WO2014156971A1 - 磁石式発電機 - Google Patents

磁石式発電機 Download PDF

Info

Publication number
WO2014156971A1
WO2014156971A1 PCT/JP2014/057805 JP2014057805W WO2014156971A1 WO 2014156971 A1 WO2014156971 A1 WO 2014156971A1 JP 2014057805 W JP2014057805 W JP 2014057805W WO 2014156971 A1 WO2014156971 A1 WO 2014156971A1
Authority
WO
WIPO (PCT)
Prior art keywords
salient
generator
adjacent
salient poles
phase
Prior art date
Application number
PCT/JP2014/057805
Other languages
English (en)
French (fr)
Inventor
仁之 渡辺
雅和 川岸
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Priority to BR112015024019-4A priority Critical patent/BR112015024019B1/pt
Priority to CN201480011721.0A priority patent/CN105009413B/zh
Priority to EP14773779.5A priority patent/EP2980961B1/en
Publication of WO2014156971A1 publication Critical patent/WO2014156971A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems

Definitions

  • the present invention relates to a magnet generator using a permanent magnet, and more particularly to a three-phase magnet generator connected to an engine or the like of a motorcycle.
  • the magnet generator is composed of a stator wound with a coil and a rotor provided with a permanent magnet.
  • a magnet generator when a rotor is driven to rotate by an engine or the like, a rotating magnetic field formed by a permanent magnet crosses a coil and an electromotive force is generated on the stator side.
  • Patent Document 1 discloses a generator that employs a magnetic circuit with higher output and higher efficiency.
  • the magnet generator of Patent Document 1 there is a possibility that the following problem may occur, and an improvement thereof has been demanded.
  • the number of salient poles is 2p-2 with respect to the number of magnetic poles 2p, so the number of salient poles is reduced. For this reason, the magnet generator of patent document 1 may reduce electric power generation amount.
  • the magnet generator disclosed in Patent Document 1 requires an FET type voltage regulator that can handle high frequencies.
  • Patent Document 2 discloses a power generation in which the arrangement angle between adjacent in-phase salient poles is made to coincide with the pole arc angle of a permanent magnet, while the arrangement angle between adjacent different-phase salient poles is set narrower than the pole arc angle of a permanent magnet.
  • a machine is disclosed.
  • the magnet generator of Patent Document 2 can improve the amount of power generation while maintaining the same physique.
  • the magnet generator of Patent Document 2 can also suppress the number of magnetic poles to 16 or less while securing the amount of power generation. For this reason, an increase in system cost can be suppressed by using an inexpensive thyristor type voltage regulator.
  • the magnetic generator of Patent Document 2 can evenly arrange salient poles of each phase. As a result, it is possible to prevent a decrease in power generation efficiency due to a loss of power generation balance between phases.
  • the magnetic generator of patent document 2 can improve the electric power generation amount, there exists a possibility of causing the fall of manufacturing efficiency.
  • the interval between adjacent different-phase salient poles is set narrower than the interval between adjacent in-phase salient poles. Since the spacing between adjacent salient poles is not uniform, when winding a coil around the salient poles, it is necessary to take measures such as varying the winding speed for each salient pole. For this reason, manufacturing efficiency may be reduced.
  • the present invention provides a magnet generator capable of preventing a decrease in manufacturing efficiency while achieving high output and high efficiency of power generation.
  • the magnet generator includes a plurality of salient poles each including a magnetic path portion around which a coil is wound and a protruding portion that protrudes laterally from the tip of the magnetic path portion. And a rotor that is rotatably disposed on the outer periphery or inner periphery of the stator and has a plurality of permanent magnets attached along the circumferential direction so as to face the salient poles.
  • the salient poles are set so that the angles of the magnetic path portions adjacent to each other are set substantially evenly, and the tip portion composed of the tip portion of the magnetic path portion and the protruding portion has an arrangement angle between the tip portions of the same phase as the permanent phase It is set to match the polar arc angle of the magnet.
  • the salient poles that are adjacent only to the in-phase salient poles are provided with the protrusions on both sides in the circumferential direction, and adjacent to the different-phase salient poles.
  • the protruding portion is arranged only on the side of the circumferential direction adjacent to the salient pole of the different phase.
  • the amount of protrusion of the protrusion is set to be substantially uniform.
  • the projecting portions are arranged on both sides in the circumferential direction, and in the salient pole adjacent to the out-of-phase salient pole, The protrusion amount of the protrusions arranged on one side in the circumferential direction is different from the protrusion amount of the protrusions arranged on the other side in the circumferential direction.
  • the bobbin is disposed corresponding to a salient pole adjacent to the out-of-phase salient pole, and the bobbin is the in-phase salient pole.
  • the coil winding prevention part which prevents the winding disorder of the said coil is provided in the side which opposes.
  • the plurality of salient poles arranged adjacent to each other in the circumferential direction form the same phase and are arranged at the same electrical angle. .
  • the arrangement angle of the salient pole protrusions is made close to the polar arc angle of the permanent magnet, so that it is possible to suppress a decrease in power generation efficiency due to a loss of power generation balance between phases. Therefore, high output and high efficiency of the generator can be realized.
  • the angles of the magnetic path portions of the adjacent salient poles are set evenly, the coil can be efficiently wound around the magnetic path portion, and a reduction in manufacturing efficiency can be prevented.
  • FIG. 1 It is sectional drawing which shows the structure of the generator 1 which concerns on 1st embodiment of this invention. It is a figure which shows the shape and arrangement
  • FIG. 1 is a cross-sectional view showing the configuration of the generator 1 according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating the shape and arrangement of the salient poles 14 in the generator 1.
  • FIG. 3 is a diagram (partially enlarged view of FIG. 2) showing the tip portion 17.
  • the generator 1 is a so-called outer rotor type magnet generator.
  • the generator 1 is used, for example, as an ACG (alternating current generator) for a motorcycle. Roughly speaking, the generator 1 includes a rotor 2 and a stator 3.
  • M represents the number of salient poles of the stator 3.
  • N indicates the number of magnetic poles of the permanent magnet 6 (rotor 2).
  • ⁇ p indicates the polar arc angle of the permanent magnet 6.
  • ⁇ 1 indicates an arrangement angle of the magnetic path portion 15 of the salient pole 14.
  • ⁇ 2 indicates an arrangement angle of the tip 17 of the salient pole 14 in the same phase.
  • ⁇ p, ⁇ 1, and ⁇ 2 are all mechanical angles.
  • the rotor 2 is attached to the crankshaft 4 of the engine and functions as a field element.
  • the stator 3 is attached to the engine housing 5 and functions as an armature.
  • a permanent magnet 6 is attached to the rotor 2.
  • a coil 7 is attached to the stator 3. When the rotor 2 rotates outside the coil 7, the rotating magnetic field formed by the permanent magnet 6 crosses the coil 7, so that an electromotive force is generated in the coil 7 to generate power.
  • the rotor 2 is rotatably arranged outside the stator 3.
  • the rotor 2 includes a rotor yoke 11 and a boss rotor 12 made of a magnetic material such as iron.
  • the rotor yoke 11 is a bottomed cylindrical member having a bottom portion 11a and a cylindrical portion 11b.
  • a plurality of permanent magnets 6 are arranged along the circumferential direction on the inner peripheral surface of the cylindrical portion 11b.
  • the permanent magnets 6 are arranged in 16 equal parts with a polar arc angle ⁇ p of 22.5 ° so that the polarities on the inner surface side are alternately N and S poles.
  • the boss rotor 12 includes a disc-shaped flange portion 12a and a substantially cylindrical boss portion 12b.
  • the flange portion 12 a is attached so as to be concentric with the rotor yoke 11 at the center of the bottom portion 11 a of the rotor yoke 11.
  • a boss portion 12b protrudes from the center of the flange portion 12a.
