WO2014157071A1 - 基板処理装置、半導体装置の製造方法及び基板処理方法 - Google Patents

基板処理装置、半導体装置の製造方法及び基板処理方法 Download PDF

Info

Publication number
WO2014157071A1
WO2014157071A1 PCT/JP2014/058053 JP2014058053W WO2014157071A1 WO 2014157071 A1 WO2014157071 A1 WO 2014157071A1 JP 2014058053 W JP2014058053 W JP 2014058053W WO 2014157071 A1 WO2014157071 A1 WO 2014157071A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
reaction tube
pressure
exhaust
gas
Prior art date
Application number
PCT/JP2014/058053
Other languages
English (en)
French (fr)
Inventor
谷山 智志
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to JP2015508474A priority Critical patent/JPWO2014157071A1/ja
Priority to KR1020157025691A priority patent/KR20150120470A/ko
Priority to US14/779,729 priority patent/US20160053377A1/en
Publication of WO2014157071A1 publication Critical patent/WO2014157071A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32051Deposition of metallic or metal-silicide layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67769Storage means

Definitions

  • the present invention relates to a substrate processing apparatus, a semiconductor device manufacturing method, and a substrate processing method.
  • Fig. 7 shows a conventional exhaust system diagram.
  • a main valve (pressure control valve: APC) 702 is connected to a pump 703 by pipes 704a and 704b, respectively.
  • APC pressure control valve
  • the feed gas flow rate and pressure can be controlled in this system.
  • the flow rate is increased by about 1.5 times compared to the conventional processing process. Therefore, in order to perform pressure control, it is necessary to increase the diameter of the pipe (see FIG. 8).
  • the layout of the conventional apparatus is shown in FIG.
  • the reaction chamber 701 and the APC 702 are connected by piping 704 so that the layout does not come out from the width of the substrate processing apparatus.
  • the arrangement is such that the substrate processing apparatus largely protrudes from the lateral width as shown in the layout of FIG. Therefore, there has been a problem that the footprint becomes large.
  • the present invention has a problem that it is difficult to perform exhaust pressure control equivalent to the conventional method when the supply gas flow rate is increased due to the increase in the volume of the reaction tube as the diameter of the processing substrate is increased. It is an object of the present invention to provide a substrate processing apparatus, a semiconductor device manufacturing method, and a substrate processing method.
  • a substrate processing apparatus includes a reaction tube that carries a substrate holder for holding a plurality of substrates and processes the substrate, and a gas supply unit that supplies a processing gas into the reaction tube. And at least two exhaust pipes for exhausting the gas supplied by the gas supply section, each of the exhaust pipes having a valve for controlling the exhaust amount of the at least two exhaust pipes, and the exhaust pipe And a control unit that controls the valve provided in the unit according to a predetermined timing.
  • the present invention it is possible to provide a substrate processing apparatus, a semiconductor device manufacturing method, and a substrate processing method capable of controlling the exhaust pressure of a processing gas accompanying an increase in the diameter of a processing substrate with a simple configuration.
  • FIG. 1 is a schematic horizontal sectional view of a substrate processing apparatus according to an embodiment of the present invention. It is an example of the process event which concerns on embodiment of this invention. It is a schematic longitudinal cross-sectional view of the substrate processing apparatus which concerns on a prior art. It is a general
  • FIG. 1 is a perspective view of a processing apparatus applied to the present invention.
  • FIG. 2 is a side perspective view of the processing apparatus shown in FIG.
  • the processing apparatus 101 of the present invention stores a plurality of wafers (substrates) 200 made of silicon or the like, and uses FOUP (both cassette and pod) as a wafer carrier used as a storage container.
  • FOUP both cassette and pod
  • a wafer carrier used as a storage container.
  • a pod 110 is used, and a housing 111 is provided as a main body of the substrate processing apparatus.
  • the wafer 200 is loaded in the pod 110 and conveyed in a sealed state.
  • a front maintenance port 103 is disposed in the front front portion of the front wall 111a of the casing 111 as an opening provided for maintenance.
  • a front maintenance door 104 is provided to open and close the front maintenance port 103.
  • a pod loading / unloading port 112 is disposed on the maintenance door 104 so as to communicate with the inside and outside of the housing 111.
  • the pod loading / unloading port 112 is opened and closed by a front shutter 113.
  • a load port 114 used as a loading / unloading unit is installed on the front front side of the pod loading / unloading port 112, and the loading port 114 is configured to be aligned when the pod 110 is placed.
  • the pod 110 is loaded onto the load port 114 by an in-process transfer device (not shown) and also unloaded from the load port 114.
  • a pod shelf (accommodating shelf) 105 is installed at an upper portion of the casing 111 in a substantially central portion in the front-rear direction, and the pod shelf 105 stores a plurality of pods 110 in a plurality of rows and a plurality of rows. It is configured.
  • the pod shelf 105 includes a support unit 116 installed vertically and a plurality of mounting units 117 that are held so as to be independently movable in the vertical direction at each of the upper, middle, and lower stages with respect to the support unit 116.
  • the pod shelf 105 is configured to hold a plurality of pods 110 placed on a plurality of stages of placement units 117. That is, the pod shelf 105 accommodates a plurality of pods 110 in a plurality of stages in the vertical direction by arranging, for example, two pods 110 in a straight line in the same direction.
  • a pod transfer device (container transfer mechanism) 118 is installed between the load port 114 and the pod shelf 105 in the housing 111.
  • the pod transfer device 118 includes a pod elevator 118a as a shaft portion that can be vertically moved while holding the pod 110, and a pod transfer portion 118b as a transfer portion that carries the pod 110 and transfers it in the horizontal direction.
  • the pod transfer device 118 is configured to transfer the pod 110 between the load port 114, the pod shelf 105, and the pod opener 121 by continuous operation of the pod elevator 118a and the pod transfer unit 118b.
  • a sub-housing 119 is constructed over the rear end at the lower part of the substantially central portion of the housing 111 in the front-rear direction.
  • a pair of wafer loading / unloading ports 120 for loading / unloading the wafers 200 into / from the sub-casing 119 are arranged on the front wall 119a of the sub-casing 119 so as to be vertically arranged in two stages.
  • a pair of pod openers 121 and 121 are respectively installed at the lower wafer loading / unloading ports 120 and 120.
  • the pod opener 121 includes mounting bases 122 and 122 for mounting the pod 110 and cap attaching / detaching mechanisms 123 and 123 for attaching and detaching the cap of the pod 110 used as a sealing member.
  • the pod opener 121 is configured to open and close the wafer loading / unloading port of the pod 110 by attaching / detaching the cap of the pod 110 placed on the placing table 122 by the cap attaching / detaching mechanism 123.
  • the sub-casing 119 constitutes a transfer chamber 124 that is fluidly isolated from the installation space of the pod transfer device 118 and the pod shelf 105.
  • a wafer transfer mechanism 125 is installed in a front region of the transfer chamber 124.
  • the wafer transfer mechanism 125 is configured to be capable of rotating or linearly moving the wafer 200 in a horizontal direction and a wafer transfer device 125a. It is comprised with the wafer transfer apparatus elevator 125b for raising / lowering.
  • a wafer transfer device elevator (not shown) is installed between the right end of the pressure-resistant casing 111 and the right end of the front area of the transfer chamber 124 of the sub-housing 119. ing.
  • the tweezer (substrate holder) 125c of the wafer transfer device 125a is used as a placement portion for the wafer 200 with respect to the boat (substrate holder) 217.
  • the wafer 200 is loaded (charged) and unloaded (discharged).
  • a standby unit 126 that houses and waits for the boat 217 is configured.
  • a processing furnace 202 used as a processing chamber is provided above the standby unit 126.
  • the lower end portion of the processing furnace 202 is configured to be opened and closed by a furnace port shutter 147.
  • a boat elevator 115 for raising and lowering the boat 217 is installed between the right end portion of the pressure-resistant housing 111 and the right end portion of the standby portion 126 of the sub housing 119.
  • a seal cap 219 serving as a lid is horizontally installed on an arm 128 serving as a connecting tool connected to a lifting platform of the boat elevator 115, and the seal cap 219 supports the boat 217 vertically, and a lower end of the processing furnace 202. It is comprised so that a part can be obstruct
  • the boat 217 includes a plurality of holding members, and is configured to hold a plurality of (for example, about 50 to 125) wafers 200 horizontally in a state where the centers are aligned in the vertical direction. Has been.
  • the left end of the transfer chamber 124 opposite to the wafer transfer device elevator 125b side and the boat elevator 115 side is a cleaned atmosphere or an inert gas.
  • a clean unit 134 composed of a supply fan and a dust-proof filter is installed so as to supply clean air 133.
  • the circumferential direction of the wafer is installed as a substrate aligning device for aligning the positions.
  • the clean air 133 blown out from the clean unit 134 flows into the notch aligning device 135, the wafer transfer device 125a, and the boat 217 in the standby unit 126, and is then sucked in through a duct (not shown) to the outside of the housing 111. Exhaust is performed or it is circulated to the primary side (supply side) that is the suction side of the clean unit 134, and is again blown into the transfer chamber 124 by the clean unit 134.
  • FIG. 3 shows the configuration of the controller 240.
  • the controller 240 controls the pod transfer device 118, the pod shelf 105, the wafer transfer mechanism 125, the boat elevator 115, and the like via the input / output device 241.
