WO2014156015A1 - 無鉛圧電磁器組成物、それを用いた圧電素子、装置、及び、無鉛圧電磁器組成物の製造方法 - Google Patents

無鉛圧電磁器組成物、それを用いた圧電素子、装置、及び、無鉛圧電磁器組成物の製造方法 Download PDF

Info

Publication number
WO2014156015A1
WO2014156015A1 PCT/JP2014/001358 JP2014001358W WO2014156015A1 WO 2014156015 A1 WO2014156015 A1 WO 2014156015A1 JP 2014001358 W JP2014001358 W JP 2014001358W WO 2014156015 A1 WO2014156015 A1 WO 2014156015A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric ceramic
ceramic composition
lead
crystal phase
free piezoelectric
Prior art date
Application number
PCT/JP2014/001358
Other languages
English (en)
French (fr)
Inventor
正人 山崎
誉幸 松岡
和昭 北村
久司 小塚
嗣人 山田
利明 倉橋
崇 笠島
沖村 康之
和重 大林
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to SG11201508052QA priority Critical patent/SG11201508052QA/en
Priority to CN201480019347.9A priority patent/CN105102398B/zh
Priority to US14/780,235 priority patent/US9938197B2/en
Priority to EP14775921.1A priority patent/EP2980040B1/en
Priority to KR1020157030232A priority patent/KR101701666B1/ko
Priority to JP2014539939A priority patent/JP5715309B2/ja
Priority to TW103110964A priority patent/TWI555244B/zh
Publication of WO2014156015A1 publication Critical patent/WO2014156015A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/22Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines
    • G01L23/221Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines
    • G01L23/222Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines using piezoelectric devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • H03H9/02031Characteristics of piezoelectric layers, e.g. cutting angles consisting of ceramic

