WO2017037785A1 - 基板処理装置および半導体装置の製造方法 - Google Patents

基板処理装置および半導体装置の製造方法 Download PDF

Info

Publication number
WO2017037785A1
WO2017037785A1 PCT/JP2015/074464 JP2015074464W WO2017037785A1 WO 2017037785 A1 WO2017037785 A1 WO 2017037785A1 JP 2015074464 W JP2015074464 W JP 2015074464W WO 2017037785 A1 WO2017037785 A1 WO 2017037785A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
port
gas
storage container
film
Prior art date
Application number
PCT/JP2015/074464
Other languages
English (en)
French (fr)
Inventor
伊藤 剛
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to JP2017537055A priority Critical patent/JP6505851B2/ja
Priority to CN201580081628.1A priority patent/CN107851594B/zh
Priority to PCT/JP2015/074464 priority patent/WO2017037785A1/ja
Priority to KR1020187001243A priority patent/KR102075276B1/ko
Publication of WO2017037785A1 publication Critical patent/WO2017037785A1/ja
Priority to US15/900,283 priority patent/US10529607B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67715Changing the direction of the conveying path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/6735Closed carriers
    • H01L21/67379Closed carriers characterised by coupling elements, kinematic members, handles or elements to be externally gripped
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • H01L21/67265Position monitoring, e.g. misposition detection or presence detection of substrates stored in a container, a magazine, a carrier, a boat or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67346Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders characterized by being specially adapted for supporting a single substrate or by comprising a stack of such individual supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67706Mechanical details, e.g. roller, belt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/6773Conveying cassettes, containers or carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67736Loading to or unloading from a conveyor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67769Storage means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67775Docking arrangements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Definitions