  • the pod loading / unloading port 112 is opened by the front shutter 113, and the pod 110 above the load port 114 serves as a pod transfer device.
  • 118 is carried into the housing 111 from the pod loading / unloading port 112.
  • the loaded pod 110 is automatically transported and delivered by the pod transport device 118 to the designated placement unit 117 of the pod shelf 105, temporarily stored, and then one pod opener 121 from the pod shelf 105. And transferred to the pod opener 121 and transferred to the mounting table 122 or directly transferred to the pod opener 121 and mounted on the mounting table. 122.
  • the wafer loading / unloading port 120 of the pod opener 121 is closed by the cap attaching / detaching mechanism 123, and the transfer chamber 124 is filled with clean air 133.
  • the transfer chamber 124 is filled with nitrogen gas as clean air 133, so that the oxygen concentration is set to 20 ppm or less, which is much lower than the oxygen concentration inside the casing 111 (atmosphere).
  • the pod 110 mounted on the mounting table 122 has its opening-side end face pressed against the opening edge of the wafer loading / unloading port 120 on the front wall 119a of the sub-housing 119, and the cap is removed by the cap attaching / detaching mechanism 123.
  • the wafer loading / unloading port is opened.
  • the wafer 200 is picked up from the pod 110 by the tweezer 125c of the wafer transfer device 125a through the wafer loading / unloading port, aligned with the notch alignment device 135 (not shown), and then transferred. It is carried into the standby section 126 behind the chamber 124 and loaded (charged) into the boat 217.
  • the wafer transfer device 125 a that has transferred the wafer 200 to the boat 217 returns to the pod 110 and loads the next wafer 200 into the boat 217.
  • the wafer transfer mechanism 125 in the one (upper or lower) pod opener 121 During the loading operation of the wafer into the boat 217 by the wafer transfer mechanism 125 in the one (upper or lower) pod opener 121, another pod 110 from the pod shelf 105 is placed in the other (lower or upper) pod opener 121.
  • the pod carrier 118 is transported and transferred, and the pod opener 121 opens the pod 110 simultaneously.
  • the lower end of the processing furnace 202 closed by the furnace port shutter 147 is opened by the furnace port shutter 147. Subsequently, the boat 217 holding the wafers 200 is loaded into the processing furnace 202 when the seal cap 219 is lifted by the boat elevator 115.
  • the wafer 200 and the pod 110 are dispensed to the outside of the housing by the reverse procedure described above except for the wafer alignment process in the notch alignment device 135 (not shown).
  • FIG. 4 is a schematic longitudinal sectional view of the substrate processing apparatus according to the embodiment of the present invention
  • FIG. 5 is a schematic horizontal sectional view of the substrate processing apparatus according to the embodiment of the present invention.
  • a process such as a film forming gas, a doping gas, or an etching gas is performed from a gas supply unit 401 penetrating the reaction tube 202 (or a support member such as a manifold (not shown) that supports the reaction tube).
  • a gas, a purge gas such as an inert gas, or a mixed gas thereof is supplied into the reaction tube 202.
  • an exhaust pipe is connected to the reaction tube 202 (or a support member such as a manifold (not shown) that supports the reaction tube), and the exhaust pipe is the same on the downstream side of the connection portion with the reaction tube 202.
  • a variable valve for example, an APC valve, etc., hereinafter referred to as an APC valve
  • APC valve can be configured so that there are two systems of conductance (displacement amount), and the valve opening degree for adjusting the exhaust amount by the controller 240 can be controlled in one exhaust pipe. 303), and the other exhaust pipe is provided with a fixed valve (hereinafter referred to as an ON / OFF valve) 304 that can be controlled only for switching between ON and OFF in parallel.
  • the exhaust volume inside is controlled.
  • the exhaust pipes divided into two systems are joined downstream and connected to the exhaust pump 305. With this configuration, the displacement can be increased without increasing the footprint as shown in FIG.
  • an exhaust system that is, an exhaust line (exhaust section) is mainly configured by an exhaust pipe, an APC valve 303, an ON / OFF valve 304, a pressure sensor (not shown), and the like.
  • FIG. 6 is an example of a process event according to the embodiment of the present invention.
  • the vertical direction indicates the pressure in the reaction tube
  • the horizontal direction indicates the passage of time.
  • the controller 240 is controlled so that the ON / OFF valve is turned off for a predetermined time and the APC valve 303 has a predetermined opening degree. By controlling in this way, the inside of the processing furnace is slowly exhausted (slow exhaust) (S1).
  • the APC valve 303 After slow exhaust is performed for a predetermined time, or after the pressure is reduced to a desired slow exhaust pressure, the APC valve 303 is fully opened until the desired exhaust pressure is reached and ON / The OFF valve 304 is turned on to exhaust at the maximum displacement (S2). At this time, as shown in FIG. 6, when the desired evacuation pressure is reached, the pressure may be controlled to be maintained (S2).
  • an inert gas such as N 2 gas is supplied to purify the furnace, and the furnace is purged (S3).
  • the ON / OFF valve 304 is turned OFF, and the opening degree of the APC valve 303 is controlled by the controller 240 to control the pressure.
  • the purge gas is completely exhausted (S4), and then the processing gas A is supplied (S5). While the processing gas A is being supplied, the ON / OFF valve 304 is turned OFF and the pressure of the APC valve 303 is controlled by the controller 240 in order to maintain the processing pressure P1. At this time, as shown in FIG. 6, when the desired evacuation pressure is reached, the pressure may be controlled to be maintained (S4).
  • the process proceeds to the processing process using the processing gas B.
  • the APC valve 303 is fully opened until the desired vacuum exhaust pressure is reached, and the ON / OFF valve 304 is turned ON to exhaust at the maximum displacement. Perform (S2 ').
  • an inert gas such as N 2 gas is supplied to purify the inside of the furnace and purge inside the furnace (S3 ′).
  • the ON / OFF valve 304 is turned OFF, and the opening degree of the APC valve 303 is controlled by the controller 240 to control the pressure.
  • the purge gas is completely exhausted (S4 ′), and then the processing gas B is supplied (S5 ′). While the processing gas B is being supplied, the ON / OFF valve 304 is turned OFF and the pressure of the APC valve 303 is controlled by the controller 240 in order to maintain the processing pressure P2.
  • TiN film a titanium nitride film (TiN film) by using the processing gas A as the titanium (Ti) -containing gas and the processing gas B as the nitrogen-containing gas will be described as an example.
  • titanium-containing gas for example, titanium tetrachloride (TiCl 4 ) or tetrakisdimethylaminotitanium (Ti [N (CH 3 ) 2 ] 4 , abbreviation: TDMAT) gas can be used, and as the nitrogen-containing gas, In addition to NH 3 gas excited by plasma or heat, N 2 gas, NF 3 gas, N 3 H 8 gas or the like excited by plasma or heat may be used. These gases may be argon (Ar), A gas diluted with a rare gas such as helium (He), neon (Ne), or xenon (Xe) gas may be excited by plasma or heat.
  • a rare gas such as helium (He), neon (Ne), or xenon (Xe) gas may be excited by plasma or heat.
  • the vacuum pump 305 is evacuated so that the processing furnace has a desired pressure (degree of vacuum). At this time, the pressure in the processing furnace is measured by a pressure sensor (not shown). Based on the measured pressure, the ON / OFF valve 304 is turned off for a predetermined time and the APC valve 303 has a predetermined opening. As described above, the controller 240 performs feedback control, so that the processing furnace is slowly exhausted (S2).
  • the controller 240 When the above-described pressure sensor detects that the pressure in the processing furnace has dropped to a predetermined pressure due to the slow exhaust, the controller 240 fully opens the opening of the APC valve 303 so that the maximum exhaust amount is obtained, and turns on / off.
  • the APC valve 303 and the ON / OFF valve 304 are controlled so that the OFF valve 304 is turned ON.
  • In-furnace purge process S3 When the inside of the processing furnace reaches a desired pressure (evacuation pressure), an in-furnace purge is performed by supplying an inert gas such as N 2 gas which is a purge gas for cleaning the inside of the furnace. (S3). At this time, the controller 240 turns off the ON / OFF valve 304 and controls the pressure of the furnace purge pressure by controlling the opening degree of the APC valve 303.
  • the controller 240 stops the supply of the inert gas and controls the opening degree of the APC valve 303 to control the amount of gas supplied to the processing furnace.
  • the active gas is exhausted completely (S4), and then a titanium-containing gas that is the processing gas A is supplied (S5).
  • the processing chamber 201 is heated by a heater (not shown) so as to have a desired temperature.
  • the power supply to the heater is feedback controlled (temperature adjustment) based on temperature information detected by a temperature sensor (not shown) so that the inside of the processing chamber 201 has a desired temperature distribution.
  • the wafer 200 is rotated (wafer rotation).
  • the titanium-containing gas is supplied onto the wafer 200 for a predetermined time, and the controller 240 controls the APC valve 303 and the ON / OFF valve 304 so that the predetermined processing pressure P1 is reached (for example, the APC valve 303). And the ON / OFF valve 304 is controlled to be OFF or only the APC valve 303 is controlled to have a constant opening degree).
  • the controller 240 controls the APC valve 303 and the ON / OFF valve 304 so that the predetermined processing pressure P1 is reached (for example, the APC valve 303).
  • the ON / OFF valve 304 is controlled to be OFF or only the APC valve 303 is controlled to have a constant opening degree).
  • the titanium-containing layer is formed with a predetermined thickness and a predetermined distribution according to, for example, the pressure in the processing furnace 202, the flow rate of the titanium-containing gas, the processing time in the processing furnace 202, and the like. After a predetermined time has elapsed, the controller 240 stops supplying the titanium-containing gas.