Definitions

  • the present invention relates to a lead-free piezoelectric ceramic composition used for a piezoelectric element or the like, various devices using the composition, and a manufacturing method thereof.
  • piezoelectric ceramics piezoelectric ceramics
  • PZT lead zirconate titanate
  • lead-free piezoelectric ceramics As a material of such a lead-free piezoelectric ceramic (referred to as “lead-free piezoelectric ceramic composition”), for example, a composition formula ANbO 3 (A is an alkali metal) such as potassium sodium niobate ((K, Na) NbO 3 ). The composition represented by these is proposed.
  • the ANbO 3 -based lead-free piezoelectric ceramic composition itself has a problem that it is poor in sinterability and moisture resistance.
  • Patent Document 1 a method for improving the sinterability by adding Cu, Li, Ta or the like to the ANbO 3 -based lead-free piezoelectric ceramic composition and thus improving the piezoelectric characteristics. Is disclosed.
  • Patent Document 3 disclosed by the applicant of the present application discloses a first crystal phase composed of a niobium / alkali tantalate perovskite oxide, an A—Ti—BO complex oxide (element A is an alkali metal, element B). And a second crystal phase composed of at least one of Nb and Ta, and the contents of element A, element B, and Ti are not zero).
  • a lead-free piezoelectric ceramic composition comprising: Is disclosed. This piezoelectric ceramic composition has excellent piezoelectric characteristics and excellent characteristics such that there is no sudden fluctuation in characteristics between ⁇ 50 ° C. and + 150 ° C. However, further improvements have been desired regarding the piezoelectric characteristics.
  • the present invention has been made to solve the above-described problems, and can be realized as the following aspects.
  • a lead-free piezoelectric ceramic composition includes a main phase formed of a first crystal phase composed of niobium / alkali tantalate perovskite oxide having piezoelectric characteristics, an M-Ti-O spinel compound (element M is 1 to 4). And a sub-phase including a second crystal phase made of a valent element).
  • a lead-free piezoelectric ceramic composition since the second crystal phase composed of the spinel compound stabilizes the structure of the first crystal phase, a lead-free piezoelectric ceramic composition having excellent piezoelectric characteristics and insulation is provided. be able to.
  • the element M is at least one metal element selected from Li, Mg, Al, Sc, Cr, Mn, Fe, Co, Ni, Zn, Ga, Y, and Zr. May be included. According to this configuration, a spinel compound having a stable structure can be obtained as the second crystal phase, and as a result, a lead-free piezoelectric ceramic composition having excellent piezoelectric characteristics can be provided.
  • the M-Ti-O-based spinel compound is represented by a composition formula MxTiOy (coefficients x and y are relative values when the Ti content is 1), and the coefficient x may satisfy 0.5 ⁇ x ⁇ 5.0. According to this configuration, a spinel compound having a stable structure can be obtained as the second crystal phase, and as a result, a lead-free piezoelectric ceramic composition having excellent piezoelectric characteristics can be provided.
  • the coefficient y may satisfy 2 ⁇ y ⁇ 8. According to this configuration, a spinel compound having a stable structure can be obtained as the second crystal phase, and as a result, a lead-free piezoelectric ceramic composition having excellent piezoelectric characteristics can be provided.
  • the subphase may be filled with voids formed between the main phases. According to this lead-free piezoelectric ceramic composition, since the subphase stabilizes the structure of the main phase (first crystal phase) by filling the vacancies of the main phase, the lead-free piezoelectric ceramic composition having excellent piezoelectric characteristics Can be provided.
  • the content ratio of the second crystal phase in the lead-free piezoelectric ceramic composition is (i) 0.5 volume% or more and 5.0 volume% or less, (ii) 0. It may be any one of 5 volume% or more and 2.5 volume% or less, and (iii) 1.0 volume% or more and 2.0 volume% or less. According to this configuration, the piezoelectric characteristics and insulation characteristics of the lead-free piezoelectric ceramic composition can be further improved.
  • the M-Ti-O-based spinel compound may include two or more metal elements as the element M. According to this configuration, the characteristics of the lead-free piezoelectric ceramic composition can be further improved.
  • the subphase includes, in addition to the second crystal phase, an A 3 B 5 O 15- based compound (the element A is a monovalent or divalent metal, and the element B is 2 to 5 It is also possible to include a third crystal phase made of a (valent metal). According to this configuration, since the structure of the second crystal phase is stabilized by the third crystal phase, the lead-free piezoelectric ceramic composition can be stabilized.
  • the volume ratio of the second crystal phase may be 50% or more when the total amount of the subphase is 100%. According to this configuration, since the effect of stabilizing the structure of the first crystal phase by the second crystal phase becomes significant, the characteristics of the lead-free piezoelectric ceramic composition can be further improved.
  • the niobium / alkali tantalate perovskite oxide forming the first crystal phase may contain an alkaline earth metal. According to this configuration, a lead-free piezoelectric ceramic composition having excellent piezoelectric characteristics can be obtained.
  • the coefficient e may satisfy 0.88 ⁇ e ⁇ 1.07. According to this configuration, the characteristics of the lead-free piezoelectric ceramic composition can be further improved.
  • the niobium / alkaline tantalate perovskite oxide may be an alkali niobate perovskite oxide. According to this configuration, it is possible to provide a lead-free piezoelectric ceramic composition having a high Curie temperature (Tc) as compared with the case where the niobium / alkaline tantalate perovskite oxide is an alkali tantalate perovskite oxide.
  • Tc Curie temperature
  • a piezoelectric element comprising: a piezoelectric ceramic formed of the lead-free piezoelectric ceramic composition; and an electrode attached to the piezoelectric ceramic.
  • an apparatus including a piezoelectric element is provided.
  • the device may be any one of a knock sensor, an ultrasonic transducer, a cutting tool, an ultrasonic sensor, and an actuator.
  • a method for producing the lead-free piezoelectric ceramic composition is provided.
  • the first crystal phase raw materials are mixed and calcined to produce a first powder
  • the second crystal phase raw materials are mixed and calcined to produce a second powder.
  • the step of producing the lead-free piezoelectric ceramic composition by mixing, molding and firing the first and second powders, and the firing comprises forming the molded body in a sealed container. It is characterized in that it is hermetic firing in which it is enclosed and fired.
  • the piezoelectric layer has excellent piezoelectric characteristics, including the first crystalline phase composed of niobium / alkali tantalate perovskite oxide having piezoelectric characteristics and the second crystalline phase composed of M-Ti-O spinel compound.
  • a lead-free piezoelectric ceramic composition can be prepared.
  • the present invention can be realized in various forms.
  • a lead-free piezoelectric ceramic composition a piezoelectric element using the composition, and various devices including a piezoelectric element (a knock sensor, an ultrasonic vibrator, a cutting tool, Ultrasonic sensors, actuators, etc.) and lead-free piezoelectric ceramic composition manufacturing methods.
  • a piezoelectric element a knock sensor, an ultrasonic vibrator, a cutting tool, Ultrasonic sensors, actuators, etc.
  • lead-free piezoelectric ceramic composition manufacturing methods for example, a lead-free piezoelectric ceramic composition, a piezoelectric element using the composition, and various devices including a piezoelectric element (a knock sensor, an ultrasonic vibrator, a cutting tool, Ultrasonic sensors, actuators, etc.) and lead-free piezoelectric ceramic composition manufacturing methods.
  • the flowchart which shows the manufacturing method of the piezoelectric element in one Embodiment of this invention.
  • the perspective view which shows the knock sensor as one Embodiment of this invention. 1 is a longitudinal sectional view showing an ultrasonic transducer as one embodiment of the present invention.
  • the perspective view which shows the cutting tool as one Embodiment of this invention. 1 is a longitudinal sectional view showing an ultrasonic sensor as one embodiment of the present invention.
  • the figure which shows the experimental result regarding the influence on the piezoelectric characteristic by a subphase ratio is a graph showing the relationship between the subphase ratio and relative dielectric constant ⁇ 33 T / ⁇ 0 of samples S03 to S12. Graph showing the relationship between the sub-phase fraction and the piezoelectric constant d 33 of Samples S03 ⁇ S12. The graph which shows the relationship between the subphase ratio of sample S03-S12, and the electromechanical coupling coefficient kr. The figure which shows the reflected-electron image of sample S01, S06. The figure which shows the experimental result (the 1) regarding the influence on the characteristic of the piezoelectric ceramic composition by the kind of metal element M of a subphase.
  • a piezoelectric ceramic composition according to an embodiment of the present invention includes a main phase formed of a first crystal phase composed of a niobium / alkali tantalate perovskite oxide having piezoelectric characteristics, and an M-Ti-O spinel compound.
  • a lead-free piezoelectric ceramic composition comprising: a subphase including a second crystal phase.
  • the “spinel compound” includes both a normal spinel compound having a normal spinel type crystal structure and a reverse spinel compound having a reverse spinel type crystal structure.
  • the element M of the M—Ti—O-based spinel compound is a monovalent to tetravalent metal element.
  • the ratio of the 2nd crystal phase in a lead-free piezoelectric ceramic composition is 10 volume% or less exceeding 0 volume%, and the remainder is a 1st crystal phase.
  • the first crystal phase is also referred to as “main phase”, and the crystal phase other than the main phase is referred to as “sub-phase”.
  • the second crystal phase is also referred to as “spinel phase” or “spinel phase”.
  • the subphase including the second crystal phase is mixed with the first crystal phase, thereby stabilizing the crystal structure of the first crystal phase and improving the piezoelectric characteristics.
  • the second crystal phase also has a function of preventing a sudden change in characteristics due to the occurrence of a phase transition point between ⁇ 50 ° C. and + 150 ° C.
  • the piezoelectric ceramic composition may contain a crystal phase (such as a third crystal phase) other than the second crystal phase as a subphase.
  • the perovskite oxide forming the first crystal phase preferably contains at least one of alkali niobate perovskite oxide and alkali tantalate perovskite oxide.
  • the term “niobium / alkali tantalate-based perovskite oxide” is a general term for these plural types of perovskite oxides.
  • the alkaline component of the niobium / tantalate alkali-based perovskite oxide includes at least an alkali metal (K (potassium), Na (sodium), Li (lithium), etc.), and an alkaline earth metal (Ca (calcium), Sr (strontium), Ba (barium), etc.).
  • K potassium
  • Na sodium
  • Li lithium
  • Ba barium
  • the element C is one or more of Ca (calcium), Sr (strontium), and Ba (barium), and the element D is Nb (niobium), Ta (tantalum), Ti (titanium), Zr (zirconium), and Hf (hafnium).
  • composition formula (1) when the element C can contain one to two kinds of elements and the elements D and E can contain one to three kinds of elements, respectively, the following composition formula (1a) Can be rewritten.
  • a + b + c + d1 + d2 1
  • e is arbitrary
  • f1 + f2 + f3 + g1 + g2 + g3 1
  • h is an arbitrary value constituting the perovskite.
  • composition formula (1a) is equivalent to the composition formula (1).
  • the value of the coefficient d of the element C is represented by the sum of the coefficients d1 and d2 of the two types of elements C1 and C2.
  • the value of the coefficient f of the element D is represented by the sum of the coefficients f1, f2, and f3 of the three types of elements D1, D2, and D3. The same applies when the element D contains four or more metal elements.
  • K potassium
  • Na sodium
  • Li lithium
  • element C Ca, Sr, Ba
  • element D one or more of Nb, Ta, Ti, Zr, Hf, Sn, Sb, and Si containing at least Nb or Ta
  • element E Mg, Al, Sc, Mn, Fe, Co, Ni
  • Zn, Ga, Y a so-called B site.
  • the coefficients a, b, c, and d of the element at the A site the sum (a + b + c) of the first three coefficients is preferably not 0, but the coefficient d may be zero.
  • the coefficient f of the element D is preferably not 0, but the coefficient g of the element E may be zero. That is, the niobium / tantalate alkaline perovskite oxide of this embodiment contains at least one alkali metal (K, Na, Li) at the A site and contains an alkaline earth metal (Ca, Sr, Ba).
  • the B site contains at least one of Nb, Ta, Ti, Zr, Hf, Sn, Sb, and Si containing Nb or Ta and other metals (Mg, Al, A perovskite oxide that can contain one or more of Sc, Mn, Fe, Co, Ni, Zn, Ga, and Y) is preferable.
  • Nb Nb
  • Ti Ti
  • Zr Zr
  • Hf Sn
  • Sb Si
  • Si containing Nb or Ta and other metals
  • other metals Mg, Al
  • one containing Nb is most preferable.
  • An niobate-based perovskite oxide containing Nb is preferred in that it can provide a lead-free piezoelectric ceramic composition having a higher Curie temperature (Tc) than an alkali tantalate-based perovskite oxide containing no Nb.
  • the electrical characteristics of the lead-free piezoelectric ceramic composition among the combinations of values that form the perovskite structure or A preferable value can be selected from the viewpoint of piezoelectric characteristics (particularly, the piezoelectric constant d 33 ).
  • the coefficients a and b of K and Na are typically 0 ⁇ a ⁇ 0.6 and 0 ⁇ b ⁇ 0.6.
  • the coefficient c of Li may be zero, but 0 ⁇ c ⁇ 0.2 is preferable, and 0 ⁇ c ⁇ 0.1 is more preferable.
  • the coefficient d of the element C (one or more of Ca, Sr, Ba) may be zero, but 0 ⁇ d ⁇ 0.2 is preferable, and 0 ⁇ d ⁇ 0.1 is more preferable.
  • the coefficient e for the entire A site is arbitrary, but preferably 0.80 ⁇ e ⁇ 1.10, more preferably 0.84 ⁇ e ⁇ 1.08, and most preferably 0.88 ⁇ e ⁇ 1.07. .
  • the coefficient h of oxygen can take any value such that the first crystal phase constitutes a perovskite oxide.
  • a typical value for the coefficient h is about 3, preferably 3.0 ⁇ h ⁇ 3.1.
  • the value of the coefficient h can be calculated from the electrical neutral condition of the composition of the first crystal phase. However, as the composition of the first crystal phase, a composition slightly deviating from the electrical neutral condition is acceptable.
  • a typical composition of the first crystal phase is (K, Na, Li, Ca, Ba) e (Nb, Ti, Zr) O h, which contains K, Na, and Nb as main metal components. is there. Since this first crystal phase has K, Na, and Nb as main metal components, the material composed of the first crystal phase is also called “KNN” or “KNN material”, and the first crystal phase is called “KNN”. Also called “phase”. If the first crystal phase is formed of the KNN phase, it has excellent piezoelectric properties, electrical properties, insulation properties, and high-temperature durability, and is free from sudden changes in properties between -50 ° C and + 150 ° C. A piezoelectric ceramic composition can be provided.
  • the element M is a monovalent to tetravalent metal element, and Li (lithium), Mg (magnesium), Al (aluminum), Sc (scandium), Cr (chromium), Mn (manganese), Fe (iron) ), Co (cobalt), Ni (nickel), Zn (zinc), Ga (gallium), Y (yttrium), Zr (zirconium), Sn (tin), Sb (antimony), Si (silicon), Hf (hafnium) ).
  • the coefficients x and y are relative values when the Ti content is 1.
  • the coefficient x preferably satisfies 0.5 ⁇ x ⁇ 5.0.
  • the coefficient y is an arbitrary value that forms a spinel compound, but typically satisfies 2 ⁇ y ⁇ 8. Since the second crystal phase composed of the spinel compound stabilizes the structure of the first crystal phase, a piezoelectric ceramic composition having excellent piezoelectric characteristics can be obtained. From the viewpoint of piezoelectric characteristics, it is preferable to employ a second crystal phase represented by a composition formula M 2 TiO 4 containing two divalent metal elements M or (M1, M2) TiO 4 .
  • the piezoelectric ceramic composition those containing two or more kinds of metal elements as the element M are particularly preferable.
  • a spinel compound containing two or more metal elements as the element M is also referred to as a “composite spinel compound”. By including the composite spinel compound in the second crystal phase, it becomes possible to improve the characteristics of the lead-free piezoelectric ceramic composition.
  • the following various spinel compounds can be used.
  • composition formulas of the various spinel compounds described above are not strict, and the composition formulas obtained by actual analysis may be slightly different.
  • Mg 1.1 Fe 1.55 TiO y is obtained as a composition formula by analysis of MgFeTiO 4 .
  • the composition formula obtained by the analysis also satisfies the composition formula (M x TiO y ) represented by the formula (2), and the composition formula showing a titanate compound having a spinel structure. It is common in that it is.
  • the spinel compound forming the second crystal phase may be a normal spinel compound or a reverse spinel compound. Whether or not the second crystal phase is a spinel compound can be determined by performing Rietveld ⁇ ⁇ ⁇ Analysis using the powder X-ray diffraction (XRD) diffraction results. Analysis of the amount of metal elements other than Li in the spinel compound can be performed using an electron beam microanalyzer (EPMA) or an energy dispersive X-ray analysis method (TEM-EDS). The Li amount can be analyzed using a time-of-flight secondary ion mass spectrometer (TOF-SIMS).
  • EMA electron beam microanalyzer
  • TEM-EDS energy dispersive X-ray analysis method
  • TOF-SIMS time-of-flight secondary ion mass spectrometer
  • the above-mentioned second crystal phase does not have piezoelectric properties, but when mixed with the first crystal phase, the sinterability of the piezoelectric ceramic composition is improved, its structural stability is improved, and the piezoelectric properties are improved. Improve. Specifically, the second crystal phase fills vacancies formed between the fine crystals of the first crystal phase. As a result, since the fine crystals of the first crystal phase are bonded together by the second crystal phase, it is presumed that the structural stability of the piezoelectric ceramic composition is improved and the piezoelectric characteristics are improved. In addition, it is presumed that the second crystal phase contributes to the function of preventing a phase transition point from being generated between ⁇ 50 ° C. and + 150 ° C.
  • the second crystal phase does not form a spinel compound, but forms a layered structure compound.
  • the second crystal phase is a spinel compound, it is possible to provide a piezoelectric ceramic composition superior to Patent Document 3 regarding the structural stability and piezoelectric characteristics of the piezoelectric ceramic composition.
  • the content ratio of the second crystal phase is preferably (i) 0.5% by volume or more and 5.0% by volume or less, and (ii) 0.5% by volume or more and 2%. More preferably, it is 0.5 volume% or less, (iii) 1.0 volume% or more and 2.0 volume% or less is the most preferable.
  • a piezoelectric ceramic composition not containing the second crystal phase (a composition having only the first crystal phase) tends to have a sudden characteristic change between ⁇ 50 ° C. and + 150 ° C.
  • the piezoelectric ceramic composition content of the second crystal phase exceeds piezoelectric ceramic composition and 5% by volume of less than 0.5% by volume is slightly piezoelectric characteristics (particularly piezoelectric constant d 33 and electromechanical coupling factor kr) There is a tendency to be inferior.
  • the subphase of the piezoelectric ceramic composition may include a crystal phase (such as a third crystal phase) other than the second crystal phase.
  • a crystal phase such as a third crystal phase
  • the third crystal phase for example, it is preferable to use a crystal phase of an A 3 B 5 O 15- based compound (the element A is a 1 to 2 valent metal and the element B is a 2 to 5 valent metal).
  • the element A (1 to 2 valent metal) is at least one of Ba, Ca, Sr, Na, K, and Li, and the element B (2 to 5 valent metal)
