicated by a broken line so as to include the bead overlap portion 4, embedded in a resin so that the cut surface 5 could be observed, and the bead overlap portion was observed with an optical microscope. .
- the length of the crack was measured.
- the longest crack length was defined as the “maximum crack length”. This crack occurs along the prior austenite grain boundary of the weld heat affected zone, and it is determined that this crack is a molten metal embrittlement crack.
- the evaluation of the resistance to molten metal embrittlement cracking was a pass ( ⁇ ) when the maximum crack length was 0.1 mm or less, and a reject (x) when the maximum crack length exceeded 0.1 mm.
- the evaluation results are shown in Table 4. Steels A to J and O passed, but steels K to N failed.
- Test piece 2 Boss 3 Weld bead 4 Bead overlap part 5 Cut surface
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Metal Rolling (AREA)
- Oil, Petroleum & Natural Gas (AREA)
Abstract
Description
しかし、還元熱処理を行う還元帯において、Feを還元しながらSiの外部酸化を抑制し、鋼板表面または表面側にFeSiO3,Fe2SiO4,MnSiO3,Mn2SiO4から選ばれた1種以上のSi酸化物を生成させる目的で、還元帯の雰囲気中の酸素分圧PO2が所定の範囲となるように管理しなければならず煩雑である。
熱延鋼板を550~700℃の範囲で巻き取ることと、
還元熱処理に引き続いて、質量%で、Al:1.0~22.0%、Mg:0.1~10.0%を含有し、残部がZnおよび不可避的不純物からなる溶融亜鉛系めっきを施すにあたり、
還元熱処理工程において、還元熱処理の炉内で鋼板表面温度が750℃以上に保持される時間を「保持時間」、当該炉内での鋼板表面の最高到達温度を「還元熱処理温度」と定義するとき、
還元熱処理温度を750~860℃とし、
還元熱処理前の鋼板表面から4μm以内におけるSiとMnの濃度が下記の条件Aを満たす場合は保持時間を250秒以内、条件Bを満たす場合は保持時間を200秒以内、条件Cを満たす場合は保持時間を150秒以内として還元熱処理を行うことにより、めっき密着性に優れた溶融亜鉛系めっき鋼板を得る。
還元熱処理前の鋼板表面から4μm以内におけるSiとMnの濃度(質量%):
A; Si:0.15%以下、かつMn:0.8%以下、
B; Si:0.6%以下、かつMn:1.5%以下、ただしAを満たさない、
C; Si:0.6%超え、またはMn:1.5%超え。
また、発明者らは、熱間圧延時に前記の条件で巻き取って内部酸化物が生成した鋼板表面から4μm以内では、SiとMnの濃度が鋼板のSiとMnの含有量よりも低下することも見出した。すなわち、鋼板表面には、SiとMnの欠乏層が存在する。この濃度に応じて還元熱処理の保持時間を設定することにより、めっき密着性に優れた溶融Zn-Al-Mg系めっき鋼板が得られるのである。
本発明の対象となる鋼板の化学組成は以下のとおりである。
C:0.01~0.20%
Cは、鋼板の強度を担う基本的な元素であり、本発明では0.01%以上のC含有量レベルの鋼種を対象とする。0.10%以上のC含有量のものを使用するように管理してもよい。ただし、過剰のC含有は延性、溶接性を低下させるので、C含有量は0.20%以下に制限される。
鋼板中のSiは、めっき性に有害なSi酸化膜を鋼板表面に生じさせる要因となる。種々検討の結果、Si含有量は1.00%以下とする必要がある。ただし、本発明では、Siは鋼板表面の内側に内部酸化物を生成させる主要な元素のひとつでもあるため、0.01%以上の含有量が必要となる。0.20%以上とすることがより好ましい。
鋼板中のMnは、固溶強化によって鋼材を強化する作用を有すると共に、オーステナイトを安定化させマルテンサイト等の変態相の生成を促進させる作用を有するので、鋼板の強度の確保と機械的特性の安定化のために、Mn含有量は0.10%以上とする必要がある。ただし、多量のMn添加は加工性およびめっき性を低下させる要因となるので、Mn含有量は2.50%以下に制限するのがよい。