  • the present invention relates to a substrate processing apparatus and a method for manufacturing a semiconductor device.
  • a vertical substrate processing apparatus is used in a heat treatment of a substrate in a manufacturing process of a semiconductor device (device).
  • a robot hand is used in transporting a storage container in a storage chamber that temporarily stores a storage container storing a plurality of substrates (see, for example, Patent Document 1).
  • An object of the present invention is to provide a technique capable of reducing the footprint of an apparatus.
  • a storage chamber comprising a mounting shelf for mounting a storage container for storing a substrate; A transport mechanism installed on the ceiling of the storage chamber and gripping and transporting an upper portion of the storage container; A port for carrying the storage container into and out of the storage chamber, The port is An adjustment plate fixed on the base, A stage on which the storage container is placed; and a horizontal drive mechanism that is installed on an upper portion of the adjustment plate, is connected to a rear surface of the lower surface of the stage via a connecting member, and moves the stage horizontally.
  • the horizontal drive mechanism assists in horizontal movement of the stage, and a pair of guide portions whose one ends are connected to each other; a first drive portion that is installed between the guide portions and presses the connection portion of the guide portions; Is provided.
  • the footprint of the apparatus can be reduced.
  • the substrate processing apparatus 4 is configured as a vertical heat treatment apparatus (batch type vertical heat treatment apparatus) that performs a heat treatment step in an IC manufacturing method. Has been.
  • a FOUP Front Opening Unified Pod
  • the substrate processing apparatus 4 includes a processing furnace 8, a storage chamber 12, and a transfer chamber 16, which will be described later.
  • a storage chamber 12 for loading the pod 20 into the apparatus and storing it.
  • a loading / unloading port 22 ⁇ / b> A that is an opening for loading / unloading the pod 20 into / from the storage chamber 12 is opened so as to communicate between the inside and outside of the housing of the storage chamber 12.
  • the carry-in / out port 22A may be configured to be opened and closed by a front shutter.
  • An AGV port (I / O stage) 22 is provided inside the housing of the loading / unloading port 22A.
  • a load port 42 described later is installed on the wall surface between the storage chamber 12 and the transfer chamber 16.
  • the pod 20 is loaded into the substrate processing apparatus 4 on the AGV port 22 by the in-process transfer apparatus (inter-process transfer apparatus) outside the substrate processing apparatus 4, and is also unloaded from the AGV port 22.
  • a storage shelf (pod shelf) 30A for storing the pod 20 is installed in two upper and lower stages above the AGV port 22 in the front of the housing of the storage chamber 12.
  • storage shelves (pod shelves) 30 ⁇ / b> B for storing the pods 20 are arranged in a matrix in the rear of the housing 12.
  • the OHT port 32 is installed side by side on the same straight line in the horizontal direction with the upper storage shelf 30A in front of the housing.
  • the pod 20 is carried into the OHT port 32 from above the substrate processing apparatus 4 by the in-process carrying apparatus (inter-process carrying apparatus) outside the substrate processing apparatus 4 and is also carried out from the OHT port 32.
  • the AGV port 22, the storage shelf 30 ⁇ / b> A, and the OHT port 32 are configured such that the pod 20 can be moved horizontally between the placement position and the delivery position by the horizontal drive mechanism 26. Details of the horizontal drive mechanism 26 will be described later.
  • the space between the front storage shelf 30 ⁇ / b> A and the rear storage shelf 30 ⁇ / b> B in the housing of the storage chamber 12 forms a pod transfer region 14. Is delivered and transported.
  • a rail mechanism 40 ⁇ / b> A is formed on the ceiling of the pod transfer area 14 (the ceiling of the storage chamber 12) as a travel path of the pod transfer mechanism 40 described later.
  • the delivery position is located in the pod conveyance area 14, for example, a position directly below the pod conveyance mechanism 40.
  • the pod conveyance mechanism 40 that conveys the pod 20 includes a traveling unit 40B that travels on the traveling path, a holding unit 40C that holds the pod 24, and a lifting unit 40D that raises and lowers the holding unit 40C in the vertical direction.
  • a transfer chamber 16 is configured adjacent to the rear of the storage chamber 12.
  • a plurality of wafer loading / unloading ports for loading / unloading wafers W into / from the transfer chamber 16 are arranged in the horizontal direction on the transfer chamber 16 side of the storage chamber 12.
  • a load port is provided for each wafer loading / unloading port. 42 is installed. The load port 42 horizontally moves the mounting table 42B on which the pod 20 is mounted, presses it against the wafer loading / unloading port, and expands the lid of the pod 20.
  • the substrate transfer device 86 transports the substrate W into and out of the pod 20.
  • a processing furnace 8 is provided above the transfer chamber 16. As shown in FIG. 3, the processing furnace 8 has a heater 46 as a heating means (heating mechanism).
  • the heater 46 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate. As will be described later, the heater 46 also functions as an activation mechanism (excitation unit) that activates (excites) gas with heat.
  • a reaction tube 50 that constitutes a reaction vessel (processing vessel) concentrically with the heater 46 is disposed inside the heater 46.
  • the reaction tube 50 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end opened.
  • a processing chamber 54 is formed in the cylindrical hollow portion of the reaction tube 50.
  • the processing chamber 54 is configured to be able to accommodate wafers W as substrates in a state where they are aligned in multiple stages in a vertical posture in a horizontal posture by a boat 58 described later.
  • a nozzle 60 is provided in the processing chamber 54 so as to penetrate the lower part of the reaction tube 50.
  • the nozzle 60 is made of a heat resistant material such as quartz or SiC.
  • a gas supply pipe 62 a is connected to the nozzle 60.
  • the gas supply pipe 62a is provided with a mass flow controller (MFC) 64a that is a flow rate controller (flow rate control unit) and a valve 66a that is an on-off valve in order from the upstream direction.
  • MFC mass flow controller
  • a gas supply pipe 62b for supplying an inert gas is connected downstream of the valve 66a of the gas supply pipe 62a.
  • the gas supply pipe 62b is provided with an MFC 64b and a valve 66b in order from the upstream direction.
  • a processing gas supply unit that is a processing gas supply system is mainly configured by the gas supply pipe 62a, the MFC 64a, and the valve 66a.
  • the nozzle 60 is provided in an annular space between the inner wall of the reaction tube 50 and the wafer W so as to rise upward from the lower portion of the inner wall of the reaction tube 50 in the arrangement direction of the wafer W. Yes. That is, the nozzle 60 is provided along the wafer arrangement region in a region horizontally surrounding the wafer arrangement region on the side of the wafer arrangement region where the wafers W are arranged.
  • the nozzle 60 is configured as an L-shaped long nozzle, and its horizontal portion is provided so as to penetrate the lower side wall of the reaction tube 50, and its vertical portion is at least from one end side to the other end of the wafer arrangement region. It is provided to stand up to the side.
  • a gas supply hole 60 ⁇ / b> A for supplying gas is provided on the side surface of the nozzle 60.
  • the gas supply holes 60 ⁇ / b> A are opened so as to face the center of the reaction tube 50, and can supply gas toward the wafer W.
  • a plurality of gas supply holes 60A are provided from the lower part to the upper part of the reaction tube 50, each having the same opening area, and further provided at the same opening pitch.
  • the processing furnace 8 of this embodiment is not limited to the above-mentioned form.
  • a metal manifold that supports the reaction tube 50 may be provided below the reaction tube 50, and a nozzle may be provided so as to penetrate the side wall of the manifold.
  • an exhaust pipe 68 described later may be further provided in the manifold.
  • the exhaust pipe 68 may be provided in the lower part of the reaction pipe 50 instead of the manifold.
  • the furnace port part of the processing furnace 8 may be made of metal, and a nozzle or the like may be attached to the metal furnace port part.
  • the soot reaction tube 50 is provided with an exhaust pipe 68 for exhausting the atmosphere in the processing chamber 54.
  • a pressure sensor 70 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 54 and an APC (Auto Pressure Controller) valve 72 as a pressure regulator (pressure adjustment unit) are connected to the exhaust pipe 68.
  • a vacuum pump 74 as an evacuation device is connected.
  • the APC valve 72 can be evacuated and stopped in the processing chamber 54 by opening and closing the valve while the vacuum pump 74 is operated, and further, with the vacuum pump 74 being operated, The valve is configured to be able to adjust the pressure in the processing chamber 54 by adjusting the valve opening based on the pressure information detected by the pressure sensor 70.
  • An exhaust system is mainly configured by the exhaust pipe 68, the APC valve 72, and the pressure sensor 70.
  • the vacuum pump 74 may be included in the exhaust system.
  • the soot reaction tube 50 is provided with a temperature detector 76 as a temperature detector.
  • a temperature detector 76 is configured in an L shape like the nozzle 60, and is provided along the inner wall of the reaction tube 50.
  • a seal cap 78 is provided as a furnace port lid capable of airtightly closing the lower end opening of the reaction tube 50.
  • the seal cap 78 is made of a metal such as SUS or stainless steel and is a disk-shaped member.
  • an O-ring 78A is provided as a seal member that comes into contact with the lower end of the reaction tube 50.
  • a seal cap plate 78B that protects the seal cap 78 is installed on the inner surface of the upper surface of the seal cap 78 from the O-ring 78A.
  • the seal cap plate 78B is made of a heat resistant material such as quartz or SiC, and is a disk-shaped member.
  • the seal cap 78 is configured to abut on the lower end of the reaction tube 50 from the lower side in the vertical direction.
  • the boat 58 as the substrate support is configured to support a plurality of wafers W, for example, 25 to 200 wafers W in a horizontal posture and aligned in the vertical direction in a state where the centers are aligned with each other in multiple stages, that is, It is configured to arrange at intervals.
  • the boat 58 is made of a heat resistant material such as quartz or SiC.
  • a rotation mechanism 80 for rotating the boat 58 is installed on the opposite side of the seal cap 78 from the processing chamber 54.
  • the rotation shaft 80A of the rotation mechanism 80 is connected to the boat 58 through the seal cap 78.
  • the rotation mechanism 80 is configured to rotate the wafer W by rotating the boat 58.
  • the horizontal drive mechanism 26 of the storage shelf 30A, the AGV port 22 and the OHT port 32 of this embodiment will be described with reference to FIGS.
  • the horizontal drive mechanism 26 is installed on a base 24 and is configured to be able to horizontally move a stage 25 that is a placement portion on which the pod 20 is placed.
  • the base 24 includes a fixing plate 24A, an adjusting plate 24B, a fixing screw 24C, and an adjusting screw 24D.
  • the fixing plate 24A and the adjustment plate 24B are connected by a plurality of adjusters.
  • the adjuster includes a fixing screw 24C as a fastening member for fixing the fixing plate 24A and the adjusting plate 24B, and two adjustment screws 24D as horizontal adjustment members installed at positions facing the fixing screw 24C. It is possible to adjust the level of the stage 25 by adjusting the tightening degree of the adjusting screw 24D.
  • the horizontal drive mechanism 26 includes a first drive unit 26A as a drive unit that horizontally moves the stage 25, a pair of guide units 26B that move the stage 25 in parallel, and a first drive unit.
  • a transmission part (belt) 26C that transmits the power of 26A a pulley 26D that is a rotating member that rotates inside the guide part 26B and rotates the transmission part 26C, and a flat plate-like connection part that is connected to the lower part of the stage 25 (Plate) 26E, a fixing portion 26F for fixing the connecting portion 26E and the transmitting portion 26C, and a fixing portion 26G for fixing the transmitting portion 26C and the adjusting plate 24B.
  • the first drive unit 26A is, for example, an air cylinder or a motor. As shown in FIG. 7, the leading ends of the guide portions 26B are connected to each other, and are formed in a U shape in plan view. 26 A of 1st drive parts are installed in the approximate center between guide part 26B, and it is comprised so that the connection part of guide part 26B may be pressed with a rod.
  • the transmission portion 26 ⁇ / b> C is composed of an endless belt-like member and is stretched around a pulley 26 ⁇ / b> D.
  • the transmission part 26C and the connecting part 26E are fixed by a block-shaped fixing part 26G, and the transmission part 26C and the adjustment plate 24B are fixed by a block-shaped fixing part 26H. Since the fixing portion 26H is fixed to the adjustment plate 24B, the transmission portion 26C can be rotated when the guide portion 26B moves. By rotating the transmission portion 26C, the stage 25 fixed to the connecting portion 26E can be moved horizontally.
  • Two position sensors 28A are installed on the outer portion of the guide portion 26B on the adjustment plate 24B.
  • the position sensor 28A is composed of, for example, a photo sensor.
  • Each of the two position sensors 28A is installed to detect the position between the placement position of the stage 25 and the delivery position.
  • a thin plate-like detection member 28B for detecting the position sensor 28A is attached to the rear end of the guide portion 26B on the side where the position sensor 28A is installed.
  • the position of the stage 25 is detected by the detection member 28B passing through the detection portion of the position sensor 28A.
  • a stopper 27 is attached to the end of the guide portion 26B on the side where the detection member 28B is not attached.
  • a pod sensor 25B for detecting whether or not the pod 20 is placed is installed on the stage 25, a pod sensor 25B for detecting whether or not the pod 20 is placed is installed.
  • the pod sensor 25B is composed of, for example, a photo sensor.
  • the pin is pressed by the bottom surface of the pod 20, and the pressed pin passes through the detection portion of the pod sensor 25B, thereby detecting that the pod 20 is placed.
  • the stage 25 has an opening 25A on the distal end side, and the stage 25 can be transported using the opening 25A as a handle during maintenance. With such a configuration, maintainability can be improved.
  • the storage shelf 30 ⁇ / b> A and the OHT port 32 are installed on the long base 24 so that they can be independently driven in front of the housing.
  • the horizontal drive mechanism 24 of the storage shelf 30B of the present embodiment will be described with reference to FIG.
  • the difference between the storage shelf 30A, the AGV port 22, and the OHT port 22 from the horizontal drive mechanism 26 is that a plurality of stages 25 are connected and driven integrally.
  • the connecting portion 26E of the horizontal drive unit 26 is extended horizontally to form a horizontally long shape, and a plurality of stages 25 are installed.
  • One guide portion 26B is disposed at each of both ends of the short side of the connecting portion 26E. That is, four guide portions 26B are installed for the three stages 34C. With such a configuration, a plurality of stages 25 can be integrally driven by one first driving unit 26A.
  • the controller 210 that is a control unit (control means) is configured as a computer including a CPU (Central Processing Unit) 212, a RAM (Random Access Access Memory) 214, a storage device 216, and an I / O port 218.
  • the RAM 214, the storage device 216, and the I / O port 218 are configured to exchange data with the CPU 212 via the internal bus 220.
  • an input / output device 222 configured as a touch panel or the like is connected to the controller 210.
  • the storage device 216 is configured by, for example, a flash memory, an HDD (Hard Disk Drive), or the like.
  • a control program that controls the operation of the substrate processing apparatus, a process recipe that describes the procedure and conditions of the substrate processing described later, and the like are stored in a readable manner.
  • the process recipe is a combination of processes so that a predetermined result can be obtained by causing the controller 210 to execute each procedure in the substrate processing process described later, and functions as a program.
  • the process recipe, the control program, and the like are collectively referred to simply as a program.
  • program When the term “program” is used in this specification, it may include only a process recipe alone, only a control program alone, or both.
  • the RAM 214 is configured as a memory area (work area) in which programs, data, and the like read by the CPU 212 are temporarily stored.
  • the I / O port 218 includes the above-described MFCs 64a and 64b, valves 66a and 66b, pressure sensor 70, APC valve 72, heater 46, temperature detection unit 76, vacuum pump 74, rotation mechanism 80, boat elevator 82, and pod conveyance mechanism 40. Are connected to the sensors 25B and 28A, the horizontal drive mechanism 26, and the like.
  • the CPU 212 is configured to read and execute a control program from the storage device 216 and to read a process recipe from the storage device 216 in response to an input of an operation command from the input / output device 222 or the like.
  • the CPU 212 adjusts the flow rates of various gases by the MFCs 64 a and 46 b, the opening and closing operations of the valves 66 a and 48 b, the opening and closing operations of the APC valve 72, and the pressure by the APC valve 72 based on the pressure sensor 70 in accordance with the contents of the read process recipe.
  • the pod transport mechanism 40 controls the pod transport operation, the drive operation of the horizontal drive mechanism 26 based on the sensors 25B and 28A, and the like.
  • the controller 210 is stored in an external storage device 224 (for example, a magnetic disk, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD or DVD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory or a memory card).
  • the above-mentioned program can be configured by installing it in a computer.
  • the storage device 216 and the external storage device 224 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium When the term “recording medium” is used in this specification, it may include only the storage device 216, only the external storage device 224, or both.
  • the provision of the program to the computer may be performed using communication means such as the Internet or a dedicated line without using the external storage device 224.
  • the conveyance of the pod 20 using the above-described substrate processing apparatus 4 will be described.
  • the pod 20 on the AGV port 22 or the OHT port 32 is carried into the substrate processing apparatus 4.
  • the loaded pod 20 is automatically transported to the designated stage 25 of the storage shelf 30 by the pod transport mechanism 40, delivered, temporarily stored, and then transported from the storage shelf 30 to one load port 42. And delivered to the load port 42 directly.
  • the traveling unit 40B is controlled to move the pod transport mechanism 40 above the delivery position of the stage 25 of the AGV port 22 on which the pod 20 to be transported is placed.