  • a nitrogen-containing gas excited by plasma or heat is supplied onto the wafer 200 for a predetermined time.
  • the titanium-containing layer already formed on the wafer 200 is modified by the excited nitrogen-containing gas, whereby a TiN layer containing titanium element and nitrogen element is formed on the wafer 200.
  • the modified layer containing titanium element and nitrogen element has, for example, a predetermined thickness, a predetermined distribution, and a predetermined amount with respect to the titanium-containing layer according to the pressure in the processing vessel 202, the flow rate of the excited nitrogen-containing gas, and the like. It is formed with a penetration depth of a nitrogen component or the like. After a predetermined time has elapsed, the controller 240 stops supplying the nitrogen-containing gas.
  • the controller 240 After stopping the supply of the nitrogen-containing gas, the controller 240 fully opens the APC valve 303 and turns on the ON / OFF valve 304 to discharge the nitrogen-containing gas existing in the processing furnace 202. Control to achieve a desired pressure (evacuation pressure).
  • a TiN film having a desired thickness can be formed.
  • the ON / OFF valve 304 is closed and the APC valve is closed in the furnace purge process S3 or S3 ′ and the process gas A or process gas B supply process S5 or S5 ′.
  • the pressure inside the furnace is controlled by controlling the valve opening of the valve 303.
  • the present invention is not limited to this, and both the APC valve 303 and the ON / OFF valve 304 are closed to control the pressure inside the furnace. Also good.
  • the pressure control in the furnace is necessary for cleaning processing other than the above-described process, the pressure control may be performed using the APC valve 303, and further, pressure control in the furnace is performed by vacuum exhaust processing other than the above-described process.
  • an ON / OFF valve 304 may be used.
  • At least two valves provided in the exhaust pipe have been described as one APC valve and the other as a valve that can be controlled only for ON-OFF switching. Both may use an APC valve that can control the opening of the valve, and the type of valve is not limited to the APC valve, but any variable valve that can control the opening of the valve by a controller and change the conductance. good.
  • the exhaust amount when the opening degree of the APC valve is maximized and the exhaust amount when the ON-OFF valve is turned on are set to be the same exhaust amount.
  • the present invention is not limited to this, and the exhaust amount when the opening degree of the APC valve is maximized may be different from the exhaust amount when the ON-OFF valve is turned ON. It may be provided so that the displacement when the ON-OFF valve is turned on is larger than the displacement when the opening of the valve is maximized, or when the opening of the APC valve is maximized
  • the exhaust amount when the ON-OFF valve is turned on may be provided to be smaller than the exhaust amount.
  • a processing process for forming a titanium nitride film (TiN film) by using the processing gas A as a titanium (Ti) -containing gas and the processing gas B as a nitrogen-containing gas is taken as an example.
  • the process gas A may be a silicon (Si) -containing gas and the process gas B may be a nitrogen-containing gas to form a silicon nitride film (SiN film), or the process gas A may contain silicon.
  • a gas or process gas B may be used as an oxygen-containing gas to form a silicon oxide film (SiO film), or the process gas A may be an aluminum (Al) -containing gas and the process gas B may be a nitrogen-containing gas.
  • a treatment process for forming an aluminum nitride film may be performed, or the treatment gas A may be treated with an aluminum-containing gas.
  • Aluminum oxide film by using a gas B as the oxygen-containing gas may be treatment process for forming a (AlO film).
  • a silicon-containing gas for example, dichlorosilane (SiH 2 Cl 2 , abbreviation: DCS) gas, tetrachlorosilane (SiCl 4 , abbreviation: TCS) gas, hexachlorodisilane (Si 2 Cl 6 , abbreviation: HCD) gas,
  • DCS dichlorosilane
  • SiCl 4 tetrachlorosilane
  • HCD hexachlorodisilane
  • inorganic raw materials such as monosilane (SiH 4 ) gas, aminosilane-based tetrakisdimethylaminosilane (Si (N (CH 3 ) 2 )) 4 , abbreviation: 4DMAS gas, trisdimethylaminosilane (Si (N (CH 3 ) 2 ) )) 3 H, abbreviation: 3DMAS) gas, bisdiethylaminosilane (Si (N (C 2
  • the processing process using the processing gas A and the processing gas B has been described.
  • the present invention is not limited to this, and the processing processes S2 to S5 using only the processing gas A are repeatedly performed. May be.
  • the substrate processing apparatus 101 is configured, for example, as a semiconductor manufacturing apparatus that performs a manufacturing method of a semiconductor device (IC).
  • IC semiconductor device
  • the semiconductor manufacturing apparatus not only the semiconductor manufacturing apparatus but also a glass substrate such as an LCD device is processed.
  • the present invention can also be applied to an apparatus that performs the above.
  • Examples of the film forming process performed in the substrate processing apparatus 101 include CVD, PVD, ALD, Epi, other processes for forming an oxide film and a nitride film, and processes for forming a film containing a metal. Further, annealing treatment, oxidation treatment, diffusion treatment or the like may be performed.
  • the substrate processing apparatus is described as the vertical processing apparatus 101.
  • the substrate processing apparatus can be similarly applied to a single wafer apparatus, and further, an etching apparatus, an exposure apparatus, a lithography apparatus, a coating apparatus,
  • the present invention can be similarly applied to a molding apparatus, a developing apparatus, a dicing apparatus, a wire bonding apparatus, an inspection apparatus, and the like.
  • a reaction tube for carrying a substrate holder for holding a plurality of substrates and processing the substrate; a gas supply part for supplying a processing gas into the reaction tube; and an exhaust pipe for exhausting the gas supplied by the gas supply part. At least two, and an exhaust part provided in each of the exhaust pipes for controlling the exhaust amount of the at least two exhaust pipes, and a control for controlling the valves provided in the exhaust part according to a predetermined timing A substrate processing apparatus.
  • Appendix 2 The substrate processing apparatus according to appendix 1, wherein the valve has at least one variable valve that varies an exhaust amount under the control of the control unit.
  • the control unit controls the at least one variable valve until the pressure in the reaction tube changes from atmospheric pressure to the first pressure, and closes the other valve, so that the pressure in the reaction tube becomes the first pressure.
  • the other valves that have been closed and all of the variable valves are opened to set the pressure in the reaction tube to a second pressure, and at least one variable valve is set during the cleaning process in the reaction tube.
  • the other valve is closed to a third pressure, and after the cleaning process, all of the at least one variable valve and the other valve are opened to make the second pressure again, and the second pressure is again made.
  • At least two exhaust pipes and the exhaust pipe after a step of carrying a substrate holder for holding the substrate into the reaction tube, a step of supplying a processing gas to the reaction tube from a gas supply unit, and a step of supplying the processing gas A step of exhausting the processing gas by an exhaust section having at least two valves for adjusting the exhaust amount of each of the above, and a step of controlling the at least two valves of the exhaust section according to a predetermined timing;
  • a method for manufacturing a semiconductor device comprising:
  • At least one has a variable valve capable of varying the displacement, and controls the variable valve to exhaust the pressure in the reaction tube from atmospheric pressure to a first pressure, and the pressure in the reaction tube is reduced to atmospheric pressure.
  • the step of exhausting all the variable valves and other valves to exhaust the pressure in the reaction tube to the second pressure, and the step of exhausting to the second pressure A step of supplying a purge gas by a gas supply unit provided in the reaction tube to purge the inside of the reaction tube; and after supplying the purge gas, the variable valve and all other valves are Releasing the pressure until the pressure in the reaction tube reaches the second pressure again, and supplying a processing gas by the gas supply unit after reaching the second pressure again to form a desired film
  • a method for manufacturing a semiconductor device is
  • At least two exhaust pipes and the exhaust pipe after a step of carrying a substrate holder for holding the substrate into the reaction tube, a step of supplying a processing gas to the reaction tube from a gas supply unit, and a step of supplying the processing gas And a step of controlling at least two valves for adjusting the respective exhaust amounts according to a predetermined timing.
  • At least one has a variable valve capable of varying the displacement, and controls the variable valve to exhaust the pressure in the reaction tube from atmospheric pressure to a first pressure, and the pressure in the reaction tube is reduced to atmospheric pressure.
  • the step of exhausting all the variable valves and other valves to exhaust the pressure in the reaction tube to the second pressure, and the step of exhausting to the second pressure A step of supplying a purge gas by a gas supply unit provided in the reaction tube to purge the inside of the reaction tube; and after supplying the purge gas, the variable valve and all other valves are Releasing the pressure until the pressure in the reaction tube reaches the second pressure again, and supplying a processing gas by the gas supply unit after reaching the second pressure again to form a desired film And a substrate processing method.
  • the present invention is applicable to a substrate processing apparatus, a semiconductor device manufacturing method, and a substrate processing method capable of controlling the exhaust pressure of a processing gas accompanying an increase in the diameter of a processing substrate with a simple configuration. Can do.
  • substrate processing apparatus 110 pod 124 transfer chamber 200 wafer (substrate) 202 reaction tube 217 boat 240 controller 303 APC valve (variable valve) 304 valve (ON / OFF valve) 401 gas supply unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