  • the boss portion 12 b extends along the center line of the flange portion 12 a and is taper-coupled to the end portion of the crankshaft 4. When the crankshaft 4 rotates, the boss rotor 12 also rotates together with the crankshaft 4, and the rotor 2 rotates outside the coil 7.
  • the stator 3 includes a stator core 13 formed by stacking a plurality of steel plates.
  • a plurality of salient poles 14 are formed on the stator core 13.
  • the salient pole 14 includes a columnar magnetic path portion 15 around which the coil 7 is wound, and a protruding portion 16 protruding in the circumferential direction from the tip of the magnetic path portion 15.
  • a portion of the salient pole 14 that faces the permanent magnet 6 is referred to as a tip portion 17.
  • the distal end portion 17 is composed of the distal end portion 15 t of the magnetic path portion 15 and the protruding portion 16.
  • a coil 7 is wound around the outer periphery of the magnetic path portion 15 of the salient pole 14.
  • the generator 1 is a generator that generates three-phase alternating current. Six salient poles 14 are provided for each of the U, V, and W phases. The number M of salient poles of the stator 3 is 18. The generator 1 has a 16-pole 18-pole configuration.
  • FIG. 7 is a diagram showing a conventional generator 91.
  • the generator 91 is a generator described in Patent Document 2.
  • the same members as those of the generator 1 are denoted by the same reference numerals.
  • the six salient poles 14 forming the U phase may be referred to as U1 to U6.
  • the six salient poles 14 forming the V phase may be referred to as V1 to V6.
  • the six salient poles 14 forming the W phase may be referred to as W1 to W6.
  • the magnetic path portions 15 of the 18 salient poles 14 are provided at equal angles.
  • the angle ⁇ 1 between the magnetic path portion 15 of the salient pole 14 serving as U1 and the magnetic path portion 15 of the salient pole 14 serving as W6 is set to 20.0 °.
  • the angle ⁇ 1 is set regardless of the polar arc angle ⁇ p.
  • the generator 1 includes a salient pole 14 a in which the projecting portions 16 of the salient poles 14 are arranged on both sides in the circumferential direction with respect to the magnetic path portion 15, and a circumferential direction with respect to the magnetic path portion 15. And a salient pole 14b disposed on one side.
  • the projecting portions 16 are disposed on both sides in the circumferential direction of the salient poles 14a (for example, U2, V2, W2, etc.) adjacent only to the salient poles 14 in phase.
  • the salient pole 14a serving as U2 is adjacent to only the salient pole 14 serving as U1 and U3 having the same phase.
  • the salient poles 14a (magnetic path portions 15) serving as U2 are provided with projecting portions 16 on both sides in the circumferential direction.
  • the amount of protrusion (the length in the circumferential direction) of the protrusion 16 can be arbitrarily set, but the amount of protrusion of the pair of protrusions 16 is the same.
  • the salient poles 14 b (for example, U 1, V 1, W 1, etc.) adjacent to the out-of-phase salient poles 14 are only on the side (one side) adjacent to the out-of-phase salient poles 14 in the circumferential direction.
  • the protrusion 16 is disposed.
  • the salient pole 14b serving as U1 is adjacent to the salient pole 14 serving as W6 which is a different phase.
  • the projecting portion 16 is disposed only on the side adjacent to the salient pole 14 serving as W6 having a different phase in the circumferential direction.
  • the protruding amount (circumferential length) of this one protruding portion 16 is the same as the protruding amount of each of the pair of protruding portions 16 disposed on the salient pole 14a (magnetic path portion 15) serving as U2.
  • the angle between the magnetic path portions 95 is set to 22.5 °.
  • the protruding portions 96 of the salient poles 94 are disposed on both sides in the circumferential direction. For this reason, in the generator 91, the three salient poles 94 (tip portions 97) that form the same phase face each other so as to be positioned at the center line of the magnetic poles of the permanent magnet 6.
  • the tip 97 of the salient pole 94 serving as U1 is the N pole of the permanent magnet 6
  • the tip 97 of the salient pole 94 serving as U2 is the S pole of the permanent magnet 6
  • the angle between the magnetic path portions 95 is set to 15.0 °.
  • the protruding portions 96 of the salient poles 94 are disposed on both sides in the circumferential direction. For this reason, the space between the magnetic path portions 95 is small where the salient poles 94 of different phases are adjacent to each other. Therefore, it is difficult to wind the coil 7 around the magnetic path portion 95 as compared to the place where the in-phase salient poles 94 are adjacent to each other.
  • the efficiency of the winding work of the coil 7 may be reduced.
  • the angles ⁇ 1 between the magnetic path portions 15 of the adjacent salient poles 14 are all set to 20.0 °.
  • the space between the magnetic path portions 15 is uniform.
  • the coil 7 can be efficiently wound around the magnetic path portion 15, and a reduction in manufacturing efficiency can be prevented. Further, since the number of turns of the coil 7 wound around the magnetic path portion 15 can be increased, high output and high efficiency of the generator 1 can be realized.
  • the protruding portions 16 are disposed on both sides in the circumferential direction on the salient pole 14 a adjacent to only the in-phase salient pole 14. Further, the salient pole 14b adjacent to the out-of-phase salient pole 14 is provided with the protrusion 16 only on the side in the circumferential direction adjacent to the out-of-phase salient pole 14. For this reason, in the generator 1, the angle ⁇ 2 between the tip portions 17 of the adjacent salient poles 14 is set to 22.5 °. The angle ⁇ 2 between the distal end portions 17 is an angle between the circumferential center positions of the respective distal end portions 17.
  • the tip 17 of the salient pole 14 serving as U1 is the N pole of the permanent magnet 6
  • the tip 17 of the salient pole 14 serving as U2 is the S pole of the permanent magnet 6, and the salient pole serving U3.
  • 14 end portions 17 simultaneously face the north pole of the permanent magnet 6 on the center line of each magnetic pole. For this reason, the generator 1 can implement
  • three salient poles 14 are arranged adjacent to each other in the circumferential direction to form a pole pair 21.
  • the salient pole 14 serving as U1 the salient pole 14 serving as U2, and the salient pole 14 serving as U3 are disposed adjacent to each other in the circumferential direction.
  • These three salient poles 14 form a U-phase pole pair 21Ua.
  • the three salient poles 14 in the same phase are arranged at the same electrical angle.
  • the three salient poles 14 are opposed to the different polarity permanent magnet 6 with the same electrical angle.
  • the tip portions 17 of the three salient poles 14 in the pole pair 21 are set to an angle ⁇ 2 that is substantially the same as the polar arc angle ⁇ p of the permanent magnet 6 so that the adjacent ones face the magnetic poles having different polarities.
  • the winding directions of the coils 7 wound around the adjacent salient poles 14 are set in opposite directions.
  • the winding direction of the coil 7 wound around the salient pole 14 serving as U1 and the coil 7 wound around the salient pole 14 serving as U2 are opposite to each other.
  • the salient poles 14 of V1, V2 and V3 forming the V phase are arranged adjacent to each other to form a pole pair 21Va.
  • the salient poles 14 of W1, W2, and W3 that form the W phase are arranged adjacent to each other to form a pole pair 21Wa.
  • V1 to V3 and W1 to W3 are opposed to the permanent magnet 6 of different polarity at the same electrical angle.
  • the angle ⁇ 2 between the tips 17 of the salient poles 14 of V1 to V3 and W1 to W3 is set to 22.5 °.
  • Coils 7 that are energized in opposite directions are arranged between the salient poles 14 adjacent in the same phase (V1 and V2, V2 and V3, W1 and W2, W2 and W3).
  • a pair of pole pairs 21 for each phase is provided.
  • the two pole pairs 21 are arranged so as to face each other across the rotation center O of the rotor 2.
  • a pole pair 21Ub is provided at a position facing the pole pair 21Ua across the rotation center O.
  • pole pairs 21Vb and 21Wb are provided for pole pairs 21Va and 21Wa.
  • Three salient poles 14 (U phase: U4, U5, U6, V phase: V4, V5, V6, W phase: W4, W5, W6) are also arranged in the pole pair 21Ub, 21Vb, 21Wb.
  • the generator 1 brings the angle ⁇ 2 between the tip portions 17 of the salient poles 14 in the same phase close to the polar arc angle ⁇ p of the permanent magnet. A decrease in power generation efficiency due to collapse can be suppressed. Therefore, high output and high efficiency of the generator 1 can be realized.