  • a compound in which at least one of Nb, Mn, Fe, Ni, Co, Zn, and Zr is used can be used.
  • the volume ratio of the second crystal phase is preferably 50% or more when the total amount of the subphase is 100%, and 70% More preferably, it is more preferably 80% or more. This is because if the proportion of the second crystal phase is excessively reduced, the effect that the second crystal phase stabilizes the structure of the first crystal phase becomes insufficient. Even when the subphase includes a crystal phase other than the second crystal phase (such as a third crystal phase), the subphase fills vacancies formed between fine crystals of the first crystal phase.
  • FIG. 1 is a flowchart showing a method for manufacturing a piezoelectric element according to an embodiment of the present invention.
  • Step T110 as a raw material of the first crystal phase (main phase), K 2 CO 3 powder, Na 2 CO 3 powder, Li 2 CO 3 powder, CaCO 3 powder, SrCO 3 powder, BaCO 3 powder, Nb 2 O 5 Powder, Ta 2 O 5 powder, TiO 2 powder, ZrO 2 powder, MgO powder, Al 2 O 3 powder, Sc 2 O 3 powder, MnO 2 powder, Fe 2 O 3 powder, CoO powder, NiO powder, ZnO powder, Necessary materials are selected from raw materials such as Ga 2 O 3 powder and Y 2 O 3 powder, and weighed according to the values of coefficients a, b, c, d, e, f and g in the composition formula of the main phase.
  • step T120 the mixed powder obtained by drying the slurry is calcined, for example, at 600 ° C. to 1100 ° C. for 1 to 10 hours in an air atmosphere to generate a main phase calcined powder.
  • step T130 as a raw material for the second crystal phase (subphase), in addition to TiO 2 powder, Li 2 CO 3 powder, MgO powder, Al 2 O 3 powder, Sc 2 O 3 powder, Cr 2 O 3 powder, MnO 2 powder, Fe 2 O 3 powder, CoO powder, NiO powder, ZnO powder, Ga 2 O 3 powder, Y 2 O 3 powder, ZrO 2 powder, etc. Weigh according to the value of the coefficient x. In the case of producing a piezoelectric ceramic composition in which the subphase includes a third crystal phase (for example, an A 3 B 5 O 15- based compound), it becomes a raw material for the third crystal phase in this step T130 or step T145 described later. You may mix a metal oxide powder suitably.
  • a third crystal phase for example, an A 3 B 5 O 15- based compound
  • step T140 the mixed powder obtained by drying the slurry is calcined, for example, in the air at 600 ° C. to 1100 ° C. for 1 to 10 hours to generate a subphase calcined powder.
  • This subphase calcined powder is a powder of a spinel compound or a precursor of a spinel compound.
  • the precursor of the spinel compound is a substance that does not become a spinel compound after the calcination in step T140, but becomes a spinel compound by firing in step T160 described later.
  • step T145 the main phase calcined powder and the subphase calcined powder are weighed, and a ball mill is used to add a dispersant, a binder and ethanol, and pulverize and mix to obtain a slurry. Further, the mixed powder obtained by drying this slurry is calcined at 600 ° C. to 1100 ° C. for 1 to 10 hours, for example, in an air atmosphere to produce a calcined powder. As will be described later, in the present embodiment, a preferred ratio of the second crystal phase in the piezoelectric ceramic composition is defined by volume%.
  • the mixing ratio of the main phase calcined powder and the subphase calcined powder in Step T145 is performed using the weight of the main phase calcined powder and the subphase calcined powder.
  • the relationship between the subphase ratio (weight%) at the time of mixing in process T145 and the subphase ratio (volume%) in the piezoelectric ceramic composition finally obtained may be empirically determined beforehand. Is possible.
  • step T150 the calcined powder obtained in step T145 is again added with a dispersant, a binder and ethanol, and pulverized and mixed to form a slurry.
  • the slurry is dried by a spray dryer and granulated, for example, at a pressure of 20 MPa.
  • a uniaxial press is performed to form a desired shape.
  • Typical shapes of piezoelectric ceramics suitable for various devices as embodiments of the present invention include a disk shape, a columnar shape, a rectangular flat plate shape, and the like.
  • a CIP process cold isostatic pressing process
  • Step T155 a degreasing step of degreasing the binder is performed by holding the obtained molded body, for example, in an air atmosphere at 500 ° C. to 800 ° C. for 2 to 10 hours.
  • step T160 the molded body obtained after the degreasing step is fired by holding it at a specific temperature (for example, 1150 ° C.) selected from 1000 ° C. to 1300 ° C. for 2 to 50 hours in an air atmosphere, for example. Get a piezoelectric ceramic.
  • the firing in step T160 is preferably sealed firing performed in a state where the molded body is sealed in a sealed container.
  • step T170 the piezoelectric ceramic is processed according to the dimensional accuracy required for the piezoelectric element.
  • step T180 an electrode is attached to the piezoelectric ceramic thus obtained, and polarization is performed in step T190.
  • the above-described manufacturing method is an example, and various other processes and processing conditions for manufacturing a piezoelectric element can be used.
  • the raw materials are mixed and fired in a quantitative ratio according to the composition of the final piezoelectric ceramic composition. By doing so, you may make it manufacture a piezoelectric ceramic composition.
  • the composition of the main phase and the subphase can be more strictly managed, so that the yield of the piezoelectric ceramic composition can be increased.
  • FIG. 2 is a perspective view showing a piezoelectric element as one embodiment of the present invention.
  • the piezoelectric element 200 has a configuration in which electrodes 301 and 302 are attached to the upper and lower surfaces of a disk-shaped piezoelectric ceramic 100.
  • piezoelectric elements of various shapes and configurations other than this can be formed.
  • FIG. 3 is an exploded perspective view showing an example of a knock sensor using a piezoelectric ceramic as one embodiment of the present invention.
  • the knock sensor 1 is a so-called non-resonant knock sensor, and includes a metal shell 2, an insulating sleeve 3, insulating plates 4 and 5, a piezoelectric element 6, a characteristic adjusting weight 7, a washer 8, and a nut 9. And a housing 10.
  • the metal shell 2 is composed of a cylindrical tube 2b through which a through hole 2a is provided, and a donut-shaped disk-shaped seat surface portion 2c protruding in a flange shape from the periphery of the lower end of the tube 2b. ing.
  • a thread 2d is engraved on the upper portion of the cylindrical body 2b, and a groove 2e for enhancing adhesion to the housing 10 surrounds the outer periphery of the upper end portion of the cylindrical body 2b and the peripheral portion of the seat surface portion 2c. It is carved in.
  • the portions 2a to 2d of the metal shell 2 are integrally formed using an appropriate manufacturing method (casting, forging, machining, etc.). Further, the surface of the metal shell 2 is subjected to a plating process (such as zinc chromate plating) in order to improve the corrosion resistance.
  • the insulating sleeve 3 has a thin cylindrical shape and is formed of an insulating material (various plastic materials such as PET and PBT, rubber materials, etc.).
  • Each of the insulating plates 4 and 5 has a thin donut-like disk shape and is formed of an insulating material (various plastic materials such as PET and PBT, rubber materials, etc.).
  • the piezoelectric element 6 as the vibration detecting means has a piezoelectric ceramic 6c laminated between two thin plate electrodes 6a and 6b, and has a donut-like disk shape as a whole.
  • the characteristic adjusting weight 7 has a donut-like disk shape, and is formed of a material having a predetermined density (various metal materials such as brass).
  • An insulating sleeve 3 is fitted to the cylinder 2b of the metal shell 2, and an insulating plate 4, a piezoelectric element 6, an insulating plate 5, and a characteristic adjusting weight 7 are fitted to the insulating sleeve 3 in this order. Further, a nut 9 is screwed into a thread 2 d of the cylindrical body 2 b of the metal shell 2 via a washer 8.
  • the insulating plate 4, the piezoelectric element 6, the insulating plate 5, the characteristic adjusting weight 7, and the washer 8 are sandwiched and fixed between the upper surface of the seating surface portion 2c of the metal shell 2 and the nut 9, respectively.
  • a housing 10 is formed of an insulating material (various plastic materials such as PA) injection-molded so as to cover 8. Therefore, only the lower surface of the seating surface portion 2 c of the metal shell 2 is exposed from the lower end portion of the housing 10, and only the upper end of the cylindrical body 2 b of the metal shell 2 is exposed from the upper end portion of the housing 10.
  • the periphery of the piezoelectric element 6 is surrounded by the insulating sleeve 3, the respective insulating plates 4, 5 and the housing 10, and the metal shell 2, the characteristic adjusting weight 7 and the piezoelectric element 6 are insulated.
  • a lead terminal (not shown) is connected to each electrode 6a, 6b of the piezoelectric element 6, and the lead terminal is led out from the housing 10.
  • the knock sensor 1 is configured using the piezoelectric element 6 which has excellent piezoelectric characteristics and does not have a sudden characteristic change between ⁇ 50 ° C. and + 150 ° C., so that the knocking detection accuracy is high, and A knock sensor with excellent thermal durability can be realized.
  • FIG. 4 is a longitudinal sectional view showing an ultrasonic transducer as one embodiment of the present invention.
  • the ultrasonic transducer 20 is a Langevin type ultrasonic transducer, and includes a piezoelectric element pair 22, and a pair of upper and lower front plates 25 and a backing plate 26 that sandwich the piezoelectric element pair 22.
  • the piezoelectric element pair 22 includes two piezoelectric elements 23a and 23b formed in an annular shape, with an electrode plate 24a interposed therebetween, and an electrode plate 24b disposed above the upper annular piezoelectric element 23b. Configured.
  • the front plate 25 and the backing plate 26 are made of cylindrical metal blocks formed using iron or aluminum as a material.
  • the piezoelectric element pair 22 is disposed between the front plate 25 and the backing plate 26, and these are integrally coupled by a central bolt 27.
  • the front plate 25 and the backing plate 26 are both formed larger in diameter than the diameters of the piezoelectric elements 23 a and 23 b, and the contact ends with the piezoelectric elements 23 a and 23 b are reduced in diameter via the conical portions 28 and 29.
  • the diameter of each of the piezoelectric elements 23a and 23b is substantially equal.
  • the diameter R2 of the backing plate 26 and the diameter R1 of the front plate 25 are provided with substantially the same dimensions, and the outer end surface of the front plate 25 is an ultrasonic radiation surface 30. Further, a blind end hole 31 having a diameter R3 along the axial direction is formed at the center of the outer end surface of the backing plate 26.
  • the total length of the ultrasonic transducer 20 having such a configuration is set so as to substantially match the resonance length of 3/2 wavelength of a predetermined resonance frequency.
  • this ultrasonic transducer is composed of the piezoelectric elements 23a and 23b which have excellent piezoelectric characteristics and do not have a sudden change in characteristics between ⁇ 50 ° C. and + 150 ° C., ultrasonic waves can be generated at a stable frequency. It is possible to realize an ultrasonic vibrator that is capable of generating the heat and has excellent thermal durability.
  • FIG. 5 is a perspective view showing a cutting tool as one embodiment of the present invention.
  • This cutting tool 40 is configured by forming a grindstone portion 45 on the outer peripheral portion of a base 46 formed in a circular shape.
  • a central portion of the base material 46 is fixed to the spindle 42 by an attachment jig 44.
  • An annular piezoelectric element 43 is embedded on both surfaces of the base material 46.
  • the vibration direction of the piezoelectric element 43 is a radial direction 47 from the center of the base material 46 toward the outer periphery.
  • the workpiece can be cut by pressing the workpiece 42 against the grindstone portion 45 provided on the outer periphery of the base material 46 while the spindle 42 rotates in the rotation direction 48 while the piezoelectric element 43 vibrates. It is.
  • This cutting tool is composed of the piezoelectric element 43 which has excellent piezoelectric characteristics and does not change suddenly between -50 ° C and + 150 ° C, thus realizing a cutting tool with excellent thermal durability. it can.
  • FIG. 6 is a longitudinal sectional view showing an ultrasonic sensor as one embodiment of the present invention.
  • the ultrasonic sensor 400 includes a piezoelectric case 420 in a metal case body 410.
  • the case body 410 has a bottomed cylindrical configuration, and is opposite to the side where the cylindrical portion 411, the bottom portion 413 that closes one open end of the cylindrical portion 411, and the bottom portion 413 are formed.
  • a flange portion 415 extending in the radial direction of the cylindrical portion 411 formed at the open end of the cylindrical portion 411.
  • the piezoelectric element 420 is configured in a disc shape, and one flat surface thereof is fixed to the inner surface of the bottom 413 of the case body 410.
  • electrodes are formed on both sides of the piezoelectric element 420, one electrode is connected to the case main body 410, and the other electrode is electrically connected to the first terminal 423 via a stranded wire 421.
  • the case body 410 is provided with a base 430 that is a metal plate-like member that closes the opening end of the case body 410 at the opening end on the flange 415 side, and the first terminal 423 is the base 430. Is fixed to the base 430 in an electrically insulated state through a glass material 433 as an insulating material. A second terminal 425 is fixed to the base 430.
  • An insulating label 435 that covers the inner surface of the base 430 surrounded by the case body 410 is provided on the inner surface of the base 430 that faces the bottom 413 of the case body 410. Further, a resin cover 437 is wound around the side surface of the case body 410 so as to cover the side surface of the cylindrical portion 411 of the case body 410 on the outer surface of the case body 410. In addition, an acoustic matching member 440 is fixed to the outer surface of the bottom portion 413 of the case body 410 opposite to the inner surface on which the piezoelectric element 420 is provided.
  • the ultrasonic sensor 400 is an ultrasonic transmitter / receiver having both a function as a sensor for detecting an ultrasonic wave and a function as an ultrasonic generator for generating an ultrasonic wave.
  • This ultrasonic sensor is composed of the piezoelectric element 420 which has excellent piezoelectric characteristics and does not change suddenly between ⁇ 50 ° C. and + 150 ° C., so that it can detect ultrasonic waves with high sensitivity.
  • An ultrasonic sensor excellent in heat durability can be realized.
  • FIG. 7 is a perspective view showing an actuator as one embodiment of the present invention.
  • the actuator 500 is a single plate piezoelectric vibrator including a piezoelectric element 520 and a pair of electrode layers 531 and 532 arranged so as to sandwich the piezoelectric element 520.
  • a voltage is applied between the electrode layers 531 and 532 of the actuator 500, an electric field is generated in the piezoelectric element 520 sandwiched therebetween, and the piezoelectric element 520 is displaced (expanded / contracted).
  • the piezoelectric element 520 is polarized in the vertical direction 540 (thickness direction) in FIG. 7, the direction of the expansion / contraction operation is the horizontal direction 550.
  • the driven member is arranged on the upper surface or the lower surface of the actuator 500, the driven member can be driven in accordance with the displacement of the piezoelectric element 520.
  • This actuator is composed of the piezoelectric element 520 that has excellent piezoelectric characteristics and does not change suddenly between ⁇ 50 ° C. and + 150 ° C., so that other members can be driven efficiently. In addition, an actuator with excellent heat durability can be realized.
  • the piezoelectric ceramic composition and the piezoelectric element according to the embodiment of the present invention can be widely used for vibration detection applications, pressure detection applications, oscillation applications, piezoelectric device applications, and the like.
  • sensors for detecting various vibrations knock sensors, combustion pressure sensors, etc.
  • piezoelectric devices such as vibrators, actuators, filters, etc., high voltage generators, micro power supplies, various driving devices, position control devices, vibration suppression devices, It can be used for various devices such as fluid discharge devices (paint discharge, fuel discharge, etc.).
  • the piezoelectric ceramic composition and the piezoelectric element according to the embodiment of the present invention are particularly suitable for applications requiring excellent thermal durability (for example, a knock sensor and a combustion pressure sensor).
  • FIGS. 8A and 8B are diagrams showing the experimental results regarding the influence of the subphase ratio on the piezoelectric characteristics for a plurality of sample compositions including examples of the present invention. From this experimental result, it is possible to evaluate the influence of the subphase ratio on the characteristics of the piezoelectric ceramic composition.
  • Samples S01 and S02 in FIGS. 8A and 8B are samples prepared as comparative examples, and are configured only by the first crystal phase.
  • each of K 2 CO 3 powder, Na 2 CO 3 powder, Li 2 CO 3 powder, and Nb 2 O 5 powder in the composition formula of the first crystal phase were weighed so that the quantitative ratio shown in FIG. 8A was obtained.
  • Ethanol was added to these powders and wet mixed in a ball mill for 15 hours to obtain a slurry. Thereafter, the mixed powder obtained by drying the slurry was calcined at 600 to 1100 ° C. for 1 to 10 hours in an air atmosphere to obtain a calcined product.
  • This calcined product was pulverized and mixed with a ball mill by adding a dispersant, a binder and ethanol to obtain a slurry. Thereafter, the slurry was dried, granulated, and uniaxially pressed at a pressure of 20 MPa, and formed into a disk shape (diameter 20 mm, thickness 2 mm). Thereafter, CIP treatment was performed at a pressure of 150 MPa, and the obtained CIP press body was degreased, and then calcined by holding at 1150 ° C. for 7 hours in an air atmosphere.
  • Samples S03 to S12 are compositions containing both the first crystal phase and the second crystal phase.
  • the composition of the first crystal phase and the composition of the second crystal phase are all the same in the samples S03 to S12, and only the subphase ratio (volume%) is different.
  • the first crystal phase includes two types of elements Ca and Ba as the element C, three types of Nb, Ti, and Zr as the element D, and two types of Co and Zn as the element E.
  • the subphase includes two types of elements M, Co and Zn.
  • the composition of the second crystal phase is CoZnTiO 4 .
  • exact composition formula was Co 0.7 Zn 0.73 TiO y.
  • the subphase ratio in the samples S03 to S12 ranges from 0.4% by volume to 5.3% by volume.
  • These samples S03 to S12 were prepared according to the above-described steps T110 to T160 of FIG.
  • the shape after the molding in step T150 was a disc shape (diameter 20 mm, thickness 2 mm). Note that the method of creating such a sample is the same for other samples described later.
  • the coefficients f1, f2, and f3 in FIG. 8A indicate the coefficients of one to three kinds of elements shown in the element D column.
  • the coefficient f1 is a coefficient of the element Nb.
  • the coefficient f1 is the coefficient of the first element Nb in the element D column
  • the coefficient f2 is the second.
  • the coefficient of the element Ti, the coefficient f3, is the coefficient of the third element Zr. This relationship is the same for the coefficients g1, g2, and g3 of the element E. The same applies to FIG. 11A, FIG. 12A, FIG. 12B, FIG.
  • the samples S01 to S12 were processed in steps T170 to T190 in FIG. 1 to produce the piezoelectric elements 200 (FIG. 2), respectively.
  • the piezoelectric element 200 of each sample thus obtained the subphase ratio, the electrical characteristics of the piezoelectric ceramic 100 (relative permittivity ⁇ 33 T / ⁇ 0 ), and the piezoelectric characteristics (piezoelectric constant d 33 and electromechanical coupling coefficient kr ) And the presence or absence of a room temperature phase transition point, and the result shown in FIG. 8B was obtained.
  • the coefficients h of samples S01 and S02 were both 3.0.