半導体の微細化およびウエハの大口径化に伴い、ウエハサイズが増大する。そのため、従来のウエハサイズのプロセスに比べて、供給ガス流量も増えることとなる。そのため、従来と同等の排気圧力制御を行うことが困難となる。処理室と真空ポンプとに連通された複数の排気配管にそれぞれ設けられた開閉バルブと、開閉バルブを制御する制御手段を有し、プロセスイベントごとにバルブ開閉、圧力制御動作を行うことで、ウエハの大口径化に対応する。

Description

基板処理装置、半導体装置の製造方法及び基板処理方法
 本発明は、基板処理装置、半導体装置の製造方法及び基板処理方法に関するものである。
 半導体の微細化およびウエハ大口径化に伴い、半導体装置筐体の容積が大きくなってきている。このため、従来の処理プロセスに比べて、供給ガス流量が多くなる。そのため、従来の処理プロセス同等の排気圧力制御を行うことが困難となる。これを回避するためには排気量を大きくすることが必須であり、排気量を大きくするために、排気配管を太く、コンダクタンスを小さくすることが必要となる。しかし、配管を極力短くするために、反応室近くにメインバルブを配置するが、単純にバルブや配管を太くすると基板処理装置の幅よりも外側に配管がレイアウトされてしまうため、装置のフットプリントが大きくなってしまう。
 従来の排気の系統図を図7に示す。反応室701の直近にメインバルブ(圧力コントロールバルブ:APC)702を介して、ポンプ703にそれぞれ配管704a、704bで接続されている。従来の処理プロセスでは、この系で供給ガス流量と圧力制御が可能である。しかし、大口径化後に伴う半導体装置の処理プロセスでは、従来の処理プロセスに比べて流量がおよそ1.5倍程度増加する。そのため、圧力制御をするために、配管の径を大きくすることが必要である(図8参照)。従来装置のレイアウトを図8に示す。反応室701、APC702が配管で704で接続されており、基板処理装置の横幅からは外側には出ないレイアウトとなっていた。しかし、配管704やAPC702を大口径化すると図8のレイアウトのように基板処理装置の横幅から外側へ大きく出てしまう配置となる。そのため、フットプリントが大きくなるという問題があった。
 本発明は、処理基板の径が大口径化されるに伴う反応管の容積増によって、供給ガス流量が多くなった場合に、従来と同等の排気圧力制御を行うことが困難であるという問題を解決する基板処理装置、半導体装置の製造方法及び基板処理方法の提供を目的とする。
 上記目的を達成するために、本発明に係る基板処理装置は、基板を複数保持する基板保持具を搬入して前記基板を処理する反応管と、前記反応管内に処理ガスを供給するガス供給部と、前記ガス供給部によって供給されたガスを排気する排気管を少なくとも2つ備え、前記少なくとも2つの排気管の排気量を制御するバルブを前記排気管のそれぞれに設けた排気部と、前記排気部に設けられた前記バルブを所定のタイミングに応じて制御する制御部と、を有する基板処理装置である。
 さらに、基板を保持する基板保持具を反応管に搬入する工程と、前記反応管にガス供給部より処理ガスを供給する工程と、前記処理ガスを供給する工程後、少なくとも2つの排気管と前記排気管のそれぞれの排気量を調整するための少なくとも2つのバルブを備えた排気部によって前記処理ガスを排気する工程と、前記排気部の前記少なくとも2つのバルブを所定のタイミングに応じて制御する工程と、を有する半導体装置の製造方法である。
 さらに、基板を保持する基板保持具を反応管に搬入する工程と、前記反応管にガス供給部より処理ガスを供給する工程と、前記処理ガスを供給する工程後、少なくとも2つの排気管と前記排気管のそれぞれの排気量を調整するための少なくとも2つのバルブを所定のタイミングに応じて制御する工程と、を有する基板処理方法である。
 本発明によれば、簡単な構成で処理基板の大口径化に伴う処理ガスの排気圧力制御を行うことができる基板処理装置、半導体装置の製造方法及び基板処理方法を提供することができる。
本発明に適用される基板処理装置の斜透視図である。 本発明に適用される基板処理装置の側面透視図である。 本発明が適用される基板処理装置のコントローラの構成を示す図である。 本発明の実施の形態に係る基板処理装置の概略縦断面図である。 本発明の実施の形態に係る基板処理装置の概略水平断面図である。 本発明の実施の形態に係るプロセスイベントの一例である。 従来技術に係る基板処理装置の概略縦断面図である。 従来技術を説明する基板処理装置の概略水平断面図である。
 先ず、本発明の一実施例を使用する縦型熱処理装置を、図1および図2によって説明する。図1および図2の基板処理装置は、半導体装置(IC)の製造方法における1処理工程を実施する半導体製造装置の構成を説明するための図である。なお、以下の説明では、基板処理装置として、基板に酸化、拡散処理、CVD処理などを行なう縦型熱処理装置(以下、単に処理装置という)を適用した場合について述べる。図1は、本発明に適用される処理装置の斜透視図である。また、図2は図1に示す処理装置の側面透視図である。
 図1および図2に示されているように、本発明の処理装置101は、シリコン等からなる複数のウエハ(基板)200を収納し、収容容器として用いられるウエハキャリアとしてFOUP(カセット、ポッドともいう。以下、ポッドという。)110が使用され、基板処理装置本体として筐体111を備えている。なお、ウエハ200は、ポッド110に装填され密閉された状態で搬送される。
 筐体111の正面壁111aの正面前方部には、メンテナンス可能に設けられた開口部として、正面メンテナンス口103が配設されている。そして、この正面メンテナンス口103を開閉するために、正面メンテナンス扉104が設けられている。メンテナンス扉104には、ポッド搬入搬出口112が筐体111内外を連通するように配設されている。ポッド搬入搬出口112は、フロントシャッタ113によって開閉される。ポッド搬入搬出口112の正面前方側には、搬入搬出部として用いられるロードポート114が設置されており、ロードポート114はポッド110が載置されると位置合わせするように構成されている。ポッド110は、ロードポート114上に、工程内搬送装置(図示せず)によって搬入され、かつまた、ロードポート114上から搬出されるようになっている。
 筐体111内の前後方向の略中央部における上部には、ポッド棚(収容棚)105が設置されており、ポッド棚105は、複数段複数列にて、複数個のポッド110を保管するように構成されている。ポッド棚105は垂直に立設される支持部116と、支持部116に対して上中下段の各位置において垂直方向にそれぞれ独立して移動可能に保持された複数段の載置部117とを備えており、ポッド棚105は、複数段の載置部117にポッド110を複数個宛それぞれ載置した状態で保持するように構成されている。すなわち、ポッド棚105は、例えば2つのポッド110を一直線上に同一方向を向いて配置して垂直方向に複数段に複数個のポッド110を収容する。
 筐体111内におけるロードポート114とポッド棚105との間には、ポッド搬送装置(収容容器搬送機構)118が設置されている。ポッド搬送装置118は、ポッド110を保持したまま垂直方向に昇降可能な軸部としてのポッドエレベータ118aとポッド110を載置して水平方向に搬送する搬送部としてのポッド搬送部118bとで構成されており、ポッド搬送装置118はポッドエレベータ118aとポッド搬送部118bとの連続動作により、ロードポート114、ポッド棚105、ポッドオープナ121との間で、ポッド110を搬送するように構成されている。
 筐体111内の前後方向の略中央部における下部には、サブ筐体119が後端にわたって構築されている。サブ筐体119の正面壁119aにはウエハ200をサブ筐体119内に対して搬入搬出するためのウエハ搬入搬出口120が一対、垂直方向に上下二段に並べられて開設されており、上下段のウエハ搬入搬出口120、120には一対のポッドオープナ121、121がそれぞれ設置されている。ポッドオープナ121はポッド110を載置する載置台122、122と、密閉部材として用いられるポッド110のキャップを着脱するキャップ着脱機構123、123とを備えている。ポッドオープナ121は載置台122に載置されたポッド110のキャップをキャップ着脱機構123によって着脱することにより、ポッド110のウエハ出し入れ口を開閉するように構成されている。
 サブ筐体119はポッド搬送装置118やポッド棚105の設置空間から流体的に隔絶された移載室124を構成している。移載室124の前側領域にはウエハ移載機構125が設置されており、ウエハ移載機構125は、ウエハ200を水平方向に回転ないし直動可能なウエハ移載装置125a及びウエハ移載装置125aを昇降させるためのウエハ移載装置エレベータ125bとで構成されている。図1に模式的に示されているようにウエハ移載装置エレベータ(図示せず)は耐圧筐体111右側端部とサブ筐体119の移載室124前方領域右端部との間に設置されている。これら、ウエハ移載装置エレベータ125b及びウエハ移載装置125aの連続動作により、ウエハ移載装置125aのツイーザ(基板保持体)125cをウエハ200の載置部として、ボート(基板保持具)217に対してウエハ200を装填(チャージング)及び脱装(ディスチャージング)するように構成されている。
 移載室124の後側領域には、ボート217を収容して待機させる待機部126が構成されている。待機部126の上方には、処理室として用いられる処理炉202が設けられている。処理炉202の下端部は、炉口シャッタ147により開閉されるように構成されている。
 図1に模式的に示されているように、耐圧筐体111右側端部とサブ筐体119の待機部126右端部との間にはボート217を昇降させるためのボートエレベータ115が設置されている。ボートエレベータ115の昇降台に連結された連結具としてのアーム128には蓋体としてのシールキャップ219が水平に据え付けられており、シールキャップ219はボート217を垂直に支持し、処理炉202の下端部を閉塞可能なように構成されている。
 ボート217は複数本の保持部材を備えており、複数枚(例えば、50~125枚程度)のウエハ200をその中心を揃えて垂直方向に整列させた状態で、それぞれ水平に保持するように構成されている。
 図1に模式的に示されているように移載室124のウエハ移載装置エレベータ125b側及びボートエレベータ115側と反対側である左側端部には、清浄化した雰囲気もしくは不活性ガスであるクリーンエア133を供給するよう供給ファン及び防塵フィルタで構成されたクリーンユニット134が設置されており、ウエハ移載装置125aとクリーンユニット134との間には、図示はしないが、ウエハの円周方向の位置を整合させる基板整合装置としてのノッチ合わせ装置が設置されている。クリーンユニット134から吹き出されたクリーンエア133は、ノッチ合わせ装置135及びウエハ移載装置125a、待機部126にあるボート217に流通された後に、図示しないダクトにより吸い込まれて、筐体111の外部に排気がなされるか、もしくはクリーンユニット134の吸い込み側である一次側(供給側)にまで循環され、再びクリーンユニット134によって、移載室124内に吹き出されるように構成されている。 