  • the upper position of the delivery position is a position where the pod transport mechanism 40 can hold the pod 20 by lowering the holding section 40C by the elevating section 40D, that is, a position where the holding section 40C is directly above the pod 20.
  • the stage 25 of the AGV port 22 on which the pod 20 to be carried is placed is moved horizontally (slid) to the delivery position.
  • the sliding operation of the AGV port 22 and the driving of the pod transport mechanism 40 may be performed simultaneously.
  • the elevating unit 40D is controlled, the holding unit 40C is lowered to a position where the pod 20 can be held, the holding unit 40C is controlled, and the pod 20 is held. To do. After confirming that the holding unit 40C holds the pod 20, the lifting unit 40D is controlled to raise the holding unit 40C.
  • the stage 25 After confirming that the pod 20 is not placed on the stage 25 by the sensor 25B of the stage 25, the stage 25 is slid to the placement position. After the sensor 28A confirms that the stage 25 has returned to the placement position, the pod transport mechanism 40 is moved above the delivery position of the load port 42 or the storage shelf 30 to be delivered.
  • the lifting / lowering portion 40 ⁇ / b> D is controlled to lower the holding portion 40 ⁇ / b> C and the pod 20 is placed on the placement portion of the load port 42. Is placed.
  • the placement portion of the load port 42 is located directly below the pod transport mechanism 40 and does not need to be moved horizontally for delivery.
  • the stage 25 of the storage shelf 30 as the transport destination is horizontally moved (slid) to the delivery position, and after confirming that the stage 25 has been slid to the delivery position by the sensor 28A, the lifting unit 40D To hold the pod 20 on the stage 25.
  • the slide operation of the stage 25 of the storage shelf 30 and the driving of the pod transport mechanism 40 may be performed simultaneously.
  • a sequence example of a process for forming a film on a substrate (hereinafter also referred to as a film forming process) will be described as one step of a semiconductor device (device) manufacturing process using the substrate processing apparatus 4 described above.
  • a film forming process a sequence example of a process for forming a film on a substrate
  • a first processing gas raw material gas
  • a second processing gas reactive gas
  • hexachlorodisilane (Si 2 Cl 6 , abbreviation: HCDS) gas is used as a source gas
  • ammonia (NH 3 ) gas is used as a reaction gas
  • SiN silicon nitride film
  • An example of forming a film is also described.
  • the operation of each part constituting the substrate processing apparatus 4 is controlled by the controller 210.
  • a step of supplying HCDS gas to the wafer W in the processing chamber 54, a step of removing HCDS gas (residual gas) from the processing chamber 54, and a wafer in the processing chamber 54 By performing a cycle in which the process of supplying NH 3 gas to W and the process of removing NH 3 gas (residual gas) from the inside of the processing chamber 54 at the same time is performed a predetermined number of times (one or more times), the wafer W A SiN film is formed thereon.
  • wafer when the term “wafer” is used, it means “wafer itself” or “a laminate (aggregate) of a wafer and a predetermined layer or film formed on the surface”. In other words, it may be called a wafer including a predetermined layer or film formed on the surface.
  • wafer surface when the term “wafer surface” is used in this specification, it means “the surface of the wafer itself (exposed surface)” or “the surface of a predetermined layer or film formed on the wafer”. That is, it may mean “the outermost surface of the wafer as a laminated body”.
  • the phrase “supplying a predetermined gas to the wafer” means “supplying a predetermined gas to the surface (exposed surface) of the wafer itself”, It may mean that “a predetermined gas is supplied to a layer, a film, or the like formed on the wafer, that is, to the outermost surface of the wafer as a laminated body”. Further, in this specification, when “describe a predetermined layer (or film) on the wafer” is described, “determine a predetermined layer (or film) on the surface (exposed surface) of the wafer itself”. , Or “to form a predetermined layer (or film) on the layer or film formed on the wafer, that is, on the outermost surface of the wafer as a laminate” There is.
  • substrate is synonymous with the term “wafer”.
  • the processing chamber 54 that is, the space where the wafer W exists is evacuated (reduced pressure) by the vacuum pump 74 so that a predetermined pressure (degree of vacuum) is obtained.
  • a predetermined pressure degree of vacuum
  • the vacuum pump 74 maintains a state in which it is always operated at least until the processing on the wafer W is completed.
  • the wafer 46 in the processing chamber 54 is heated by the heater 46 so as to reach a predetermined temperature.
  • the power supply to the heater 46 is feedback-controlled based on the temperature information detected by the temperature detector 76 so that the processing chamber 54 has a predetermined temperature distribution. Heating of the processing chamber 201 by the heater 46 is continuously performed at least until the processing on the wafer W is completed.
  • the rotation of the boat 58 and the wafer W by the rotation mechanism 42 is started.
  • the wafer 58 is rotated by rotating the boat 58 by the rotation mechanism 42.
  • the rotation of the boat 58 and the wafer W by the rotation mechanism 42 is continuously performed at least until the processing on the wafer W is completed.
  • Step 1 In this step, HCDS gas is supplied to the wafer W in the processing chamber 54.
  • the valve 66a is opened and HCDS gas is allowed to flow into the gas supply pipe 62a.
  • the flow rate of the HCDS gas is adjusted by the MFC 64 a, supplied into the processing chamber 54 through the nozzle 60, and exhausted from the exhaust pipe 68.
  • the HCDS gas is supplied to the wafer W.
  • the valve 66b is opened at the same time, and N 2 gas is allowed to flow into the gas supply pipe 62b.
  • the flow rate of the N 2 gas is adjusted by the MFC 64 b, supplied into the processing chamber 54 together with the HCDS gas, and exhausted from the exhaust pipe 68.
  • the valve 66a is closed and the supply of HCDS gas is stopped.
  • the inside of the processing chamber 54 is evacuated by the vacuum pump 74, and the HCDS gas remaining in the processing chamber 54 or contributing to the formation of the first layer is processed.
  • the inside of the chamber 54 is discharged.
  • the supply of N 2 gas into the processing chamber 54 is maintained with the valve 66b kept open.
  • the N 2 gas acts as a purge gas, whereby the effect of exhausting the gas remaining in the processing chamber 54 from the processing chamber 54 can be enhanced.
  • the gas remaining in the processing chamber 54 may not be completely discharged, and the processing chamber 54 may not be completely purged. If the amount of gas remaining in the processing chamber 54 is very small, no adverse effect will occur in the subsequent step 2.
  • the flow rate of the N 2 gas supplied into the processing chamber 54 does not need to be a large flow rate. For example, by supplying an amount of N 2 gas equivalent to the volume of the reaction tube 50 (processing chamber 54), step 2 is performed. Purging can be performed to such an extent that no adverse effect is caused. Thus, by not purging the inside of the processing chamber 54 completely, the purge time can be shortened and the throughput can be improved. The consumption of N 2 gas can be suppressed to the minimum necessary.
  • Step 2 After step 1 is completed, NH 3 gas is supplied to the wafer W in the processing chamber 54, that is, the first layer formed on the wafer W.
  • the NH 3 gas is activated by heat and supplied to the wafer W.
  • the opening / closing control of the valves 66a, 28b is performed in the same procedure as the opening / closing control of the valves 66a, 28b in step 1.
  • the flow rate of NH 3 gas is adjusted by the MFC 28 a, supplied into the processing chamber 54 through the nozzle 60, and exhausted from the exhaust pipe 68.
  • NH 3 gas is supplied to the wafer W.
  • the NH 3 gas supplied to the wafer W reacts with at least a part of the first layer formed on the wafer W in Step 1, that is, the Si-containing layer.
  • the first layer is thermally nitrided by non-plasma and is changed (modified) into a second layer containing Si and N, that is, a silicon nitride layer (SiN layer).
  • a second layer containing Si and N that is, a silicon nitride layer (SiN layer).
  • plasma-excited NH 3 gas is supplied to the wafer W, and the first layer is plasma-nitrided to change the first layer to the second layer (SiN layer). May be.
  • the valve 66a is closed and the supply of NH 3 gas is stopped. Then, the NH 3 gas and the reaction by-product remaining in the processing chamber 54 and contributed to the formation of the second layer are discharged from the processing chamber 54 by the same processing procedure as in Step 1. At this time, the point that the gas remaining in the processing chamber 54 does not have to be completely discharged is the same as in Step 1.
  • a SiN film having a predetermined composition and a predetermined film thickness can be formed on the wafer W by performing the above-described two steps non-simultaneously, that is, by performing a cycle (n times) without synchronizing them.
  • the above cycle is preferably repeated a plurality of times. That is, it is formed by stacking the second layer (SiN layer) by making the thickness of the second layer (SiN layer) formed when the above cycle is performed once smaller than a predetermined thickness.
  • the above cycle is preferably repeated a plurality of times until the thickness of the SiN film reaches a predetermined thickness.
  • processing conditions when performing the film forming process for example, Processing temperature (wafer temperature): 250 to 700 ° C. Processing pressure (processing chamber pressure): 1 to 4000 Pa, HCDS gas supply flow rate: 1 to 2000 sccm, NH 3 gas supply flow rate: 100-10000 sccm, N 2 gas supply flow rate: 100 to 10,000 sccm, Is exemplified.
  • Processing temperature wafer temperature
  • Processing pressure processing chamber pressure
  • HCDS gas supply flow rate 1 to 2000 sccm
  • NH 3 gas supply flow rate 100-10000 sccm
  • N 2 gas supply flow rate 100 to 10,000 sccm
  • Is exemplified Is exemplified.
  • N 2 gas acts as a purge gas.
  • the inside of the processing chamber 54 is purged, and the gas and reaction byproducts remaining in the processing chamber 54 are removed from the processing chamber 54 (purge).
  • the atmosphere in the processing chamber 54 is replaced with an inert gas (inert gas replacement), and the pressure in the processing chamber 54 is returned to normal pressure (return to atmospheric pressure).
  • the AGV port 22 further includes an elevating mechanism for elevating the base 24A.
  • Elements that are substantially the same as those described in the above embodiment are given the same reference numerals, and descriptions thereof are omitted.
  • an elevating drive mechanism 90 for elevating the pod 20 up and down is installed in the AGV port 22.
  • the lift drive mechanism 90 includes a second drive unit 90A as a drive unit that moves the stage 25 up and down, and a shaft 90B that is lifted and lowered by the second drive unit 90A.
  • the base 24 is installed horizontally at the upper end of the shaft 90B.
  • the stage 25 is raised to a plurality of preset height positions.
  • the stage 25 is raised to a first height position that is a position above the upper surface of the pod 20.
  • the stage 25 is raised to a second height position that is lower than the first height position and higher than the stage of the load port 42.
  • the height position of the stage 25 is detected by a height position sensor 90C installed in the vicinity of the lifting drive mechanism 90.
  • the conveyance of the pod 20 in the second embodiment will be described.
  • the pod 20 on the AGV port 22 is carried into the substrate processing apparatus 4.
  • the loaded pod 20 is automatically transferred to the designated stage 25 of the storage shelf 30 by the pod transfer mechanism 40 and transferred, temporarily stored, and then transferred from the storage shelf 30 to one load port 42. Or delivered directly to the load port 42.
  • the traveling unit 40B is controlled to move the pod transport mechanism 40 above the delivery position of the stage 25 of the AGV port 22 on which the pod 20 to be transported is placed.
  • the stage 25 of the AGV port 22 is raised to the first height position.
  • the stage 25 of the AGV port 22 is raised to the second height position.
  • the movement of the pod transfer mechanism 40 and the raising operation of the AGV port may be performed simultaneously.
  • the elevating unit 40D is controlled, the holding unit 40C is lowered to a position where the pod 20 can be held, the holding unit 40C is controlled, and the pod 20 is held. To do. After confirming that the holding unit 40C holds the pod 20, the lifting unit 40D is controlled to raise the holding unit 40C.
  • the stage 25 After confirming that the pod 20 is not placed by the sensor 25B of the stage 25, the stage 25 is slid to the placement position. After confirming that the stage 25 has returned to the placement position by the sensor 28A, the stage 25 is lowered to the home position. Further, the pod transport mechanism 40 is moved above the delivery position of the load port 42 or the storage shelf 30 to be delivered. Here, the lowering of the stage 25 to the home position and the movement of the pod transport mechanism 40 may be performed simultaneously. After the pod transport mechanism 40 is moved above the delivery position of the load port 42 or the storage shelf 30 to be delivered, the elevating unit 40D is controlled, the holding unit 40C is lowered, and the pod 20 is placed on the stage 25 to be delivered. To do.
  • the pod 20 can be directly delivered from the AGV port 22 to the load port 42. After confirming that the pod 20 is not placed on the load port 42, the stage 25 of the AGV port 22 is raised to the second height position. The stage 25 is moved horizontally (slid) to the upper portion of the placement portion of the load port 42, and the stage 25 is lowered in a state of being moved horizontally. After confirming that the pod 20 is placed on the load port 42, the stage 25 is moved horizontally to the placement position and lowered to the home position.
  • the pod By driving the AGV port up and down, the pod can be delivered by raising the AGV port to a height position that does not interfere with the facing load port. As a result, the distance between the AGV port and the load port can be reduced, the installation area of the storage chamber can be reduced, and the footprint of the apparatus can be reduced. (2) By transporting the pod directly from the AGV port to the load port, it is possible to shorten the transport time and improve the throughput.
  • a third embodiment will be described with reference to FIG.
  • the difference from the above-described embodiment is that a fixed shelf 94 is installed in the pod transfer area 14 below the storage chamber 12. Elements that are substantially the same as those described in the above embodiment are given the same reference numerals, and descriptions thereof are omitted.
  • the fixed shelf 94 is installed below the storage chamber 12 which is a position that does not interfere with the horizontal movement of the AGV port 22. Moreover, since the fixed shelf 94 is installed in the pod conveyance area
  • HCDS gas in addition to HCDS gas, monochlorosilane (SiH 3 Cl, abbreviation: MCS) gas, dichlorosilane (SiH 2 Cl 2 , abbreviation: DCS) gas, trichlorosilane (SiHCl 3 , abbreviation: TCS) gas
  • MCS monochlorosilane
  • DCS dichlorosilane
  • TCS trichlorosilane
  • Inorganic halosilane source gases such as tetrachlorosilane, that is, silicon tetrachloride (SiCl 4 , abbreviation: STC) gas, octachlorotrisilane (Si 3 Cl 8 , abbreviation: OCTS) gas, and trisdimethylaminosilane (Si [N (CH 3 ) 2 ] 3 H, abbreviation: 3DMAS) gas, tetrakis
  • the source gas contains no halogen group such as monosilane (SiH 4 , abbreviation: MS) gas, disilane (Si 2 H 6 , abbreviation: DS) gas, trisilane (Si 3 H 8 , abbreviation: TS) gas, etc.
  • An inorganic silane source gas can be used.
  • NH 3 gas is used as the reaction gas.
  • the present invention is not limited to such an embodiment.
  • hydrogen nitride-based gas such as diazene (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, N 3 H 8 gas, or a gas containing these compounds Etc. can be used.
  • MEA gas such as ethylamine gas, trimethylamine ((CH 3 ) 3 N, abbreviation: TMA) gas, dimethylamine ((CH 3 ) 2 NH, abbreviation: DMA) gas, monomethylamine (CH 3 NH) 2 , abbreviation: MMA) methylamine gas such as gas
  • an organic hydrazine-based gas such as trimethylhydrazine ((CH 3 ) 2 N 2 (CH 3 ) H, abbreviation: TMH) gas can be used.
  • the SiN film is formed using HCDS gas as the source gas and nitrogen (N) -containing gas (nitriding gas) such as NH 3 gas as the reaction gas has been described.
  • nitrogen (N) -containing gas such as NH 3 gas
  • the present invention is not limited to such an embodiment.
  • oxygen (O) containing gas oxygen (O 2 ) gas, carbon (C) containing gas such as propylene (C 3 H 6 ) gas, trichloride
  • a boron (B) -containing gas such as boron (BCl 3 ) gas, etc.
  • SiO film, SiON film, SiOCN film, SiOC film, SiCN film, SiBN film, SiBCN film, etc. can be formed.
  • the order which flows each gas can be changed suitably. Even in the case where these films are formed, the film formation can be performed under the same processing conditions as in the above-described embodiment, and the same effect as in the above-described embodiment can be obtained.
  • a silicon-based insulating film such as a SiN film is formed.
  • the present invention is not limited to such an embodiment.
  • titanium (Ti), zirconium (Zr), hafnium (Hf), tantalum (Ta), niobium (Nb), aluminum (Al), molybdenum (Mo), tungsten (W) are formed on the wafer W. Even when a film containing a metal element such as a metal film is formed, the present invention can be suitably applied.
  • a film in which any of these elements is doped (added) with other elements for example, a TiAlN film, a TaAlN film, a TiAlC film, a TaAlC film, a TiSiN film, a TiSiC film, etc. is also suitably applied. Is possible.
  • titanium tetrachloride (TiCl 4 ) gas, titanium tetrafluoride (TiF 4 ) gas, zirconium tetrachloride (ZrCl 4 ) gas, zirconium tetrafluoride (ZrF 4 ) are used as source gases.
  • MoCl 5 Bed Den pentafluor
  • an organic metal source gas containing carbon and a metal element such as trimethylaluminum (Al (CH 3 ) 3 , abbreviation: TMA) gas can be used.
  • TMA trimethylaluminum
  • the reaction gas the same gas as that in the above-described embodiment can be used.
  • a TiN film, a TiO film, a TiON film, a TiCN film, a TiAlC film, a TiAlN film, a TiSiN film, or the like can be formed on the wafer W by the following film forming sequence.
  • each gas flows can be changed as appropriate. Even in the case where these films are formed, the film formation can be performed under the same processing conditions as in the above-described embodiment, and the same effect as in the above-described embodiment can be obtained.
  • the present invention can be suitably applied when forming a film containing a predetermined element such as a semiconductor element or a metal element.
  • the present invention is not limited to such an embodiment.
  • the present invention can also be suitably applied to a case where a process such as an oxidation process, a diffusion process, an annealing process, or an etching process is performed on the wafer W or a film formed on the wafer W.
  • processing conditions at this time can be set to the same processing conditions as in the above-described embodiment or modification, for example.
  • the footprint of the apparatus can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Robotics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

