WO2014155952A1 - 積層インダクタ - Google Patents
積層インダクタ Download PDFInfo
- Publication number
- WO2014155952A1 WO2014155952A1 PCT/JP2014/000879 JP2014000879W WO2014155952A1 WO 2014155952 A1 WO2014155952 A1 WO 2014155952A1 JP 2014000879 W JP2014000879 W JP 2014000879W WO 2014155952 A1 WO2014155952 A1 WO 2014155952A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coil
- coils
- multilayer inductor
- electrically insulating
- conductive patterns
- Prior art date
Links
- 230000002093 peripheral effect Effects 0.000 claims abstract description 15
- 238000004804 winding Methods 0.000 claims 2
- 238000010030 laminating Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 4
- 230000000052 comparative effect Effects 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 14
- 238000005520 cutting process Methods 0.000 description 9
- 238000007639 printing Methods 0.000 description 9
- 230000004907 flux Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910018605 Ni—Zn Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2804—Printed windings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
- H01F17/0013—Printed inductances with stacked layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/245—Magnetic cores made from sheets, e.g. grain-oriented
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
- H01F2017/0066—Printed inductances with a magnetic layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2804—Printed windings
- H01F2027/2809—Printed windings on stacked layers
Definitions
- the present invention relates to a multilayer inductor in which two coils connected to a conductive pattern are arranged in an electrically insulating magnetic layer formed in a multilayer manner.
- a multilayer inductor surface-mounted as a power inductor or the like on a circuit board such as a mobile phone, a plurality of coils are arranged inside.
- Patent Document 1 a notch extending in the thickness direction is formed between the inductor parts in the laminated body in which the green sheet is laminated and two inductor parts are arranged, and the nonmagnetic material is filled in the notch.
- a mixed electronic component in which inductive coupling between inductor portions formed on both sides of the nonmagnetic material is prevented.
- Patent Document 2 in a hybrid integrated circuit component in which four inductors are arranged and formed by sequentially printing an insulator paste and a conductor paste, they are positioned between the four inductors at the time of printing.
- a configuration is disclosed in which the nonmagnetic layer suppresses the influence of magnetic flux generated in one inductor on adjacent inductors by printing and superimposing nonmagnetic layers in a cross shape.
- JP-A-5-308021 Japanese Patent Laid-Open No. 2001-358022
- the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a multilayer inductor capable of reducing the difference in inductance value and suppressing the occurrence of magnetic interference by a simple construction method. It is what.
- the invention according to claim 1 is characterized in that a plurality of electrically insulating magnetic layers and conductive patterns are laminated, and each of the conductive patterns is sequentially connected in the lamination direction to form a spiral.
- the two coils having substantially the same number of turns and coil diameter are mirror images of the virtual plane between the coils. They are arranged in parallel so that the end portions of each other are positioned on the outer peripheral portion on the opposite side to the virtual plane, and the magnetic layer is replaced only inside the coil.
- one or more electrically insulating nonmagnetic layers are arranged in the stacking direction.
- a plurality of electrically insulating magnetic layers and conductive patterns are laminated, and each of the conductive patterns is sequentially connected in the lamination direction to form a coil that circulates in a spiral shape.
- the two coils having substantially the same number of turns and coil diameter are in a mirror image relationship with respect to the virtual plane between the coils, and The end portions of the coils are arranged in parallel so as to be positioned on the outer peripheral portion on the opposite side to the virtual plane, and the end portions are arranged inside the coil and outside the coil.
- One or more electrically insulating nonmagnetic layers are arranged in the stacking direction in place of the magnetic layer on the outer peripheral portion of the multilayer inductor.
- an electrically insulating non-conductive material having a shape corresponding to the shape of the conductive pattern between the conductive patterns adjacent to each other in the stacking direction.
- a magnetic pattern is disposed, and the nonmagnetic layer is formed continuously with the nonmagnetic pattern.