  • the angles ⁇ 1 between the magnetic path portions 15 of the adjacent salient poles 14 are set uniformly, the coil 7 can be efficiently wound around the magnetic path portions 15 to prevent a decrease in manufacturing efficiency. it can. Further, since the number of turns of the coil 7 wound around the magnetic path portion 15 can be increased, high output and high efficiency of the generator 1 can be realized.
  • FIG. 4 is a cross-sectional view showing the configuration of the generator 51 according to the second embodiment of the present invention.
  • the same members as those of the generator 1 according to the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the protruding portions 16 of the salient poles 14 are arranged on both sides in the circumferential direction with respect to the magnetic path portion 15.
  • the salient poles 14 are constituted by salient poles 14 a having the same protruding amount of the pair of protruding portions 16 and salient poles 14 b having different protruding amounts of the pair of protruding portions 16.
  • the protruding portions 16 are arranged on both sides in the circumferential direction of the salient poles 14a (for example, U2, V2, W2, etc.) adjacent to the in-phase salient poles 14 only.
  • the salient pole 14a serving as U2 is adjacent to only the salient pole 14 serving as U1 and U3 having the same phase.
  • the salient poles 14a (magnetic path portions 15) serving as U2 are provided with projecting portions 16 on both sides in the circumferential direction.
  • the amount of protrusion (the length in the circumferential direction) of the protrusion 16 can be set arbitrarily, but the amount of protrusion of the pair of protrusions 16 is the same. For example, it is set to be longer by ⁇ mm than the protruding amount of the protruding portion 16 in the generator 1 according to the first embodiment.
  • the protruding portions 16 are arranged on both sides in the circumferential direction on the salient poles 14b (for example, U1, V1, W1, etc.) adjacent to the salient poles 14 of different phases.
  • the protrusion 16 (16a) disposed on the side (one side) adjacent to the salient pole 14 of the different phase in the circumferential direction is long, and is disposed on the side (one side) adjacent to the salient pole 14 of the same phase.
  • the protrusion 16 (16b) is short.
  • the salient pole 14b serving as U1 is adjacent to the salient pole 14 serving as W6 which is a different phase.
  • a long projecting portion 16 is disposed on the side adjacent to the salient pole 14 serving as W6 having a different phase in the circumferential direction.
  • the protruding amount (circumferential length) of the protruding portion 16 is the same as the protruding amount of each of the pair of protruding portions 16 disposed on the salient pole 14a (magnetic path portion 15) serving as U2.
  • a short projecting portion 16 (16b) is disposed on the side adjacent to the salient pole 14 serving as U2 in phase in the circumferential direction.
  • the protruding amount (circumferential length) of the protruding portion 16b is different from the protruding amount of each of the pair of protruding portions 16 arranged on the salient pole 14a (magnetic path portion 15) serving as U2.
  • the protrusion amount of the protrusion 16 (16b) is set to ⁇ mm, for example.
  • the projecting portions 16 ( 16a) is long, and the protruding portion 16 (16b) disposed on the side (one side) adjacent to the salient pole 14 in phase is set short.
  • the protruding amount of the protruding portion 16a was set to be longer by ⁇ mm than the protruding portion 16 of the generator 1, and the protruding portion 16b was protruded by the same amount ( ⁇ mm). Therefore, the center position of the tip 17 of the salient pole 14b is the same as that of the generator 1. That is, also in the generator 51, the angle ⁇ 2 between the tip portions 17 of the adjacent salient poles 14 is set to 22.5 °.
  • the same effect as the generator 1 which concerns on 1st embodiment is acquired. That is, since the angle ⁇ 2 between the tip portions 17 of the salient poles 14 in the same phase is brought close to the pole arc angle ⁇ p of the permanent magnet, it is possible to suppress a decrease in power generation efficiency due to a loss of power generation balance between the phases. Therefore, high output and high efficiency of the generator 1 can be realized. On the other hand, since the angles ⁇ 1 between the magnetic path portions 15 of the adjacent salient poles 14 are set evenly, the coil 7 can be efficiently wound around the magnetic path portions 15 to prevent a decrease in manufacturing efficiency. it can. Further, since the number of turns of the coil 7 wound around the magnetic path portion 15 can be increased, high output and high efficiency of the generator 1 can be realized.
  • the generator having a 16-pole 18-pole configuration is shown, but as shown in FIG. 5, a generator 61 having a 16-pole 12-pole configuration is also possible.
  • the case where the generator according to the present invention is used as a generator has been described in the above-described embodiment, it is also possible to use this as a motor.
  • the bobbin 40 corresponding to the salient pole 14 (refer FIG. 6).
  • Two symmetrical bobbins 40 are attached to one salient pole 14.
  • the bobbin 40 is formed by a winding drum protecting part 40a that covers the outer peripheral surface of the magnetic path part 15 and a tooth protecting part 40b that covers the tip part 17 (projecting part 16).
  • the winding drum protection part 40a is formed in a substantially U-shaped cross section.
  • the tooth protection portion 40b is formed in a flange shape so as to be orthogonal to the winding drum protection portion 40a at the leading edge of the winding drum protection portion 40a. As shown in FIG.
  • the bobbin 40 disposed with respect to the salient pole 14 b adjacent to the out-of-phase salient pole 14 has a side where the protrusion 16 does not exist (a side facing the in-phase salient pole 14).
  • the coil winding prevention part 41 is formed.
  • the coil winding prevention part 41 is formed in a flange shape so as to be orthogonal to the winding drum protection part 40a.
  • the coil winding prevention part 41 is formed integrally with the tooth protection part 40b.
  • the coil winding prevention part 41 is formed with a smaller protrusion than the tooth protection part 40b.
  • the coil winding disorder prevention part 41 is not restricted to what was projected and formed in the flange shape with respect to the winding drum protection part 40a. You may form the some groove
  • the above-described generator can be applied to a generator and a motor that are combined with a motor, such as an ACG starter for a motorcycle.
  • a motor such as an ACG starter for a motorcycle.
  • the generator according to the present invention is applied to a generator for a motorcycle has been shown.
  • the generator can be applied to a generator or a motor for other purposes.
  • the present invention is applied to an outer rotor type generator.
  • the present invention is applied to a so-called inner rotor type generator in which a rotor is disposed inside a stator. Is also possible.
  • the generator having three phases has been described, but the present invention can also be applied to other multiphase generators such as five phases.
  • the present invention is not limited to this. It is only necessary that the angle ⁇ 2 of the tip 17 of the same phase substantially coincides with the polar arc angle ⁇ p of the permanent magnet 6. Further, the angle ⁇ 2 of the tip 17 of the same phase may be slightly shifted from the polar arc angle ⁇ p of the permanent magnet 6. Further, it is only necessary that the angle ⁇ 2 of the tip 17 of the same phase substantially matches the polar arc angle ⁇ p of the permanent magnet 6, and the shape of the tip 17 of each salient pole 14 is limited to this embodiment. There is nothing.
  • the present invention is not limited to this. That is, it suffices if the area of each slot is substantially uniform.
  • the polar arc angle ⁇ p of the permanent magnet 6 is 20 °, 22.5 ° ⁇ 2.5 ° ( As long as it is within a range of 12.5% or less of the polar arc angle ⁇ p of the permanent magnet 6, it may not be completely equiangular.
  • the present invention is not limited to this. That is, if each space is substantially uniform, since the amount of the coil 7 in each space becomes substantially equal, the same effect can be obtained.
  • the arrangement angle of the salient pole protrusions is made close to the polar arc angle of the permanent magnet, so that it is possible to suppress a decrease in power generation efficiency due to a loss of power generation balance between phases. Therefore, high output and high efficiency of the generator can be realized.
  • the angles of the magnetic path portions of the adjacent salient poles are set evenly, the coil can be efficiently wound around the magnetic path portion, and a reduction in manufacturing efficiency can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Windings For Motors And Generators (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