課題 装置のフットプリントを低減させることが可能な技術を提供する 解決手段 基板を収容する収納容器を載置する載置棚を備える収容室と、収容室の天井部に設置され、収納容器の上部を把持して搬送する搬送機構と、収容室に対して収納容器を搬入出するポートと、を備え、ポートは、基台上に固定された調整板と、収納容器を載置するステージと、調整板の上部に設置され、ステージの下面後方と連結部材を介して連結され、ステージを水平移動させる水平駆動機構と、を有し、水平駆動機構は、ステージの水平移動を補助し、一端が互いに連結された一対のガイド部と、ガイド部の間に設置され、ガイド部の連結部分を押圧する第1駆動部と、により構成される。

Description

基板処理装置および半導体装置の製造方法
 本発明は、基板処理装置および半導体装置の製造方法に関するものである。
 半導体装置(デバイス)の製造工程における基板の熱処理では、例えば縦型基板処理装置が使用されている。縦型基板処理装置では複数枚の基板を収容した収納容器を一時的に収容する収容室内での収納容器の搬送において、ロボットハンドが用いられている(例えば特許文献1参照)。
特開2000-311935号公報
 しかしながら、ロボットハンドの機構部の小型化が困難なため、収容室を省スペース化し、装置のフットプリントを低減させることが困難であるという課題があった。
 本発明の目的は、装置のフットプリントを低減させることが可能な技術を提供することにある。
 本発明の一態様によれば、
 基板を収容する収納容器を載置する載置棚を備える収容室と、
 前記収容室の天井部に設置され、前記収納容器の上部を把持して搬送する搬送機構と、
 前記収容室に対して前記収納容器を搬入出するポートと、を備え、
 前記ポートは、
 基台上に固定された調整板と、
 前記収納容器を載置するステージと
 前記調整板の上部に設置され、前記ステージの下面後方と連結部材を介して連結され、前記ステージを水平移動させる水平駆動機構と、を有し、
 前記水平駆動機構は、前記ステージの水平移動を補助し、一端が互いに連結された一対のガイド部と、前記ガイド部の間に設置され、前記ガイド部の連結部分を押圧する第1駆動部とにより構成される技術が提供される。
 本発明によれば、装置のフットプリントを低減させることが可能となる。
本発明の第1の実施形態で好適に用いられる収容室の斜透視図である。 本発明の第1の実施形態で好適に用いられる基板処理装置の横断面図である。 本発明の第1の実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分の縦断面図である。 本発明の第1の実施形態で好適に用いられる基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。 本発明の第1の実施形態で好適に用いられる水平駆動機構の断面図である。 本発明の第1の実施形態で好適に用いられる水平駆動機構の上面図である。 本発明の第1の実施形態で好適に用いられる水平駆動機構の背面図である。 本発明の第1の実施形態で好適に用いられる収納棚の背面図である。 本発明の第1の実施形態で好適に用いられる収納棚の上面図である。 本発明の第2の実施形態で好適に用いられるAGVポートの縦断面図である。 本発明の第3の実施形態で好適に用いられる収容室の縦断面図である。
 以下、本発明の第1の実施形態について、図1~3を用いて説明する。
 (1)基板処理装置の構成
 図1に示すように、本実施形態において、基板処理装置4は、ICの製造方法における熱処理工程を実施する縦型熱処理装置(バッチ式縦型熱処理装置)として構成されている。なお、本発明が適用される縦型熱処理装置では、基板としてのウエハWを搬送するキャリアとしてFOUP(Front Opening Unified Pod:以下、ポッドという。)20が使用されている。基板処理装置4は後述する処理炉8、収容室12、搬送室16を備える。
 (収容室)
 基板処理装置4の筐体内前側には、ポッド20を装置内に搬入し、収納する収容室12が配置されている。収容室12の筐体前側には、ポッド20を収容室12に対して搬入搬出するための開口である搬入出口22Aが収容室12の筐体内外を連通するように開設されている。搬入出口22Aはフロントシャッタによって開閉されるように構成されていても良い。搬入出口22Aの筐体内側にはAGVポート(I/Oステージ)22が設けられている。収容室12と搬送室16との間の壁面には、後述するロードポート42が設置されている。ポッド20はAGVポート22上に基板処理装置4外にある工程内搬送装置(工程間搬送装置)によって基板処理装置4内に搬入され、かつまた、AGVポート22上から搬出される。
 収容室12の筐体内前方のAGVポート22上方には、ポッド20を収納する収納棚(ポッド棚)30Aが上下2段に設置されている。また、収容室12の筐体内後方には、ポッド20を収納する収納棚(ポッド棚)30Bがマトリクス状に設置されている。
 筐体前方の上段の収納棚30Aと水平方向の同一直線状には、OHTポート32が左右に並んで設置されている。ポッド20は、基板処理装置4外にある工程内搬送装置(工程間搬送装置)によって基板処理装置4の上方からOHTポート32上に搬入され、かつまた、OHTポート32上から搬出される。AGVポート22、収納棚30AおよびOHTポート32は、水平駆動機構26によってポッド20を載置位置と受渡し位置とに水平移動可能なように構成されている。水平駆動機構26の詳細な説明については後述する。
 図2に示すように、収容室12の筐体内の前側の収納棚30Aと後側の収納棚30Bとの間の空間はポッド搬送領域14を形成しており、このポッド搬送領域14でポッド20の受渡しおよび搬送が行われる。ポッド搬送領域14の天井部(収容室12の天井部)には後述するポッド搬送機構40の走行路としてのレール機構40Aが形成されている。ここで、受渡し位置はポッド搬送領域14内に位置し、例えば、ポッド搬送機構40の真下の位置のことである。
 ポッド20を搬送するポッド搬送機構40は走行路を走行する走行部40Bと、ポッド24を保持する保持部40Cと、保持部40Cを垂直方向に昇降させる昇降部40Dを備える。走行部40Bを駆動させるモータのエンコーダを検出することにより、走行路40B中の位置を検知することができ、任意の位置に走行部40Bを移動させることができる。
 (搬送室)
 収容室12の後方に隣接して搬送室16が構成されている。収容室12の搬送室16側には、ウエハWを搬送室16に対して搬入出するためのウエハ搬入出口が水平方向に複数並べられて開設されており、各ウエハ搬入出口に対してロードポート42がそれぞれ設置されている。ロードポート42は、ポッド20を載置する載置台42Bを水平移動させてウエハ搬入出口に押し当て、ポッド20の蓋を展開する。ポッド20の蓋が展開されると、基板移載機86によって、ポッド20内外への基板Wの搬送が行われる。
 (処理炉)
 搬送室16の上方には処理炉8が設けられている。図3に示すように、処理炉8は加熱手段(加熱機構)としてのヒータ46を有する。ヒータ46は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。ヒータ46は、後述するようにガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
 ヒータ46の内側には、ヒータ46と同心円状に反応容器(処理容器)を構成する反応管50が配設されている。反応管50は、例えば石英(SiO)または炭化シリコン(SiC)等の耐熱性材料からなり、上端が閉塞し下端が開口した円筒形状に形成されている。反応管50の筒中空部には、処理室54が形成されている。処理室54は、基板としてのウエハWを後述するボート58によって水平姿勢で垂直方向に多段に整列した状態で収容可能に構成されている。
 処理室54内には、ノズル60が、反応管50の下部を貫通するように設けられている。ノズル60は、例えば石英またはSiC等の耐熱性材料からなる。ノズル60には、ガス供給管62aが接続されている。ガス供給管62aには、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)64aおよび開閉弁であるバルブ66aが設けられている。ガス供給管62aのバルブ66aよりも下流側には、不活性ガスを供給するガス供給管62bが接続されている。ガス供給管62bには、上流方向から順に、MFC64bおよびバルブ66bが設けられている。主に、ガス供給管62a、MFC64a、バルブ66aにより、処理ガス供給系である処理ガス供給部が構成される。
 ノズル60は、反応管50の内壁とウエハWとの間における円環状の空間に、反応管50の内壁の下部より上部に沿って、ウエハWの配列方向上方に向かって立ち上がるように設けられている。すなわち、ノズル60は、ウエハWが配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うように設けられている。ノズル60は、L字型のロングノズルとして構成されており、その水平部は反応管50の下部側壁を貫通するように設けられており、その垂直部は少なくともウエハ配列領域の一端側から他端側に向かって立ち上がるように設けられている。ノズル60の側面には、ガスを供給するガス供給孔60Aが設けられている。ガス供給孔60Aは、反応管50の中心を向くようにそれぞれ開口しており、ウエハWに向けてガスを供給することが可能となっている。ガス供給孔60Aは、反応管50の下部から上部にわたって複数設けられ、それぞれが同一の開口面積を有し、更に同じ開口ピッチで設けられている。
 但し、本実施形態の処理炉8は上述の形態に限定されない。例えば、反応管50の下方に、反応管50を支持する金属製のマニホールドを設け、ノズルを、マニホールドの側壁を貫通するように設けてもよい。この場合、マニホールドに、後述する排気管68をさらに設けてもよい。この場合であっても、排気管68を、マニホールドではなく、反応管50の下部に設けてもよい。このように、処理炉8の炉口部を金属製とし、この金属製の炉口部にノズル等を取り付けてもよい。
  反応管50には、処理室54内の雰囲気を排気する排気管68が設けられている。排気管68には、処理室54内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ70および圧力調整器(圧力調整部)としてのAPC(Auto  Pressure  Controller)バルブ72を介して、真空排気装置としての真空ポンプ74が接続されている。APCバルブ72は、真空ポンプ74を作動させた状態で弁を開閉することで、処理室54内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ74を作動させた状態で、圧力センサ70により検出された圧力情報に基づいて弁開度を調節することで、処理室54内の圧力を調整することができるように構成されているバルブである。主に、排気管68、APCバルブ72、圧力センサ70により、排気系が構成される。真空ポンプ74を排気系に含めて考えてもよい。
  反応管50には、温度検出器としての温度検出部76が設置されている。温度検出部76により検出された温度情報に基づきヒータ46への通電具合を調整することで、処理室54内の温度が所望の温度分布となるように構成されている。温度検出部76は、ノズル60と同様にL字型に構成されており、反応管50の内壁に沿って設けられている。
 反応管50の下方には、反応管50の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ78が設けられている。シールキャップ78は、例えばSUSやステンレス等の金属からなり、円盤状の部材である。シールキャップ78の上面には、反応管50の下端と当接するシール部材としてのOリング78Aが設けられている。また、シールキャップ78の上面のうち、Oリング78Aより内側領域にはシールキャップ78を保護するシールキャッププレート78Bが設置されている。シールキャッププレート78Bは、例えば、石英またはSiC等の耐熱性材料からなり、円盤状の部材である。シールキャップ78は、反応管50の下端に垂直方向下側から当接されるように構成されている。
  基板支持具としてのボート58は、複数枚、例えば25~200枚のウエハWを、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート58は、例えば石英やSiC等の耐熱性材料からなる。
 シールキャップ78の処理室54と反対側には、ボート58を回転させる回転機構80が設置されている。回転機構80の回転軸80Aは、シールキャップ78を貫通してボート58に接続されている。回転機構80は、ボート58を回転させることでウエハWを回転させるように構成されている。
 次に、本実施形態の収納棚30A、AGVポート22およびOHTポート32の水平駆動機構26について図5~9を用いて説明する。図5に示すように、水平駆動機構26は、基台24上に設置され、ポッド20を載置する載置部であるステージ25を水平移動可能に構成される。
 基台24は、固定板24A、調整板24B、固定ネジ24Cおよび調整ネジ24Dにより構成される。固定板24Aと調整板24Bは複数のアジャスタで連結される。アジャスタは、固定板24Aと調整板24Bとを固定する締結部材としての固定ネジ24Cと、固定ネジ24Cと対面する位置に設置される水平調節部材としての2つの調整ネジ24Dとで構成される。調整ネジ24Dの締付具合を調整することで、ステージ25の水平を調整することが可能となる。
 図5,6に示すように、水平駆動機構26は、ステージ25を水平移動させる駆動部としての第1駆動部26A、ステージ25を平行に移動させるための一対のガイド部26B、第1駆動部26Aの動力を伝達する伝達部(ベルト)26C、片方のガイド部26Bの内側に設置され、伝達部26Cを回転させる回転部材であるプーリ26D、ステージ25の下部に接続された平板状の連結部(プレート)26E、連結部26Eと伝達部26Cとを固定する固定部26Fおよび伝達部26Cと調整板24Bを固定する固定部26Gとにより構成される。第1駆動部26Aは、例えば、エアシリンダやモータである。図7に示すように、ガイド部26Bの先端は互いに連結されており、平面視においてコの字状に形成されている。第1駆動部26Aはガイド部26B間の略中央に設置され、ガイド部26Bの連結部分をロッドで押圧するように構成されている。
 図5に示すように、伝達部26Cは無端状の帯状部材で構成され、プーリ26Dに掛け渡されている。伝達部26Cと連結部26Eはブロック状の固定部26Gで固定されており、また、伝達部26Cと調整板24Bとはブロック状の固定部26Hで固定されている。固定部26Hは調整板24Bと固定されていることから、ガイド部26Bが移動する際に、伝達部26Cを回転させることができる。伝達部26Cが回転することにより、連結部26Eに固定されたステージ25を水平移動させることができる。このような構成とすることにより、ガイド部26Bによるステージ25の水平移動と伝達部26Cによるステージ25の水平移動との2つの水平移動の動作を同時に行うことができる。また、2段階でステージ25を水平移動させることができるため、第1駆動部26Aのロッドを長尺化させることなく、省スペース化を図ることができる。