一方、本発明では、Mnは鋼板表面の内側に内部酸化物を生成させる主要な元素のひとつであり、そのためにも0.10%以上の含有量が必要となる。0.20%以上とすることがより好ましい。
鋼板中のCrも、固溶強化によって鋼材を強化する作用を有するとともに、耐溶融金属脆化割れの抑制にも有効であり、しかも本発明では、鋼板表面の内側に内部酸化物を生成させる主要な元素のひとつでもある。そのため、0.05%以上の含有量が必要となる。0.20%以上とすることがより好ましい。ただし、多量に添加すると加工性を低下させる要因となるので、1.00%以下に制限するのがよい。0.50%以下とすることがより好ましい。
Pは、固溶強化によって鋼材を強化する作用を有するが、多量に含有すると加工性を低下させる要因となるので、本発明では、0.030%以下のものを対象とする。0.020%以下であることがより好ましい。
Sは、加工性低下の要因となる硫化物を形成するので、できるだけ低減することが望ましい。種々検討の結果、S含有量は0.010%まで許容されるが、特に加工性を重視する用途では0.005%以下とすることがより好ましい。
Tiは、強力な窒化物形成元素であり、めっき原板中のNをTiNとして固定する上で重要な元素である。Nを固定することによりフリーBの量が確保され、フリーBによる耐溶融金属脆化割れ性の向上作用が発揮される。検討の結果、上記作用を十分に発揮させるためには0.010%以上のTi含有量を確保する必要がある。0.020%以上とすることがより好ましい。ただし、過剰にTiを添加しても上記効果は飽和し、またTiの多量添加は鋼材の加工性を劣化させる要因になる。このためTi含有量は0.150%以下の範囲に制限される。
Alは、脱酸剤として添加されるが、過剰のAl添加はプレス成形性の低下を招く等の弊害を生じるので、sol.Al(酸可溶Al)として0.100%以下の含有量に制限される。0.060%以下であることがより好ましい。なお、脱酸においてはsol.Al含有量が0.005%以上となる範囲でAlを添加することがより効果的であり、0.010%以上となる範囲での添加が一層効果的である。
Nは、Bと反応して硼化物を形成し、耐溶融金属脆化割れ性の改善に有効なフリーBの量を低減させる要因となる。種々検討の結果、N含有量は0.010%未満の範囲に制限される。
Bは、溶融金属脆化の抑制に有効な元素である。その作用はBがフリーBとして結晶粒界に偏析して原子間結合力が増大することによってもたらされるものと考えられる。そのためには少なくとも0.0003%以上のB含有量を確保する必要がある。0.0005%以上のB含有量とすることがより好ましい。ただし、過剰のB添加は硼化物の生成、加工性劣化の要因となるため、B含有量の上限は0.0100%に制限される。
Nbは、Nを固定する作用を有するので、耐溶融金属脆化割れ性を高める効果を有するフリーBを確保する上で有効な元素である。このため、本発明の鋼板は、必要に応じてNbを含有させることができる。Nbを含有させる場合は、0.001%以上の含有量とすることがより効果的である。ただし、多量の添加は加工性を低下させる要因となるので、Nbは0.10%以下、好ましくは0.05%以下がよい。
Moも耐溶融金属脆化割れ性を高める効果を有する元素であり、本発明の鋼板は、必要によりMoを含有させることができる。Moを含有させる場合は、0.01%以上の含有量とすることがより効果的である。ただし、多量の添加は加工性を低下させる要因となるので、Moは0.50%以下、好ましくは0.20%以下の添加に留めるべきである。
熱間圧延に供するスラブや、仕上げ温度は特に限定されず、常法のとおりでよい。巻取り温度は550~700℃の範囲とする。この温度で巻取ることによって、酸化スケールに覆われた鋼板表層から10μm以下の範囲内に、Si、MnやCrの単独酸化物あるいは複合酸化物が内部酸化物として生成するととともに、SiやMnの欠乏層が形成される。
めっき原板を溶融亜鉛系めっき浴に導入する前に、通常、鋼板表面を活性化させるために還元熱処理が行われる。大量生産現場の連続溶融めっきラインでは、還元熱処理と溶融めっきを連続的に行うようになっている。この還元熱処理工程は、単にめっき原板の表面を活性化させるだけではなく、鋼板の金属組織を最終的な組織状態に調整するための焼鈍工程を兼ねる場合が多い。したがって、目的に応じて種々のヒートパターンが採用される。また、ラインの操業状況によっては、活性化や焼鈍に支障のない範囲で熱処理炉を通過する鋼帯の速度(ライン速度)が調整されることもある。
還元熱処理前の鋼板表面から4μm以内におけるSiとMnの濃度が下記の条件Aを満たす場合は保持時間を250秒以内、条件Bを満たす場合は保持時間を200秒以内、条件Cを満たす場合は保持時間を150秒以内とする条件により還元熱処理を行えばよい。
還元熱処理前の鋼板表面から4μm以内におけるSiとMnの濃度(質量%):
A; Si:0.15%以下、かつMn:0.8%以下、
B; Si:0.6%以下、かつMn:1.5%以下、ただしAを満たさない、
C; Si:0.6%超え、またはMn:1.5%超え。