この磁石式発電機(1)は、コイルが巻装される磁路部(15)とその先端から突出する突出部(16)とから形成される突極(14)を複数有する固定子と、複数個の永久磁石(6)が突極(14)と対向するように取り付けられた回転子(2)と、を備え、突極(14)は、互いに隣接する磁路部(15)同士の配置角度(θ1)が略均等に設定され、磁路部(15)の先端部位と突出部(16)とから形成される先端部(17)は、同相の先端部(17)同士の配置角度が永久磁石(6)の極弧角に一致するように設定される。

Description

磁石式発電機
 本発明は、永久磁石を用いた磁石式発電機に関し、特に、自動二輪車のエンジン等に接続される3相の磁石式発電機に関する。
 本願は、2013年3月26日に、日本に出願された特願2013-063831号に基づき優先権を主張し、その内容をここに援用する。
 自動二輪車に搭載される発電機には、構造が簡単でありながら高出力を得ることができる磁石式発電機が多く用いられている。磁石式発電機は、コイルを巻装した固定子と、永久磁石を備えた回転子とから構成されている。磁石式発電機は、回転子をエンジン等によって回転駆動させることにより、永久磁石が形成する回転磁界がコイルを横切って、固定子側に起電力が生じる。
 一方、近年の自動二輪車では、装備の高級化(ETCやカーナビゲーションシステム等の搭載)や、環境負荷低減のためのデバイス追加(エンジン制御用マイクロコンピュータ等の搭載)に伴い、車両内の電気的負荷が増大し続けている。このため、自動二輪車用の発電機には、より高出力・高効率化が求められている。
 自動二輪車用の発電機では、その要求を満足するため、磁気回路や構成部品について日々改善が行われている。
 例えば、特許文献1には、より高出力・高効率な磁気回路を採用した発電機が開示されている。特許文献1の磁石式発電機では、次のような問題が生じる可能性があり、その改善が求められていた。
 特許文献1の磁石式発電機は、磁極数2pに対し突極数が2p-2となっているため、突極数が少なくなる。このため、特許文献1の磁石式発電機は、発電量が少なくなる場合がある。
 特許文献1の磁石式発電機は、発電量を確保するために磁極数を増加させると(例えば20極)、高周波数に対応できるFETタイプの電圧レギュレータが必要となる。FETタイプのレギュレータは、サイリスタを用いたものよりも高価であり、システムコストが増大して製品価格の上昇を招く。
 特許文献1の磁石式発電機は、各相の突極数が異なる場合があるため、突極数のアンバランスにより発電効率が低下する可能性がある。特に、安価な電圧レギュレータを使用できる磁極構成(例えば、N=12,16)では、突極数のアンバランスにより、相間の発電バランスが崩れ易くなって、発電効率が悪化する可能性がある。
 そこで、多くの突極を発電機内に配置した発電機が提案されている。特許文献2には、隣接する同相の突極の配置角度を永久磁石の極弧角に一致させる一方で、隣接する異相の突極の配置角度を永久磁石の極弧角よりも狭く設定した発電機が開示されている。
 特許文献2の磁石式発電機は、同じ体格を維持しつつ、発電量を向上させることができる。特許文献2の磁石式発電機は、発電量を確保しつつ、磁極数を16個以下に抑えることも可能となる。このため、安価なサイリスタタイプの電圧レギュレータを使用することにより、システムコストの増大を抑えることができる。特許文献2の磁石式発電機は、各相の突極を均等に配置することができる。これにより、相間の発電バランスの崩れによる発電効率の低下を防止できる。
国際公開第2003/098781号 特開2011-120429号公報
 特許文献2の磁石式発電機は、発電量を向上させることができるものの、製造効率の低下を招く可能性がある。
 特許文献2の磁石式発電機は、隣接する同相の突極同士の間隔に対して、隣接する異相の突極同士の間隔が狭く設定される。隣接する突極同士の間隔が均等でないため、突極にコイルを巻きつける際に、例えば突極毎に巻き付け速度を異ならせる等の措置が必要となる。このため、製造効率を低下させてしまう可能性がある。
 本発明は、発電の高出力・高効率化を図りつつ、製造効率の低下を防止できる磁石式発電機を提供する。
 本発明の第一の態様によれば、磁石式発電機は、コイルが巻装される磁路部と前記磁路部の先端から側方に突出すると突出部とからなる突極を複数有する固定子と、前記固定子の外周又は内周に回転自在に配設され、複数個の永久磁石が前記突極と対向するように周方向に沿って取り付けられた回転子と、を備える。前記突極は、互いに隣接する磁路部同士の角度が略均等に設定され、前記磁路部の先端部位と前記突出部とからなる先端部は、同相の先端部同士の配置角度が前記永久磁石の極弧角に一致するように設定される。
 本発明の第二の態様によれば、前記第一の態様において、同相の突極のみに隣接する突極には、前記周方向の両側に前記突出部が配置され、異相の突極に隣接する突極には、前記周方向のうち、前記異相の突極に隣接する側方にのみ前記突出部が配置される。
 本発明の第三の態様によれば、前記第二の態様において、前記突出部の突出量が略均一に設定される。
 本発明の第四の態様によれば、前記第一の態様において、前記突極には、前記周方向の両側に前記突出部が配置され、異相の突極に隣接する突極においては、前記周方向の一方に配置された前記突出部の突出量が、前記周方向のうち他方に配置された前記突出部の突出量と異なっている。
 本発明の第五の態様によれば、前記第二又は第三の態様において、異相の突極に隣接する突極に対応して配置されるボビンを備え、前記ボビンは、前記同相の突極に対向する側方に、前記コイルの巻き乱れを防止するコイル巻乱防止部を有する。
 本発明の第六の態様によれば、前記第一から第五の態様のいずれかにおいて、前記周方向において隣接配置される複数の突極が同相を形成すると共に、同一電気角に配置される。
 上述の磁石式発電機によれば、突極の突出部の配置角度を永久磁石の極弧角に近づけているので、相間の発電バランスの崩れによる発電効率の低下を抑えることができる。したがって、発電機の高出力・高効率化を実現できる。
 その一方で、隣接する突極の磁路部同士の角度が均等に設定されているので、磁路部に対するコイルの巻き付けを効率よく行うことができ、製造効率の低下を防止できる。