- the number of turns and the coil diameter are substantially equal means that the number of turns is the same and the coil diameter is a printing error and / or a manufacturing error of the conductive pattern and the connecting portion. It means to be equal within the range.
- the two coils having substantially the same number of turns and the same coil diameter are arranged so as to have a mirror image relationship with respect to the virtual plane between the coils. Therefore, the magnetic circuit formed by both coils becomes equal, and as a result, the difference in inductance value can be reduced.
- the non-magnetic layer and the non-magnetic pattern can be simultaneously formed by printing or the like at the time of manufacturing, thereby further simplifying the manufacturing process.
- a magnetic gap is also formed in the outer peripheral portion where the number of turns is increased by arranging the end of the coil outside the coil. Since the magnetic layer is formed, even when a positional deviation occurs in the internal coil during the cutting process during the manufacture of the multilayer inductor, the inductance value is almost the same if the positional deviation is within the cutting accuracy range. There is no difference. In addition, the DC superimposition characteristic at low load can be made flat.
- FIG. 1A shows a first embodiment of the present invention and is a plan view showing a coil arrangement.
- 1B is a cross-sectional view taken along line BB of FIG. 1A.
- 1C is a cross-sectional view taken along the line CC of FIG. 1A.
- FIG. 2A shows a second embodiment of the present invention and is a plan view showing a coil arrangement.
- 2B is a cross-sectional view taken along line BB of FIG. 2A.
- 2C is a cross-sectional view taken along the line CC of FIG. 2A.
- FIG. 3A shows a third embodiment of the present invention and is a plan view showing a coil arrangement.
- 3B is a cross-sectional view taken along line BB of FIG. 3A.
- FIG. 3C is a cross-sectional view taken along line CC of FIG. 3A.
- FIG. 4A is a plan view showing the coil arrangement of the multilayer inductor used as Comparative Example 1 in the example.
- 4B is a cross-sectional view taken along line BB of FIG. 4A.
- 4C is a cross-sectional view taken along the line CC of FIG. 4A.
- FIG. 5A is a plan view showing the coil arrangement of the multilayer inductor used as Comparative Example 2 in the example.
- 5B is a cross-sectional view taken along line BB of FIG. 5A.
- 5C is a cross-sectional view taken along the line CC of FIG. 5A.
- FIG. 6A is a graph showing the DC superimposition characteristics of Example 1 in the above example.
- FIG. 6A is a graph showing the DC superimposition characteristics of Example 1 in the above example.
- FIG. 6B is a graph showing the DC superimposition characteristics of Example 1 in the above example.
- FIG. 7A is a graph showing the DC superimposition characteristics of Example 1 in the above example.
- FIG. 7B is a graph showing the DC superimposition characteristics of Example 2 in the above example.
- FIG. 8A is a graph showing the DC superimposition characteristics of Comparative Example 1 in the above embodiment.
- FIG. 8B is a graph showing the DC superimposition characteristics of Comparative Example 1 in the above embodiment.
- FIG. 9A is a graph showing the DC superimposition characteristics of Comparative Example 2 in the above embodiment.
- FIG. 9B is a graph showing the DC superimposition characteristics of Comparative Example 2 in the above embodiment.
- FIG. 10A is a plan view showing an example in the case where a positional deviation occurs in the coil in the embodiment.
- FIG. 10B is a plan view showing an example in the case where a positional deviation occurs in the coil in the embodiment.
- FIG. 10C is a plan view showing an example in the case where a positional deviation occurs in the coil in the embodiment.
- the multilayer inductor 1 includes a plurality of electrically insulating magnetic layers 2 and conductive patterns 3a, The conductive patterns 3a of the respective layers are sequentially connected in the stacking direction to form a coil 3 that circulates in a spiral shape, and both ends 4 of the coil 3 have a rectangular parallelepiped shape that is drawn out to the outer peripheral portion.