上記の還元熱処理を終えためっき原板を、大気に曝すことなく、溶融Zn-Al-Mg系めっき浴に導入する。
次に、各冷延鋼板について、種々の保持時間、還元熱処理温度にて還元熱処理を施し、その後、大気に曝すことなく溶融亜鉛系めっき浴に浸漬し、浴から引き上げ、片面当たりのめっき付着量が約90g/m2の溶融亜鉛系めっき鋼板を得た。実験条件は表2、表3に記載した他、以下のとおりである。
表2、表3には、上述の条件A、B、Cに対応する条件を次のように記号で表記した。
◎: Si:0.15%以下、かつMn:0.8%以下、
○; Si:0.6%以下、かつMn:1.5%以下、ただし◎に含まれない、
●; Si:0.6%超え、またはMn:1.5%超え。
雰囲気ガス;30%H2-N2雰囲気
熱処理温度と保持時間:表2、表3に記載
・浴組成; 表2、表3に記載
・浴温; 400℃
・浴浸漬時間; 2sec
得られためっき鋼板から幅15mmの曲げ試験片を切り出し、先端半径R=5mmのポンチを用いて90°V曲げ試験を行った。試験片の幅方向(=曲げ軸の方向)が圧延方向と一致するようにした。曲げ試験後の試験片について、曲げ加工部の外周部にJIS Z1522で定めるセロハン粘着テープを貼付した後、剥ぎ取って、テープにめっき層の付着が認められないものを○(めっき密着性;良好)、それ以外のものを×(めっき密着性;不良)と判定した。同種のめっきサンプルについてn=3で曲げ試験を行い、最も評価の悪い試験片の結果をそのサンプルの成績として採用した。結果は、表2、表3に示している。
めっき鋼板から100mm×75mmのサンプルを切り出し、これをアーク溶接による溶融金属脆化に起因する溶接最大割れ長さを評価するための試験片とした。
溶接試験は図1に示すような外観のボス溶接部材を作製する「ボス溶接」を行い、その溶接部断面を観察して割れの発生状況を調べた。すなわち、試験片1の板面中央に直径20mm×長さ25mmの軟鋼からなるボス(突起)2を垂直に立て、このボス2を試験片1にアーク溶接にて接合した。溶接条件は、溶接電流:217A、溶接電圧25V、溶接速度0.2m/min、シールドガス:CO2、シールドガス流量:20L/minとした。溶接ワイヤは、YGW12を用いた。
溶接開始点からボスの周囲を1周して溶接開始点を過ぎた後もさらに溶接を続けて溶接ビード3が重なった部分4を作った。
その評価結果を表4に示す。鋼A~JおよびOは合格であったが、鋼K~Nの4種は不合格であった。
2 ボス
3 溶接ビード
4 ビード重なり部
5 切断面
Claims (8)
- めっき原板である鋼板とその表面上に形成された溶融亜鉛系めっき層との界面から10μm以内の鋼板内部に、Si単独酸化物、Mn単独酸化物、Cr単独酸化物、Si-Mn系複合酸化物、Si-Cr系複合酸化物、Mn-Cr系複合酸化物、Si-Mn-Cr系複合酸化物の少なくとも1種以上が存在するめっき密着性に優れた溶融亜鉛系めっき鋼板。
- めっき原板である鋼板は、質量%で、Si:0.01~1.00%、Mn:0.10~2.50%、Cr:0.05~1.00%の群から選ばれる1種以上を含有する化学組成を有するものである請求項1に記載のめっき密着性に優れた溶融亜鉛系めっき鋼板。
- めっき原板である鋼板は、質量%で、C:0.01~0.20%、P:0.030%以下、S:0.010%以下、Ti:0.010~0.150%、sol.Al:0.100%以下、N:0.010%未満、B:0.0003~0.0100%と、さらにSi:0.01~1.00%、Mn:0.10~2.50%、Cr:0.05~1.00%の群から選ばれる1種以上を含有し、残部Feおよび不可避的不純物からなる化学組成を有するものである請求項1に記載のめっき密着性に優れた溶融亜鉛系めっき鋼板。
- めっき原板である鋼板は、質量%で、さらにNb:0.10%以下、Mo:0.50%以下を含有する化学組成を有するものである請求項3に記載のめっき密着性に優れた溶融亜鉛系めっき鋼板。
- 溶融亜鉛系めっきの組成が、質量%でAl:1.0~22.0%、Mg:0.1~10.0%、残部がZnおよび不可避的不純物である請求項1~4のいずれか1項に記載のめっき密着性に優れた溶融亜鉛系めっき鋼板。
- 溶融亜鉛系めっきの組成が、さらに、質量%で、Ti:0.10%以下、B:0.05%以下、Si:2.0%以下の群から選ばれる1種以上を含有するものである請求項5に記載のめっき密着性に優れた溶融亜鉛系めっき鋼板。
- 質量%で、C:0.01~0.20%、P:0.030%以下、S:0.010%以下、Ti:0.010~0.150%、sol.Al:0.100%以下、N:0.010%未満、B:0.0003~0.0100%と、さらにSi:0.01~1.00%、Mn:0.10~2.50%、Cr:0.05~1.00%の群から選ばれる1種以上を含有し、残部Feおよび不可避的不純物からなる鋼板をめっき原板として熱間圧延し、還元熱処理に引き続いて、質量%でAl:1.0~22.0%、Mg:0.1~10.0%、残部がZnおよび不可避的不純物である組成の溶融亜鉛系めっきを施して溶融亜鉛系めっき鋼板を製造するにあたり、
めっき原板の熱間圧延工程において巻取り温度を550~700℃の範囲とし、