本発明の第一実施形態に係る発電機1の構成を示す断面図である。 発電機1における突極14の形状及び配置を示す図である。 先端部17を示す図である。 本発明の第二実施形態に係る発電機51を示す図である。 本発明の第三実施形態に係る発電機61を示す図である。 ボビン40を示す図である。 従来の発電機91を示す図である。
 以下、本発明の実施例を図面に基づいて詳細に説明する。
 図1は、本発明の第一実施形態に係る発電機1の構成を示す断面図である。
 図2は、発電機1における突極14の形状及び配置を示す図である。
 図3は、先端部17を示す図(図2の一部拡大図)である。
 発電機1は、いわゆるアウタロータ型の磁石式発電機である。発電機1は、例えば自動二輪車のACG(交流発電機)として使用される。発電機1は、大まかに言うと、回転子2と、固定子3とから構成される。
 以下の説明において、Mは、固定子3の突極数を示す。Nは、永久磁石6(回転子2)の磁極数を示す。θpは、永久磁石6の極弧角を示す。θ1は、突極14の磁路部15の配置角度を示す。θ2は、同相における突極14の先端部17の配置角度を示す。Xは、相数(3相の場合はX=3)を示す。θp、θ1、θ2は、全て機械角である。
 回転子2は、エンジンのクランクシャフト4に取り付けられ、界磁子として機能する。
 固定子3は、エンジンのハウジング5に取り付けられ、電機子として機能する。
 回転子2には永久磁石6が取り付けられる。固定子3にはコイル7が取り付けられる。
回転子2がコイル7の外側で回転すると、永久磁石6が形成する回転磁界がコイル7を横切るので、コイル7に起電力が生じて発電が行われる。
 回転子2は、固定子3の外側に回転自在に配置される。回転子2は、鉄等の磁性材料にて形成されたロータヨーク11とボスロータ12とを備える。
 ロータヨーク11は、底部11aと円筒部11bを備えた有底円筒形状の部材である。
円筒部11bの内周面には、永久磁石6が周方向に沿って複数個配設される。
 永久磁石6は、内面側の極性が交互にN極とS極になるように、極弧角θpが22.5°で、16個等分に配置されている。永久磁石6の磁極数N(=2p:pは整数)は16(p=8)である。
 ボスロータ12は、円盤状のフランジ部12aと略円筒形状のボス部12bとから構成される。
 フランジ部12aは、ロータヨーク11の底部11a中央において、ロータヨーク11と同心となるように取り付けられる。
 フランジ部12aの中央には、ボス部12bが突設される。ボス部12bは、フランジ部12aの中心線に沿って延びて、クランクシャフト4の端部にテーパ結合される。クランクシャフト4が回転すると、ボスロータ12もクランクシャフト4と共に回転し、回転子2がコイル7の外側にて回転する。
 固定子3は、複数枚の鋼板を重ねて形成したステータコア13を備える。ステータコア13には、複数個の突極14が形成される。
 突極14は、コイル7が巻装される柱形の磁路部15と、磁路部15の先端から周方向に突出する突出部16とから構成される。突極14のうち、永久磁石6に対向する部位を先端部17と呼ぶ。先端部17は、磁路部15の先端部位15tと突出部16とから構成される。
 突極14の磁路部15の外周には、コイル7が巻装される。
 発電機1は、三相の交流を発電する発電機である。突極14は、U,V,W相の各相それぞれ6本ずつ設けられる。固定子3の突極数Mは、18個である。発電機1は、16極18ポール構成である。
 次に、発電機1の突極14の配置を、従来の発電機91の突極94の配置と比較して説明する。
 図7は、従来の発電機91を示す図である。発電機91は、特許文献2に記載の発電機である。発電機91において、発電機1と同一の部材には、同一の符号を付す。
 以下の説明では、U相を形成する6本の突極14をU1~U6と呼ぶ場合がある。V相を形成する6本の突極14をV1~V6と呼ぶ場合がある。W相を形成する6本の突極14をW1~W6と呼ぶ場合がある。
 図2に示すように、発電機1では、18本の突極14の磁路部15が等角度に設けられる。発電機1では、隣接する突極14の磁路部15同士の角度θ1が、θ1=360°/Mに設定される。例えば、U1となる突極14の磁路部15とW6となる突極14の磁路部15との角度θ1は、20.0°に設定される。角度θ1は、極弧角θpとは無関係に設定される。
 図2に示すように、発電機1は、突極14の突出部16が、磁路部15に対して周方向の両側に配置される突極14aと、磁路部15に対して周方向の片側に配置される突極14bとを有する。
 発電機1では、同相の突極14のみに隣接する突極14a(例えばU2、V2、W2等)には、周方向の両側に突出部16が配置される。例えばU2となる突極14aは、同相であるU1,U3となる突極14のみに隣接する。このU2となる突極14a(磁路部15)には、周方向の両側に突出部16が配置される。突出部16の突出量(周方向の長さ)は任意に設定できるが、一対の突出部16の突出量は同一である。
 また、発電機1では、異相の突極14に隣接する突極14b(例えばU1、V1、W1等)には、周方向のうち、異相の突極14に隣接する側方(片側)にのみ突出部16が配置される。例えばU1となる突極14bは、異相であるW6となる突極14に隣接する。
このU1となる突極14b(磁路部15)には、周方向のうち、異相であるW6となる突極14に隣接する側方にのみ突出部16が配置される。この一つの突出部16の突出量(周方向の長さ)は、U2となる突極14a(磁路部15)に配置された一対の突出部16のそれぞれの突出量と同一である。
 発電機1の突極14を、上述した形状及び配置としたのは、従来の発電機91における長所を維持(保持)しつつ、従来の発電機91における短所を緩和するためである。
 図7に示すように、発電機91では、同相の突極94同士が隣接しているところでは、磁路部95同士の角度が22.5°に設定される。突極94の突出部96は、周方向の両側に配置される。
 このため、発電機91では、同相を形成する3本の突極94(先端部97)は、同時に、永久磁石6の磁極の中心線に位置するように対向する。例えば、U1となる突極94の先端部97が永久磁石6のN極に、U2となる突極94の先端部97が永久磁石6のS極に、U3となる突極94の先端部97が永久磁石6のN極に対して、同時に各磁極の中心線上において対向する。このため、発電機91は、高い発電効率を実現できる長所がある。