- the end portion 4 of the extracted coil 3 is connected to a land of a circuit board (not shown) to be surface mounted.
- two coils 3 having the same number of turns and having the same coil diameter in the manufacturing error range are arranged in parallel in the magnetic layer 2 with their axes parallel to each other. Is arranged.
- the coils 3 are arranged so as to have a mirror image relationship with respect to a virtual plane between the coils 3.
- the coil 3 is arranged such that the end portions 4 of the coil 3 are positioned in the outer peripheral portion opposite to the imaginary plane, specifically, in the vicinity of the corner of the long side portion of the multilayer inductor 1. .
- an electrically insulating nonmagnetic pattern 5 having a shape corresponding to the shape of the conductive pattern 3a is arranged. Further, in this multilayer inductor 1, no magnetic gap is formed between the coils 3, and an electrically insulating nonmagnetic layer 6 that becomes a magnetic gap is provided only in the coil 3 instead of the magnetic layer 2.
- One layer is arranged in the stacking direction. Incidentally, the nonmagnetic layer 6 is formed continuously with the nonmagnetic pattern 5 disposed between the conductive patterns 3a.
- a magnetic layer 2 is formed by printing a paste of an electrical insulating material such as a Ni—Zn based ferrite material by a screen printing method or the like, and the magnetic layer 2 is formed on the magnetic layer 2.
- the conductive pattern 3a is printed, and the magnetic layer 2 is printed on the portion excluding the conductive pattern 3a.
- a nonmagnetic pattern 5 is formed on the conductive pattern 3a by printing an electrically insulating pace such as a Zn ferrite material in a shape corresponding to the shape of the conductive pattern 3a. Then, the magnetic layer 2 is formed.
- the conductive patterns 3a and the nonmagnetic patterns 5 are alternately laminated in the magnetic layer 2, and the fifth layer in the figure shows an electrically insulating pace such as the same Zn ferrite material as the nonmagnetic pattern 5.
- the nonmagnetic layer 6 is continuously printed on the nonmagnetic pattern 5, and the magnetic layer 2 is similarly printed on the portions other than these.
- the upper and lower conductor patterns 3a are electrically connected using via holes or the like.
- the multilayer inductor shown in FIGS. 1A to 1C can be manufactured by further repeating the above-described multilayer process.
- FIGS. 1A to 1C illustrate a second embodiment of the multilayer inductor according to the present invention.
- a layer in which the nonmagnetic layer 6 is formed inside the coil 3 in the first embodiment is further connected to the nonmagnetic layer 6 and the nonmagnetic pattern 5.
- An electrically insulating nonmagnetic layer 8 is disposed in place of the magnetic layer 2 on the entire outer peripheral portion 7 outside the coil 3 where the end 4 of the coil 3 is disposed.
- FIG. 3A, 3B, and 3C show a third embodiment of the present invention.
- the third layer is continuous with the nonmagnetic pattern 5 between the conductive patterns 3a
- a nonmagnetic layer 6 is formed inside the coil 3
- the seventh layer is continuous with the nonmagnetic pattern 5 between the nonmagnetic layer 6 inside the coil 3 and the conductive pattern 3 a
- An electrically insulative nonmagnetic layer 8 is disposed in place of the magnetic layer 2 over the entire outer peripheral portion 7 where the end 4 of the coil 3 is disposed.
- the two coils 3 having substantially the same number of turns and the same coil diameter are mirror images of each other with respect to the virtual plane between these coils 3. Therefore, the magnetic circuits formed by the two coils 3 are equal, and as a result, the difference in inductance value can be reduced.
- the magnetic gap is formed by disposing one nonmagnetic layer 6 inside each coil 3, the magnetic flux generated by one coil 3 passes through the other coil 3. Therefore, it is possible to suppress the influence of one coil 3 on the inductance of the other coil 3.