還元熱処理工程において、還元熱処理の炉内で鋼板表面温度が750℃以上に保持される時間を「保持時間」、当該炉内での鋼板表面の最高到達温度を「還元熱処理温度」と定義するとき、
還元熱処理温度を750~860℃とし、
還元熱処理前の鋼板表面から4μm以内におけるSiとMnの濃度が下記の条件Aを満たす場合は保持時間を250秒以内、条件Bを満たす場合は保持時間を200秒以内、条件Cを満たす場合は保持時間を150秒以内として還元熱処理を行うめっき密着性に優れた溶融亜鉛系めっき鋼板の製造方法。
還元熱処理前の鋼板表面から4μm以内におけるSiとMnの濃度(質量%):
A; Si:0.15%以下、かつMn:0.8%以下、
B; Si:0.6%以下、かつMn:1.5%以下、ただしAを満たさない、
C; Si:0.6%超え、またはMn:1.5%超え。 - 溶融亜鉛系めっきの組成が、さらに、質量%で、Ti:0.10%以下、B:0.05%以下、Si:2.0%以下の群から選ばれる1種以上を含有するものである請求項7に記載のめっき密着性に優れた溶融亜鉛系めっき鋼板の製造方法。
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/773,398 US9523142B2 (en) | 2013-03-27 | 2014-03-25 | Hot-dip zinc alloy coated steel sheet excellent in coating adhesion, and method for producing the same |
AU2014245876A AU2014245876B2 (en) | 2013-03-27 | 2014-03-25 | Hot-dip zinc alloy coated steel sheet excellent in coating adhesion , and method for producing the same |
KR1020157024871A KR102014062B1 (ko) | 2013-03-27 | 2014-03-25 | 도금 밀착성이 우수한 용융 아연계 도금 강판 및 그 제조 방법 |
BR112015024016A BR112015024016A2 (pt) | 2013-03-27 | 2014-03-25 | chapa de aço revestida com liga de zinco por imersão a quente excelente em adesão de revestimento e método para produzir a mesma |
NZ711709A NZ711709A (en) | 2013-03-27 | 2014-03-25 | Hot-dip zinc alloy coated steel sheet excellent in coating adhesion, and method for producing the same |
CN201480018101.XA CN105051238B (zh) | 2013-03-27 | 2014-03-25 | 镀敷密合性优异的熔融锌系镀敷钢板及其制造方法 |
EP14774669.7A EP2980259A4 (en) | 2013-03-27 | 2014-03-25 | FIRE-PLATED STEEL PLATE WITH EXCELLENT COATING TERMINATION AND METHOD FOR THE PRODUCTION THEREOF |
SG11201507737QA SG11201507737QA (en) | 2013-03-27 | 2014-03-25 | Hot-dip zinc alloy coated steel sheet excellent in coatingadhesion, and method for producing the same |
MX2015013368A MX366702B (es) | 2013-03-27 | 2014-03-25 | Hoja de acero revestida con aleación de zinc por inmersión en caliente excelente en adherencia de revestimiento, y método para producir la misma. |
CA2904131A CA2904131C (en) | 2013-03-27 | 2014-03-25 | Hot-dip zinc alloy coated steel sheet excellent in coating adhesion, and method for producing the same |
US15/345,887 US20170051379A1 (en) | 2013-03-27 | 2016-11-08 | Hot-dip zinc alloy coated steel sheet excellent in coating adhesion, and method for producing the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-066576 | 2013-03-27 | ||