  • the coefficient h of samples S03 to S12 was in the range of 3.0 to 3.1.
  • Samples S01 and S02 composed of only the first crystal phase have no significant difference in electrical characteristics (relative permittivity ⁇ 33 T / ⁇ 0 ) and piezoelectric characteristics (piezoelectric constant d 33 and electromechanical coupling coefficient kr). .
  • the piezoelectric constant d 33 is slightly larger than the sample S01 containing no Li.
  • Samples S03 to S12 are compositions in which the subphase ratio is changed from 0.4% by volume to 5.3% by volume.
  • the compositions of the first crystal phase and the second crystal phase are all the same in the samples S03 to S12.
  • the second crystal phase is a spinel compound in all the samples S03 to S12. It was confirmed.
  • the reliability factor S indicating whether or not it conforms to the structure of the spinel compound estimated from the composition of the second crystal phase is 1.5 or less, and sufficient reliability is obtained. It was confirmed that it was compatible with the degree.
  • FIG. 9A is a graph showing the relationship between the subphase ratio of samples S03 to S12 and the relative dielectric constant ⁇ 33 T / ⁇ 0 .
  • the relative dielectric constants ⁇ 33 T / ⁇ 0 of the samples S03 to S12 are all preferable in that they are sufficiently larger than the samples S01 and S02 of the comparative example. Further, as can be understood from the graph of FIG.
  • the subphase ratio is preferably in the range of 0.4% by volume to 6.0% by volume, The range of volume% or more and 6.0 volume% or less is more preferable, and the range of 1.3 volume% or more and 2.0 volume% or less is most preferable.
  • Figure 9B is a graph showing the relationship between the sub-phase fraction and the piezoelectric constant d 33 of Samples S03 ⁇ S12.
  • Sample S03 subphase ratio is 0.4% by volume
  • the piezoelectric constant d 33 is substantially equal to the sample S01, S02 of Comparative Example.
  • the sample S12 subphase ratio is 5.3% by volume
  • the piezoelectric constant d 33 than Samples S01, S02 of the comparative example became larger, it can be said that the relatively small as its increasing effect.
  • the sub-phase fraction is preferably in the range of less than 5.0 vol% 0.5 vol%, 0.5 vol% to 2.5 vol % Or less is more preferable, and the range of 1.0% by volume or more and 2.0% by volume or less is most preferable.
  • FIG. 9C is a graph showing the relationship between the subphase ratio of samples S03 to S12 and the electromechanical coupling coefficient kr.
  • the sample S03 having a subphase ratio of 0.4% by volume and the sample S12 having a subphase ratio of 5.3% by volume have a slightly smaller electromechanical coupling coefficient kr than the samples S01 and S02 of the comparative examples.
  • the subphase ratio is preferably in the range of 0.5 volume% or more and 5.0 volume% or less, and 0.5 volume% or more and 2.5 volume% or less. A range of not more than volume% is more preferable, and a range of not less than 1.0 volume% and not more than 2.0 volume% is most preferable.
  • the subphase ratio of the piezoelectric ceramic composition used in the piezoelectric element is preferably in the range of 0.5% by volume to 5.0% by volume, and in the range of 0.5% by volume to 2.5% by volume. More preferably, the range is 1.0 volume% or more and 2.0 volume% or less.
  • which of the three characteristics of relative permittivity ⁇ 33 T / ⁇ 0 , piezoelectric constant d 33, and electromechanical coupling coefficient kr is important may vary depending on the application of the porcelain composition.
  • a composition having a large relative dielectric constant ⁇ 33 T / ⁇ 0 is suitable for a capacitor.
  • the compositions piezoelectric constant d 33 is large, is suitable for the actuator or sensor.
  • a composition having a large electromechanical coupling coefficient kr is suitable for a piezoelectric transformer or an actuator.
  • the piezoelectric ceramic composition suitable for each application is determined according to the characteristics required according to the application.
  • FIG. 8B shows the results of an evaluation test on the presence or absence of a room temperature phase transition point for samples S01 to S12.
  • the relative dielectric constant ⁇ 33 T / ⁇ 0 was measured while gradually changing the environmental temperature in the range of ⁇ 50 ° C. to + 150 ° C.
  • a piezoelectric ceramic composition having a phase transition point within a certain temperature range exhibits a rapid change in which the relative dielectric constant ⁇ 33 T / ⁇ 0 has a clear peak in accordance with the temperature change within the range. .
  • the room temperature phase transition point was observed in Comparative Samples S01 and S02. On the other hand, no room temperature phase transition point was observed in any of samples S03 to S12. If there is a room temperature phase transition point, the electrical characteristics and piezoelectric characteristics of the piezoelectric ceramic composition largely change before and after that, which is not preferable. From this viewpoint, the samples S03 to S12 including both the first crystal phase and the second crystal phase are preferable to the samples S01 and S02 of the comparative example in that there is no room temperature phase transition point.
  • Sample S03 is application but piezoelectric constant d 33 and electromechanical coupling factor kr was almost equal to Sample S01, S02 of the comparative example, in which the there is no room phase transition point, the presence or absence of room temperature phase transition point problem ( For example, for capacitors), it is preferable to samples S01 and S02.
  • Sample S12 although the electromechanical coupling factor kr is smaller than the sample S01, S02 of Comparative Example, no RT-phase transition point, the piezoelectric constant d 33 also samples S01, is greater than S02. Therefore, the sample S12 is also preferable to the samples S01 and S02 in applications where the presence or absence of the room temperature phase transition point is a problem.
  • FIG. 10 is a diagram showing a comparison of reflected electron images obtained by EPMA (electron beam microanalyzer) of sample S01 and sample S06.
  • EPMA electron beam microanalyzer
  • the electronic image of the sample S01 in addition to the first crystal phase region (gray region), vacancies (region close to black) are observed. That is, in the sample S01 of the comparative example, there are considerably many vacancies between the first crystal phases. These vacancies are presumed to be gaps formed between a large number of fine crystal grains forming the first crystal phase.
  • the electronic image of sample S06 there are very few vacancies, and instead, a region of the second crystal phase (a region having an intermediate concentration between the vacancies and the first crystal phase) is observed. In sample S06, since the vacancies are filled with the second crystal phase, it can be understood that there are almost no vacancies.
  • the piezoelectric ceramic composition in which vacancies formed in the first crystal phase are filled with the second crystal phase the crystal grains of the first crystal phase are strongly bonded to each other by the second crystal phase.
  • the piezoelectric constant d 33 and the electromechanical coupling coefficient kr become extremely large values.
  • the piezoelectric constant d 33 and the electromechanical coupling coefficient kr gradually increase.
  • the filling rate of the vacancies does not change so much, and the ratio of the first crystal phase having piezoelectric characteristics decreases.
  • the piezoelectric constant d 33 and electromechanical coupling factor kr is assumed that gradually decreases.
  • the subphase ratio (volume%) of the samples S03 to S12 was measured using such a backscattered electron image as follows. First, the sintered body of each sample was mirror-polished and subjected to a conductive treatment, and then a 1000-fold reflected electron image was taken with an electron probe / microanalyzer (EPMA). At this time, 10 backscattered electron images were taken for one sample. The backscattered electron image obtained in this way was expressed in 8 gradations, and was separated into three regions of a first crystal phase, a second crystal phase, and vacancies according to the gradation. Thereafter, the area ratio of the second crystal phase was measured using image analysis software.
  • EPMA electron probe / microanalyzer
  • the average value of the area ratio of the second crystal phase in the eight images excluding the image having the maximum value and the image having the minimum value of the area ratio of the second crystal phase is determined as the area ratio of the second crystal phase in the sample. Adopted as.
  • the area ratio of the second crystal phase thus obtained was used as the volume ratio (subphase ratio) of the second crystal phase.
  • WinROOF manufactured by Mitani Corporation is used as the image processing software.
  • the ratio of the third crystal phase in the case where the subphase includes the third crystal phase can also be measured by the same method.
  • the element ratio of each crystal phase was measured with EPMA-WDS (wavelength dispersive X-ray spectrometer) and EPMA-EDS (energy dispersive X-ray spectrometer).
  • FIGS. 11A and 11B are diagrams showing experimental results regarding the influence on the characteristics of the piezoelectric ceramic composition depending on the type of the metal element M in the subphase.
  • the characteristics of the sample S06 of FIGS. 8A and 8B are shown again in the uppermost stage of FIGS. 11A and 11B.
  • Samples S13 to S23 have different elements M in the second crystal phase, and the composition of the second crystal phase is as shown in FIG. 11B.
  • the second crystal phase was a spinel compound, but the second crystal phase of the sample S23 was not a spinel compound but a perovskite phase.
  • exact composition formula was Co 2.03 TiO y.
  • Sample S23 of the comparative example shows characteristics inferior to those of samples S06 and S13 to S22 with respect to relative permittivity ⁇ 33 T / ⁇ 0 , dielectric loss tan ⁇ , piezoelectric constant d 33, and electromechanical coupling coefficients kr, kt. It was.
  • FIGS. 12A to 12D are diagrams showing experimental results (part 2) regarding the influence of the type of the metal element M in the subphase on the characteristics of the piezoelectric ceramic composition.
  • FIGS. 12A and 12B show the composition of the main phase (first crystal phase)
  • FIGS. 12C and 12D show the compositions of the subphases (second crystal phase and third crystal phase). It shows the characteristics of the piezoelectric ceramic composition.
  • Samples S100 to S131 can be classified into the following groups according to their compositions. ⁇ Group 1> Samples S100 to S114: A sample group in which the element D of the first crystal phase is Nb, Ti, Zr, and the element M of the second crystal phase is two to three kinds of metal elements.
  • Sample S107 contains Hf instead of Zr as the element D of the first crystal phase.
  • Samples S114 to S117 Sample group in which the element E of the first crystal phase is Co and Fe, and the element M of the second crystal phase is also Co and Fe. Sample S114 is included in both group 1 and group 2. Sample S114 and sample S115 have different values of the composition coefficients a to d of the first crystal phase. Sample S116 differs from other samples S114, S115, and S117 in that element D of the first crystal phase contains Ta. Sample S117 is different from other samples S114, S115, and S116 in that element C of the first crystal phase contains Sr.
  • Samples S118 to S120 Element D in the first crystal phase includes any one of Sn, Sb, Si in addition to Nb, Ti, Zr, and element M in the second crystal phase in addition to Zn A group of samples including any one of Sn, Sb, and Si.
  • Samples S127 to S131 Samples in which the element D of the first crystal phase is Nb, Ti, Zr, the element E is Fe, Zn, Co, and the element M of the second crystal phase is also Fe, Zn, Co group.
  • exact composition formula was Mg 1.1 Fe 1.55 TiO y.
  • a plurality of samples among the samples S100 to S131 include a third crystal phase (samples S100, S106, S107, S109, S112, S121, S122, S124, S125, S127). To S131). These third crystal phases are deposited as a result of creating a piezoelectric ceramic composition according to the process of FIG. 1 according to the composition of the first crystal phase and the second crystal phase in FIGS. 12A and 12B. As shown in FIGS. 12C and 12D, the volume ratio of the third crystal phase is as small as 0.3% or less of the entire piezoelectric ceramic composition. The change in the composition of the two crystal phases is such that there is no practical problem.
  • the mechanical quality factor Qm can be increased while obtaining equivalent piezoelectric characteristics.
  • the sample S107 using Hf as the element D of the first crystal phase also has good piezoelectric characteristics substantially equivalent to the samples S100 to S106 and S108 to S114 using Zr instead of Hf.
  • Sample S116 using Ta as element D of the first crystal phase also has good piezoelectric characteristics, but samples S114 and S115 using Zr instead of Ta are more preferable in terms of piezoelectric characteristics.
  • the sample S117 using Sr as the element C of the first crystal phase also has good piezoelectric characteristics almost equal to the samples S114 and S115 using Ba instead of Sr.
  • Samples S118 to S120 including any one of Sn, Sb, and Si as the element D of the first crystal phase also have relatively good piezoelectric characteristics.
  • Samples S100, S106, S107, S109, S112, S121, S122, S124, S125, and SS127 to S131 in which the subphase includes a third crystal phase made of an A 3 B 5 O 15- based compound are also good piezoelectrics. Has characteristics. As described above, these third crystal phases were precipitated as a result of preparing the piezoelectric ceramic composition according to the process of FIG. 1 according to the composition of the first crystal phase and the second crystal phase in FIGS. 12A and 12B. Is. However, when preparing a piezoelectric ceramic composition in which the subphase includes the third crystal phase, the raw material of the third crystal phase may be intentionally mixed with the raw material of the subphase.
  • FIG. 13 is a diagram showing experimental results regarding the influence of the subphase ratio on the insulating properties of the piezoelectric ceramic composition.
  • the piezoelectric constant d 33 is the same as the value shown in FIG. 8B.
  • the “polarization condition” includes an environmental temperature and a DC electric field.
  • the DC electric field values of 7 KV / mm (25 ° C. and 40 ° C.) and 9 kV / mm (80 ° C.) were used.
  • the electric field application time is 30 minutes in all cases.
  • the letters “NG” were indicated for the broken piezoelectric elements, and the letters “OK” were marked for those that were not damaged.
  • the applied DC electric field shows the insulating property of the piezoelectric ceramic composition.
  • the piezoelectric element was damaged under any of the three polarization conditions.
  • Sample S03 containing 0.4% by volume of the second crystal phase did not break under the polarization condition of 7 KV / mm (25 ° C. and 40 ° C.), but breakage under the polarization condition of 9 kV / mm (80 ° C.). It was seen.
  • sample S06 containing 1.3% by volume of the second crystal phase and sample S08 containing 1.9% by volume no damage was observed under any polarization condition. From this experimental result, it can be understood that the piezoelectric ceramic composition including the second crystal phase which is a spinel compound has a good insulating property. From the viewpoint of insulation, the subphase ratio is preferably 0.5% by volume or more, and more preferably 1.3% by volume or more.
  • FIG. 14 is a diagram showing the experimental results of high temperature durability.
  • the change in the piezoelectric constant d 33 after the thermal aging process is shown for the sample S01 of the comparative example described in FIGS. 8A and 8B and the sample S22 described in FIGS. 11A and 11B.
  • the heat aging treatment was performed at 200 ° C. for 10 hours.
  • Sample S01 of Comparative Example the piezoelectric constant d 33 was reduced 33.3% by thermal aging process.
  • the piezoelectric constant d 33 was reduced by 3.6% by the thermal aging treatment, the reduction rate is very small.
  • the piezoelectric ceramic composition containing the second crystal phase of the spinel compound is excellent in terms of durability at high temperatures.
  • FIG. 15 is a diagram showing the results of a thermal cycle test.
  • changes in the piezoelectric constant d 33 after the thermal cycle test are shown for the sample S02 of the comparative example described in FIGS. 8A and 8B and the samples S129 to S131 described in FIGS. 12A to 12D.
  • the thermal cycle test was performed according to the following procedure.
  • (I) The piezoelectric element is placed in a thermostatic chamber, and the piezoelectric characteristics at room temperature are evaluated (initial value).
  • a thermal cycle in which the temperature is changed between ⁇ 50 ° C. and + 150 ° C. at a temperature change rate of 2 ° C./min is repeated 1000 times (the holding time at ⁇ 50 ° C. and + 150 ° C. is 1 hour) .
  • the piezoelectric characteristics are evaluated again at room temperature (characteristic values after thermal cycling).
  • the piezoelectric constant d 33 by the thermal cycle test was reduced 66%.
  • the piezoelectric constant d 33 was only reduced by 1 to 4% by the thermal cycle test, and the reduction rate was extremely small.
  • the piezoelectric ceramic composition including the second crystal phase of the spinel compound is excellent in terms of durability in the thermal cycle.
  • FIGS. 16A and 16B are diagrams showing experimental results regarding the influence of the coefficient e of the composition formula of the first crystal phase on the characteristics of the piezoelectric ceramic composition.
  • Sample S01 is the same as that shown in FIGS. 8A and 8B.
  • Samples S24 to S31 differ from each other only in the coefficient e (the number of alkaline elements at the A site) among the coefficients a to h in the composition formula of the first crystal phase, and all other coefficients are constant throughout the samples S24 to S31. It is.
  • Sample S28 is the same as sample S13 in FIG.
  • the alkaline earth metal (element C of the composition formula) contained in the first crystal phase is of two types, Ca and Ba.
  • the element D is Nb, Ti and Zr, and the element E is Co, which is the same throughout the samples S24 to S31.
  • the composition of the second crystal phase is all Co 2 TiO 4 and the subphase ratio is constant at 1.4% by volume.
  • the relative dielectric constants ⁇ 33 T / ⁇ 0 of the samples S24 to S31 are all preferable in that they are sufficiently larger than the sample S01 of the comparative example.
  • the value of the coefficient e in the composition formula of the first crystal phase is preferably in the range of 0.80 ⁇ e ⁇ 1.10, and 0.88 ⁇ e ⁇ 1. A range of 10 is more preferred.
  • FIG. 17 is a graph showing the value of the piezoelectric constant d 33 for samples S24 to S31.
  • the horizontal axis represents the value of the coefficient e in the composition formula of the first crystal phase.
  • the value of the coefficient e in the composition formula of the first crystal phase is preferably in the range of 0.84 ⁇ e ⁇ 1.08, and more preferably in the range of 0.88 ⁇ e ⁇ 1.07. The range of 0.98 ⁇ e ⁇ 1.03 is most preferable.
  • the samples S25 to S30 are preferable in that they are sufficiently larger than the sample S01 of the comparative example.
  • the value of the coefficient e of the composition formula of the first crystal phase is preferably in the range of 0.84 ⁇ e ⁇ 1.08, and in the range of 0.88 ⁇ e ⁇ 1.07. More preferably, the range of 0.98 ⁇ e ⁇ 1.01 is most preferable.
  • the values of the piezoelectric constant d 33 and the electromechanical coupling coefficient kr are particularly important. Therefore, regarding the use as a piezoelectric element, the value of the coefficient e is preferably in the range of 0.88 ⁇ e ⁇ 1.07, more preferably in the range of 0.98 ⁇ e ⁇ 1.03, and 0.98 ⁇ The range of e ⁇ 1.01 is most preferred.
  • this invention is not restricted to said Example and embodiment, In the range which does not deviate from the summary, it is possible to implement in various aspects.
  • the piezoelectric ceramic composition of the above-described example has a property that does not affect the piezoelectric characteristics and has a property that there is no sudden characteristic variation between ⁇ 50 ° C. and + 150 ° C.
  • Subphases other than the crystal phase may be included.
  • A-Ti-BO complex oxide (element A is an alkali metal, element B is at least one of Nb and Ta, and the contents of element A, element B, and Ti are all A crystal phase composed of (not zero), more specifically, a crystal phase represented by K 1-x TiNb 1 + x O 5 (0 ⁇ x ⁇ 0.15) can be exemplified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