- the non-magnetic layer 6 and the non-magnetic pattern 5 are simultaneously formed by printing or the like at the time of manufacture, so that the manufacturing process can be simplified.
- the nonmagnetic layer 6 is formed inside the coil 3, and further, the end 4 of the coil 3 is outside the coil 3.
- the magnetic gap formed of the nonmagnetic layer 8 is formed also on the entire surface of the outer peripheral portion 7 where the number of turns increases due to the arrangement.
- the positional deviation is within the cutting accuracy range, there is almost no difference in the inductance value.
- the DC superimposition characteristic at low load can be made flat.
- the multilayer inductor according to the present invention has the multilayer inductor having the configuration of the first embodiment (Example 1, “mirror image, center”) and the configuration of the second embodiment.
- a prototype of the multilayer inductor (Example 2, “mirror image, fin”) was produced.
- multilayer inductors 40 and 50 having the configurations shown in FIGS. 4A to 4C and FIGS. 5A to 5C were manufactured.
- the laminated inductor 40 shown in FIGS. 4A to 4C includes two coils 31 arranged in parallel to each other in parallel with each other instead of mirror images in the multilayer inductor of the first embodiment.
- the nonmagnetic layer 32 is formed continuously with the nonmagnetic pattern 5 over the entire surface of the multilayer inductor 40 (Comparative Example 1 “Parallel, entire surface”).
- the two coils 31 are arranged in parallel so as to be in parallel with each other instead of being mirror images.
- the nonmagnetic layer 6 is disposed only inside the coil 3 (Comparative Example 2 “Parallel, Center”).
- the two coils 3 and 31 are denoted as 3 (L1, L2) and 31 (L1, L2), respectively.
- the coils 3 and 31 have the same number of turns and the same coil diameter.
- FIG. 6A, FIG. 7A, FIG. 8A, and FIG. 9A show the measurement results in Examples 1 and 2 and Comparative Examples 1 and 2, respectively. From these DC superposition characteristics graphs, when the nonmagnetic layer 6 is disposed only inside the coils 3 and 31 such as the multilayer inductors of Examples 1 and 2 and Comparative Example 2, and in addition to the nonmagnetic layer 6 When the non-magnetic layer 8 is disposed inside the coils 3 and 31 and the entire outer peripheral portion 7 where the end 4 of the coil 3 is disposed, the other coil 3 is compared with the multilayer inductor of the first comparative example.
- both the coils 3 (L1, L2), 31 are used.
- the DC superposition characteristics were measured when the same bias current was applied to (L1, L2).
- FIG. 6B, FIG. 7B, FIG. 8B and FIG. 9B show the measurement results in Examples 1 and 2 and Comparative Examples 1 and 2, respectively.
- the first and second examples and the second comparative example are similarly compared with the first comparative example. It was proved that the change between the two was significantly smaller.
- Example 2 of FIG. 7B it was verified that there is no local rapid change in the inductance value, and as a result, stable DC superposition characteristics can be obtained in both coils 3 (L1, L2). .
- Table 1 shows changes in inductance in FIGS. 10A to 10C.
- a nonmagnetic layer is formed over the entire surface.
- FIG. 10A to FIG. 10C show the change in the inductance value when the distance between the outer side (outer leg) of the coil and the cutting edge is changed for the formed Comparative Example 3 “entire surface”.