JP2013066576 | 2013-03-27 | ||
JP2014060809A JP5826321B2 (ja) | 2013-03-27 | 2014-03-24 | めっき密着性に優れた溶融亜鉛系めっき鋼板の製造方法 |
JP2014-060809 | 2014-03-24 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/773,398 A-371-Of-International US9523142B2 (en) | 2013-03-27 | 2014-03-25 | Hot-dip zinc alloy coated steel sheet excellent in coating adhesion, and method for producing the same |
US15/345,887 Division US20170051379A1 (en) | 2013-03-27 | 2016-11-08 | Hot-dip zinc alloy coated steel sheet excellent in coating adhesion, and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014157155A1 true WO2014157155A1 (ja) | 2014-10-02 |
Family
ID=51624126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/058208 WO2014157155A1 (ja) | 2013-03-27 | 2014-03-25 | めっき密着性に優れた溶融亜鉛系めっき鋼板およびその製造方法 |
Country Status (13)
Country | Link |
---|---|
US (1) | US9523142B2 (ja) |
EP (1) | EP2980259A4 (ja) |
JP (1) | JP5826321B2 (ja) |
KR (1) | KR102014062B1 (ja) |
CN (1) | CN105051238B (ja) |
AU (1) | AU2014245876B2 (ja) |
BR (1) | BR112015024016A2 (ja) |
CA (1) | CA2904131C (ja) |
MX (1) | MX366702B (ja) |
MY (1) | MY172243A (ja) |
NZ (1) | NZ711709A (ja) |
SG (2) | SG11201507737QA (ja) |
WO (1) | WO2014157155A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10975454B2 (en) * | 2015-12-15 | 2021-04-13 | Posco | Ultra-high strength steel sheet having excellent phosphatability and bendability |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3561138B1 (en) * | 2014-12-24 | 2023-11-15 | POSCO Co., Ltd | Zinc alloy plated steel material having excellent weldability |
JP6209175B2 (ja) * | 2015-03-03 | 2017-10-04 | 日新製鋼株式会社 | めっき表面外観およびバーリング性に優れた溶融Zn−Al−Mg系めっき鋼板の製造方法 |
KR102075182B1 (ko) * | 2015-12-24 | 2020-02-10 | 주식회사 포스코 | 도금성이 우수한 고강도 용융 아연계 도금 강재 및 그 제조방법 |
EP3409808B1 (en) | 2016-01-27 | 2020-03-04 | JFE Steel Corporation | High-yield ratio high-strength galvanized steel sheet, and method for producing same |
US10492602B2 (en) * | 2017-01-26 | 2019-12-03 | Bose Corporation | Electronics enclosure mounting |
JP7059091B2 (ja) | 2018-04-24 | 2022-04-25 | モレックス エルエルシー | 電子部品 |
TWI676508B (zh) * | 2018-05-18 | 2019-11-11 | 日商日本製鐵股份有限公司 | Al系鍍敷鋼板及其製造方法 |
CN114686651B (zh) * | 2020-12-31 | 2024-08-13 | 通用汽车环球科技运作有限责任公司 | 具有降低的液态金属致脆(lme)敏感性的锌涂覆的钢 |