 無鉛圧電磁器組成物は、圧電特性を有するニオブ/タンタル酸アルカリ系ペロブスカイト酸化物からなる第1結晶相と、M-Ti-O系スピネル化合物(元素Mは1~4価の元素)からなる第2結晶相と、を含む。

Description

無鉛圧電磁器組成物、それを用いた圧電素子、装置、及び、無鉛圧電磁器組成物の製造方法 関連出願の相互参照
 本願は、2013年3月29日に出願された出願番号2013-71778の日本特許出願に基づく優先権を主張し、その開示の全てが参照によって本願に組み込まれる。
 本発明は、圧電素子等に用いられる無鉛圧電磁器組成物、それを用いた各種の装置、及び、その製造方法に関する。
 従来から量産されている圧電磁器(圧電セラミックス)の多くは、PZT系(チタン酸ジルコン酸鉛系)の材料で構成されており、鉛を含有している。しかし、近年では、鉛の環境への悪影響を排除するために、無鉛圧電磁器の開発が望まれている。そのような無鉛圧電磁器の材料(「無鉛圧電磁器組成物」と呼ぶ)としては、例えばニオブ酸カリウムナトリウム((K,Na)NbO3)のように、組成式ANbO3(Aはアルカリ金属)で表される組成物が提案されている。しかし、ANbO3系無鉛圧電磁器組成物そのものは、焼結性や耐湿性に劣るという問題がある。
 このような問題に対し、下記特許文献1では、ANbO3系無鉛圧電磁器組成物にCu、Li、Ta等を添加することにより、焼結性を改善し、延いては圧電特性を改善する方法が開示されている。
 また、特許文献2では、一般式{Lix(K1-yNay1-x}(Nb1-zSbz)O3で表される無鉛圧電磁器組成物(0≦x≦0.2,0≦y≦1.0,0≦z≦0.2,但し,x=z=0を除く)によって、比較的良好な焼結性と圧電特性を達成できることが開示されている。
特開2000-313664号公報 特開2003-342069号公報 国際公開第2011/093021号公報
 しかしながら、特許文献1に記載の圧電磁器組成物では、焼結性は改善されているものの、従来の有鉛圧電磁器組成物に比べて圧電特性が劣っており、実用性には不十分である。一方、特許文献2に記載の圧電磁器組成物は、比較的高い圧電定数を示すものの、-50℃~+150℃の間に相転移点が存在するため、この相転移点の前後で急激に特性が変動するという問題があった。
 本願出願人により開示された特許文献3には、ニオブ/タンタル酸アルカリ系ペロブスカイト酸化物からなる第1結晶相と、A-Ti-B-O系複合酸化物(元素Aはアルカリ金属、元素BはNbとTaのうちの少なくとも1種、元素Aと元素BとTiの含有量はいずれもゼロで無い)で構成される第2結晶相と、を含むことを特徴とする無鉛圧電磁器組成物が開示されている。この圧電磁器組成物は、圧電特性に優れており、かつ、-50℃~+150℃の間において急激な特性の変動がない、という優れた特性を有する。しかし、圧電特性に関しては更なる改善が望まれていた。
 本発明は、上述の課題を解決するためになされたものであり、以下の形態(aspect)として実現することが可能である。
(1)本発明の一形態によれば、無鉛圧電磁器組成物が提供される。この無鉛圧電磁器組成物は、圧電特性を有するニオブ/タンタル酸アルカリ系ペロブスカイト酸化物からなる第1結晶相で形成された主相と、M-Ti-O系スピネル化合物(元素Mは1~4価の元素)からなる第2結晶相を含む副相と、を含むことを特徴とする。
 この無鉛圧電磁器組成物によれば、スピネル化合物で構成される第2結晶相が、第1結晶相の構造を安定化するので、圧電特性及び絶縁性に優れた無鉛圧電磁器組成物を提供することができる。
(2)上記無鉛圧電磁器組成物において、前記元素Mは、Li,Mg,Al,Sc,Cr,Mn,Fe,Co,Ni,Zn,Ga,Y,Zrのうちの少なくとも1種の金属元素を含むようにしても良い。
 この構成によれば、第2結晶相として、安定した構造のスピネル化合物を得ることができ、この結果、圧電特性に優れた無鉛圧電磁器組成物を提供することができる。
(3)上記無鉛圧電磁器組成物において、前記M-Ti-O系スピネル化合物は、組成式MxTiOy(係数x,yはTiの含有量を1としたときの相対値)で表され、前記係数xが、0.5≦x≦5.0を満たすようにしても良い。
 この構成によれば、第2結晶相として、安定した構造のスピネル化合物を得ることができ、この結果、圧電特性に優れた無鉛圧電磁器組成物を提供することができる。
(4)上記無鉛圧電磁器組成物において、前記係数yが2≦y≦8を満たすようにしても良い。
 この構成によれば、第2結晶相として、安定した構造のスピネル化合物を得ることができ、この結果、圧電特性に優れた無鉛圧電磁器組成物を提供することができる。
(5)上記無鉛圧電磁器組成物において、前記副相は、前記主相の間に形成される空孔を充填するものであるとしても良い。
 この無鉛圧電磁器組成物によれば、副相が、主相の空孔を充填することによって主相(第1結晶相)の構造を安定化するので、圧電特性に優れた無鉛圧電磁器組成物を提供することができる。
(6)上記無鉛圧電磁器組成物において、前記無鉛圧電磁器組成物における前記第2結晶相の含有割合は、(i)0.5体積%以上で5.0体積%以下、(ii)0.5体積%以上で2.5体積%以下、(iii)1.0体積%以上で2.0体積%以下、のいずれかであるものとしても良い。
 この構成によれば、無鉛圧電磁器組成物の圧電特性及び絶縁特性を更に向上することができる。
(7)上記無鉛圧電磁器組成物において、前記M-Ti-O系スピネル化合物は、前記元素Mとして2種類以上の金属元素を含むものとしてもよい。
 この構成によれば、無鉛圧電磁器組成物の特性を更に向上できる。
(8)上記無鉛圧電磁器組成物において、前記副相は、前記第2結晶相の他に、A15系化合物(元素Aは1~2価の金属、元素Bは2~5価の金属)からなる第3結晶相を含むものとしても良い。
 この構成によれば、第3結晶相によって第2結晶相の構造が安定化するので、無鉛圧電磁器組成物を安定化できる。
(9)上記無鉛圧電磁器組成物において、前記副相の全体を100%としたときの前記第2結晶相の体積割合が50%以上であるものとしても良い。
 この構成によれば、第2結晶相による第1結晶相の構造を安定化の効果が顕著となるので、無鉛圧電磁器組成物の特性を更に向上できる。
(10)上記無鉛圧電磁器組成物において、前記第1結晶相を形成するニオブ/タンタル酸アルカリ系ペロブスカイト酸化物は、アルカリ土類金属を含むものとしても良い。
 この構成によれば、圧電特性に優れた無鉛圧電磁器組成物を得ることができる。
(11)上記無鉛圧電磁器組成物において、前記第1結晶相を形成するニオブ/タンタル酸アルカリ系ペロブスカイト酸化物は、組成式(KaNabLicde(Dfg)O(元素CはCa,Sr,Baの一種以上、元素DはNb,Ta,Ti,Zr,Hf,Sn,Sb,Siのうちの少なくともNb又はTaを含む一種以上、元素EはMg,Al,Sc,Mn,Fe,Co,Ni,Zn,Ga,Yの一種以上、a+b+c+d=1、eは任意、f+g=1、hはペロブスカイトを構成する任意の値)で表されるものとしても良い。
 この構成によれば、無鉛圧電磁器組成物の特性を向上させることができる。
(12)上記無鉛圧電磁器組成物において、前記係数eが、0.88≦e≦1.07を満たすものとしても良い。
 この構成によれば、無鉛圧電磁器組成物の特性をさらに向上させることができる。
(13)上記無鉛圧電磁器組成物において、前記ニオブ/タンタル酸アルカリ系ペロブスカイト酸化物は、ニオブ酸アルカリ系ペロブスカイト酸化物であるものとしても良い。
 この構成によれば、前記ニオブ/タンタル酸アルカリ系ペロブスカイト酸化物がタンタル酸アルカリ系ペロブスカイト酸化物である場合と比べて、キュリー温度(Tc)が高い無鉛圧電磁器組成物を提供することができる。
(14)本発明の他の形態によれば、上記無鉛圧電磁器組成物で形成された圧電磁器と、前記圧電磁器に取り付けられた電極と、を備えることを特徴とする圧電素子が提供される。
(15)本発明の更に他の形態によれば、圧電素子を備えることを特徴とする装置が提供される。
(16)上記装置は、ノックセンサと、超音波振動子と、切削工具と、超音波センサと、アクチュエータと、のうちのいずれかとしても良い。
(17)本発明の他の形態によれば、上記無鉛圧電磁器組成物の製造方法が提供される。この方法は、前記第1結晶相の原料を混合し、仮焼して第1の粉末を作成する工程と、前記第2結晶相の原料を混合し、仮焼して第2の粉末を作成する工程と、前記第1と第2の粉末を混合し、成形し、焼成することによって、前記無鉛圧電磁器組成物を生成する工程と、を備え、前記焼成は、密閉容器内に成形体を封入して焼成を行う密閉焼成であることを特徴とする。
 この方法によれば、圧電特性を有するニオブ/タンタル酸アルカリ系ペロブスカイト酸化物からなる第1結晶相と、M-Ti-O系スピネル化合物からなる第2結晶相と、を含む、圧電特性に優れた無鉛圧電磁器組成物を作成することができる。
 本発明は、種々の形態で実現することが可能であり、例えば、無鉛圧電磁器組成物、それを用いた圧電素子、圧電素子を備える各種の装置(ノックセンサ、超音波振動子、切削工具、超音波センサ、アクチュエータ等)、及び、無鉛圧電磁器組成物の製造方法等の形態で実現することができる。
本発明の一実施形態における圧電素子の製造方法を示すフローチャート。 本発明の一実施形態としての圧電素子を示す斜視図。 本発明の一実施形態としてのノックセンサを示す斜視図。 本発明の一実施形態としての超音波振動子を示す縦断面図。 本発明の一実施形態としての切削工具を示す斜視図。 本発明の一実施形態としての超音波センサを示す縦断面図。 本発明の一実施形態としてのアクチュエータを示す斜視図。 副相割合による圧電特性への影響に関する実験結果を示す図。 副相割合による圧電特性への影響に関する実験結果を示す図。 サンプルS03~S12の副相割合と比誘電率ε33 T/ε0との関係を示すグラフ。 サンプルS03~S12の副相割合と圧電定数d33との関係を示すグラフ。 サンプルS03~S12の副相割合と電気機械結合係数krとの関係を示すグラフ。 サンプルS01,S06の反射電子像を示す図。 副相の金属元素Mの種類による圧電磁器組成物の特性への影響に関する実験結果(その1)を示す図。 副相の金属元素Mの種類による圧電磁器組成物の特性への影響に関する実験結果(その1)を示す図。 副相の金属元素Mの種類による圧電磁器組成物の特性への影響に関する実験結果(その2)を示す図。 副相の金属元素Mの種類による圧電磁器組成物の特性への影響に関する実験結果(その2)を示す図。 副相の金属元素Mの種類による圧電磁器組成物の特性への影響に関する実験結果(その2)を示す図。 副相の金属元素Mの種類による圧電磁器組成物の特性への影響に関する実験結果(その2)を示す図。 副相割合による絶縁性への影響に関する実験結果を示す図。 高温耐久性の実験結果を示す図。 熱サイクル試験の結果を示す図。 第1結晶相の組成式の係数eによる圧電磁器組成物の特性への影響に関する実験結果を示す図。 第1結晶相の組成式の係数eによる圧電磁器組成物の特性への影響に関する実験結果を示す図。 第1結晶相の組成式の係数eと圧電定数d33との関係を示すグラフ。
 本発明の一実施形態としての圧電磁器組成物は、圧電特性を有するニオブ/タンタル酸アルカリ系ペロブスカイト酸化物からなる第1結晶相で形成された主相と、M-Ti-O系スピネル化合物からなる第2結晶相を含む副相と、からなる無鉛圧電磁器組成物である。本明細書において、「スピネル化合物」とは、正スピネル型結晶構造を有する正スピネル化合物と、逆スピネル型結晶構造を有する逆スピネル化合物の両方を含む。一実施形態としての典型的な無鉛圧電磁器組成物では、M-Ti-O系スピネル化合物の元素Mは、1~4価の金属元素である。また、無鉛圧電磁器組成物における第2結晶相の割合は、0体積%を超えて10体積%以下であり、残部は第1結晶相である。以下では、第1結晶相を「主相」とも呼び、主相以外の結晶相を「副相」と呼ぶ。また、第2結晶相を「スピネル構造相」又は「スピネル相」とも呼ぶ。第2結晶相を含む副相は、第1結晶相と混在することによって第1結晶相の結晶構造を安定化し、圧電特性を向上させる。また、第2結晶相は、-50℃~+150℃の間に相転移点が発生することによる急激な特性の変化を生じさせないようにする働きも有する。なお、圧電磁器組成物は、副相として、第2結晶相以外の結晶相(第3結晶相等)を含んでいてもよい。
 第1結晶相を形成するペロブスカイト酸化物は、ニオブ酸アルカリ系ペロブスカイト酸化物とタンタル酸アルカリ系ペロブスカイト酸化物の少なくとも一方を含むことが好ましい。「ニオブ/タンタル酸アルカリ系ペロブスカイト酸化物」という用語は、これらの複数種類のペロブスカイト酸化物の総称である。ニオブ/タンタル酸アルカリ系ペロブスカイト酸化物のアルカリ系成分は、アルカリ金属(K(カリウム),Na(ナトリウム),Li(リチウム)等)を少なくとも含み、また、アルカリ土類金属(Ca(カルシウム),Sr(ストロンチウム),Ba(バリウム)等)を含み得る。このようなニオブ/タンタル酸アルカリ系ペロブスカイト酸化物としては、以下の組成式で表されるものが好ましい。
<好ましい第1結晶相の組成式>
 (KaNabLicde(Dfg)O   …(1)
 ここで、元素CはCa(カルシウム),Sr(ストロンチウム),Ba(バリウム)の一種以上、元素DはNb(ニオブ),Ta(タンタル),Ti(チタン),Zr(ジルコニウム),Hf(ハフニウム),Sn(スズ),Sb(アンチモン),Si(ケイ素)のうちの少なくともNb又はTaを含む一種以上、元素EはMg(マグネシウム),Al(アルミニウム),Sc(スカンジウム),Mn(マンガン),Fe(鉄),Co(コバルト),Ni(ニッケル),Zn(亜鉛),Ga(ガリウム),Y(イットリウム)の一種以上であり、a+b+c+d=1、eは任意、f+g=1、hはペロブスカイトを構成する任意の値である。
 上記組成式(1)において、元素Cが1~2種類の元素を含み得るとともに、元素D,Eがそれぞれ1~3種類の元素を含み得る場合には、以下の組成式(1a)のように書き換えることができる。
 (KaNabLicC1d1C2d2e(D1f1D2f2D3f3E1g1E2g2E3g3)O                    …(1a)
 ここで、a+b+c+d1+d2=1、eは任意、f1+f2+f3+g1+g2+g3=1、hはペロブスカイトを構成する任意の値である。この組成式(1a)は、上記組成式(1)と等価である。この例から理解できるように、元素Cが2種類の金属元素を含む場合には、元素Cの係数dの値は、2種類の元素C1,C2の係数d1,d2の和で表される。また、元素Dが3種類の金属元素を含む場合には、元素Dの係数fの値は、3種類の元素D1,D2,D3の係数f1,f2,f3の和で表される。元素Dが4種以上の金属元素を含む場合も同様である。
 上記組成式(1)において、K(カリウム)とNa(ナトリウム)とLi(リチウム)と元素C(Ca,Sr,Ba)は、ペロブスカイト構造のいわゆるAサイトに配置される。また、元素D(Nb,Ta,Ti,Zr,Hf,Sn,Sb,Siのうちの少なくともNb又はTaを含む1種以上)と元素E(Mg,Al,Sc,Mn,Fe,Co,Ni,Zn,Ga,Yの1種以上)はいわゆるBサイトに配置される。Aサイトの元素の係数a,b,c,dのうちで、最初の3つの係数の合計(a+b+c)は0で無いことが好ましいが、係数dはゼロであってもよい。また、Bサイトの元素D,Eの係数f,gのうちで、元素Dの係数fは0で無いことが好ましいが、元素Eの係数gはゼロであってもよい。すなわち、本実施形態のニオブ/タンタル酸アルカリ系ペロブスカイト酸化物は、そのAサイトにアルカリ金属(K,Na,Li)の1種以上を少なくとも含むとともにアルカリ土類金属(Ca,Sr,Ba)を含み得るものであり、また、そのBサイトにNb,Ta,Ti,Zr,Hf,Sn,Sb,Siのうちの少なくともNb又はTaを含む1種以上を含むとともにその他の金属(Mg,Al,Sc,Mn,Fe,Co,Ni,Zn,Ga,Y)の1種以上を含み得るペロブスカイト酸化物であることが好ましい。また、Bサイトの構成元素としては、Nbを含むものが最も好ましい。Nbを含むニオブ酸アルカリ系ペロブスカイト酸化物は、Nbを含まないタンタル酸アルカリ系ペロブスカイト酸化物に比べて、キュリー温度(Tc)が高い無鉛圧電磁器組成物を提供することができる点で好ましい。
 上記組成式(1)における係数a,b,c,d,e,f,g,hの値としては、ペロブスカイト構造が成立する値の組み合わせのうちで、無鉛圧電磁器組成物の電気的特性又は圧電特性(特に圧電定数d33)の観点で好ましい値を選択することができる。具体的には、係数a,b,cが、それぞれ0以上1未満の値であり、a=b=c=0(すなわち、KとNaとLiをいずれも含まない圧電磁器組成物)が成立しないことが好ましい。KとNaの係数a,bは、典型的には0<a≦0.6及び0<b≦0.6である。Liの係数cは、ゼロでも良いが、0<c≦0.2が好ましく、0<c≦0.1が更に好ましい。元素C(Ca,Sr,Baの1種以上)の係数dは、ゼロでも良いが、0<d≦0.2が好ましく、0<d≦0.1が更に好ましい。Aサイト全体に対する係数eは、任意であるが、0.80≦e≦1.10が好ましく、0.84≦e≦1.08が更に好ましく、0.88≦e≦1.07が最も好ましい。酸素の係数hは、第1結晶相がペロブスカイト酸化物を構成するような任意の値を取り得る。係数hの典型的な値は、約3であり、3.0≦h≦3.1が好ましい。なお、係数hの値は、第1結晶相の組成の電気的な中性条件から算出することができる。但し、第1結晶相の組成としては、電気的な中性条件からやや外れた組成も許容できる。
 第1結晶相の典型的な組成は、(K,Na,Li,Ca,Ba)e(Nb,Ti,Zr)Oh であり、KとNaとNbとを主な金属成分とするものである。この第1結晶相は、KとNaとNbとを主な金属成分としているので、第1結晶相で構成される材料を「KNN」又は「KNN材」とも呼び、第1結晶相を「KNN相」とも呼ぶ。第1結晶相をKNN相で形成すれば、圧電特性と、電気特性と、絶縁性と、高温耐久性とに優れ、また、-50℃~+150℃の間において急激な特性の変動がない無鉛圧電磁器組成物を提供することができる。
 第2結晶相のM-Ti-O系スピネル化合物としては、以下の組成式で表されるものが好ましい。
<好ましい第2結晶相の組成式>
 MxTiOy               …(2)
 ここで、元素Mは、1~4価の金属元素であり、Li(リチウム),Mg(マグネシウム),Al(アルミニウム),Sc(スカンジウム),Cr(クロム),Mn(マンガン),Fe(鉄),Co(コバルト),Ni(ニッケル),Zn(亜鉛),Ga(ガリウム),Y(イットリウム),Zr(ジルコニウム),Sn(スズ),Sb(アンチモン),Si(ケイ素),Hf(ハフニウム)のうちの少なくとも1種である。なお、元素MとしてLiを含む場合には、第2結晶相がスピネル化合物を形成するために、上記金属元素のうちのLi以外の他の1種以上の金属元素がLiとともに含まれることが好ましい。係数x,yは、Tiの含有量を1としたときの相対値である。第2結晶相がスピネル化合物を形成するために、係数xは、0.5≦x≦5.0を満たすことが好ましい。また、係数yは、スピネル化合物を形成する任意の値であるが、典型的には2≦y≦8を満たすことが好ましい。スピネル化合物で構成される第2結晶相は、第1結晶相の構造を安定化するので、圧電特性に優れた圧電磁器組成物を得ることができる。なお、圧電特性の観点からは、2価の金属元素Mを2個含む組成式M2TiO4 、又は、(M1,M2)TiO4 で表される第2結晶相を採用することが好ましい。
 圧電磁器組成物としては、特に、元素Mとして2種類以上の金属元素を含むものが好ましい。本明細書において、元素Mとして2種類以上の金属元素を含むスピネル化合物を、「複合スピネル化合物」とも呼ぶ。第2結晶相が複合スピネル化合物を含むことで、無鉛圧電磁器組成物の特性を向上させることが可能となる。
 具体的な第2結晶相としては、例えば以下のような各種のスピネル化合物を使用可能である。
(1)Liを含むスピネル化合物の例
 LiAlTiO4,LiCrTiO4,LiFeTiO4,LiGaTiO4,LiMnTiO4,LiYTiO4,LiScTiO4,LiCo0.5Ti1.54,LiMg0.5Ti1.54,LiMn0.5Ti1.54,LiZn0.5Ti1.54,Li1.33(Zr,Ti)1.674
(2)Coを含むスピネル化合物の例
 Co2TiO4,CoZnTiO4,CoMgTiO4,CoNiTiO4,CoFeTiO4,CoMnTiO4
(3)Znを含むスピネル化合物の例
 Zn2TiO4,ZnMgTiO4,ZnNiTiO4,ZnFeTiO4,ZnMnTiO4
(4)Mgを含むスピネル化合物の例
 Mg2TiO4,MgNiTiO4,MgFeTiO4,MgMnTiO4
(5)Niを含むスピネル化合物の例
 Ni2TiO4,NiFeTiO,NiMnTiO4,Ni1.5FeTi0.54,Ni2(Ti,Zr)O
(6)Feを含むスピネル化合物の例
 Fe2TiO4,FeMnTiO4,Mn1.5FeTi0.54
(7)Mnを含むスピネル化合物の例
 Mn2TiO4
(8)好ましいスピネル化合物の例
 第2結晶相のM-Ti-O系スピネル化合物は、NiFeTiO,MgFeTiO4,Ni2(Ti,Zr)O,Ni1.5FeTi0.54,CoMgTiO4,CoFeTiO4,(Fe,Zn,Co)TiOの中から選ばれた一種以上を含むことが特に好ましい。