 次に、基板処理装置100の動作について、図1~図3を用いて説明する。尚、以下の説明において、基板処理装置100を構成する各部の動作は、コントローラ240により制御される。図3には、コントローラ240の構成が示されている。コントローラ240は、入出力装置241を介して、ポッド搬送装置118、ポッド棚105、ウエハ移載機構125、ボートエレベータ115等を制御する。図1及び図2に示されているように、ポッド110がロードポート114に供給されると、ポッド搬入搬出口112がフロントシャッタ113によって開放され、ロードポート114の上のポッド110はポッド搬送装置118によって筐体111の内部へポッド搬入搬出口112から搬入される。搬入されたポッド110はポッド棚105の指定された載置部117へポッド搬送装置118によって自動的に搬送されて受け渡され、一時的に保管された後、ポッド棚105から一方のポッドオープナ121に搬送されて受け渡され、一時的に保管された後、ポッド棚105から一方のポッドオープナ121に搬送されて載置台122に移載されるか、もしくは直接ポッドオープナ121に搬送されて載置台122に移載される。この際、ポッドオープナ121のウエハ搬入搬出口120はキャップ着脱機構123によって閉じられており、移載室124にはクリーンエア133が流通され、充満されている。例えば、移載室124にはクリーンエア133として窒素ガスが充満することにより、酸素濃度が20ppm以下と、筐体111の内部(大気雰囲気)の酸素濃度よりも遥かに低く設定されている。
 載置台122に載置されたポッド110はその開口側端面がサブ筐体119の正面壁119aにおけるウエハ搬入搬出口120の開口縁辺部に押し付けられるとともに、そのキャップがキャップ着脱機構123によって取り外され、ウエハ出し入れ口を開放される。ポッド110がポッドオープナ121によって開放されると、ウエハ200はポッド110からウエハ移載装置125aのツイーザ125cによってウエハ出し入れ口を通じてピックアップされ、図示しないノッチ合わせ装置135にてウエハを整合した後、移載室124の後方にある待機部126へ搬入され、ボート217に装填(チャージング)される。ボート217にウエハ200を受け渡したウエハ移載装置125aはポッド110に戻り、次のウエハ200をボート217に装填する。
 この一方(上段または下段)のポッドオープナ121におけるウエハ移載機構125によるウエハのボート217への装填作業中に、他方(下段または上段)のポッドオープナ121にはポッド棚105から別のポッド110がポッド搬送装置118によって搬送されて移載され、ポッドオープナ121によるポッド110の開放作業が同時進行される。
 予め指定された枚数のウエハ200がボート217に装填されると、炉口シャッタ147によって閉じられていた処理炉202の下端部が、炉口シャッタ147によって、開放される。続いて、ウエハ200群を保持したボート217はシールキャップ219がボートエレベータ115によって上昇されることにより、処理炉202内へ搬入(ローディング)されて行く。
 ローディング後は、処理炉202にてウエハ200に任意の処理が実施される。 処理後は、図示しないノッチ合わせ装置135でのウエハの整合工程を除き、概上述の逆の手順で、ウエハ200及びポッド110は筐体の外部へ払い出される。
 次に、本発明に係るガス排気系について、図4から図6を用いて説明する。図4は本発明の実施の形態に係る基板処理装置の概略縦断面図であり、図5は、本発明の実施の形態に係る基板処理装置の概略水平断面図である。
 図4に記載した実施の形態では、反応管202(または反応管を支持する図示しないマニホールドなどの支持部材)に貫設されたガス供給部401から、成膜ガスやドーピングガスもしくはエッチングガスといった処理ガス、または不活性ガスなどのパージガス、もしくはそれらの混合ガスが反応管202内へ供給される。本発明の実施の形態では、反応管202(または反応管を支持する図示しないマニホールドなどの支持部材)に排気配管を接続し、この排気配管を反応管202との接続部よりも下流側において同一のコンダクタンス(排気量)で2系統となるように構成し、一方の排気配管にコントローラ240で排気量を調節するためのバルブ開度を制御可能な可変バルブ(例えばAPCバルブなど。以下、APCバルブを用いることとして記載する)303を設け、他方の排気配管にはON-OFFの切り替えのみが制御可能な固定バルブ(以下、ON/OFFバルブとして記載する)304を並列に設けて、処理炉202内の排気量を制御している。本発明の実施の形態では、2系統に分かれた排気管を下流で合流させて、排気ポンプ305と接続させるように構成している。このように構成することによって図5に示すようにフットプリントを大きくすることなく、排気量を増やすことが可能となる。
 ここで、本発明の実施の形態においては、主に排気管、APCバルブ303、ON/OFFバルブ304、図示しない圧力センサ等により排気系、すなわち排気ライン(排気部)が構成されるものとする。なお、必要に応じて排気ポンプ305や、図示しないトラップ装置や除害装置を排気系に含めても良い。
 次に本発明の実施の形態に係る基板処理装置を用いて行う排気の制御方法について図6を用いて詳細に説明する。図6は、本発明の実施の形態に係るプロセスイベントの一例である。
 図6において、縦方向は反応管内における圧力について示したものであり、横方向は時間の経過を表すものである。本発明の実施の形態では、所望の膜を成膜するために成膜時の処理圧力の異なる2種類の処理ガスを用いて成膜するプロセスについて説明するものとする。
 上述したように、ウエハ200を積載したボート217を処理炉202へローディングすると、処理炉202内を真空排気して大気圧から所望の圧力まで減圧する必要がある。このとき、排気バルブであるAPCバルブ303とON/OFFバルブ304とを全開にして、大量排気を急激に行うと、バルブや排気ポンプ305に負荷がかかってしまい、各部が破損する虞も生じてしまうため、一定時間、ON/OFFバルブをオフにするとともにAPCバルブ303が所定の開度になるようにコントローラ240によって制御される。このように制御されることによって処理炉内がゆっくりと排気(スロー排気)される(S1)。
 予め定められた時間スロー排気が行われた後、または、所望のスロー排気圧力になるまで減圧された後、所望の真空排気圧力になるまでAPCバルブ303のバルブ開度を全開にするとともにON/OFFバルブ304をONにして最大排気量にて排気を行う(S2)。このとき、図6に記載しているように所望の真空排気圧力になったらその圧力を維持するように制御しても良い(S2)。
 処理炉内が所望の真空排気圧力になると、炉内清浄化のためにNガスなどの不活性ガスを供給して炉内パージを実施する(S3)。このとき、炉内パージ圧力を維持するため、ON/OFFバルブ304をOFFとするとともに、APCバルブ303の開度をコントローラ240によって制御することで圧力制御する。
 予め定められた時間だけ炉内パージを行った後、パージガスを完全に排気し(S4)、その後処理ガスAを供給する(S5)。処理ガスAを供給中は、処理圧力P1を維持するため、ON/OFFバルブ304をOFFとするとともに、APCバルブ303の開度をコントローラ240によって制御することで圧力制御する。このとき、図6に記載しているように所望の真空排気圧力になったらその圧力を維持するように制御しても良い(S4)。
 処理ガスAを用いた処理プロセスが終了すると、処理ガスBを用いた処理プロセスに移行する。
 処理ガスA供給後、処理ガスAを排気するため、所望の真空排気圧力になるまでAPCバルブ303のバルブ開度を全開にするとともにON/OFFバルブ304をONにして最大排気量にて排気を行う(S2')。
処理炉内が所定の真空排気圧力になると、炉内清浄化のためにNガスなどの不活性ガスを供給して炉内パージを実施する(S3')。このとき、炉内パージ圧力を維持するため、ON/OFFバルブ304をOFFとするとともに、APCバルブ303の開度をコントローラ240によって制御することで圧力制御する。
 予め定められた時間だけ炉内パージを行った後、パージガスを完全に排気し(S4')、その後処理ガスBを供給する(S5')。処理ガスBを供給中は、処理圧力P2を維持するため、ON/OFFバルブ304をOFFとするとともに、APCバルブ303の開度をコントローラ240によって制御することで圧力制御する。このように工程S2~S5'を1回または複数回繰り返して行うことで、所望の厚さの膜またはラミネート構造のような積層膜を形成することが可能となる。
 以下、本実施形態のシーケンスについて具体的に説明する。なお、ここでは、処理ガスAをチタン(Ti)含有ガス、処理ガスBを窒素含有ガスとして、それぞれ用いることでチタン窒化膜(TiN膜)を形成する処理プロセスを例として説明する。
 なお、チタン含有ガスとしては、例えば四塩化チタン(TiCl)やテトラキスジメチルアミノチタン(Ti[N(CH、略称:TDMAT)ガスを用いることができ、窒素含有ガスとしては、NHガスをプラズマや熱で励起したガス以外にNガス、NFガス、Nガス等をプラズマや熱で励起したガスを用いても良く、これらのガスをアルゴン(Ar)、ヘリウム(He)、ネオン(Ne)、キセノン(Xe)ガス等の希ガスで希釈したガスをプラズマや熱で励起して用いても良い。
 複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、図1に示されているように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて反応管202内の処理室(反応室)に搬入(ボートロード)される。この状態で、シールキャップ219はOリング220を介して反応管202の下端をシールした状態となる。
 処理炉内が所望の圧力(真空度)となるように真空ポンプ305によって真空排気される。この際、処理炉内の圧力は、図示しない圧力センサで測定され、この測定された圧力に基づいて、ON/OFFバルブ304を一定時間OFF状態にするとともにAPCバルブ303が所定の開度になるようにコントローラ240によってフィードバック制御されることで、処理炉内をスロー排気する(S2)。
 スロー排気によって処理炉内の圧力が所定の圧力まで低下したことを上述した圧力センサによって検出すると、コントローラ240は、最大排気量となるようにAPCバルブ303の開度を全開にするとともに、ON/OFFバルブ304をONにするようにAPCバルブ303とON/OFFバルブ304を制御する。
(炉内パージプロセスS3)  処理炉内が所望の圧力(真空排気圧力)になると、炉内清浄化のためにパージガスであるNガスなどの不活性ガスを供給して炉内パージを実施する(S3)。このときコントローラ240が、ON/OFFバルブ304をOFFとするとともに、APCバルブ303の開度を制御することで炉内パージ圧力となるように圧力制御する。
(処理ガスA供給プロセスS5)
 予め定められた時間の間、炉内パージを行った後、コントローラ240は、不活性ガスの供給を停止するとともに、APCバルブ303の開度を制御することで処理炉内に供給されている不活性ガスを完全に排気し(S4)、その後、処理ガスAであるチタン含有ガスを供給する(S5)。このとき、処理室201内が所望の温度となるように図示しないヒータによって加熱される。この際、処理室201内が所望の温度分布となるように、図示しない温度センサが検出した温度情報に基づいてヒータへの通電具合がフィードバック制御され(温度調整)、図示しない回転機構により、ボート217が回転されることで、ウエハ200が回転される(ウエハ回転)。
 処理炉202内において、チタン含有ガスは、所定の時間ウエハ200上に供給され、所定の処理圧力P1となるようにAPCバルブ303とON/OFFバルブ304をコントローラ240が制御する(例えばAPCバルブ303とON/OFFバルブ304がともにOFFとなるように制御するか、APCバルブ303のみを一定の開度となるように制御する)。このようにチタン含有ガスを供給することによって、ウエハ200表面上には、チタン含有ガスがウエハ200の表面に接触し、「第1元素含有層」としてのチタン含有層が形成される。このようにしてチタン含有層は、例えば、処理炉202内の圧力、チタン含有ガスの流量、処理炉202内での処理時間等に応じて、所定の厚さ及び所定の分布で形成される。所定の時間経過後、コントローラ240は、チタン含有ガスの供給を停止する。
(処理ガスA排気プロセスS2')