- Example 1 As can be seen from Table 1, in Example 1 and Example 2, it was proved that the amount of change in inductance value was small compared to Comparative Example 3 “entire surface”. In particular, according to Example 2, it was also demonstrated that the amount of change can be further reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Coils Or Transformers For Communication (AREA)
Abstract
Description
なお、請求項1~3に記載の発明において、巻回数およびコイル径がほぼ等しいとは、巻回数が同じであって、かつコイル径が導電パターンおよび接続部の印刷誤差および/または製造誤差の範囲内で等しいことをいうものである。
図1A、図1B、図1Cは、本発明に係る積層インダクタの第1の実施形態を示すもので、この積層インダクタ1は、複数の電気絶縁性の磁性層2および導電パターン3aが積層され、各層の導電パターン3aが積層方向に順次接続されることにより螺旋状に周回するコイル3が形成されるとともに、コイル3の両端部4が外周部に引き出された直方体状のもので、外周部に引き出されたコイル3の端部4が図示されない回路基板のランドに接続されることにより、面実装されるものである。
図2A、図2B、図2Cは、本発明に係る積層インダクタの第2の実施形態を示すものである。なお、図1A~図1Cに示したものと同一構成部分については、同一符号を付してその説明を簡略化する。
本実施形態の積層インダクタ10においては、第1の実施形態においてコイル3の内部に非磁性層6が形成されている層に、さらに当該非磁性層6および非磁性パターン5に連続するようにして、コイル3の外部であってコイル3の端部4が配置されている外周部分7の全面に、上記磁性層2に換えて電気絶縁性の非磁性層8が配置されている。
図3A、図3B、図3Cは、本発明の第3の実施形態を示すもので、この積層インダクタ20においては、3層目に導電パターン3a間の非磁性パターン5と連続するようにして、コイル3の内部に非磁性層6が形成されているとともに、さらに7層目に、コイル3内部の非磁性層6および導電パターン3a間の非磁性パターン5に連続するようにして、コイル3の外部であってコイル3の端部4が配置されている外周部分7の全面に、上記磁性層2に換えて電気絶縁性の非磁性層8が配置されている。
これらの直流重畳特性のグラフから、実施例1、2および比較例2の積層インダクタのようなコイル3、31の内部にのみ非磁性層6を配置した場合、および上記非磁性層6に加えてコイル3、31の内部およびコイル3の端部4が配置されている外周部分7の全面に非磁性層8を配置した場合に、比較例1の積層インダクタと比較して、上記他方のコイル3(L2)、31(L2)のインダクタンス値の変化が小さく、よって一方のコイル3(L1)、31(L1)を流れる電流によって発生する磁束が、他方のコイル3(L2)、31(L2)のインダクタンス値に与える影響が少ないことが実証された。
これらのグラフにおいて、コイル3(L1)、31(L1)と、コイル(L2)、31(L2)とを対比することにより、同様に実施例1、2および比較例2においては、比較例1よりも両者の変化が大幅に小さいことが実証された。また、特に図7Bの実施例2においては、インダクタンス値に局所的に急激な変化が無く、この結果両方のコイル3(L1、L2)において安定的な直流重畳特性が得られることが検証された。
表1は、図10A~図10Cのインダクタンスの変化を示す表であり、実施例1「センター」、実施例2「ひれ」および実施例1の非磁性層6に換えて全面にわたって非磁性層を形成した比較例3「全面」について、図10A~図10Cに示すように、コイルの外側(外足)と切断縁との距離を変化させた場合のインダクタンス値の変化を示すものである。
2 磁性層
3 コイル
3a 導電パターン
4 端部
5 非磁性パターン
6、8 非磁性層
7 外周部分
Claims (3)
- 複数の電気絶縁性の磁性層および導電パターンが積層され、各々の上記導電パターンが上記積層方向に順次接続されることにより螺旋状に周回するコイルが形成されるとともに、上記コイルの両端部が外周部に引き出される積層インダクタにおいて、
巻回数およびコイル径がほぼ等しい2個の上記コイルが、当該コイル間の仮想面に対して鏡像の関係となるように、かつ互いの上記端部を上記仮想面に対して反対側となる上記外周部に位置させて並列的に配置されるとともに、上記コイルの内部のみに、上記磁性層に換えて電気絶縁性の非磁性層を上記積層方向に1層以上配設したことを特徴とする積層インダクタ。 - 複数の電気絶縁性の磁性層および導電パターンが積層され、各々の上記導電パターンが上記積層方向に順次接続されることにより螺旋状に周回するコイルが形成されるとともに、上記コイルの両端部が外周部に引き出される積層インダクタにおいて、
巻回数およびコイル径がほぼ等しい2個の上記コイルが、当該コイル間の仮想面に対して鏡像の関係となるように、かつ互いの上記端部を上記仮想面に対して反対側となる上記外周部に位置させて並列的に配置されるとともに、上記コイルの内部および当該コイルの外部であって上記端部が配置されている上記積層インダクタの外周部分に、上記磁性層に換えて電気絶縁性の非磁性層を上記積層方向に1層以上配設したことを特徴とする積層インダクタ。 - 上記積層方向に隣接する上記導電パターン間に、当該導電パターンの形状に対応した形状を有する電気絶縁性の非磁性パターンが配置されるとともに、上記非磁性層は、上記非磁性パターンに連続して形成されていることを特徴とする請求項1または2に記載の積層インダクタ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480018196.5A CN105051837B (zh) | 2013-03-25 | 2014-02-20 | 层叠电感器 |