 なお、上述した各種のスピネル化合物の組成式は厳密なものではなく、実際の分析で得られる組成式はこれと若干異なる場合がある。例えば、発明者らの分析結果では、MgFeTiO4の分析による組成式としてMg1.1Fe1.55TiOyが得られたサンプルがある。他の化合物も同様である。但し、分析により得られた組成式も、上記(2)式で示された組成式(MxTiOy )を満足している点に変わりは無く、スピネル構造を有するチタン酸化合物を示す組成式であるという点で共通している。
 第2結晶相を形成するスピネル化合物は、正スピネル化合物であってもよく、逆スピネル化合物であってもよい。なお、第2結晶相がスピネル化合物であるか否かは、粉末X線回折(XRD)の回折結果を使用したリートベルト解析(Rietveld Analysis)を行うことによって判定可能である。スピネル化合物中のLi以外の金属元素量の分析は、電子線マイクロアナライザ(EPMA)又はエネルギー分散型X線分析法(TEM-EDS)を用いて行うことが可能である。また、Li量の分析は、飛行時間二次イオン質量分析計(TOF-SIMS)を用いて行うことが可能である。
 上記の第2結晶相は、圧電特性を有していないが、第1結晶相と混在することによって圧電磁器組成物の焼結性を向上させ、その構造安定性を向上させると共に、圧電特性を向上させる。具体的には、第2結晶相は、第1結晶相の微細な結晶の間に形成される空孔を充填する。この結果、第1結晶相の微細な結晶同士が第2結晶相によって結合されるので、圧電磁器組成物の構造安定性が向上し、圧電特性が向上するものと推定される。また、第2結晶相は、-50℃から+150℃の間に相転移点を生じさせないようにする働きにも寄与していると推定される。
 なお、本出願人により開示された上記特許文献3(国際公開第2011/093021号公報)の圧電磁器組成物では、第2結晶相がスピネル化合物を形成しておらず、層状構造化合物を形成する。一方、本願の実施形態では、第2結晶相がスピネル化合物なので、圧電磁器組成物の構造安定性及び圧電特性に関して、特許文献3よりも優れた圧電磁器組成物を提供できる。
 圧電磁器組成物の圧電特性の観点から、第2結晶相の含有割合は、(i)0.5体積%以上で5.0体積%以下が好ましく、(ii)0.5体積%以上で2.5体積%以下が更に好ましく、(iii)1.0体積%以上で2.0体積%以下が最も好ましい。第2結晶相が含有されていない圧電磁器組成物(第1結晶相のみの組成物)は、-50℃~+150℃の間で急激な特性の変動が見られる傾向がある。また、第2結晶相の含有割合が0.5体積%未満の圧電磁器組成物や5体積%を超える圧電磁器組成物は、圧電特性(特に圧電定数d33や電気機械結合係数kr)にやや劣る傾向がある。
 圧電磁器組成物の副相は、第2結晶相以外の結晶相(第3結晶相等)を含んでいてもよい。第3結晶相としては、例えば、A15系化合物(元素Aは1~2価の金属、元素Bは2~5価の金属)の結晶相を利用することが好ましい。A15系化合物としては、元素A(1~2価の金属)をBa,Ca,Sr,Na,K,Liのうちの少なくとも一種とし、元素B(2~5価の金属)をNb,Mn,Fe,Ni,Co,Zn,Zrのうちの少なくとも一種とした化合物を利用することができる。具体的には、例えば、(Ba,Na,K)(Nb,Ni,Fe)15,(Ba,Na,K)(Nb,Co,Ni)15,(Ba,Na,K)(Nb,Zn)15,(Ba,Na,K)(Nb,Mn)15,(Ba,Na,K)(Nb,Fe,Zn,Co)15等を利用することが可能である。このような第3結晶相が存在すると、第2結晶相であるスピネル化合物が変質し難くなり、スピネル化合物の安定化が図れるので、圧電磁器組成物全体の安定性が向上するものと推定される。なお、副相が第2結晶相以外の結晶相を含む場合にも、副相の全体を100%としたときの第2結晶相の体積割合が、50%以上であることが好ましく、70%以上であることが更に好ましく、80%以上であることが更に好ましい。この理由は、第2結晶相の割合が過度に少なくなると、第2結晶相が第1結晶相の構造を安定化するという効果が不十分になるためである。なお、副相が第2結晶相以外の結晶相(第3結晶相等)を含む場合にも、副相は第1結晶相の微細な結晶の間に形成される空孔を充填する。
 図1は、本発明の一実施形態における圧電素子の製造方法を示すフローチャートである。工程T110では、第1結晶相(主相)の原料として、K2CO3粉末,Na2CO3粉末,Li2CO3粉末,CaCO3粉末,SrCO3粉末,BaCO3粉末,Nb25粉末,Ta25粉末,TiO2粉末,ZrO2粉末,MgO粉末,Al23粉末,Sc23粉末,MnO2粉末,Fe23粉末,CoO粉末,NiO粉末,ZnO粉末,Ga23粉末,Y23粉末等の原料のうちから必要なものを選択し、主相の組成式における係数a,b,c,d,e,f,gの値に応じて秤量する。そして、これらの原料粉末にエタノールを加え、ボールミルにて好ましくは15時間以上湿式混合してスラリーを得る。工程T120では、スラリーを乾燥して得られた混合粉末を、例えば大気雰囲気下600℃~1100℃で1~10時間仮焼して主相仮焼粉を生成する。
 工程T130では、第2結晶相(副相)の原料として、TiO2粉末のほか、Li2CO3粉末,MgO粉末,Al23粉末,Sc23粉末,Cr23粉末,MnO2粉末,Fe23粉末,CoO粉末,NiO粉末,ZnO粉末,Ga23粉末,Y23粉末,ZrO2粉末等のうちから必要なものを選択し、副相の組成式における係数xの値に応じて秤量する。副相が、第3結晶相(例えばA15系化合物)を含む圧電磁器組成物を製造する場合には、この工程T130又は後述する工程T145において、第3結晶相の原料となる金属酸化物粉末を適宜混合しても良い。そして、これらの原料粉末にエタノールを加えてボールミルにて好ましくは15時間以上湿式混合してスラリーを得る。工程T140では、スラリーを乾燥して得られた混合粉末を、例えば大気雰囲気下600℃~1100℃で1~10時間仮焼して副相仮焼粉を生成する。この副相仮焼粉は、スピネル化合物、又は、スピネル化合物の前駆体の粉体である。スピネル化合物の前駆体は、工程T140の仮焼の終了後にはスピネル化合物となっていないが、後述する工程T160の焼成によってスピネル化合物となる物質である。
 工程T145では、主相仮焼粉と副相仮焼粉をそれぞれ秤量し、ボールミルにて、分散剤、バインダ及びエタノールを加えて粉砕・混合してスラリーとする。また、このスラリーを乾燥して得られた混合粉末を、例えば大気雰囲気下600℃~1100℃で1~10時間仮焼して仮焼粉を生成する。後述するように、本実施形態において、圧電磁器組成物における第2結晶相の好ましい割合は、体積%で規定される。一方、工程T145における主相仮焼粉と副相仮焼粉との混合割合は、主相仮焼粉と副相仮焼粉の重量を用いて行われる。この際、工程T145における混合時の副相割合(重量%)と、最終的に得られる圧電磁器組成物における副相割合(体積%)との関係は、経験的に予め決定しておくことが可能である。
 工程T150では、工程T145で得られた仮焼粉に再び分散剤、バインダ及びエタノールを加えて粉砕・混合してスラリーとし、このスラリーをスプレードライ乾燥機により乾燥し、造粒し、例えば圧力20MPaで一軸プレスを行い、所望の形状に成形する。本発明の実施形態としての各種の装置に適した典型的な圧電磁器の形状は、円板状、円柱状、矩形平板状等である。その後、例えば圧力150MPaでCIP処理(冷間静水圧成形処理)を行って成形体を得る。工程T155では、得られた成形体を、例えば大気雰囲気下500℃~800℃で2~10時間保持し、バインダを脱脂する脱脂工程を行う。工程T160では、得られた脱脂工程後の成形体を、例えば大気雰囲気下1000℃~1300℃の中から選択される特定温度(例えば、1150℃)で2~50時間保持して焼成することによって圧電磁器を得る。工程T160の焼成は、密閉容器内に成形体を密封した状態で行う密封焼成であることが好ましい。この理由は、成形体に含まれるアルカリ金属(Li,Na,K)などの金属元素が、焼成中に外部に消失してしまうことを防止するためである。このような密閉容器としては、例えば、オオタケセラム株式会社製アルミナサヤ A-1174を使用することが可能である。工程T170では、圧電磁器を、圧電素子に要求される寸法精度に従って加工する。工程T180では、こうして得られた圧電磁器に電極を取り付け、工程T190で分極処理を行う。
 上述した製造方法は一例であり、圧電素子を製造するための他の種々の工程や処理条件を利用可能である。例えば、図1のように主相と副相を予め別個に生成した後に両者の粉末を混合し焼成する代わりに、最終的な圧電磁器組成物の組成に応じた量比で原料を混合し焼成することによって、圧電磁器組成物を製造するようにしてもよい。但し、図1の製造方法によれば、主相と副相の組成をより厳密に管理し易いので、圧電磁器組成物の歩留まりを高めることが可能である。
 図2は、本発明の一実施形態としての圧電素子を示す斜視図である。この圧電素子200は、円板状の圧電磁器100の上面と下面に電極301,302が取り付けられた構成を有している。なお、圧電素子としては、これ以外の種々の形状や構成の圧電素子を形成可能である。
 図3は、本発明の一実施形態としての圧電磁器を用いたノックセンサの一例を示す分解斜視図である。このノックセンサ1は、いわゆる非共振型ノックセンサであり、主体金具2と、絶縁スリーブ3と、絶縁板4,5と、圧電素子6と、特性調整用ウェイト7と、ワッシャ8と、ナット9と、ハウジング10とを備えている。主体金具2は、透孔2aが貫設された円筒状の筒体2bと、その筒体2bの下端部周縁からフランジ状に突設したドーナツ状円板形の座面部分2cとから構成されている。また、筒体2bの上部にはネジ山2dが刻設され、筒体2bの上端部および座面部分2cの周縁部にはハウジング10との密着性を高めるための溝2eが外周を取り巻くように刻設されている。尚、主体金具2の各部分2a~2dは適宜な製造方法(鋳造、鍛造、削り出し加工、等)を用いて一体形成されている。また、主体金具2の表面には、耐食性を向上させるためにメッキ処理(亜鉛クロメートメッキ等)が施されている。
 絶縁スリーブ3は、薄肉円筒状を成し、絶縁材料(PETやPBT等の各種プラスチック材料、ゴム材料、等)によって形成されている。各絶縁板4,5は、薄肉ドーナツ状円板形を成し、絶縁材料(PETやPBT等の各種プラスチック材料、ゴム材料、等)によって形成されている。振動検出手段としての圧電素子6は、2枚の薄板電極6a,6b間に圧電磁器6cが積層され、全体としてドーナツ状円板形を成している。
 特性調整用ウェイト7は、ドーナツ状円板形を成し、所定の密度を有する材料(真鍮等の各種金属材料)によって形成されている。主体金具2の筒体2bには絶縁スリーブ3が嵌合され、絶縁スリーブ3には絶縁板4,圧電素子6,絶縁板5,特性調整用ウェイト7がこの順番で嵌合されている。また、主体金具2の筒体2bのネジ山2dには、ワッシャ8を介してナット9が螺合されている。そして、主体金具2の座面部分2cの上面とナット9との間で、絶縁板4,圧電素子6,絶縁板5,特性調整用ウェイト7,ワッシャ8がそれぞれ挟持固定され、これら部材4~8を覆うように射出成形された絶縁材料(PA等の各種プラスチック材料)によってハウジング10が形成されている。そのため、ハウジング10の下端部分からは主体金具2の座面部分2cの下面のみが露出し、ハウジング10の上端部分からは主体金具2の筒体2bの上端のみが露出するようになっている。また、圧電素子6の周囲は絶縁スリーブ3と各絶縁板4,5およびハウジング10により囲まれ、主体金具2および特性調整用ウェイト7と圧電素子6とは絶縁されている。尚、圧電素子6の各電極6a,6bにはリード端子(図示略)が接続され、当該リード端子はハウジング10から外部へ導出されている。
 このノックセンサ1は、圧電特性に優れ、かつ、-50℃~+150℃の間において急激な特性の変動がない圧電素子6を用いて構成されているので、ノッキングの検出精度が高く、かつ、熱耐久性に優れたノックセンサを実現できる。
 図4は、本発明の一実施形態としての超音波振動子を示す縦断面図である。この超音波振動子20は、ランジュバン型超音波振動子であり、圧電素子対22と、該圧電素子対22を挟持する上下一対の前面板25と裏打板26とからなる。圧電素子対22は、環状に形成された二枚の圧電素子23a,23bを、その間に電極板24aを介装して積層し、かつ上側の環状圧電素子23bの上部に電極板24bを配設して構成されている。また、前面板25と裏打板26は、鉄またはアルミニウムを素材に用いて形成された円柱状金属ブロックからなる。そして、この前面板25と裏打板26との間に前記圧電素子対22が配置され、これらが中心ボルト27によって一体に結合されている。
 前面板25と裏打板26は、圧電素子23a,23bの直径に対して共に径大に形成されており、圧電素子23a,23bとの当接端が、円錐部28,29を介して縮径されて圧電素子23a,23bの直径と略等しくなっている。裏打板26の直径R2と前面板25の直径R1は略同一寸法に設けられており、前面板25の外端面が超音波放射面30となっている。また、裏打板26の外端面には、その中央部に軸線方向に沿う直径R3の盲端孔31が形成されている。そして、かかる構成からなる超音波振動子20の全長が、所定の共振周波数の3/2波長の共振長に略一致するように設定されている。
 この超音波振動子は、圧電特性に優れ、かつ、-50℃~+150℃の間において急激な特性の変動がない圧電素子23a,23bを用いて構成されているので、安定した周波数で超音波を発生することが可能であり、かつ、熱耐久性に優れた超音波振動子を実現できる。
 図5は、本発明の一実施形態としての切削工具を示す斜視図である。この切削工具40は、円形に形成された基材46の外周部に砥石部45が形成されて構成されている。基材46の中心部は、取り付け治具44によってスピンドル42に固定されている。基材46の両面には環状の圧電素子43が埋め込まれている。圧電素子43の振動方向は、基材46の中心から外周に向かう放射方向47である。圧電素子43が振動しつつスピンドル42が回転方向48に回転した状態で、基材46の外周に設けられた砥石部45に被加工部材に押し当てることによって、被加工部材を切削することが可能である。
 この切削工具は、圧電特性に優れ、かつ、-50℃~+150℃の間において急激な特性の変動がない圧電素子43を用いて構成されているので、熱耐久性に優れた切削工具を実現できる。
 図6は、本発明の一実施形態としての超音波センサを示す縦断面図である。この超音波センサ400は、金属製のケース本体410に、圧電素子420を内蔵している。ケース本体410は、有底筒状構成にされており、円筒状の筒部411と、その筒部411の一方の開口端を閉塞する底部413と、底部413が形成された側とは反対側の筒部411の開口端に形成された筒部411の径方向に延びる鍔部415と、からなっている。
 圧電素子420は円盤状に構成され、その一平坦面が、ケース本体410の底部413内面に固着されている。また、圧電素子420には電極が両面に形成されており、一方の電極はケース本体410に接続され、他方の電極は撚り線421を介して第一端子423に電気的に接続されている。
 ケース本体410には、鍔部415側の開口端に、そのケース本体410の開口端を閉塞する金属製の板状部材であるベース430が設けられており、第一端子423は、そのベース430に設けられた孔部に挿通され、絶縁材としてのガラス材433を介してベース430に電気的に絶縁された状態で固着されている。また、ベース430には、第二端子425が固着されている。
 ケース本体410の底部413に対向するベース430の内面には、ケース本体410に包囲されるベース430内面を被覆する絶縁ラベル435が設けられている。また、ケース本体410の外面には、樹脂製カバー437が、ケース本体410の筒部411側面を被覆するようにして、そのケース本体410側面に巻回されている。また、ケース本体410の底部413の圧電素子420が設けられた内面とは反対側の外面には、音響整合材440が固着されている。なお、この超音波センサ400は、超音波を検出するセンサとしての機能と、超音波を発生する超音波発生器としての機能と、の両方の機能を有する超音波送受信器である。
 この超音波センサは、圧電特性に優れ、かつ、-50℃~+150℃の間において急激な特性の変動がない圧電素子420を用いて構成されているので、高い感度で超音波を検出可能であり、かつ、熱耐久性に優れた超音波センサを実現できる。
 図7は、本発明の一実施形態としてのアクチュエータを示す斜視図である。このアクチュエータ500は、圧電素子520と、この圧電素子520を挟むように配置された一対の電極層531及び532とを備えた単板圧電振動子である。このアクチュエータ500の電極層531、532間に電圧が印加されると、これらに挟まれた圧電素子520に電界が生じ、この圧電素子520が変位(伸縮動作)する。圧電素子520が図7の上下方向540(厚み方向)に分極されている場合には、伸縮動作の方向は左右方向550である。このアクチュエータ500の上面又は下面に被駆動部材を配置すれば、圧電素子520の変位に応じて被駆動部材を駆動することが可能である。
 このアクチュエータは、圧電特性に優れ、かつ、-50℃~+150℃の間において急激な特性の変動がない圧電素子520を用いて構成されているので、効率良く他の部材を駆動することが可能であり、かつ、熱耐久性に優れたアクチュエータを実現できる。
 本発明の実施形態による圧電磁器組成物及び圧電素子は、振動検知用途や、圧力検知用途、発振用途、及び、圧電デバイス用途等に広く用いることが可能である。例えば、各種振動を検知するセンサ類(ノックセンサ及び燃焼圧センサ等)、振動子、アクチュエータ、フィルタ等の圧電デバイス、高電圧発生装置、マイクロ電源、各種駆動装置、位置制御装置、振動抑制装置、流体吐出装置(塗料吐出及び燃料吐出等)などの各種の装置に利用することができる。また、本発明の実施形態による圧電磁器組成物及び圧電素子は、特に、優れた熱耐久性が要求される用途(例えば、ノックセンサ及び燃焼圧センサ等)に好適である。
 図8A,8Bは、本発明の実施例を含む複数のサンプル組成物について、副相割合による圧電特性への影響に関する実験結果を示す図である。この実験結果からは、副相割合が圧電磁器組成物の特性に与える影響を評価可能である。
 図8A,8BのサンプルS01,S02は、比較例として作成したサンプルであり、第1結晶相のみで構成されている。これらのサンプルS01,S02を作成する際には、まず、K2CO3粉末,Na2CO3粉末,Li2CO3粉末,Nb25粉末の各々を、第1結晶相の組成式における係数a,b,c,eの各々が図8Aの量比となるように秤量した。これらの粉末にエタノールを加えてボールミルにて15時間湿式混合してスラリーを得た。その後、スラリーを乾燥して得られた混合粉末を大気雰囲気下600~1100℃で1~10時間仮焼して仮焼物とした。この仮焼物をボールミルにて、分散剤、バインダ及びエタノールを加えて粉砕・混合してスラリーとした。その後、このスラリーを乾燥し、造粒し、圧力20MPaで一軸プレスを行い、円板状(直径20mm、厚さ2mm)形状に成形した。その後、圧力150MPaでCIP処理を行い、得られたCIPプレス体を脱脂した後、大気雰囲気下1150℃で7時間保持して焼成した。
 サンプルS03~S12は、第1結晶相と第2結晶相の両方を含有する組成物である。第1結晶相の組成と第2結晶相の組成はサンプルS03~S12ですべて同一であり、副相割合(体積%)のみが異なる。第1結晶相は、元素CとしてCa,Baの2種類を含み、元素DとしてNb,Ti,Zrの3種類を含み、元素EとしてCo,Znの2種類を含む。副相は、元素MとしてCo,Znの2種類を含む。図8Bに示すように、第2結晶相の組成はCoZnTiO4である。なお、サンプルS06の第2結晶相の組成を詳細に分析したところ、正確な組成式はCo0.7Zn0.73TiOyであった。サンプルS03~S12における副相割合は、0.4体積%~5.3体積%に亘っている。これらのサンプルS03~S12は、前述した図1の工程T110~T160に従ってそれぞれ作成した。工程T150における成形後の形状は、円板状(直径20mm、厚さ2mm)とした。なお、このようなサンプルの作成方法は、後述する他のサンプルも同様である。
 図8Aの係数f1,f2,f3は、元素Dの欄に示された1~3種類の元素の係数をそれぞれ示している。例えば、サンプルS01については、元素Dの欄に1種類の元素Nbのみが示されており、係数f1はその元素Nbの係数である。また、サンプルS03については、元素Dの欄に3種類の元素Nb,Ti,Zrが示されており、係数f1は元素Dの欄の1番目の元素Nbの係数であり、係数f2は2番目の元素Tiの係数、係数f3は3番目の元素Zrの係数である。このような関係は、元素Eの係数g1,g2,g3についても同様である。また、後述する図11A、図12A、図12B,図16A等でも同様である。
 これらのサンプルS01~S12について、図1の工程T170~T190の処理を行って、圧電素子200(図2)をそれぞれ作成した。こうして得られた各サンプルの圧電素子200について、副相割合と、圧電磁器100の電気的特性(比誘電率ε33 T/ε0)と、圧電特性(圧電定数d33及び電気機械結合係数kr)と、室温相転移点の有無とを測定し、図8Bに示す結果を得た。サンプルS01,S02の係数hは、いずれも3.0であった。サンプルS03~S12の係数hは、3.0~3.1の範囲であった。