 調整板24B上のガイド部26Bの外側部分には、2つの位置センサ28Aが設置されている。位置センサ28Aは、例えば、フォトセンサで構成される。2つの位置センサ28Aはそれぞれ、ステージ25の載置位置と受渡し位置との位置を検出するために設置されている。位置センサ28Aが設置されている側のガイド部26Bの後端には、位置センサ28Aの検知用である薄板状の検知部材28Bが取り付けられている。この検知部材28Bが位置センサ28Aの検出部分を通過することにより、ステージ25の位置が検出される。位置センサ28Aの設置位置を調整することにより、ステージ25を任意のストロークで駆動させることができ、制御性を向上させることができる。検知部材28Bが取り付けられていない側のガイド部26Bの端部には、ストッパ27が取り付けられている。
 ステージ25には、ポッド20が載置されているか否かを検出するポッドセンサ25Bが設置されている。ポッドセンサ25Bは、例えば、フォトセンサで構成される。ポッド20が載置された際、ポッド20の底面によりピンが押圧され、押圧されたピンがポッドセンサ25Bの検出部分を通過することにより、ポッド20が載置されたことを検出することができる。また、ステージ25には先端側に開口部25Aが形成されており、メンテナンス時に開口部25Aを持ち手としてステージ25を運搬することが可能である。このような構成により、メンテナンス性を向上させることができる。図9に示すように、筐体前方においては、収納棚30AおよびOHTポート32は長尺の基台24上にそれぞれ独立に駆動可能なように設置されている。
 次に、本実施形態の収納棚30Bの水平駆動機構24について、図8を用いて説明する。収納棚30A、AGVポート22およびOHTポート22の水平駆動機構26との違いは、複数のステージ25が連結され、一体駆動する点である。具体的には、水平駆動部26の連結部26Eを左右に延伸して横長形状とし、複数のステージ25を設置している。連結部26Eの短辺の両端にはそれぞれ1本ずつガイド部26Bが配置される。すなわち、3台のステージ34Cに対し、4本のガイド部26Bが設置される。このような構成により、1つの第1駆動部26Aで複数のステージ25を一体的に駆動することが可能となる。
  図4に示すように、制御部(制御手段)であるコントローラ210は、CPU(Central  Processing  Unit)212、RAM(Random  Access  Memory)214、記憶装置216、I/Oポート218を備えたコンピュータとして構成されている。RAM214、記憶装置216、I/Oポート218は、内部バス220を介して、CPU212とデータ交換可能なように構成されている。コントローラ210には、例えばタッチパネル等として構成された入出力装置222が接続されている。
  記憶装置216は、例えばフラッシュメモリ、HDD(Hard  Disk  Drive)等で構成されている。記憶装置216内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理工程における各手順をコントローラ210に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。RAM214は、CPU212によって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
  I/Oポート218は、上述のMFC64a、64b、バルブ66a、66b、圧力センサ70、APCバルブ72、ヒータ46、温度検出部76、真空ポンプ74、回転機構80、ボートエレベータ82、ポッド搬送機構40、センサ25B、28A、水平駆動機構26等に接続されている。
  CPU212は、記憶装置216から制御プログラムを読み出して実行すると共に、入出力装置222からの操作コマンドの入力等に応じて記憶装置216からプロセスレシピを読み出すように構成されている。CPU212は、読み出したプロセスレシピの内容に沿うように、MFC64a、46bによる各種ガスの流量調整動作、バルブ66a、48bの開閉動作、APCバルブ72の開閉動作および圧力センサ70に基づくAPCバルブ72による圧力調整動作、真空ポンプ74の起動および停止、温度検出部76に基づくヒータ46およびサブヒータ50の温度調整動作、回転機構80によるボート58の回転および回転速度調節動作、ボートエレベータ82によるボート58の昇降動作、ポッド搬送機構40によるポッド搬送動作、センサ25B、28Aに基づく水平駆動機構26の駆動動作、等を制御するように構成されている。
 コントローラ210は、外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)224に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置216や外部記憶装置224は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置216単体のみを含む場合、外部記憶装置224単体のみを含む場合、または、その両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置224を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
 次に、上述の基板処理装置4を用いたポッド20の搬送について説明する。ポッド20がAGVポート22またはOHTポート32に供給されると、AGVポート22またはOHTポート32の上のポッド20は基板処理装置4内部へ搬入される。搬入されたポッド20は収納棚30の指定されたステージ25へポッド搬送機構40によって自動的に搬送されて受け渡され、一時的に保管された後、収納棚30から一方のロードポート42に搬送されて受け渡されるか、もしくは直接ロードポート42に搬送される。
 走行部40Bを制御し、ポッド搬送機構40を搬送対象であるポッド20が載置されているAGVポート22のステージ25の受渡し位置上方に移動させる。ここで、受渡し位置上方とは、ポッド搬送機構40が昇降部40Dにより保持部40Cを下降してポッド20を保持できる位置、すなわち、ポッド20の真上に保持部40Cがある位置である。
 ポッド搬送機構40が受渡し位置上方に待機していることを確認し、搬出対象であるポッド20が載置されているAGVポート22のステージ25を受渡し位置まで水平移動(スライド)させる。ここで、AGVポート22のスライド動作とポッド搬送機構40との駆動は同時に行っても良い。
 センサ28Aにより、ステージ25が受渡し位置までスライドされたことを確認した後、昇降部40Dを制御し、ポッド20を保持できる位置まで保持部40Cを降下させ、保持部40Cを制御しポッド20を保持する。保持部40Cがポッド20を保持したことを確認し、昇降部40Dを制御し保持部40Cを上昇させる。
 ステージ25のセンサ25Bにより、ポッド20がステージ25上に載置されていないことを確認した後、ステージ25を載置位置までスライドさせる。センサ28Aにより、ステージ25が載置位置に戻ったことを確認した後、ポッド搬送機構40を受渡し対象のロードポート42または収納棚30の受渡し位置上方に移動させる。ロードポート42に搬送する場合、ロードポート42の載置部上方にポッド搬送機構40が移動した後、昇降部40Dを制御し、保持部40Cを降下させ、ロードポート42の載置部にポッド20を載置する。ロードポート42の載置部はポッド搬送機構40の真下に位置しており、受渡しのために水平移動させる必要はない。収納棚30に搬送する場合、搬送先の収納棚30のステージ25を受渡し位置まで水平移動(スライド)させ、センサ28Aにより、ステージ25が受渡し位置までスライドされたことを確認した後、昇降部40Dを制御し、保持部40Cを降下させ、ステージ25にポッド20を載置する。ここで、収納棚30のステージ25のスライド動作とポッド搬送機構40との駆動は同時に行っても良い。
 次に、上述の基板処理装置4を用い、半導体装置(デバイス)の製造工程の一工程として、基板上に膜を形成する処理(以下、成膜処理ともいう)のシーケンス例について説明する。ここでは、基板としてのウエハWに対して、第1の処理ガス(原料ガス)と第2の処理ガス(反応ガス)とを交互に供給することで、ウエハW上に膜を形成する例について説明する。
 以下、原料ガスとしてヘキサクロロジシラン(SiCl、略称:HCDS)ガスを用い、反応ガスとしてアンモニア(NH)ガスを用い、ウエハW上にシリコン窒化膜(Si膜、以下、SiN膜ともいう)を形成する例について説明する。なお、以下の説明において、基板処理装置4を構成する各部の動作はコントローラ210により制御される。
 本実施形態における成膜処理では、処理室54内のウエハWに対してHCDSガスを供給する工程と、処理室54内からHCDSガス(残留ガス)を除去する工程と、処理室54内のウエハWに対してNHガスを供給する工程と、処理室54内からNHガス(残留ガス)を除去する工程と、を非同時に行うサイクルを所定回数(1回以上)行うことで、ウエハW上にSiN膜を形成する。
 本明細書では、この成膜シーケンスを、便宜上、以下のように示すこともある。なお、以下の変形例や他の実施形態の説明においても、同様の表記を用いることとする。
(HCDS→NH)×n ⇒ SiN
 本明細書において「ウエハ」という言葉を用いた場合は、「ウエハそのもの」を意味する場合や、「ウエハとその表面に形成された所定の層や膜等との積層体(集合体)」を意味する場合、すなわち、表面に形成された所定の層や膜等を含めてウエハと称する場合がある。また、本明細書において「ウエハの表面」という言葉を用いた場合は、「ウエハそのものの表面(露出面)」を意味する場合や、「ウエハ上に形成された所定の層や膜等の表面、すなわち、積層体としてのウエハの最表面」を意味する場合がある。
 従って、本明細書において「ウエハに対して所定のガスを供給する」と記載した場合は、「ウエハそのものの表面(露出面)に対して所定のガスを供給する」ことを意味する場合や、「ウエハ上に形成されている層や膜等に対して、すなわち、積層体としてのウエハの最表面に対して所定のガスを供給する」ことを意味する場合がある。また、本明細書において「ウエハ上に所定の層(または膜)を形成する」と記載した場合は、「ウエハそのものの表面(露出面)上に所定の層(または膜)を形成する」ことを意味する場合や、「ウエハ上に形成されている層や膜等の上、すなわち、積層体としてのウエハの最表面の上に所定の層(または膜)を形成する」ことを意味する場合がある。
 また、本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
(ウエハチャージおよびボートロード)
 複数枚のウエハWがボート58に装填(ウエハチャージ)されると、ボート58は、ボートエレベータ82によって処理室54内に搬入(ボートロード)される。このとき、シールキャップ78は、Oリング78Aを介して反応管50の下端を気密に閉塞(シール)した状態となる。
 (圧力調整および温度調整)
 処理室54内、すなわち、ウエハWが存在する空間が所定の圧力(真空度)となるように、真空ポンプ74によって真空排気(減圧排気)される。この際、処理室54内の圧力は、圧力センサ70で測定され、この測定された圧力情報に基づきAPCバルブ72が、フィードバック制御される。真空ポンプ74は、少なくともウエハWに対する処理が終了するまでの間は常時作動させた状態を維持する。
 また、処理室54内のウエハWが所定の温度となるように、ヒータ46によって加熱される。この際、処理室54が所定の温度分布となるように、温度検出部76が検出した温度情報に基づきヒータ46への通電具合がフィードバック制御される。ヒータ46による処理室201内の加熱は、少なくともウエハWに対する処理が終了するまでの間は継続して行われる。
 また、回転機構42によるボート58およびウエハWの回転を開始する。回転機構42により、ボート58が回転されることで、ウエハWが回転される。回転機構42によるボート58およびウエハWの回転は、少なくとも、ウエハWに対する処理が終了するまでの間は継続して行われる。
 (成膜処理)
 処理室54内の温度が予め設定された処理温度に安定すると、次の2つのステップ、すなわち、ステップ1~2を順次実行する。
 [ステップ1]
 このステップでは、処理室54内のウエハWに対し、HCDSガスを供給する。
 バルブ66aを開き、ガス供給管62a内へHCDSガスを流す。HCDSガスは、MFC64aにより流量調整され、ノズル60を介して処理室54内へ供給され、排気管68から排気される。このとき、ウエハWに対してHCDSガスが供給されることとなる。このとき、同時にバルブ66bを開き、ガス供給管62b内へNガスを流す。Nガスは、MFC64bにより流量調整され、HCDSガスと一緒に処理室54内へ供給され、排気管68から排気される。ウエハWに対してHCDSガスを供給することにより、ウエハWの最表面上に、第1の層として、例えば1原子層未満から数原子層の厚さのシリコン(Si)含有層が形成される。
 第1の層が形成された後、バルブ66aを閉じ、HCDSガスの供給を停止する。このとき、APCバルブ72は開いたままとして、真空ポンプ74により処理室54内を真空排気し、処理室54内に残留する未反応もしくは第1の層の形成に寄与した後のHCDSガスを処理室54内から排出する。このとき、バルブ66bを開いたままとして、Nガスの処理室54内への供給を維持する。Nガスはパージガスとして作用し、これにより、処理室54内に残留するガスを処理室54内から排出する効果を高めることができる。
 このとき、処理室54内に残留するガスを完全に排出しなくてもよく、処理室54内を完全にパージしなくてもよい。処理室54内に残留するガスが微量であれば、その後に行われるステップ2において悪影響が生じることはない。処理室54内へ供給するNガスの流量も大流量とする必要はなく、例えば、反応管50(処理室54)の容積と同程度の量のNガスを供給することで、ステップ2において悪影響が生じない程度のパージを行うことができる。このように、処理室54内を完全にパージしないことで、パージ時間を短縮し、スループットを向上させることができる。Nガスの消費も必要最小限に抑えることが可能となる。
 [ステップ2]
 ステップ1が終了した後、処理室54内のウエハW、すなわち、ウエハW上に形成された第1の層に対してNHガスを供給する。NHガスは熱で活性化されてウエハWに対して供給されることとなる。
 このステップでは、バルブ66a,28bの開閉制御を、ステップ1におけるバルブ66a,28bの開閉制御と同様の手順で行う。NHガスは、MFC28aにより流量調整され、ノズル60を介して処理室54内へ供給され、排気管68から排気される。このとき、ウエハWに対してNHガスが供給されることとなる。ウエハWに対して供給されたNHガスは、ステップ1でウエハW上に形成された第1の層、すなわちSi含有層の少なくとも一部と反応する。これにより第1の層は、ノンプラズマで熱的に窒化され、SiおよびNを含む第2の層、すなわち、シリコン窒化層(SiN層)へと変化させられる(改質される)。なお、このとき、プラズマ励起させたNHガスをウエハWに対して供給し、第1の層をプラズマ窒化することで、第1の層を第2の層(SiN層)へ変化させるようにしてもよい。
 第2の層が形成された後、バルブ66aを閉じ、NHガスの供給を停止する。そして、ステップ1と同様の処理手順により、処理室54内に残留する未反応もしくは第2の層の形成に寄与した後のNHガスや反応副生成物を処理室54内から排出する。このとき、処理室54内に残留するガス等を完全に排出しなくてもよい点は、ステップ1と同様である。
 (所定回数実施)