 その一方で、異相の突極94同士が隣接するところでは、磁路部95同士の角度が15.0°に設定される。突極94の突出部96は、周方向の両側に配置される。
 このため、異相の突極94同士が隣接するところでは、磁路部95同士の間のスペースが小さくなる。したがって、同相の突極94同士が隣接するところに比べて、磁路部95へのコイル7の巻き付けがしづらくなる。
 発電機91では、コイル7が巻き付けがしやすい磁路部95と巻き付けがしづらい磁路部95が混在するので、コイル7の巻き付け作業の効率が低下してしまう可能性がある。
 これに対して、発電機1は、隣接する突極14の磁路部15同士の角度θ1が全て20.0°に設定される。このため、発電機1は、発電機91のように、固定子3において磁路部15同士の間のスペースが大きいところと、磁路部15同士の間のスペースが小さいところが混在しない。発電機1は、磁路部15同士の間のスペースが均一である。
 このため、磁路部15に対するコイル7の巻き付けを効率よく行うことができ、製造効率の低下を防止できる。また、磁路部15に巻装されるコイル7の巻き数を増加させることができるので、発電機1の高出力・高効率化を実現できる。
 また、発電機1では、同相の突極14のみに隣接する突極14aには、周方向の両側に突出部16が配置される。また、異相の突極14に隣接する突極14bには、周方向のうち、異相の突極14に隣接する側方にのみ突出部16が配置される。
 このため、発電機1では、隣接する突極14の先端部17同士の角度θ2が22.5°に設定される。
 先端部17同士の角度θ2は、それぞれの先端部17における周方向の中心位置の間の角度である。
 したがって、発電機1は、U1となる突極14の先端部17が永久磁石6のN極に、U2となる突極14の先端部17が永久磁石6のS極に、U3となる突極14の先端部17が永久磁石6のN極に対して、同時に各磁極の中心線上において対向する。このため、発電機1は、発電機91と同様に、高い発電効率を実現できる。
 図2に示すように、発電機1では、3つの突極14が周方向に隣接配置されて、極対21を形成する。例えば、U1となる突極14、U2となる突極14,U3となる突極14は、周方向において隣接して配置される。これら3つの突極14により、U相の極対21Uaを形成する。
 また、同相における3つの突極14は、同一の電気角に配置される。それぞれの極対21においては、3つの突極14は、異極性の永久磁石6と同一電気角を有して対向する。
 極対21における3つの突極14の先端部17は、隣接するもの同士が異なる極性の磁極に対向するように、永久磁石6の極弧角θpとほぼ同じ角度θ2に設定される。
 極対21における3つの突極14では、隣接する突極14に巻かれたコイル7の巻方向が互いに逆方向に設定される。例えば、U1となる突極14に巻かれたコイル7と、U2となる突極14に巻かれたコイル7とは、巻方向が互いに逆方向である。
 同様に、V相を形成するV1,V2,V3の突極14は、隣接配置されて、極対21Vaを形成する。W相を形成するW1,W2,W3の突極14は、隣接配置されて、極対21Waを形成する。
 極対21Va,21Waでは、V1~V3、W1~W3が異極性の永久磁石6と同一電気角にて対向する。V1~V3、W1~W3の突極14の先端部17同士の角度θ2は22.5°に設定される。
 同相において隣接する突極14同士(V1とV2、V2とV3、W1とW2、W2とW3)には、逆方向に通電されるコイル7が配置される。
 各相の極対21は一対設けられる。2つの極対21は、回転子2の回転中心Oを挟んで対向するように配置される。極対21Uaに対しては、回転中心Oを挟んで対向する位置に、極対21Ubが設けられる。同様に、極対21Va,21Waに対しては、極対21Vb,21Wbが設けられる。
 極対21Ub,21Vb,21Wbにも、3本の突極14(U相:U4,U5,U6、V相:V4,V5,V6、W相:W4,W5,W6)が配置される。
 発電機1では、各相の突極14が6個ずつ均等に配置される。このため、サイリスタタイプの電圧レギュレータが使用可能な磁極構成(磁極数N=16)においても、相間の発電バランスが崩れることがなく、発電効率の低下を招くこともない。
 このように、本発明の第一実施形態に係る発電機1は、同相における突極14の先端部17同士の角度θ2を永久磁石の極弧角θpに近づけているので、相間の発電バランスの崩れによる発電効率の低下を抑えることができる。したがって、発電機1の高出力・高効率化を実現できる。
 その一方で、隣接する突極14の磁路部15同士の角度θ1が均等に設定されているので、磁路部15に対するコイル7の巻き付けを効率よく行うことができ、製造効率の低下を防止できる。また、磁路部15に巻装されるコイル7の巻き数を増加させることができるので、発電機1の高出力・高効率化を実現できる。
 図4は、本発明の第二実施形態に係る発電機51の構成を示す断面図である。
 発電機51において、第一実施形態に係る発電機1と同一の部材には、同一の符号を付して、その説明を省略する。
 図4に示すように、発電機51では、突極14の突出部16が、磁路部15に対して周方向の両側に配置される。突極14は、一対の突出部16の突出量が同一の突極14aと、一対の突出部16の突出量が異なる突極14bとから構成される。
 発電機51では、同相の突極14のみに隣接する突極14a(例えばU2、V2、W2等)には、周方向の両側に突出部16が配置される。例えばU2となる突極14aは、同相であるU1,U3となる突極14のみに隣接する。このU2となる突極14a(磁路部15)には、周方向の両側に突出部16が配置される。突出部16の突出量(周方向の長さ)は、任意に設定できるが、一対の突出部16の突出量は同一である。例えば、第一実施形態に係る発電機1における突出部16の突出量よりも、αmm長く設定される。
 また、発電機51では、異相の突極14に隣接する突極14b(例えばU1、V1、W1等)には、周方向の両側に突出部16が配置される。但し、周方向のうち、異相の突極14に隣接する側方(片側)に配置された突出部16(16a)は長く、同相の突極14に隣接する側方(片側)に配置された突出部16(16b)は短い。