US14/778,430 US20160276093A1 (en) | 2013-03-25 | 2014-02-20 | Multilayer inductor |
KR1020157026020A KR20160040446A (ko) | 2013-03-25 | 2014-02-20 | 적층 인덕터 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013062080A JP2014187276A (ja) | 2013-03-25 | 2013-03-25 | 積層インダクタ |
JP2013-062080 | 2013-03-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014155952A1 true WO2014155952A1 (ja) | 2014-10-02 |
Family
ID=51622975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/000879 WO2014155952A1 (ja) | 2013-03-25 | 2014-02-20 | 積層インダクタ |
Country Status (5)
Country | Link |
---|---|
US (1) | US20160276093A1 (ja) |
JP (1) | JP2014187276A (ja) |
KR (1) | KR20160040446A (ja) |
CN (1) | CN105051837B (ja) |
WO (1) | WO2014155952A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102117512B1 (ko) | 2015-07-01 | 2020-06-01 | 삼성전기주식회사 | 코일 부품 및 그 실장 기판 |
JP6520880B2 (ja) * | 2016-09-26 | 2019-05-29 | 株式会社村田製作所 | 電子部品 |
JP6589793B2 (ja) * | 2016-09-26 | 2019-10-16 | 株式会社村田製作所 | 積層型電子部品 |
JP6686979B2 (ja) * | 2017-06-26 | 2020-04-22 | 株式会社村田製作所 | 積層インダクタ |
JP7222217B2 (ja) * | 2018-10-30 | 2023-02-15 | Tdk株式会社 | 積層コイル部品 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05190367A (ja) * | 1992-01-14 | 1993-07-30 | Tdk Corp | 積層型磁性体部品の製造方法 |
JPH09330819A (ja) * | 1996-06-10 | 1997-12-22 | Murata Mfg Co Ltd | セラミックインダクタと複合セラミックの製造方法またはセラミックインダクタの製造方法 |
JP2001345213A (ja) * | 2000-05-31 | 2001-12-14 | Toko Inc | 積層型電子部品 |
JP2002329630A (ja) * | 2001-04-27 | 2002-11-15 | Toko Inc | 積層型電子部品の製造方法 |
JP2007027444A (ja) * | 2005-07-15 | 2007-02-01 | Fdk Corp | 積層コモンモードチョークコイルおよびその製造方法 |
JP2007324555A (ja) * | 2006-06-01 | 2007-12-13 | Taiyo Yuden Co Ltd | 積層インダクタ |
JP2008130736A (ja) * | 2006-11-20 | 2008-06-05 | Hitachi Metals Ltd | 電子部品及びその製造方法 |
JP2009044030A (ja) * | 2007-08-10 | 2009-02-26 | Hitachi Metals Ltd | 積層電子部品 |
-
2013
- 2013-03-25 JP JP2013062080A patent/JP2014187276A/ja active Pending
-
2014
- 2014-02-20 KR KR1020157026020A patent/KR20160040446A/ko not_active Application Discontinuation
- 2014-02-20 CN CN201480018196.5A patent/CN105051837B/zh not_active Expired - Fee Related
- 2014-02-20 WO PCT/JP2014/000879 patent/WO2014155952A1/ja active Application Filing
- 2014-02-20 US US14/778,430 patent/US20160276093A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05190367A (ja) * | 1992-01-14 | 1993-07-30 | Tdk Corp | 積層型磁性体部品の製造方法 |