 上述した2つのステップを非同時に、すなわち、同期させることなく行うサイクルを所定回数(n回)行うことにより、ウエハW上に、所定組成および所定膜厚のSiN膜を形成することができる。なお、上述のサイクルは複数回繰り返すのが好ましい。すなわち、上述のサイクルを1回行う際に形成される第2の層(SiN層)の厚さを所定の膜厚よりも小さくし、第2の層(SiN層)を積層することで形成されるSiN膜の膜厚が所定の膜厚になるまで、上述のサイクルを複数回繰り返すのが好ましい。
 成膜処理を行う際の処理条件としては、例えば、
 処理温度(ウエハ温度):250~700℃、
 処理圧力(処理室内圧力):1~4000Pa、
 HCDSガス供給流量:1~2000sccm、
 NHガス供給流量:100~10000sccm、
 Nガス供給流量:100~10000sccm、
 が例示される。それぞれの処理条件を、それぞれの範囲内のある値に設定することで、成膜処理を適正に進行させることが可能となる。
 (パージおよび大気圧復帰)
 成膜処理が完了した後、バルブ66bを開き、ガス供給管62bからNガスを処理室54内へ供給し、排気管68から排気する。Nガスはパージガスとして作用する。これにより、処理室54内がパージされ、処理室54内に残留するガスや反応副生成物が処理室54内から除去される(パージ)。その後、処理室54内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室54内の圧力が常圧に復帰される(大気圧復帰)。
 (ボートアンロードおよびウエハディスチャージ)
 ボートエレベータ82によりシールキャップ78が下降され、反応管50の下端が開口される。そして、処理済のウエハWが、ボート58に支持された状態で、反応管50の下端から反応管50の外部に搬出される(ボートアンロード)。処理済のウエハWは、ボート58より取出される(ウエハディスチャージ)。
 第1の実施形態によれば、以下に示す1つ又は複数の効果が得られる。
 (1)収容室を省スペース化することができ、基板処理装置のフットプリントを削減することが可能となる。
 (2)収納容器の搬送スピードを向上させることができ、スループットを向上させ、生産性を向上させることが可能となる。
 次に、図10を用いて第2の実施形態について説明する。上述の実施形態と異なる点は、AGVポート22が、基台24Aを昇降させる昇降機構をさらに備える点である。上述の実施形態で説明した要素と実質的に同一の要素には同一の符号を付し、その説明を省略する。
 AGVポート22には、ポッド20を上下に昇降させる昇降駆動機構90が設置されている。昇降駆動機構90は、ステージ25を上下に移動させる駆動部としての第2駆動部90Aと、第2駆動部90Aによって昇降されるシャフト90Bと、を備える。シャフト90B上端には、基台24が水平に設置される。
 ステージ25は、予め設定された複数の高さ位置まで上昇される。ロードポート42にポッド20が載置されている場合、ステージ25は、ポッド20の上面よりも上の位置である第1の高さ位置まで上昇される。ロードポート42にポッド20が載置されていない場合、ステージ25は、第1の高さ位置よりも低く、ロードポート42のステージよりも高い位置である第2の高さ位置まで上昇される。ステージ25の高さ位置は、昇降駆動機構90近傍に設置された高さ位置センサ90Cにより検知される。
 次に、第2の実施形態におけるポッド20の搬送について説明する。ポッド20がAGVポート22に供給されると、AGVポート22上のポッド20は基板処理装置4内部へ搬入される。搬入されたポッド20は収納棚30の指定されたステージ25へポッド搬送機構40によって自動的に搬送されて受け渡され、一時的に保管され後、収納棚30から一方のロードポート42に搬送されて受け渡されるか、もしくは直接ロードポート42に搬送される。
 走行部40Bを制御し、ポッド搬送機構40を搬送対象であるポッド20が載置されているAGVポート22のステージ25の受渡し位置上方に移動させる。
 ロードポート42にポッド20が載置されている場合、AGVポート22のステージ25を第1の高さ位置まで上昇させる。ロードポート42にポッド20が載置されていない場合、AGVポート22のステージ25を第2の高さ位置まで上昇させる。ここで、ポッド搬送機構40の移動とAGVポートの上昇動作は同時に行っても良い。
  ポッド搬送機構40が受渡し位置上方に待機していること、および、AGVポート22のステージ25が第1の高さ位置または第2の高さ位置まで上昇していることを確認し、搬出対象であるポッド20が載置されているAGVポート22のステージ25を受渡し位置まで水平移動(スライド)させる。
 センサ28Aにより、ステージ25が受渡し位置までスライドされたことを確認した後、昇降部40Dを制御し、ポッド20を保持できる位置まで保持部40Cを降下させ、保持部40Cを制御しポッド20を保持する。保持部40Cがポッド20を保持したことを確認し、昇降部40Dを制御し保持部40Cを上昇させる。
 ステージ25のセンサ25Bにより、ポッド20が載置されていないことを確認した後、ステージ25を載置位置までスライドさせる。センサ28Aにより、ステージ25が載置位置に戻ったことを確認した後、ステージ25をホーム位置まで下降させる。さらに、ポッド搬送機構40を受渡し対象のロードポート42または収納棚30の受渡し位置上方に移動させる。ここで、ステージ25のホーム位置までの下降とポッド搬送機構40の移動とを同時に行っても良い。ポッド搬送機構40を受渡し対象のロードポート42または収納棚30の受渡し位置上方に移動させた後、昇降部40Dを制御し、保持部40Cを降下させ、受渡し対象のステージ25にポッド20を載置する。
 AGVポート22からロードポート42へポッド20を直接受渡し可能に構成される。ロードポート42にポッド20が載置されていないことを確認した後、AGVポート22のステージ25を第2の高さ位置まで上昇させる。ステージ25をロードポート42の載置部上部まで水平移動(スライド)させ、ステージ25を水平移動させた状態で降下させる。ポッド20がロードポート42に載置されたことを確認した後、ステージ25を載置位置まで水平移動させ、ホーム位置まで下降させる。
 第2の実施形態によれば、第1の実施形態により得られる効果に加え、以下に示す1つ又は複数の効果が得られる。
 (1)AGVポートを上下駆動させるようにすることにより、対面するロードポートと干渉しない高さ位置まで上昇させてポッドを受渡しするようにすることが可能となる。これにより、AGVポートとロードポートとの距離を縮めることが可能となり、収容室の設置面積を縮小することができ、装置のフットプリントを低減させることができる。
 (2)AGVポートからロードポートへ直接ポッドを搬送することにより、搬送に係る時間を短縮でき、スループットを向上させることができる。
 次に、図11を用いて第3の実施形態について説明する。上述の実施形態と異なる点は、収容室12下方のポッド搬送領域14に固定棚94を設置する点である。上述の実施形態で説明した要素と実質的に同一の要素には同一の符号を付し、その説明を省略する。
 固定棚94はAGVポート22の水平移動に干渉しない位置である収容室12下方に設置される。また、固定棚94は、ポッド搬送領域14内に設置されるため、ポッド20を載置するステージを水平移動させる必要がない。例えば、図1において、ロードポート42と並び、AGVポート22に対面する位置に、固定棚94が配置される。このように、ポッド搬送領域14内であって、収納棚30やAGVポート22のステージ25の水平移動と干渉しない位置に固定棚94を設置することにより、収容室12内におけるポッド20の収容数を増やすことができる。
 以上、本発明の実施形態を具体的に説明した。しかしながら、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 例えば、上述の実施形態では、原料ガスとしてHCDSガスを用いる例について説明した。しかしながら、本発明は、このような態様に限定されない。例えば、原料ガスとしては、HCDSガスの他、モノクロロシラン(SiHCl、略称:MCS)ガス、ジクロロシラン(SiHCl、略称:DCS)ガス、トリクロロシラン(SiHCl、略称:TCS)ガス、テトラクロロシランすなわちシリコンテトラクロライド(SiCl、略称:STC)ガス、オクタクロロトリシラン(SiCl、略称:OCTS)ガス等の無機系ハロシラン原料ガスや、トリスジメチルアミノシラン(Si[N(CHH、略称:3DMAS)ガス、テトラキスジメチルアミノシラン(Si[N(CH、略称:4DMAS)ガス、ビスジエチルアミノシラン(Si[N(C、略称:BDEAS)ガス、ビスターシャリブチルアミノシラン(SiH[NH(C)]、略称:BTBAS)ガス等のハロゲン基非含有のアミノ系(アミン系)シラン原料ガスを用いることができる。また、原料ガスとしては、モノシラン(SiH、略称:MS)ガス、ジシラン(Si、略称:DS)ガス、トリシラン(Si、略称:TS)ガス等のハロゲン基非含有の無機系シラン原料ガスを用いることができる。
 また、例えば、上述の実施形態では、反応ガスとしてNHガスを用いる例について説明した。しかしながら、本発明は、このような態様に限定されない。例えば、反応ガスとしては、NHガスの他、ジアゼン(N)ガス、ヒドラジン(N)ガス、Nガス等の窒化水素系ガスや、これらの化合物を含むガス等を用いることができる。また、反応ガスとしては、トリエチルアミン((CN、略称:TEA)ガス、ジエチルアミン((CNH、略称:DEA)ガス、モノエチルアミン(CNH、略称:MEA)ガス等のエチルアミン系ガスや、トリメチルアミン((CHN、略称:TMA)ガス、ジメチルアミン((CHNH、略称:DMA)ガス、モノメチルアミン(CHNH、略称:MMA)ガス等のメチルアミン系ガス等を用いることができる。また、反応ガスとしては、トリメチルヒドラジン((CH(CH)H、略称:TMH)ガス等の有機ヒドラジン系ガス等を用いることができる。
 また、例えば、上述の実施形態では、原料ガスとしてHCDSガスを用い、反応ガスとしてNHガスのような窒素(N)含有ガス(窒化ガス)を用い、SiN膜を形成する例について説明した。しかしながら、本発明は、このような態様に限定されない。例えば、これらの他、もしくは、これらに加え、酸素(O)ガス等の酸素(O)含有ガス(酸化ガス)、プロピレン(C)ガス等の炭素(C)含有ガス、三塩化硼素(BCl)ガス等の硼素(B)含有ガス等を用い、例えば、以下に示す成膜シーケンスにより、SiO膜、SiON膜、SiOCN膜、SiOC膜、SiCN膜、SiBN膜、SiBCN膜等を形成することができる。なお、各ガスを流す順番は適宜変更することができる。これらの成膜を行う場合においても、上述の実施形態と同様な処理条件にて成膜を行うことができ、上述の実施形態と同様の効果が得られる。
(3DMAS→O)×n ⇒ SiO
(HCDS→NH→O)×n ⇒ SiON
(HCDS→C→O→NH)×n ⇒ SiOCN
(HCDS→TEA→O)×n ⇒ SiOC
(HCDS→C→NH)×n ⇒ SiCN
(HCDS→BCl→NH)×n ⇒ SiBN
(HCDS→C→BCl→NH)×n ⇒ SiBCN
 また、例えば、上述の実施形態では、SiN膜等のシリコン系絶縁膜を形成する例について説明した。しかしながら、本発明は、このような態様に限定されない。例えば、本発明は、ウエハW上に、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、タンタル(Ta)、ニオブ(Nb)、アルミニウム(Al)、モリブデン(Mo)、タングステン(W)等の金属元素を含む膜、すなわち、金属系膜を形成する場合においても、好適に適用可能である。
 例えば、本発明は、ウエハW上に、TiN膜、TiO膜、TiON膜、TiOCN膜、TiOC膜、TiCN膜、TiBN膜、TiBCN膜、ZrN膜、ZrO膜、ZrON膜、ZrOCN膜、ZrOC膜、ZrCN膜、ZrBN膜、ZrBCN膜、HfN膜、HfO膜、HfON膜、HfOCN膜、HfOC膜、HfCN膜、HfBN膜、HfBCN膜、TaN膜、TaO膜、TaON膜、TaOCN膜、TaOC膜、TaCN膜、TaBN膜、TaBCN膜、NbN膜、NbO膜、NbON膜、NbOCN膜、NbOC膜、NbCN膜、NbBN膜、NbBCN膜、AlN膜、AlO膜、AlON膜、AlOCN膜、AlOC膜、AlCN膜、AlBN膜、AlBCN膜、MoN膜、MoO膜、MoON膜、MoOCN膜、MoOC膜、MoCN膜、MoBN膜、MoBCN膜、WN膜、WO膜、WON膜、WOCN膜、WOC膜、WCN膜、WBN膜、WBCN膜等を形成する場合にも、好適に適用可能である。またこれらの他、これらのいずれかに他の元素をドープ(添加)した膜、例えば、TiAlN膜、TaAlN膜、TiAlC膜、TaAlC膜、TiSiN、TiSiC膜等を形成する場合にも、好適に適用可能である。
 金属系膜を形成する場合、原料ガスとして、例えば、チタニウムテトラクロライド(TiCl)ガス、チタニウムテトラフルオライド(TiF)ガス、ジルコニウムテトラクロライド(ZrCl)ガス、ジルコニウムテトラフルオライド(ZrF)ガス、ハフニウムテトラクロライド(HfCl)ガス、ハフニウムテトラフルオライド(HfF)ガス、タンタルペンタクロライド(TaCl)ガス、タンタルペンタフルオライド(TaF)ガス、ニオビウムペンタクロライド(NbCl)ガス、ニオビウムペンタフルオライド(NbF)ガス、アルミニウムトリクロライド(AlCl)ガス、アルミニウムトリフルオライド(AlF)ガス、モリブデンペンタクロライド(MoCl)ガス、モリブデンペンタフルオライド(MoF)ガス、タングステンヘキサクロライド(WCl)ガス、タングステンヘキサフルオライド(WF)ガス等の金属元素およびハロゲン元素を含む無機金属原料ガスを用いることができる。また、原料ガスとして、例えば、トリメチルアルミニウム(Al(CH、略称:TMA)ガス等の金属元素および炭素を含む有機金属原料ガスを用いることもできる。反応ガスとしては、上述の実施形態と同様なガスを用いることができる。
 例えば、以下に示す成膜シーケンスにより、ウエハW上に、TiN膜、TiO膜、TiON膜、TiCN膜、TiAlC膜、TiAlN、TiSiN膜等を形成することができる。
 (TiCl→NH)×n ⇒ TiN
 (TiCl→O)×n ⇒ TiO
 (TiCl→NH→O)×n ⇒ TiON
 (TiCl→C→NH)×n ⇒ TiCN
 (TiCl→TMA)×n ⇒ TiAlC
 (TiCl→TMA→NH)×n ⇒ TiAlN
 (TiCl→HCDS→NH)×n ⇒ TiSiN
 なお、各ガスを流す順番は適宜変更することができる。これらの成膜を行う場合においても、上述の実施形態と同様な処理条件にて成膜を行うことができ、上述の実施形態と同様の効果が得られる。
 すなわち、本発明は、半導体元素や金属元素等の所定元素を含む膜を形成する場合に好適に適用することができる。
 また、上述の実施形態では、ウエハW上に膜を堆積させる例について説明した。しかしながら、本発明は、このような態様に限定されない。例えば、ウエハWやウエハW上に形成された膜等に対して、酸化処理、拡散処理、アニール処理、エッチング処理等の処理を行う場合にも、好適に適用可能である。
 また、上述の実施形態や変形例は、適宜組み合わせて用いることができる。このときの処理条件は、例えば上述の実施形態や変形例と同様な処理条件とすることができる。
 本発明に係る基板処理装置および半導体装置の製造方法によれば、装置のフットプリントを低減させることが可能となる。
 4・・・基板処理装置
 12・・・収容室
 26・・・水平駆動機構
 40・・・ポッド搬送機構
 90・・・昇降駆動機構 