 例えばU1となる突極14bは、異相であるW6となる突極14に隣接する。このU1となる突極14b(磁路部15)には、周方向のうち、異相であるW6となる突極14に隣接する側方に、長い突出部16が配置される。この突出部16の突出量(周方向の長さ)は、U2となる突極14a(磁路部15)に配置された一対の突出部16のそれぞれの突出量と同一である。
 U1となる突極14b(磁路部15)には、周方向のうち、同相であるU2となる突極14に隣接する側方に、短い突出部16(16b)が配置される。この突出部16bの突出量(周方向の長さ)は、U2となる突極14a(磁路部15)に配置された一対の突出部16のそれぞれの突出量とは異なる。突出部16(16b)の突出量は、例えばαmmに設定される。
 このように、発電機51では、異相の突極14に隣接する突極14bにおける一対の突出部16のうち、異相の突極14に隣接する側方(片側)に配置された突出部16(16a)は長く、同相の突極14に隣接する側方(片側)に配置された突出部16(16b)は短く設定される。突出部16aの突出量は発電機1の突出部16に比べてαmm長く設定され、それと同量(αmm)だけ突出部16bを突出させた。したがって、突極14bの先端部17の中心位置は、発電機1の場合と同様である。つまり、発電機51においても、隣接する突極14の先端部17同士の角度θ2が22.5°に設定される。
 このため、本発明の第二実施形態に係る発電機51では、第一実施形態に係る発電機1と同一の効果が得られる。すなわち、同相における突極14の先端部17同士の角度θ2を永久磁石の極弧角θpに近づけているので、相間の発電バランスの崩れによる発電効率の低下を抑えることができる。したがって、発電機1の高出力・高効率化を実現できる。
 その一方で、隣接する突極14の磁路部15同士の角度θ1が均等に設定されているので、磁路部15に対するコイル7の巻き付けを効率よく行うことができ、製造効率の低下を防止できる。また、磁路部15に巻装されるコイル7の巻き数を増加させることができるので、発電機1の高出力・高効率化を実現できる。
 本発明は前記実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 例えば、前述の実施例では、16極18ポール構成の発電機を示したが、図5に示すように、16極12ポール構成の発電機61も可能である。
 前述の実施の形態では本発明に係る発電機を発電機として使用した場合を示したが、これをモータとして使用することも可能である。
 例えば、突極14に対応したボビン40を設けてもよい(図6参照)。一つの突極14に対して、対称形状の2つのボビン40が装着される。ボビン40は、磁路部15の外周面を覆う巻胴保護部40aと、先端部17(突出部16)を覆う歯保護部40bと、により形成される。巻胴保護部40aは、断面略U字状に形成される。歯保護部40bは、巻胴保護部40aの先端縁部において、巻胴保護部40aに直交するようにフランジ状に張り出し形成される。
 図6に示すように、異相の突極14に隣接する突極14bに対して配置されるボビン40には、突出部16が存在しない側方(同相の突極14に対向する側方)に、コイル巻乱防止部41が形成される。コイル巻乱防止部41は、巻胴保護部40aに直交するようにフランジ状に張り出し形成される。コイル巻乱防止部41は、歯保護部40bと一体的に形成される。コイル巻乱防止部41は、歯保護部40bよりも、突出量が小さく形成される。
 ボビン40にコイル巻乱防止部41を設けることにより、突出部16が存在しない側方におけるコイル7の巻き乱れを防止できる。
 なお、コイル巻乱防止部41は、巻胴保護部40aに対してフランジ状に張り出し形成されたものに限らない。巻胴保護部40aの表面にコイル7の銅線に対応した複数の溝を形成してもよい。
 前述の発電機は、自動二輪車のACGスタータのように、発電機とモータを兼用したものにも適用可能である。前述の実施の形態では本発明に係る発電機を自動二輪車用発電機に適用した例を示したが、他の用途の発電機やモータに適用することも可能である。
 前述の実施の形態では、アウタロータ型の発電機に本発明を適用した例を示したが、回転子が固定子の内側に配設されるいわゆるインナーロータ型の発電機に本発明を適用することも可能である。
 前述の実施の形態では、相数が3相の発電機について説明したが、5相等の他の多相発電機にも本発明は適用可能である。
 本実施形態においては、同一相の先端部17の角度θ2が、永久磁石6の極弧角θpと一致している場合について示したが、これに限らない。同一相の先端部17の角度θ2が、永久磁石6の極弧角θpと略一致していれば良い。また、同一相の先端部17の角度θ2が、永久磁石6の極弧角θpと僅かにずれていてもよい。また、同一相の先端部17の角度θ2が、永久磁石6の極弧角θpと略一致していれば良いのであって、各突極14の先端部17の形状が本実施形態に限られることはない。
 本実施形態において、突極14の磁路部15が等角度に設けられた場合について示したが、これに限らない。すなわち、各スロットの面積が略均一になるのであれば良いのであって、本実施形態の様に、永久磁石6の極弧角θpが20°の場合、22.5°±2.5°(永久磁石6の極弧角θpの12.5%以内)の範囲内であれば、完全に等角度でなくても良い。
 本実施形態において、磁路部15の間に形成されるスペースが均一である場合について示したが、これに限られない。すなわち、各スペースが略均一であれば、各スペース内のコイル7の量が略等しくなるため、同様の効果を奏することができる。
 上述の磁石式発電機によれば、突極の突出部の配置角度を永久磁石の極弧角に近づけているので、相間の発電バランスの崩れによる発電効率の低下を抑えることができる。したがって、発電機の高出力・高効率化を実現できる。
 その一方で、隣接する突極の磁路部同士の角度が均等に設定されているので、磁路部に対するコイルの巻き付けを効率よく行うことができ、製造効率の低下を防止できる。
 1,51,61  発電機(磁石式発電機)
 2  回転子
 3  固定子
 6  永久磁石
 7  コイル
 14  突極
 15  磁路部
 15t  先端部位
 16  突出部
 17  先端部
 40  ボビン
 41  コイル巻乱防止部
 θp  極弧角
 θ1  磁路部の配置角度
 θ2  先端部の配置角度 