CN113564483A (zh) * | 2021-08-06 | 2021-10-29 | 云南中科安居环保新材料有限公司 | 一种高强度轻钢别墅龙骨精品抗震钢材制备工艺 |
CN113751530B (zh) * | 2021-09-28 | 2024-03-26 | 攀钢集团攀枝花钢钒有限公司 | 一种用于冲压用热浸镀带钢镀层附着力检验的方法 |
JP7410448B1 (ja) | 2022-06-10 | 2024-01-10 | 日本製鉄株式会社 | 溶融めっき鋼板 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003003238A (ja) | 2001-06-22 | 2003-01-08 | Nisshin Steel Co Ltd | 耐食性に優れたZn−Al−Mg系溶融めっき鋼材 |
JP2006097063A (ja) | 2004-09-29 | 2006-04-13 | Nisshin Steel Co Ltd | 高強度溶融Zn−Al−Mg合金めっき鋼板の製造方法 |
JP2007211279A (ja) * | 2006-02-08 | 2007-08-23 | Nippon Steel Corp | 耐水素脆性に優れた超高強度鋼板とその製造方法及び超高強度溶融亜鉛めっき鋼板の製造方法並びに超高強度合金化溶融亜鉛めっき鋼板の製造方法 |
JP2008007842A (ja) | 2006-06-30 | 2008-01-17 | Nippon Steel Corp | 外観が良好な耐食性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法 |
JP2011214041A (ja) | 2010-03-31 | 2011-10-27 | Nisshin Steel Co Ltd | 溶融亜鉛系めっき高張力鋼板の製造法 |
JP2011219783A (ja) * | 2009-03-31 | 2011-11-04 | Jfe Steel Corp | 高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2011231346A (ja) * | 2010-04-23 | 2011-11-17 | Nisshin Steel Co Ltd | 溶融亜鉛系めっき高張力鋼板の製造法 |
JP2012126994A (ja) * | 2010-11-26 | 2012-07-05 | Jfe Steel Corp | 溶融Al−Zn系めっき鋼板 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7608155B2 (en) * | 2006-09-27 | 2009-10-27 | Nucor Corporation | High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same |
JP5264234B2 (ja) * | 2008-03-24 | 2013-08-14 | 日新製鋼株式会社 | 耐溶融金属脆化割れ性に優れたZn−Al−Mg系めっき鋼板およびその製造方法 |
JP5391607B2 (ja) * | 2008-08-05 | 2014-01-15 | Jfeスチール株式会社 | 外観に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
-
2014
- 2014-03-24 JP JP2014060809A patent/JP5826321B2/ja active Active
- 2014-03-25 MX MX2015013368A patent/MX366702B/es active IP Right Grant
- 2014-03-25 SG SG11201507737QA patent/SG11201507737QA/en unknown
- 2014-03-25 NZ NZ711709A patent/NZ711709A/en not_active IP Right Cessation
- 2014-03-25 US US14/773,398 patent/US9523142B2/en active Active
- 2014-03-25 WO PCT/JP2014/058208 patent/WO2014157155A1/ja active Application Filing
- 2014-03-25 CA CA2904131A patent/CA2904131C/en active Active
- 2014-03-25 AU AU2014245876A patent/AU2014245876B2/en active Active
- 2014-03-25 CN CN201480018101.XA patent/CN105051238B/zh active Active
- 2014-03-25 KR KR1020157024871A patent/KR102014062B1/ko active IP Right Grant