  チタン含有ガスの供給を停止した後、コントローラ240は、APCバルブ303を全開にするとともにON/OFFバルブ304をONとして、処理炉202内に存在するチタン含有ガスを排出し、処理炉202内が所望の圧力(真空排気圧力)になるように制御する(S2')。
(炉内パージプロセスS3')
  処理炉内が所望の圧力(真空排気圧力)になると、炉内清浄化のためにパージガスであるNガスなどの不活性ガスを供給して炉内パージを実施する(S3')。このときコントローラ240が、ON/OFFバルブ304をOFFとするとともに、APCバルブ303の開度を制御することで炉内パージ圧力となるように圧力制御する。
(処理ガスB供給プロセスS5')
  予め定められた時間の間、炉内パージを行った後、コントローラ240は、不活性ガスの供給を停止するとともに、APCバルブ303の開度を制御することで処理炉内に供給されている不活性ガスを完全に排気し(S4')、その後、処理ガスBである窒素含有ガスを供給する(S5')。
処理炉202内において、プラズマや熱で励起された窒素含有ガスが、所定の時間ウエハ200上に供給される。ウエハ200上に既に形成されているチタン含有層が、励起された窒素含有ガスによって改質されることにより、ウエハ200の上には、チタン元素および窒素元素を含有するTiN層が形成される。
  チタン元素および窒素元素を含有する改質層は、例えば、処理容器202内の圧力、励起された窒素含有ガスの流量等に応じて、所定の厚さ、所定の分布、チタン含有層に対する所定の窒素成分等の侵入深さで形成される。所定の時間経過後、コントローラ240は、窒素含有ガスの供給を停止する。
(処理ガスB排気プロセス)
  窒素含有ガスの供給を停止した後、コントローラ240は、APCバルブ303を全開にするとともにON/OFFバルブ304をONとして、処理炉202内に存在する窒素含有ガスを排出し、処理炉202内が所望の圧力(真空排気圧力)になるように制御する。
このように工程S2~S5'を1回または複数回繰り返して行うことで、所望の厚さのTiN膜を形成することが可能となる。
 以上のように、本発明によれば、排気配管の径を大きくしたり、排気バルブを大きくする必要がないため、フットプリントの増大を抑えつつ、従来と同等の圧力制御を行うことが可能とする効果が得られる。
 また、以上のように、本発明の実施の形態について具体的に説明したが、本発明は上述の実施形態に限定されるものでなく、その要旨を逸脱しない範囲で種々の変更が可能であり、その効果についても変更に応じて得ることが可能である。
 例えば、上述した本発明における実施の形態では、炉内パージ工程であるS3またはS3’と、処理ガスAまたは処理ガスBの供給工程S5またはS5’において、ON/OFFバルブ304を閉じ、APCバルブ303のバルブ開度を制御して炉内圧力を制御するようにしたが、これに限らず、APCバルブ303とON/OFFバルブ304を両方とも閉じて炉内圧力を維持するように制御しても良い。また、上述した工程以外のクリーニング処理などで炉内の圧力制御が必要な場合にはAPCバルブ303を用いて圧力制御しても良く、さらに上述した工程以外の真空排気処理などで炉内圧力制御が不要な排気が必要な場合にはON/OFFバルブ304を用いても良い。
 また、上述した本発明における実施の形態では、排気配管に設ける少なくとも2つのバルブを一方をAPCバルブとし、他方をON-OFFの切り替えのみが制御可能なバルブとして説明したが、これに限らず、両方ともバルブの開度を制御できるAPCバルブを用いても良く、さらに、バルブの種類としてはAPCバルブに限らず、コントローラによってバルブ開度を制御でき、コンダクタンスを可変できるような可変バルブであれば良い。
 また、上述した本発明における実施の形態では、APCバルブの開度を最大としたときの排気量と、ON-OFFバルブをONとしたときの排気量とが同一の排気量となるように設けることとして説明したが、これに限らず、APCバルブの開度を最大としたときの排気量と、ON-OFFバルブをONとしたときの排気量とが異なるようにしても良く、例えば、APCバルブの開度を最大としたときの排気量よりもON-OFFバルブをONとしたときの排気量の方が大きくなるように設けても良いし、APCバルブの開度を最大としたときの排気量よりもON-OFFバルブをONとしたときの排気量の方が小さくなるように設けても良い。
 また、上述した本発明における実施の形態では、処理ガスAをチタン(Ti)含有ガス、処理ガスBを窒素含有ガスとして、それぞれ用いることでチタン窒化膜(TiN膜)を形成する処理プロセスを例として説明したが、処理ガスAをシリコン(Si)含有ガス、処理ガスBを窒素含有ガスとして用いることでシリコン窒化膜(SiN膜)を形成する処理プロセスとしても良いし、処理ガスAをシリコン含有ガス、処理ガスBを酸素含有ガスとして用いることでシリコン酸化膜(SiO膜)を形成する処理プロセスとしても良いし、処理ガスAをアルミニウム(Al)含有ガス、処理ガスBを窒素含有ガスとして用いることでアルミニウム窒化膜(AlN膜)を形成する処理プロセスとしても良いし、処理ガスAをアルミニウム含有ガス、処理ガスBを酸素含有ガスとして用いることでアルミニウム酸化膜(AlO膜)を形成する処理プロセスとしても良い。これらの場合、シリコン含有ガスとして、例えばジクロロシラン(SiHCl、略称:DCS)ガス、テトラクロロシラン(SiCl、略称:TCS)ガス、ヘキサクロロジシラン(SiCl、略称:HCD)ガス、モノシラン(SiH)ガス等の無機原料のほか、アミノシラン系のテトラキスジメチルアミノシラン(Si(N(CH))、略称:4DMAS)ガス、トリスジメチルアミノシラン(Si(N(CH))H、略称:3DMAS)ガス、ビスジエチルアミノシラン(Si(N(C、略称:2DEAS)ガス、ビスターシャリーブチルアミノシラン(SiH(NH(C))、略称:BTBAS)ガスなどの有機原料を用いることができ、酸素含有ガスとして、例えば酸素(O)ガス、オゾン(O)ガス、一酸化窒素(NO)ガス、亜酸化窒素(NO)ガス、水蒸気(HO)を用いることができ、アルミニウム含有ガスとして、例えばトリメチルアルミニウム(Al(CH、略称:TMA)ガスを用いることができる。
 また、上述した本発明における実施の形態では、処理ガスAと処理ガスBを用いた処理プロセスについて説明したが、これに限らず、処理ガスAのみを用いた処理プロセスS2~S5を繰り返し実施しても良い。
 なお、本発明は、基板処理装置101として、例えば、半導体装置(IC)の製造方法を実施する半導体製造装置として構成されているが、半導体製造装置だけでなくLCD装置のようなガラス基板を処理する装置にも適用することができる。
 基板処理装置101で行われる成膜処理には、例えば、CVD、PVD、ALD、Epi、その他酸化膜、窒化膜を形成する処理、金属を含む膜を形成する処理がある。更に、アニール処理、酸化処理、拡散処理等の処理でも構わない。
 また、本実施形態では、基板処理装置が縦型処理装置101であるとして記載したが、枚葉装置についても同様に適用することができ、さらに、エッチング装置、露光装置、リソグラフィ装置、塗布装置、モールド装置、現像装置、ダイシング装置、ワイヤボンディング装置、検査装置等にも同様に適用することができる。
<本発明の好ましい態様> 
 以下に、本発明の好ましい態様について付記する。
(付記1)
基板を複数保持する基板保持具を搬入して前記基板を処理する反応管と、前記反応管内に処理ガスを供給するガス供給部と、前記ガス供給部によって供給されたガスを排気する排気管を少なくとも2つ備え、前記少なくとも2つの排気管の排気量を制御するバルブを前記排気管のそれぞれに設けた排気部と、前記排気部に設けられた前記バルブを所定のタイミングに応じて制御する制御部と、を有する基板処理装置。
(付記2)
  前記バルブは、前記制御部からの制御によって排気量を可変する可変バルブを少なくとも1つ有する付記1に記載の基板処理装置。
(付記3)
前記制御部は、前記反応管内の圧力が大気圧から第1の圧力になるまで前記少なくとも1つの可変バルブを制御するとともに他のバルブを閉止し、前記反応管内の圧力が前記第1の圧力に到達すると閉止していた前記他のバルブと前記可変バルブの全てのバルブを開放して前記反応管内の圧力を第2の圧力とし、前記反応管内の清浄化処理時は前記少なくとも1つの可変バルブを制御するとともに他のバルブを閉止して第3の圧力とし、前記清浄化処理後に前記少なくとも1つの可変バルブと前記他のバルブの全てを開放して再び前記第2の圧力とし、再び前記第2の圧力に到達した後に前記ガス供給部によって前記反応管内に処理ガスを供給するように制御する、付記2に記載の基板処理装置。
(付記4)
基板を保持する基板保持具を反応管に搬入する工程と、前記反応管にガス供給部より処理ガスを供給する工程と、前記処理ガスを供給する工程後、少なくとも2つの排気管と前記排気管のそれぞれの排気量を調整するための少なくとも2つのバルブを備えた排気部によって前記処理ガスを排気する工程と、前記排気部の前記少なくとも2つのバルブを所定のタイミングに応じて制御する工程と、を有する半導体装置の製造方法。
(付記5)
基板を保持する基板保持具を反応管に搬入する工程と、前記反応管に接続されて前記反応管内の雰囲気を排気する少なくとも2つの排気管と、前記排気管それぞれに接続されるバルブであって少なくとも1つは排気量を可変できる可変バルブを有し、前記可変バルブを制御することによって前記反応管内の圧力を大気圧から第1の圧力まで排気する工程と、前記反応管内の圧力を大気圧から前記第1の圧力まで排気する工程後、前記可変バルブとその他のバルブを全て開放して前記反応管内の圧力を第2の圧力まで排気する工程と、前記第2の圧力まで排気する工程後、前記反応管内に設けられたガス供給部によってパージガスを供給して前記反応管内をパージする工程と、前記パージガスの供給後に前記可変バルブとその他のバルブ全てを開放して前記反応管内の圧力が再び前記第2の圧力になるまで排気する工程と、前記再び第2の圧力に到達した後に前記ガス供給部によって処理ガスを供給して所望の膜を形成する工程と、を有する半導体装置の製造方法。
(付記6)
基板を保持する基板保持具を反応管に搬入する工程と、前記反応管にガス供給部より処理ガスを供給する工程と、前記処理ガスを供給する工程後、少なくとも2つの排気管と前記排気管のそれぞれの排気量を調整するための少なくとも2つのバルブを所定のタイミングに応じて制御する工程と、を有する基板処理方法。
(付記7)
基板を保持する基板保持具を反応管に搬入する工程と、前記反応管に接続されて前記反応管内の雰囲気を排気する少なくとも2つの排気管と、前記排気管それぞれに接続されるバルブであって少なくとも1つは排気量を可変できる可変バルブを有し、前記可変バルブを制御することによって前記反応管内の圧力を大気圧から第1の圧力まで排気する工程と、前記反応管内の圧力を大気圧から前記第1の圧力まで排気する工程後、前記可変バルブとその他のバルブを全て開放して前記反応管内の圧力を第2の圧力まで排気する工程と、前記第2の圧力まで排気する工程後、前記反応管内に設けられたガス供給部によってパージガスを供給して前記反応管内をパージする工程と、前記パージガスの供給後に前記可変バルブとその他のバルブ全てを開放して前記反応管内の圧力が再び前記第2の圧力になるまで排気する工程と、前記再び第2の圧力に到達した後に前記ガス供給部によって処理ガスを供給して所望の膜を形成する工程と、を有する基板処理方法。
 以上に述べたように、本発明は簡単な構成で処理基板の大口径化に伴う処理ガスの排気圧力制御を行うことができる基板処理装置、半導体装置の製造方法及び基板処理方法に利用することができる。
 101 基板処理装置110 ポッド124 移載室200 ウエハ(基板)202 反応管217 ボート240 コントローラ303 APCバルブ(可変バルブ)304 バルブ(ON/OFFバルブ)401 ガス供給部 