Claims (6)

  1.  コイルが巻装される磁路部と前記磁路部の先端から側方に突出する突出部とから形成される突極を複数有する固定子と、
     前記固定子の外周又は内周に回転自在に配設され、複数個の永久磁石が前記突極と対向するように周方向に沿って取り付けられた回転子と、を備える磁石式発電機であって、
     前記突極は、互いに隣接する磁路部同士の配置角度が略均等に設定され、
     前記磁路部の先端部位と前記突出部とから形成される先端部は、同相の先端部同士の配置角度が前記永久磁石の極弧角に一致するように設定される磁石式発電機。
  2.  同相の突極のみに隣接する突極には、前記周方向の両側に前記突出部が配置され、
     異相の突極に隣接する突極には、前記周方向のうち、前記異相の突極に隣接する側方にのみ前記突出部が配置される請求項1に記載の磁石式発電機。
  3.  前記突出部の突出量が略均一に設定される請求項2に記載の磁石式発電機。
  4.  前記突極には、前記周方向の両側に前記突出部が配置され、
     異相の突極に隣接する突極においては、前記周方向の第一側に配置された前記突出部の突出量が、前記周方向のうち第二側に配置された前記突出部の突出量と異なっている請求項1に記載の磁石式発電機。
  5.  異相の突極に隣接する突極に対応して配置されるボビンを備え、
     前記ボビンは、前記同相の突極に対向する側方に、前記コイルの巻き乱れを防止するコイル巻乱防止部を有する請求項2又は3に記載の磁石式発電機。
  6.  前記周方向において隣接配置される複数の突極が同相を形成すると共に、同一電気角に配置される請求項1から5のうちいずれか一項に記載の磁石式発電機。
PCT/JP2014/057805 2013-03-26 2014-03-20 磁石式発電機 WO2014156971A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112015024019-4A BR112015024019B1 (pt) 2013-03-26 2014-03-20 Gerador de imã
CN201480011721.0A CN105009413B (zh) 2013-03-26 2014-03-20 磁铁式发电机
EP14773779.5A EP2980961B1 (en) 2013-03-26 2014-03-20 Magnet generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-063831 2013-03-26
JP2013063831A JP6154637B2 (ja) 2013-03-26 2013-03-26 磁石式発電機

Publications (1)

Publication Number Publication Date
WO2014156971A1 true WO2014156971A1 (ja) 2014-10-02

Family

ID=51623949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057805 WO2014156971A1 (ja) 2013-03-26 2014-03-20 磁石式発電機

Country Status (5)

Country Link
EP (1) EP2980961B1 (ja)
JP (1) JP6154637B2 (ja)
CN (1) CN105009413B (ja)
BR (1) BR112015024019B1 (ja)
WO (1) WO2014156971A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110289707A (zh) * 2019-07-18 2019-09-27 浙江大学 一种ltl型双凸极混合励磁发电机
JP7457516B2 (ja) 2020-02-07 2024-03-28 ミネベアミツミ株式会社 モータ
CN116114155A (zh) * 2020-10-09 2023-05-12 三菱电机株式会社 电动机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003098781A1 (en) 2002-05-16 2003-11-27 Mitsuba Corporation Dynamo electric machine
JP2004215479A (ja) * 2002-03-29 2004-07-29 Matsushita Electric Ind Co Ltd モータ
JP2004304928A (ja) * 2003-03-31 2004-10-28 Mitsuba Corp ブラシレスモータ
JP2007068281A (ja) * 2005-08-30 2007-03-15 Victor Co Of Japan Ltd モータ及びそれを備えたディスク装置
JP2010017057A (ja) * 2008-07-07 2010-01-21 Mitsuba Corp 回転電機
JP2010057208A (ja) * 2008-08-26 2010-03-11 Kokusan Denki Co Ltd 回転電機
JP2011120429A (ja) 2009-12-07 2011-06-16 Mitsuba Corp 磁石式発電機
JP2011182612A (ja) * 2010-03-04 2011-09-15 Minebea Co Ltd 単相モータおよびそれを用いた軸流ファン

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1323650C (en) * 1985-11-12 1993-10-26 Franklin Lee Forbes Electrically commutated motor having an edgewise wound yoke
JP2607396Y2 (ja) * 1993-04-16 2001-07-09 株式会社三協精機製作所 ブラシレスモータ
JP3415406B2 (ja) * 1997-09-05 2003-06-09 トヨタ自動車株式会社 磁石内包型交流電動機およびその設計方法
JP2003189573A (ja) * 2001-12-19 2003-07-04 Asmo Co Ltd 直流モータ
US6984909B2 (en) * 2002-03-29 2006-01-10 Matsushita Electric Industrial Co., Ltd. Motor
DE10324666A1 (de) * 2003-05-30 2004-12-23 Siemens Ag Elektrische Maschine mit einem Ständer und einem Läufer
EP1487089A3 (en) * 2003-06-13 2005-04-27 Matsushita Electronics Corporation Permanent magnet motor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004215479A (ja) * 2002-03-29 2004-07-29 Matsushita Electric Ind Co Ltd モータ
WO2003098781A1 (en) 2002-05-16 2003-11-27 Mitsuba Corporation Dynamo electric machine
JP2004304928A (ja) * 2003-03-31 2004-10-28 Mitsuba Corp ブラシレスモータ
JP2007068281A (ja) * 2005-08-30 2007-03-15 Victor Co Of Japan Ltd モータ及びそれを備えたディスク装置
JP2010017057A (ja) * 2008-07-07 2010-01-21 Mitsuba Corp 回転電機
JP2010057208A (ja) * 2008-08-26 2010-03-11 Kokusan Denki Co Ltd 回転電機
JP2011120429A (ja) 2009-12-07 2011-06-16 Mitsuba Corp 磁石式発電機
JP2011182612A (ja) * 2010-03-04 2011-09-15 Minebea Co Ltd 単相モータおよびそれを用いた軸流ファン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2980961A4

Also Published As

Publication number Publication date
JP2014192933A (ja) 2014-10-06
EP2980961A1 (en) 2016-02-03
CN105009413B (zh) 2017-09-12
CN105009413A (zh) 2015-10-28
BR112015024019B1 (pt) 2022-03-22
BR112015024019A2 (pt) 2017-07-18
EP2980961A4 (en) 2016-12-14
EP2980961B1 (en) 2018-12-26
JP6154637B2 (ja) 2017-06-28

Similar Documents

Publication Publication Date Title
JP6977556B2 (ja) 回転電機
US10873226B2 (en) Rotary electric machine
JP4852242B2 (ja) 交流発電機
JP2010531130A (ja) 12個のステータ歯と10個のロータ極とを有する同期モータ
JP2008306849A (ja) 回転電機
JPWO2003098781A6 (ja) 回転電機
WO2016060232A1 (ja) ダブルステータ型回転機
JP5546224B2 (ja) 磁石式発電機
JP2020080607A (ja) 回転電機
WO2018051938A1 (ja) 回転電機
JP6154637B2 (ja) 磁石式発電機
JP6657940B2 (ja) 回転電機
JP5668181B1 (ja) 磁石式発電機
JP2018061379A (ja) 回転電機
JP2019047630A (ja) 回転電機
JP2018148675A (ja) 回転電機のステータ
JP2017204960A (ja) 回転電機
JP6926893B2 (ja) 回転電機
JP2017063594A (ja) ブラシレスモータ
JP2010081670A (ja) 交流発電機
JP2017077133A (ja) 回転電機
CN113615041A (zh) 旋转电机
JP4116631B2 (ja) 3相交流回転機
WO2021065462A1 (ja) 回転電機
JP2012016127A (ja) モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773779

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014773779

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015024019

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015024019

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150917