JPH09330819A (ja) * | 1996-06-10 | 1997-12-22 | Murata Mfg Co Ltd | セラミックインダクタと複合セラミックの製造方法またはセラミックインダクタの製造方法 |
JP2001345213A (ja) * | 2000-05-31 | 2001-12-14 | Toko Inc | 積層型電子部品 |
JP2002329630A (ja) * | 2001-04-27 | 2002-11-15 | Toko Inc | 積層型電子部品の製造方法 |
JP2007027444A (ja) * | 2005-07-15 | 2007-02-01 | Fdk Corp | 積層コモンモードチョークコイルおよびその製造方法 |
JP2007324555A (ja) * | 2006-06-01 | 2007-12-13 | Taiyo Yuden Co Ltd | 積層インダクタ |
JP2008130736A (ja) * | 2006-11-20 | 2008-06-05 | Hitachi Metals Ltd | 電子部品及びその製造方法 |
JP2009044030A (ja) * | 2007-08-10 | 2009-02-26 | Hitachi Metals Ltd | 積層電子部品 |
Also Published As
Publication number | Publication date |
---|---|
US20160276093A1 (en) | 2016-09-22 |
JP2014187276A (ja) | 2014-10-02 |
CN105051837B (zh) | 2018-04-17 |
KR20160040446A (ko) | 2016-04-14 |
CN105051837A (zh) | 2015-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9251943B2 (en) | Multilayer type inductor and method of manufacturing the same | |
JP3621300B2 (ja) | 電源回路用積層インダクタ | |
WO2017014065A1 (ja) | 積層インダクタ及び積層インダクタ製造方法 | |
US9736942B2 (en) | Coil component, its manufacturing method, and circuit substrate provided with the coil component | |
JP2001044037A (ja) | 積層インダクタ | |
US10418164B2 (en) | Coil component, manufacturing method thereof, and circuit board on which coil component are mounted | |
JP4539630B2 (ja) | 積層型インダクタ | |
US8947189B2 (en) | Multilayer chip inductor and production method for same | |
WO2014155952A1 (ja) | 積層インダクタ | |
CA2740622A1 (en) | Inductive and capacitive components integration structure | |
KR101646505B1 (ko) | 적층 인덕터 | |
KR20140011694A (ko) | 칩소자, 적층형 칩소자 및 이의 제조 방법 | |
WO2012144103A1 (ja) | 積層型インダクタ素子及び製造方法 | |
CN104637650A (zh) | 多层型电感器 | |
US9653203B2 (en) | Multilayer inductor | |
JP2012182286A (ja) | コイル部品 | |
WO2011048873A1 (ja) | 積層インダクタ | |
JP2013065853A (ja) | 積層型インダクタ及びその製造方法 | |
JP2018056190A (ja) | 積層型電子部品の製造方法 | |
JP2012204475A (ja) | 積層電子部品 | |
JP2012182285A (ja) | コイル部品 | |
JP2016100344A (ja) | 高周波コイル装置 | |
KR20120045949A (ko) | 적층형 인덕터 및 그 제조방법 | |
US20230230737A1 (en) | Multilayer coil component | |
KR101862400B1 (ko) | 적층형 비드 및 이의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480018196.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14774017 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14778430 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20157026020 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14774017 Country of ref document: EP Kind code of ref document: A1 |