 第1結晶相のみで構成されているサンプルS01,S02は、電気的特性(比誘電率ε33 T/ε0)及び圧電特性(圧電定数d33及び電気機械結合係数kr)に関して大きな差は無い。但し、Liを含むサンプルS02の方が、Liを含まないサンプルS01よりも圧電定数d33がやや大きい点で好ましい。この点を考慮すると、第1結晶相と第2結晶相の両方を含有する圧電磁器組成物においても、第1結晶相がLiを含むことが好ましいことがわかる。
 サンプルS03~S12は、副相割合を0.4体積%から5.3体積%まで変化させた組成物である。第1結晶相の組成と第2結晶相の組成はサンプルS03~S12ですべて同一である。これらのサンプルS03~S12について、粉末X線回折(XRD)の回折結果を用いたリートベルト解析(Rietveld Analysis)を行った結果、すべてのサンプルS03~S12において、第2結晶相がスピネル化合物であることが確認された。具体的には、各サンプルに対するリートベルト解析において、第2結晶相の組成から推定されるスピネル化合物の構造に適合するか否かを示す信頼度因子Sが1.5以下であり、十分な信頼度で適合することが確認された。
 図9Aは、サンプルS03~S12の副相割合と比誘電率ε33 T/ε0との関係を示すグラフである。図8Bから理解できるように、サンプルS03~S12の比誘電率ε33 T/ε0は、比較例のサンプルS01,S02に比べて十分に大きい点でいずれも好ましい。また、図9Aのグラフから理解できるように、比誘電率ε33 T/ε0の観点からは、副相割合は0.4体積%以上6.0体積%以下の範囲が好ましく、0.5体積%以上6.0体積%以下の範囲がさらに好ましく、1.3体積%以上2.0体積%以下の範囲が最も好ましい。
 図9Bは、サンプルS03~S12の副相割合と圧電定数d33との関係を示すグラフである。副相割合が0.4体積%であるサンプルS03は、圧電定数d33が比較例のサンプルS01,S02とほぼ同等である。また、副相割合が5.3体積%であるサンプルS12は、比較例のサンプルS01,S02よりも圧電定数d33は大きくなったが、その増大効果としては比較的小さいものといえる。図9Bのグラフから理解できるように、圧電定数d33の観点からは、副相割合は0.5体積%以上5.0体積%以下の範囲が好ましく、0.5体積%以上2.5体積%以下の範囲がさらに好ましく、1.0体積%以上2.0体積%以下の範囲が最も好ましい。
 図9Cは、サンプルS03~S12の副相割合と電気機械結合係数krとの関係を示すグラフである。副相割合が0.4体積%であるサンプルS03及び副相割合が5.3体積%であるサンプルS12は、電気機械結合係数krが比較例のサンプルS01,S02よりもやや小さい。図9Cのグラフから理解できるように、電気機械結合係数krの観点からは、副相割合は0.5体積%以上5.0体積%以下の範囲が好ましく、0.5体積%以上2.5体積%以下の範囲がさらに好ましく、1.0体積%以上2.0体積%以下の範囲が最も好ましい。
 典型的な例では、圧電素子として特に重要な特性は、圧電定数d33と電気機械結合係数krである。従って、圧電素子に使用する圧電磁器組成物の副相割合としては、0.5体積%以上5.0体積%以下の範囲が好ましく、0.5体積%以上2.5体積%以下の範囲がさらに好ましく、1.0体積%以上2.0体積%以下の範囲が最も好ましい。但し、比誘電率ε33 T/ε0と、圧電定数d33と、電気機械結合係数krの3つの特性のうちのいずれが重要となるかは、磁器組成物の用途によって異なる場合がある。例えば、比誘電率ε33 T/ε0が大きな組成物は、コンデンサに適している。また、圧電定数d33が大きな組成物は、アクチュエータやセンサに適している。また、電気機械結合係数krが大きな組成物は、圧電トランスやアクチュエータに適している。各用途に適した圧電磁器組成物は、その用途に応じて要求される特性に応じてそれぞれ決定される。
 図8Bの右端には、サンプルS01~S12に関して室温相転移点の有無に関する評価試験を行った結果を示している。室温相転移点の有無の評価試験としては、-50℃から+150℃の範囲で環境温度を徐々に変化させながら、比誘電率ε33 T/ε0を測定した。一般に、或る温度範囲内で相転移点がある圧電磁器組成物は、その範囲内での温度変化に応じて、比誘電率ε33 T/ε0が明確なピークを有する急激な変化を示す。一方、その温度範囲内で相転移点が無い圧電磁器組成物は、比誘電率ε33 T/ε0の変化に明確なピークが現れず、その変化は緩やかである。そこで、サンプルS01~S12に関して、-50℃から+150℃の範囲で温度を徐々に変化させたときの比誘電率ε33 T/ε0の変化から、明確に相転移点が観察されたか否かを判定し、これに応じて「室温相転移点」が有るか否かを判定した。なお、ここでの「室温」という語句は、通常の室温(25℃)よりも広い温度範囲を意味していることが理解できる。
 比較例のサンプルS01,S02では室温相転移点が観察された。一方、サンプルS03~S12では、いずれも室温相転移点は観察されなかった。室温相転移点があると、その前後で圧電磁器組成物の電気的特性や圧電特性が大きく変化するので好ましくない。この観点からは、第1結晶相と第2結晶相の両方を含むサンプルS03~S12は、室温相転移点が無い点で比較例のサンプルS01,S02よりも好ましい。
 サンプルS03は、圧電定数d33や電気機械結合係数krが比較例のサンプルS01,S02とほぼ同等であったが、室温相転移点が無いので、室温相転移点の有無が問題となる用途(例えばコンデンサ用)では、サンプルS01,S02よりも好ましい。サンプルS12は、電気機械結合係数krが比較例のサンプルS01,S02よりも小さいが、室温相転移点が無く、また、圧電定数d33もサンプルS01,S02よりも大きい。従って、サンプルS12も、室温相転移点の有無が問題となる用途では、サンプルS01,S02よりも好ましい。
 図10は、サンプルS01とサンプルS06のEPMA(電子線マイクロアナライザ)による反射電子像を比較して示す図である。サンプルS01の電子像には、第1結晶相の領域(グレーの領域)の他に、空孔(黒に近い領域)が観察される。すなわち、比較例のサンプルS01では、第1結晶相の間にかなり多くの空孔が存在する。この空孔は、第1結晶相を形成する多数の細かな結晶粒の間に生じた隙間であるものと推定される。一方、サンプルS06の電子像において、空孔は極めて少なく、この代わりに第2結晶相の領域(空孔と第1結晶相の中間的な濃度の領域)が観察される。サンプルS06では、第2結晶相によって空孔が充填されているため、空孔がほとんど存在しないことが理解できる。
 このように、第1結晶相の中に形成される空孔が第2結晶相によって充填された圧電磁器組成物では、第1結晶相の結晶粒同士が第2結晶相によって強く結合される。この結果、圧電定数d33や電気機械結合係数krが極めて大きな値になるものと推定される。図8Bから理解できるように、副相割合が1.3~1.5体積%のサンプルS06,S07において、圧電定数d33や電気機械結合係数krが最も大きい。この理由は、副相割合が0体積%から1.3~1.5体積%まで増加してゆく間は、これに応じて第1結晶相の中の空孔の充填率が次第に増大してゆくので、圧電定数d33や電気機械結合係数krも次第に増大していくからであると推定される。一方、副相割合が1.3~1.5体積%を超えて更に増加すると、空孔の充填率がそれほど変化せず、圧電特性を有する第1結晶相の割合が減少してしまうので、圧電定数d33や電気機械結合係数krが次第に減少していくものと推定される。
 図8A,8BのサンプルS03~S12の副相割合(体積%)は、このような反射電子像を用いて以下のように測定した。まず、各サンプルの焼結体を鏡面研磨し、導電処理を施した後、電子プローブ・マイクロアナライザー(EPMA)により1000倍の反射電子像を撮影した。この際、1個のサンプルについて10箇所の反射電子像を撮影した。こうして得られた反射電子像を8階調で表現し、階調に応じて第1結晶相と第2結晶相と空孔の3つの領域に分離した。その後、画像解析ソフトウェアを用いて第2結晶相の面積率を測定した。そして、第2結晶相の面積率が最大値となる画像と最小値となる画像を除く8枚の画像における第2結晶相の面積率の平均値を、そのサンプルにおける第2結晶相の面積率として採用した。こうして得られた第2結晶相の面積率を、第2結晶相の体積率(副相割合)として使用した。本実施形態では、画像処理ソフトは、三谷商事株式会社製のWinROOFを使用した。副相が第3結晶相を含む場合における第3結晶相の割合も、同様の方法で測定可能である。なお、各結晶相の元素割合はEPMA-WDS(波長分散型X線分光器)、EPMA-EDS(エネルギー分散型X線分光器)にて測定した。
 図11A,11Bは、副相の金属元素Mの種類による圧電磁器組成物の特性への影響に関する実験結果を示す図である。図11A,11Bの最上段には、図8A,8BのサンプルS06の特性を再掲している。サンプルS13~S23は、第2結晶相における元素Mが互いに異なっており、第2結晶相の組成は図11Bに示した通りである。図11BのサンプルS06,S13~22において、第2結晶相はスピネル化合物であることを確認したが、サンプルS23の第2結晶相はスピネル化合物では無く、ペロブスカイト相であった。なお、サンプルS13の第2結晶相の組成を詳細に分析したところ、正確な組成式はCo2.03TiOyであった。
 図11Bに示すように、サンプルS06,S13~S23に関して、比誘電率ε33 T/ε0と、誘電損失tanδと、圧電定数d33と、電気機械結合係数kr, ktと、機械的品質係数Qmと、キュリー点Tcとを測定した。比較例のサンプルS23では、比誘電率ε33 T/ε0と、誘電損失tanδと、圧電定数d33と、電気機械結合係数kr, ktとに関して、サンプルS06,S13~S22より劣る特性を示した。
 図12A~12Dは、副相の金属元素Mの種類による圧電磁器組成物の特性への影響に関する実験結果(その2)を示す図である。ここでは比較すべきサンプル数が多いので、図12A,12Bに主相(第1結晶相)の組成を示し、図12C,12Dに副相(第2結晶相及び第3結晶相)の組成と圧電磁器組成物の特性とを示している。サンプルS100~S131は、その組成に応じて以下のグループに分類できる。
<グループ1>サンプルS100~S114:第1結晶相の元素DがNb,Ti,Zrであり、第2結晶相の元素Mが2~3種類の金属元素であるサンプル群。但し、サンプルS107は、第1結晶相の元素Dとして、Zrの代わりにHfを含んでいる。
<グループ2>サンプルS114~S117:第1結晶相の元素EがCo,Feであり、第2結晶相の元素MもCo,Feであるサンプル群。なお、サンプルS114は、グループ1とグループ2の両方に含まれている。サンプルS114とサンプルS115は、第1結晶相の組成の係数a~dの値が互いに異なる。サンプルS116は第1結晶相の元素DがTaを含む点で他のサンプルS114,S115,S117と異なる。サンプルS117は、第1結晶相の元素CがSrを含む点で他のサンプルS114,S115,S116と異なる。
<グループ3>サンプルS118~S120:第1結晶相の元素DがNb,Ti,Zrに加えてSn,Sb,Siのいずれか一種類を含み、第2結晶相の元素MがZnに加えてSn,Sb,Siのいずれか一種類を含むサンプル群。
<グループ4>サンプルS121~S126:第1結晶相の元素DがNb,Ti,Zr、元素EがFe,Ni,Mg,Zn,Mn,Coのいずれか1種類であり、第2結晶相の元素MもFe,Ni,Mg,Zn,Mn,Coのいずれか1種類であるサンプル群。
<グループ5>サンプルS127~S131:第1結晶相の元素DがNb,Ti,Zr、元素EがFe,Zn,Coであり、第2結晶相の元素MもFe,Zn,Coであるサンプル群。なお、サンプルS131の第2結晶相の組成を詳細に分析したところ、正確な組成式はMg1.1Fe1.55TiOyであった。
 図12C,12Dに示すように、サンプルS100~S131の中の複数のサンプルは、第3結晶相を含んでいる(サンプルS100,S106,S107,S109,S112,S121,S122,S124,S125,S127~S131)。これらの第3結晶相は、図12A,12Bにおける第1結晶相と第2結晶相の組成に応じて図1の工程に従って圧電磁器組成物を作成した結果、析出したものである。図12C,12Dに示されているように、第3結晶相の体積割合は、圧電磁器組成物全体の0.3%以下と極めて小さいので、第3結晶相の析出による第1結晶相と第2結晶相の組成の変化は実用上問題とならない程度である。
 図12C,12Dを比較すると、以下の事項が理解できる。
(1)第2結晶相の元素Mが1種類の金属元素であるサンプルS121~S126に比べて、元素Mが2種類以上の金属元素であるサンプルS100~S102,S105~S120,S127~S131の方が圧電特性(特に圧電定数d33及び電気機械結合係数kr)の点で好ましい。特に、第2結晶相の元素Mが2種類以上の金属元素であり、且つ、元素MとしてMn(マンガン)を使用したサンプルS103,S104では、元素Mが1種類の金属元素であるサンプルS121~S126に比べて、同等の圧電特性を得つつ、機械的品質係数Qmを大きくできる点で好ましい。
(2)第1結晶相の元素DとしてHfを使用したサンプルS107も、HfでなくZrを使用したサンプルS100~S106,S108~S114とほぼ同等の良好な圧電特性を有する。
(3)第1結晶相の元素DとしてTaを使用したサンプルS116も良好な圧電特性を有するが、TaでなくZrを使用したサンプルS114,S115の方が圧電特性の点でより好ましい。
(4)第1結晶相の元素CとしてSrを使用したサンプルS117も、SrでなくBaを使用したサンプルS114,S115とほぼ同等の良好な圧電特性を有する。
(5)第1結晶相の元素DとしてSn,Sb,Siのいずれか一種類を含むサンプルS118~S120についても、比較的良好な圧電特性を有する。
(6)副相が、A15系化合物からなる第3結晶相を含むサンプルS100,S106,S107,S109,S112,S121,S122,S124,S125,SS127~S131も、良好な圧電特性を有する。なお、上述したように、これらの第3結晶相は、図12A,12Bにおける第1結晶相と第2結晶相の組成に応じて図1の工程に従って圧電磁器組成物を作成した結果、析出したものである。但し、副相が第3結晶相を含む圧電磁器組成物を作成する場合に、意図的に第3結晶相の原料を副相の原料に混合するようにしても良い。
 図13は、副相割合による圧電磁器組成物の絶縁性への影響に関する実験結果を示す図である。ここでは、図8A,8Bで説明したサンプルS01,S03,S04,S08について、直流電圧(直流電界)を印加したときの破損の有無の結果を示している。なお、圧電定数d33は図8Bに示した値と同じである。図13において、「分極条件」は、環境温度と直流電界とを含んでいる。直流電界としては、7KV/mm(25℃及び40℃)と、9kV/mm(80℃)の値を使用した。電界の印加時間はいずれも30分である。この分極条件で30分保持したときに、圧電素子が破損したものには「NG」の文字を記し、破損しなかったものは「OK」の文字を記した。なお、印加した直流電界は、圧電磁器組成物の絶縁性を示すものと考えることができる。
 第2結晶相を含まないサンプルS01は、3つの分極条件のいずれにおいても圧電素子が破損した。一方、第2結晶相を0.4体積%含むサンプルS03では、7KV/mm(25℃及び40℃)の分極条件では破損しなかったが、9kV/mm(80℃)の分極条件では破損が見られた。第2結晶相を1.3体積%含むサンプルS06と、1.9体積%含むサンプルS08では、いずれの分極条件でも破損が見られなかった。この実験結果から、スピネル化合物である第2結晶相を含む圧電磁器組成物は、良好な絶縁性を有していることが理解できる。なお、絶縁性の観点からは、副相割合を0.5体積%以上とすることが好ましく、1.3体積%以上とすることが更に好ましい。
 図14は、高温耐久性の実験結果を示す図である。ここでは、図8A,8Bで説明した比較例のサンプルS01と、図11A,11Bで説明したサンプルS22について、熱エージング処理後の圧電定数d33の変化を示している。熱エージング処理は、200℃で10時間行った。比較例のサンプルS01では、熱エージング処理によって圧電定数d33が33.3%低下した。一方、サンプルS22では、熱エージング処理によって圧電定数d33が3.6%低下しただけであり、その低下率は極めて小さい。このように、スピネル化合物の第2結晶相を含む圧電磁器組成物は、高温耐久性の点でも優れている。
 図15は、熱サイクル試験の結果を示す図である。ここでは、図8A,8Bで説明した比較例のサンプルS02と、図12A~12Dで説明したサンプルS129~S131について、熱サイクル試験後の圧電定数d33の変化を示している。熱サイクル試験は、以下の手順で実施した。
(i)圧電素子を恒温槽にいれ、室温での圧電特性を評価する(初期値)。
(ii)次に、2℃/分の温度変化率で-50℃から+150℃の間で温度を変化させる熱サイクルを、1000回繰り返す(-50℃と+150℃での保持時間は1時間)。
(iii)その後、室温にて圧電特性を再度、評価する(熱サイクル後の特性値)。
 比較例のサンプルS02では、熱サイクル試験によって圧電定数d33が66%低下した。一方、サンプルS129~S131では、熱サイクル試験によって圧電定数d33が1~4%低下しただけであり、その低下率は極めて小さい。このように、スピネル化合物の第2結晶相を含む圧電磁器組成物は、熱サイクルにおける耐久性の点でも優れている。
 図16A,16Bは、第1結晶相の組成式の係数eによる圧電磁器組成物の特性への影響に関する実験結果を示す図である。サンプルS01は、図8A、8Bに示したものと同じである。サンプルS24~S31は、第1結晶相の組成式の係数a~hのうちで、係数e(Aサイトのアルカリ系元素の個数)のみが互いに異なり、他の係数はすべてサンプルS24~S31を通じて一定である。なお、サンプルS28は、図11のサンプルS13と同じものである。第1結晶相に含まれるアルカリ土類金属(組成式の元素C)は、CaとBaの2種類である。また、Bサイトの元素のうち、元素DはNb,Ti,Zrの3種類、元素EはCoの1種類である、サンプルS24~S31を通じて同じである。また、第2結晶相の組成はすべてCo2TiO4であって、副相割合も1.4体積%で一定である。
 サンプルS24~S31の比誘電率ε33 T/ε0は、比較例のサンプルS01に比べて十分に大きい点でいずれも好ましい。比誘電率ε33 T/ε0の観点からは、第1結晶相の組成式の係数eの値は、0.80≦e≦1.10の範囲が好ましく、0.88≦e≦1.10の範囲がさらに好ましい。
 図17は、サンプルS24~S31に関する圧電定数d33の値を示すグラフである。横軸は、第1結晶相の組成式の係数eの値である。圧電定数d33の観点からは、第1結晶相の組成式の係数eの値は、0.84≦e≦1.08の範囲が好ましく、0.88≦e≦1.07の範囲がさらに好ましく、0.98≦e≦1.03の範囲が最も好ましい。
 図16Bに戻り、電気機械結合係数krに関しては、サンプルS25~S30が比較例のサンプルS01よりも十分に大きい点で好ましい。電気機械結合係数krの観点からは、第1結晶相の組成式の係数eの値は、0.84≦e≦1.08の範囲が好ましく、0.88≦e≦1.07の範囲がさらに好ましく、0.98≦e≦1.01の範囲が最も好ましい。
 なお、圧電素子としては、特に、圧電定数d33と電気機械結合係数krの値が重要である。従って、圧電素子としての用途に関して言えば、係数eの値は、0.88≦e≦1.07の範囲が好ましく、0.98≦e≦1.03の範囲がさらに好ましく、0.98≦e≦1.01の範囲が最も好ましい。
・変形例:
 なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能である。例えば、圧電特性に影響を与えず、かつ、-50℃~+150℃の間において急激な特性の変動が無いという性状を有する範囲であれば、上記した実施例の圧電磁器組成物に、第2結晶相以外の副相が含まれていてもよい。その副相としては、A-Ti-B-O系複合酸化物(元素Aはアルカリ金属、元素BはNbとTaのうちの少なくとも1種、元素Aと元素BとTiの含有量はいずれもゼロで無い)で構成される結晶相、より具体的には、K1-xTiNb1+x5 (0≦x≦0.15)で表される結晶相を例示することができる。
  1…ノックセンサ
  2…主体金具
  2a…透孔
  2b…筒体
  2c…座面部分
  2d…ネジ山
  2e…溝
  3…絶縁スリーブ
  4…絶縁板
  5…絶縁板
  6…圧電素子
  6a,6b…薄板電極
  6c…圧電磁器
  7…特性調整用ウェイト
  8…ワッシャ
  9…ナット
  10…ハウジング
  20…超音波振動子
  22…圧電素子対
  23a,23b…圧電素子
  24a,24b…電極板
  25…前面板
  26…裏打板
  27…中心ボルト
  28,29…円錐部
  30…超音波放射面
  31…盲端孔
  40…切削工具
  42…スピンドル
  43…圧電素子
  44…取り付け治具
  45…砥石部
  46…基材
  47…放射方向
  48…回転方向
 100…圧電磁器
 200…圧電素子
 301…電極
 400…超音波センサ
 410…ケース本体
 411…筒部
 413…底部
 415…鍔部
 420…圧電素子
 421…撚り線
 423…第一端子
 425…第二端子
 430…ベース
 433…ガラス材
 435…絶縁ラベル
 437…樹脂製カバー
 440…音響整合材
 500…アクチュエータ
 520…圧電素子
 531…電極層
 540…上下方向
 550…左右方向