Claims (13)

  1. 基板を複数保持する基板保持具を搬入して前記基板を処理する反応管と、前記反応管内に処理ガスを供給するガス供給部と、前記反応管に接続され、前記反応管との接続部よりも下流側で少なくとも2つの排気管に分岐され、前記排気管のそれぞれに排気量を制御するためのバルブを有し、前記排気管のそれぞれに設けられたバルブよりも下流で1つの排気管に合流するように構成された排気部と、前記反応管内を略真空にするタイミングで前記排気部に設けられた前記バルブの全てのバルブ開度を全開となるように制御する制御部と、を有する基板処理装置。
  2. 前記バルブのうち少なくとも1つは、前記制御部からの制御によってバルブ開度を調整することが可能な可変バルブであり、前記可変バルブ以外に設けられたバルブは、開閉動作のみを行う開閉バルブである請求項1に記載の基板処理装置。
  3. 前記可変バルブと前記開閉バルブのそれぞれが設けられた排気管のコンダクタンスは同一となるように構成される請求項2に記載の基板処理装置。
  4. 基板を保持する基板保持具を反応管に搬入する工程と、前記反応管にガス供給部より処理ガスを供給する工程と、前記反応管に接続され、前記反応管との接続部よりも下流側で少なくとも2つの排気管に分岐され、前記排気管のそれぞれに排気量を制御するためのバルブを有し、前記排気管のそれぞれに設けられたバルブよりも下流で1つの排気管に合流するように構成された排気部であって、前記処理ガスを供給する工程後に前記排気部の複数のバルブ全ての開度を全開にすることで前記反応管内の雰囲気を排気する工程と、を有する半導体装置の製造方法。
  5. 前記バルブのうち少なくとも1つは、前記制御部からの制御によってバルブ開度を調整することが可能な可変バルブであり、前記可変バルブ以外に設けられたバルブは、開閉動作のみを行う開閉バルブである請求項4に記載の半導体装置の製造方法。
  6. 前記可変バルブと前記開閉バルブのそれぞれが設けられた排気管のコンダクタンスは同一となるように構成される請求項5に記載の半導体装置の製造方法。
  7. 前記基板保持具を前記反応管内に搬入する工程後、前記可変バルブを所定の開度開くことによって、前記反応管内の圧力を大気圧から第1の圧力へ減圧する工程と、前記可変バルブと前記開閉バルブをともに開くことによって、前記第1の圧力から前記反応管内を真空排気した際の圧力である第2の圧力へ減圧する工程と、をさらに有する請求項5に記載の半導体装置の製造方法。
  8. 前記処理ガスを供給する工程では、前記可変バルブを所定の開度開き、前記開閉バルブは閉じられるように制御する請求項5に記載の半導体装置の製造方法。
  9. 基板を保持する基板保持具を反応管に搬入する工程と、前記反応管にガス供給部より処理ガスを供給する工程と、前記反応管に接続され、前記反応管との接続部よりも下流側で少なくとも2つの排気管に分岐され、前記排気管のそれぞれに排気量を制御するためのバルブを有し、前記排気管のそれぞれに設けられたバルブよりも下流で1つの排気管に合流するように構成された排気部であって、前記処理ガスを供給する工程後に前記排気部の複数のバルブ全ての開度を全開にすることで前記反応管内の雰囲気を排気する工程と、を有する基板処理方法。
  10. 前記バルブのうち少なくとも1つは、前記制御部からの制御によってバルブ開度を調整することが可能な可変バルブであり、前記可変バルブ以外に設けられたバルブは、開閉動作のみを行う開閉バルブである請求項9に記載の基板処理方法。
  11. 前記可変バルブと前記開閉バルブのそれぞれが設けられた排気管のコンダクタンスは同一となるように構成される請求項10に記載の基板処理方法。
  12. 前記基板保持具を前記反応管内に搬入する工程後、前記可変バルブを所定の開度開くことによって、前記反応管内の圧力を大気圧から第1の圧力へ減圧する工程と、前記可変バルブと前記開閉バルブをともに開くことによって、前記第1の圧力から前記反応管内を真空排気した際の圧力である第2の圧力へ減圧する工程と、をさらに有する請求項10に記載の基板処理方法。
  13. 前記処理ガスを供給する工程では、前記可変バルブを所定の開度開き、前記開閉バルブは閉じられるように制御する請求項10に記載の基板処理方法。 
PCT/JP2014/058053 2013-03-25 2014-03-24 基板処理装置、半導体装置の製造方法及び基板処理方法 WO2014157071A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015508474A JPWO2014157071A1 (ja) 2013-03-25 2014-03-24 基板処理装置、半導体装置の製造方法及び基板処理方法
KR1020157025691A KR20150120470A (ko) 2013-03-25 2014-03-24 기판 처리 장치, 반도체 장치의 제조 방법 및 기판 처리 방법
US14/779,729 US20160053377A1 (en) 2013-03-25 2014-03-24 Substrate processing apparatus, method of manufacturing semiconductor device, and substrate processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013061832 2013-03-25
JP2013-061832 2013-03-25