Claims (13)

  1.  基板を収容する収納容器を載置する載置棚を備える収容室と、
     前記収容室の天井部に設置され、前記収納容器の上部を把持して搬送する搬送機構と、
     前記収容室に対して前記収納容器を搬入出するポートと、を備え、
     前記ポートは、
     基台上に固定された調整板と、
     前記収納容器を載置するステージと、
     前記調整板の上部に設置され、前記ステージの下面後方と連結部材を介して連結され、前記ステージを水平移動させる水平駆動機構と、を有し、
     前記水平駆動機構は、前記ステージの水平移動を補助し、一端が互いに連結された一対のガイド部と、前記ガイド部の間に設置され、前記ガイド部の連結部分を押圧する第1駆動部とにより構成される基板処理装置。
  2.  前記収納容器を載置する載置位置と、前記収納容器を前記搬送機構に受け渡す受渡し位置との間で前記ステージを水平移動させるよう前記水平駆動機構を制御するよう構成された制御部をさらに備える請求項1記載の基板処理装置。
  3.  前記調整板の上部には配置され、前記ステージの位置を検出する2つのセンサと、
     前記ガイド部の他端に設置され、前記センサの検出部分を通過する検知部材と、をさらに有し、
     2つの前記センサはそれぞれ前記載置位置と前記受渡し位置とを検出する請求項2記載の基板処理装置。
  4.  前記水平駆動機構は、
     前記ガイド部の片方の内側両端に設置されたプーリと、
     前記プーリに掛け渡され、前記連結部材と第1固定部を介して固定された伝達部と、
     前記伝達部と前記調整板とを固定する第2固定部と、
     をさらに有し、
     前記ステージは、前記ガイド部によって水平移動されつつ、前記伝達部の回転によって水平移動される請求項1乃至3いずれかに記載の基板処理装置。
  5.  前記ステージは、前方先端に開口を有する請求項1乃至4のいずれかに記載の基板処理装置。
  6.  前記ポートは、前記基台を上下に移動させる上下移動機構をさらに備える請求項1乃至5いずれかに記載の基板処理装置。
  7.  前記上下移動機構は、
     前記基台に接続されたシャフトと、
     前記シャフトを上下に駆動する第2駆動部と、
     を有する請求項6記載の基板処理装置。
  8.  前記ポートに対面して設置され、前記収納容器を開閉するロードポートをさらに有し、
     前記ロードポートの載置部の位置は、前記ポートの受渡し位置と重なる請求項6または7記載の基板処理装置。
  9.  前記制御部は、前記ロードポート上に前記収納容器が載置されている時には、前記ロードポート上の前記収納容器と干渉しない第1の高さ位置まで前記基台を上昇させ、前記搬送機構を前記ステージの前記受渡し位置上方に移動させ、前記ステージを前記受渡し位置まで移動させ、前記収納容器の受渡しをするように前記水平駆動機構、前記上下移動機構および前記搬送機構とを制御するよう構成される請求項8記載の基板処理装置。
  10.  前記制御部は、前記ロードポート上に前記収容器が載置されていない場合には、前記第1の高さ位置よりも低い第2の高さ位置まで前記基台を上昇させ、前記搬送機構を前記ステージの前記受渡し位置上方に移動させ、前記ステージを前記受渡し位置まで移動させ、前記収納容器の受渡しをするように前記水平駆動機構、前記上下移動機構および前記搬送機構とを制御するよう構成される請求項8または9記載の基板処理装置。
  11.  前記制御部は、前記基台の上昇と前記搬送機構の移動とを同時に行うように前記上下動移動機構と前記水平駆動機構とを制御するよう構成される請求項9または10記載の基板処理装置。
  12.  前記制御部は、前記第2の高さ位置まで前記基台を上昇させ、前記ステージを前記ロードポートの載置部上部まで移動させ、前記基台を下降させて前記収納容器を前記ロードポートに載置し、前記ステージを前記載置位置まで移動させ、前記既倍を下降させるように前記水平駆動機構と前記上下移動機構を制御するよう構成される付記6乃至11いずれかに記載の基板処理装置。
  13.  基板を収容する収納容器を収納する収容室の天井部に設置された搬送機構によって前記収納容器をポートから載置棚へ搬送する工程と、
     前記収容容器内の前記基板を処理室内に搬送する工程と、
     前記処理室内で前記基板を処理する工程と、を有し、
     前記ポートは、
     基台上に固定された調整板と、
     前記収納容器を載置するステージと、
     前記調整板の上部に設置され、前記ステージの下面後方と連結部材を介して連結され、前記ステージを水平移動させる水平駆動機構と、を有し、
     前記水平駆動機構は、前記ステージの水平移動を補助し、一端が互いに連結された一対のガイド部と、前記ガイド部の間に設置され、前記ガイド部の連結部分を押圧する駆動部と、を備え、
     前記収納容器を搬送する工程では、前記ステージを水平移動させ、前記搬送機構を前記ステージ上に移動させ、前記収納容器の上部を把持して搬送する半導体装置の製造方法。
PCT/JP2015/074464 2015-08-28 2015-08-28 基板処理装置および半導体装置の製造方法 WO2017037785A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017537055A JP6505851B2 (ja) 2015-08-28 2015-08-28 基板処理装置および半導体装置の製造方法
CN201580081628.1A CN107851594B (zh) 2015-08-28 2015-08-28 基板处理装置以及半导体装置的制造方法
PCT/JP2015/074464 WO2017037785A1 (ja) 2015-08-28 2015-08-28 基板処理装置および半導体装置の製造方法
KR1020187001243A KR102075276B1 (ko) 2015-08-28 2015-08-28 기판 처리 장치 및 반도체 장치의 제조 방법
US15/900,283 US10529607B2 (en) 2015-08-28 2018-02-20 Substrate processing apparatus and method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/074464 WO2017037785A1 (ja) 2015-08-28 2015-08-28 基板処理装置および半導体装置の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/900,283 Continuation US10529607B2 (en) 2015-08-28 2018-02-20 Substrate processing apparatus and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2017037785A1 true WO2017037785A1 (ja) 2017-03-09