Claims (17)

  1.  無鉛圧電磁器組成物であって、
     圧電特性を有するニオブ/タンタル酸アルカリ系ペロブスカイト酸化物からなる第1結晶相で形成された主相と、
     M-Ti-O系スピネル化合物(元素Mは1~4価の元素)からなる第2結晶相を含む副相と、
    を含むことを特徴とする無鉛圧電磁器組成物。
  2.  請求項1に記載の無鉛圧電磁器組成物であって、
     前記元素Mは、Li,Mg,Al,Sc,Cr,Mn,Fe,Co,Ni,Zn,Ga,Y,Zrのうちの少なくとも1種の金属元素を含むことを特徴とする無鉛圧電磁器組成物。
  3.  請求項1又は2に記載の無鉛圧電磁器組成物であって、
     前記M-Ti-O系スピネル化合物は、組成式MxTiOy(係数x,yはTiの含有量を1としたときの相対値)で表され、
     前記係数xが、0.5≦x≦5.0を満たすことを特徴とする無鉛圧電磁器組成物。
  4.  請求項3に記載の無鉛圧電磁器組成物であって、
     前記係数yが2≦y≦8を満たすことを特徴とする無鉛圧電磁器組成物。
  5.  請求項1~4のいずれか一項に記載の無鉛圧電磁器組成物であって、
     前記副相は、前記主相の間に形成される空孔を充填するものであることを特徴とする無鉛圧電磁器組成物。
  6.  請求項1~5のいずれか一項に記載の無鉛圧電磁器組成物であって、
     前記無鉛圧電磁器組成物における前記第2結晶相の含有割合は、
    (i)0.5体積%以上で5.0体積%以下、
    (ii)0.5体積%以上で2.5体積%以下、
    (iii)1.0体積%以上で2.0体積%以下、
    のいずれかであることを特徴とする無鉛圧電磁器組成物。
  7.  請求項1~6のいずれか一項に記載の無鉛圧電磁器組成物であって、
     前記M-Ti-O系スピネル化合物は、前記元素Mとして2種類以上の金属元素を含む、ことを特徴とする無鉛圧電磁器組成物。
  8.  請求項1~7のいずれか一項に記載の無鉛圧電磁器組成物であって、
     前記副相は、前記第2結晶相の他に、A15系化合物(元素Aは1~2価の金属、元素Bは2~5価の金属)からなる第3結晶相を含む、ことを特徴とする無鉛圧電磁器組成物。
  9.  請求項1~8のいずれか一項に記載の無鉛圧電磁器組成物であって、
     前記副相の全体を100%としたときの前記第2結晶相の体積割合が50%以上である、ことを特徴とする無鉛圧電磁器組成物。
  10.  請求項1~9のいずれか一項に記載の無鉛圧電磁器組成物であって、
     前記第1結晶相を形成するニオブ/タンタル酸アルカリ系ペロブスカイト酸化物は、アルカリ土類金属を含むことを特徴とする無鉛圧電磁器組成物。
  11.  請求項10に記載の無鉛圧電磁器組成物であって、
     前記第1結晶相を形成するニオブ/タンタル酸アルカリ系ペロブスカイト酸化物は、組成式(KaNabLicde(Dfg)O(元素CはCa,Sr,Baの一種以上、元素DはNb,Ta,Ti,Zr,Hf,Sn,Sb,Siのうちの少なくともNb又はTaを含む一種以上、元素EはMg,Al,Sc,Mn,Fe,Co,Ni,Zn,Ga,Yの一種以上、a+b+c+d=1、eは任意、f+g=1、hはペロブスカイトを構成する任意の値)で表されることを特徴とする無鉛圧電磁器組成物。
  12.  請求項11に記載の無鉛圧電磁器組成物であって、
     前記係数eが、0.88≦e≦1.07を満たすことを特徴とする無鉛圧電磁器組成物。
  13.  請求項1~12のいずれか一項に記載の無鉛圧電磁器組成物であって、
     前記ニオブ/タンタル酸アルカリ系ペロブスカイト酸化物は、ニオブ酸アルカリ系ペロブスカイト酸化物であることを特徴とする無鉛圧電磁器組成物。
  14.  請求項1~13のいずれか一項に記載の無鉛圧電磁器組成物で形成された圧電磁器と、
     前記圧電磁器に取り付けられた電極と、
    を備えることを特徴とする圧電素子。
  15.  請求項14に記載の圧電素子を備えることを特徴とする装置。
  16.  請求項15に記載の装置であって、
     前記装置は、ノックセンサと、超音波振動子と、切削工具と、超音波センサと、アクチュエータと、のうちのいずれかであることを特徴とする装置。
  17.  請求項1~13のいずれか一項に記載の無鉛圧電磁器組成物の製造方法であって、
     前記第1結晶相の原料を混合し、仮焼して第1の粉末を作成する工程と、
     前記第2結晶相の原料を混合し、仮焼して第2の粉末を作成する工程と、
     前記第1と第2の粉末を混合し、成形し、焼成することによって、前記無鉛圧電磁器組成物を生成する工程と、
    を備え、
     前記焼成は、密閉容器内に成形体を封入して焼成を行う密閉焼成であることを特徴とする無鉛圧電磁器組成物の製造方法。
PCT/JP2014/001358 2013-03-29 2014-03-11 無鉛圧電磁器組成物、それを用いた圧電素子、装置、及び、無鉛圧電磁器組成物の製造方法 WO2014156015A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
SG11201508052QA SG11201508052QA (en) 2013-03-29 2014-03-11 Unleaded piezoelectric ceramic composition, piezoelectric element using same, device, and method for manufacturing unleaded piezoelectric ceramic composition
CN201480019347.9A CN105102398B (zh) 2013-03-29 2014-03-11 无铅压电陶瓷组合物、使用其的压电元件、装置、及无铅压电陶瓷组合物的制造方法
US14/780,235 US9938197B2 (en) 2013-03-29 2014-03-11 Unleaded piezoelectric ceramic composition, piezoelectric element using same, device, and method for manufacturing unleaded piezoelectric ceramic composition
EP14775921.1A EP2980040B1 (en) 2013-03-29 2014-03-11 Unleaded piezoelectric ceramic composition, piezoelectric element using same, device, and method for manufacturing unleaded piezoelectric ceramic composition
KR1020157030232A KR101701666B1 (ko) 2013-03-29 2014-03-11 무연 압전 자기 조성물, 그것을 사용한 압전 소자, 장치 및 무연 압전 자기 조성물의 제조 방법
JP2014539939A JP5715309B2 (ja) 2013-03-29 2014-03-11 無鉛圧電磁器組成物、それを用いた圧電素子、装置、及び、無鉛圧電磁器組成物の製造方法
TW103110964A TWI555244B (zh) 2013-03-29 2014-03-25 Lead-free piezoelectric porcelain composition, use of its piezoelectric element, device and lead-free piezoelectric porcelain composition manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-071778 2013-03-29
JP2013071778 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014156015A1 true WO2014156015A1 (ja) 2014-10-02

Family

ID=51623036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001358 WO2014156015A1 (ja) 2013-03-29 2014-03-11 無鉛圧電磁器組成物、それを用いた圧電素子、装置、及び、無鉛圧電磁器組成物の製造方法

Country Status (9)

Country Link
US (1) US9938197B2 (ja)
EP (1) EP2980040B1 (ja)
JP (1) JP5715309B2 (ja)
KR (1) KR101701666B1 (ja)
CN (1) CN105102398B (ja)
MY (1) MY173808A (ja)
SG (1) SG11201508052QA (ja)
TW (1) TWI555244B (ja)
WO (1) WO2014156015A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104860674A (zh) * 2015-01-31 2015-08-26 西南科技大学 一种应力传感电容器陶瓷材料及制备方法
US20160052826A1 (en) * 2013-03-29 2016-02-25 Ngk Spark Plug Co., Ltd. Unleaded piezoelectric ceramic composition, piezoelectric element using same, device, and method for manufacturing unleaded piezoelectric ceramic composition
JP2019031424A (ja) * 2017-08-09 2019-02-28 日本特殊陶業株式会社 無鉛圧電磁器組成物、圧電素子および圧電素子利用装置
JP2019048749A (ja) * 2017-09-12 2019-03-28 日本特殊陶業株式会社 無鉛圧電磁器組成物、及び圧電素子
JP2020184714A (ja) * 2019-05-09 2020-11-12 本多電子株式会社 超音波センサ
WO2022215666A1 (ja) 2021-04-08 2022-10-13 日本特殊陶業株式会社 無鉛圧電磁器組成物及び圧電素子
WO2024070625A1 (ja) * 2022-09-30 2024-04-04 日本特殊陶業株式会社 無鉛圧電組成物、及び圧電素子

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5418725B2 (ja) * 2011-04-15 2014-02-19 株式会社村田製作所 圧電体薄膜素子
EP2933996B1 (en) * 2014-04-18 2018-09-19 Canon Kabushiki Kaisha Dust removal apparatus and image pickup apparatus
US9923136B2 (en) * 2014-05-07 2018-03-20 The Penn State Research Foundation High temperature sensors and transducers
CN108046801B (zh) * 2017-11-20 2021-07-06 蔡豪杰 压电陶瓷组合物及其制备方法
CN111662051B (zh) * 2020-05-13 2022-05-17 河南理工大学 一种无铅水泥基压电复合材料及制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293635A (ja) * 1995-04-21 1996-11-05 Murata Mfg Co Ltd 圧電磁器
JP2000313664A (ja) 1999-02-24 2000-11-14 Toyota Central Res & Dev Lab Inc アルカリ金属含有ニオブ酸化物系圧電材料組成物
JP2003342069A (ja) 2002-03-20 2003-12-03 Toyota Central Res & Dev Lab Inc 圧電磁器組成物及びその製造方法並びに圧電素子及び誘電素子
JP2008174424A (ja) * 2007-01-19 2008-07-31 Nagoya Institute Of Technology 無鉛圧電磁器複合体及びこれを用いた圧電素子
WO2011093021A1 (ja) 2010-01-29 2011-08-04 日本特殊陶業株式会社 無鉛圧電磁器組成物、それを用いた圧電素子、ノックセンサ、及び、無鉛圧電磁器組成物の製造方法
WO2013008418A1 (ja) * 2011-07-13 2013-01-17 日本特殊陶業株式会社 無鉛圧電磁器組成物およびその製造方法、ならびにその組成物を用いた圧電素子、超音波加工機、超音波駆動デバイスおよびセンシングデバイス

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857077B2 (ja) 2006-10-31 2012-01-18 キヤノン株式会社 発光素子
KR101183031B1 (ko) * 2009-08-28 2012-09-14 한국세라믹기술원 다강성 구조체의 제조방법
KR101701666B1 (ko) * 2013-03-29 2017-02-01 니뽄 도쿠슈 도교 가부시키가이샤 무연 압전 자기 조성물, 그것을 사용한 압전 소자, 장치 및 무연 압전 자기 조성물의 제조 방법
JP2015205805A (ja) * 2014-04-11 2015-11-19 日本特殊陶業株式会社 無鉛圧電磁器組成物、それを用いた圧電素子、及び、無鉛圧電磁器組成物の製造方法
US10086024B2 (en) * 2015-11-30 2018-10-02 Joseph E. Kovarik Method and system for protecting honey bees, bats and butterflies from neonicotinoid pesticides

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293635A (ja) * 1995-04-21 1996-11-05 Murata Mfg Co Ltd 圧電磁器
JP2000313664A (ja) 1999-02-24 2000-11-14 Toyota Central Res & Dev Lab Inc アルカリ金属含有ニオブ酸化物系圧電材料組成物
JP2003342069A (ja) 2002-03-20 2003-12-03 Toyota Central Res & Dev Lab Inc 圧電磁器組成物及びその製造方法並びに圧電素子及び誘電素子
JP2008174424A (ja) * 2007-01-19 2008-07-31 Nagoya Institute Of Technology 無鉛圧電磁器複合体及びこれを用いた圧電素子
WO2011093021A1 (ja) 2010-01-29 2011-08-04 日本特殊陶業株式会社 無鉛圧電磁器組成物、それを用いた圧電素子、ノックセンサ、及び、無鉛圧電磁器組成物の製造方法
WO2013008418A1 (ja) * 2011-07-13 2013-01-17 日本特殊陶業株式会社 無鉛圧電磁器組成物およびその製造方法、ならびにその組成物を用いた圧電素子、超音波加工機、超音波駆動デバイスおよびセンシングデバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2980040A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160052826A1 (en) * 2013-03-29 2016-02-25 Ngk Spark Plug Co., Ltd. Unleaded piezoelectric ceramic composition, piezoelectric element using same, device, and method for manufacturing unleaded piezoelectric ceramic composition
US9938197B2 (en) * 2013-03-29 2018-04-10 Ngk Spark Plug Co., Ltd. Unleaded piezoelectric ceramic composition, piezoelectric element using same, device, and method for manufacturing unleaded piezoelectric ceramic composition
CN104860674A (zh) * 2015-01-31 2015-08-26 西南科技大学 一种应力传感电容器陶瓷材料及制备方法
JP2019031424A (ja) * 2017-08-09 2019-02-28 日本特殊陶業株式会社 無鉛圧電磁器組成物、圧電素子および圧電素子利用装置
JP2019048749A (ja) * 2017-09-12 2019-03-28 日本特殊陶業株式会社 無鉛圧電磁器組成物、及び圧電素子
JP2020184714A (ja) * 2019-05-09 2020-11-12 本多電子株式会社 超音波センサ
JP7365665B2 (ja) 2019-05-09 2023-10-20 本多電子株式会社 超音波センサ
WO2022215666A1 (ja) 2021-04-08 2022-10-13 日本特殊陶業株式会社 無鉛圧電磁器組成物及び圧電素子
JPWO2022215666A1 (ja) * 2021-04-08 2022-10-13
KR20230121922A (ko) 2021-04-08 2023-08-21 니테라 컴퍼니 리미티드 무연 압전 자기 조성물 및 압전 소자
WO2024070625A1 (ja) * 2022-09-30 2024-04-04 日本特殊陶業株式会社 無鉛圧電組成物、及び圧電素子

Also Published As

Publication number Publication date
CN105102398A (zh) 2015-11-25
JP5715309B2 (ja) 2015-05-07
EP2980040A1 (en) 2016-02-03
TWI555244B (zh) 2016-10-21
US20160052826A1 (en) 2016-02-25
CN105102398B (zh) 2017-07-11
KR20150133261A (ko) 2015-11-27
US9938197B2 (en) 2018-04-10
MY173808A (en) 2020-02-24
EP2980040B1 (en) 2016-11-30
KR101701666B1 (ko) 2017-02-01
JPWO2014156015A1 (ja) 2017-02-16
SG11201508052QA (en) 2015-10-29
TW201503436A (zh) 2015-01-16
EP2980040A4 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
JP5715309B2 (ja) 無鉛圧電磁器組成物、それを用いた圧電素子、装置、及び、無鉛圧電磁器組成物の製造方法
JP5723959B2 (ja) 無鉛圧電磁器組成物、それを用いた圧電素子、ノックセンサ、及び、無鉛圧電磁器組成物の製造方法
US9828296B2 (en) Lead-free piezoelectric ceramic composition, method for producing same, piezoelectric element using lead-free piezoelectric ceramic composition, ultrasonic processing machine, ultrasonic drive device, and sensing device
KR101541022B1 (ko) 압전재료, 압전소자, 액체 토출 헤드, 초음파 모터 및 진애 제거 장치
JP6327914B2 (ja) 無鉛圧電磁器組成物、それを用いた圧電素子、及び、無鉛圧電磁器組成物の製造方法
JP4878133B2 (ja) 圧電アクチュエータ
KR101634016B1 (ko) 압전 재료
KR20150106971A (ko) 압전 재료
JP2006105964A (ja) 圧電センサ
JP6357180B2 (ja) 磁器組成物、圧電素子、振動子、および、圧電素子の製造方法
JP5894222B2 (ja) 積層型電子部品およびその製法
EP4393897A1 (en) Lead-free piezoelectric magnetic composition and piezoelectric element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019347.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014539939

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775921

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14780235

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014775921

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014775921

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157030232

Country of ref document: KR

Kind code of ref document: A