- 2014-03-25 SG SG10201707903VA patent/SG10201707903VA/en unknown
- 2014-03-25 BR BR112015024016A patent/BR112015024016A2/pt not_active Application Discontinuation
- 2014-03-25 MY MYPI2015703363A patent/MY172243A/en unknown
- 2014-03-25 EP EP14774669.7A patent/EP2980259A4/en not_active Withdrawn
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003003238A (ja) | 2001-06-22 | 2003-01-08 | Nisshin Steel Co Ltd | 耐食性に優れたZn−Al−Mg系溶融めっき鋼材 |
JP2006097063A (ja) | 2004-09-29 | 2006-04-13 | Nisshin Steel Co Ltd | 高強度溶融Zn−Al−Mg合金めっき鋼板の製造方法 |
JP2007211279A (ja) * | 2006-02-08 | 2007-08-23 | Nippon Steel Corp | 耐水素脆性に優れた超高強度鋼板とその製造方法及び超高強度溶融亜鉛めっき鋼板の製造方法並びに超高強度合金化溶融亜鉛めっき鋼板の製造方法 |
JP2008007842A (ja) | 2006-06-30 | 2008-01-17 | Nippon Steel Corp | 外観が良好な耐食性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法 |
JP2011219783A (ja) * | 2009-03-31 | 2011-11-04 | Jfe Steel Corp | 高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2011214041A (ja) | 2010-03-31 | 2011-10-27 | Nisshin Steel Co Ltd | 溶融亜鉛系めっき高張力鋼板の製造法 |
JP2011231346A (ja) * | 2010-04-23 | 2011-11-17 | Nisshin Steel Co Ltd | 溶融亜鉛系めっき高張力鋼板の製造法 |
JP2012126994A (ja) * | 2010-11-26 | 2012-07-05 | Jfe Steel Corp | 溶融Al−Zn系めっき鋼板 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10975454B2 (en) * | 2015-12-15 | 2021-04-13 | Posco | Ultra-high strength steel sheet having excellent phosphatability and bendability |
Also Published As
Publication number | Publication date |
---|---|
AU2014245876A1 (en) | 2015-10-08 |
AU2014245876B2 (en) | 2018-06-14 |
CN105051238B (zh) | 2017-10-10 |
CN105051238A (zh) | 2015-11-11 |
KR102014062B1 (ko) | 2019-08-27 |
MY172243A (en) | 2019-11-19 |
US20160024632A1 (en) | 2016-01-28 |
KR20150133708A (ko) | 2015-11-30 |
BR112015024016A2 (pt) | 2017-07-18 |
CA2904131C (en) | 2019-10-22 |
MX366702B (es) | 2019-07-22 |
US9523142B2 (en) | 2016-12-20 |
EP2980259A1 (en) | 2016-02-03 |
MX2015013368A (es) | 2016-01-08 |
NZ711709A (en) | 2020-07-31 |
SG11201507737QA (en) | 2015-10-29 |
EP2980259A4 (en) | 2016-11-30 |
CA2904131A1 (en) | 2014-10-02 |
JP5826321B2 (ja) | 2015-12-02 |
JP2014208902A (ja) | 2014-11-06 |
SG10201707903VA (en) | 2017-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5826321B2 (ja) | めっき密着性に優れた溶融亜鉛系めっき鋼板の製造方法 | |
JP5676642B2 (ja) | 表面特性に優れた熱間プレス用亜鉛めっき鋼板並びにこれを利用した熱間プレス成形部品及びその製造方法 | |