Family

ID=58186756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074464 WO2017037785A1 (ja) 2015-08-28 2015-08-28 基板処理装置および半導体装置の製造方法

Country Status (5)

Country Link
US (1) US10529607B2 (ja)
JP (1) JP6505851B2 (ja)
KR (1) KR102075276B1 (ja)
CN (1) CN107851594B (ja)
WO (1) WO2017037785A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10388548B2 (en) * 2016-05-27 2019-08-20 Texas Instruments Incorporated Apparatus and method for operating machinery under uniformly distributed mechanical pressure
SG11201913857YA (en) * 2017-08-30 2020-01-30 Kokusai Electric Corp Protective plate, substrate processing apparatus, and method of manufacturing semiconductor device
JP7349240B2 (ja) * 2018-10-05 2023-09-22 東京エレクトロン株式会社 基板倉庫及び基板検査方法
JP7213056B2 (ja) * 2018-10-18 2023-01-26 東京エレクトロン株式会社 基板処理装置及び基板処理方法
US20200161161A1 (en) * 2018-10-30 2020-05-21 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus and methods for handling semiconductor part carriers
JP2020131308A (ja) * 2019-02-14 2020-08-31 オークマ株式会社 工作機械における自動パレット交換装置
CN110405212B (zh) * 2019-07-19 2023-07-04 佛山科学技术学院 一种合金刀具成型工艺中的自动化下料装置
JP7412137B2 (ja) * 2019-11-06 2024-01-12 東京エレクトロン株式会社 基板処理装置及び基板収納容器保管方法
KR102584512B1 (ko) 2020-12-31 2023-10-05 세메스 주식회사 버퍼 유닛 및 온도 변화가 수반되는 기판 지지 부재의 수평 측정용 기판형 센서의 보관 방법
CN113871331A (zh) * 2021-09-24 2021-12-31 中国电子科技集团公司第四十八研究所 一种用于立式氧化炉的片盒进出传送装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002175998A (ja) * 2000-12-06 2002-06-21 Tokyo Electron Ltd 処理装置
JP2007096140A (ja) * 2005-09-30 2007-04-12 Asyst Shinko Inc 懸垂式昇降搬送台車における物品の授受方法並びに装置
JP2012169534A (ja) * 2011-02-16 2012-09-06 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616206A (ja) * 1992-07-03 1994-01-25 Shinko Electric Co Ltd クリーンルーム内搬送システム
KR100221983B1 (ko) * 1993-04-13 1999-09-15 히가시 데쓰로 처리장치
DE19832038A1 (de) * 1997-07-17 1999-01-28 Tokyo Electron Ltd Verfahren und Einrichtung zum Reinigen und Trocknen
JPH1159829A (ja) * 1997-08-08 1999-03-02 Mitsubishi Electric Corp 半導体ウェハカセット搬送装置、半導体ウェハカセット搬送装置で用いられるストッカ、ならびに半導体ウェハカセット搬送装置で用いられるストッカ入庫作業制御方法、ストッカ出庫作業制御方法、自動搬送車制御方法、およびストッカ在庫照合方法
NL1008143C2 (nl) * 1998-01-27 1999-07-28 Asm Int Stelsel voor het behandelen van wafers.
JPH11349280A (ja) * 1998-06-05 1999-12-21 Shinko Electric Co Ltd 懸垂式搬送装置
US6481558B1 (en) * 1998-12-18 2002-11-19 Asyst Technologies, Inc. Integrated load port-conveyor transfer system
US6379096B1 (en) * 1999-02-22 2002-04-30 Scp Global Technologies, Inc. Buffer storage system
JP2000311935A (ja) 1999-04-27 2000-11-07 Kokusai Electric Co Ltd 基板処理装置
JP3587788B2 (ja) * 2001-02-27 2004-11-10 住友精密工業株式会社 昇降式基板処理装置及びこれを備えた基板処理システム
US6582182B2 (en) * 2001-06-04 2003-06-24 Intrabay Automation, Inc. Semiconductor wafer storage kiosk
TWI233913B (en) * 2002-06-06 2005-06-11 Murata Machinery Ltd Automated guided vehicle system
JP2004103761A (ja) * 2002-09-09 2004-04-02 Renesas Technology Corp 半導体装置製造ライン
JP4266197B2 (ja) * 2004-10-19 2009-05-20 東京エレクトロン株式会社 縦型熱処理装置
US7661919B2 (en) * 2005-09-28 2010-02-16 Muratec Automation Co., Ltd. Discontinuous conveyor system
JP2007191235A (ja) * 2006-01-17 2007-08-02 Murata Mach Ltd 天井走行車システム
JP2007251088A (ja) * 2006-03-20 2007-09-27 Tokyo Electron Ltd 縦型熱処理装置及び縦型熱処理装置における移載機構の制御方法
JP4799325B2 (ja) * 2006-09-05 2011-10-26 東京エレクトロン株式会社 基板受け渡し装置,基板処理装置,基板受け渡し方法
US7740437B2 (en) * 2006-09-22 2010-06-22 Asm International N.V. Processing system with increased cassette storage capacity
US8128333B2 (en) * 2006-11-27 2012-03-06 Hitachi Kokusai Electric Inc. Substrate processing apparatus and manufacturing method for semiconductor devices
JP4891199B2 (ja) * 2006-11-27 2012-03-07 株式会社日立国際電気 基板処理装置および半導体装置の製造方法
US7934898B2 (en) * 2007-07-16 2011-05-03 Semitool, Inc. High throughput semiconductor wafer processing
TW200919117A (en) * 2007-08-28 2009-05-01 Tokyo Electron Ltd Coating-developing apparatus, coating-developing method and storage medium
KR100914486B1 (ko) * 2007-10-09 2009-08-28 주식회사 신성에프에이 포프 저장용 이동 선반
JP4993614B2 (ja) * 2008-02-29 2012-08-08 東京エレクトロン株式会社 搬送手段のティーチング方法、記憶媒体及び基板処理装置
KR101077566B1 (ko) * 2008-08-20 2011-10-28 세메스 주식회사 기판 처리장치 및 이의 기판 이송 방법
JP5212165B2 (ja) * 2009-02-20 2013-06-19 東京エレクトロン株式会社 基板処理装置
JP5429570B2 (ja) * 2010-03-08 2014-02-26 株式会社ダイフク 物品搬送設備
CN102034728B (zh) * 2010-09-30 2013-01-23 东莞宏威数码机械有限公司 定位传输设备
JP5617708B2 (ja) * 2011-03-16 2014-11-05 東京エレクトロン株式会社 蓋体開閉装置
JP5674041B2 (ja) * 2011-08-11 2015-02-18 株式会社ダイフク 物品搬送設備
CN106373911B (zh) * 2011-09-22 2019-04-09 东京毅力科创株式会社 基板处理装置及基板处理方法
JP6403431B2 (ja) * 2013-06-28 2018-10-10 株式会社Kokusai Electric 基板処理装置、流量監視方法及び半導体装置の製造方法並びに流量監視プログラム
WO2015046062A1 (ja) 2013-09-30 2015-04-02 株式会社日立国際電気 基板処理装置、半導体装置の製造方法および記録媒体
JP6278751B2 (ja) * 2014-03-04 2018-02-14 東京エレクトロン株式会社 搬送方法及び基板処理装置
US9633879B2 (en) * 2014-05-14 2017-04-25 Murata Machinery, Ltd. Storage system in the ceiling space and storage method for goods thereby
KR102174332B1 (ko) * 2014-07-30 2020-11-04 삼성전자주식회사 반도체 제조 라인의 스토커 및 상기 스토커를 이용하여 웨이퍼를 이송하는 방법
US9852936B2 (en) * 2015-01-29 2017-12-26 Taiwan Semiconductor Manufacturing Co., Ltd. Load port and method for loading and unloading cassette
US9698036B2 (en) * 2015-11-05 2017-07-04 Lam Research Corporation Stacked wafer cassette loading system
US10069030B2 (en) * 2015-12-14 2018-09-04 Solarcity Corporation Load lock solar cell transfer system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002175998A (ja) * 2000-12-06 2002-06-21 Tokyo Electron Ltd 処理装置
JP2007096140A (ja) * 2005-09-30 2007-04-12 Asyst Shinko Inc 懸垂式昇降搬送台車における物品の授受方法並びに装置
JP2012169534A (ja) * 2011-02-16 2012-09-06 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法

Also Published As

Publication number Publication date
KR20180016600A (ko) 2018-02-14
US20180174877A1 (en) 2018-06-21
KR102075276B1 (ko) 2020-03-02
JP6505851B2 (ja) 2019-04-24
CN107851594B (zh) 2021-06-22
US10529607B2 (en) 2020-01-07
CN107851594A (zh) 2018-03-27
JPWO2017037785A1 (ja) 2018-04-12

Similar Documents

Publication Publication Date Title
WO2017037785A1 (ja) 基板処理装置および半導体装置の製造方法
JP6606551B2 (ja) 基板処理装置、半導体装置の製造方法および記録媒体
US11155920B2 (en) Substrate processing apparatus, and method for manufacturing semiconductor device
US11359285B2 (en) Substrate processing apparatus, heater and method of manufacturing semiconductor device
US11967490B2 (en) Plasma generating device, substrate processing apparatus, and method of manufacturing semiconductor device
JP6402058B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP6476371B2 (ja) 基板処理装置、加熱部、部材、半導体装置の製造方法および配管の加熱方法
JP2017069330A (ja) 半導体装置の製造方法、ガス供給方法及び基板処理装置並びに基板保持具
KR102559937B1 (ko) 기판 처리 장치, 기판 보지부, 반도체 장치의 제조 방법 및 프로그램

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537055

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187001243

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15902911

Country of ref document: EP

Kind code of ref document: A1