Publications (1)

Publication Number Publication Date
WO2014157071A1 true WO2014157071A1 (ja) 2014-10-02

Family

ID=51624045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058053 WO2014157071A1 (ja) 2013-03-25 2014-03-24 基板処理装置、半導体装置の製造方法及び基板処理方法

Country Status (4)

Country Link
US (1) US20160053377A1 (ja)
JP (1) JPWO2014157071A1 (ja)
KR (1) KR20150120470A (ja)
WO (1) WO2014157071A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018085451A (ja) * 2016-11-24 2018-05-31 株式会社日立国際電気 処理装置、排気システム及び半導体装置の製造方法
JP2021027339A (ja) * 2019-08-06 2021-02-22 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及び基板処理プログラム
WO2022157986A1 (ja) * 2021-01-25 2022-07-28 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法、圧力制御装置及び基板処理プログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6017396B2 (ja) * 2012-12-18 2016-11-02 東京エレクトロン株式会社 薄膜形成方法および薄膜形成装置
JP7090513B2 (ja) * 2018-09-06 2022-06-24 東京エレクトロン株式会社 基板処理装置及びパージ方法
JP7228612B2 (ja) 2020-03-27 2023-02-24 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法、基板処理方法及びプログラム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110331U (ja) * 1989-02-20 1990-09-04
JPH05166737A (ja) * 1991-12-19 1993-07-02 Nec Yamaguchi Ltd 縦型減圧気相成長装置
JPH06244125A (ja) * 1993-02-17 1994-09-02 Tokyo Electron Tohoku Ltd 減圧処理装置
JPH1015378A (ja) * 1996-07-05 1998-01-20 Kokusai Electric Co Ltd 真空処理室の調圧方法
JP2000100793A (ja) * 1998-09-25 2000-04-07 Seiko Epson Corp 真空処理装置
JP2001217194A (ja) * 2000-02-02 2001-08-10 Hitachi Kokusai Electric Inc 半導体装置の製造方法
JP2005057305A (ja) * 2004-11-02 2005-03-03 Tokyo Electron Ltd 被処理体の処理装置及び被処理体の処理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110331U (ja) * 1989-02-20 1990-09-04
JPH05166737A (ja) * 1991-12-19 1993-07-02 Nec Yamaguchi Ltd 縦型減圧気相成長装置
JPH06244125A (ja) * 1993-02-17 1994-09-02 Tokyo Electron Tohoku Ltd 減圧処理装置
JPH1015378A (ja) * 1996-07-05 1998-01-20 Kokusai Electric Co Ltd 真空処理室の調圧方法
JP2000100793A (ja) * 1998-09-25 2000-04-07 Seiko Epson Corp 真空処理装置
JP2001217194A (ja) * 2000-02-02 2001-08-10 Hitachi Kokusai Electric Inc 半導体装置の製造方法
JP2005057305A (ja) * 2004-11-02 2005-03-03 Tokyo Electron Ltd 被処理体の処理装置及び被処理体の処理方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018085451A (ja) * 2016-11-24 2018-05-31 株式会社日立国際電気 処理装置、排気システム及び半導体装置の製造方法
JP2021027339A (ja) * 2019-08-06 2021-02-22 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及び基板処理プログラム
JP7055173B2 (ja) 2019-08-06 2022-04-15 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及び基板処理プログラム
WO2022157986A1 (ja) * 2021-01-25 2022-07-28 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法、圧力制御装置及び基板処理プログラム

Also Published As

Publication number Publication date
JPWO2014157071A1 (ja) 2017-02-16
KR20150120470A (ko) 2015-10-27
US20160053377A1 (en) 2016-02-25

Similar Documents

Publication Publication Date Title
CN110265322B (zh) 衬底处理装置、半导体器件的制造方法及记录介质
KR101403982B1 (ko) 배기 유닛, 기판 처리 장치 및 반도체 장치의 제조 방법
WO2014157071A1 (ja) 基板処理装置、半導体装置の製造方法及び基板処理方法
JP2008091761A (ja) 基板処理装置及び半導体装置の製造方法
JP6091487B2 (ja) 基板処理装置、基板処理装置の制御方法、基板処理装置の保守方法及びレシピ制御プログラム
WO2017037785A1 (ja) 基板処理装置および半導体装置の製造方法
US20090074984A1 (en) Substrate processing apparatus and coating method
JP2016181545A (ja) 基板処理装置、半導体装置の製造方法及びプログラム
CN116210075A (zh) 基板处理装置、半导体装置的制造方法以及程序
JP2011249407A (ja) 基板処理装置
JP6475135B2 (ja) 半導体装置の製造方法、ガス供給方法及び基板処理装置並びに基板保持具
KR101550590B1 (ko) 반도체 장치의 제조 방법, 기판 처리 방법 및 기판 처리 장치
KR101070668B1 (ko) 반도체 장치의 제조 방법 및 기판 처리 장치
JP5457287B2 (ja) 基板処理装置、基板処理方法及び半導体デバイスの製造方法
JP2009123950A (ja) 基板処理装置
JP2013062271A (ja) 基板処理装置
JP2012138530A (ja) 基板の製造方法、半導体デイバスの製造方法及び基板処理装置
JP2012069844A (ja) 半導体装置の製造方法および基板処理装置
JP2011222656A (ja) 基板処理装置
JP5204809B2 (ja) 基板処理装置、基板処理方法及び半導体デバイスの製造方法
JP2010126784A (ja) 基板処理装置
JP4509697B2 (ja) 基板処理装置
JP2008227163A (ja) 基板処理装置
WO2012077680A1 (ja) 基板の製造方法、半導体デバイスの製造方法及び基板処理装置
JP2011035191A (ja) 基板処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14776451

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157025691

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015508474

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14779729

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14776451

Country of ref document: EP

Kind code of ref document: A1