JP5636683B2 (ja) | 密着性に優れた高強度合金化溶融亜鉛めっき鋼板および製造方法 | |
JP6094649B2 (ja) | 高強度溶融亜鉛めっき鋼板の製造方法及び高強度合金化溶融亜鉛めっき鋼板の製造方法 | |
WO2010104086A1 (ja) | 耐溶融金属脆化割れ性に優れた亜鉛系合金めっき鋼材 | |
WO2017090236A1 (ja) | 高強度溶融亜鉛めっき鋼板の製造方法、高強度溶融亜鉛めっき鋼板用熱延鋼板の製造方法、高強度溶融亜鉛めっき鋼板用冷延鋼板の製造方法、および高強度溶融亜鉛めっき鋼板 | |
JPWO2016002141A1 (ja) | 高強度溶融亜鉛めっき鋼板の製造方法 | |
WO2020148944A1 (ja) | 溶融亜鉛めっき鋼板の製造方法 | |
JP2017115205A (ja) | めっき密着性に優れた溶融Zn−Al−Mg合金めっき鋼板の製造方法 | |
US11377712B2 (en) | Hot dipped high manganese steel and manufacturing method therefor | |
JP2019504205A (ja) | めっき性及び溶接性に優れたオーステナイト系溶融アルミニウムめっき鋼板及びその製造方法 | |
JP5667363B2 (ja) | 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法 | |
JP5660796B2 (ja) | 溶融亜鉛系めっき高張力鋼板の製造法 | |
JP2013087314A (ja) | めっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板とその製造方法 | |
JP2014019935A (ja) | 表面安定性に優れた高強度溶融亜鉛めっき鋼板の製造方法 | |
JP2011117062A (ja) | 合金化溶融亜鉛めっき鋼板およびその製造方法 | |
JP6801496B2 (ja) | 曲げ加工性に優れた高強度溶融Zn−Al−Mg系めっき鋼板及びその製造方法 | |
KR101736640B1 (ko) | 도금성 및 점용접성이 우수한 아연계 도금강판 및 그 제조방법 | |
JP5495921B2 (ja) | 溶融亜鉛系めっき高張力鋼板の製造法 | |
JP2020506286A (ja) | 犠牲防食性及びめっき性に優れた高マンガン溶融アルミニウムめっき鋼板及びその製造方法 | |
JP2016006230A (ja) | めっき密着性に優れた溶融亜鉛系めっき鋼板 | |
JP5935720B2 (ja) | 高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板 | |
JP5640661B2 (ja) | 高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板の製造方法 | |
JP6958459B2 (ja) | 溶融Zn−Al−Mg合金めっき鋼板およびその製造方法 | |
KR102031459B1 (ko) | 도금성이 우수한 초고강도 고망간 용융아연도금강판 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480018101.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14774669 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2904131 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14773398 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20157024871 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2015/013368 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014774669 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2014245876 Country of ref document: AU Date of ref document: 20140325 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201506908 Country of ref document: ID |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015024016 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 112015024016 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150917 |